51
|
Zhang L, Patterson AL, Zhang L, Teixeira JM, Pru JK. Endometrial stromal beta-catenin is required for steroid-dependent mesenchymal-epithelial cross talk and decidualization. Reprod Biol Endocrinol 2012; 10:75. [PMID: 22958837 PMCID: PMC3462133 DOI: 10.1186/1477-7827-10-75] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2012] [Accepted: 09/04/2012] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Beta-catenin is part of a protein complex associated with adherens junctions. When allowed to accumulate to sufficient levels in its dephosphorylated form, beta-catenin serves as a transcriptional co-activator associated with a number of signaling pathways, including steroid hormone signaling pathways. METHODS To investigate the role of beta-catenin in progesterone (P₄) signaling and female reproductive physiology, conditional ablation of Ctnnb1 from the endometrial mesenchymal (i.e. stromal and myometrial), but not epithelial, compartment was accomplished using the Amhr2-Cre mice. Experiments were conducted to assess the ability of mutant female mice to undergo pregnancy and pseudopregnancy by or through oil-induced decidualization. The ability of uteri from mutant female mice to respond to estrogen (E₂) and P₄ was also determined. RESULTS Conditional deletion of Ctnnb1 from the mesenchymal compartment of the uterus resulted in infertility stemming, in part, from complete failure of the uterus to decidualize. E₂-stimulated epithelial cell mitosis and edematization were not altered in mutant uteri indicating that the mesenchyme is capable of responding to E₂. However, exposure of ovariectomized mutant female mice to a combined E₂ and P₄ hormone regimen consistent with early pregnancy revealed that mesenchymal beta-catenin is essential for indirectly opposing E₂-induced epithelial proliferation by P₄ and in some mice resulted in development of endometrial metaplasia. Lastly, beta-catenin is also required for the induced expression of genes that are known to play a fundamental role in decidualization such as Ihh, Ptch1, Gli1 and Muc1 CONCLUSIONS Three salient points derive from these studies. First, the findings demonstrate a mechanistic linkage between the P₄ and beta-catenin signaling pathways. Second, they highlight an under appreciated role for the mesenchymal compartment in indirectly mediating P₄ signaling to the epithelium, a process that intimately involves mesenchymal beta-catenin. Third, the technical feasibility of deleting genes in the mesenchymal compartment of the uterus in an effort to understand decidualization and post-natal interactions with the overlying epithelium has been demonstrated. It is concluded that beta-catenin plays an integral role in selective P₄-directed epithelial-mesenchymal communication in both the estrous cycling and gravid uterus.
Collapse
Affiliation(s)
- Ling Zhang
- Vincent Center for Reproductive Biology, Vincent Obstetrics and Gynecology Service, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, 02114, USA
| | - Amanda L Patterson
- Department of Animal Sciences, Center for Reproductive Biology, Washington State University, Pullman, WA, 99164, USA
| | - Lihua Zhang
- Vincent Center for Reproductive Biology, Vincent Obstetrics and Gynecology Service, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, 02114, USA
| | - Jose M Teixeira
- Vincent Center for Reproductive Biology, Vincent Obstetrics and Gynecology Service, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts, 02114, USA
| | - James K Pru
- Department of Animal Sciences, Center for Reproductive Biology, Washington State University, Pullman, WA, 99164, USA
| |
Collapse
|
52
|
Comparative uterine effects on ovariectomized rats after repeated treatment with different vaginal estrogen formulations. Maturitas 2012; 72:353-8. [DOI: 10.1016/j.maturitas.2012.05.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2012] [Revised: 04/09/2012] [Accepted: 05/16/2012] [Indexed: 11/20/2022]
|
53
|
Li Y, Burns KA, Arao Y, Luh CJ, Korach KS. Differential estrogenic actions of endocrine-disrupting chemicals bisphenol A, bisphenol AF, and zearalenone through estrogen receptor α and β in vitro. ENVIRONMENTAL HEALTH PERSPECTIVES 2012; 120:1029-35. [PMID: 22494775 PMCID: PMC3404668 DOI: 10.1289/ehp.1104689] [Citation(s) in RCA: 172] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2011] [Accepted: 04/11/2012] [Indexed: 05/17/2023]
Abstract
BACKGROUND Endocrine-disrupting chemicals (EDCs) are widely found in the environment. Estrogen-like activity is attributed to EDCs, such as bisphenol A (BPA), bisphenol AF (BPAF), and zearalenone (Zea), but mechanisms of action and diversity of effects are poorly understood. OBJECTIVES We used in vitro models to evaluate the mechanistic actions of BPA, BPAF, and Zea on estrogen receptor (ER) α and ERβ. METHODS We used three human cell lines (Ishikawa, HeLa, and HepG2) representing three cell types to evaluate the estrogen promoter activity of BPA, BPAF, and Zea on ERα and ERβ. Ishikawa/ERα stable cells were used to determine changes in estrogen response element (ERE)-mediated target gene expression or rapid action-mediated effects. RESULTS The three EDCs showed strong estrogenic activity as agonists for ERα in a dose-dependent manner. At lower concentrations, BPA acted as an antagonist for ERα in Ishikawa cells and BPAF acted as an antagonist for ERβ in HeLa cells, whereas Zea was only a partial antagonist for ERα. ERE-mediated activation by BPA and BPAF was via the AF-2 function of ERα, but Zea activated via both the AF-1 and AF-2 functions. Endogenous ERα target genes and rapid signaling via the p44/42 MAPK pathway were activated by BPA, BPAF, and Zea. CONCLUSION BPA and BPAF can function as EDCs by acting as cell type-specific agonists (≥ 10 nM) or antagonists (≤ 10 nM) for ERα and ERβ. Zea had strong estrogenic activity and activated both the AF-1 and AF-2 functions of ERα. In addition, all three compounds induced the rapid action-mediated response for ERα.
Collapse
Affiliation(s)
- Yin Li
- Receptor Biology Section, Laboratory of Reproductive and Developmental Toxicology, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina 27709, USA
| | | | | | | | | |
Collapse
|
54
|
Chung D, Gao F, Ostmann A, Hou X, Das SK. Nucleolar Sik-similar protein (Sik-SP) is required for the maintenance of uterine estrogen signaling mechanism via ERα. Mol Endocrinol 2012; 26:385-98. [PMID: 22282469 DOI: 10.1210/me.2011-1315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Sik-similar protein (Sik-SP), a small nucleolar ribonucleoprotein, has been shown to be primarily involved in ribosome biogenesis. However, its role in the hormone-directed nuclear receptor signaling is largely unknown. Here, we provide novel evidence that Sik-SP is required for appropriate regulation of estrogen receptor (ER)α-mediated estradiol-17β (E2)-dependent uterine physiologic responses in mice. Studies by Western blotting using the newly developed antibodies for Sik-SP showed that this protein is up-regulated in both the ovariectomized wild-type and ERα null uteri by E2. Immunohistochemical analyses in uterine sections showed that this protein is induced in the epithelial and stromal cells. Coimmunoprecipitation studies revealed that E2 directs molecular interaction between Sik-SP and ERα. Furthermore, gel-mobility shift and chromatin immunoprecipitation analyses provided evidence that Sik-SP is recruited with ERα to estrogen-responsive uterine gene promoters. Overexpression of Sik-SP in vitro demonstrated a role for Sik-SP in cellular growth and viability. In a primary uterine epithelial-stromal coculture system, E2 exhibited early induction of Sik-SP in both the epithelial and stromal cells. Interestingly, suppression of Sik-SP in this coculture model, for the stromal but not epithelial cells, caused perturbation of E2-dependent proliferation in the epithelial cell layer. Similarly, in vivo uterine suppression of Sik-SP also caused inhibition of epithelial cell proliferation and aberrant prolongation of water imbibition in the late phase by E2. Finally, studies showed that Sik-SP is physiologically important during the onset of implantation by E2. In conclusion, Sik-SP, an early E2-responsive nucleolar protein, is necessary to induce E2-dependent ERα-mediated appropriate physiologic responses in the uterus.
Collapse
Affiliation(s)
- Daesuk Chung
- Division of Reproductive Sciences, Cincinnati Children's Hospital Medical Center, 3333 Burnet Avenue, Cincinnati, Ohio 45229, USA
| | | | | | | | | |
Collapse
|
55
|
Konigame VC, Siu ER, Royer C, Lucas TFG, Porto CS, Abdalla FMF. Estrogen receptors mediate rapid activation of phospholipase C pathway in the rat endometrium. Steroids 2011; 76:1582-9. [PMID: 22005199 DOI: 10.1016/j.steroids.2011.09.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Revised: 04/26/2011] [Accepted: 09/30/2011] [Indexed: 12/14/2022]
Abstract
The aim of the present study was to investigate the activation of rapid signaling events by 17β-estradiol in the rat uterus. 17β-Estradiol induced a rapid increase of total [3H]-inositol phosphate accumulation in the whole uterus and endometrium, but not in the myometrium. The effect of 17β-estradiol in the endometrium was blocked by phospholipase C (PLC) inhibitor (U73122), estrogen receptors antagonist (ICI 182,780), exportin CRM1 inhibitor (leptomycin B) and selective inhibitor of the SRC family of protein tyrosine kinases (PP2). Furthermore, a selective agonist of ESR1 (PPT) and a selective agonist of GPER (G-1) also induced a rapid increase of total [(3)H]-inositol phosphate accumulation in the endometrium. The G-1 effects were blocked by GPER antagonist (G-15). 17β-Estradiol and G-1 promoted an additive effect on total [3H]-inositol phosphate accumulation. In conclusion, the present results indicate that a rapid activation of the PLC-mediated phosphoinositide hydrolysis occurred in the rat endometrium after 17β-estradiol stimulation, and this effect was mediated by ESR1 that underwent nuclear export after hormone stimulation, and that GPER activation may play an additive role for this response. These rapid actions might be one of the key steps that mediate the estrogen-dependent activation of cellular events in the endometrium.
Collapse
|
56
|
Cadmium modulates expression of aryl hydrocarbon receptor-associated genes in rat uterus by interaction with the estrogen receptor. Arch Toxicol 2011; 86:591-601. [DOI: 10.1007/s00204-011-0787-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Accepted: 11/14/2011] [Indexed: 12/30/2022]
|
57
|
Hilser VJ, Thompson EB. Structural dynamics, intrinsic disorder, and allostery in nuclear receptors as transcription factors. J Biol Chem 2011; 286:39675-82. [PMID: 21937423 PMCID: PMC3220581 DOI: 10.1074/jbc.r111.278929] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Steroid hormone receptors (SHRs) and nuclear receptors (NRs) in general are flexible, allosterically regulated transcription factors. The classic model is inadequate to explain all their behavior. Keys to function are their regions of intrinsic disorder (ID). Data show the dynamic structure and allosteric interactions of the three classic SHR domains: ligand-binding (LBD), DNA-binding (DBD), and N-terminal (NTD). Each responds to its ligands by stabilizing its structure. The LBD responds to classic steroidal and nonsteroidal small ligands; both may selectively modify SHR activity. The DBD responds differentially to the DNA sequences of its response elements. The NTD, with its high ID content and AF1, interacts allosterically with the LBD and DBD. Each domain binds heterologous proteins, potential allosteric ligands. An ensemble framework improves the classic model, shows how ID regions poise the SHR/NR family for optimal allosteric response, and provides a basis for quantitative evaluation of SHR/NR actions.
Collapse
Affiliation(s)
- Vincent J. Hilser
- From the Department of Biology, The Johns Hopkins University, Baltimore, Maryland 21218
| | - E. Brad Thompson
- the Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, Texas 77204-5056, and
- the Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas 77555-1068
| |
Collapse
|
58
|
Jeoung M, Bridges PJ. Cyclic regulation of apoptotic gene expression in the mouse oviduct. Reprod Fertil Dev 2011; 23:638-44. [PMID: 21635812 DOI: 10.1071/rd11011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Accepted: 02/07/2011] [Indexed: 12/14/2022] Open
Abstract
The oviduct is a dynamic structure whose function relies upon cyclic changes in the morphology of both ciliated and secretory luminal epithelial cells. Unfortunately, infection of these epithelial cells by sexually transmitted pathogens can lead to pelvic inflammatory disease, ectopic pregnancies and infertility. The disruption of normal, cyclic apoptosis in the oviducal epithelium appears to be a causal factor of oviducal pathology and therefore, these pathways represent a potential target for diagnosis and therapeutic intervention. The objective of this study was to determine the pattern of expression for apoptotic genes in the oviduct of the naturally cycling mouse, generating fundamental information that can be applied to the development of animal models for research and the identification of targets for disease intervention. Whole oviducts were collected from regular cycling mice killed at 1p.m. on each day of the oestrous cycle and the expression of 84 apoptotic genes determined by targeted PCR super-array. Intact and cleaved caspases were then evaluated by western blotting. The expression of mRNA for genes classified as pro-apoptotic (Bad, Bak1 and Bok) and anti-apoptotic (Bag3, Bnip2 and Xiap) was regulated by day (P < 0.05). Differences in the temporal expression of several p53-related genes (Trp53bp2, Trp53inp1 and Trp73), those specific to the TNF superfamily (Tnfrsf10 and Tnfsf10b) and one caspase (Casp14) were also observed (P < 0.05). The cleaved forms of Caspases-3, -6 and -12 were all detected throughout the oestrous cycle. These results represent the first pathway-wide analysis of apoptotic gene expression in the murine oviduct.
Collapse
Affiliation(s)
- Myoungkun Jeoung
- Division of Clinical and Reproductive Sciences, University of Kentucky, Lexington, KY 40536, USA
| | | |
Collapse
|
59
|
Estrogen receptor α AF-2 mutation results in antagonist reversal and reveals tissue selective function of estrogen receptor modulators. Proc Natl Acad Sci U S A 2011; 108:14986-91. [PMID: 21873215 DOI: 10.1073/pnas.1109180108] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The estrogen receptor (ER) is a ligand-dependent transcription factor containing two transcriptional activation domains. AF-1 is in the N terminus of the receptor protein and AF-2 activity is dependent on helix 12 of the C-terminal ligand-binding domain. Two point mutations of leucines 543 and 544 to alanines (L543A, L544A) in helix 12 minimized estrogen-dependent transcriptional activation and reversed the activity of the estrogen antagonists ICI182780 (ICI) and tamoxifen (TAM) into agonists in a similar manner that TAM activated WT ERα through AF-1 activation. To evaluate the physiological role of AF-1 and AF-2 for the tissue-selective function of TAM, we generated an AF-2-mutated ERα knock-in (AF2ERKI) mouse model. AF2ERKI homozygote female mice have hypoplastic uterine tissue and rudimentary mammary glands similar to ERα-KO mice. Female mice were infertile as a result of anovulation from hemorrhagic cystic ovaries and elevated serum LH and E2 levels, although the mutant ERα protein is expressed in the AF2ERKI model. The AF2ERKI phenotype suggests that AF-1 is not activated independently, even with high serum E2 levels. ICI and TAM induced uterotropic and ER-mediated gene responses in ovariectomized AF2ERKI female mice in the same manner as in TAM- and E2-treated WT mice. In contrast, ICI and TAM did not act as agonists to regulate negative feedback of serum LH or stimulate pituitary prolactin gene expression in a different manner than TAM- or E2-treated WT mice. The functionality of the mutant ERα in the pituitary appears to be different from that in the uterus, indicating that ERα uses AF-1 differently in the uterus and the pituitary for TAM action.
Collapse
|
60
|
Becker C, Riedmaier I, Reiter M, Tichopad A, Groot MJ, Stolker AAM, Pfaffl MW, Nielen MFW, Meyer HHD. Influence of anabolic combinations of an androgen plus an estrogen on biochemical pathways in bovine uterine endometrium and ovary. J Steroid Biochem Mol Biol 2011; 125:192-201. [PMID: 21272641 DOI: 10.1016/j.jsbmb.2011.01.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Revised: 01/10/2011] [Accepted: 01/17/2011] [Indexed: 02/02/2023]
Abstract
The application of anabolic steroids in food producing animals is forbidden in the EU since 1988, but the abuse of such drugs is a potential problem. The existing test systems are based on known compounds and can be eluded by newly emerging substances. The examination of physiological effects of anabolic hormones on different tissues to indirectly detect misuse might overcome this problem. Two studies were conducted with post-pubertal 24-months old Nguni heifers and pre-pubertal female 2-4 weeks old Holstein Friesian calves, respectively. The animals of the accordant treatment groups were administered combinations of estrogenic and androgenic compounds. The measurement of the gene expression pattern was undertaken with RT-qPCR. Target genes of different functional groups (receptors, angiogenesis, steroid synthesis, proliferation, apoptosis, nutrient metabolism and others) have been quantified. Several biochemical pathways were shown to be influenced by anabolic treatment. Both studies identified significant regulations in steroid and growth factor receptors (AR, ERβ, LHR, FSHR, Flt-1, PR, IGF-1R, Alk-6), angiogenic and tissue remodeling factors (VEGFs, FGFs, BMPs, ANGPT-2, MMPs, TIMP-2, CTSB), steroid synthesis (S5A1, HSD17, CYP19A1), proliferation (TNFα, IGF-1, IGFBPs, p53, c-fos; CEBPD, c-kit), apoptosis (CASP3, FasL, p53) and others (C7, INHA, STAR). Several genes were regulated to opposite directions in post-pubertal compared to pre-pubertal animals. PCA for Nguni heifers demonstrated a distinct separation between the control and the treatment group. In conclusion, anabolics modify hormone sensitivity and steroid synthesis, and they induce proliferative effects in the whole reproductive tract (uterus and ovary) as well as anti-angiogenic effects in the ovary. However, the extent will depend on the developmental stage of the animals.
Collapse
Affiliation(s)
- C Becker
- Physiology-Weihenstephan, Technical University Munich, Weihenstephaner Berg 3, 85384 Freising, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
61
|
Gao F, Ma X, Ostmann AB, Das SK. GPR30 activation opposes estrogen-dependent uterine growth via inhibition of stromal ERK1/2 and estrogen receptor alpha (ERα) phosphorylation signals. Endocrinology 2011; 152:1434-47. [PMID: 21303939 PMCID: PMC3060628 DOI: 10.1210/en.2010-1368] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Although estradiol-17β (E2)-regulated early and late phase uterine responses have been well defined, the molecular mechanisms linking the phases remain poorly understood. We have previously shown that E2-regulated early signals mediate cross talk with estrogen receptor (ER)-α to elicit uterine late growth responses. G protein-coupled receptor (GPR30) has been implicated in early nongenomic signaling mediated by E2, although its role in E2-dependent uterine biology is unclear. Using selective activation of GPR30 by G-1, we show here a new function of GPR30 in regulating early signaling events, including the inhibition of ERK1/2 and ERα (Ser118) phosphorylation signals and perturbation of growth regulation under the direction of E2 in the mouse uterus. We observed that GPR30 primarily localizes in the uterine epithelial cells, and its activation alters gene expression and mediates inhibition of ERK1/2 and ERα (Ser118) phosphorylation signals in the stromal compartment, suggesting a paracrine signaling is involved. Importantly, viral-driven manipulation of GPR30 or pharmacological inhibition of ERK1/2 activation effectively alters E2-dependent uterine growth responses. Overall, GPR30 is a negative regulator of ERα-dependent uterine growth in response to E2. Our work has uncovered a novel GPR30-regulated inhibitory event, which may be physiologically relevant in both normal and pathological situations to negatively balance ERα-dependent uterine growth regulatory functions induced by E2.
Collapse
Affiliation(s)
- Fei Gao
- Division of Reproductive Sciences, The Perinatal Institute, Cincinnati Children's Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, Ohio 45229, USA
| | | | | | | |
Collapse
|
62
|
Heldring N, Isaacs GD, Diehl AG, Sun M, Cheung E, Ranish JA, Kraus WL. Multiple sequence-specific DNA-binding proteins mediate estrogen receptor signaling through a tethering pathway. Mol Endocrinol 2011; 25:564-74. [PMID: 21330404 DOI: 10.1210/me.2010-0425] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The indirect recruitment (tethering) of estrogen receptors (ERs) to DNA through other DNA-bound transcription factors (e.g. activator protein 1) is an important component of estrogen-signaling pathways, but our understanding of the mechanisms of ligand-dependent activation in this pathway is limited. Using proteomic, genomic, and gene-specific analyses, we demonstrate that a large repertoire of DNA-binding transcription factors contribute to estrogen signaling through the tethering pathway. In addition, we define a set of endogenous genes for which ERα tethering through activator protein 1 (e.g. c-Fos) and cAMP response element-binding protein family members mediates estrogen responsiveness. Finally, we show that functional interplay between c-Fos and cAMP response element-binding protein 1 contributes to estrogen-dependent regulation through the tethering pathway. Based on our results, we conclude that ERα recruitment in the tethering pathway is dependent on the ligand-induced formation of transcription factor complexes that involves interplay between the transcription factors from different protein families.
Collapse
Affiliation(s)
- Nina Heldring
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, USA
| | | | | | | | | | | | | |
Collapse
|
63
|
Hewitt SC, Korach KS. Estrogenic activity of bisphenol A and 2,2-bis(p-hydroxyphenyl)-1,1,1-trichloroethane (HPTE) demonstrated in mouse uterine gene profiles. ENVIRONMENTAL HEALTH PERSPECTIVES 2011; 119:63-70. [PMID: 20826375 PMCID: PMC3018502 DOI: 10.1289/ehp.1002347] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2010] [Accepted: 09/08/2010] [Indexed: 05/19/2023]
Abstract
BACKGROUND Interest and concern regarding potentially estrogenic substances have resulted in development of model systems to evaluate mechanisms of such chemicals. Microarray studies have indicated that estradiol (E2)-stimulated uterine responses can be divided into early and late phases. Comparison of E2 uterine transcript profiles and those of other estrogenic chemicals of interest in vivo indicates mechanisms and activities of test compounds. OBJECTIVES We compared transcript responses and mechanisms of response using mouse reproductive tracts after treatment with E2, estriol (E3), bisphenol A (BPA), and 2,2-bis(p-hydroxyphenyl)-1,1,1-trichloroethane (HPTE). METHODS Uterine RNA from ovariectomized wild-type mice, estrogen receptor α (ERα) knockout (αERKO) mice, and mice expressing a DNA-binding-deficient ERα (KIKO) treated with E2, E3, BPA, or HPTE for 2 or 24 hr was analyzed by microarray. Resulting regulated transcripts were compared by hierarchical clustering and correlation analysis, and response patterns were verified by reverse-transcription real-time polymerase chain reaction (RT-PCR). RESULTS Both xenoestrogens, BPA and HPTE, showed profiles highly correlated to that of E2 in the early response phase (2 hr), but the correlation diminished in the later response phase (24 hr), similar to the known weak estrogen E3. Both xenoestrogens also mimicked E2 in samples from KIKO mice, indicating that they are able to utilize the indirect tethering mode of ERα signaling. No response was detected in ERα-null uteri, indicating that ERα mediates the responses. CONCLUSION Our study forms a basis on which patterns of response and molecular mechanisms of potentially estrogenic chemicals can be assessed.
Collapse
Affiliation(s)
- Sylvia C Hewitt
- Receptor Biology Section, Laboratory of Reproductive and Developmental Toxicology, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina 27709, USA.
| | | |
Collapse
|
64
|
Ali I, Penttinen-Damdimopoulou PE, Mäkelä SI, Berglund M, Stenius U, Åkesson A, Håkansson H, Halldin K. Estrogen-like effects of cadmium in vivo do not appear to be mediated via the classical estrogen receptor transcriptional pathway. ENVIRONMENTAL HEALTH PERSPECTIVES 2010; 118:1389-94. [PMID: 20525538 PMCID: PMC2957917 DOI: 10.1289/ehp.1001967] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Accepted: 06/04/2010] [Indexed: 05/25/2023]
Abstract
BACKGROUND Cadmium (Cd), a ubiquitous food contaminant, has been proposed to be an endocrine disruptor by inducing estrogenic responses in vivo. Several in vitro studies suggested that these effects are mediated via estrogen receptors (ERs). OBJECTIVE We performed this study to clarify whether Cd-induced effects in vivo are mediated via classical ER signaling through estrogen responsive element (ERE)-regulated genes or if other signaling pathways are involved. METHODS We investigated the estrogenic effects of cadmium chloride (CdCl2) exposure in vivo by applying the Organisation for Economic Co-operation and Development (OECD) rodent uterotrophic bioassay to transgenic ERE-luciferase reporter mice. Immature female mice were injected subcutaneously with CdCl2 (5, 50, or 500 µg/kg body weight) or with 17α-ethinylestradiol (EE2) on 3 consecutive days. We examined uterine weight and histology, vaginal opening, body and organ weights, Cd tissue retention, activation of mitogen-activated protein kinase (MAPK) pathways, and ERE-dependent luciferase expression. RESULTS CdCl2 increased the height of the uterine luminal epithelium in a dose-dependent manner without increasing the uterine wet weight, altering the timing of vaginal opening, or affecting the luciferase activity in reproductive or nonreproductive organs. However, we observed changes in the phosphorylation of mouse double minute 2 oncoprotein (Mdm2) and extracellular signal-regulated kinase (Erk1/2) in the liver after CdCl2 exposure. As we expected, EE2 advanced vaginal opening and increased uterine epithelial height, uterine wet weight, and luciferase activity in various tissues. CONCLUSION Our data suggest that Cd exposure induces a limited spectrum of estrogenic responses in vivo and that, in certain targets, effects of Cd might not be mediated via classical ER signaling through ERE-regulated genes.
Collapse
Affiliation(s)
- Imran Ali
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | | | - Sari I. Mäkelä
- Functional Foods Forum and Institute of Biomedicine, University of Turku, Turku, Finland
| | - Marika Berglund
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Ulla Stenius
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Agneta Åkesson
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Helen Håkansson
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Krister Halldin
- Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
65
|
Tong W, Niklaus A, Zhu L, Pan H, Chen B, Aubuchon M, Santoro N, Pollard JW. Estrogen and progesterone regulation of cell proliferation in the endometrium of muridae and humans. ACTA ACUST UNITED AC 2010. [DOI: 10.3109/9780203091500.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023]
|
66
|
Yao L, Cooke PS, Meling DD, Shanks RD, Jameson JL, Sherwood OD. The effect of relaxin on cell proliferation in mouse cervix requires estrogen receptor {alpha} binding to estrogen response elements in stromal cells. Endocrinology 2010; 151:2811-8. [PMID: 20308531 PMCID: PMC2875817 DOI: 10.1210/en.2009-1327] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The study objective was to determine whether stromal and/or epithelial estrogen receptor-alpha (ERalpha) is required for relaxin to promote proliferation of stromal and epithelial cells in the mouse cervix. Four types of tissue recombinants were prepared with cervical stroma (St) and epithelium (Ep) from wild-type (wt) and ERalpha knockout (ko) mice: wt-St+wt-Ep, wt-St+ko-Ep, ko-St+wt-Ep and ko-St+ko-Ep. Tissue recombinants were grafted under the renal capsule of syngeneic female mice. After 3 wk of transplant growth, hosts were ovariectomized and fitted with silicon implants containing 17beta-estradiol (treatment d 1). Animals were injected sc with relaxin or vehicle PBS at 6-h intervals from 0600 h on d 8 through 0600 h on d 10. To evaluate cell proliferation, 5-bromo-2'-deoxyuridine was injected sc 10 h before tissue recombinants were collected at 1000 h on d 10. Relaxin promoted marked proliferation of both epithelial and stromal cells in tissue recombinants containing wt St (P < 0.001) but far lower proliferation in recombinants prepared with ko St, regardless of whether Ep was derived from wt or ko mice. An additional experiment using mice expressing wt ERalpha, a mutant of ERalpha that selectively lacks classical signaling through estrogen response element binding, or no ERalpha demonstrated that ERalpha must bind to an estrogen response element to enable relaxin's proliferative effects. In conclusion, this study shows that ERalpha-expressing cells in St, using a classical signaling pathway, are necessary for relaxin to promote marked proliferation in both stromal and epithelial cells of the mouse cervix.
Collapse
Affiliation(s)
- Lijuan Yao
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, 524 Burrill Hall, 407 South Goodwin Avenue, Urbana, Illinois 61801, USA
| | | | | | | | | | | |
Collapse
|
67
|
Velders M, Solzbacher M, Schleipen B, Laudenbach U, Fritzemeier KH, Diel P. Estradiol and genistein antagonize the ovariectomy effects on skeletal muscle myosin heavy chain expression via ER-beta mediated pathways. J Steroid Biochem Mol Biol 2010; 120:53-9. [PMID: 20347979 DOI: 10.1016/j.jsbmb.2010.03.059] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Revised: 03/14/2010] [Accepted: 03/21/2010] [Indexed: 11/28/2022]
Abstract
The age-related decline in ovarian sex hormone production following the onset of menopause alters skeletal muscle metabolic, structural and functional characteristics. The myosin heavy chain (MHC) expression pattern defines skeletal muscle contraction velocity and is therefore an important factor in skeletal muscle function. The present study was designed to examine the effects of 17beta estradiol (E2), estrogen receptor (ER) subtype selective agonists (ERalpha, ERbeta) or genistein (Gen) following ovary removal (OVX) in female Wistar rats in combination with a high intensity treadmill-based exercise protocol (Ex) or normal cage-based activity (NoEx) on MHC protein expression patterns in the slow fiber type m.Soleus (Sol) and the fast fiber type m.Gastrocnemius (Gas). Gen and E2 in the Sol significantly stimulated MHC-I expression relative to OVX only in the absence of exercise (NoEx). MHC-IIb expression in the Gas was significantly increased relative to OVX in Gen Ex and E2 Ex and NoEx groups. The estrogenic effects in the Sol and Gas were both predominantly mediated via ERbeta pathways, since the ERbeta agonist induced greater MHC increases than OVX or ERalpha. We therefore propose that high intensity exercise in combination with exposure to E2, Gen, ERalpha or ERbeta agonists in OVX rats exerts differential effects on MHC expression in skeletal muscles composed of mainly slow type I MHC (Sol) or fast type II MHC (Gas). In summary, the data shows that MHC composition is affected by estrogens and exercise in a fiber type specific manner and that these effects are mainly mediated by ER-beta. This is of great importance with respect to skeletal muscle health and potential treatment with ER selective agonists.
Collapse
Affiliation(s)
- M Velders
- Institute of Sports Medicine, Dept. of Molecular and Cellular Sports Medicine, German Sports University, Carl Diem Weg 6, 50927 Köln, Cologne, Germany
| | | | | | | | | | | |
Collapse
|
68
|
Zhang X, Bocca S, Franchi A, Anderson S, Kaur M, Bajic VB, Oehninger S. Do GnRH analogues directly affect human endometrial epithelial cell gene expression? Mol Hum Reprod 2010; 16:347-60. [DOI: 10.1093/molehr/gaq012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
69
|
Vollmer G, Papke A, Zierau O. Treatment of menopausal symptoms by an extract from the roots of rhapontic rhubarb: the role of estrogen receptors. Chin Med 2010; 5:7. [PMID: 20170496 PMCID: PMC2837008 DOI: 10.1186/1749-8546-5-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Accepted: 02/19/2010] [Indexed: 11/10/2022] Open
Abstract
A dry extract from the roots of rhapontic rhubarb (extract Rheum rhaponticum (L.); ERr) has been commercially available in Germany for over two decades to treat menopausal symptoms. However, the molecular basis of its clinical effectiveness remains obscure. This article reviews the in vitro and in vivo data of its estrogenic actions, particularly those mediated by estrogen receptor-beta (ERbeta).
Collapse
Affiliation(s)
- Günter Vollmer
- Molekulare Zellphysiologie & Endokrinologie, Fachrichtung Biologie, Technische Universität Dresden, Dresden, Germany.
| | | | | |
Collapse
|
70
|
Hewitt SC, Li Y, Li L, Korach KS. Estrogen-mediated regulation of Igf1 transcription and uterine growth involves direct binding of estrogen receptor alpha to estrogen-responsive elements. J Biol Chem 2010; 285:2676-85. [PMID: 19920132 PMCID: PMC2807324 DOI: 10.1074/jbc.m109.043471] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2009] [Revised: 11/16/2009] [Indexed: 12/20/2022] Open
Abstract
Estrogen enables uterine proliferation, which depends on synthesis of the IGF1 growth factor. This proliferation and IGF1 synthesis requires the estrogen receptor (ER), which binds directly to target DNA sequences (estrogen-responsive elements or EREs), or interacts with other transcription factors, such as AP1, to impact transcription. We observe neither uterine growth nor an increase in Igf1 transcript in a mouse with a DNA-binding mutated ER alpha (KIKO), indicating that both Igf1 regulation and uterine proliferation require the DNA binding function of the ER. We identified several potential EREs in the Igf1 gene, and chromatin immunoprecipitation analysis revealed ER alpha binding to these EREs in wild type but not KIKO chromatin. STAT5 is also reported to regulate Igf1; uterine Stat5a transcript is increased by estradiol (E(2)), but not in KIKO or alpha ERKO uteri, indicating ER alpha- and ERE-dependent regulation. ER alpha binds to a potential Stat5a ERE. We hypothesize that E(2) increases Stat5a transcript through ERE binding; that ER alpha, either alone or together with STAT5, then acts to increase Igf1 transcription; and that the resulting lack of IGF1 impairs KIKO uterine growth. Treatment with exogenous IGF1, alone or in combination with E(2), induces proliferation in wild type but not KIKO uteri, indicating that IGF1 replacement does not rescue the KIKO proliferative response. Together, these observations suggest in contrast to previous in vitro studies of IGF-1 regulation involving AP1 motifs that direct ER alpha-DNA interaction is required to increase Igf1 transcription. Additionally, full ER alpha function is needed to mediate other cellular signals of the growth factor for uterine growth.
Collapse
Affiliation(s)
- Sylvia C Hewitt
- Receptor Biology Section, Laboratory of Reproductive and Developmental Toxicology, NIEHS, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA.
| | | | | | | |
Collapse
|
71
|
Uterotrophic effects of cow milk in immature ovariectomized Sprague-Dawley rats. Environ Health Prev Med 2009; 15:162-8. [PMID: 19957059 DOI: 10.1007/s12199-009-0123-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2009] [Accepted: 11/05/2009] [Indexed: 10/20/2022] Open
Abstract
OBJECTIVES Milk contains considerable quantities of estrogens and progesterone and as such may be one of the risk factors for hormone-related cancers. To determine the hormonal effects of commercial and traditional types of milk, we performed uterotrophic tests. METHODS Forty-five rats were ovariectomized and divided into three groups of 15 animals each. The animals were kept for 7 days on powdered chow and one of three different liquids: commercial milk (C), traditional milk (T), or water. At autopsy, wet and dry uterine weights were determined. The cell heights of the uterine epithelium and endometrium were determined. The uterine 5-bromo-2-deoxyuridine (BrdU) labeling index of the epithelium and endometrium gland epithelium was also assessed. RESULTS The weights of wet and dry uterus were 142 ± 13 and 112 ± 10 mg in the C group, 114 ± 30 and 91 ± 24 mg in the T group, and 87 ± 6 and 69 ± 5 mg in the W group. Significant differences in wet and dry uterus weights were found between all pairs of groups. The ratio of the wet uterine weight to body weight was significantly higher in the C and T groups than in the W group. The heights of the uterine epithelium and endometrium were higher and BrdU labeling index was greater in the C group than in the T and W groups. CONCLUSIONS Commercially available milk and traditional milk have uterotrophic effects on young ovariectomized rats. Our findings indicate that these uterotrophic effects in the milk groups were partly due to the estrogen and progesterone in the milk.
Collapse
|
72
|
Hewitt SC, O'Brien JE, Jameson JL, Kissling GE, Korach KS. Selective disruption of ER{alpha} DNA-binding activity alters uterine responsiveness to estradiol. Mol Endocrinol 2009; 23:2111-6. [PMID: 19812388 DOI: 10.1210/me.2009-0356] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
In vitro models have been used to demonstrate that estrogen receptors (ERs) can regulate estrogen-responsive genes either by directly interacting with estrogen-responsive element (ERE) DNA motifs or by interacting with other transcription factors such as AP1. In this study, we evaluated estrogen (E(2))-dependent uterine gene profiles by microarray in the KIKO mouse, an in vivo knock-in mouse model that lacks the DNA-binding function of ERalpha and is consequently restricted to non-ERE-mediated responses. The 2- or 24-h E(2)-mediated uterine gene responses were distinct in wild-type (WT), KIKO, and alphaERKO genotypes, indicating that unique sets of genes are regulated by ERE and non-ERE pathways. After 2 h E(2) treatment, 38% of the WT transcripts were also regulated in the KIKO, demonstrating that the tethered mechanism does operate in this in vivo model. Surprisingly, 1438 E(2)-regulated transcripts were unique in the KIKO mouse and were not seen in either WT or alphaERKO. Pathway analyses revealed that some canonical pathways, such as the Jak/Stat pathway, were affected in a similar manner by E(2) in WT and KIKO. In other cases, however, the WT and KIKO differed. One example is the Wnt/beta-catenin pathway; this pathway was impacted, but different members of the pathway were regulated by E(2) or were regulated in a different manner, consistent with differences in biological responses. In summary, this study provides a comprehensive analysis of uterine genes regulated by E(2) via ERE and non-ERE pathways.
Collapse
Affiliation(s)
- Sylvia C Hewitt
- National Institute of Environment Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, USA.
| | | | | | | | | |
Collapse
|
73
|
Ahlbory-Dieker DL, Stride BD, Leder G, Schkoldow J, Trölenberg S, Seidel H, Otto C, Sommer A, Parker MG, Schütz G, Wintermantel TM. DNA binding by estrogen receptor-alpha is essential for the transcriptional response to estrogen in the liver and the uterus. Mol Endocrinol 2009; 23:1544-55. [PMID: 19574448 DOI: 10.1210/me.2009-0045] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The majority of the biological effects of estrogens in the reproductive tract are mediated by estrogen receptor (ER)alpha, which regulates transcription by several mechanisms. Because the tissue-specific effects of some ERalpha ligands may be caused by tissue-specific transcriptional mechanisms of ERalpha, we aimed to identify the contribution of DNA recognition to these mechanisms in two clinically important target organs, namely uterus and liver. We used a genetic mouse model that dissects DNA binding-dependent vs. independent transcriptional regulation elicited by ERalpha. The EAAE mutant harbors amino acid exchanges at four positions of the DNA-binding domain (DBD) of ERalpha. This construct was knocked in the ERalpha gene locus to produce ERalpha((EAAE/EAAE)) mice devoid of a functional ERalpha DBD. The phenotype of the ERalpha((EAAE/EAAE)) mice resembles the general loss-of-function phenotype of alphaER knockout mutant mice with hypoplastic uteri, hemorrhagic ovaries, and impaired mammary gland development. In agreement with this phenotype, the expression pattern of the ERalpha((EAAE/EAAE)) mutant mice in liver obtained by genome-wide gene expression profiling supports the observation of a near-complete loss of estrogen-dependent gene regulation in comparison with the wild type. Further gene expression analyses to validate the results of the microarray data were performed by quantitative RT-PCR. The analyses indicate that both gene activation and repression by estrogen-bound ERalpha rely on an intact DBD in vivo.
Collapse
Affiliation(s)
- Dörthe L Ahlbory-Dieker
- Bayer Schering Pharma AG, Therapeutic Research Group Women's Healthcare, Müllerstrasse 178, 13353 Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Winuthayanon W, Piyachaturawat P, Suksamrarn A, Ponglikitmongkol M, Arao Y, Hewitt SC, Korach KS. Diarylheptanoid phytoestrogens isolated from the medicinal plant Curcuma comosa: biologic actions in vitro and in vivo indicate estrogen receptor-dependent mechanisms. ENVIRONMENTAL HEALTH PERSPECTIVES 2009; 117:1155-61. [PMID: 19654927 PMCID: PMC2717144 DOI: 10.1289/ehp.0900613] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2009] [Accepted: 03/23/2009] [Indexed: 05/23/2023]
Abstract
BACKGROUND Diarylheptanoids isolated from Curcuma comosa Roxb. have been recently identified as phyto estrogens. However, the mechanism underlying their actions has not yet been identified. OBJECTIVES We characterized the estrogenic activity of three active naturally occurring diarylheptanoids both in vitro and in vivo. METHODS We characterized mechanisms of estrogenic action of the diarylheptanoids (3S)-1,7-diphenyl-(6E)-6-hepten-3-ol (D1), 1,7-diphenyl-(6E)-6-hepten-3-one (D2), and (3R)-1,7-diphenyl-(4E,6E)-4,6-heptadien-3-ol (D3) by using a real-time polymerase chain reaction assay, a mammalian transfection model, and a uterotrophic assay in mice. RESULTS All diarylheptanoids up-regulated estrogen-responsive genes in estrogen-responsive breast cancer cells (MCF-7). In HepG2 cells transfected with estrogen receptor (ER) beta or different ERalpha functional receptor mutants and the Vit-ERE-TATA-Luc reporter gene, all diarylheptanoids induced transcription through a ligand-dependent human ERalpha-ERE-driven pathway, which was abolished with ICI 182,780 (ER antagonist), whereas only D2 was active with ERbeta. An ERalpha mutant lacking the functional AF2 (activation function 2) region was not responsive to 17beta-estradiol (E(2)) or to any of the diarylheptanoids, whereas ERalpha lacking the AF1 domain exhibited wild-type-like activity. D3 markedly increased uterine weight and proliferation of the uterine epithelium in ovariectomized mice, whereas D1 and D2 were inactive. D3, like E(2), up-regulated lactoferrin (Ltf) gene expression. The responses to D3 in the uterus were inhibited by ICI 182,780. In addition, D3 stimulated both classical (Aqp5) and nonclassical (Cdkn1a) ER-mediated gene regulation. CONCLUSIONS The results suggest that the D3 diarylheptanoid is an agonist for ER both in vitro and in vivo, and its biological action is ERalpha selective, specifically requiring AF2 function, and involves direct binding via ER as well as ERE-independent gene regulation.
Collapse
MESH Headings
- Animals
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Curcuma/chemistry
- Diarylheptanoids/chemistry
- Diarylheptanoids/isolation & purification
- Diarylheptanoids/pharmacology
- Estradiol/analogs & derivatives
- Estradiol/pharmacology
- Estrogen Receptor alpha/antagonists & inhibitors
- Estrogen Receptor alpha/genetics
- Estrogen Receptor alpha/physiology
- Estrogen Receptor beta/antagonists & inhibitors
- Estrogen Receptor beta/genetics
- Estrogen Receptor beta/physiology
- Female
- Fulvestrant
- Humans
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mice, Mutant Strains
- Organ Size/drug effects
- Ovariectomy
- Phytoestrogens/chemistry
- Phytoestrogens/isolation & purification
- Phytoestrogens/pharmacology
- Plant Extracts/chemistry
- Plant Extracts/isolation & purification
- Plant Extracts/pharmacology
- Plants, Medicinal/chemistry
- Polymerase Chain Reaction
- Receptors, Estrogen/antagonists & inhibitors
- Receptors, Estrogen/genetics
- Receptors, Estrogen/physiology
- Transcription, Genetic/drug effects
- Transcription, Genetic/genetics
- Uterus/cytology
- Uterus/drug effects
Collapse
Affiliation(s)
- Wipawee Winuthayanon
- Department of Physiology, Faculty of Science, Mahidol University, Bangkok, Thailand
- Laboratory of Reproductive and Developmental Toxicology, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| | | | - Apichart Suksamrarn
- Department of Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok, Thailand
| | | | - Yukitomo Arao
- Laboratory of Reproductive and Developmental Toxicology, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| | - Sylvia C. Hewitt
- Laboratory of Reproductive and Developmental Toxicology, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| | - Kenneth S. Korach
- Laboratory of Reproductive and Developmental Toxicology, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, North Carolina, USA
| |
Collapse
|
75
|
Kwekel JC, Forgacs AL, Burgoon LD, Williams KJ, Zacharewski TR. Tamoxifen-elicited uterotrophy: cross-species and cross-ligand analysis of the gene expression program. BMC Med Genomics 2009; 2:19. [PMID: 19400957 PMCID: PMC2683873 DOI: 10.1186/1755-8794-2-19] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2008] [Accepted: 04/28/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Tamoxifen (TAM) is a well characterized breast cancer drug and selective estrogen receptor modulator (SERM) which also has been associated with a small increase in risk for uterine cancers. TAM's partial agonist activation of estrogen receptor has been characterized for specific gene promoters but not at the genomic level in vivo.Furthermore, reducing uncertainties associated with cross-species extrapolations of pharmaco- and toxicogenomic data remains a formidable challenge. RESULTS A comparative ligand and species analysis approach was conducted to systematically assess the physiological, morphological and uterine gene expression alterations elicited across time by TAM and ethynylestradiol (EE) in immature ovariectomized Sprague-Dawley rats and C57BL/6 mice. Differential gene expression was evaluated using custom cDNA microarrays, and the data was compared to identify conserved and divergent responses. 902 genes were differentially regulated in all four studies, 398 of which exhibit identical temporal expression patterns. CONCLUSION Comparative analysis of EE and TAM differentially expressed gene lists suggest TAM regulates no unique uterine genes that are conserved in the rat and mouse. This demonstrates that the partial agonist activities of TAM extend to molecular targets in regulating only a subset of EE-responsive genes. Ligand-conserved, species-divergent expression of carbonic anhydrase 2 was observed in the microarray data and confirmed by real time PCR. The identification of comparable temporal phenotypic responses linked to related gene expression profiles demonstrates that systematic comparative genomic assessments can elucidate important conserved and divergent mechanisms in rodent estrogen signalling during uterine proliferation.
Collapse
Affiliation(s)
- Joshua C Kwekel
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA.
| | | | | | | | | |
Collapse
|
76
|
Estradiol-induced vaginal mucus inhibits antigen penetration and CD8(+) T cell priming in response to intravaginal immunization. Vaccine 2009; 27:2342-9. [PMID: 19428849 DOI: 10.1016/j.vaccine.2009.02.025] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2007] [Revised: 02/02/2009] [Accepted: 02/09/2009] [Indexed: 11/24/2022]
Abstract
Although vaginal immunization has been explored as a strategy to induce mucosal immunity in the female reproductive tract, this site displays unique immunological features that probably evolved to inhibit anti-paternal T cell responses after insemination to allow successful pregnancy. We previously demonstrated that estradiol, which induces an estrus-like state, prevented CD8(+) T cell priming during intravaginal immunization of mice. We now show that estradiol prevented antigen loading of vaginal antigen presenting cells (APCs) after intravaginal immunization. Histological examination confirmed that estradiol prevented penetration of peptide antigen into the vaginal wall. Removal of the estradiol-induced mucus barrier by mucinase partially restored antigen loading of vaginal APC and CD8(+) T cell proliferation in vivo. The estradiol-induced mucus barrier may thus prevent exposure to antigens delivered intravaginally, supplementing additional estradiol-dependent mechanism(s) that inhibit CD8(+) T cell priming after insemination or vaginal vaccination.
Collapse
|
77
|
Abstract
The control of energy homeostasis in women is correlated with the anorectic effects of oestrogen, which can attenuate body weight gain and reduce food intake in rodent models. This review investigates the multiple signalling pathways and cellular targets that oestrogen utilises to control energy homeostasis in the hypothalamus. Oestrogen affects all of the hypothalamic nuclei that control energy homeostasis. Oestrogen controls the activity of hypothalamic neurones through gene regulation and neuronal excitability. Oestrogen's primary cellular pathway is the control of gene transcription through the classical oestrogen receptors (ERs) (ERalpha and ERbeta) with ERalpha having the primary role in energy homeostasis. Oestrogen also controls energy homeostasis through membrane-mediated events via membrane-associated ERs or a novel, putative membrane ER that is coupled to G-proteins. Therefore, oestrogen is coupled to at least two receptors with multiple signalling and transcriptional pathways to mediate immediate and long-term anorectic effects. Ultimately, it is the interactions of all the receptor-mediated processes in hypothalamus and other areas of the central nervous system that will determine the anorectic effects of oestrogen and its control of energy homeostasis.
Collapse
Affiliation(s)
- T A Roepke
- Department of Physiology and Pharmacology, Oregon Health and Science University, Portland, OR 97239, USA.
| |
Collapse
|
78
|
Arendt LM, Grafwallner-Huseth TL, Schuler LA. Prolactin-growth factor crosstalk reduces mammary estrogen responsiveness despite elevated ERalpha expression. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 174:1065-74. [PMID: 19179608 DOI: 10.2353/ajpath.2009.080719] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Most breast cancers that occur in women express estrogen receptor alpha (ERalpha). However, a large subset of these cancers either does not initially respond to anti-estrogen therapy or develops resistance to such treatment modalities. One postulated mechanism of this failure is signaling cross talk between hormones and local growth factors. To examine these complex interactions in vivo, we assessed the effects of estrogen on transforming growth factor alpha (TGFalpha)- and prolactin (PRL)-induced mammary tumorigenesis in transgenic mice. Both PRL and estrogen reduced the latency of TGFalpha-induced oncogenesis, resulting in tumors that were variably ERalpha-positive, but were progesterone receptor-negative. However, despite elevated ERalpha levels in NRL-PRL/TGFalpha glands, tumor latency was not reduced with increasing estrogen levels, nor increased after ovariectomy. Furthermore, PRL and TGFalpha in combination blocked the mitogenic effects of estrogen, dramatically reduced progesterone receptor levels, and diminished ERalpha down-regulation in response to circulating estrogen levels, in contrast to the other genotypes. Notably, however, ductal morphology remained responsive to estrogen, indicating that TGFalpha and PRL in combination can inhibit some, but not all, estrogenic signals. Both in vitro and in vivo, PRL and TGFalpha cooperatively enhanced Akt phosphorylation, which is associated with endocrine resistance in human disease. These findings provide insight into the interactions of PRL with growth factors during mammary oncogenesis and suggest combinatorial approaches that may result in improved therapeutic efficacy.
Collapse
Affiliation(s)
- Lisa M Arendt
- Department of Comparative Biosciences, University of Wisconsin, 2015 Linden Dr., Madison, WI 53706, USA
| | | | | |
Collapse
|
79
|
Pedram A, Razandi M, Kim JK, O'Mahony F, Lee EY, Luderer U, Levin ER. Developmental phenotype of a membrane only estrogen receptor alpha (MOER) mouse. J Biol Chem 2008; 284:3488-95. [PMID: 19054762 DOI: 10.1074/jbc.m806249200] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Estrogen receptors (ERs) alpha and beta exist as nuclear, cytoplasmic, and membrane cellular pools in a wide variety of organs. The relative contributions of each ERalpha pool to in vivo phenotypes resulting from estrogen signaling have not been determined. To address this, we generated a transgenic mouse expressing only a functional E domain of ERalpha at the plasma membrane (MOER). Cells isolated from many organs showed membrane only localized E domain of ERalpha and no other receptor pools. Liver cells from MOER and wild type mice responded to 17-beta-estradiol (E2) with comparable activation of ERK and phosphatidylinositol 3-kinase, not seen in cells from ERalphaKO mice. Mating the MOER female mice with proven male wild type breeders produced no pregnancies because the uterus and vagina of the MOER female mice were extremely atrophic. Ovaries of MOER and homozygous Strasbourg ERalphaKO mice showed multiple hemorrhagic cysts and no corpus luteum, and the mammary gland development in both MOER and ERalphaKO mice was rudimentary. Despite elevated serum E2 levels, serum LH was not suppressed, and prolactin levels were low in MOER mice. MOER and Strasbourg female mice showed plentiful abdominal visceral and other depots of fat and increased body weight compared to wild type mice despite comparable food consumption. These results provide strong evidence that the normal development and adult functions of important organs in female mice requires nuclear ERalpha and is not rescued by membrane ERalpha domain expression alone.
Collapse
Affiliation(s)
- Ali Pedram
- Division of Endocrinology, Veterans Affairs Medical Center, Long Beach, California 90822, USA
| | | | | | | | | | | | | |
Collapse
|
80
|
Weiss J, Bernhardt ML, Laronda MM, Hurley LA, Glidewell-Kenney C, Pillai S, Tong M, Korach KS, Jameson JL. Estrogen actions in the male reproductive system involve estrogen response element-independent pathways. Endocrinology 2008; 149:6198-206. [PMID: 18719025 PMCID: PMC2613049 DOI: 10.1210/en.2008-0122] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The estrogen receptor-alpha (ERalpha) acts through multiple pathways, including estrogen response element (ERE)-dependent (classical) and ERE-independent (nonclassical) mechanisms. We previously created a mouse model harboring a two-amino-acid mutation of the DNA-binding domain (E207A, G208A) that precludes direct binding of ERalpha to an ERE. After crossing heterozygous mutant mice with an ERalpha knockout (ERKO) line, it was possible to assess the degree of physiological rescue by the isolated ERalpha nonclassical allele (-/AA; AA) when compared with ERKO mice (-/-) and to wild type (+/+; WT). In male ERKO mice up to 8 months of age, testosterone levels were high, although LH levels were similar to WT. Testosterone was normal in the AA mice, indicating that the AA allele rescues the enhanced testosterone biosynthesis in ERKO mice. Male ERKO mice exhibited distention of the seminiferous tubules as early as 2-3 months of age as a consequence of decreased water resorption in the efferent ducts. By 3-4 months of age, ERKO mice had impaired spermatogenesis in approximately 40% of their tubules, and sperm counts and motility declined in association with the histological changes. In the AA mice, histological defects were greatly reduced or absent, and sperm counts and motility were rescued. Levels of aquaporins 1 and 9, which contribute to water uptake in the efferent ducts, were reduced in ERKO mice and partially or fully rescued in AA mice, whereas another water transporter, sodium-hydrogen exchanger-3, was decreased in both ERKO and AA mice. We conclude that non-ERE-dependent estrogen pathways are sufficient to rescue the defective spermatogenesis observed in ERKO mice and play a prominent role in ERalpha action in the testis, including pathways that regulate water resorption and androgen biosynthesis.
Collapse
Affiliation(s)
- Jeffrey Weiss
- Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Zierau O, Kretzschmar G, Möller F, Weigt C, Vollmer G. Time dependency of uterine effects of naringenin type phytoestrogens in vivo. Mol Cell Endocrinol 2008; 294:92-9. [PMID: 18775763 DOI: 10.1016/j.mce.2008.08.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2008] [Revised: 07/29/2008] [Accepted: 08/11/2008] [Indexed: 11/22/2022]
Abstract
Phytoestrogens exhibit significant estrogen agonistic/antagonistic properties in animals and humans. Naturally occurring flavonoids with a naringenin backbone like 8-prenylnaringenin (8-PN) and 6-(1,1-dimethylallyl)naringenin (6-DMAN) are considered to be some of the most potent phytochemicals activating nuclear receptors. 8-PN is a more potent estrogenic substance while 6-DMAN appears to have a higher antiandrogenic potency, however these are less well characterized compared to other phytoestrogens such as genistein. The aim of this study was to assess the estrogenic properties of 8-PN and 6-DMAN in an ovariectomized in vivo rat model. 8-PN and 6-DMAN were applied at concentrations of 15mg/kgBW. We assessed the uterotrophic response after 7h, 24h and 72h of treatment. In contrast to 8-PN, 6-DMAN did not alter uterine wet weight or the level of expression of proliferation markers at any time point. In contrast to the uterotrophic response, 6-DMAN stimulated uterine mRNA expression of estrogen responsive genes carrying an estrogen response element (ERE) in the ovariectomized rats, but to a lesser extent than E2 and 8-PN. In all treatment regimens, the mRNA expression of estrogen receptors alpha and beta mRNA was measured. In summary, we assessed the time dependent uterine responses and estrogenic activities of 6-DMAN and 8-PN. In contrast to 8-PN which mimicked the E2 induced responses on uterine wet weight and gene expression, 6-DMAN has no uterotrophic effect and only regulated the mRNA expression of genes carrying an ERE. Therefore, 6-DMAN is an exciting candidate molecule for future investigations and potentially a natural occurring selective estrogen receptor modulator.
Collapse
Affiliation(s)
- Oliver Zierau
- Molecular Cell Physiology and Endocrinology, Institute for Zoology, Technische Universität Dresden, Germany.
| | | | | | | | | |
Collapse
|
82
|
Christian CA, Glidewell-Kenney C, Jameson JL, Moenter SM. Classical estrogen receptor alpha signaling mediates negative and positive feedback on gonadotropin-releasing hormone neuron firing. Endocrinology 2008; 149:5328-34. [PMID: 18635656 PMCID: PMC2584581 DOI: 10.1210/en.2008-0520] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2008] [Accepted: 07/09/2008] [Indexed: 01/22/2023]
Abstract
During the female reproductive cycle, the neuroendocrine action of estradiol switches from negative feedback to positive feedback to initiate the preovulatory GnRH and subsequent LH surges. Estrogen receptor-alpha (ERalpha) is required for both estradiol negative and positive feedback regulation of LH. ERalpha may signal through estrogen response elements (EREs) in DNA and/or via ERE-independent pathways. Previously, a knock-in mutant allele (ERalpha-/AA) that selectively restores ERE-independent signaling onto the ERalpha-/- background was shown to confer partial negative but not positive estradiol feedback on serum LH. The current study investigated the roles of the ERE-dependent and ERE-independent ERalpha pathways for estradiol feedback at the level of GnRH neuron firing activity. The above ERalpha genetic models were crossed with GnRH-green fluorescent protein mice to enable identification of GnRH neurons in brain slices. Targeted extracellular recordings were used to monitor GnRH neuron firing activity using an ovariectomized, estradiol-treated mouse model that exhibits diurnal switches between negative and positive feedback. In wild-type mice, GnRH neuron firing decreased in response to estradiol during negative feedback and increased during positive feedback. In contrast, both positive and negative responses to estradiol were absent in GnRH neurons from ERalpha-/- and ERalpha-/AA mice. ERE-dependent signaling is thus required to increase GnRH neuron firing to generate a GnRH/LH surge. Furthermore, ERE-dependent and -independent ERalpha signaling pathways both appear necessary to mediate estradiol negative feedback on serum LH levels, suggesting central and pituitary estradiol feedback may use different combinations of ERalpha signaling pathways.
Collapse
Affiliation(s)
- Catherine A Christian
- Neuroscience Graduate Program, Department of Medicine, University of Virginia, Charlottesville, Virginia 22908, USA
| | | | | | | |
Collapse
|
83
|
Safe S, Kim K. Non-classical genomic estrogen receptor (ER)/specificity protein and ER/activating protein-1 signaling pathways. J Mol Endocrinol 2008; 41:263-75. [PMID: 18772268 PMCID: PMC2582054 DOI: 10.1677/jme-08-0103] [Citation(s) in RCA: 244] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
17beta-estradiol binds to the estrogen receptor (ER) to activate gene expression or repression and this involves both genomic (nuclear) and non-genomic (extranuclear) pathways. Genomic pathways include the classical interactions of ligand-bound ER dimers with estrogen-responsive elements in target gene promoters. ER-dependent activation of gene expression also involves DNA-bound ER that subsequently interacts with other DNA-bound transcriptions factors and direct ER-transcription factor (protein-protein) interactions where ER does not bind promoter DNA. Ligand-induced activation of ER/specificity protein (Sp) and ER/activating protein-1 [(AP-1); consisting of jun/fos] complexes are important pathways for modulating expression of a large number of genes. This review summarizes some of the characteristics of ER/Sp- and ER/AP-1-mediated transactivation, which are dependent on ligand structure, cell context, ER-subtype (ERalpha and ERbeta), and Sp protein (SP1, SP3, and SP4) and demonstrates that this non-classical genomic pathway is also functional in vivo.
Collapse
Affiliation(s)
- Stephen Safe
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, College Station, Texas 77843-4466, USA.
| | | |
Collapse
|
84
|
Nobuzane T, Tashiro S, Kudo Y. Morphologic effects of epithelial ion channels on the mouse uterus: differences between raloxifene analog (LY117018) and estradiol treatments. Am J Obstet Gynecol 2008; 199:363.e1-6. [PMID: 18456231 DOI: 10.1016/j.ajog.2008.03.047] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2007] [Revised: 12/03/2007] [Accepted: 03/21/2008] [Indexed: 10/22/2022]
Abstract
OBJECTIVE Estrogen regulates the expression of epithelial Na(+) channel (ENaC) and cystic fibrosis transmembrane conductance regulator (CFTR). Our purpose was to assess the effects of raloxifene analog LY117018 on the expression of ENaC and CFTR in ovariectomized mice. STUDY DESIGN Three groups of 5 female ovariectomized mice were treated with 17beta-estradiol benzoate (E2), LY117018 (LY), or vehicle, respectively, for 4-12 weeks. Effects on the messenger ribonucleic acid expression levels of ENaC and CFTR channels in the uterus were studied using real-time reverse transcriptase-polymerase chain reaction. RESULTS E2 treatment induced CFTR expression, repressed ENaC expression and resulted in fluid accumulation in the uterus. In contrast, LY induced CFTR expression, did not repress ENaC expression, and caused no fluid accumulation. CONCLUSION Estradiol and LY117018 differentially regulate the expression of CFTR and ENaC in ovariectomized mouse uterus. This finding suggests that uterine fluid accumulation can be controlled mainly by targeting the ENaC.
Collapse
|
85
|
McDevitt MA, Glidewell-Kenney C, Jimenez MA, Ahearn PC, Weiss J, Jameson JL, Levine JE. New insights into the classical and non-classical actions of estrogen: evidence from estrogen receptor knock-out and knock-in mice. Mol Cell Endocrinol 2008; 290:24-30. [PMID: 18534740 PMCID: PMC2562461 DOI: 10.1016/j.mce.2008.04.003] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2008] [Accepted: 04/04/2008] [Indexed: 02/07/2023]
Abstract
Estrogen receptor alpha (ERalpha) mediates estrogen (E2) actions in the brain and is critical for normal reproductive function and behavior. In the classical pathway, ERalpha binds to estrogen response elements (EREs) to regulate gene transcription. ERalpha can also participate in several non-classical pathways, including ERE-independent gene transcription via protein-protein interactions with transcription factors and rapid, non-genotropic pathways. To distinguish between ERE-dependent and ERE-independent mechanisms of E2 action in vivo, we have created ERalpha null mice that possess an ER knock-in mutation (E207A/G208A; "AA"), in which the mutant ERalpha cannot bind to DNA but retains activity in ERE-independent pathways (ERalpha(-/AA) mice). Understanding the molecular mechanisms of ERalpha action will be helpful in developing pharmacological therapies that differentiate between ERE-dependent and ERE-independent processes. This review focuses on how the ERalpha(-/AA) model has contributed to our knowledge of ERalpha signaling mechanisms in estrogen regulation of the reproductive axis and sexual behavior.
Collapse
Affiliation(s)
- Melissa A. McDevitt
- Department of Neurobiology and Physiology, Northwestern University, Evanston, Illinois 60208, USA
| | - Christine Glidewell-Kenney
- Department of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611 USA
| | - Mariana A. Jimenez
- Department of Neurobiology and Physiology, Northwestern University, Evanston, Illinois 60208, USA
| | - Patrick C. Ahearn
- Department of Neurobiology and Physiology, Northwestern University, Evanston, Illinois 60208, USA
| | - Jeffrey Weiss
- Department of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611 USA
| | - J. Larry Jameson
- Department of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611 USA
| | - Jon E. Levine
- Department of Neurobiology and Physiology, Northwestern University, Evanston, Illinois 60208, USA
- Corresponding author: Jon E. Levine, PhD, 2205 Tech Drive, Evanston, IL 60208, Tel: 847-491-7180, Fax: 847-491-5211,
| |
Collapse
|
86
|
Sinkevicius KW, Burdette JE, Woloszyn K, Hewitt SC, Hamilton K, Sugg SL, Temple KA, Wondisford FE, Korach KS, Woodruff TK, Greene GL. An estrogen receptor-alpha knock-in mutation provides evidence of ligand-independent signaling and allows modulation of ligand-induced pathways in vivo. Endocrinology 2008; 149:2970-9. [PMID: 18339713 PMCID: PMC2408815 DOI: 10.1210/en.2007-1526] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Estrogen-nonresponsive estrogen receptor-alpha (ERalpha) knock-in (ENERKI) mice were generated to distinguish between ligand-induced and ligand-independent ER-alpha actions in vivo. These mice have a mutation [glycine 525 to leucine (G525L)] in the ligand-binding domain of ERalpha, which significantly reduces ERalpha interaction with and response to endogenous estrogens, whereas not affecting growth factor activation of ligand-independent pathways. ENERKI mice had hypoplastic uterine tissues and rudimentary mammary gland ductal trees. Females were infertile due to anovulation, and their ovaries contained hemorrhagic cystic follicles because of chronically elevated levels of LH. The ENERKI phenotype confirmed that ligand-induced activation of ERalpha is crucial in the female reproductive tract and mammary gland development. Growth factor treatments induced uterine epithelial proliferation in ovariectomized ENERKI females, directly demonstrating that ERalpha ligand-independent pathways were active. In addition, the synthetic ERalpha selective agonist propyl pyrazole triol (PPT) and ER agonist diethylstilbestrol (DES) were still able to activate ligand-induced G525L ERalpha pathways in vitro. PPT treatments initiated at puberty stimulated ENERKI uterine development, whereas neonatal treatments were needed to restore mammary gland ductal elongation, indicating that neonatal ligand-induced ERalpha activation may prime mammary ducts to become more responsive to estrogens in adult tissues. This is a useful model for in vivo evaluation of ligand-induced ERalpha pathways and temporal patterns of response. DES did not stimulate an ENERKI uterotrophic response. Because ERbeta may modulate ERalpha activation and have an antiproliferative function in the uterus, we hypothesize that ENERKI animals were particularly sensitive to DES-induced inhibition of ERalpha due to up-regulated uterine ERbeta levels.
Collapse
Affiliation(s)
- Kerstin W Sinkevicius
- The Ben May Department for Cancer Research, The University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
87
|
Liu D, Deschamps A, Korach KS, Murphy E. Estrogen-enhanced gene expression of lipoprotein lipase in heart is antagonized by progesterone. Endocrinology 2008; 149:711-6. [PMID: 17974624 PMCID: PMC2219300 DOI: 10.1210/en.2007-0620] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Although estrogen has effects on the heart, little is known regarding which genes in the heart are directly responsive to estrogen. We have shown previously that lipoprotein lipase (LPL) expression was increased in female hearts compared with male hearts. To test whether LPL gene expression in heart is regulated by estrogen, we perfused mouse hearts from ovariectomized females with 100 nM 17beta-estradiol or vehicle for 2 h, after which hearts were frozen, and RNA was isolated. The SYBR green real-time PCR method was used to detect LPL gene expression. We found that addition of 17beta-estradiol to hearts from ovariectomized females resulted in a significant increase in LPL mRNA. This estrogen effect on LPL gene expression in mouse heart can be blocked by the estrogen receptor (ER) antagonist ICI 182,780 or by progesterone. We also identified a potential estrogen receptor element (ERE) enhancer sequence located in the first intron of the mouse LPL gene. The potential ERE sequence was linked to a TATA-luciferase (LUC) reporter plasmid in HeLa cells. Both ERalpha and ERbeta stimulated strong activity on the heterologous promoter reporter in Hela cells upon estrogen addition. Both ERalpha and ERbeta activities on the LPL ERE reporter were abrogated by the ER antagonist ICI 182,780. Progesterone also dose dependently inhibited the estrogen-mediated increase in LPL ERE reporter activity. These results show that heart LPL is an estrogen-responsive gene exhibiting an intronic regulatory sequence.
Collapse
Affiliation(s)
- Dianxin Liu
- Laboratories of Signal Transduction, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Research Triangle Park, NC 27709, USA
| | | | | | | |
Collapse
|
88
|
Raymond-Whish S, Mayer LP, O’Neal T, Martinez A, Sellers MA, Christian PJ, Marion SL, Begay C, Propper CR, Hoyer PB, Dyer CA. Drinking water with uranium below the U.S. EPA water standard causes estrogen receptor-dependent responses in female mice. ENVIRONMENTAL HEALTH PERSPECTIVES 2007; 115:1711-6. [PMID: 18087588 PMCID: PMC2137136 DOI: 10.1289/ehp.9910] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2006] [Accepted: 09/13/2007] [Indexed: 05/18/2023]
Abstract
BACKGROUND The deleterious impact of uranium on human health has been linked to its radioactive and heavy metal-chemical properties. Decades of research has defined the causal relationship between uranium mining/milling and onset of kidney and respiratory diseases 25 years later. OBJECTIVE We investigated the hypothesis that uranium, similar to other heavy metals such as cadmium, acts like estrogen. METHODS In several experiments, we exposed intact, ovariectomized, or pregnant mice to depleted uranium in drinking water [ranging from 0.5 microg/L (0.001 microM) to 28 mg/L (120 microM). RESULTS Mice that drank uranium-containing water exhibited estrogenic responses including selective reduction of primary follicles, increased uterine weight, greater uterine luminal epithelial cell height, accelerated vaginal opening, and persistent presence of cornified vaginal cells. Coincident treatment with the antiestrogen ICI 182,780 blocked these responses to uranium or the synthetic estrogen diethylstilbestrol. In addition, mouse dams that drank uranium-containing water delivered grossly normal pups, but they had significantly fewer primordial follicles than pups whose dams drank control tap water. CONCLUSIONS Because of the decades of uranium mining/milling in the Colorado plateau in the Four Corners region of the American Southwest, the uranium concentration and the route of exposure used in these studies are environmentally relevant. Our data support the conclusion that uranium is an endocrine-disrupting chemical and populations exposed to environmental uranium should be followed for increased risk of fertility problems and reproductive cancers.
Collapse
Affiliation(s)
| | - Loretta P. Mayer
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, USA
| | - Tamara O’Neal
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, USA
| | - Alisyn Martinez
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, USA
| | - Marilee A. Sellers
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, USA
| | - Patricia J. Christian
- Department of Physiology, College of Medicine, University of Arizona, Tucson, Arizona, USA
| | - Samuel L. Marion
- Department of Physiology, College of Medicine, University of Arizona, Tucson, Arizona, USA
| | - Carlyle Begay
- Department of Physiology, College of Medicine, University of Arizona, Tucson, Arizona, USA
| | - Catherine R. Propper
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, USA
| | - Patricia B. Hoyer
- Department of Physiology, College of Medicine, University of Arizona, Tucson, Arizona, USA
| | - Cheryl A. Dyer
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, USA
- Address correspondence to C.A. Dyer, Northern Arizona University, Department of Biological Sciences, P.O. Box 5640, Building 21, Room 227, South Beaver St., Flagstaff, AZ 86011 USA. Telephone: (928) 523-6294. Fax: (928) 523-7741. E-mail:
| |
Collapse
|
89
|
Velarde MC, Zeng Z, McQuown JR, Simmen FA, Simmen RCM. Krüppel-Like Factor 9 Is a Negative Regulator of Ligand-Dependent Estrogen Receptor α Signaling in Ishikawa Endometrial Adenocarcinoma Cells. Mol Endocrinol 2007; 21:2988-3001. [PMID: 17717078 DOI: 10.1210/me.2007-0242] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
AbstractEstrogen and progesterone, acting through their respective receptors and other nuclear proteins, exhibit opposing activities in target cells. We previously reported that Krüppel-like factor 9 (KLF9) cooperates with progesterone receptor (PR) to facilitate P-dependent gene transcription in uterine epithelial cells. Here we evaluated whether KLF9 may further support PR function by directly opposing estrogen receptor (ER) signaling. Using human Ishikawa endometrial epithelial cells, we showed that 17β-estradiol (E2)-dependent down-regulation of ERα expression was reversed by a small interfering RNA to KLF9. Transcription assays with the E2-sensitive 4× estrogen-responsive element-thymidine kinase-promoter-luciferase reporter gene demonstrated inhibition of ligand-dependent ERα transactivation with ectopic KLF9 expression. E2 induced PR-A/B and PR-B isoform expression in the absence of effects on KLF9 levels. Addition of KLF9 small interfering RNA augmented E2 induction of PR-A/B while abrogating that of PR-B, indicating selective E2-mediated inhibition of PR-A by KLF9. Chromatin immunoprecipitation of the ERα minimal promoter demonstrated KLF9 promotion of E2-dependent ERα association to a region containing functional GC-rich motifs. KLF9 inhibited the recruitment of the ERα coactivator specificity protein 1 (Sp1) to the PR proximal promoter region containing a half-estrogen responsive element and GC-rich sites, but had no effect on Sp1 association to the PR distal promoter region containing GC-rich sequences. In vivo association of KLF9 and Sp1, but not of ERα with KLF9 or Sp1, was observed in control and E2-treated cells. Our data identify KLF9 as a transcriptional repressor of ERα signaling and suggest that it may function at the node of PR and ER genomic pathways to influence cell proliferation.
Collapse
Affiliation(s)
- Michael C Velarde
- Department of Physiology and Biophysics, University of Arkansas for Medical Sciences, Little Rock, Arkansas 72202, USA
| | | | | | | | | |
Collapse
|
90
|
Rickert EL, Trebley JP, Peterson AC, Morrell MM, Weatherman RV. Synthesis and characterization of bioactive tamoxifen-conjugated polymers. Biomacromolecules 2007; 8:3608-12. [PMID: 17929966 PMCID: PMC2528197 DOI: 10.1021/bm070413t] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Macromolecular conjugates of tamoxifen could perhaps be used to circumvent some of the limitations of the extensively used breast cancer drug. To test the feasibility of these conjugates, a 4-hydroxytamoxifen analogue was conjugated to a diaminoalkyl linker and then conjugated to activated esters of a poly(methacrylic acid) polymer synthesized by atom transfer radical polymerization. A polymer conjugated to the 4-hydroxytamoxifen analogue with a six-carbon linker showed high affinity for both estrogen receptor alpha and estrogen receptor beta and potent antagonism of the estrogen receptor in cell-based transcriptional reporter assays. These results suggest that the conjugation of 4-hydroxytamoxifen to a polymer results in a macromolecular conjugate that can display ligand in a manner that can be recognized by estrogen receptor and still act as a potent antiestrogen in cells.
Collapse
Affiliation(s)
- Emily L. Rickert
- Department of Medicinal Chemistry and Molecular Pharmacology and the Purdue Cancer Center, Purdue University, 575 Stadium Mall Drive, West Lafayette, Indiana 47907
| | | | - Anton C. Peterson
- Department of Medicinal Chemistry and Molecular Pharmacology and the Purdue Cancer Center, Purdue University, 575 Stadium Mall Drive, West Lafayette, Indiana 47907
| | | | - Ross V. Weatherman
- Department of Medicinal Chemistry and Molecular Pharmacology and the Purdue Cancer Center, Purdue University, 575 Stadium Mall Drive, West Lafayette, Indiana 47907
| |
Collapse
|
91
|
Penttinen P, Jaehrling J, Damdimopoulos AE, Inzunza J, Lemmen JG, van der Saag P, Pettersson K, Gauglitz G, Mäkelä S, Pongratz I. Diet-derived polyphenol metabolite enterolactone is a tissue-specific estrogen receptor activator. Endocrinology 2007; 148:4875-86. [PMID: 17628008 DOI: 10.1210/en.2007-0289] [Citation(s) in RCA: 93] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Numerous dietary compounds can modify gene expression by binding to the members of the nuclear receptor superfamily of transcription factors. For example, dietary polyphenols, such as soy isoflavones genistein and daidzein, modulate the activity of the estrogen receptors (ERs)-alpha and ERbeta. An additional class of dietary polyphenols that modulate cellular signaling pathways are lignans, compounds that are common constituents of Western diets. In this study, we show that a metabolite of dietary lignans, enterolactone, at physiological concentrations, activates ER-mediated transcription in vitro with preference for ERalpha. The effects of enterolactone are mediated by the ER ligand binding domain and are susceptible to antiestrogen treatment. Furthermore, the affinity of enterolactone toward ERalpha, measured by a novel ligand binding assay, is augmented in cell culture conditions. Moreover, our results demonstrate for the first time that enterolactone has estrogenic activity in vivo. In transgenic estrogen-sensitive reporter mice, enterolactone induces tissue-specific estrogen-responsive reporter gene expression as well as promotes uterine stromal edema and expression of estrogen-responsive endogenous genes (CyclinD1 and Ki67). Taken together, our data show that enterolactone is a selective ER agonist inducing ER-mediated transcription both in vitro in different cell lines and in vivo in the mouse uterus.
Collapse
Affiliation(s)
- Pauliina Penttinen
- Department of Biosciences and Nutrition at Novum, Karolinska Institute, Hälsovägen 7, SE-147 51 Huddinge, Sweden
| | | | | | | | | | | | | | | | | | | |
Collapse
|
92
|
McCarthy TL, Hochberg RB, Labaree DC, Centrella M. 3-ketosteroid reductase activity and expression by fetal rat osteoblasts. J Biol Chem 2007; 282:34003-12. [PMID: 17905737 DOI: 10.1074/jbc.m707502200] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In addition to reproductive tissue, sex hormones induce transcriptional events in many connective tissue cells, including osteoblasts. Some sex hormone receptor modulators with bone sparing effects selectively target estrogen or androgen receptors, whereas others appear more promiscuous, in part through enzymatic metabolism. Rat osteoblasts express significant oxidative 3alpha-hydroxysteroid dehydrogenase activity, which can convert precursor substrates to potent androgen receptor agonists. Here we show that they also express 3-ketosteroid reductase activity, exemplified by 7-methyl-17-ethynyl-19-norandrostan-5 (10)en-3-one (tibolone) conversion to potent estrogen receptor alpha agonists. Conversion was rapid and quantitative, with 3alpha-hydroxytibolone as the primary metabolite. Consistently, tibolone induced estrogen receptor alpha-dependent gene promoter activity through cis-acting estrogen response elements, increased the stimulatory effect of TGF-beta on Smad-dependent gene promoter activity, and enhanced prostaglandin E2-induced activity of transcription factor Runx2. Rat osteoblasts express the 3-ketosteroid reductase AKR1C9, an aldo-keto reductase gene family member. Exposure to prostaglandin E2 increased AKR1C9 gene promoter activity and mRNA expression. AKR1C9 promoter activity was also enhanced by overexpression of protein kinase A catalytic subunit or transcription factor C/EBPdelta, and the effect of PGE2 was reduced by dominant negative C/EBPdelta competition or C/EBPdelta antisense expression. Moreover, prostaglandin E2 increased the amount of functional endogenous nuclear C/EBPdelta that could bind specifically to a distinct domain approximately 1.8-kb upstream from the start site of AKR1C9 transcription. In summary, in addition to 3alpha-hydroxysteroid dehydrogenase, rat osteoblasts express significant and regulatable 3-ketosteroid reductase activity. Through these enzymes, they may selectively metabolize precursor compounds into potent steroid receptor agonists locally within bone.
Collapse
Affiliation(s)
- Thomas L McCarthy
- Department of Surgery, Section of Plastic Surgery, Yale University School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA.
| | | | | | | |
Collapse
|
93
|
Glidewell-Kenney C, Hurley LA, Pfaff L, Weiss J, Levine JE, Jameson JL. Nonclassical estrogen receptor alpha signaling mediates negative feedback in the female mouse reproductive axis. Proc Natl Acad Sci U S A 2007; 104:8173-7. [PMID: 17470805 PMCID: PMC1876590 DOI: 10.1073/pnas.0611514104] [Citation(s) in RCA: 153] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Ovarian estrogen exerts both positive and negative feedback control over luteinizing hormone (LH) secretion during the ovulatory cycle. Estrogen receptor (ER) alpha but not ERbeta knockout mice lack estrogen feedback. Thus, estrogen feedback appears to be primarily mediated by ERalpha. However, it is now recognized that, in addition to binding to estrogen response elements (EREs) in DNA to alter target gene transcription, ERalpha signals through ERE-independent or nonclassical pathways, and the relative contributions of these pathways in conveying estrogen feedback remain unknown. Previously we created a knockin mouse model expressing a mutant form of ERalpha (AA) with ablated ERE-dependent but intact ERE-independent activity. Breeding this allele onto the ERalpha-null (-/-) background, we examine the ability of ERE-independent ERalpha signaling pathways to convey estrogen feedback regulation of the female hypothalamic-pituitary axis in vivo. ERalpha-/AA exhibited 69.9% lower serum LH levels compared with ERalpha-/- mice. Additionally, like wild type, ERalpha-/AA mice exhibited elevated LH after ovariectomy (OVX). Furthermore, the post-OVX rise in serum LH was significantly suppressed by estrogen treatment in OVX ERalpha-/AA mice. However, unlike wild type, both ERalpha-/AA and ERalpha-/- mice failed to exhibit estrous cyclicity, spontaneous ovulation, or an afternoon LH surge response to estrogen. These results indicate that ERE-independent ERalpha signaling is sufficient to convey a major portion of estrogen's negative feedback actions, whereas positive feedback and spontaneous ovulatory cyclicity require ERE-dependent ERalpha signaling.
Collapse
Affiliation(s)
- C. Glidewell-Kenney
- *Division of Endocrinology, Metabolism, and Molecular Medicine, The Feinberg School of Medicine, Northwestern University, Chicago, IL 60611-3008; and
| | - L. A. Hurley
- *Division of Endocrinology, Metabolism, and Molecular Medicine, The Feinberg School of Medicine, Northwestern University, Chicago, IL 60611-3008; and
| | - L. Pfaff
- *Division of Endocrinology, Metabolism, and Molecular Medicine, The Feinberg School of Medicine, Northwestern University, Chicago, IL 60611-3008; and
| | - J. Weiss
- *Division of Endocrinology, Metabolism, and Molecular Medicine, The Feinberg School of Medicine, Northwestern University, Chicago, IL 60611-3008; and
| | - J. E. Levine
- Department of Neurobiology and Physiology, Northwestern University, Evanston, IL 60208
| | - J. L. Jameson
- *Division of Endocrinology, Metabolism, and Molecular Medicine, The Feinberg School of Medicine, Northwestern University, Chicago, IL 60611-3008; and
- To whom correspondence should be addressed at:
251 East Huron Street, Galter Pavilion Suite 3-150, Chicago, IL 60611. E-mail:
| |
Collapse
|
94
|
Abstract
By regulating activities and expression levels of key signaling molecules, estrogens control mechanisms that are responsible for crucial cellular functions. Ligand binding to estrogen receptor (ER) leads to conformational changes that regulate the receptor activity, its interaction with other proteins and DNA. In the cytoplasm, receptor interactions with kinases and scaffolding molecules regulate cell signaling cascades (extranuclear/nongenomic action). In the nucleus, estrogens control a repertoire of coregulators and other auxiliary proteins that are associated with ER, which in turn determines the nature of regulated genes and level of their expression (genomic action). The combination of genomic and nongenomic actions of estrogens ultimately confers the cell-type and tissue-type selectivity. Recent studies have revealed some important new insights into the molecular mechanisms underlying ER action, which may help to explain the functional basis of existing selective ER modulators (SERMs) and provide evidence into how ER might be selectively targeted to achieve specific therapeutic goals. In this review, we will summarize some new molecular details that relate to estrogen signaling. We will also discuss some new strategies that may potentially lead to the development of functionally selective ER modulators that can separate between the beneficial, prodifferentiative effects in bone, the cardiovascular system and the CNS as well as the "detrimental," proliferative effects in reproductive tissues and organs.
Collapse
Affiliation(s)
- Boris J Cheskis
- Women's Health and Musculoskeletal Biology, Wyeth Research, Collegeville, Pennsylvania 19426, USA.
| | | | | | | |
Collapse
|