51
|
Mechanisms of Blood-Brain Barrier Disruption in Herpes Simplex Encephalitis. J Neuroimmune Pharmacol 2018; 14:157-172. [PMID: 30456443 DOI: 10.1007/s11481-018-9821-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 11/02/2018] [Indexed: 12/12/2022]
Abstract
Herpes simplex encephalitis (HSE) is often caused by infection with herpes simplex virus 1 (HSV-1), a neurotropic double-stranded DNA virus. HSE infection always impacts the temporal and frontal lobes or limbic system, leading to edema, hemorrhage, and necrotic changes in the brain parenchyma. Additionally, patients often exhibit severe complications following antiviral treatment, including dementia and epilepsy. HSE is further associated with disruptions to the blood-brain barrier (BBB), which consists of microvascular endothelial cells, tight junctions, astrocytes, pericytes, and basement membranes. Following an HSV-1 infection, changes in BBB integrity and permeability can result in increased movement of viruses, immune cells, and/or cytokines into the brain parenchyma. This leads to an enhanced inflammatory response in the central nervous system and further damage to the brain. Thus, it is important to protect the BBB from pathogens to reduce brain damage from HSE. Here, we discuss HSE and the normal structure and function of the BBB. We also discuss growing evidence indicating an association between BBB breakdown and the pathogenesis of HSE, as well as future research directions and potential new therapeutic targets. Graphical Abstract During herpes simplex encephalitis, the functions and structures of each composition of BBB have been altered by different factors, thus the permeability and integrity of BBB have been broken. The review aim to explore the potential mechanisms and factors in the process, probe the next research targets and new therapeutic targets.
Collapse
|
52
|
Bioactivity and gene expression profiles of hiPSC-generated retinal ganglion cells in MT-ND4 mutated Leber's hereditary optic neuropathy. Exp Cell Res 2018; 363:299-309. [PMID: 29366807 DOI: 10.1016/j.yexcr.2018.01.020] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 01/09/2018] [Accepted: 01/15/2018] [Indexed: 01/01/2023]
Abstract
Leber's hereditary optic neuropathy (LHON) is the maternally inherited mitochondrial disease caused by homoplasmic mutations in mitochondrial electron transport chain Complex I subunit genes. The mechanism of its incomplete penetrance is still largely unclear. In this study, we created the patient-specific human induced pluripotent stem cells (hiPSCs) from MT-ND4 mutated LHON-affected patient, asymptomatic mutation carrier and healthy control, and differentiated them into retinal ganglion cells (RGCs). We found the defective neurite outgrowth in affected RGCs, but not in the carrier RGCs which had significant expression of SNCG gene. We observed enhanced mitochondrial biogenesis in affected and carrier derived RGCs. Surprisingly, we observed increased NADH dehydrogenase enzymatic activity of Complex I in hiPSC-derived RGCs of asymptomatic carrier, but not of the affected patient. LHON mutation substantially decreased basal respiration in both affected and unaffected carrier hiPSCs, and had the same effect on spare respiratory capacity, which ensures normal function of mitochondria in conditions of increased energy demand or environmental stress. The expression of antioxidant enzyme catalase was decreased in affected and carrier patient hiPSC-derived RGCs as compared to the healthy control, which might indicate to higher oxidative stress-enriched environment in the LHON-specific RGCs. Microarray profiling demonstrated enhanced expression of cell cycle machinery and downregulation of neuronal specific genes.
Collapse
|
53
|
Naserzadeh P, Hafez AA, Abdorahim M, Abdollahifar MA, Shabani R, Peirovi H, Simchi A, Ashtari K. Curcumin loading potentiates the neuroprotective efficacy of Fe 3O 4 magnetic nanoparticles in cerebellum cells of schizophrenic rats. Biomed Pharmacother 2018; 108:1244-1252. [PMID: 30453447 DOI: 10.1016/j.biopha.2018.09.106] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 09/09/2018] [Accepted: 09/18/2018] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The aim of this study was to investigate the neurotoxic effects of Fe3O4 magnetic- CurNPs on isolated schizophrenia mitochondria of rats as an in vivo model. METHODS We designed CMN loaded superparamagnetic iron oxide nanoparticles (SPIONs) (Fe3O4 magnetic- CurNPs) to achieve an enhanced therapeutic effect. The physicochemical properties of Fe3O4 magnetic- CurNPs were characterized using X-ray diffraction (XRD), and dynamic laser light scattering (DLS) and zeta potential. Further, to prove Fe3O4 magnetic- CurNPs results in superior therapeutic effects, and also, the mitochondrial membrane potential collapse, mitochondrial complex II activity, reactive oxygen species generation, ATP level, cytochrome c release and histopathology of cerebellums were determined in brains of schizophrenic rats. RESULTS We showed that effective treatment with CMN reduced or prevented Fe3O4 magnetic-induced oxidative stress and mitochondrial dysfunction in the rat brain probably, as well as mitochondrial complex II activity, MMP, and ATP level were remarkably reduced in the cerebellum mitochondria of treated group toward control (p < 0.05). Therewith, ROS generation, and cytochrome c release were notably (p < 0.05) increased in the cerebellum mitochondria of treated group compared with control group. CONCLUSION Taken together, Fe3O4 magnetic- CurNPs exhibits potent antineurotoxicity activity in cerebellums of schizophrenic rats. This approach can be extended to preclinical and clinical use and may have importance in schizophernia treatment in the future. To our knowledge this is the first report that provides the Fe3O4 magnetic- CurNPs could enhance the neuroprotective effects of CMN in the Schizophrenia.
Collapse
Affiliation(s)
- Parvaneh Naserzadeh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Students Research Committee, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Asghar Ashrafi Hafez
- Cancer Research Center, Student Research Committee, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Marjan Abdorahim
- Faculté de science, Université Paris-Sud 11, Université Paris Saclay, 91405, Orsay Cedex, France
| | - Mohammad Amin Abdollahifar
- Department of Anatomical Sciences and Biology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ronak Shabani
- Department of Anatomical Sciences, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Habiballah Peirovi
- Nanomedicine and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abdolreza Simchi
- Institute for Nanoscience and Nanotechnology, Sharif University of Technology, P.O. Box, 11365-11155, Tehran, Iran.
| | - Khadijeh Ashtari
- Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran; Department of Medical Nanotechnology, Faculty of Advanced Technology in Medicine, Iran University of Medical Sciences, Tehran, Iran; Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
54
|
Human diseases associated with defects in assembly of OXPHOS complexes. Essays Biochem 2018; 62:271-286. [PMID: 30030362 PMCID: PMC6056716 DOI: 10.1042/ebc20170099] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 04/13/2018] [Accepted: 05/02/2018] [Indexed: 02/02/2023]
Abstract
The structural biogenesis and functional proficiency of the multiheteromeric complexes forming the mitochondrial oxidative phosphorylation system (OXPHOS) require the concerted action of a number of chaperones and other assembly factors, most of which are specific for each complex. Mutations in a large number of these assembly factors are responsible for mitochondrial disorders, in most cases of infantile onset, typically characterized by biochemical defects of single specific complexes. In fact, pathogenic mutations in complex-specific assembly factors outnumber, in many cases, the repertoire of mutations found in structural subunits of specific complexes. The identification of patients with specific defects in assembly factors has provided an important contribution to the nosological characterization of mitochondrial disorders, and has also been a crucial means to identify a huge number of these proteins in humans, which play an essential role in mitochondrial bioenergetics. The wide use of next generation sequencing (NGS) has led to and will allow the identifcation of additional components of the assembly machinery of individual complexes, mutations of which are responsible for human disorders. The functional studies on patients' specimens, together with the creation and characterization of in vivo models, are fundamental to better understand the mechanisms of each of them. A new chapter in this field will be, in the near future, the discovery of mechanisms and actions underlying the formation of supercomplexes, molecular structures formed by the physical, and possibly functional, interaction of some of the individual respiratory complexes, particularly complex I (CI), III (CIII), and IV (CIV).
Collapse
|
55
|
Guyatt AL, Burrows K, Guthrie PAI, Ring S, McArdle W, Day INM, Ascione R, Lawlor DA, Gaunt TR, Rodriguez S. Cardiometabolic phenotypes and mitochondrial DNA copy number in two cohorts of UK women. Mitochondrion 2018; 39:9-19. [PMID: 28818596 PMCID: PMC5832987 DOI: 10.1016/j.mito.2017.08.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 06/06/2017] [Accepted: 08/10/2017] [Indexed: 12/14/2022]
Abstract
The mitochondrial genome is present at variable copy number between individuals. Mitochondria are vulnerable to oxidative stress, and their dysfunction may be associated with cardiovascular disease. The association of mitochondrial DNA copy number with cardiometabolic risk factors (lipids, glycaemic traits, inflammatory markers, anthropometry and blood pressure) was assessed in two independent cohorts of European origin women, one in whom outcomes were measured at mean (SD) age 30 (4.3) years (N=2278) and the second at 69.4 (5.5) years (N=2872). Mitochondrial DNA copy number was assayed by quantitative polymerase chain reaction. Associations were adjusted for smoking, sociodemographic status, laboratory factors and white cell traits. Out of a total of 12 outcomes assessed in both cohorts, mitochondrial DNA copy number showed little or no association with the majority (point estimates were close to zero and nearly all p-values were >0.01). The strongest evidence was for an inverse association in the older cohort with insulin (standardised beta [95%CI]: -0.06, [-0.098, -0.022], p=0.002), but this association did not replicate in the younger cohort. Our findings do not provide support for variation in mitochondrial DNA copy number having an important impact on cardio-metabolic risk factors in European origin women.
Collapse
Affiliation(s)
- Anna L Guyatt
- MRC Integrative Epidemiology Unit, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK; School of Social and Community Medicine, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK
| | - Kimberley Burrows
- MRC Integrative Epidemiology Unit, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK; School of Social and Community Medicine, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK
| | - Philip A I Guthrie
- School of Social and Community Medicine, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK
| | - Sue Ring
- MRC Integrative Epidemiology Unit, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK; School of Social and Community Medicine, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK
| | - Wendy McArdle
- MRC Integrative Epidemiology Unit, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK; School of Social and Community Medicine, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK
| | - Ian N M Day
- School of Social and Community Medicine, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK
| | - Raimondo Ascione
- Bristol Heart Institute, School of Clinical Sciences, University of Bristol, Bristol, UK
| | - Debbie A Lawlor
- MRC Integrative Epidemiology Unit, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK; School of Social and Community Medicine, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK
| | - Tom R Gaunt
- MRC Integrative Epidemiology Unit, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK; School of Social and Community Medicine, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK
| | - Santiago Rodriguez
- MRC Integrative Epidemiology Unit, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK; School of Social and Community Medicine, University of Bristol, Oakfield House, Oakfield Grove, Bristol BS8 2BN, UK.
| |
Collapse
|
56
|
Huang YH, Chen CM, Lee YS, Chang KH, Chen HW, Chen YC. Detection of mitochondrial DNA with 4977 bp deletion in leukocytes of patients with ischemic stroke. PLoS One 2018; 13:e0193175. [PMID: 29474453 PMCID: PMC5825052 DOI: 10.1371/journal.pone.0193175] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 02/06/2018] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Coronary artery disease is associated with a common mitochondrial DNA alteration, a 4977 bp deletion (mtDNA4977). The role of mtDNA4977 in ischemic stroke is unknown. METHODS Real-time quantitative PCR was performed to quantify total mtDNA and mtDNA4977 in leukocytes in 283 ischemic stroke cases and 135 controls. Ratios of mtDNA4977 to total-mtDNA and total-mtDNA to nuclear-DNA were calculated. Nested PCR and Sanger sequencing were used to confirm undetectable levels of mtDNA4977. RESULTS For 191 patients and 74 control subjects in the male group and 92 patients and 61 control subjects in the female group, there were no significant between-group differences in age, cholesterol level, body mass index, stroke severity, or 4977 deletion. After adjusting for confounding factors, there was no correlation between mtDNA4977 amount and infarction risk, recurrent stroke, or stroke severity. However, mtDNA4977 was undetected in 6.94% subjects, and these individuals had a higher prevalence of stroke than those with detectable mtDNA4977 (OR: 0.181, 95% CI 0.041-0.798, p = 0.024). Additionally, mtDNA4977 status had no effect on stroke prognosis, including stroke severity and recurrent stroke. CONCLUSION In conclusion, there was no apparent association between mtDNA4977 deletion and cerebral infarction. Undetectable mtDNA4977 may be a marker or risk factor for ischemic stroke.
Collapse
Affiliation(s)
- Yu-hua Huang
- Department of Neurology, Chang Gung Memorial Hospital Linkou Medical Center, Taoyuan, Taiwan
- College of Medicine, Chang-Gung University, Taoyuan, Taiwan
| | - Chiung-Mei Chen
- Department of Neurology, Chang Gung Memorial Hospital Linkou Medical Center, Taoyuan, Taiwan
- College of Medicine, Chang-Gung University, Taoyuan, Taiwan
| | - Yun-Shien Lee
- Department of Biotechnology, Ming Chuan University, Taoyuan, Taiwan
- Genomic Medicine Research Core Laboratory, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Kuo-Hsuan Chang
- Department of Neurology, Chang Gung Memorial Hospital Linkou Medical Center, Taoyuan, Taiwan
- College of Medicine, Chang-Gung University, Taoyuan, Taiwan
| | - Huei-Wen Chen
- Department of Neurology, Chang Gung Memorial Hospital Linkou Medical Center, Taoyuan, Taiwan
- College of Medicine, Chang-Gung University, Taoyuan, Taiwan
| | - Yi-Chun Chen
- Department of Neurology, Chang Gung Memorial Hospital Linkou Medical Center, Taoyuan, Taiwan
- College of Medicine, Chang-Gung University, Taoyuan, Taiwan
- * E-mail:
| |
Collapse
|
57
|
|
58
|
Mohamed Yusoff AA, Zulfakhar FN, Mohd Khair SZN, Wan Abdullah WS, Abdullah JM, Idris Z. Mitochondrial 10398A>G NADH-Dehydrogenase Subunit 3 of Complex I Is Frequently Altered in Intra-Axial Brain Tumors in Malaysia. Brain Tumor Res Treat 2018; 6:31-38. [PMID: 29717568 PMCID: PMC5932297 DOI: 10.14791/btrt.2018.6.e5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 02/05/2018] [Accepted: 03/19/2018] [Indexed: 12/11/2022] Open
Abstract
Background Mitochondria are major cellular sources of reactive oxygen species (ROS) generation which can induce mitochondrial DNA damage and lead to carcinogenesis. The mitochondrial 10398A>G alteration in NADH-dehydrogenase subunit 3 (ND3) can severely impair complex I, a key component of ROS production in the mitochondrial electron transport chain. Alteration in ND3 10398A>G has been reported to be linked with diverse neurodegenerative disorders and cancers. The aim of this study was to find out the association of mitochondrial ND3 10398A>G alteration in brain tumor of Malaysian patients. Methods Brain tumor tissues and corresponding blood specimens were obtained from 45 patients. The ND3 10398A>G alteration at target codon 114 was detected using the PCR-RFLP analysis and later was confirmed by DNA sequencing. Results Twenty-six (57.8%) patients showed ND3 10398A>G mutation in their tumor specimens, in which 26.9% of these mutations were heterozygous mutations. ND3 10398A>G mutation was not significantly correlated with age, gender, and histological tumor grade, however was found more frequently in intra-axial than in extra-axial tumors (62.5% vs. 46.2%, p<0.01). Conclusion For the first time, we have been able to describe the occurrence of ND3 10398A>G mutations in a Malaysian brain tumor population. It can be concluded that mitochondrial ND3 10398A>G alteration is frequently present in brain tumors among Malaysian population and it shows an impact on the intra-axial tumors.
Collapse
Affiliation(s)
- Abdul Aziz Mohamed Yusoff
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kelantan, Malaysia.
| | - Fatin Najwa Zulfakhar
- School of Health Sciences, Universiti Sains Malaysia, Health Campus, Kelantan, Malaysia
| | | | - Wan Salihah Wan Abdullah
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kelantan, Malaysia
| | - Jafri Malin Abdullah
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kelantan, Malaysia.,Center for Neuroscience Services and Research, Universiti Sains Malaysia, Health Campus, Kelantan, Malaysia
| | - Zamzuri Idris
- Department of Neurosciences, School of Medical Sciences, Universiti Sains Malaysia, Health Campus, Kelantan, Malaysia
| |
Collapse
|
59
|
Abstract
Mitochondria are intracellular organelles responsible for adenosine triphosphate production. The strict control of intracellular energy needs require proper mitochondrial functioning. The mitochondria are under dual controls of mitochondrial DNA (mtDNA) and nuclear DNA (nDNA). Mitochondrial dysfunction can arise from changes in either mtDNA or nDNA genes regulating function. There are an estimated ∼1500 proteins in the mitoproteome, whereas the mtDNA genome has 37 proteins. There are, to date, ∼275 genes shown to give rise to disease. The unique physiology of mitochondrial functioning contributes to diverse gene expression. The onset and range of phenotypic expression of disease is diverse, with onset from neonatal to seventh decade of life. The range of dysfunction is heterogeneous, ranging from single organ to multisystem involvement. The complexity of disease expression has severely limited gene discovery. Combining phenotypes with improvements in gene sequencing strategies are improving the diagnosis process. This chapter focuses on the interplay of the unique physiology and gene discovery in the current knowledge of genetically derived mitochondrial disease.
Collapse
Affiliation(s)
- Russell P Saneto
- Seattle Children's Hospital/University of Washington, Seattle, WA, United States.
| |
Collapse
|
60
|
Xu FL, Ding M, Yao J, Shi ZS, Wu X, Zhang JJ, Pang H, Xing JX, Xuan JF, Wang BJ. Association between mitochondrial DNA variations and schizophrenia in the northern Chinese Han population. PLoS One 2017; 12:e0182769. [PMID: 28846698 PMCID: PMC5573569 DOI: 10.1371/journal.pone.0182769] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 07/24/2017] [Indexed: 12/20/2022] Open
Abstract
To determine whether mitochondrial DNA (mtDNA) variations are associated with schizophrenia, 313 patients with schizophrenia and 326 unaffected participants of the northern Chinese Han population were included in a prospective study. Single-nucleotide polymorphisms (SNPs) including C5178A, A10398G, G13708A, and C13928G were analyzed by polymerase chain reaction–restriction fragment length polymorphism (PCR–RFLP). Hypervariable regions I and II (HVSI and HVSII) were analyzed by sequencing. The results showed that the 4 SNPs and 11 haplotypes, composed of the 4 SNPs, did not differ significantly between patient and control groups. No significant association between haplogroups and the risk of schizophrenia was ascertained after Bonferroni correction. Drawing a conclusion, there was no evidence of an association between mtDNA (the 4 SNPs and the control region) and schizophrenia in the northern Chinese Han population.
Collapse
Affiliation(s)
- Feng-ling Xu
- School of Forensic Medicine, China Medical University, Shenyang, China
| | - Mei Ding
- School of Forensic Medicine, China Medical University, Shenyang, China
| | - Jun Yao
- School of Forensic Medicine, China Medical University, Shenyang, China
| | - Zhang-sen Shi
- School of Forensic Medicine, China Medical University, Shenyang, China
| | - Xue Wu
- School of Forensic Medicine, China Medical University, Shenyang, China
| | - Jing-jing Zhang
- School of Forensic Medicine, China Medical University, Shenyang, China
| | - Hao Pang
- School of Forensic Medicine, China Medical University, Shenyang, China
| | - Jia-xin Xing
- School of Forensic Medicine, China Medical University, Shenyang, China
| | - Jin-feng Xuan
- School of Forensic Medicine, China Medical University, Shenyang, China
| | - Bao-jie Wang
- School of Forensic Medicine, China Medical University, Shenyang, China
- * E-mail:
| |
Collapse
|
61
|
Meyer JN, Chan SSL. Sources, mechanisms, and consequences of chemical-induced mitochondrial toxicity. Toxicology 2017. [PMID: 28627407 DOI: 10.1016/j.tox.2017.06.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Affiliation(s)
- Joel N Meyer
- Nicholas School of the Environment and Integrated Toxicology and Environmental Health Program, Duke University, Durham, NC, 27708-0328, USA.
| | - Sherine S L Chan
- Drug Discovery and Biomedical Sciences, College of Pharmacy, Medical University of South Carolina, Charleston, SC, 29425, USA; Neuroene Therapeutics, Mt. Pleasant, SC 29464, USA.
| |
Collapse
|
62
|
|
63
|
Colijn C, Jones N, Johnston IG, Yaliraki S, Barahona M. Toward Precision Healthcare: Context and Mathematical Challenges. Front Physiol 2017; 8:136. [PMID: 28377724 PMCID: PMC5359292 DOI: 10.3389/fphys.2017.00136] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 02/22/2017] [Indexed: 12/12/2022] Open
Abstract
Precision medicine refers to the idea of delivering the right treatment to the right patient at the right time, usually with a focus on a data-centered approach to this task. In this perspective piece, we use the term "precision healthcare" to describe the development of precision approaches that bridge from the individual to the population, taking advantage of individual-level data, but also taking the social context into account. These problems give rise to a broad spectrum of technical, scientific, policy, ethical and social challenges, and new mathematical techniques will be required to meet them. To ensure that the science underpinning "precision" is robust, interpretable and well-suited to meet the policy, ethical and social questions that such approaches raise, the mathematical methods for data analysis should be transparent, robust, and able to adapt to errors and uncertainties. In particular, precision methodologies should capture the complexity of data, yet produce tractable descriptions at the relevant resolution while preserving intelligibility and traceability, so that they can be used by practitioners to aid decision-making. Through several case studies in this domain of precision healthcare, we argue that this vision requires the development of new mathematical frameworks, both in modeling and in data analysis and interpretation.
Collapse
Affiliation(s)
- Caroline Colijn
- Department of Mathematics, Imperial College LondonLondon, UK
- EPSRC Centre for Mathematics of Precision Healthcare, Imperial College LondonLondon, UK
| | - Nick Jones
- Department of Mathematics, Imperial College LondonLondon, UK
- EPSRC Centre for Mathematics of Precision Healthcare, Imperial College LondonLondon, UK
| | - Iain G. Johnston
- EPSRC Centre for Mathematics of Precision Healthcare, Imperial College LondonLondon, UK
- School of Biosciences, University of BirminghamBirmingham, UK
| | - Sophia Yaliraki
- EPSRC Centre for Mathematics of Precision Healthcare, Imperial College LondonLondon, UK
- Department of Chemistry, Imperial College LondonLondon, UK
| | - Mauricio Barahona
- Department of Mathematics, Imperial College LondonLondon, UK
- EPSRC Centre for Mathematics of Precision Healthcare, Imperial College LondonLondon, UK
| |
Collapse
|
64
|
Wang T, Zhang M, Jiang Z, Seli E. Mitochondrial dysfunction and ovarian aging. Am J Reprod Immunol 2017; 77. [PMID: 28194828 DOI: 10.1111/aji.12651] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 01/17/2017] [Indexed: 01/02/2023] Open
Abstract
Mitochondria are double-membrane-bound organelles that are responsible for the generation of most of the cell's energy. Mitochondrial dysfunction has been implicated in cellular senescence in general and ovarian aging in particular. Recent studies exploited this association by studying mitochondrial DNA (mtDNA) copy number as a potential biomarker of embryo viability and the use of mitochondrial nutrients and autologous mitochondrial transfer as a potential treatment for poor ovarian function and response.
Collapse
Affiliation(s)
- Tianren Wang
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Man Zhang
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Zongliang Jiang
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| | - Emre Seli
- Department of Obstetrics, Gynecology and Reproductive Sciences, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
65
|
Sharafati-Chaleshtori R, Shirzad H, Rafieian-Kopaei M, Soltani A. Melatonin and human mitochondrial diseases. JOURNAL OF RESEARCH IN MEDICAL SCIENCES 2017; 22:2. [PMID: 28400824 PMCID: PMC5361446 DOI: 10.4103/1735-1995.199092] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 09/07/2016] [Accepted: 10/22/2016] [Indexed: 12/22/2022]
Abstract
Mitochondrial dysfunction is one of the main causative factors in a wide variety of complications such as neurodegenerative disorders, ischemia/reperfusion, aging process, and septic shock. Decrease in respiratory complex activity, increase in free radical production, increase in mitochondrial synthase activity, increase in nitric oxide production, and impair in electron transport system and/or mitochondrial permeability are considered as the main factors responsible for mitochondrial dysfunction. Melatonin, the pineal gland hormone, is selectively taken up by mitochondria and acts as a powerful antioxidant, regulating the mitochondrial bioenergetic function. Melatonin increases the permeability of membranes and is the stimulator of antioxidant enzymes including superoxide dismutase, glutathione peroxidase, glutathione reductase, and catalase. It also acts as an inhibitor of lipoxygenase. Melatonin can cause resistance to oxidation damage by fixing the microsomal membranes. Melatonin has been shown to retard aging and inhibit neurodegenerative disorders, ischemia/reperfusion, septic shock, diabetes, cancer, and other complications related to oxidative stress. The purpose of the current study, other than introducing melatonin, was to present the recent findings on clinical effects in diseases related to mitochondrial dysfunction including diabetes, cancer, gastrointestinal diseases, and diseases related to brain function.
Collapse
Affiliation(s)
- Reza Sharafati-Chaleshtori
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Hedayatollah Shirzad
- Medical Plants Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | | | - Amin Soltani
- Medical Plants Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
66
|
Paulauskas A, Galdikaitė-Brazienė E, Radzijevskaja J, Aleksandravičienė A, Galdikas M. Genetic diversity of Ixodes ricinus (Ixodida: Ixodidae) ticks in sympatric and allopatric zones in Baltic countries. JOURNAL OF VECTOR ECOLOGY : JOURNAL OF THE SOCIETY FOR VECTOR ECOLOGY 2016; 41:244-253. [PMID: 27860008 DOI: 10.1111/jvec.12219] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Accepted: 06/29/2016] [Indexed: 06/06/2023]
Abstract
Ixodes ricinus (Linnaeus 1758) and Ixodes persulcatus (Schulze 1930) ticks are involved in the transmission of a wide variety of pathogens with considerable impact on human and animal health. The co-distribution zone of these two tick species is situated in the Baltic countries, which provides a special setting for the population studies. In the present study, genetic variability of I. ricinus ticks collected in allopatric and sympatric locations in the Baltic countries has been investigated using a sequence analysis of the mitochondrial DNA control region, 16S rRNA and cytb genes. There were 32 haplotypes (Hd: 0.8551) and 27 haplotypes (Hd:0.8213) of control region sequences from ticks in allopatric and sympatric zones detected, respectively. Out of 47 16S rRNA gene haplotypes, 32 haplotypes (Hd: 0.7213) were found in the allopatric zone and 27 (Hd:0.9572) in the sympatric zone. The Cytb gene was very conserved and monomorphic in ticks from the allopatric zone, whereas three unique haplotypes were observed in the sympatric zone. The higher number of unique haplotypes of the control region was detected in the allopatric zone. Median joining network and Fst analysis did not reveal a clear separation between ticks from the two zones.
Collapse
Affiliation(s)
- A Paulauskas
- Vytautas Magnus University, Vileikos St. 8, Kaunas, Lithuania
| | | | - J Radzijevskaja
- Vytautas Magnus University, Vileikos St. 8, Kaunas, Lithuania
| | | | - M Galdikas
- Vytautas Magnus University, Vileikos St. 8, Kaunas, Lithuania
| |
Collapse
|
67
|
Incidence of Primary Mitochondrial Disease in Children Younger Than 2 Years Presenting With Acute Liver Failure. J Pediatr Gastroenterol Nutr 2016; 63:592-597. [PMID: 27482763 PMCID: PMC5113754 DOI: 10.1097/mpg.0000000000001345] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
BACKGROUND Mitochondrial liver disease (MLD), and in particular mitochondrial DNA (mtDNA) depletion syndrome (MDS) is an important cause of acute liver failure (ALF) in infancy. Early and accurate diagnosis is important because liver transplantation (LT) is often contraindicated. It is unclear which methods are the best to diagnose MLD in the setting of ALF. OBJECTIVE The aim of the study was to determine the incidence of MLD in children younger than 2 years with ALF and the utility of routine investigations to detect MLD. METHODS Thirty-nine consecutive infants with ALF were admitted to a single unit from 2009 to 2011. All were extensively investigated using an established protocol. Genes implicated in mitochondrial DNA depletion syndrome were sequenced in all cases and tissue mtDNA copy number measured where available. RESULTS Five infants (17%) had genetically proven MLD: DGUOK (n = 2), POLG (n = 2), and MPV17 (1). Four of these died, whereas 1 recovered. Two had normal muscle mtDNA copy number and 3 had normal muscle respiratory chain enzymes. An additional 8 children had low hepatic mtDNA copy number but pathogenic mutations were not detected. One of these developed fatal multisystemic disease after LT, whereas 5 who survived remain well without evidence of multisystemic disease up to 6 years later. Magnetic resonance spectroscopy did not distinguish between those with and without MLD. CONCLUSIONS Low liver mtDNA copy number may be a secondary phenomenon in ALF.Screening for mtDNA maintenance gene mutations may be the most efficient way to confirm MLD in ALF in the first 2 years of life.
Collapse
|
68
|
Affiliation(s)
| | - Daniele Masarone
- Second University of Naples-AORN Colli, Ospedale Monaldi, Naples, Italy
| | - Giuseppe Pacileo
- Second University of Naples-AORN Colli, Ospedale Monaldi, Naples, Italy
| |
Collapse
|
69
|
Newman LE, Schiavon C, Kahn RA. Plasmids for variable expression of proteins targeted to the mitochondrial matrix or intermembrane space. CELLULAR LOGISTICS 2016; 6:e1247939. [PMID: 28042516 DOI: 10.1080/21592799.2016.1247939] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Revised: 10/06/2016] [Accepted: 10/07/2016] [Indexed: 12/27/2022]
Abstract
We describe the construction and uses of a series of plasmids for directing expression to varied levels of exogenous proteins targeted to the mitochondrial matrix or intermembrane space. We found that the level of protein expression achieved, the kinetics of expression and mitochondrial import, and half-life after import can each vary with the protein examined. These factors should be considered when directing localization of an exogenous protein to mitochondria for rescue, proteomics, or other approaches. We describe the construction of a collection of plasmids for varied expression of proteins targeted to the mitochondrial matrix or intermembrane space, using previously defined targeting sequences and strength CMV promoters. The limited size of these compartments makes them particularly vulnerable to artifacts from over-expression. We found that different proteins display different kinetics of expression and import that should be considered when analyzing results from this approach. Finally, this collection of plasmids has been deposited in the Addgene plasmid repository to facilitate the ready access and use of these tools.
Collapse
Affiliation(s)
- Laura E Newman
- Department of Biochemistry, Emory University School of Medicine , Atlanta, GA, USA
| | - Cara Schiavon
- Department of Biochemistry, Emory University School of Medicine , Atlanta, GA, USA
| | - Richard A Kahn
- Department of Biochemistry, Emory University School of Medicine , Atlanta, GA, USA
| |
Collapse
|
70
|
Lane A, Nisker J. "Mitochondrial Replacement" Technologies and Human Germline Nuclear Modification. JOURNAL OF OBSTETRICS AND GYNAECOLOGY CANADA 2016; 38:731-6. [PMID: 27638985 DOI: 10.1016/j.jogc.2016.03.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 02/17/2016] [Indexed: 02/08/2023]
Abstract
In 2015 the United Kingdom became the first jurisdiction to approve "mitochondrial replacement techniques" (MRT), thereby dropping prohibitions against creating human embryos with a permanently altered genetic make-up for purposes of reproduction. MRT is a misnomer because in fact it is the nucleus of the oocyte of the woman who wants a genetically related child that is transferred to the enucleated oocyte of a woman paid to undergo IVF to provide the oocyte. MRT thus constitutes nuclear transfer, which is prohibited by criminal sanctions under sections of laws on reproductive cloning in Canada, the United States, Australia, and European countries that regulate assisted reproduction. By adopting policies permitting the use of MRT, the United Kingdom has become the first jurisdiction to counteract an international consensus prohibiting germline modification. Analyses of the legal, ethical, and societal implications of MRT in assisted human reproduction are essential.
Collapse
Affiliation(s)
- Alyssa Lane
- Department of Obstetrics and Gynaecology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London ON
| | - Jeff Nisker
- Department of Obstetrics and Gynaecology, Schulich School of Medicine & Dentistry, The University of Western Ontario, London ON; Children's Health Research Institute, London, Ontario
| |
Collapse
|
71
|
Identification and characterization of the novel point mutation m.3634A>G in the mitochondrial MT-ND1 gene associated with LHON syndrome. Biochim Biophys Acta Mol Basis Dis 2016; 1863:182-187. [PMID: 27613247 DOI: 10.1016/j.bbadis.2016.09.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 09/01/2016] [Accepted: 09/05/2016] [Indexed: 11/20/2022]
Abstract
Leber's hereditary optic neuropathy (LHON) is a mitochondrial genetic disease characterized by bilateral acute or subacute progressive central visual loss. Most cases of LHON syndrome are caused by point mutations in the MT-ND1, MT-ND4, and MT-ND6 genes. Here, we report a novel homoplasmic mutation in the MT-ND1 gene (m.3634A>G, p.Ser110Gly) in a patient with the classical clinical features of LHON syndrome. Several observations support the idea that the mutation is pathogenic and involved in the clinical phenotype of the patient: 1) The mutation affected a highly conserved amino acid, 2) A pathogenic mutation in the same amino acid (m.3635G>A, p.Ser110Asn) was previously reported in a patient with LHON syndrome, 3) The mutation is not recorded in the Mitomap or Human Mitochondrial Genome Database, 4) In silico predictors classified the mutation as "probably damaging", and 5) Cybrids carrying the mutation showed decreased Complex I enzyme activity, lower cell proliferation, and decreased mitochondrial membrane potential relative to control cybrids.
Collapse
|
72
|
Wnęk M, Ressel L, Ricci E, Rodriguez-Martinez C, Guerrero JCV, Ismail Z, Smith C, Kipar A, Sodeik B, Chinnery PF, Solomon T, Griffiths MJ. Herpes simplex encephalitis is linked with selective mitochondrial damage; a post-mortem and in vitro study. Acta Neuropathol 2016; 132:433-51. [PMID: 27457581 PMCID: PMC4992034 DOI: 10.1007/s00401-016-1597-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 07/12/2016] [Accepted: 07/14/2016] [Indexed: 12/25/2022]
Abstract
Herpes simplex virus type-1 (HSV-1) encephalitis (HSE) is the most commonly diagnosed cause of viral encephalitis in western countries. Despite antiviral treatment, HSE remains a devastating disease with high morbidity and mortality. Improved understanding of pathogenesis may lead to more effective therapies. Mitochondrial damage has been reported during HSV infection in vitro. However, whether it occurs in the human brain and whether this contributes to the pathogenesis has not been fully explored. Minocycline, an antibiotic, has been reported to protect mitochondria and limit brain damage. Minocycline has not been studied in HSV infection. In the first genome-wide transcriptomic study of post-mortem human HSE brain tissue, we demonstrated a highly preferential reduction in mitochondrial genome (MtDNA) encoded transcripts in HSE cases (n = 3) compared to controls (n = 5). Brain tissue exhibited a significant inverse correlation for immunostaining between cytochrome c oxidase subunit 1 (CO1), a MtDNA encoded enzyme subunit, and HSV-1; with lower abundance for mitochondrial protein in regions where HSV-1 was abundant. Preferential loss of mitochondrial function, among MtDNA encoded components, was confirmed using an in vitro primary human astrocyte HSV-1 infection model. Dysfunction of cytochrome c oxidase (CO), a mitochondrial enzyme composed predominantly of MtDNA encoded subunits, preceded that of succinate dehydrogenase (composed entirely of nuclear encoded subunits). Minocycline treated astrocytes exhibited higher CO1 transcript abundance, sustained CO activity and cell viability compared to non-treated astrocytes. Based on observations from HSE patient tissue, this study highlights mitochondrial damage as a critical and early event during HSV-1 infection. We demonstrate minocycline preserves mitochondrial function and cell viability during HSV-1 infection. Minocycline, and mitochondrial protection, offers a novel adjunctive therapeutic approach for limiting brain cell damage and potentially improving outcome among HSE patients.
Collapse
Affiliation(s)
- Małgorzata Wnęk
- Brain Infections Group, Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, L69 7BE, UK
| | - Lorenzo Ressel
- Department of Infection Biology, Institute of Infection and Global Health, University of Liverpool, Liverpool Science Park IC2, Liverpool, L3 5RF, UK
- Veterinary Pathology, School of Veterinary Science, University of Liverpool, Leahurst Campus, Neston, CH64 7TE, UK
| | - Emanuele Ricci
- Department of Infection Biology, Institute of Infection and Global Health, University of Liverpool, Liverpool Science Park IC2, Liverpool, L3 5RF, UK
- Veterinary Pathology, School of Veterinary Science, University of Liverpool, Leahurst Campus, Neston, CH64 7TE, UK
| | - Carmen Rodriguez-Martinez
- Brain Infections Group, Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, L69 7BE, UK
| | - Julio Cesar Villalvazo Guerrero
- Institute of Virology, Hannover Medical School, 30625, Hannover, Germany
- German Centre for Infection Research (DZIF), Hannover, Germany
| | - Zarini Ismail
- Brain Infections Group, Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, L69 7BE, UK
| | - Colin Smith
- Academic Neuropathology, Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB, UK
| | - Anja Kipar
- Department of Infection Biology, Institute of Infection and Global Health, University of Liverpool, Liverpool Science Park IC2, Liverpool, L3 5RF, UK
- Veterinary Pathology, School of Veterinary Science, University of Liverpool, Leahurst Campus, Neston, CH64 7TE, UK
- Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, 8057, Zurich, Switzerland
| | - Beate Sodeik
- Institute of Virology, Hannover Medical School, 30625, Hannover, Germany
- German Centre for Infection Research (DZIF), Hannover, Germany
| | - Patrick F Chinnery
- Institute of Genetic Medicine, Newcastle University, Newcastle upon Tyne, NE1 3BZ, UK
| | - Tom Solomon
- Brain Infections Group, Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, L69 7BE, UK
- Department of Neurology, The Walton Centre NHS Foundation Trust, Fazakerley, Liverpool, L9 7LJ, UK
- National Institute for Health Research, Health Protection Research Unit in Emerging and Zoonotic Infections, University of Liverpool, Liverpool, L69 7BE, UK
| | - Michael J Griffiths
- Brain Infections Group, Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, L69 7BE, UK.
- National Institute for Health Research, Health Protection Research Unit in Emerging and Zoonotic Infections, University of Liverpool, Liverpool, L69 7BE, UK.
- Department of Neurology, Alder-Hey Children's NHS Foundation Trust, West Derby, Liverpool, L12 2AP, UK.
| |
Collapse
|
73
|
Mitochondrial-Nuclear Interactions Mediate Sex-Specific Transcriptional Profiles in Drosophila. Genetics 2016; 204:613-630. [PMID: 27558138 PMCID: PMC5068850 DOI: 10.1534/genetics.116.192328] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Accepted: 08/17/2016] [Indexed: 12/27/2022] Open
Abstract
The assembly and function of mitochondria require coordinated expression from two distinct genomes, the mitochondrial DNA (mtDNA) and nuclear DNA (nDNA). Mutations in either genome can be a source of phenotypic variation, yet their coexpression has been largely overlooked as a source of variation, particularly in the emerging paradigm of mitochondrial replacement therapy. Here we tested how the transcriptome responds to mtDNA and nDNA variation, along with mitonuclear interactions (mtDNA × nDNA) in Drosophila melanogaster. We used two mtDNA haplotypes that differ in a substantial number of single nucleotide polymorphisms, with >100 amino acid differences. We placed each haplotype on each of two D. melanogaster nuclear backgrounds and tested for transcription differences in both sexes. We found that large numbers of transcripts were differentially expressed between nuclear backgrounds, and that mtDNA type altered the expression of nDNA genes, suggesting a retrograde, trans effect of mitochondrial genotype. Females were generally more sensitive to genetic perturbation than males, and males demonstrated an asymmetrical effect of mtDNA in each nuclear background; mtDNA effects were nuclear-background specific. mtDNA-sensitive genes were not enriched in male- or female-limited expression space in either sex. Using a variety of differential expression analyses, we show the responses to mitonuclear covariation to be substantially different between the sexes, yet the mtDNA genes were consistently differentially expressed across nuclear backgrounds and sexes. Our results provide evidence that the main mtDNA effects can be consistent across nuclear backgrounds, but the interactions between mtDNA and nDNA can lead to sex-specific global transcript responses.
Collapse
|
74
|
Sen A, Cox RT. Fly Models of Human Diseases: Drosophila as a Model for Understanding Human Mitochondrial Mutations and Disease. Curr Top Dev Biol 2016; 121:1-27. [PMID: 28057297 DOI: 10.1016/bs.ctdb.2016.07.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mitochondrial diseases are a prevalent, heterogeneous class of diseases caused by defects in oxidative phosphorylation, whose severity depends upon particular genetic mutations. These diseases can be difficult to diagnose, and current therapeutics have limited efficacy, primarily treating only symptoms. Because mitochondria play a pivotal role in numerous cellular functions, especially ATP production, their diminished activity has dramatic physiological consequences. While this in and of itself makes treating mitochondrial disease complex, these organelles contain their own DNA, mtDNA, whose products are required for ATP production, in addition to the hundreds of nucleus-encoded proteins. Drosophila offers a tractable whole-animal model to understand the mechanisms underlying loss of mitochondrial function, the subsequent cellular and tissue damage that results, and how these organelles are inherited. Human and Drosophila mtDNAs encode the same set of products, and the homologous nucleus-encoded genes required for mitochondrial function are conserved. In addition, Drosophila contain sufficiently complex organ systems to effectively recapitulate many basic symptoms of mitochondrial diseases, yet are relatively easy and fast to genetically manipulate. There are several Drosophila models for specific mitochondrial diseases, which have been recently reviewed (Foriel, Willems, Smeitink, Schenck, & Beyrath, 2015). In this review, we highlight the conservation between human and Drosophila mtDNA, the present and future techniques for creating mtDNA mutations for further study, and how Drosophila has contributed to our current understanding of mitochondrial inheritance.
Collapse
Affiliation(s)
- A Sen
- Uniformed Services University, Bethesda, MD, United States
| | - R T Cox
- Uniformed Services University, Bethesda, MD, United States.
| |
Collapse
|
75
|
Masser DR, Clark NW, Van Remmen H, Freeman WM. Loss of the antioxidant enzyme CuZnSOD (Sod1) mimics an age-related increase in absolute mitochondrial DNA copy number in the skeletal muscle. AGE (DORDRECHT, NETHERLANDS) 2016; 38:323-333. [PMID: 27444179 PMCID: PMC5061674 DOI: 10.1007/s11357-016-9930-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 07/12/2016] [Indexed: 06/06/2023]
Abstract
Mitochondria contain multiple copies of the circular mitochondrial genome (mtDNA) that encodes ribosomal RNAs and proteins locally translated for oxidative phosphorylation. Loss of mtDNA integrity, both altered copy number and increased mutations, is implicated in cellular dysfunction with aging. Published data on mtDNA copy number and aging is discordant which may be due to methodological limitations for quantifying mtDNA copy number. Existing quantitative PCR (qPCR) mtDNA copy number quantification methods provide only relative abundances and are problematic to normalize to different template input amounts and across tissues/sample types. As well, existing methods cannot quantify mtDNA copy number in subcellular isolates, such as isolated mitochondria and neuronal synaptic terminals, which lack nuclear genomic DNA for normalization. We have developed and validated a novel absolute mtDNA copy number quantitation method that uses chip-based digital polymerase chain reaction (dPCR) to count the number of copies of mtDNA and used this novel method to assess the literature discrepancy in which there is no clear consensus whether mtDNA numbers change with aging in skeletal muscle. Skeletal muscle in old mice was found to have increased absolute mtDNA numbers compared to young controls. Furthermore, young Sod1 -/- mice were assessed and show an age-mimicking increase in skeletal muscle mtDNA. These findings reproduce a number of previous studies that demonstrate age-related increases in mtDNA. This simple and cost effective dPCR approach should enable precise and accurate mtDNA copy number quantitation in mitochondrial studies, eliminating contradictory studies of mitochondrial DNA content with aging.
Collapse
Affiliation(s)
- Dustin R. Masser
- Department of Physiology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104 USA
- Department of Geriatric Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104 USA
- Harold Hamm Diabetes Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104 USA
- Oklahoma Nathan Shock Center on Aging, Oklahoma City, OK 73104 USA
| | - Nicholas W. Clark
- Department of Physiology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104 USA
| | - Holly Van Remmen
- Oklahoma Nathan Shock Center on Aging, Oklahoma City, OK 73104 USA
- Oklahoma Medical Research Foundation, Oklahoma City, OK 73102 USA
| | - Willard M. Freeman
- Department of Physiology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104 USA
- Department of Geriatric Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104 USA
- Harold Hamm Diabetes Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104 USA
- Oklahoma Nathan Shock Center on Aging, Oklahoma City, OK 73104 USA
| |
Collapse
|
76
|
Pastukh VM, Gorodnya OM, Gillespie MN, Ruchko MV. Regulation of mitochondrial genome replication by hypoxia: The role of DNA oxidation in D-loop region. Free Radic Biol Med 2016; 96:78-88. [PMID: 27091693 PMCID: PMC4912408 DOI: 10.1016/j.freeradbiomed.2016.04.011] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Revised: 03/18/2016] [Accepted: 04/14/2016] [Indexed: 02/04/2023]
Abstract
Mitochondria of mammalian cells contain multiple copies of mitochondrial (mt) DNA. Although mtDNA copy number can fluctuate dramatically depending on physiological and pathophysiologic conditions, the mechanisms regulating mitochondrial genome replication remain obscure. Hypoxia, like many other physiologic stimuli that promote growth, cell proliferation and mitochondrial biogenesis, uses reactive oxygen species as signaling molecules. Emerging evidence suggests that hypoxia-induced transcription of nuclear genes requires controlled DNA damage and repair in specific sequences in the promoter regions. Whether similar mechanisms are operative in mitochondria is unknown. Here we test the hypothesis that controlled oxidative DNA damage and repair in the D-loop region of the mitochondrial genome are required for mitochondrial DNA replication and transcription in hypoxia. We found that hypoxia had little impact on expression of mitochondrial proteins in pulmonary artery endothelial cells, but elevated mtDNA content. The increase in mtDNA copy number was accompanied by oxidative modifications in the D-loop region of the mitochondrial genome. To investigate the role of this sequence-specific oxidation of mitochondrial genome in mtDNA replication, we overexpressed mitochondria-targeted 8-oxoguanine glycosylase Ogg1 in rat pulmonary artery endothelial cells, enhancing the mtDNA repair capacity of transfected cells. Overexpression of Ogg1 resulted in suppression of hypoxia-induced mtDNA oxidation in the D-loop region and attenuation of hypoxia-induced mtDNA replication. Ogg1 overexpression also reduced binding of mitochondrial transcription factor A (TFAM) to both regulatory and coding regions of the mitochondrial genome without altering total abundance of TFAM in either control or hypoxic cells. These observations suggest that oxidative DNA modifications in the D-loop region during hypoxia are important for increased TFAM binding and ensuing replication of the mitochondrial genome.
Collapse
Affiliation(s)
- Viktor M Pastukh
- Department of Pharmacology and Center for Lung Biology, University of South Alabama College of Medicine, Mobile, AL 36688, USA.
| | - Olena M Gorodnya
- Department of Pharmacology and Center for Lung Biology, University of South Alabama College of Medicine, Mobile, AL 36688, USA.
| | - Mark N Gillespie
- Department of Pharmacology and Center for Lung Biology, University of South Alabama College of Medicine, Mobile, AL 36688, USA.
| | - Mykhaylo V Ruchko
- Department of Pharmacology and Center for Lung Biology, University of South Alabama College of Medicine, Mobile, AL 36688, USA.
| |
Collapse
|
77
|
Korzeniewski B. Faster and stronger manifestation of mitochondrial diseases in skeletal muscle than in heart related to cytosolic inorganic phosphate (Pi) accumulation. J Appl Physiol (1985) 2016; 121:424-37. [PMID: 27283913 DOI: 10.1152/japplphysiol.00358.2016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 06/08/2016] [Indexed: 01/04/2023] Open
Abstract
A model of the cell bioenergetic system was used to compare the effect of oxidative phosphorylation (OXPHOS) deficiencies in a broad range of moderate ATP demand in skeletal muscle and heart. Computer simulations revealed that kinetic properties of the system are similar in both cases despite the much higher mitochondria content and "basic" OXPHOS activity in heart than in skeletal muscle, because of a much higher each-step activation (ESA) of OXPHOS in skeletal muscle than in heart. Large OXPHOS deficiencies lead in both tissues to a significant decrease in oxygen consumption (V̇o2) and phosphocreatine (PCr) and increase in cytosolic ADP, Pi, and H(+) The main difference between skeletal muscle and heart is a much higher cytosolic Pi concentration in healthy tissue and much higher cytosolic Pi accumulation (level) at low OXPHOS activities in the former, caused by a higher PCr level in healthy tissue (and higher total phosphate pool) and smaller Pi redistribution between cytosol and mitochondria at OXPHOS deficiency. This difference does not depend on ATP demand in a broad range. A much greater Pi increase and PCr decrease during rest-to-moderate work transition in skeletal muscle at OXPHOS deficiencies than at normal OXPHOS activity significantly slows down the V̇o2 on-kinetics. Because high cytosolic Pi concentrations cause fatigue in skeletal muscle and can compromise force generation in skeletal muscle and heart, this system property can contribute to the faster and stronger manifestation of mitochondrial diseases in skeletal muscle than in heart. Shortly, skeletal muscle with large OXPHOS deficiencies becomes fatigued already during low/moderate exercise.
Collapse
Affiliation(s)
- Bernard Korzeniewski
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
78
|
Ryan FP. Viral symbiosis and the holobiontic nature of the human genome. APMIS 2016; 124:11-9. [PMID: 26818258 DOI: 10.1111/apm.12488] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Accepted: 10/26/2015] [Indexed: 11/29/2022]
Abstract
The human genome is a holobiontic union of the mammalian nuclear genome, the mitochondrial genome and large numbers of endogenized retroviral genomes. This article defines and explores this symbiogenetic pattern of evolution, looking at the implications for human genetics, epigenetics, embryogenesis, physiology and the pathogenesis of inborn errors of metabolism and many other diseases.
Collapse
Affiliation(s)
- Francis Patrick Ryan
- The Academic Unit of Medical Education, The University of Sheffield, Sheffield, UK
| |
Collapse
|
79
|
Ambulkar PS, Chuadhari AR, Pal AK. Association of large scale 4977-bp "common" deletions in sperm mitochondrial DNA with asthenozoospermia and oligoasthenoteratozoospermia. J Hum Reprod Sci 2016; 9:35-40. [PMID: 27110076 PMCID: PMC4817286 DOI: 10.4103/0974-1208.178635] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
OBJECTIVE: To determine the association of large-scale mitochondrial DNA (mtDNA) deletions with abnormal sperm or abnormal flagellar movement of human spermatozoa in asthenozoospermia and oligoasthenoteratozoospermia (OAT) subjects using percoll gradients fractionation and long-range polymerase chain reaction (PCR). DESIGN: We investigated sixty infertile men and thirty normal healthy fertile controls. Of sixty infertile men, 39 were asthenozoospermia and 21 were OAT. MATERIALS AND METHODS: Percoll gradients discontinuous technique was used for separation of spermatozoa on the basis of their motility. Long-range PCR was used for detection of “common” 4977-bp deletions, and primer shift technique was used for confirmation of deletions. RESULTS: Overall fourteen subjects (14/60; 23.3%) of which eight (8/39; 20.5%) asthenozoospermia and six (6/21; 28.6%) OAT had shown deletions of 4977-bp. Deletions were more common (23.3%) in 40% fraction than 60% (11.6%) and 80% (5%) fractions. Sequencing results had shown deleted region of mtDNA. CONCLUSION: Abnormal spermatozoa had more number of mtDNA deletions than normal sperm, and abnormal spermatozoa had lost genes for the oxidative phosphorylation. Our findings suggest that large-scale 4977-bp mtDNA deletions in the spermatozoa from the infertile subjects cause the asthenozoospermic and OAT pathophysiological conditions in infertile males.
Collapse
Affiliation(s)
- Prafulla S Ambulkar
- Department of Anatomy, Human Genetic Division, Mahatma Gandhi Institute of Medical Sciences, Wardha, Maharashtra, India
| | - Ajay R Chuadhari
- Department of Physiology, Mahatma Gandhi Institute of Medical Sciences, Wardha, Maharashtra, India
| | - Asoke K Pal
- Department of Anatomy, Human Genetic Division, Mahatma Gandhi Institute of Medical Sciences, Wardha, Maharashtra, India
| |
Collapse
|
80
|
Mitochondrial DNA plasticity is an essential inducer of tumorigenesis. Cell Death Discov 2016; 2:16016. [PMID: 27551510 PMCID: PMC4979526 DOI: 10.1038/cddiscovery.2016.16] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 01/26/2016] [Indexed: 02/06/2023] Open
Abstract
Although mitochondrial DNA has been implicated in diseases such as cancer, its role remains to be defined. Using three models of tumorigenesis, namely glioblastoma multiforme, multiple myeloma and osteosarcoma, we show that mitochondrial DNA plays defining roles at early and late tumour progression. Specifically, tumour cells partially or completely depleted of mitochondrial DNA either restored their mitochondrial DNA content or actively recruited mitochondrial DNA, which affected the rate of tumorigenesis. Nevertheless, non-depleted tumour cells modulated mitochondrial DNA copy number at early and late progression in a mitochondrial DNA genotype-specific manner. In glioblastoma multiforme and osteosarcoma, this was coupled with loss and gain of mitochondrial DNA variants. Changes in mitochondrial DNA genotype affected tumour morphology and gene expression patterns at early and late progression. Importantly, this identified a subset of genes that are essential to early progression. Consequently, mitochondrial DNA and commonly expressed early tumour-specific genes provide novel targets against tumorigenesis.
Collapse
|
81
|
Zhang D, Ding G, Ge B, Zhang H, Tang B. Molecular evolution of mitochondrial coding genes in the oxidative phosphorylation pathway in malacostraca: purifying selection or accelerated evolution? Mitochondrial DNA A DNA Mapp Seq Anal 2016; 28:593-596. [PMID: 27159701 DOI: 10.3109/24701394.2016.1149827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The mitochondrion is the energy-producing factory of eukaryotic cells, in which oxidative phosphorylation (OXPHOS) is the main pathway for the production of adenosine triphosphate (ATP) by cellular respiration. Because of their vital role in metabolism, mitochondrial proteins are predicted to evolve primarily under constant purifying selection. However, all mitochondrial coding genes of malacostraca had a significantly higher synonymous nt divergence (Ks) in this study. Complex I (NADH dehydrogenase) and complex V (ATP synthase) had a much higher ratio of non-synonymous to synonymous nt divergence (Ka/Ks) and non-synonymous diversity (πNS), whereas complex III (cytochrome bc1 complex) and complex IV (cytochrome c oxidase) had a significantly lower Ka/Ks and non-synonymous diversity (πNS). The Ka/Ks, πNS, πS, and Ka results revealed that two types of mitochondrial genes, NADH dehydrogenase and ATP synthase, in malacostraca were consistent with accelerated evolution. Furthermore, two other types of mitochondrial genes, cytochrome bc1 complex and cytochrome c oxidase, were consistent with purifying selection. Generally, the evolutionary pattern of all mitochondrial proteins of the OXPHOS pathway in malacostraca was not entirely consistent with purifying selection.
Collapse
Affiliation(s)
- Daizhen Zhang
- a Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection , Jiangsu Synthetic Innovation Center for Coastal Bio-Agriculture, Yancheng Teachers University , Yancheng , China
| | - Ge Ding
- a Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection , Jiangsu Synthetic Innovation Center for Coastal Bio-Agriculture, Yancheng Teachers University , Yancheng , China
| | - Baoming Ge
- a Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection , Jiangsu Synthetic Innovation Center for Coastal Bio-Agriculture, Yancheng Teachers University , Yancheng , China
| | - Huabin Zhang
- a Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection , Jiangsu Synthetic Innovation Center for Coastal Bio-Agriculture, Yancheng Teachers University , Yancheng , China
| | - Boping Tang
- a Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection , Jiangsu Synthetic Innovation Center for Coastal Bio-Agriculture, Yancheng Teachers University , Yancheng , China
| |
Collapse
|
82
|
Kohda M, Tokuzawa Y, Kishita Y, Nyuzuki H, Moriyama Y, Mizuno Y, Hirata T, Yatsuka Y, Yamashita-Sugahara Y, Nakachi Y, Kato H, Okuda A, Tamaru S, Borna NN, Banshoya K, Aigaki T, Sato-Miyata Y, Ohnuma K, Suzuki T, Nagao A, Maehata H, Matsuda F, Higasa K, Nagasaki M, Yasuda J, Yamamoto M, Fushimi T, Shimura M, Kaiho-Ichimoto K, Harashima H, Yamazaki T, Mori M, Murayama K, Ohtake A, Okazaki Y. A Comprehensive Genomic Analysis Reveals the Genetic Landscape of Mitochondrial Respiratory Chain Complex Deficiencies. PLoS Genet 2016; 12:e1005679. [PMID: 26741492 PMCID: PMC4704781 DOI: 10.1371/journal.pgen.1005679] [Citation(s) in RCA: 223] [Impact Index Per Article: 27.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Accepted: 10/27/2015] [Indexed: 02/07/2023] Open
Abstract
Mitochondrial disorders have the highest incidence among congenital metabolic disorders characterized by biochemical respiratory chain complex deficiencies. It occurs at a rate of 1 in 5,000 births, and has phenotypic and genetic heterogeneity. Mutations in about 1,500 nuclear encoded mitochondrial proteins may cause mitochondrial dysfunction of energy production and mitochondrial disorders. More than 250 genes that cause mitochondrial disorders have been reported to date. However exact genetic diagnosis for patients still remained largely unknown. To reveal this heterogeneity, we performed comprehensive genomic analyses for 142 patients with childhood-onset mitochondrial respiratory chain complex deficiencies. The approach includes whole mtDNA and exome analyses using high-throughput sequencing, and chromosomal aberration analyses using high-density oligonucleotide arrays. We identified 37 novel mutations in known mitochondrial disease genes and 3 mitochondria-related genes (MRPS23, QRSL1, and PNPLA4) as novel causative genes. We also identified 2 genes known to cause monogenic diseases (MECP2 and TNNI3) and 3 chromosomal aberrations (6q24.3-q25.1, 17p12, and 22q11.21) as causes in this cohort. Our approaches enhance the ability to identify pathogenic gene mutations in patients with biochemically defined mitochondrial respiratory chain complex deficiencies in clinical settings. They also underscore clinical and genetic heterogeneity and will improve patient care of this complex disorder. Mitochondria play a crucial role in ATP biosynthesis and comprise proteins encoded in both the nuclear and mitochondrial genomes. Although more than 250 mitochondrial disease-causing genes have been reported, the exact genetic causes in patients remain largely unknown. Here, we aimed to provide further insights into the pathogenic mechanisms of mitochondrial disorders. We investigated the genes encoded in the nuclear and mitochondrial genomes using comprehensive genomic analysis in 142 patients with mitochondrial respiratory chain complex deficiencies. We identified 3 novel disease-causing mitochondria-related genes (MRPS23, QRSL1, and PNPLA4) as well as other disease-causing genes and novel pathogenic mutations in known mitochondrial disease-causing genes. All pathogenic mutations in this study are validated by genetic and/or functional evidence. Our findings, including the achievement of firm genetic diagnoses for 49 of 142 patients (34.5%), were higher than the general diagnosis rate of approximately 25% and demonstrated the value of comprehensive genomic analysis. Accordingly, we have shed light on the genetic heterogeneity underlying mitochondrial disorders.
Collapse
Affiliation(s)
- Masakazu Kohda
- Division of Translational Research, Research Center for Genomic Medicine, Saitama Medical University, Hidaka-shi, Saitama, Japan
| | - Yoshimi Tokuzawa
- Division of Functional Genomics & Systems Medicine, Research Center for Genomic Medicine, Saitama Medical University, Hidaka-shi, Saitama, Japan
| | - Yoshihito Kishita
- Division of Functional Genomics & Systems Medicine, Research Center for Genomic Medicine, Saitama Medical University, Hidaka-shi, Saitama, Japan
| | - Hiromi Nyuzuki
- Division of Functional Genomics & Systems Medicine, Research Center for Genomic Medicine, Saitama Medical University, Hidaka-shi, Saitama, Japan
| | - Yohsuke Moriyama
- Division of Functional Genomics & Systems Medicine, Research Center for Genomic Medicine, Saitama Medical University, Hidaka-shi, Saitama, Japan
- Division of Developmental Biology, Research Center for Genomic Medicine, Saitama Medical University, Hidaka-shi, Saitama, Japan
| | - Yosuke Mizuno
- Division of Functional Genomics & Systems Medicine, Research Center for Genomic Medicine, Saitama Medical University, Hidaka-shi, Saitama, Japan
| | - Tomoko Hirata
- Division of Translational Research, Research Center for Genomic Medicine, Saitama Medical University, Hidaka-shi, Saitama, Japan
| | - Yukiko Yatsuka
- Division of Functional Genomics & Systems Medicine, Research Center for Genomic Medicine, Saitama Medical University, Hidaka-shi, Saitama, Japan
| | - Yzumi Yamashita-Sugahara
- Division of Functional Genomics & Systems Medicine, Research Center for Genomic Medicine, Saitama Medical University, Hidaka-shi, Saitama, Japan
| | - Yutaka Nakachi
- Division of Translational Research, Research Center for Genomic Medicine, Saitama Medical University, Hidaka-shi, Saitama, Japan
| | - Hidemasa Kato
- Division of Translational Research, Research Center for Genomic Medicine, Saitama Medical University, Hidaka-shi, Saitama, Japan
- Division of Developmental Biology, Research Center for Genomic Medicine, Saitama Medical University, Hidaka-shi, Saitama, Japan
| | - Akihiko Okuda
- Division of Developmental Biology, Research Center for Genomic Medicine, Saitama Medical University, Hidaka-shi, Saitama, Japan
| | - Shunsuke Tamaru
- Division of Functional Genomics & Systems Medicine, Research Center for Genomic Medicine, Saitama Medical University, Hidaka-shi, Saitama, Japan
| | - Nurun Nahar Borna
- Division of Functional Genomics & Systems Medicine, Research Center for Genomic Medicine, Saitama Medical University, Hidaka-shi, Saitama, Japan
| | - Kengo Banshoya
- Division of Functional Genomics & Systems Medicine, Research Center for Genomic Medicine, Saitama Medical University, Hidaka-shi, Saitama, Japan
- Chemicals Assessment and Research Center, Chemicals Evaluation and Research Institute, Japan (CERI), Sugito-machi, Kitakatsushika-gun, Saitama, Japan
| | - Toshiro Aigaki
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Tokyo, Japan
| | - Yukiko Sato-Miyata
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Tokyo, Japan
| | - Kohei Ohnuma
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Tokyo, Japan
| | - Tsutomu Suzuki
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Asuteka Nagao
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Hazuki Maehata
- Department of Chemistry and Biotechnology, Graduate School of Engineering, University of Tokyo, Bunkyo-ku, Tokyo, Japan
| | - Fumihiko Matsuda
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan
| | - Koichiro Higasa
- Center for Genomic Medicine, Kyoto University Graduate School of Medicine, Sakyo-ku, Kyoto, Japan
| | - Masao Nagasaki
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Aoba-ku, Sendai, Miyagi, Japan
- Graduate School of Medicine, Tohoku University, Aoba-ku, Sendai, Miyagi, Japan
- Graduate School of Information Sciences, Tohoku University, Sendai, Miyagi, Japan
| | - Jun Yasuda
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Aoba-ku, Sendai, Miyagi, Japan
- Graduate School of Medicine, Tohoku University, Aoba-ku, Sendai, Miyagi, Japan
| | - Masayuki Yamamoto
- Department of Integrative Genomics, Tohoku Medical Megabank Organization, Tohoku University, Aoba-ku, Sendai, Miyagi, Japan
- Graduate School of Medicine, Tohoku University, Aoba-ku, Sendai, Miyagi, Japan
| | - Takuya Fushimi
- Department of Metabolism, Chiba Children's Hospital, Midori, Chiba, Japan
| | - Masaru Shimura
- Department of Metabolism, Chiba Children's Hospital, Midori, Chiba, Japan
| | | | - Hiroko Harashima
- Department of Pediatrics, Saitama Medical University, Moroyama-machi, Iruma-gun, Saitama, Japan
| | - Taro Yamazaki
- Department of Pediatrics, Saitama Medical University, Moroyama-machi, Iruma-gun, Saitama, Japan
| | - Masato Mori
- Department of Pediatrics, Matsudo City Hospital, Matsudo-shi, Chiba, Japan
| | - Kei Murayama
- Department of Metabolism, Chiba Children's Hospital, Midori, Chiba, Japan
| | - Akira Ohtake
- Department of Pediatrics, Saitama Medical University, Moroyama-machi, Iruma-gun, Saitama, Japan
- * E-mail: (AOh); (YO)
| | - Yasushi Okazaki
- Division of Translational Research, Research Center for Genomic Medicine, Saitama Medical University, Hidaka-shi, Saitama, Japan
- Division of Functional Genomics & Systems Medicine, Research Center for Genomic Medicine, Saitama Medical University, Hidaka-shi, Saitama, Japan
- * E-mail: (AOh); (YO)
| |
Collapse
|
83
|
Bersani FS, Morley C, Lindqvist D, Epel ES, Picard M, Yehuda R, Flory J, Bierer LM, Makotkine I, Abu-Amara D, Coy M, Reus VI, Lin J, Blackburn EH, Marmar C, Wolkowitz OM, Mellon SH. Mitochondrial DNA copy number is reduced in male combat veterans with PTSD. Prog Neuropsychopharmacol Biol Psychiatry 2016; 64:10-7. [PMID: 26120081 DOI: 10.1016/j.pnpbp.2015.06.012] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 06/21/2015] [Accepted: 06/23/2015] [Indexed: 01/08/2023]
Abstract
INTRODUCTION Mitochondrial abnormalities may be involved in PTSD, although few studies have examined this. Mitochondrial DNA copy number (mtDNAcn) in blood cells is an emerging systemic index of mitochondrial biogenesis and function. The present study assessed mtDNAcn in male combat-exposed veterans with PTSD compared to those without PTSD as well as its correlation with clinical scales. METHODS mtDNAcn was assessed with a TaqMan multiplex assay in granulocytes of 43 male combat veterans with (n=43) or without (n=44) PTSD. Twenty of the PTSD subjects had co-morbid major depressive disorder (MDD). The Clinician Administered PTSD Scale (CAPS), the Positive and Negative Affect Schedule (PANAS), the Early Trauma Inventory (ETI) and the Beck Depression Inventory II (BDI-II) were used for the clinical assessments. All analyses were corrected for age and BMI. RESULTS mtDNAcn was significantly lower in subjects with PTSD (p<0.05). Within the PTSD group, those with moderate PTSD symptom severity had relatively higher mtDNAcn than those with mild or severe symptoms (p<0.01). Within the PTSD group, mtDNAcn was positively correlated with PANAS positive subscale ratings (p<0.01) but was not significantly correlated with PANAS negative subscale, ETI or BDI-II ratings. DISCUSSION This study provides the first evidence of: (i) a significant decrease of mtDNAcn in combat PTSD, (ii) a possible "inverted-U" shaped relationship between PTSD symptom severity and mtDNAcn within PTSD subjects, and (iii) a direct correlation of mtDNAcn with positive affectivity within PTSD subjects. Altered mtDNAcn in PTSD may reflect impaired energy metabolism, which might represent a novel aspect of its pathophysiology.
Collapse
Affiliation(s)
- Francesco Saverio Bersani
- Department of Psychiatry, University of California San Francisco, San Francisco, CA, USA; Department of Neurology and Psychiatry, Sapienza University of Rome, Rome, Italy
| | - Claire Morley
- Department of Psychiatry, University of California San Francisco, San Francisco, CA, USA
| | - Daniel Lindqvist
- Department of Psychiatry, University of California San Francisco, San Francisco, CA, USA; Department of Clinical Sciences, Section for Psychiatry, Lund University, Lund, Sweden
| | - Elissa S Epel
- Department of Psychiatry, University of California San Francisco, San Francisco, CA, USA; Center for Health and Community, University of California San Francisco, San Francisco, CA, USA
| | - Martin Picard
- Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia and University of Pennsylvania, Philadelphia, PA, USA
| | - Rachel Yehuda
- Department of Psychiatry, MSSM/James J. Peters Veterans Administration Medical Center, New York, NY, USA
| | - Janine Flory
- Department of Psychiatry, MSSM/James J. Peters Veterans Administration Medical Center, New York, NY, USA
| | - Linda M Bierer
- Department of Psychiatry, MSSM/James J. Peters Veterans Administration Medical Center, New York, NY, USA
| | - Iouri Makotkine
- Department of Psychiatry, MSSM/James J. Peters Veterans Administration Medical Center, New York, NY, USA
| | - Duna Abu-Amara
- Department of Psychiatry, Steven and Alexandra Cohen Veterans Center for Posttraumatic Stress and Traumatic Brain Injury, New York, NY, USA
| | - Michelle Coy
- Department of Psychiatry, University of California San Francisco, San Francisco, CA, USA
| | - Victor I Reus
- Department of Psychiatry, University of California San Francisco, San Francisco, CA, USA
| | - Jue Lin
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - Elizabeth H Blackburn
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA, USA
| | - Charles Marmar
- Department of Psychiatry, Steven and Alexandra Cohen Veterans Center for Posttraumatic Stress and Traumatic Brain Injury, New York, NY, USA
| | - Owen M Wolkowitz
- Department of Psychiatry, University of California San Francisco, San Francisco, CA, USA.
| | - Synthia H Mellon
- Department of OB/GYN and Reproductive Science, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
84
|
Post-Transcriptional Modifications of RNA: Impact on RNA Function and Human Health. MODIFIED NUCLEIC ACIDS IN BIOLOGY AND MEDICINE 2016. [DOI: 10.1007/978-3-319-34175-0_5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
85
|
Cardiac Response to Oxidative Stress Induced by Mitochondrial Dysfunction. Rev Physiol Biochem Pharmacol 2016; 170:101-27. [DOI: 10.1007/112_2015_5004] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
86
|
Abstract
Acute kidney injury (AKI) continues to be a significant contributor to morbidity, mortality, and health care expenditure. In the United States alone, it is estimated that more than $10 billion is spent on AKI every year. Currently, there are no available therapies to treat established AKI. The mitochondrion is positioned to be a critical player in AKI with its dual role as the primary source of energy for each cell and as a key regulator of cell death. This review aims to cover the current state of research on the role of mitochondria in AKI, while also proposing potential therapeutic targets and future therapies.
Collapse
Affiliation(s)
- Kenneth M Ralto
- Division of Nephrology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA
| | - Samir M Parikh
- Division of Nephrology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA.
| |
Collapse
|
87
|
Alsemari A, Al-Hindi HN. Large-scale mitochondrial DNA deletion underlying familial multiple system atrophy of the cerebellar subtype. Clin Case Rep 2015; 4:111-7. [PMID: 26862402 PMCID: PMC4736521 DOI: 10.1002/ccr3.435] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Revised: 09/03/2015] [Accepted: 09/29/2015] [Indexed: 11/29/2022] Open
Abstract
A family with mitochondrial inheritance of multiple system atrophy of the cerebellar subtype. MRI brain shows significant cerebellar atrophy with mild pontine atrophy and the classical hot cross bun sign in Pons. The muscle biopsy was indicative of mitochondrial myopathy. Mitochondrial DNA analysis revealed a low‐level large mtDNA deletion, m.3264_1607del12806 bp.
Collapse
Affiliation(s)
- Abdulaziz Alsemari
- Department of Neurosciences King Faisal Specialist Hospital and Research Centre PO box 3354 Riyadh 11211 Saudi Arabia
| | - Hindi Nasser Al-Hindi
- Department of Pathology and Laboratory Medicine King Faisal Specialist Hospital and Research Centre PO box 3354 Riyadh 11211 Saudi Arabia
| |
Collapse
|
88
|
Joseph AM, Adhihetty PJ, Leeuwenburgh C. Beneficial effects of exercise on age-related mitochondrial dysfunction and oxidative stress in skeletal muscle. J Physiol 2015; 594:5105-23. [PMID: 26503074 DOI: 10.1113/jp270659] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 10/05/2015] [Indexed: 12/12/2022] Open
Abstract
Mitochondria are negatively affected by ageing leading to their inability to adapt to higher levels of oxidative stress and this ultimately contributes to the systemic loss of muscle mass and function termed sarcopenia. Since mitochondria are central mediators of muscle health, they have become highly sought-after targets of physiological and pharmacological interventions. Exercise is the only known strategy to combat sarcopenia and this is largely mediated through improvements in mitochondrial plasticity. More recently a critical role for mitochondrial turnover in preserving muscle has been postulated. Specifically, cellular pathways responsible for the regulation of mitochondrial turnover including biogenesis, dynamics and autophagy may become dysregulated during ageing resulting in the reduced clearance and accumulation of damaged organelles within the cell. When mitochondrial quality is compromised and homeostasis is not re-established, myonuclear cell death is activated and muscle atrophy ensues. In contrast, acute and chronic exercise attenuates these deficits, restoring mitochondrial turnover and promoting a healthier mitochondrial pool that leads to the preservation of muscle. Additionally, the magnitude of these exercise-induced mitochondrial adaptations is currently debated with several studies reporting a lower adaptability of old muscle relative to young, but the processes responsible for this diminished training response are unclear. Based on these observations, understanding the molecular details of how advancing age and exercise influence mitochondria in older muscle will provide invaluable insight into the development of exercise protocols that will maximize beneficial adaptations in the elderly. This information will also be imperative for future research exploring pharmacological targets of mitochondrial plasticity.
Collapse
Affiliation(s)
- Anna-Maria Joseph
- Department of Aging and Geriatric Research, Division of Biology of Aging, University of Florida, Gainesville, FL, 32611, USA.
| | - Peter J Adhihetty
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, 32611, USA
| | - Christiaan Leeuwenburgh
- Department of Aging and Geriatric Research, Division of Biology of Aging, University of Florida, Gainesville, FL, 32611, USA
| |
Collapse
|
89
|
Korzeniewski B. Effects of OXPHOS complex deficiencies and ESA dysfunction in working intact skeletal muscle: implications for mitochondrial myopathies. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:1310-9. [DOI: 10.1016/j.bbabio.2015.07.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 07/14/2015] [Accepted: 07/15/2015] [Indexed: 10/23/2022]
|
90
|
Revisiting the dystrophin-ATP connection: How half a century of research still implicates mitochondrial dysfunction in Duchenne Muscular Dystrophy aetiology. Med Hypotheses 2015; 85:1021-33. [PMID: 26365249 DOI: 10.1016/j.mehy.2015.08.015] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 08/24/2015] [Indexed: 12/22/2022]
Abstract
Duchenne Muscular Dystrophy (DMD) is a fatal neuromuscular disease that is characterised by dystrophin-deficiency and chronic Ca(2+)-induced skeletal muscle wasting, which currently has no cure. DMD was once considered predominantly as a metabolic disease due to the myriad of metabolic insufficiencies evident in the musculature, however this aspect of the disease has been extensively ignored since the discovery of dystrophin. The collective historical and contemporary literature documenting these metabolic nuances has culminated in a series of studies that importantly demonstrate that metabolic dysfunction exists independent of dystrophin expression and a mild disease phenotype can be expressed even in the complete absence of dystrophin expression. Targeting and supporting metabolic pathways with anaplerotic and other energy-enhancing supplements has also shown therapeutic value. We explore the hypothesis that DMD is characterised by a systemic mitochondrial impairment that is central to disease aetiology rather than a secondary pathophysiological consequence of dystrophin-deficiency.
Collapse
|
91
|
Infantile mitochondrial disorder associated with subclinical hypothyroidism is caused by a rare mitochondrial DNA 8691A>G mutation. Neuroreport 2015; 26:588-92. [DOI: 10.1097/wnr.0000000000000392] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
92
|
Abstract
The year 2014 saw more than a thousand new mitochondrial genome sequences deposited in GenBank—an almost 15% increase from the previous year. Hundreds of peer-reviewed articles accompanied these genomes, making mitochondrial DNAs (mtDNAs) the most sequenced and reported type of eukaryotic chromosome. These mtDNA data have advanced a wide range of scientific fields, from forensics to anthropology to medicine to molecular evolution. But for many biological lineages, mtDNAs are so well sampled that newly published genomes are arguably no longer contributing significantly to the progression of science, and in some cases they are tying up valuable resources, particularly journal editors and referees. Is it time to acknowledge that as a research community we have published enough mitochondrial genome papers? Here, I address this question, exploring the history, milestones and impacts of mitochondrial genomics, the benefits and drawbacks of continuing to publish mtDNAs at a high rate and what the future may hold for such an important and popular genetic marker. I highlight groups for which mtDNAs are still poorly sampled, thus meriting further investigation, and recommend that more energy be spent characterizing aspects of mitochondrial genomes apart from the DNA sequence, such as their chromosomal and transcriptional architectures. Ultimately, one should be mindful before writing a mitochondrial genome paper. Consider perhaps sending the sequence directly to GenBank instead, and be sure to annotate it correctly before submission.
Collapse
|
93
|
van der Wijst MGP, Rots MG. Mitochondrial epigenetics: an overlooked layer of regulation? Trends Genet 2015; 31:353-6. [PMID: 25891224 DOI: 10.1016/j.tig.2015.03.009] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 03/24/2015] [Indexed: 01/08/2023]
Abstract
Despite decades of research, mitochondrial epigenetics remains a controversial notion. Recent findings, however, indicate that dysfunctional mitochondrial DNA (mtDNA) methylation could underlie aging and disease. Unraveling such a level of regulation will be essential in the understanding of and in interfering with the role of mitochondria in many physiological and pathophysiological processes.
Collapse
Affiliation(s)
- Monique G P van der Wijst
- Epigenetic Editing, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen (UMCG), Hanzeplein 1, 9713 GZ Groningen, The Netherlands
| | - Marianne G Rots
- Epigenetic Editing, Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen (UMCG), Hanzeplein 1, 9713 GZ Groningen, The Netherlands.
| |
Collapse
|
94
|
Gaspar R, Santana I, Mendes C, Fernandes AS, Duro D, Simões M, Luís D, Santos MJ, Grazina M. Genetic Variation of MT-ND Genes in Frontotemporal Lobar Degeneration: Biochemical Phenotype-Genotype Correlation. NEURODEGENER DIS 2015; 15:70-80. [DOI: 10.1159/000380766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 02/05/2015] [Indexed: 11/19/2022] Open
|
95
|
Will Y, Dykens J. Mitochondrial toxicity assessment in industry--a decade of technology development and insight. Expert Opin Drug Metab Toxicol 2015; 10:1061-7. [PMID: 25023361 DOI: 10.1517/17425255.2014.939628] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Yvonne Will
- Compound Safety Prediction - WWMC, Pfizer Global Research and Development , Eastern Point Rd, Groton, CT 06340 , USA +1 860 686 2832 ;
| | | |
Collapse
|
96
|
Vidone M, Clima R, Santorsola M, Calabrese C, Girolimetti G, Kurelac I, Amato LB, Iommarini L, Trevisan E, Leone M, Soffietti R, Morra I, Faccani G, Attimonelli M, Porcelli AM, Gasparre G. A comprehensive characterization of mitochondrial DNA mutations in glioblastoma multiforme. Int J Biochem Cell Biol 2015; 63:46-54. [PMID: 25668474 DOI: 10.1016/j.biocel.2015.01.027] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Accepted: 01/31/2015] [Indexed: 12/30/2022]
Abstract
Glioblastoma multiforme (GBM) is the most malignant brain cancer in adults, with a poor prognosis, whose molecular stratification still represents a challenge in pathology and clinics. On the other hand, mitochondrial DNA (mtDNA) mutations have been found in most tumors as modifiers of the bioenergetics state, albeit in GBM a characterization of the mtDNA status is lacking to date. Here, a characterization of the burden of mtDNA mutations in GBM samples was performed. First, investigation of tumor-specific vs. non tumor-specific mutations was carried out with the MToolBox bioinformatics pipeline by analyzing 45 matched tumor/blood samples, from whole genome or whole exome sequencing datasets obtained from The Cancer Genome Atlas (TCGA) consortium. Additionally, the entire mtDNA sequence was obtained in a dataset of 104 fresh-frozen GBM samples. Mitochondrial mutations with potential pathogenic interest were prioritized based on heteroplasmic fraction, nucleotide variability, and in silico prediction of pathogenicity. A preliminary biochemical analysis of the activity of mitochondrial respiratory complexes was also performed on fresh-frozen GBM samples. Although a high number of mutations was detected, we report that the large majority of them does not pass the prioritization filters. Therefore, a relatively limited burden of pathogenic mutations is indeed carried by GBM, which did not appear to determine a general impairment of the respiratory chain. This article is part of a Directed Issue entitled: Energy Metabolism Disorders and Therapies.
Collapse
Affiliation(s)
- Michele Vidone
- Department of Medical and Surgical Sciences (DIMEC), Medical Genetics Unit, University of Bologna, Bologna, Italy
| | - Rosanna Clima
- Department of Medical and Surgical Sciences (DIMEC), Medical Genetics Unit, University of Bologna, Bologna, Italy; Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | | | - Claudia Calabrese
- Department of Medical and Surgical Sciences (DIMEC), Medical Genetics Unit, University of Bologna, Bologna, Italy
| | - Giulia Girolimetti
- Department of Medical and Surgical Sciences (DIMEC), Medical Genetics Unit, University of Bologna, Bologna, Italy
| | - Ivana Kurelac
- Department of Medical and Surgical Sciences (DIMEC), Medical Genetics Unit, University of Bologna, Bologna, Italy
| | - Laura Benedetta Amato
- Department of Medical and Surgical Sciences (DIMEC), Medical Genetics Unit, University of Bologna, Bologna, Italy
| | - Luisa Iommarini
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Elisa Trevisan
- Division of Neurology, Hospital of Rivoli, Rivoli, Italy
| | - Marco Leone
- Department of Pathology OIRM-S. Anna Hospital, A.O.U. City of Health and Science, Turin, Italy
| | - Riccardo Soffietti
- Department of Neuro-Oncology, University and A.O.U. City of Health and Science, Turin, Italy
| | - Isabella Morra
- Department of Pathology OIRM-S. Anna Hospital, A.O.U. City of Health and Science, Turin, Italy
| | - Giuliano Faccani
- Department of Neurosurgery CTO Hospital, A.O.U. City of Health and Science, Turin, Italy
| | - Marcella Attimonelli
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, Bari, Italy
| | - Anna Maria Porcelli
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Giuseppe Gasparre
- Department of Medical and Surgical Sciences (DIMEC), Medical Genetics Unit, University of Bologna, Bologna, Italy.
| |
Collapse
|
97
|
Lu YW, Claypool SM. Disorders of phospholipid metabolism: an emerging class of mitochondrial disease due to defects in nuclear genes. Front Genet 2015; 6:3. [PMID: 25691889 PMCID: PMC4315098 DOI: 10.3389/fgene.2015.00003] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 01/06/2015] [Indexed: 01/14/2023] Open
Abstract
The human nuclear and mitochondrial genomes co-exist within each cell. While the mitochondrial genome encodes for a limited number of proteins, transfer RNAs, and ribosomal RNAs, the vast majority of mitochondrial proteins are encoded in the nuclear genome. Of the multitude of mitochondrial disorders known to date, only a fifth are maternally inherited. The recent characterization of the mitochondrial proteome therefore serves as an important step toward delineating the nosology of a large spectrum of phenotypically heterogeneous diseases. Following the identification of the first nuclear gene defect to underlie a mitochondrial disorder, a plenitude of genetic variants that provoke mitochondrial pathophysiology have been molecularly elucidated and classified into six categories that impact: (1) oxidative phosphorylation (subunits and assembly factors); (2) mitochondrial DNA maintenance and expression; (3) mitochondrial protein import and assembly; (4) mitochondrial quality control (chaperones and proteases); (5) iron–sulfur cluster homeostasis; and (6) mitochondrial dynamics (fission and fusion). Here, we propose that an additional class of genetic variant be included in the classification schema to acknowledge the role of genetic defects in phospholipid biosynthesis, remodeling, and metabolism in mitochondrial pathophysiology. This seventh class includes a small but notable group of nuclear-encoded proteins whose dysfunction impacts normal mitochondrial phospholipid metabolism. The resulting human disorders present with a diverse array of pathologic consequences that reflect the variety of functions that phospholipids have in mitochondria and highlight the important role of proper membrane homeostasis in mitochondrial biology.
Collapse
Affiliation(s)
- Ya-Wen Lu
- Department of Physiology, School of Medicine, Johns Hopkins University Baltimore, MD, USA
| | - Steven M Claypool
- Department of Physiology, School of Medicine, Johns Hopkins University Baltimore, MD, USA
| |
Collapse
|
98
|
Kim J, Piao Y, Pak YK, Chung D, Han YM, Hong JS, Jun EJ, Shim JY, Choi J, Kim CJ. Umbilical cord mesenchymal stromal cells affected by gestational diabetes mellitus display premature aging and mitochondrial dysfunction. Stem Cells Dev 2015; 24:575-86. [PMID: 25437179 DOI: 10.1089/scd.2014.0349] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Human umbilical cord mesenchymal stromal cells (hUC-MSCs) of Wharton's jelly origin undergo adipogenic, osteogenic, and chondrogenic differentiation in vitro. Recent studies have consistently shown their therapeutic potential in various human disease models. However, the biological effects of major pregnancy complications on the cellular properties of hUC-MSCs remain to be studied. In this study, we compared the basic properties of hUC-MSCs obtained from gestational diabetes mellitus (GDM) patients (GDM-UC-MSCs) and normal pregnant women (N-UC-MSCs). Assessments of cumulative cell growth, MSC marker expression, cellular senescence, and mitochondrial function-related gene expression were performed using a cell count assay, senescence-associated β-galactosidase staining, quantitative real-time reverse transcription-polymerase chain reaction, immunoblotting, and cell-based mitochondrial functional assay system. When compared with N-UC-MSCs, GDM-UC-MSCs showed decreased cell growth and earlier cellular senescence with accumulation of p16 and p53, even though they expressed similar levels of CD105, CD90, and CD73 MSC marker proteins. GDM-UC-MSCs also displayed significantly lower osteogenic and adipogenic differentiation potentials than N-UC-MSCs. Furthermore, GDM-UC-MSCs exhibited a low mitochondrial activity and significantly reduced expression of the mitochondrial function regulatory genes ND2, ND9, COX1, PGC-1α, and TFAM. Here, we report intriguing and novel evidence that maternal metabolic derangement during gestation affects the biological properties of fetal cells, which may be a component of fetal programming. Our findings also underscore the importance of the critical assessment of the biological impact of maternal-fetal conditions in biological studies and clinical applications of hUC-MSCs.
Collapse
Affiliation(s)
- Jooyeon Kim
- 1 Departments of Pathology, Asan Medical Center, University of Ulsan College of Medicine , Seoul, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
99
|
González-Hunt CP, Leung MCK, Bodhicharla RK, McKeever MG, Arrant AE, Margillo KM, Ryde IT, Cyr DD, Kosmaczewski SG, Hammarlund M, Meyer JN. Exposure to mitochondrial genotoxins and dopaminergic neurodegeneration in Caenorhabditis elegans. PLoS One 2014; 9:e114459. [PMID: 25486066 PMCID: PMC4259338 DOI: 10.1371/journal.pone.0114459] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Accepted: 10/31/2014] [Indexed: 12/12/2022] Open
Abstract
Neurodegeneration has been correlated with mitochondrial DNA (mtDNA) damage and exposure to environmental toxins, but causation is unclear. We investigated the ability of several known environmental genotoxins and neurotoxins to cause mtDNA damage, mtDNA depletion, and neurodegeneration in Caenorhabditis elegans. We found that paraquat, cadmium chloride and aflatoxin B1 caused more mitochondrial than nuclear DNA damage, and paraquat and aflatoxin B1 also caused dopaminergic neurodegeneration. 6-hydroxydopamine (6-OHDA) caused similar levels of mitochondrial and nuclear DNA damage. To further test whether the neurodegeneration could be attributed to the observed mtDNA damage, C. elegans were exposed to repeated low-dose ultraviolet C radiation (UVC) that resulted in persistent mtDNA damage; this exposure also resulted in dopaminergic neurodegeneration. Damage to GABAergic neurons and pharyngeal muscle cells was not detected. We also found that fasting at the first larval stage was protective in dopaminergic neurons against 6-OHDA-induced neurodegeneration. Finally, we found that dopaminergic neurons in C. elegans are capable of regeneration after laser surgery. Our findings are consistent with a causal role for mitochondrial DNA damage in neurodegeneration, but also support non mtDNA-mediated mechanisms.
Collapse
Affiliation(s)
- Claudia P. González-Hunt
- Nicholas School of the Environment, Duke University, Durham, North Carolina, United States of America
| | - Maxwell C. K. Leung
- Nicholas School of the Environment, Duke University, Durham, North Carolina, United States of America
| | - Rakesh K. Bodhicharla
- Nicholas School of the Environment, Duke University, Durham, North Carolina, United States of America
| | - Madeline G. McKeever
- Nicholas School of the Environment, Duke University, Durham, North Carolina, United States of America
| | - Andrew E. Arrant
- Department of Pharmacology and Cancer Biology, Duke University, Durham, North Carolina, United States of America
| | - Kathleen M. Margillo
- Nicholas School of the Environment, Duke University, Durham, North Carolina, United States of America
| | - Ian T. Ryde
- Nicholas School of the Environment, Duke University, Durham, North Carolina, United States of America
| | - Derek D. Cyr
- Center for Applied Genomics and Technology, Duke University, Durham, North Carolina, United States of America
| | - Sara G. Kosmaczewski
- Department of Genetics, Program in Cellular Neuroscience, Neurodegeneration, and Repair, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Marc Hammarlund
- Department of Genetics, Program in Cellular Neuroscience, Neurodegeneration, and Repair, Yale University School of Medicine, New Haven, Connecticut, United States of America
| | - Joel N. Meyer
- Nicholas School of the Environment, Duke University, Durham, North Carolina, United States of America
- * E-mail: mailto:
| |
Collapse
|
100
|
Van Driessche K, Ducatelle R, Chiers K, Van Coster R, van der Kolk JH, van der Kolk H. Ultrastructural mitochondrial alterations in equine myopathies of unknown origin. Vet Q 2014; 35:2-8. [PMID: 25365353 DOI: 10.1080/01652176.2015.983681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
BACKGROUND Very few mitochondrial myopathies have been described in horses. OBJECTIVE To examine the ultrastructure of muscle mitochondria in equine cases of myopathy of unknown origin. MATERIALS & METHODS Biopsies of vastus lateralis of the Musculus quadriceps femoris were taken predominantly immediately post mortem and processed for transmission electron microscopy. As a result, electron micrographs of 90 horses in total were available for analysis comprising 4 control horses, 16 horses suffering from myopathy and 70 otherwise diseased horses. RESULTS Following a thorough clinical and laboratory work-up, four out of five patients that did not fit into the usual algorithm to detect known causes of myopathy showed ultrastructural mitochondrial alterations. Small mitochondria with zones with complete disruption of cristae associated with lactic acidemia were detected in a 17-year-old pony mare, extremely long and slender mitochondria with longitudinal cristae in a 5-year-old Quarter horse stallion, a mixture of irregular extremely large mitochondria (measuring 2500 by 800 nm) next to smaller ones in an 8-year-old Hanoverian mare and round mitochondria with only few cristae in a 11-year-old pony gelding. It remains uncertain whether the subsarcolemmal mitochondrial accumulations observed in the fifth patient have any pathological significance. CONCLUSIONS Ultrastructural alterations in mitochondria were detected in at least four horses. To conclude that these are due to mitochondrial dysfuntions, biochemical tests should be performed. PRACTICAL APPLICATIONS The possibility of a mitochondrial myopathy should be included in the differential diagnosis of muscle weakness.
Collapse
Affiliation(s)
- K Van Driessche
- a Department of Pathology, Bacteriology and Avian Medicine , Faculty of Veterinary Medicine , Ghent University , Merelbeke , Belgium
| | | | | | | | | | | |
Collapse
|