51
|
Hamza M, Altaf AA, Kausar S, Murtaza S, Shahpal A, Hamayun M, Tayyab M, Rizwan K, Shoukat H, Maqsood A. Mesoporous Cu-Doped Manganese Oxide Nano Straws for Photocatalytic Degradation of Hazardous Alizarin Red Dye. ACS OMEGA 2023; 8:35956-35963. [PMID: 37810636 PMCID: PMC10552497 DOI: 10.1021/acsomega.3c03736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/31/2023] [Indexed: 10/10/2023]
Abstract
The present work reports the photocatalytic degradation of alizarin red (AR) using Cu-doped manganese oxide (MH16-MH20) nanomaterials as catalysts under UV light irradiation. Cu-doped manganese oxides were synthesized by a very facile hydrothermal approach and characterized by energy dispersive X-ray spectroscopy, powder X-ray diffraction, scanning electron microscopy, Brunauer-Emmett-Teller analysis, UV-vis spectroscopy, and photoluminescence techniques. The structural, morphological, and optical characterization revealed that the synthesized compounds are nanoparticles (38.20-54.10 nm), grown in high mesoporous density (constant C > 100), possessing a tetragonal phase, and exhibiting 2.98-3.02 eV band gap energies. Synthesized materials were utilized for photocatalytic AR dye degradation under UV light which was monitored by UV-visible spectroscopy and % AR degradation was calculated at various time intervals from absorption spectra. More than 60% AR degradation at various time intervals was obtained for MH16-MH20 indicating their good catalytic efficiencies for AR removal. However, MH20 was found to be the most efficient catalyst showing more than 84% degradation, hence MH20 was used to investigate the effect of various catalytic doses, AR concentrations, and pH of the medium on degradation. More than 50% AR degradation was obtained for all studied parameters with MH20 whereas the pseudo-first-order kinetic model was found to be the best-fitted kinetic model for AR degradation with k = 0.0015 and R2 = 0.99 indicating a significant correlation between experimental data.
Collapse
Affiliation(s)
- Muhammad Hamza
- Department
of Chemistry, University of Gujrat, Hafiz Hayat Campus, Gujrat 50700, Pakistan
| | - Ataf Ali Altaf
- Department
of Chemistry, University of Okara, Okara 56300, Pakistan
- Department
of Food Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York 14853, United States
| | - Samia Kausar
- Department
of Chemistry, University of Gujrat, Hafiz Hayat Campus, Gujrat 50700, Pakistan
| | - Shahzad Murtaza
- Institute
of Chemistry, Khwaja Fareed UEIT, Rahim Yar Khan 64200, Pakistan
| | - Amen Shahpal
- Department
of Chemistry and Catalysis Research Center, Technical University of Munich, Lichtenbergstrasse 4, Garching 85747, Germany
| | - Muhammad Hamayun
- Department
of Chemistry, University of Gujrat, Hafiz Hayat Campus, Gujrat 50700, Pakistan
| | - Muhammad Tayyab
- Key Laboratory
for Advanced Materials and Institute of Fine Chemicals, School of
Chemistry and Molecular Engineering, East
China University of Science and Technology, Shanghai 200237, China
| | - Komal Rizwan
- Department
of Chemistry, University of Sahiwal, Sahiwal 57000, Pakistan
| | - Hamza Shoukat
- Department
of Chemistry, University of Gujrat, Hafiz Hayat Campus, Gujrat 50700, Pakistan
| | - Anum Maqsood
- Department
of Physics, The University of Lahore, Lahore 53700, Pakistan
| |
Collapse
|
52
|
Elder R, Vancuren SJ, Botschner AJ, Josephy PD, Allen-Vercoe E. Metabolism of azo food dyes by bacterial members of the human gut microbiome. Anaerobe 2023; 83:102783. [PMID: 37769703 DOI: 10.1016/j.anaerobe.2023.102783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/08/2023] [Accepted: 09/17/2023] [Indexed: 10/03/2023]
Abstract
OBJECTIVES We set out to survey the capacities of bacterial isolates from the human gut microbiome to reduce common azo food dyes in vitro. METHODS A total of 206 strains representative of 124 bacterial species and 6 phyla were screened in vitro using a simple azo dye decolorization assay. Strains which showed azoreductive activity were characterized by studies of azoreduction kinetics and bacterial growth. RESULTS Several groups of gut bacteria, including ones not previously associated with azoreduction, reduced one or more of the four azo food dyes commonly used in Canada: Allura Red, Amaranth, Sunset Yellow, and Tartrazine. Strains within some species differed in their azoreductive capabilities. Some strains displayed evidence of effects on growth related to the presence of azo dyes and/or the products of their azoreduction. CONCLUSION The continued widespread use of food azo dyes requires re-evaluation in light of the potential for disturbance of the gut microbial ecosystem resulting from azoreduction and the possibility of consequences for human health.
Collapse
Affiliation(s)
- Riley Elder
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road East, N1G 2W1, Guelph, Ontario, Canada
| | - Sarah J Vancuren
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road East, N1G 2W1, Guelph, Ontario, Canada
| | - Alexander J Botschner
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road East, N1G 2W1, Guelph, Ontario, Canada
| | - P David Josephy
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road East, N1G 2W1, Guelph, Ontario, Canada
| | - Emma Allen-Vercoe
- Department of Molecular and Cellular Biology, University of Guelph, 50 Stone Road East, N1G 2W1, Guelph, Ontario, Canada.
| |
Collapse
|
53
|
Shee NK, Kim HJ. Surface Modification of ZnO with Sn(IV)-Porphyrin for Enhanced Visible Light Photocatalytic Degradation of Amaranth Dye. Molecules 2023; 28:6481. [PMID: 37764257 PMCID: PMC10536602 DOI: 10.3390/molecules28186481] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 08/30/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Two hybrid composite photocatalysts, denoted as SnP/AA@ZnO and SnP@ZnO, were fabricated by a reaction of trans-dihydroxo[5,10,15,20-tetrakis(4-pyridyl)porphyrinato]tin(IV) (SnP) and ZnO with and without pretreatment of adipic acid (AA), respectively. In SnP@ZnO, SnP and ZnO are likely held together by a coordinative interaction between the pyridyl N atoms of SnP and the Zn atoms on the surface of ZnO. In the case of SnP/AA@ZnO, the SnP centers were robustly coupled with ZnO nanoparticles through the AA anchors. SnP/AA@ZnO exhibited largely enhanced photocatalytic activities for the degradation of anionic amaranth (AM) dye under a visible light irradiation, compared to SnP, ZnO, and SnP@ZnO. The degradation efficiency of AM by SnP/AA@ZnO was 95% within 60 min at a rate constant of 0.048 min-1. The remarkable photocatalytic oxidation performance of SnP/AA@ZnO was mainly attributed to the synergistic effect between SnP and ZnO. This study is valuable for the development of highly effective composite photocatalytic systems in advanced oxidation processes and is of importance for the treatment of wastewater containing dyes.
Collapse
Affiliation(s)
| | - Hee-Joon Kim
- Department of Chemistry and Bioscience, Kumoh National Institute of Technology, Gumi 39177, Republic of Korea;
| |
Collapse
|
54
|
Jorgetto ADO, Boldrin Zanoni MV, Orlandi MO. Assessment of the superior photocatalytic properties of Sn 2+-containing SnO 2 microrods on the photodegradation of methyl orange. Sci Rep 2023; 13:14774. [PMID: 37679474 PMCID: PMC10485244 DOI: 10.1038/s41598-023-40659-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/16/2023] [Indexed: 09/09/2023] Open
Abstract
A microporous Sn2+-containing SnO2 material presenting microrod morphology and a surface area of 93.0 m2 g-1 was synthesized via a simple hydrothermal route. Sn2+ ions were detected in the interior of the material (15.8 at.%) after the corrosion of a sample through sputtering. The material's optical properties have demonstrated the absorption of a considerable fraction of visible light up to wavelengths of 671 nm, due to the presence of Sn2+ states in the material's band structure. The analysis of the internal crystalline structure of a single microrod was carried out with the aid of a focused ion beam microscope and indicated that the material is mesocrystalline down to nanoscale level. It was proposed that the Sn2+ ions occupy intergranular sites in the highly defective crystalline structure of the material and that Sn2+ states, as well as its relatively large surface area, are responsible for the material's superior photoactivity. The synthesized material was tested as a photocatalyst to decompose hazardous contaminants in water. The photocatalytic performance of the material was much higher than those of commercial TiO2 and SnO2 materials, decomposing nearly all methyl orange (an azo-dye model) content in water (10 mg L-1) in 6 min under UV irradiation for a photocatalyst dose of 5.33 g L-1. The photodegradation of methyl orange was also verified under visible light.
Collapse
Affiliation(s)
- Alexandre de Oliveira Jorgetto
- Department of Engineering, Physics and Mathematics, Institute of Chemistry, São Paulo State University (UNESP), Araraquara, SP, 14800-060, Brazil.
| | - Maria Valnice Boldrin Zanoni
- National Institute for Alternative Technologies of Detection, Toxicological Evaluation and Removal of Micropollutants and Radioactives (INCT-DATREM), Institute of Chemistry, São Paulo State University (UNESP), P.O. Box 355, Araraquara, SP, 14800-900, Brazil
| | - Marcelo Ornaghi Orlandi
- Department of Engineering, Physics and Mathematics, Institute of Chemistry, São Paulo State University (UNESP), Araraquara, SP, 14800-060, Brazil
| |
Collapse
|
55
|
Singh KR, Poluri KM. Facile synthesis and physicochemical characterization of κ-Carrageenan-silver-bentonite based nanocatalytic platform for efficient degradation of anionic azo dyes. ENVIRONMENTAL RESEARCH 2023; 231:116145. [PMID: 37217127 DOI: 10.1016/j.envres.2023.116145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/16/2023] [Accepted: 05/13/2023] [Indexed: 05/24/2023]
Abstract
Water pollution due to textile industry effluents is a global concern that warrants versatile research solutions for degrading them, and for a sustainable environment. In the present work, by using the imperative role of nanotechnology, a facile one-pot synthesis has been devised to generate κ-carrageenan capped silver nanocatalyst (CSNC), and was immobilized on 2D bentonite (BT) sheets to generate nanocatalytic platform (BTCSNC) for the degradation of anionic azo dyes. The nanocomposite(s) were physicochemically characterized using UV-Vis, DLS, TEM, FESEM, PXRD, ATR-FTIR, TGA, BET and XPS etc., to obtain insights into the nanocomposite composition, structure, stability, morphology and mechanism of interaction. The obtained CNSC are monodispersed, spherical with a size of 4 ± 2 nm, and were stabilized by the functional groups (-OH, COO‾, and SO3‾) of κ-Crg. The broadening of peak corresponding to basal plane (001) of BT montmorillonite in PXRD spectra established its exfoliation upon addition of CSNC. XPS and ATR-FTIR data evidenced the absence of covalent interactions between CSNC and BT. The catalytic efficiency of CSNC and BTCSNC composites were compared for the degradation of methyl orange (MO) and congo red (CR). The reaction followed a pseudo first order kinetics, and immobilization of CSNC on BT resulted in a 3-4 fold enhancement in degradation rates. The rates achieved for the degradation kinetics are: MO degradation within 14 s (Ka 9.86 ± 2.00 min-1), and CR degradation within 120 s (Ka of 1.24 ± 0.13 min-1). Further, a degradation mechanism has been proposed by analyzing the products identified through LC-MS. The reusability studies of the BTCSNC evidenced the complete activity of the nanocatalytic platform for six cycles, and gravitational separation method for catalyst recycling. In a nutshell, the current study provided an environmentally friendly, sizable, and sustainable nano catalytic platform" for the remediation of industrial wastewater contaminated with hazardous azo dyes".
Collapse
Affiliation(s)
- Khushboo Rani Singh
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Krishna Mohan Poluri
- Department of Biosciences and Bioengineering, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India; Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India.
| |
Collapse
|
56
|
Hassanisaadi M, Saberi Riseh R, Rabiei A, Varma RS, Kennedy JF. Nano/micro-cellulose-based materials as remarkable sorbents for the remediation of agricultural resources from chemical pollutants. Int J Biol Macromol 2023; 246:125763. [PMID: 37429338 DOI: 10.1016/j.ijbiomac.2023.125763] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/21/2023] [Accepted: 07/07/2023] [Indexed: 07/12/2023]
Abstract
Overusing pesticides, fertilizers, and synthetic dyes has significantly increased their presence in various parts of the environment. The transportation of these pollutants into agricultural soil and water through rivers, soils, and groundwater has seriously threatened human and ecosystem health. Applying techniques and materials to clean up agricultural sources from pesticides, heavy metals (HMs), and synthetic dyes (SDs) is one of the major challenges in this century. The sorption technique offers a viable solution to remediate these chemical pollutants (CHPs). Cellulose-based materials have become popular in nano and micro scales because they are widely available, safe to use, biodegradable, and have a significant ability to absorb substances. Nanoscale cellulose-based materials exhibit greater capacity in absorbing pollutants compared to their microscale counterparts because they possess a larger surface area. Many available hydroxyl groups (-OH) and chemical and physical modifications enable the incorporation of CHPs on to cellulose-based materials. Following this potential, this review aims to comprehensively summarize recent advancements in the field of nano- and micro-cellulose-based materials as effective adsorbents for CHPs, given the abundance of cellulosic waste materials from agricultural residues. The recent developments pertaining to the enhancement of the sorption capacity of cellulose-based materials against pesticides, HMs, and SDs, are deliberated.
Collapse
Affiliation(s)
- Mohadeseh Hassanisaadi
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Imam Khomeini Square, Rafsanjan 7718897111, Iran.
| | - Roohallah Saberi Riseh
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Imam Khomeini Square, Rafsanjan 7718897111, Iran.
| | - Ali Rabiei
- Department of Civil Engineering, Vali-e-Asr University of Rafsanjan, Rafsanjan, Iran
| | - Rajender S Varma
- Institute for Nanomaterials, Advanced Technologies and Innovation (CxI), Technical University of Liberec (TUL), Studentská 1402/2, Liberec 1 461 17, Czech Republic
| | - John F Kennedy
- Chembiotech Laboratories Ltd, WR15 8FF Tenbury Wells, United Kingdom
| |
Collapse
|
57
|
Li M, Zhou D, Wu D, Hu X, Hu J, Geng F, Cheng L. Comparative analysis of the interaction between alpha-lactalbumin and two edible azo colorants equipped with different sulfonyl group numbers. Food Chem 2023; 416:135826. [PMID: 36893641 DOI: 10.1016/j.foodchem.2023.135826] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/14/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023]
Abstract
Alpha-lactalbumin (α-La) is a crucial active component in whey protein. It would be mixed with edible azo pigments during processing. Spectroscopic analyses and computer simulations were used here to characterize the interaction between acid red 27 (C27) /acidic red B (FB) and α-La. Fluorescence, thermodynamics, and energy transfer showed the binding mechanism is a static quenching with a medium affinity. This binding process occurred spontaneously and was mainly driven by hydrophobic forces. Conformation analysis showed FB led to a greater change in the secondary structure of α-La compared with C27. C27 increased and FB decreased the surface hydrophobicity of α-La. The spatial structures of complexes were visualized with computer aid. The azo colorant binds to α-La easily and deeply with a smaller space volume and dipole moment and thereby affecting the α-La conformation and functionality. This study provides a theoretical basis for the application of edible azo pigments.
Collapse
Affiliation(s)
- Mohan Li
- Meat Processing Key Laboratory of Sichuan Province, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Dian Zhou
- Meat Processing Key Laboratory of Sichuan Province, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Di Wu
- Meat Processing Key Laboratory of Sichuan Province, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China.
| | - Xia Hu
- Meat Processing Key Laboratory of Sichuan Province, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Jie Hu
- Meat Processing Key Laboratory of Sichuan Province, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Fang Geng
- Meat Processing Key Laboratory of Sichuan Province, School of Food and Biological Engineering, Chengdu University, Chengdu 610106, China
| | - Lei Cheng
- School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China
| |
Collapse
|
58
|
Saddique Z, Imran M, Javaid A, Latif S, Kim TH, Janczarek M, Bilal M, Jesionowski T. Bio-fabricated bismuth-based materials for removal of emerging environmental contaminants from wastewater. ENVIRONMENTAL RESEARCH 2023; 229:115861. [PMID: 37062477 DOI: 10.1016/j.envres.2023.115861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 04/04/2023] [Accepted: 04/05/2023] [Indexed: 05/21/2023]
Abstract
Although rapid industrialization has made life easier for humans, several associated issues are emerging and harming the environment. Wastewater is regarded as one of the key problems of the 21st century due to its massive production every year and requires immediate attention from all stakeholders to protect the environment. Since the introduction of nanotechnology, bismuth-based nanomaterials have been used in variety of applications. Various techniques, such as hydrothermal, solvo-thermal and biosynthesis, have been reported for synthesizing these materials, etc. Among these, biosynthesis is eco-friendly, cost-effective, and less toxic than conventional chemical methods. The prime focuses of this review are to elaborate biosynthesis of bismuth-based nanomaterials via bio-synthetic agents such as plant, bacteria and fungi and their application in wastewater treatment as anti-pathogen/photocatalyst for pollutant degradation. Besides this, future perspectives have been presented for the upcoming research in this field, along with concluding remarks.
Collapse
Affiliation(s)
- Zohaib Saddique
- Centre for Inorganic Chemistry, School of Chemistry, University of the Punjab Lahore, 54000, Pakistan
| | - Muhammad Imran
- Centre for Inorganic Chemistry, School of Chemistry, University of the Punjab Lahore, 54000, Pakistan.
| | - Ayesha Javaid
- Centre for Inorganic Chemistry, School of Chemistry, University of the Punjab Lahore, 54000, Pakistan
| | - Shoomaila Latif
- School of Physical Sciences, University of the Punjab, Lahore, 54000, Pakistan
| | - Tak H Kim
- School of Environment and Science, Griffith University, 170 Kessels Road, Nathan, QLD, 4111, Australia
| | - Marcin Janczarek
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965, Poznan, Poland
| | - Muhammad Bilal
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965, Poznan, Poland
| | - Teofil Jesionowski
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965, Poznan, Poland.
| |
Collapse
|
59
|
Josephy PD, Allen-Vercoe E. Reductive metabolism of azo dyes and drugs: Toxicological implications. Food Chem Toxicol 2023; 178:113932. [PMID: 37451600 DOI: 10.1016/j.fct.2023.113932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/24/2023] [Accepted: 07/04/2023] [Indexed: 07/18/2023]
Abstract
Azo compounds are widely distributed synthetic chemicals in the modern world. Their most important applications are as dyes, but, in addition, several azo compounds are used as pharmaceuticals. Ingested azo compounds can be reduced by the action of bacteria in the gut, where the oxygen tension is low, and the development of microbiome science has allowed more precise delineation of the roles of specific bacteria in these processes. Reduction of the azo bond of an azo compound generates two distinct classes of aromatic amine metabolites: the starting material that was used in the synthesis of the azo compound and a product which is formed de novo by metabolism. Reductive metabolism of azo compounds can have toxic consequences, because many aromatic amines are toxic/genotoxic. In this review, we discuss aspects of the development and application of azo compounds in industry and medicine. Current understanding of the toxicology of azo compounds and their metabolites is illustrated with four specific examples - Disperse Dyes used for dyeing textiles; the drugs phenazopyridine and eltrombopag; and the ubiquitous food dye, tartrazine - and knowledge gaps are identified. SUBMISSION TO: FCT VSI: Toxicology of Dyes.
Collapse
Affiliation(s)
- P David Josephy
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada.
| | - Emma Allen-Vercoe
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
60
|
Mills R, Tvrdik C, Lin A, Bhattacharyya D. Enhanced Degradation of Methyl Orange and Trichloroethylene with PNIPAm-PMMA-Fe/Pd-Functionalized Hollow Fiber Membranes. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2041. [PMID: 37513052 PMCID: PMC10386459 DOI: 10.3390/nano13142041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023]
Abstract
Trichloroethylene (TCE) is a prominent groundwater pollutant due to its stability, widespread contamination, and negative health effects upon human exposure; thus, an immense need exists for enhanced environmental remediation techniques. Temperature-responsive domains and catalyst incorporation in membrane domains bring significant advantages for toxic organic decontamination. In this study, hollow fiber membranes (HFMs) were functionalized with stimuli-responsive poly-N-isopropylacrylamide (PNIPAm), poly-methyl methacrylate (PMMA), and catalytic zero-valent iron/palladium (Fe/Pd) for heightened reductive degradation of such pollutants, utilizing methyl orange (MO) as a model compound. By utilizing PNIPAm's transition from hydrophilic to hydrophobic expression above the LCST of 32 °C, increased pollutant diffusion and adsorption to the catalyst active sites were achieved. PNIPAm-PMMA hydrogels exhibited 11.5× and 10.8× higher equilibrium adsorption values for MO and TCE, respectively, when transitioning from 23 °C to 40 °C. With dip-coated PNIPAm-PMMA-functionalized HFMs (weight gain: ~15%) containing Fe/Pd nanoparticles (dp~34.8 nm), surface area-normalized rate constants for batch degradation were determined, resulting in a 30% and 420% increase in degradation efficiency above 32 °C for MO and TCE, respectively, due to enhanced sorption on the hydrophobic PNIPAm domain. Overall, with functionalized membranes containing superior surface area-to-volume ratios and enhanced sorption sites, efficient treatment of high-volume contaminated water can be achieved.
Collapse
Affiliation(s)
- Rollie Mills
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40508, USA
| | - Cameron Tvrdik
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40508, USA
| | - Andrew Lin
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40508, USA
| | - Dibakar Bhattacharyya
- Department of Chemical and Materials Engineering, University of Kentucky, Lexington, KY 40508, USA
| |
Collapse
|
61
|
Zand A, Enkhbilguun S, Macharia JM, Budán F, Gyöngyi Z, Varjas T. Tartrazine Modifies the Activity of DNMT and HDAC Genes-Is This a Link between Cancer and Neurological Disorders? Nutrients 2023; 15:2946. [PMID: 37447272 DOI: 10.3390/nu15132946] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 06/24/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
In recent years, artificial additives, especially synthetic food colorants, were found to demonstrate wider properties compared to their natural equivalents; however, their health impact is still not totally mapped. Our study aimed to determine the long-term (30 and 90 days) exposure effect of one of the commonly used artificial food colorants, tartrazine, on NMRI mice. The applied dose of tartrazine referred to the human equivalent dose for acceptable daily intake (ADI). Further, we evaluated its impact on the transcription of a range of epigenetic effectors, members of the DNA methyltransferase (DNMT) as well as histone deacetylase (HDAC) families. Following the exposure, organ biopsies were collected from the lungs, kidneys, liver, and spleen, and the gene expression levels were determined by real-time quantitative reverse transcription PCR (RT-qPCR). Our results demonstrated significant upregulation of genes in the tested organs in various patterns followed by the intake of tartrazine on ADI. Since DNMT and HDAC genes are involved in different steps of carcinogenesis, have roles in the development of neurological disorders and the effect of dose of everyday exposure is rarely studied, further investigation is warranted to study these possible associations.
Collapse
Affiliation(s)
- Afshin Zand
- Department of Public Health Medicine, Medical School, University of Pécs, H-7624 Pécs, Hungary
| | - Sodbuyan Enkhbilguun
- Department of Public Health Medicine, Medical School, University of Pécs, H-7624 Pécs, Hungary
| | - John M Macharia
- Doctoral School of Health Sciences, Faculty of Health Science, University of Pécs, H-7621 Pécs, Hungary
| | - Ferenc Budán
- Institute of Transdisciplinary Discoveries, Medical School, University of Pécs, H-7624 Pécs, Hungary
- Institute of Physiology, Medical School, University of Pécs, H-7624 Pécs, Hungary
| | - Zoltán Gyöngyi
- Department of Public Health Medicine, Medical School, University of Pécs, H-7624 Pécs, Hungary
| | - Timea Varjas
- Department of Public Health Medicine, Medical School, University of Pécs, H-7624 Pécs, Hungary
| |
Collapse
|
62
|
Yan J, Wang P, Wang L, Jin Q, Ali AS, He Y, Wang Y, Sun Y, Li A, Adwy W, Ahmed RH, Han X. Bio-decolorization of synthetic dyes by a novel endophytic fungus Penicillium janthinellum LM5 from blueberry pulp. Biochem Eng J 2023. [DOI: 10.1016/j.bej.2023.108909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
63
|
Keshava C, Nicolai S, Vulimiri SV, Cruz FA, Ghoreishi N, Knueppel S, Lenzner A, Tarnow P, Vanselow JT, Schulz B, Persad A, Baker N, Thayer KA, Williams AJ, Pirow R. Application of systematic evidence mapping to identify available data on the potential human health hazards of selected market-relevant azo dyes. ENVIRONMENT INTERNATIONAL 2023; 176:107952. [PMID: 37224677 DOI: 10.1016/j.envint.2023.107952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 04/18/2023] [Accepted: 04/25/2023] [Indexed: 05/26/2023]
Abstract
BACKGROUND Azo dyes are used in textiles and leather clothing. Human exposure can occur from wearing textiles containing azo dyes. Since the body's enzymes and microbiome can cleave azo dyes, potentially resulting in mutagenic or carcinogenic metabolites, there is also an indirect health concern on the parent compounds. While several hazardous azo dyes are banned, many more are still in use that have not been evaluated systematically for potential health concerns. This systematic evidence map (SEM) aims to compile and categorize the available toxicological evidence on the potential human health risks of a set of 30 market-relevant azo dyes. METHODS Peer-reviewed and gray literature was searched and over 20,000 studies were identified. These were filtered using Sciome Workbench for Interactive computer-Facilitated Text-mining (SWIFT) Review software with evidence stream tags (human, animal, in vitro) yielding 12,800 unique records. SWIFT Active (a machine-learning software) further facilitated title/abstract screening. DistillerSR software was used for additional title/abstract, full-text screening, and data extraction. RESULTS 187 studies were identified that met populations, exposures, comparators, and outcomes (PECO) criteria. From this pool, 54 human, 78 animal, and 61 genotoxicity studies were extracted into a literature inventory. Toxicological evidence was abundant for three azo dyes (also used as food additives) and sparse for five of the remaining 27 compounds. Complementary search in ECHA's REACH database for summaries of unpublished study reports revealed evidence for all 30 dyes. The question arose of how this information can be fed into an SEM process. Proper identification of prioritized dyes from various databases (including U.S. EPA's CompTox Chemicals Dashboard) turned out to be a challenge. Evidence compiled by this SEM project can be evaluated for subsequent use in problem formulation efforts to inform potential regulatory needs and prepare for a more efficient and targeted evaluation in the future for human health assessments.
Collapse
Affiliation(s)
- Channa Keshava
- U.S. Environmental Protection Agency (US EPA), Office of Research and Development, Center for Public Health and Environmental Assessment (CPHEA), Chemical Pollutant Assessment Division (CPAD), 109 T.W. Alexander Dr, Research Triangle Park, NC 27711, USA.
| | - Suna Nicolai
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany.
| | - Suryanarayana V Vulimiri
- U.S. Environmental Protection Agency (US EPA), Office of Research and Development, Center for Public Health and Environmental Assessment (CPHEA), Chemical Pollutant Assessment Division (CPAD), 109 T.W. Alexander Dr, Research Triangle Park, NC 27711, USA.
| | - Florenz A Cruz
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany
| | - Narges Ghoreishi
- German Federal Institute for Risk Assessment (BfR), Department of Exposure, Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany.
| | - Sven Knueppel
- German Federal Institute for Risk Assessment (BfR), Department of Food Safety, Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany.
| | - Ariane Lenzner
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany.
| | - Patrick Tarnow
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany.
| | - Jens T Vanselow
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany.
| | - Brittany Schulz
- Oak Ridge Associated Universities (ORAU), Environmental Protection Agency National Student Services Contract (EPA NSSC), 100 ORAU Way, Oak Ridge, TN 37830, USA.
| | - Amanda Persad
- U.S. Environmental Protection Agency (US EPA), Office of Research and Development, Center for Public Health and Environmental Assessment (CPHEA), Chemical Pollutant Assessment Division (CPAD), 109 T.W. Alexander Dr, Research Triangle Park, NC 27711, USA.
| | - Nancy Baker
- Leidos, Research Triangle Park, NC 27711, USA.
| | - Kristina A Thayer
- U.S. Environmental Protection Agency (US EPA), Office of Research and Development, Center for Public Health and Environmental Assessment (CPHEA), Chemical Pollutant Assessment Division (CPAD), 109 T.W. Alexander Dr, Research Triangle Park, NC 27711, USA.
| | - Antony J Williams
- U.S. Environmental Protection Agency (US EPA), Office of Research and Development, Center for Computational Toxicology and Exposure (CCTE), Research Triangle Park, NC 27711, USA.
| | - Ralph Pirow
- German Federal Institute for Risk Assessment (BfR), Department of Chemical and Product Safety, Max-Dohrn-Strasse 8-10, 10589 Berlin, Germany.
| |
Collapse
|
64
|
Sangsuk S, Napanya P, Tasen S, Baiya P, Buathong C, Keeratisoontornwat K, Suebsiri S. Production of non-activated biochar based on Biden pilosa and its application in removing methylene blue from aqueous solutions. Heliyon 2023; 9:e15766. [PMID: 37153402 PMCID: PMC10160517 DOI: 10.1016/j.heliyon.2023.e15766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 04/20/2023] [Accepted: 04/20/2023] [Indexed: 05/09/2023] Open
Abstract
Biden pilosa (BP) is a type of weed commonly found in Thailand that needs to be removed from agricultural areas for protecting main crops. This research proposed a method to reduce BP by using BP as a feedstock for biochar production. Non-activated BP biochar from fresh BP was produced in pilot scale using a drum kiln with a heat-transferring duct at a pyrolysis temperature of 550 °C at a slow heating rate. The physical properties of the non-activated BP biochar were investigated using scanning electron microscopy, Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction, and a surface area analyzer. A batch experiment was used to study the adsorption behavior of methylene blue (MB) on BP biochar. The microstructure study of the BP biochar indicated that it has a cell structure similar to that of BP, which shows the non-destructive nature of the proposed technique for BP production. Six dominant peaks at 3283, 2915, 1559, 1403, 1116, and 863/839 cm⁻1 were observed in the FTIR spectrum. The BP biochar exhibited a surface area of 5.21 m2/g and a pore size of 8 nm. The adsorption of MB on the BP biochar followed the Langmuir adsorption isotherm and pseudo-second-order kinetics. The Langmuir-based maximum adsorption capacity of MB on the BP biochar was 200 mg/g at 303 K.
Collapse
Affiliation(s)
- Supin Sangsuk
- School of Agricultural Resources, Chulalongkorn University, Phayathai Rd., Pathumwan, Bangkok, 10330, Thailand
- Corresponding author.
| | - Pinanong Napanya
- School of Agricultural Resources, Chulalongkorn University, Phayathai Rd., Pathumwan, Bangkok, 10330, Thailand
| | - Siwabhorn Tasen
- School of Agricultural Resources, Chulalongkorn University, Phayathai Rd., Pathumwan, Bangkok, 10330, Thailand
| | - Phannida Baiya
- School of Agricultural Resources, Chulalongkorn University, Phayathai Rd., Pathumwan, Bangkok, 10330, Thailand
| | - Chatchai Buathong
- School of Agricultural Resources, Chulalongkorn University, Phayathai Rd., Pathumwan, Bangkok, 10330, Thailand
| | | | - Sirisak Suebsiri
- Fiber Resource Energy Cooporation Ltd., Klangdong, Pakchong District, Nakorn Rachasima, 30320, Thailand
| |
Collapse
|
65
|
Horn S, Mölsä KM, Sorvari J, Tuovila H, Heikkilä P. Environmental sustainability assessment of a polyester T-shirt - Comparison of circularity strategies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 884:163821. [PMID: 37137359 DOI: 10.1016/j.scitotenv.2023.163821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 04/11/2023] [Accepted: 04/25/2023] [Indexed: 05/05/2023]
Abstract
The considerable environmental burden of textiles is currently globally recognized. This burden can be mitigated by applying circular economy (CE) strategies to the commonly linear, short garment life cycles that end with incineration or landfill disposal. Even though all CE strategies strive to promote environmental sustainability, they might not be equally beneficial. Environmental data on different textile products is insufficiently available, which leads to complications when assessing and deciding on different CE strategies to be implemented. This paper studies the environmental impacts of a polyester T-shirt's linear life cycle through life cycle assessment (LCA) and evaluates the benefits attainable by adopting different CE strategies, and their order of priority, while noting uncertainty arising from poor data quality or unavailability. The LCA is complemented by assessing health and environmental risks related to the different options. Most of the linear life cycle's LCA-based impacts arise from use-phase washing. Hence, it is possible to reduce the environmental impact notably (37 %) by reducing the washing frequency. Adopting a CE strategy in which the shirt is reused by a second consumer, to double the number of uses, enables an 18 % impact reduction. Repurposing recycled materials to produce the T-shirt and recycling the T-shirt material itself emerged as the least impactful CE strategies. From the risk perspective, reusing the garment is the most efficient way to reduce environmental and health risks while washing frequency has a very limited effect. Combining different CE strategies offers the greatest potential for reducing both environmental impacts as well as risks. Data gaps and assumptions related to the use phase cause the highest uncertainty in the LCA results. To gain the maximum environmental benefits of utilizing CE strategies on polyester garments, consumer actions, design solutions, and transparent data sharing are needed.
Collapse
Affiliation(s)
- Susanna Horn
- Finnish Environment Institute, Latokartanonkaari 11, 00790 Helsinki, Finland.
| | - Kiia M Mölsä
- Finnish Environment Institute, Latokartanonkaari 11, 00790 Helsinki, Finland
| | - Jaana Sorvari
- Finnish Environment Institute, Latokartanonkaari 11, 00790 Helsinki, Finland
| | - Hannamaija Tuovila
- VTT Technical Research Centre of Finland Ltd, Visiokatu 4, 33103 Tampere, Finland
| | - Pirjo Heikkilä
- VTT Technical Research Centre of Finland Ltd, Visiokatu 4, 33103 Tampere, Finland
| |
Collapse
|
66
|
Hussain I, Shahid M, Ali F, Irfan A, Begum R, Farooqi ZH. Polymer hydrogels for stabilization of inorganic nanoparticles and their application in catalysis for degradation of toxic chemicals. ENVIRONMENTAL TECHNOLOGY 2023; 44:1679-1689. [PMID: 34821537 DOI: 10.1080/09593330.2021.2011429] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 11/16/2021] [Indexed: 06/13/2023]
Abstract
Poly(styrene-N-isopropylmethacrylamide-methacrylic acid) core-shell [P(SNM)CS] microgel particles were synthesised by seed-mediated emulsion polymerisation method. Silver nanoparticles were loaded into shell of P(SNM)CS microgels by in situ reduction of Ag+ ions. Synthesised core-shell microgels and hybrid core-shell microgels were characterised by using Fourier transformed infrared spectroscopy (FTIR), Transmission electron microscopy (TEM), UV-Visible spectroscopy and Dynamic light scattering (DLS). Stability of Ag nanoparticles within P(SNM)CS system was also investigated over the time using UV-Visible spectroscopy. Catalytic properties of silver nanoparticles loaded microgel system [Ag-P(SNM)CS] were studied by reducing Eosin-Y and Methylene blue with NaBH4 in water. The values of observed rate constant (kobs) were determined under different reaction conditions. The hybrid system was capable to degrade both dyes and may be used for degradation of several other toxic chemicals efficiently.
Collapse
Affiliation(s)
- Iftikhar Hussain
- School of Chemistry, University of the Punjab, New Campus, Lahore, Pakistan
| | - Muhammad Shahid
- School of Chemistry, University of the Punjab, New Campus, Lahore, Pakistan
| | - Faisal Ali
- Department of Chemistry, The University of Lahore, Lahore, Pakistan
| | - Ahmad Irfan
- Research Center for Advanced Materials Science, Faculty of Science, King Khalid University, Abha, Saudi Arabia
- Department of Chemistry, Faculty of Science, King Khalid University, Abha, Saudi Arabia
| | - Robina Begum
- School of Chemistry, University of the Punjab, New Campus, Lahore, Pakistan
| | - Zahoor H Farooqi
- School of Chemistry, University of the Punjab, New Campus, Lahore, Pakistan
| |
Collapse
|
67
|
Prasad C, Madkhali N, Jeong SG, Malkappa K, Choi HY, Govinda V. Recent advances in the hybridization of cellulose and semiconductors: Design, fabrication and emerging multidimensional applications: A review. Int J Biol Macromol 2023; 233:123551. [PMID: 36740107 DOI: 10.1016/j.ijbiomac.2023.123551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/17/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023]
Abstract
Cellulose is a plentiful, biodegradable, renewable, and natural polymer in the world that can be widely utilized in the production of polymer nanocomposites. Cellulose is developed in nanomaterials owing to its remarkable inherent features of low density, non-toxicity, and affordability, as well as the amazing sample characteristics of strength and thermal stability. Recently, there has been a lot of interest in organic-inorganic composites because of their adaptable qualities. Cellulose and semiconductors have exciting properties, and new combinations of both materials may result in efficient functional hybrid composites with distinct properties. Lately, a huge study was reported on cellulose and semiconductor-based nanocomposites. In this review, we summarize the present research development in the preparation methods, structure, features, and possible applications of multifunctional cellulose and semiconductor-based nanocomposites. The cellulose/semiconductor based nanocomposites have massive potential applications in the areas of photodegradation of organic dyes, hydrogen production, metal removal, biomedical, and sensor applications. It is also assumed that this article will promote additional investigation and will establish innovative capabilities to enhance novel cellulose and semiconductor based nanocomposites with new and exciting applications.
Collapse
Affiliation(s)
- Cheera Prasad
- Department of Fashion and Textiles, Dong-A University, Busan 49315, Republic of Korea
| | - Nawal Madkhali
- Department of Physics, College of Sciences, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Seong-Geun Jeong
- Bio-MAX Institute, Seoul National University, Seoul, Republic of Korea
| | - Kuruma Malkappa
- Department of Fashion and Textiles, Dong-A University, Busan 49315, Republic of Korea
| | - Hyeong Yeol Choi
- Department of Fashion and Textiles, Dong-A University, Busan 49315, Republic of Korea.
| | - V Govinda
- Department of Chemistry, Gayatri Vidya Parishad College for Degree and PG Courses (A), Rushikonda campus, Visakhapatnam 530045, India
| |
Collapse
|
68
|
Belli TJ, Bassin JP, de Sousa Vidal CM, Hassemer MEN, Rodrigues C, Lapolli FR. Effects of solid retention time and exposure mode to electric current on Remazol Brilliant Violet removal in an electro-membrane bioreactor. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:58412-58427. [PMID: 36991202 DOI: 10.1007/s11356-023-26593-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 03/18/2023] [Indexed: 05/10/2023]
Abstract
The performance of an electrochemically assisted anoxic-oxic membrane bioreactor (A/O-eMBR) was assessed as an alternative for azo dye (Remazol Brilhant Violet (RBV)) removal from simulated textile wastewater. The A/O-eMBR was operated under three experimental conditions (runs I, II, and III), in which different solids retention time (SRT) (45 and 20 d) and exposure mode to electric current (6'ON/30'OFF and 6'ON/12'OFF) were assessed. The reactor exhibited excellent decolorization performance for all runs, with average dye removal efficiency ranging from 94.3 to 98.2%. Activity batch assays showed that the dye removal rate (DRR) decreased from 16.8 to 10.2 mg RBV L-1 h-1 when the SRT was reduced from 45 to 20 d, likely attributed to the lower biomass content under lower sludge age. At the electric current exposure mode of 6' ON/12'OFF, a more substantial decrease of DRR to 1.5 mg RBV L-1 h-1 was noticed, suggesting a possible inhibitory effect on dye removal via biodegradation. By reducing the SRT to 20 d, a worse mixed liquor filterability condition was observed, with a membrane fouling rate (MFR) of 0.979 kPa d-1. In contrast, using the electric current exposure mode of 6'ON/12'OFF resulted in lower membrane fouling propensity, with an MFR of 0.333 kPa d-1. A more attractive cost-benefit ratio for dye removal was obtained using the exposure mode of 6'ON/30'OFF, for which the energy demand was estimated at 21.9-22.6 kWh kg dye-1 removed, almost two times lower than that observed for the mode of 6'ON/12'OFF.
Collapse
Affiliation(s)
- Tiago José Belli
- Civil Engineering Department, Santa Catarina State University, Ibirama, SC, ZIP 89140-000, Brazil.
| | - João Paulo Bassin
- Chemical Engineering Program, COPPE, Federal University of Rio de Janeiro, P.O. Box 68502, Rio de Janeiro, RJ, 21941-972, Brazil
| | - Carlos Magno de Sousa Vidal
- Environmental and Sanitary Engineering Department, State University of Centro-Oeste (UNICENTRO), PR 153, Km 07, Riozinho, P.O. Box 21, Irati, PR, Brazil
| | - Maria Eliza Nagel Hassemer
- Environmental Engineering Program, PPGEA, Federal University of Santa Catarina, P.O. Box 476, Florianópolis, SC, ZIP 88040-900, Brazil
| | - Caroline Rodrigues
- Environmental Engineering Program, PPGEA, Federal University of Santa Catarina, P.O. Box 476, Florianópolis, SC, ZIP 88040-900, Brazil
| | - Flávio Rubens Lapolli
- Environmental Engineering Program, PPGEA, Federal University of Santa Catarina, P.O. Box 476, Florianópolis, SC, ZIP 88040-900, Brazil
| |
Collapse
|
69
|
Kim YJ, Kim HY, Lee JD, Kim HY, Im JE, Kim KB. Analytical method development and dermal absorption of 2-amino-5-nitrophenol (2A5NP), a hair dye ingredient under oxidative condition. Toxicol Res 2023; 39:231-238. [PMID: 37008691 PMCID: PMC10050641 DOI: 10.1007/s43188-022-00159-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/18/2022] [Accepted: 11/22/2022] [Indexed: 12/15/2022] Open
Abstract
Although 2-amino-5-nitrophenol (2A5NP) is one of the ingredients of hair dye, there has been no information on the dermal absorption rate of 2A5NP. 2A5NP is managed at less than 1.5% in Korea and Japan. In this study, analytical methods were developed and validated using high-performance liquid chromatography (HPLC) in various matrices of wash, swab, stratum corneum (SC), skin (dermis + epidermis), and receptor fluid (RF). Validation results were acceptable based on Korea Ministry of Food and Drug Safety (MFDS) guideline. The HPLC analysis showed a good linearity (r2 = 0.9992-0.9999), a high accuracy (93.1-110.2%), and a good precision (1.1-8.1%) in accordance with the validation guideline. Franz diffusion cell was used to determine dermal absorption of 2A5NP using mini pig skin. 2A5NP (1.5%) was applied to skin at 10 μl/cm2. For certain cosmetic ingredients such as hair dye with short exposure time, an interim wash step (after 30 min) was added during the study. After application for 30 min and 24 h, skin was wiped off with swab and SC was collected using tape stripping. RF was sampled at 0, 1, 2, 4, 8, 12, and 24 h. Total dermal absorption rate of 2A5NP (1.5%) was determined to be 13.6 ± 2.9%.
Collapse
Affiliation(s)
- Yu Jin Kim
- College of Pharmacy, Dankook University, 119 Dandae-Ro, Cheonan, Chungnam 31116 Republic of Korea
- Center for Human Risk Assessment, Dankook University, 119 Dandae-Ro, Cheonan, Chungnam 31116 Republic of Korea
| | - Hyang Yeon Kim
- College of Pharmacy, Dankook University, 119 Dandae-Ro, Cheonan, Chungnam 31116 Republic of Korea
- Center for Human Risk Assessment, Dankook University, 119 Dandae-Ro, Cheonan, Chungnam 31116 Republic of Korea
| | - Jung Dae Lee
- College of Pharmacy, Dankook University, 119 Dandae-Ro, Cheonan, Chungnam 31116 Republic of Korea
- Center for Human Risk Assessment, Dankook University, 119 Dandae-Ro, Cheonan, Chungnam 31116 Republic of Korea
| | - Hong Yoon Kim
- College of Pharmacy, Dankook University, 119 Dandae-Ro, Cheonan, Chungnam 31116 Republic of Korea
- Center for Human Risk Assessment, Dankook University, 119 Dandae-Ro, Cheonan, Chungnam 31116 Republic of Korea
| | - Jueng Eun Im
- College of Pharmacy, Dankook University, 119 Dandae-Ro, Cheonan, Chungnam 31116 Republic of Korea
- Medical AI Research Team, Chungbuk National University Hospital, Cheongju, Chungbuk 28644 Republic of Korea
| | - Kyu-Bong Kim
- College of Pharmacy, Dankook University, 119 Dandae-Ro, Cheonan, Chungnam 31116 Republic of Korea
- Center for Human Risk Assessment, Dankook University, 119 Dandae-Ro, Cheonan, Chungnam 31116 Republic of Korea
| |
Collapse
|
70
|
Rather IA, Ali R. A Facile Deep Eutectic Solvent (DES) Mediated Green Approach for the Synthesis of Fluorescein and Phenolphthalein Dyes. ChemistrySelect 2023. [DOI: 10.1002/slct.202300749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
71
|
Nayak S, Kumar Das K, Parida K. Indulgent of the physiochemical features of MgCr-LDH nanosheets towards photodegradation process of methylene blue. J Colloid Interface Sci 2023; 634:121-137. [PMID: 36535152 DOI: 10.1016/j.jcis.2022.12.050] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/01/2022] [Accepted: 12/11/2022] [Indexed: 12/15/2022]
Abstract
In the present work, we report the preparatory strategy of MgCr-layered double hydroxide (LDH) nanosheets with 90% degree of delamination by employing a formamide-assisted co-precipitation and mild hydrothermal route for the degradation of methylene blue (MB) under solar light exposure. The as-synthesized MgCr-LDH nanosheets were characterized by assorted characterization techniques such as powder X-ray diffraction (PXRD), transmission electron microscopy (TEM), field emission scanning electron microscopy (FE-SEM), Raman, thermogravimetric analysis (TGA), N2 adsorption-desorption measurement, X-ray photoelectron spectroscopy (XPS) and UV-Visible diffused reflectance spectroscopy (UV-DRS). The XRD pattern of MgCr-LDH nanosheets quantified the strain (ε) and dislocation density (δ) of 1.371 lines-2 m-4 and 0.5723 lines m-2 related to the (110) plane with d-spacing value of 1.6169 Ȧ. With a minimum band gap of ∼2.63 eV, the as-synthesized MgCr-LDH nanosheets displayed 90.6% MB photodegradation under the experimental protocols such as catalyst dosage of 30 mg/L, initial MB concentrations of 20 ppm, pH of 7 and time duration of 2 h under solar light exposure. Further, the recyclability test of the photocatalyst signifies material stability up to four successive cycles with 90% retention of MB degradation under sunlight exposure. The superior catalytic performances of the MgCr-LDH nanosheets could be ascertained to the suppression of excitonic recombination and effective light harvestation properties, synergistically contributed by the porous structural aspects via association of uni/multi-lamellar nanosheets, surface defect sites and photoactive Cr3+ cations. Additionally, the surface -OH groups of LDH contributed towards the generation of •OH radicals for triggering the catalytic performances. This type of work advances the novel ideas for establishing highly potent photocatalysts via synergizing structural and surface properties, paving towards effective wastewater treatment.
Collapse
Affiliation(s)
- Susanginee Nayak
- Centre for Nano Science and Nano Technology, Institute of Technical Education and Research (ITER), Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar 751030, Odisha, India
| | - Kundan Kumar Das
- Centre for Nano Science and Nano Technology, Institute of Technical Education and Research (ITER), Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar 751030, Odisha, India
| | - Kulamani Parida
- Centre for Nano Science and Nano Technology, Institute of Technical Education and Research (ITER), Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar 751030, Odisha, India.
| |
Collapse
|
72
|
Song Y, Phipps J, Zhu C, Ma S. Porous Materials for Water Purification. Angew Chem Int Ed Engl 2023; 62:e202216724. [PMID: 36538551 DOI: 10.1002/anie.202216724] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Revised: 12/19/2022] [Accepted: 12/20/2022] [Indexed: 01/13/2023]
Abstract
Water pollution is a growing threat to humanity due to the pervasiveness of contaminants in water bodies. Significant efforts have been made to separate these hazardous components to purify polluted water through various methods. However, conventional remediation methods suffer from limitations such as low uptake capacity or selectivity, and current water quality standards cannot be met. Recently, advanced porous materials (APMs) have shown promise in improved segregation of contaminants compared to traditional porous materials in uptake capacity and selectivity. These materials feature merits of high surface area and versatile functionality, rendering them ideal platforms for the design of novel adsorbents. This Review summarizes the development and employment of APMs in a variety of water treatments accompanied by assessments of task-specific adsorption performance. Finally, we discuss our perspectives on future opportunities for APMs in water purification.
Collapse
Affiliation(s)
- Yanpei Song
- Department of Chemistry, University of North Texas, 1508 W Mulberry St, Denton, TX 76201, USA
| | - Joshua Phipps
- Department of Chemistry, University of North Texas, 1508 W Mulberry St, Denton, TX 76201, USA
| | - Changjia Zhu
- Department of Chemistry, University of North Texas, 1508 W Mulberry St, Denton, TX 76201, USA
| | - Shengqian Ma
- Department of Chemistry, University of North Texas, 1508 W Mulberry St, Denton, TX 76201, USA
| |
Collapse
|
73
|
Adsorptive Removal of Direct Azo Dyes from Textile Wastewaters Using Weakly Basic Anion Exchange Resin. Int J Mol Sci 2023; 24:ijms24054886. [PMID: 36902317 PMCID: PMC10003106 DOI: 10.3390/ijms24054886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023] Open
Abstract
Direct dyes are still widely used for coloring a variety of materials due to their ease of use and the wide range of colors available at a moderate cost of production. In the aquatic environment, some direct dyes, especially the azo type and their biotransformation products, are toxic, carcinogenic and mutagenic. Hence the need for their careful removal from industrial effluents. It was proposed adsorptive retention of C.I. Direct Red 23 (DR23), C.I. Direct Orange 26 (DO26) and C.I. Direct Black 22 (DB22) from effluents using anion exchange resin of tertiary amine functionalities Amberlyst A21 (A21). Applying the Langmuir isotherm model, the monolayer capacities were calculated as 285.6 mg/g for DO26 and 271.1 mg/g for DO23. The Freundlich isotherm model seems to be the better one for the description of DB22 uptake by A21, and the isotherm constant was found to be 0.609 mg1-1/n L1/n/g. The kinetic parameters revealed that the pseudo-second-order model could be used for the description of experimental data rather than the pseudo-first-order model or intraparticle diffusion model. The dye adsorption decreased in the presence of anionic and non-ionic surfactants, while their uptake was enhanced in the presence of Na2SO4 and Na2CO3. Regeneration of the A21 resin was difficult; a slight increase in its efficiency was observed using 1M HCl, 1 M NaOH and 1 M NaCl solutions in 50% v/v methanol.
Collapse
|
74
|
Ma Z, Liu C, Srinivasakannan C, Li L, Wang Y. Synthesis of magnetic Fe3O4-HKUST-1 nanocomposites for azo dye adsorption. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023] Open
|
75
|
Pouthika K, Madhumitha G. Synergistic synthesis of Carrisa edulis fruit extract capped heterogeneous CuO-ZnO-HNT composite for photocatalytic removal of organic pollutants. Inorganica Chim Acta 2023. [DOI: 10.1016/j.ica.2023.121457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
|
76
|
Ullah A, Chan MWH, Aslam S, Khan A, Abbas Q, Ali S, Ali M, Hussain A, Mirani ZA, Sibt-E-Hassan S, Kazmi MR, Ali S, Hussain S, Khan AM. Banned Sudan dyes in spices available at markets in Karachi, Pakistan. FOOD ADDITIVES & CONTAMINANTS. PART B, SURVEILLANCE 2023; 16:69-76. [PMID: 35909386 DOI: 10.1080/19393210.2022.2100489] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Sudan dyes were investigated in branded and non-branded spices, commonly available in the markets of Karachi, Pakistan. High performance liquid chromatography (HPLC) with a variable wavelength detector (VWD) was applied to determine Sudan dyes I-IV. The non-branded samples had higher concentrations of Sudan dyes than the maximum limits of 0.1 mg/kg. The highest concentration of Sudan dye (I) was found in turmeric powder (8460 mg/kg) and the lowest concentration (1.50 mg/kg) of Sudan (IV) in Chaat Masala. This indicates that the use of non-branded spices is not safe, whereas no Sudan dye was found in the branded spice samples. Further studies regarding the higher carcinogenic risk posed by Sudan dye adulterated spices in Pakistan is strongly advised.
Collapse
Affiliation(s)
- Asad Ullah
- Food and Marine Resources Research Center, PCSIR Laboratories Complex, Karachi, Karachi, Pakistan.,Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology & Business University (BTBU), Beijing, China
| | - Malik Wajid Hussain Chan
- Department of Chemistry, Faculty of Science, Federal Urdu University of Arts, Science and Technology, Karachi, Pakistan
| | - Sadar Aslam
- Institute of Marine Science, University of Karachi, Karachi, Pakistan.,Department of Microbiology, University of Karachi, Karachi, Paksitan
| | - Ali Khan
- Department of Mathematical Sciences & Research Centre, Federal Urdu University of Arts, Sciences and Technology (FUUAST), Karachi, Pakistan
| | - Qamar Abbas
- Biological Science Department, Karakoram International University, Gilgit, Pakistan
| | - Shamsher Ali
- Department of Chemistry, Karakoram International University, Gilgit, Pakistan
| | - Meher Ali
- Department of Chemistry, Karakoram International University, Gilgit, Pakistan
| | - Abid Hussain
- Department of Agriculture and Agribusiness Management, University of Karachi, Karachi, Pakistan
| | - Zulfiqar Ali Mirani
- Food and Marine Resources Research Center, PCSIR Laboratories Complex, Karachi, Karachi, Pakistan
| | - Syed Sibt-E-Hassan
- Department of Chemistry, Karakoram International University, Gilgit, Gilgit-Baltistan, Pakistan
| | - Mohib Reza Kazmi
- Department of Applied Chemistry, Faculty of Science, University of Karachi, Karachi, Pakistan
| | - Shaukat Ali
- Department of Environmental Sciences, Karakoram International University, Gilgit, Pakistan
| | - Shafqat Hussain
- Department of Chemistry, University of Baltistan, Skardu, Pakistan
| | - Abdul Majeed Khan
- Department of Chemistry, Faculty of Science, Federal Urdu University of Arts, Science and Technology, Karachi, Pakistan
| |
Collapse
|
77
|
Suresh R, Karthikeyan NS, Gnanasekaran L, Rajendran S, Soto-Moscoso M. Facile synthesis of CuO/g-C 3N 4 nanolayer composites with superior catalytic reductive degradation behavior. CHEMOSPHERE 2023; 315:137711. [PMID: 36608894 DOI: 10.1016/j.chemosphere.2022.137711] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/16/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
The cupric oxide (CuO) loaded graphitic carbon nitride (g-C3N4) nanocomposites (CuO/g-C3N4) were prepared by a facile calcination method. The formation of monoclinic CuO nanocrystals along with g-C3N4 was confirmed by X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopic analysis. X-ray photoelectron spectral (XPS) analysis further confirms the formation of CuO/g-C3N4. Distribution of CuO stone-like crystalline nanoparticles on g-C3N4 nanosheets was observed by transmission electron microscopic images. The influence of CuO loading on the optical property of g-C3N4 was determined by ultraviolet (UV)-visible absorption and photoluminescence (PL) spectral analysis. Band gap was decreased from 2.7 to 2.3 eV by the addition of CuO nanoparticles. The catalytic performance of the synthesized samples in 4-nitrophenol (4-NP) and methyl orange (MO) reduction was evaluated. The 5 wt% CuO/g-C3N4 showed 99.5% (7 min) and 99.7% (4 min) reduction efficiency for 4-NP and MO respectively. The 5 wt% CuO/g-C3N4 could become a potential catalyst in the chemical treatment of organic pollutants.
Collapse
Affiliation(s)
- R Suresh
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez, 1775, Arica, Chile.
| | - N S Karthikeyan
- Department of Chemistry, Easwari Engineering College (Autonomous), Chennai, 600089, Tamil Nadu, India
| | - Lalitha Gnanasekaran
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez, 1775, Arica, Chile; Saveetha School of Engineering, Saveetha Institute of Medical and Technical Science, Chennai, 60210, India.
| | - Saravanan Rajendran
- Departamento de Ingeniería Mecánica, Facultad de Ingeniería, Universidad de Tarapacá, Avda. General Velásquez, 1775, Arica, Chile; Department of Chemical Engineering, Lebanese American University, Byblos, Lebanon; University Centre for Research & Development, Department of Mechanical Engineering, Chandigarh University, Mohali, Punjab, 140413, India
| | | |
Collapse
|
78
|
A New 2D Metal–Organic Framework for Photocatalytic Degradation of Organic Dyes in Water. Catalysts 2023. [DOI: 10.3390/catal13020231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Two–dimensional (2D) metal–organic frameworks (MOFs) are fascinating photocatalytic materials because of their unique physical and catalytic properties. Herein, we report a new (E)–4–(3–carboxyacrylamido) benzoic acid [ABA–MA] ligand synthesized under facile conditions. This ABA–MA ligand is further utilized to synthesize a copper-based 2D MOF via the solvothermal process. The resulting 2D MOF is characterized for morphology and electronic structural analysis using advanced techniques, such as proton nuclear magnetic resonance, Fourier-transform infrared spectroscopy, ultraviolet–visible spectroscopy, and scanning electron microscopy. Furthermore, 2D MOF is employed as a photocatalyst for degrading organic dyes, demonstrating the degradation/reduction of methylene blue (MeBl) dye with excellent catalytic/photodegradation activity in the absence of any photosensitizer or cocatalyst. The apparent rate constant (kap) values for the catalytic degradation/reduction of MeBl on the Cu(II)–[ABA-MA] MOF are reported to be 0.0093 min−1, 0.0187 min−1, and 0.2539 min−1 under different conditions of sunlight and NaBH4. The kinetics and stability evaluations reveal the noteworthy photocatalytic potential of the Cu(II)–[ABA–MA] MOF for wastewater treatment. This work offers new insights into the fabrication of new MOFs for highly versatile photocatalytic applications.
Collapse
|
79
|
Gimadutdinova L, Ziyatdinova G, Davletshin R. Selective Voltammetric Sensor for the Simultaneous Quantification of Tartrazine and Brilliant Blue FCF. SENSORS (BASEL, SWITZERLAND) 2023; 23:1094. [PMID: 36772133 PMCID: PMC9920251 DOI: 10.3390/s23031094] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/11/2023] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
Tartrazine and brilliant blue FCF are synthetic dyes used in the food, cosmetic and pharmaceutical industries. The individual and/or simultaneous control of their concentrations is required due to dose-dependent negative health effects. Therefore, the paper presents experimental results related to the development of a sensing platform for the electrochemical detection of tartrazine and brilliant blue FCF based on a glassy carbon electrode (GCE) modified with MnO2 nanorods, using anodic differential pulse voltammetry. Homogeneous and stable suspensions of MnO2 nanorods have been obtained involving cetylpyridinium bromide solution as a cationic surfactant. The MnO2 nanorods-modified electrode showed a 7.9-fold increase in the electroactive surface area and a 72-fold decrease in the electron transfer resistance. The developed sensor allowed the simultaneous quantification of dyes for two linear domains: in the ranges of 0.10-2.5 and 2.5-15 μM for tartrazine and 0.25-2.5 and 2.5-15 μM for brilliant blue FCF with detection limits of 43 and 41 nM, respectively. High selectivity of the sensor response in the presence of typical interference agents (inorganic ions, saccharides, ascorbic and sorbic acids), other food dyes (riboflavin, indigo carmine, and sunset yellow), and vanillin has been achieved. The sensor has been tested by analyzing soft and isotonic sports drinks and the determined concentrations were close to those obtained involving the chromatography technique.
Collapse
Affiliation(s)
- Liliya Gimadutdinova
- Analytical Chemistry Department, Kazan Federal University, Kremleyevskaya, 18, Kazan 420008, Russia
| | - Guzel Ziyatdinova
- Analytical Chemistry Department, Kazan Federal University, Kremleyevskaya, 18, Kazan 420008, Russia
| | - Rustam Davletshin
- Department of High Molecular and Organoelement Compounds, Kazan Federal University, Kremleyevskaya, 18, Kazan 420008, Russia
| |
Collapse
|
80
|
Çiçek Özkan B, Selen V, Gülyüz F, Dursun G. Comparative Photocatalytic Activity and Total Organic Carbon Removal Efficiency of TiO
2
And ZnO for Reactive Black 5 Photodegradation. ChemistrySelect 2023. [DOI: 10.1002/slct.202204314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Betül Çiçek Özkan
- Department of Metallurgical and Materials Engineering Technology Faculty Fırat University 23279 Elazığ Turkey
| | - Veyis Selen
- Department of Bioengineering Engineering Faculty Fırat University 23279 Elazığ Turkey
| | - Feyza Gülyüz
- Department of Chemical Engineering Engineering Faculty Firat University 23279 Elazig Turkey
| | - Gülbeyi Dursun
- Department of Chemical Engineering Engineering Faculty Firat University 23279 Elazig Turkey
| |
Collapse
|
81
|
Sarmiento V, Lockett M, Sumbarda-Ramos EG, Vázquez-Mena O. Effective Removal of Metal ion and Organic Compounds by Non-Functionalized rGO. Molecules 2023; 28:649. [PMID: 36677707 PMCID: PMC9864598 DOI: 10.3390/molecules28020649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 01/11/2023] Open
Abstract
Effective removal of heavy metals from water is critical for environmental safety and public health. This work presents a reduced graphene oxide (rGO) obtained simply by using gallic acid and sodium ascorbate, without any high thermal process or complex functionalization, for effective removal of heavy metals. FTIR and Raman analysis show the effective conversion of graphene oxide (GO) into rGO and a large presence of defects in rGO. Nitrogen adsorption isotherms show a specific surface area of 83.5 m2/g. We also measure the zeta-potential of the material showing a value of -52 mV, which is lower compared to the -32 mV of GO. We use our rGO to test adsorption of several ion metals (Ag (I), Cu (II), Fe (II), Mn (II), and Pb(II)), and two organic contaminants, methylene blue and hydroquinone. In general, our rGO shows strong adsorption capacity of metals and methylene blue, with adsorption capacity of qmax = 243.9 mg/g for Pb(II), which is higher than several previous reports on non-functionalized rGO. Our adsorption capacity is still lower compared to functionalized graphene oxide compounds, such as chitosan, but at the expense of more complex synthesis. To prove the effectiveness of our rGO, we show cleaning of waste water from a paper photography processing operation that contains large residual amounts of hydroquinone, sulfites, and AgBr. We achieve 100% contaminants removal for 20% contaminant concentration and 63% removal for 60% contaminant concentration. Our work shows that our simple synthesis of rGO can be a simple and low-cost route to clean residual waters, especially in disadvantaged communities with low economical resources and limited manufacturing infrastructure.
Collapse
Affiliation(s)
- Viviana Sarmiento
- Facultad de Odontología, Universidad Autónoma de Baja California, Tijuana 22427, BC, Mexico
- Department of NanoEngineering and Center for Memory and Recording Research, University of California San Diego, La Jolla, CA 92093, USA
| | - Malcolm Lockett
- Department of NanoEngineering and Center for Memory and Recording Research, University of California San Diego, La Jolla, CA 92093, USA
| | - Emigdia Guadalupe Sumbarda-Ramos
- Facultad de Ciencias de la Ingeniería y Tecnología (FCITEC), Universidad Autónoma de Baja California, Valle de las Palmas, Tijuana 22427, BC, Mexico
| | - Oscar Vázquez-Mena
- Department of NanoEngineering and Center for Memory and Recording Research, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
82
|
Lee DY, Lee S, Lee KG. Synthetic colourants in capsule dietary supplements on the Korean market. FOOD ADDITIVES & CONTAMINANTS. PART B, SURVEILLANCE 2023; 16:93-101. [PMID: 36593219 DOI: 10.1080/19393210.2022.2158495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
This study developed a rapid and easy analytical method for the simultaneous determination of nine synthetic colourants (SCs) in capsule dietary supplements. Sample pretreatment involved thermal treatment to dissolve gelatin, using the enzymes protease and amylase to prevent the gelation of gelatin and fat-soluble substances removal using petroleum ether. The method was linear (r2 ≥0.999), with LOD of 0.009-0.029 μg/mL and LOQ of 0.42-1.40 μg/g. Recovery ranged from 90.9 to 108.9%. The relative expanded measurement uncertainty ranged from 4.1 to 6.3%. Allura Red AC (R40) and Brilliant Blue FCF (B1) were commonly detected in 20 of the 28 samples. Up to six SCs such as Tartrazine (Y4), Sunset yellow (Y5), Amaranth (R2), Erythrosine B (R3), R40 and B1 were detected in a single sample, ranging from 30.5 to 40.2 μg/g. Total content of SCs in various capsule supplements ranged from 0.3 to 73.7 μg/g.
Collapse
Affiliation(s)
- Do-Yeon Lee
- Department of Food Science & Biotechnology, Dongguk University-Seoul, Korea
| | - Seongho Lee
- Department of Food Science & Biotechnology, Dongguk University-Seoul, Korea
| | - Kwang-Geun Lee
- Department of Food Science & Biotechnology, Dongguk University-Seoul, Korea
| |
Collapse
|
83
|
Ramos-Souza C, Bandoni DH, Bragotto APA, De Rosso VV. Risk assessment of azo dyes as food additives: Revision and discussion of data gaps toward their improvement. Compr Rev Food Sci Food Saf 2023; 22:380-407. [PMID: 36374221 DOI: 10.1111/1541-4337.13072] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 10/09/2022] [Accepted: 10/15/2022] [Indexed: 11/16/2022]
Abstract
The food industry uses dyes mainly to overcome color loss during the processing and storage of products, with the azo dyes currently being the most employed. Studies on the safety of using these dyes in foods started in the 1950s and have indicated the potential for concern. This review discusses the risk assessment of food intake containing artificial azo dyes. There are case reports and, subsequently, double-blind placebo-controlled trials in some individuals who may experience adverse effects from the intake of azo dyes, but it is unclear whether these adverse effects are restricted to specific populations or more generalized. In view of this, different toxicological endpoints are evaluated to verify toxic effects in in vitro and in vivo models and to establish the no observed adverse effect level. Exposure estimation studies have shown that human exposure to azo dyes via oral intake is mainly below the acceptable daily intake established by advisory bodies. However, most countries do not have studies that estimate the oral intake of azo dyes. In this case, local food diversity and racial-ethnic specificities are not considered when stating the exposure estimate is below the acceptable daily intake for the human population and thus may not represent actual intake. Concerning the scenario established above, this review discusses the most critical gaps to be overcome to contribute to the direction of future studies and the development of more effective public policies concerning the safety of the intake of artificial azo dyes.
Collapse
Affiliation(s)
- Caroline Ramos-Souza
- Nutrition and Food Service Research Center, Federal University of São Paulo (UNIFESP), Santos, São Paulo, Brazil
| | - Daniel Henrique Bandoni
- Nutrition and Food Service Research Center, Federal University of São Paulo (UNIFESP), Santos, São Paulo, Brazil
| | | | - Veridiana Vera De Rosso
- Nutrition and Food Service Research Center, Federal University of São Paulo (UNIFESP), Santos, São Paulo, Brazil
| |
Collapse
|
84
|
Polyethylenimine grafted hollow fiber membranes for fast dye separation. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
85
|
Gómez CA, Gómez-García MÁ, Dobrosz-Gómez I. Analysis of the Capacity of the Fenton Process for the Treatment of Polluted Wastewater from the Leather Dyeing Industry. ScientificWorldJournal 2023; 2023:4724606. [PMID: 37065773 PMCID: PMC10101747 DOI: 10.1155/2023/4724606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 02/12/2023] [Accepted: 03/10/2023] [Indexed: 04/18/2023] Open
Abstract
In this work, the capacity of the Fenton oxidation process for the degradation of color and organic matter contained in the wastewater generated in the leather dyeing stage (WWDS) of an industrial tannery was evaluated. The wastewater characteristics included, among others, high toxicity (lethal concentration for Artemia salina, 24 h test, 50% of population = 93.71 ppm), high dye concentration (36 mg/L, yellow color), high chromium concentration (3.34 mg/L), and low biodegradability index (BOD5/COD ratio = 0.083). From an experimental design, the response surface methodology, and the multiobjective optimization analysis, the following optimal operating conditions were established: initial pH = 3.15, [Fe2+] = 0.981 mM, and [H2O2] = 5.38 mM. After 10 min of oxidation (determined from kinetic studies), it reached approximately 97% decolorization, COD reduction of approximately 82%, and TOC mineralization of approximately 92%. A synergistic effect of Fenton's reagents for TOC removal (S TOC = 0.8) and decolorization (S CN = 0.28) of the WWDS under study was confirmed experimentally. An increase in the biodegradability index, to a value of approximately 0.3, was confirmed. The cost of the treatment was estimated at 0.0112 USD/m3. Thus, the Fenton oxidation process allowed compliance with current Colombian environmental regulations and considerably improved the biodegradability and toxicity characteristics of the studied industrial effluent. It can be considered as an efficient alternative, easy to carry out on an industrial batch scale, and economically viable for the treatment of wastewater from the leather dyeing stage of an industrial tannery.
Collapse
Affiliation(s)
- Carlos A. Gómez
- Laboratorio de Materiales y Procesos Reactivos (LM&PR), Grupo de Investigación en Procesos Reactivos Intensificados y Materiales Avanzados (PRISMA), Departamento de Ingeniería Química, Facultad de Ingeniería y Arquitectura, Universidad Nacional de Colombia, Sede Manizales, Campus La Nubia, Apartado Aéreo 127, Manizales, Caldas, Colombia
| | - Miguel-Ángel Gómez-García
- Laboratorio de Materiales y Procesos Reactivos (LM&PR), Grupo de Investigación en Procesos Reactivos Intensificados y Materiales Avanzados (PRISMA), Departamento de Ingeniería Química, Facultad de Ingeniería y Arquitectura, Universidad Nacional de Colombia, Sede Manizales, Campus La Nubia, Apartado Aéreo 127, Manizales, Caldas, Colombia
| | - Izabela Dobrosz-Gómez
- Laboratorio de Materiales y Procesos Reactivos (LM&PR), Grupo de Investigación en Procesos Reactivos Intensificados y Materiales Avanzados (PRISMA), Departamento de Física y Química, Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Colombia, Sede Manizales, Campus La Nubia, Apartado Aéreo 127, Manizales, Caldas, Colombia
| |
Collapse
|
86
|
Qaiyum MA, Sahu PR, Samal PP, Dutta S, Dey B, Dey S. Towards a win-win chemistry: extraction of C.I. orange from Kamala fruit ( Mallotus philippensis), and simultaneous exercise of its peels for the removal of Methylene Blue from water. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2023; 25:907-916. [PMID: 36111428 DOI: 10.1080/15226514.2022.2119936] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Kamala fruit (Mallotus philippensis), hereinafter MP, has been simultaneously exercised for the extraction of a natural dye, C.I. orange and its peels were converted into an efficient adsorbent for the rapid removal of methylene blue (MB) dye from aqueous solutions. The material has been characterized by Fourier Transform Infra-red (FTIR),Field Emission Scanning Electron Microscopy- Electron dispersive spectroscopy (FESEM-EDS), Brunauer-Emmett-Teller (BET) surface area, and pHZPC. FTIR suggests the presence of polyphenolic moieties responsible for adsorption, whereas FESEM confirms the porous texture. Optimization of process variables such as contact time, pH, adsorbent dose, and temperature of operation indicates that the adsorption gets modulated by the pH, with a best at 11. The Freundlich model (R2 = 0.994), and pseudo-second-order kinetics (R2 = 0.999) best describe the adsorption pathway. Dilute hydrochloric acid is sufficient to induce >66% regeneration, which ensures reusability. With the maximal uptake for MB is 30.2 mg/g at ambient conditions, the superiority over the existing materials has been confirmed. Treatment of dye containing industrial effluent suggests about a 50% reduction in one cycle. It can be concluded that both-way benefits, namely natural dye extraction and preparation of a peel-based adsorbent for methylene blue removal from aqueous solution, can be achieved using the kamala fruit peels.
Collapse
Affiliation(s)
- Md Atif Qaiyum
- Department of Chemistry, Central University of Jharkhand, Ranchi, India
| | | | | | - Subhashri Dutta
- Department of Chemistry, Central University of Jharkhand, Ranchi, India
| | - Banashree Dey
- Department of Chemistry, The Graduate School College for Women, Jamshedpur, India
| | - Soumen Dey
- Department of Chemistry, Central University of Jharkhand, Ranchi, India
| |
Collapse
|
87
|
Yotinov ID, Belouhova MV, Dinova NK, Todorova YT, Schneider ID, Topalova YI. Adaptation of micro- and metafauna in activated sludge with microbial augmentation to shock loading with amaranth. BIOTECHNOL BIOTEC EQ 2022. [DOI: 10.1080/13102818.2022.2070437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- Ivaylo Dimitrov Yotinov
- Department of General and Applied Hydrobiology, Faculty of Biology, Sofia University St. Kliment Ohridski, Sofia, Bulgaria
- Center of Competence Clean Technologies for Sustainable Environment – Water, Waste, Energy for Circular Economy, Sofia, Bulgaria
| | - Mihaela Vladimirova Belouhova
- Department of General and Applied Hydrobiology, Faculty of Biology, Sofia University St. Kliment Ohridski, Sofia, Bulgaria
- Center of Competence Clean Technologies for Sustainable Environment – Water, Waste, Energy for Circular Economy, Sofia, Bulgaria
| | - Nora Kirilova Dinova
- Center of Competence Clean Technologies for Sustainable Environment – Water, Waste, Energy for Circular Economy, Sofia, Bulgaria
| | - Yovana Todorova Todorova
- Department of General and Applied Hydrobiology, Faculty of Biology, Sofia University St. Kliment Ohridski, Sofia, Bulgaria
- Center of Competence Clean Technologies for Sustainable Environment – Water, Waste, Energy for Circular Economy, Sofia, Bulgaria
| | - Irina Dietmar Schneider
- Department of General and Applied Hydrobiology, Faculty of Biology, Sofia University St. Kliment Ohridski, Sofia, Bulgaria
- Center of Competence Clean Technologies for Sustainable Environment – Water, Waste, Energy for Circular Economy, Sofia, Bulgaria
| | - Yana Ilieva Topalova
- Department of General and Applied Hydrobiology, Faculty of Biology, Sofia University St. Kliment Ohridski, Sofia, Bulgaria
- Center of Competence Clean Technologies for Sustainable Environment – Water, Waste, Energy for Circular Economy, Sofia, Bulgaria
| |
Collapse
|
88
|
Khan S, Ali A, Moinuddin, Mir AR, Khan RH, Alhumaydhi FA, Habib S. 4-Chloro-orthophenylenediamine alters DNA integrity and affects cell survival: inferences from a computational, biophysical/biochemical, microscopic and cell-based study. J Biomol Struct Dyn 2022; 40:14176-14187. [PMID: 34762004 DOI: 10.1080/07391102.2021.2001376] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The deleterious impact of toxic constituents of hair dyes over the human health has gained immense attention in the recent past. Their oncogenicity, mutagenicity, role in protein modification, impact on cellular metabolism has been documented. There is little information on the mechanism of reactivity of hair dye components with the nucleic acids and its implications. This work, therefore, uses computational, biophysical/biochemical, microscopic and cell-based study to analyze the interaction of monocyclic aromatic amine and a hair dye component, 4-chloro-orthophenylenediamine (4-Cl-OPD) with the DNA, its impact on DNA structure and cell survival. The results suggest that 4-Cl-OPD binds with the DNA in minor groove of the duplex involving three base pairs preferentially the G-C residues, induces strand breaks and makes DNA thermally labile through loss of hydrogen bonding/base unstacking. 4-Cl-OPD causes fragmentation of DNA, reduction in size of the molecule, alters B-DNA conformation and disrupts its secondary structure. The modified DNA gives fragmented appearance, shows broken strands and aggregation in ultra-structural analysis. 4-Cl-OPD induces ROS generation in lymphocytes, increases the comet's average tail length and reduces the viability of lymphocytes. This study forms a base for establishing the direct toxicity of 4-Cl-OPD at the molecular and cellular level through direct production of superoxide radicalCommunicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Shifa Khan
- Department of Biochemistry, Faculty of Medicine, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, India
| | - Asif Ali
- Department of Biochemistry, Faculty of Medicine, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, India
| | - Moinuddin
- Department of Biochemistry, Faculty of Medicine, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, India
| | - Abdul Rouf Mir
- Department of Biochemistry, Faculty of Medicine, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, India
| | - Rizwan Hasan Khan
- Interdisciplinary Biotechnology Unit, Faculty of Life Sciences, Aligarh Muslim University, Aligarh, India
| | - Fahad A Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Safia Habib
- Department of Biochemistry, Faculty of Medicine, Jawaharlal Nehru Medical College, Aligarh Muslim University, Aligarh, India
| |
Collapse
|
89
|
Ikram M, Zahoor M, Naeem M, Islam NU, Shah AB, Shahzad B. Bacterial oxidoreductive enzymes as molecular weapons for the degradation and metabolism of the toxic azo dyes in wastewater: a review. Z PHYS CHEM 2022. [DOI: 10.1515/zpch-2022-0150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Abstract
Azo dyes are extremely toxic and pose significant environmental and health risks. Consequently, mineralization and conversion to simple compounds are required to avoid their hazardous effects. A variety of enzymes from the bacterial system are thought to be involved in the degradation and metabolism of azo dyes. Bioremediation, a cost effective and eco-friendly biotechnology, involving bacteria is powered by bacterial enzymes. As mentioned, several enzymes from the bacterial system serve as molecular weapons in the degradation of these dyes. Among these enzymes, azoreductase, oxidoreductase, and laccase are of great interest for the degradation and decolorization of azo dyes. Combination of the oxidative and reductive enzymes is used for the removal of azo dyes from water. The aim of this review article is to provide information on the importance of bacterial enzymes. The review also discusses the genetically modified microorganisms in the biodegradation of azo dyes in polluted water.
Collapse
Affiliation(s)
- Muhammad Ikram
- Department of Chemistry , Abdul Wali Khan University Mardan , Mardan , 23200 , Pakistan
| | - Muhammad Zahoor
- Department of Biochemistry , University of Malakand at Chakdara , Dir Lower Khyber Pakhtunkhwa , Pakistan
| | - Muhammad Naeem
- Department of Chemistry , Abdul Wali Khan University Mardan , Mardan , 23200 , Pakistan
| | - Noor Ul Islam
- Department of Chemistry , University of Malakand at Chakdara , Dir Lower Khyber Pakhtunkhwa , Pakistan
| | - Abdul Bari Shah
- Division of Applied Life Science (BK21 Plus) , Institute of Agriculture and Life Sciences, Gyeongsang National University , Jinju 52828 , Korea
| | - Babar Shahzad
- Department of Biochemistry , Institute of Basic Medical Sciences, Khyber Medical University Peshawar Khyber Pakhtunkhwa , Peshawar , Pakistan
| |
Collapse
|
90
|
Pérez-Aranda M, Pajuelo E, Navarro-Torre S, Pérez-Palacios P, Begines B, Rodríguez-Llorente ID, Torres Y, Alcudia A. Antimicrobial and Antibiofilm Effect of 4,4'-Dihydroxy-azobenzene against Clinically Resistant Staphylococci. Antibiotics (Basel) 2022; 11:antibiotics11121800. [PMID: 36551456 PMCID: PMC9774766 DOI: 10.3390/antibiotics11121800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022] Open
Abstract
The spread of antibiotic resistance among human and animal pathogens is one of the more significant public health concerns. Moreover, the restrictions on the use of particular antibiotics can limit the options for the treatment of infections in veterinary clinical practice. In this context, searching for alternative antimicrobial substances is crucial nowadays. In this study, 4,4'-dihydroxy-azobenzene (DHAB) was tested for its potential in vitro as an antimicrobial agent against two relevant human and animal pathogens, namely Staphylococcus aureus and Staphylococcus pseudintermedius. The values of minimal inhibitory concentration (MIC) were 64 and 32 mg/L respectively, and they comparable to other azo compounds of probed antimicrobial activity. In addition, the minimal bactericidal concentrations (MCB) were 256 and 64 mg/L. The mechanism by which DHAB produces toxicity in staphylococci has been investigated. DHAB caused membrane damage as revealed by the increase in thiobarbituric acid reactive substances (TBARS) such as malondialdehyde. Furthermore, differential induction of the enzymes peroxidases and superoxide dismutase in S. aureus and S. pseudintermedius suggested their prevalent role in ROS-scavenging due to the oxidative burst induced by this compound in either species. In addition, this substance was able to inhibit the formation of biofilms by both bacteria as observed by colorimetric tests and scanning electron microscopy. In order to assess the relevance of DHAB against clinical strains of MRSA, 10 clinical isolates resistant to either methicillin or daptomycin were assayed; 80% of them gave values of CMI and CMB similar to those of the control S. aureus strain. Finally, cutaneous plasters containing a composite formed by an agar base supplemented with DHAB were designed. These plasters were able to inhibit in vitro the growth of S. aureus and S. pseudintermedius, particularly the later, and this suggests that this substance could be a promising candidate as an alternative to antibiotics in the treatment of animal skin infections, as it has been proven that the toxicity of this substance is very low particularly at a dermal level.
Collapse
Affiliation(s)
- María Pérez-Aranda
- Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, c/Profesor García González, 2, 41012 Sevilla, Spain
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad de Sevilla, c/Profesor García González, 2, 41012 Sevilla, Spain
| | - Eloísa Pajuelo
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad de Sevilla, c/Profesor García González, 2, 41012 Sevilla, Spain
- Correspondence: (E.P.); (A.A.); Tel.: +34-954556924 (E.P.); +34-954556740 (A.A.)
| | - Salvadora Navarro-Torre
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad de Sevilla, c/Profesor García González, 2, 41012 Sevilla, Spain
| | - Patricia Pérez-Palacios
- UGC Enfermedades Infecciosas, Microbiología Clínica y Medicina Preventiva, Instituto de Biomedicina de Sevilla IBIS, Hospital Universitario Virgen Macarena, CSIC, Universidad de Sevilla, 41009 Seville, Spain
| | - Belén Begines
- Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, c/Profesor García González, 2, 41012 Sevilla, Spain
| | - Ignacio D. Rodríguez-Llorente
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad de Sevilla, c/Profesor García González, 2, 41012 Sevilla, Spain
| | - Yadir Torres
- Departamento de Ingeniería y Ciencia de los Materiales y del Transporte, Escuela Politécnica Superior, Universidad de Sevilla, Virgen de África 7, 41011 Sevilla, Spain
| | - Ana Alcudia
- Departamento de Química Orgánica y Farmacéutica, Facultad de Farmacia, Universidad de Sevilla, c/Profesor García González, 2, 41012 Sevilla, Spain
- Correspondence: (E.P.); (A.A.); Tel.: +34-954556924 (E.P.); +34-954556740 (A.A.)
| |
Collapse
|
91
|
Electropolymerized 4-Aminobenzoic Acid Based Voltammetric Sensor for the Simultaneous Determination of Food Azo Dyes. Polymers (Basel) 2022; 14:polym14245429. [PMID: 36559795 PMCID: PMC9783049 DOI: 10.3390/polym14245429] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/01/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
Electrochemical sensors with polymeric films as a sensitive layer are of high interest in current electroanalysis. A voltammetric sensor based on multi-walled carbon nanotubes (MWCNTs) and electropolymerized 4-aminobenzoic acid (4-ABA) has been developed for the simultaneous determination of synthetic food azo dyes (sunset yellow FCF and tartrazine). Based on the voltammetric response of the dyes' mixture, the optimal conditions of electropolymerization have been found to be 30-fold potential scanning between -0.3 and 1.5 V, at 100 mV s-1 in the 100 µmol L-1 monomer solution in phosphate buffer pH 7.0. The poly (4-ABA)-based electrode shows a 10.5-fold increase in its effective surface area and a 17.2-fold lower electron transfer resistance compared to the glassy carbon electrode (GCE). The sensor gives a sensitive and selective response to sunset yellow FCF and tartrazine, with the peak potential separation of 232 mV in phosphate buffer pH 4.8. The electrooxidation parameters of dyes have been calculated. Simultaneous quantification is possible in the dynamic ranges of 0.010-0.75 and 0.75-5.0 µmol L-1 for both dyes, with detection limits of 2.3 and 3.0 nmol L-1 for sunset yellow FCF and tartrazine, respectively. The sensor has been tested on orange-flavored drinks and validated with chromatography.
Collapse
|
92
|
Dodd D, Cann I. Tutorial: Microbiome studies in drug metabolism. Clin Transl Sci 2022; 15:2812-2837. [PMID: 36099474 PMCID: PMC9747132 DOI: 10.1111/cts.13416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 07/20/2022] [Accepted: 08/09/2022] [Indexed: 01/26/2023] Open
Abstract
The human gastrointestinal tract is home to a dense population of microorganisms whose metabolism impacts human health and physiology. The gut microbiome encodes millions of genes, the products of which endow our bodies with unique biochemical activities. In the context of drug metabolism, microbial biochemistry in the gut influences humans in two major ways: (1) by producing small molecules that modulate expression and activity of human phase I and II pathways; and (2) by directly modifying drugs administered to humans to yield active, inactive, or toxic metabolites. Although the capacity of the microbiome to modulate drug metabolism has long been known, recent studies have explored these interactions on a much broader scale and have revealed an unprecedented scope of microbial drug metabolism. The implication of this work is that we might be able to predict the capacity of an individual's microbiome to metabolize drugs and use this information to avoid toxicity and inform proper dosing. Here, we provide a tutorial of how to study the microbiome in the context of drug metabolism, focusing on in vitro, rodent, and human studies. We then highlight some limitations and opportunities for the field.
Collapse
Affiliation(s)
- Dylan Dodd
- Department of PathologyStanford University School of MedicineStanfordCaliforniaUSA,Department of Microbiology and ImmunologyStanford University School of MedicineStanfordCaliforniaUSA
| | - Isaac Cann
- Department of Animal ScienceUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA,Carl R. Woese Institute for Genomic Biology (Microbiome Metabolic Engineering Theme)University of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA,Division of Nutritional SciencesUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA,Center for East Asian & Pacific StudiesUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA,Department of MicrobiologyUniversity of Illinois at Urbana‐ChampaignUrbanaIllinoisUSA
| |
Collapse
|
93
|
Zafar S, Bukhari DA, Rehman A. Azo dyes degradation by microorganisms - An efficient and sustainable approach. Saudi J Biol Sci 2022; 29:103437. [PMID: 36131780 PMCID: PMC9483650 DOI: 10.1016/j.sjbs.2022.103437] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/06/2022] [Accepted: 09/01/2022] [Indexed: 11/21/2022] Open
Abstract
Synthetic aromatic compounds consisting of various functional groups are known as dyes. These colored compounds are often discharged in effluents, and they are very dangerous to aquatic life. Basically, the dye industry started by using natural plant and insect sources, and then suddenly turned into artificial manufacturing. Natural equilibrium of our environment gets changed by the reduction in photosynthetic activity due to the dyes. In China 900,000 tons of all kinds of dyes are usually produced, which are used in many industries like food, textile, food, paper and leather. Untreated wastewater contaminates aquatic bodies by causing eutrophication, change in water color, oxygen depletion which affect aquatic organisms to a great extent. Dye wastewater is now the key environmental pollution form. In recent eras an extensive study line has been developed to explore the dye decolorization and biodegradation under both aerobic as well as anaerobic conditions. In this review, the chemistry, toxicity and microbial biodegradation/decolorization are presented. Some recent studies along with the new techniques and methodologies of remediating the dye pollution are also discussed to provide the bases of their handling. Overall, efficient and high biodegradation potential make microbes an impending foundation for green chemistry to eradicate toxic dyes from industrial wastewater.
Collapse
Affiliation(s)
- Sadia Zafar
- National Centre of Excellence in Molecular Biology, University of the Punjab, Lahore 54590, Pakistan
| | - Dilara A. Bukhari
- Department of Zoology, Government College University, Lahore, Pakistan
| | - Abdul Rehman
- Institute of Microbiology and Molecular Genetics, University of the Punjab, New Campus, Lahore 54590, Pakistan
- Corresponding author at: Department of Microbiology & Molecular Genetics, University of the Punjab, New Campus, Lahore 54590, Pakistan.
| |
Collapse
|
94
|
PREPARATION AND CHARACTERIZATION OF PEGDE-EDTA-MODIFIED MAGNETIC CHITOSAN MICROSPHERE AS AN ECO-FRIENDLY ADSORBENT FOR METHYLENE BLUE REMOVAL. SOUTH AFRICAN JOURNAL OF CHEMICAL ENGINEERING 2022. [DOI: 10.1016/j.sajce.2022.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
95
|
Al-Amrani WA, Hanafiah MAKM, Mohammed AHA. A comprehensive review of anionic azo dyes adsorption on surface-functionalised silicas. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:76565-76610. [PMID: 36166120 DOI: 10.1007/s11356-022-23062-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Accepted: 09/13/2022] [Indexed: 06/16/2023]
Abstract
Surface -functionalised silica networks are advanced adsorbents. They have been given much attention for treating wastewater using the adsorption technique due to the silanol reactivity, resulting in strong binding affinities towards many pollutants. This review discusses the removal of anionic azo dyes utilising various functional groups such as amines, surfactants, polymers, macrocyclic, and other chelating groups functionalised on silica's surface. This review also reveals the steadily increasing interest in surface-functionalised silicas as adsorbents, emphasising the scholarly advancements in this field as a platform for future research. For that, adsorption capacities with different experimental conditions have been compared. The possible adsorption mechanisms, rate-limiting step, and factors affecting the anionic azo dye adsorption process have been comprehensively discussed. This review discloses that adsorbent characteristics such as porosity and functional groups, besides structural properties of an anionic azo dye, significantly affect adsorption. The adsorption process followed the Langmuir isotherm and pseudo-second-order models, with a predominantly spontaneous and endothermic nature. Multiple interactions, including electrostatic interaction, π-π interactions, and hydrogen bonding, are observed between dyes and functionalised silicas, indicating the adsorption process's complexity. Regeneration and cost-economic analysis are also presented to provide a roadmap for sustainable improvements. Chemical and biological regeneration techniques restore > 80% of the spent functionalised silicas. There is a significant opportunity to improve their efficiencies and regenerability, resulting in surface-functionalised silicas being used commercially instead of only in the laboratory. Finally, future research has been proposed by identifying current research gaps, particularly concerning the application of functionalised silicas in wastewater treatment.
Collapse
|
96
|
Azad M, Ali Khan G, Ismail F, Ahmed W. Facile and efficient dye degradation using silver nanoparticles immobilized cotton substrates. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
97
|
Chouaybi I, Ouassif H, Bettach M, Moujahid EM. Fast and high removal of acid red 97 dye from aqueous solution by adsorption onto a synthetic hydrocalumite: Structural characterization and retention mechanisms. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
98
|
Azam K, Shezad N, Shafiq I, Akhter P, Akhtar F, Jamil F, Shafique S, Park YK, Hussain M. A review on activated carbon modifications for the treatment of wastewater containing anionic dyes. CHEMOSPHERE 2022; 306:135566. [PMID: 35787877 DOI: 10.1016/j.chemosphere.2022.135566] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 06/14/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
Polluted water resources, particularly those polluted with industrial effluents' dyes, are carcinogenic and hence pose a severe threat to sustainable and longstanding worldwide development. Meanwhile, adsorption is a promising process for polluted/wastewater treatment. In particular, activated carbon (AC) is popular among various wastewater treatment adsorbents, especially in the organic contaminants' remediation in wastewater. Hence, the AC's synthesis from degradable and non-degradable resources, the carbon activation involved in the AC synthesis, and the AC's modification to cutting-edge and effective materials have been modern-research targets in recent years. Likewise, the main research focuses worldwide have been the salient AC characteristics, such as its surface chemistry, porosity, and enhanced surface area. Notably, various modified-AC synthesis methods have been employed to enhance the AC's potential for improved contaminants-removal. Hence, we critically analyze the different modified ACs (with enhanced (surface) functional groups and textural properties) of their capacity to remove different-natured anionic dyes in wastewater. We also discuss the corresponding AC modification techniques, the factors affecting the AC properties, and the modifying agents' influence on the AC's morphological/adsorptive properties. Finally, the AC research of future interest has been proposed by identifying the current AC research gaps, especially related to the AC's application in wastewater treatment.
Collapse
Affiliation(s)
- Kshaf Azam
- Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, Defence Road, Off Raiwind Road, Lahore, Pakistan
| | - Nasir Shezad
- Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, Defence Road, Off Raiwind Road, Lahore, Pakistan; Division of Materials Science, Luleå University of Technology, 97187, Luleå, Sweden
| | - Iqrash Shafiq
- Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, Defence Road, Off Raiwind Road, Lahore, Pakistan
| | - Parveen Akhter
- Department of Chemistry, The University of Lahore, 1-km Defence Road, Off Raiwind Road, Lahore, Pakistan
| | - Farid Akhtar
- Division of Materials Science, Luleå University of Technology, 97187, Luleå, Sweden
| | - Farrukh Jamil
- Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, Defence Road, Off Raiwind Road, Lahore, Pakistan
| | - Sumeer Shafique
- Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, Defence Road, Off Raiwind Road, Lahore, Pakistan
| | - Young-Kwon Park
- School of Environmental Engineering, University of Seoul, Seoul, 02504, Republic of Korea.
| | - Murid Hussain
- Department of Chemical Engineering, COMSATS University Islamabad, Lahore Campus, Defence Road, Off Raiwind Road, Lahore, Pakistan.
| |
Collapse
|
99
|
Balasurya S, Okla MK, Alaraidh IA, Al-Ghamdi AA, Mohebaldin A, Abdel-Maksoud MA, Abdelaziz RF, Thomas AM, Raju LL, Khan SS. Sunlit photocatalytic degradation of organic pollutant by NiCr 2O 4/Bi 2S 3/Cr 2S 3 tracheid skeleton nanocomposite: Mechanism, pathway, reactive sites, genotoxicity and byproduct toxicity evaluation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 319:115674. [PMID: 35868190 DOI: 10.1016/j.jenvman.2022.115674] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 06/29/2022] [Accepted: 07/02/2022] [Indexed: 06/15/2023]
Abstract
In this study, 3D C2S3 (CS) and 2D Bi2S3 (BS) modified NiCr2O4 nanocomposite (NCO-BS-CS NCs) was prepared by sonochemical assisted co-precipitation method for the enhanced photocatalytic activity. Here, NCO-BS-CS NCs showed band gap energy of 2.23 eV and the PL intensity of NCO-BS-CS NCs was lower than NCO, BS, and CS NPs. Thus, the results indicate the fabricated NCO-BS-CS NCs enhance the charge segregation and lower in recombination rate. NCO-BS-CS NCs showed enhanced photodegradation of methyl orange (MO) (95%) and congo red (CR) (99.7%) respectively. The total organic compound (TOC) analysis shows the complete mineralization of about 91 and 98% for MO and CR respectively. Furthermore, the Fukui function was used for the prediction of reactive sites in the photodegradation pathway of MO and CR by NCs. ECOSAR program was done to determine the toxicity of the intermediate and the results conclude that the degraded product shows nontoxic to the environmental organism (fish, daphnia, and algae). Thus, the fabricated NCO-BS-CS NCs can be used for the remediation of toxic organic pollutants from the waste water by photocatalytic degradation.
Collapse
Affiliation(s)
- S Balasurya
- Nanobiotechnology Laboratory, Department of Biotechnology, Bannari Amman Institute of Technology, Sathyamangalam, Tamil Nadu, India
| | - Mohammad K Okla
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Ibrahim A Alaraidh
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Abdullah A Al-Ghamdi
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Asmaa Mohebaldin
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Mostafa A Abdel-Maksoud
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Ramadan F Abdelaziz
- Department of Pharmaceutical Sciences, Division of Pharmacology and Toxicology, University of Vienna, Austria
| | - Ajith M Thomas
- Department of Botany and Biotechnology, St Xavier's College, Thumba, Thiruvananthapuram, India
| | - Lija L Raju
- Department of Zoology, Mar Ivanios College, Nalanchira, Thiruvananthapuram, India
| | - S Sudheer Khan
- Nanobiotechnology Laboratory, Department of Biotechnology, Bannari Amman Institute of Technology, Sathyamangalam, Tamil Nadu, India.
| |
Collapse
|
100
|
Raouafi A, Jbahi S, Bessalah S, Daoudi M, Dridi W, Hamzaoui AH, Dorohzkin SV, Hosni F, Hidouri M. Natural red dyes from Beta vulgaris L. extract for gamma-rays color indicator: Physico-chemical and biological characterizations. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|