51
|
Marthick JR, Dickinson JL. Emerging putative biomarkers: the role of alpha 2 and 6 integrins in susceptibility, treatment, and prognosis. Prostate Cancer 2012; 2012:298732. [PMID: 22900191 PMCID: PMC3415072 DOI: 10.1155/2012/298732] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Accepted: 05/17/2012] [Indexed: 11/22/2022] Open
Abstract
The genetic architecture underpinning prostate cancer is complex, polygenic and despite recent significant advances many questions remain. Advances in genetic technologies have greatly improved our ability to identify genetic variants associated with complex disease including prostate cancer. Genome-wide association studies (GWASs) and microarray gene expression studies have identified genetic associations with prostate cancer susceptibility and tumour development. The integrins feature prominently in both studies examining the underlying genetic susceptibility and mechanisms driving prostate tumour development. Integrins are cell adhesion molecules involved in extracellular and intracellular signalling and are imperative for tumour development, migration, and angiogenesis. Although several integrins have been implicated in tumour development, the roles of integrin α(2) and integrin α(6) are the focus of this paper as evidence is now emerging that these integrins are implicit in prostate cancer susceptibility, cancer stem cell biology, angiogenesis, cell migration, and metastases to bone and represent potential biomarkers and therapeutic targets. There currently exists an urgent need to develop tools that differentiate indolent from aggressive prostate cancers and predict how patients will respond to treatment. This paper outlines the evidence supporting the use of α(2) and α(6) integrins in clinical applications for tailored patient treatment.
Collapse
Affiliation(s)
- James R. Marthick
- Menzies Research Institute Tasmania, University of Tasmania, 17 Liverpool Street Hobart, TAS 7000, Australia
| | - Joanne L. Dickinson
- Menzies Research Institute Tasmania, University of Tasmania, 17 Liverpool Street Hobart, TAS 7000, Australia
| |
Collapse
|
52
|
New Drugs in the Frontier of Treatment of Metastatic Colorectal Cancer. CURRENT COLORECTAL CANCER REPORTS 2012. [DOI: 10.1007/s11888-012-0127-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
53
|
Chang MW, Lo JM, Juan HF, Chang HY, Chuang CY. Combination of RGD compound and low-dose paclitaxel induces apoptosis in human glioblastoma cells. PLoS One 2012; 7:e37935. [PMID: 22655084 PMCID: PMC3360022 DOI: 10.1371/journal.pone.0037935] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Accepted: 04/26/2012] [Indexed: 12/01/2022] Open
Abstract
Background Integrins are a family of transmembrane adhesion proteins that mediate cell adhesion and intracellular signaling. Integrin-αvβ3 is expressed on the surface of human glioblastoma cells, and can be further induced by chemical stress. The Arg-Gly-Asp (RGD) motif-containing peptides are specifically bound to integrin-αvβ3, and to inhibit neovasculature underlying competition to normal extracellular matrix proteins. This study employed two types of RGD peptides, cyclic RGD (c(RGDyK)) and bi-cyclic RGD (E[c(RGDyK)]2) peptide, to human glioblastoma U87MG cells with combination of low dose Paclitaxel (PTX) pre-treatment to augment therapeutic activity for RGD peptide-induced apoptosis. Principal Findings Human glioblastoma U87MG cells were treated with RGD peptides in the absence or presence of initial exposure to low-dose 10 nM PTX. Results showed that integrin-αvβ3 expressing on the surface of U87MG cells was induced by 10 nM PTX pre-treatment for 12 hrs. Additionally, the U87MG cells pre-treated with PTX and followed by RGD peptides exhibited greater expression of caspases-3, -8 and -9 than those merely treated with single agent of PTX or RGD peptide. Furthermore, the caspase-3, -8 and -9 inhibitor presented significant protection against E[c(RGDyK)]2 peptide induced U87MG programmed cell death. The increased expression of PTX-induced integrin-αvβ3 was correlated with the enhanced apoptosis in U87MG cells. Conclusions This study provides a novel concept of targeting integrin-αvβ3 with RGD peptides in combination with low-dose PTX pre-treatment to improve efficiency in human glioblastoma treatment.
Collapse
Affiliation(s)
- Ming-Wei Chang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Jem-Mau Lo
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Hsueh-Fen Juan
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, Taiwan
- Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Hsin-Yi Chang
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei, Taiwan
| | - Chun-Yu Chuang
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
- * E-mail:
| |
Collapse
|
54
|
Li R, Ren M, Chen N, Luo M, Zhang Z, Wu J. Vitronectin increases vascular permeability by promoting VE-cadherin internalization at cell junctions. PLoS One 2012; 7:e37195. [PMID: 22606350 PMCID: PMC3350505 DOI: 10.1371/journal.pone.0037195] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Accepted: 04/17/2012] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Cross-talk between integrins and cadherins regulates cell function. We tested the hypothesis that vitronectin (VN), a multi-functional adhesion molecule present in the extracellular matrix and plasma, regulates vascular permeability via effects on VE-cadherin, a critical regulator of endothelial cell (EC) adhesion. METHODOLOGY/PRINCIPAL FINDINGS Addition of multimeric VN (mult VN) significantly increased VE-cadherin internalization in human umbilical vein EC (HUVEC) monolayers. This effect was blocked by the anti-α(V)β(3) antibody, pharmacological inhibition and knockdown of Src kinase. In contrast to mult VN, monomeric VN did not trigger VE-cadherin internalization. In a modified Miles assay, VN deficiency impaired vascular endothelial growth factor-induced permeability. Furthermore, ischemia-induced enhancement of vascular permeability, expressed as the ratio of FITC-dextran leakage from the circulation into the ischemic and non-ischemic hindlimb muscle, was significantly greater in the WT mice than in the Vn(-/-) mice. Similarly, ischemia-mediated macrophage infiltration was significantly reduced in the Vn(-/-) mice vs. the WT controls. We evaluated changes in the multimerization of VN in ischemic tissue in a mouse hindlimb ischemia model. VN plays a previously unrecognized role in regulating endothelial permeability via conformational- and integrin-dependent effects on VE-cadherin trafficking. CONCLUSION/SIGNIFICANCE These results have important implications for the regulation of endothelial function and angiogenesis by VN under normal and pathological conditions.
Collapse
Affiliation(s)
- Rong Li
- Drug Discovery Research Center of Luzhou Medical College, Luzhou Medical College, Luzhou, Sichuan, People's Republic of China
| | - Meiping Ren
- Drug Discovery Research Center of Luzhou Medical College, Luzhou Medical College, Luzhou, Sichuan, People's Republic of China
| | - Ni Chen
- Drug Discovery Research Center of Luzhou Medical College, Luzhou Medical College, Luzhou, Sichuan, People's Republic of China
| | - Mao Luo
- Drug Discovery Research Center of Luzhou Medical College, Luzhou Medical College, Luzhou, Sichuan, People's Republic of China
| | - Zhuo Zhang
- Drug Discovery Research Center of Luzhou Medical College, Luzhou Medical College, Luzhou, Sichuan, People's Republic of China
| | - Jianbo Wu
- Drug Discovery Research Center of Luzhou Medical College, Luzhou Medical College, Luzhou, Sichuan, People's Republic of China
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, United States of America
| |
Collapse
|
55
|
Prager GW, Poettler M, Unseld M, Zielinski CC. Angiogenesis in cancer: Anti-VEGF escape mechanisms. Transl Lung Cancer Res 2012; 1:14-25. [PMID: 25806151 PMCID: PMC4367591 DOI: 10.3978/j.issn.2218-6751.2011.11.02] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Accepted: 11/29/2011] [Indexed: 12/21/2022]
Abstract
It is now widely accepted that tumor-angiogenesis plays a crucial role in tumor growth, tumor propagation and metastasis formation. Among several angiogenic activators, the vascular endothelial growth factor (VEGF) and its receptors represent one of the major inducers of tumor angiogenesis. Thus, this system has become the focus of therapeutic interventions, which led to the approval of the anti-VEGF blocking antibody bevacizumab and the VEGFR-2 pathway inhibitors pazopanib, sorafenib and sunitinib. However, not every cancer patient benefits from such treatment or finally becomes resistant to anti-VEGF approaches; others are suffering from adverse effects. Thus, there is an urgent need for a better understanding of VEGF-independent mechanisms leading to angiogenesis in cancer. This review focuses on anti-VEGF escape mechanisms of tumor cells and its microenvironment.
Collapse
Affiliation(s)
- Gerald W Prager
- Medical University of Vienna, Comprehensive Cancer Center Vienna, Department of Medicine I, Austria
| | - Marina Poettler
- Medical University of Vienna, Comprehensive Cancer Center Vienna, Department of Medicine I, Austria
| | - Matthias Unseld
- Medical University of Vienna, Comprehensive Cancer Center Vienna, Department of Medicine I, Austria
| | - Christoph C Zielinski
- Medical University of Vienna, Comprehensive Cancer Center Vienna, Department of Medicine I, Austria
| |
Collapse
|
56
|
Prostaglandins in cancer cell adhesion, migration, and invasion. Int J Cell Biol 2012; 2012:723419. [PMID: 22505934 PMCID: PMC3299390 DOI: 10.1155/2012/723419] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Accepted: 10/08/2011] [Indexed: 12/21/2022] Open
Abstract
Prostaglandins exert a profound influence over the adhesive, migratory, and invasive behavior of cells during the development and progression of cancer. Cyclooxygenase-2 (COX-2) and microsomal prostaglandin E2 synthase-1 (mPGES-1) are upregulated in inflammation and cancer. This results in the production of prostaglandin E2 (PGE2), which binds to and activates G-protein-coupled prostaglandin E1–4 receptors (EP1–4). Selectively targeting the COX-2/mPGES-1/PGE2/EP1–4 axis of the prostaglandin pathway can reduce the adhesion, migration, invasion, and angiogenesis. Once stimulated by prostaglandins, cadherin adhesive connections between epithelial or endothelial cells are lost. This enables cells to invade through the underlying basement membrane and extracellular matrix (ECM). Interactions with the ECM are mediated by cell surface integrins by “outside-in signaling” through Src and focal adhesion kinase (FAK) and/or “inside-out signaling” through talins and kindlins. Combining the use of COX-2/mPGES-1/PGE2/EP1–4 axis-targeted molecules with those targeting cell surface adhesion receptors or their downstream signaling molecules may enhance cancer therapy.
Collapse
|
57
|
Reardon DA, Cheresh D. Cilengitide: a prototypic integrin inhibitor for the treatment of glioblastoma and other malignancies. Genes Cancer 2011; 2:1159-65. [PMID: 22866207 PMCID: PMC3411133 DOI: 10.1177/1947601912450586] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Integrins are critical intermediaries in a wide spectrum of cancer cell activities and thus represent a highly attractive target in oncology therapy. Nonetheless, successful exploitation of anti-integrin therapeutics has proven challenging to date for cancer patients. In this review, we will focus on cilengitide, an RGD pentapeptide inhibitor of α V integrins. Although several integrin inhibitors are under clinical evaluation, cilengitide is the most clinically advanced and is emerging as a prototype for this class of anticancer therapy. A foundation of encouraging preclinical studies led to a well-designed clinical development plan that culminated in a pivotal phase III study of cilengitide in combination with radiation therapy and temozolomide chemotherapy for newly diagnosed glioblastoma patients. Accrual to this study recently completed, while phase II studies of cilengitide are ongoing for head and neck cancer as well as lung cancer. Important future considerations for cilengitide and other integrin-targeting agents will likely include the identification of optimal combinatorial regimens and the delineation of biomarkers associated with efficacy.
Collapse
Affiliation(s)
- David A. Reardon
- Department of Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - David Cheresh
- Department of Pathology, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
58
|
Mita M, Kelly KR, Mita A, Ricart AD, Romero O, Tolcher A, Hook L, Okereke C, Krivelevich I, Rossignol DP, Giles FJ, Rowinsky EK, Takimoto C. Phase I study of E7820, an oral inhibitor of integrin alpha-2 expression with antiangiogenic properties, in patients with advanced malignancies. Clin Cancer Res 2011; 17:193-200. [PMID: 21208908 DOI: 10.1158/1078-0432.ccr-10-0010] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE This phase I study was conducted to characterize the safety profile, pharmacokinetics, pharmacodynamics, dose-limiting toxicity (DLT), and the maximum-tolerated dose of E7820, a novel oral sulfonamide derivative with antiangiogenic properties, when administered to patients with advanced solid malignancies. PATIENTS AND METHODS Patients received single daily doses of E7820 orally for 28 days in cycle 1, followed by a 7-day no-treatment period, after which time-uninterrupted daily dosing ensued. The starting dose of E7820 was 10 mg/d, which was increased to 20, 40, 70, 100, and 200 mg/d in cohorts of new patients. RESULTS Thirty-seven patients [21 male; median age 65 (40-82] were enrolled. At 100 mg/d, 1 patient experienced a DLT consisting of grade 3 neutropenia, thrombocytopenia, and elevated liver enzymes. At the 200-mg dose level, 2 patients experienced grade 4 thrombocytopenia and neutropenia. No partial or complete responses were observed; 8 patients had stable disease (≥ 4 months), including 5 patients with protracted stable disease exceeding 6 months. Mean time to maximum plasma concentration values ranged from 1 to 12 hours, whereas mean terminal half-life values ranged from 5.6 to 8.6 hours. Flow cytometric analysis of platelet integrin α-2 expression showed a sustained greater than 50% decrease beyond day 28 in 3 of 4 patients at 200 mg, whereas moderate (<30%) decreases were observed at 70- and 100-mg dose levels. CONCLUSIONS The recommended phase II dose of E7820 is 100 mg/d, based on a fasting schedule. E7820 downregulates integrin α-2 expression in surrogate tissues (platelets) and is associated with stable disease in a wide variety of heavily pretreated malignancies.
Collapse
Affiliation(s)
- Monica Mita
- Institute For Drug Development, Cancer Therapy and Research Center at the University of Texas Health Science Center, San Antonio, Texas, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
59
|
Integrin-mediated cell-matrix interaction in physiological and pathological blood vessel formation. JOURNAL OF ONCOLOGY 2011; 2012:125278. [PMID: 21941547 PMCID: PMC3175391 DOI: 10.1155/2012/125278] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2011] [Accepted: 07/15/2011] [Indexed: 02/07/2023]
Abstract
Physiological as well as pathological blood vessel formation are fundamentally dependent on cell-matrix interaction. Integrins, a family of major cell adhesion receptors, play a pivotal role in development, maintenance, and remodeling of the vasculature. Cell migration, invasion, and remodeling of the extracellular matrix (ECM) are integrin-regulated processes, and the expression of certain integrins also correlates with tumor progression. Recent advances in the understanding of how integrins are involved in the regulation of blood vessel formation and remodeling during tumor progression are highlighted. The increasing knowledge of integrin function at the molecular level, together with the growing repertoire of integrin inhibitors which allow their selective pharmacological manipulation, makes integrins suited as potential diagnostic markers and therapeutic targets.
Collapse
|
60
|
The regulatory function of SPARC in vascular biology. Cell Mol Life Sci 2011; 68:3165-73. [PMID: 21822645 DOI: 10.1007/s00018-011-0781-8] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Revised: 07/19/2011] [Accepted: 07/19/2011] [Indexed: 01/21/2023]
Abstract
SPARC is a matricellular protein, able to modulate cell/ECM interactions and influence cell responses to growth factors, and therefore is particularly attuned to contribute to physiological processes involving changes in ECM and cell mobilization. Indeed, the list of biological processes affected by SPARC includes wound healing, tumor progression, bone formation, fibrosis, and angiogenesis. The process of angiogenesis is complex and involves a number of cellular processes such as endothelial cell proliferation, migration, ECM degradation, and synthesis, as well as pericyte recruitment to stabilize nascent vessels. In this review, we will summarize current results that explore the function of SPARC in the regulation of angiogenic events with a particular emphasis on the modulation of growth factor activity by SPARC in the context of blood vessel formation. The primary function of SPARC in angiogenesis remains unclear, as SPARC activity in some circumstances promotes angiogenesis and in others is more consistent with an anti-angiogenic activity. Undoubtedly, the mercurial nature of SPARC belies a redundancy of functional proteins in angiogenesis as well as cell-type-specific activities that alter signal transduction events in response to unique cellular milieus. Nonetheless, the investigation of cellular mechanisms that define functional activities of SPARC continue to contribute novel and exciting paradigms to vascular biology.
Collapse
|
61
|
Carbajo RJ, Sanz L, Mosulén S, Pérez A, Marcinkiewicz C, Pineda-Lucena A, Calvete JJ. NMR structure and dynamics of recombinant wild type and mutated jerdostatin, a selective inhibitor of integrin α1
β1. Proteins 2011; 79:2530-42. [DOI: 10.1002/prot.23076] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Revised: 04/26/2011] [Accepted: 04/27/2011] [Indexed: 11/06/2022]
|
62
|
[Indications and current development of new targeted therapies in pediatric oncology]. Bull Cancer 2011; 98:527-39. [PMID: 21596652 DOI: 10.1684/bdc.2011.1358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Progresses performed in pediatric oncology during the last 30 years allowed to obtain about 70 to 80% healing rates. These progresses are the result of the optimization of the cytotoxic chemotherapies protocols used at standard and high doses, as well as the improvement of the local treatment. Most of the new anticancer treatments currently in developmental stage are based on targeted therapies, acting against numerous tumor cell abnormalities, like growth factors et their receptors, cell proliferation-inducing factors, molecules involved in DNA repair, cell death inducers, tumor invasion and angiogenesis. They are widely used in adult patients since 10 years and they are being more and more employed in children with cancer. The aim of this article is to review the main indications of these new targeted drugs in pediatric oncology and the new developments of these drugs.
Collapse
|
63
|
The role of β3-integrins in tumor angiogenesis: context is everything. Curr Opin Cell Biol 2011; 23:630-7. [PMID: 21565482 DOI: 10.1016/j.ceb.2011.03.014] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2011] [Accepted: 03/26/2011] [Indexed: 02/07/2023]
Abstract
Integrins are a family of cell-extracellular matrix adhesion molecules that play important roles in tumor angiogenesis. αvβ3-Integrin has received much attention as a potential anti-angiogenic target because it is upregulated in tumor-associated blood vessels. Agents targeting αvβ3-integrin are now showing some success in phase III clinical trails for the treatment of glioblastoma, but the exact function of this integrin in tumor angiogenesis is still relatively unknown. This review highlights some of the recent data illustrating that β3-integrins play both pro-angiogenic and anti-angiogenic roles in tumor angiogenesis depending on the context. Specifically we will discuss how the following differentially influence β3-integrin's role in tumor angiogenesis: first, cell-matrix interactions, second, β3-integrin inhibitor doses, third, cell type, and fourth, other interacting molecules.
Collapse
|
64
|
Keizer RJ, Funahashi Y, Semba T, Wanders J, Beijnen JH, Schellens JHM, Huitema ADR. Evaluation of α2-integrin expression as a biomarker for tumor growth inhibition for the investigational integrin inhibitor E7820 in preclinical and clinical studies. AAPS JOURNAL 2011; 13:230-9. [PMID: 21387147 PMCID: PMC3085714 DOI: 10.1208/s12248-011-9260-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Accepted: 02/04/2011] [Indexed: 12/17/2022]
Abstract
E7820 is an orally active inhibitor of α(2)-integrin mRNA expression, currently tested in phases I and II. We aimed to evaluate what levels of inhibition of integrin expression are needed to achieve tumor stasis in mice, and to compare this to the level of inhibition achieved in humans. Tumor growth inhibition was measured in mice bearing a pancreatic KP-1 tumor, dosed at 12.5-200 mg/kg over 21 days. In the phase I study, E7820 was administered daily for 28 days over a range of 0-200 mg, followed by a 7-day washout period. PK-PD models were developed in NONMEM. α(2)-Integrin expression measured on platelets, corresponding to tumor stasis at t = 21 in 50% and 90% of the mice (I(int,50), I(int,90)) were calculated. It was evaluated if these levels of inhibition could be achieved in patients at tolerable doses. One hundred nineteen α(2)-Integrin measurements and 210 tumor size measurements were available from mice. The relationship between PK and α(2)-integrin expression was modeled using an indirect-effect model, subsequently linked to an exponential tumor growth model. I(inh,50) and I(inh,90) were 14.7% (RSE 7%) and 17.9% (RSE 8%). Four hundred sixty two α(2)-integrin measurements were available from 29 patients. Using the schedule of 100 mg qd (MTD), α(2)-integrin expression was inhibited more strongly than the I(int,50) and I(int,90) in greater than 95% and greater than 50% of patients, respectively. Moderate inhibition of α(2)-integrin expression corresponded to tumor stasis in mice, and similar levels could be reached in patients with the dose level of 100 mg qd.
Collapse
Affiliation(s)
- Ron J Keizer
- Department of Pharmacy and Pharmacology, The Netherlands Cancer Institute/Slotervaart Hospital, Amsterdam, The Netherlands.
| | | | | | | | | | | | | |
Collapse
|
65
|
Kimura RH, Jones DS, Jiang L, Miao Z, Cheng Z, Cochran JR. Functional mutation of multiple solvent-exposed loops in the Ecballium elaterium trypsin inhibitor-II cystine knot miniprotein. PLoS One 2011; 6:e16112. [PMID: 21364742 PMCID: PMC3041754 DOI: 10.1371/journal.pone.0016112] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2010] [Accepted: 12/08/2010] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND The Ecballium elaterium trypsin inhibitor (EETI-II), a 28-amino acid member of the knottin family of peptides, contains three interwoven disulfide bonds that form multiple solvent-exposed loops. Previously, the trypsin binding loop of EETI-II has been engineered to confer binding to several alternative molecular targets. Here, EETI-II was further explored as a molecular scaffold for polypeptide engineering by evaluating the ability to mutate two of its structurally adjacent loops. METHODOLOGY/PRINCIPAL FINDINGS Yeast surface display was used to engineer an EETI-II mutant containing two separate integrin binding epitopes. The resulting knottin peptide was comprised of 38 amino acids, and contained 11- and 10-residue loops compared to wild-type EETI-II, which naturally contains 6- and 5-residue loops, respectively. This knottin peptide bound to α(v)β(3) and α(v)β(5) integrins with affinities in the low nanomolar range, but bound weakly to the related integrins α(5)β(1) and α(iib)β(3). In addition, the engineered knottin peptide inhibited tumor cell adhesion to vitronectin, an extracellular matrix protein that binds to α(v)β(3) and α(v)β(5) integrins. A (64)Cu radiolabeled version of this knottin peptide demonstrated moderate serum stability and excellent tumor-to-muscle and tumor-to-blood ratios by positron emission tomography imaging in human tumor xenograft models. Tumor uptake was ∼3-5% injected dose per gram (%ID/g) at one hour post injection, with rapid clearance of probe through the kidneys. CONCLUSIONS/SIGNIFICANCE We demonstrated that multiple loops of EETI-II can be mutated to bind with high affinity to tumor-associated integrin receptors. The resulting knottin peptide contained 21 (>50%) non-native amino acids within two mutated loops, indicating that extended loop lengths and sequence diversity were well tolerated within the EETI-II scaffold. A radiolabeled version of this knottin peptide showed promise for non-invasive imaging of integrin expression in living subjects. However, reduced serum and metabolic stability were observed compared to an engineered integrin-binding EETI-II knottin peptide containing only one mutated loop.
Collapse
Affiliation(s)
- Richard H. Kimura
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Cancer Center, Bio-X Program, Stanford University, Stanford, California, United States of America
| | - Douglas S. Jones
- Department of Bioengineering, Cancer Center, Bio-X Program, Stanford University, Stanford, California, United States of America
| | - Lei Jiang
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Cancer Center, Bio-X Program, Stanford University, Stanford, California, United States of America
| | - Zheng Miao
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Cancer Center, Bio-X Program, Stanford University, Stanford, California, United States of America
| | - Zhen Cheng
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Cancer Center, Bio-X Program, Stanford University, Stanford, California, United States of America
| | - Jennifer R. Cochran
- Department of Bioengineering, Cancer Center, Bio-X Program, Stanford University, Stanford, California, United States of America
| |
Collapse
|
66
|
Abstract
Magnetic resonance imaging (MRI) is a powerful medical diagnostic imaging modality for integrin targeted imaging, which uses the magnetic resonance of tissue water protons to display tissue anatomic structures with high spatial resolution. Contrast agents are often used in MRI to highlight specific regions of the body and make them easier to visualize. There are four main classes of MRI contrast agents based on their different contrast mechanisms, including T(1), T(2), chemical exchange saturation transfer (CEST) agents, and heteronuclear contrast agents. Integrins are an important family of heterodimeric transmembrane glycoproteins that function as mediators of cell-cell and cell-extracellular matrix interactions. The overexpressed integrins can be used as the molecular targets for designing suitable integrin targeted contrast agents for MR molecular imaging. Integrin targeted contrast agent includes a targeting agent specific to a target integrin, a paramagnetic agent and a linker connecting the targeting agent with the paramagnetic agent. Proper selection of targeting agents is critical for targeted MRI contrast agents to effectively bind to integrins for in vivo imaging. An ideal integrin targeted MR contrast agent should be non-toxic, provide strong contrast enhancement at the target sites and can be completely excreted from the body after MR imaging. An overview of integrin targeted MR contrast agents based on small molecular and macromolecular Gd(III) complexes, lipid nanoparticles and superparamagnetic nanoparticles is provided for MR molecular imaging. By using proper delivery systems for loading sufficient Gd(III) chelates or superparamagnetic nanoparticles, effective molecular imaging of integrins with MRI has been demonstrated in animal models.
Collapse
|
67
|
Pozzi A, Zent R. Regulation of endothelial cell functions by basement membrane- and arachidonic acid-derived products. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2011; 1:254-272. [PMID: 20835995 DOI: 10.1002/wsbm.7] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Angiogenesis, the formation of new blood vessels from preexisting vasculature, is required for normal physiological as well as pathological events. The angiogenic process requires endothelial cells to proliferate, migrate, and undergo tubulogenesis. These multistep processes necessitate secretion of pro-angiogenic growth factors, activation of specific intracellular signaling, and interaction of endothelial cells with basement membrane (BM) extracellular matrix components. The generation and release of angiogenic molecules are highly regulated and are influenced by numerous factors, including BM-derived fragments, proteolytic enzymes, as well as metabolites of arachidonic acid (AA). The interactions between these key modulators of angiogenesis is extremely complex, as AA metabolites can regulate the synthesis of soluble angiogenic factors, BM components, as well as enzymes capable of cleaving BM components, which result in the generation of pro- and/or anti-angiogenic products. Furthermore, some BM-derived fragments can alter the expression of AA-converting enzymes and consequently the synthesis of angiogenic factors. In this review we describe the relationship between BM components and AA metabolites with respect to the regulation of endothelial cell functions in health and disease.
Collapse
Affiliation(s)
- Ambra Pozzi
- Departments of Medicine, Cancer Biology and Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Roy Zent
- Department of Medicine, Veterans Affairs Hospital, Nashville, TN 37232, USA
| |
Collapse
|
68
|
Sabrkhany S, Griffioen AW, Oude Egbrink MGA. The role of blood platelets in tumor angiogenesis. Biochim Biophys Acta Rev Cancer 2010; 1815:189-96. [PMID: 21167916 DOI: 10.1016/j.bbcan.2010.12.001] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Revised: 12/03/2010] [Accepted: 12/04/2010] [Indexed: 01/20/2023]
Abstract
Coagulation abnormalities occur frequently in cancer patients. It is becoming evident that blood platelets have an important function in this process. However, understanding of the underlying mechanisms is still very modest. In this review, we discuss the role of platelets in tumor angiogenesis and growth and suggest their potential significance in malignancies. Platelets contain various pro-and antiangiogenic molecules, which seem to be endocytosed and sequestered in different populations of α-granules. Furthermore, tumor endothelial cells are phenotypically and functionally different from endothelial cells in healthy tissue, stimulating local platelet adhesion and subsequent activation. As a consequence, platelets are able to secrete their angiogenic and angiostatic content, most likely in a regulated manner. The overall effect of these platelet-endothelium interactions appears to be proangiogenic, stimulating tumor angiogenesis. We favor the view that local adhesion and activation of blood platelets and dysregulation of coagulation represent underestimated pathways in the progression of cancer.
Collapse
Affiliation(s)
- Siamack Sabrkhany
- Laboratory for Microcirculation, Cardiovascular Research Institute Maastricht (CARIM), Dept. of Physiology, Maastricht, The Netherlands
| | | | | |
Collapse
|
69
|
Juárez P, Bolás G, de Rezende FF, Calvete JJ, Eble JA. Recombinant expression in human cells of active integrin α1β1-blocking RTS-disintegrin jerdostatin. Toxicon 2010; 56:1052-8. [DOI: 10.1016/j.toxicon.2010.07.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Revised: 07/19/2010] [Accepted: 07/22/2010] [Indexed: 10/19/2022]
|
70
|
Tabatabai G, Weller M, Nabors B, Picard M, Reardon D, Mikkelsen T, Ruegg C, Stupp R. Targeting integrins in malignant glioma. Target Oncol 2010; 5:175-81. [PMID: 20820929 DOI: 10.1007/s11523-010-0156-3] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Accepted: 08/12/2010] [Indexed: 11/26/2022]
Abstract
The integrin family of cell adhesion receptors is emerging as a promising target of anticancer therapy. AlphaVbeta3 and alphaVbeta5 integrins are overexpressed on both glioma cells and tumor vasculature. Cilengitide, the most advanced specific integrin inhibitor in oncology, has shown antitumor activity against glioma in early clinical trials. Durable remissions have been observed in phase I and phase II trials for recurrent glioblastoma (GBM) with both lower and higher doses of cilengitide. Pilot trials in newly diagnosed glioblastoma in conjunction with standard chemoradiotherapy have been encouraging. Preclinical data suggest synergy with concomitant chemo- and radiation therapy. A pivotal phase III study (CENTRIC) in newly diagnosed GBM patients is currently recruiting. This paper summarizes the current understanding of the role of integrins and their inhibition in gliomagenesis. The background and design of ongoing trials are outlined.
Collapse
Affiliation(s)
- Ghazaleh Tabatabai
- Department of Neurology, University Hospital Zurich, Frauenklinikstrasse 26, 8091 Zurich, Switzerland.
| | | | | | | | | | | | | | | |
Collapse
|
71
|
Mitchell K, Svenson KB, Longmate WM, Gkirtzimanaki K, Sadej R, Wang X, Zhao J, Eliopoulos AG, Berditchevski F, Dipersio CM. Suppression of integrin alpha3beta1 in breast cancer cells reduces cyclooxygenase-2 gene expression and inhibits tumorigenesis, invasion, and cross-talk to endothelial cells. Cancer Res 2010; 70:6359-67. [PMID: 20631072 DOI: 10.1158/0008-5472.can-09-4283] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Integrin receptors for cell adhesion to extracellular matrix have important roles in promoting tumor growth and progression. Integrin alpha3beta1 is highly expressed in breast cancer cells in which it is thought to promote invasion and metastasis; however, its roles in regulating malignant tumor cell behavior remain unclear. In the current study, we used short-hairpin RNA (shRNA) to show that suppression of alpha3beta1 in a human breast cancer cell line, MDA-MB-231, leads to decreased tumorigenicity, reduced invasiveness, and decreased production of factors that stimulate endothelial cell migration. Real-time PCR revealed that suppression of alpha3beta1 caused a dramatic reduction in expression of the cyclooxygenase-2 (COX-2) gene, which is frequently overexpressed in breast cancers and has been exploited as a therapeutic target. Decreased COX-2 was accompanied by reduced prostaglandin E2 (PGE(2)), a major prostanoid produced downstream of COX-2 and an important effector of COX-2 signaling. shRNA-mediated suppression of COX-2 showed that it has a role in tumor cell invasion and cross-talk to endothelial cells. Furthermore, treatment with PGE(2) restored these functions in alpha3beta1-deficient MDA-MB-231 cells. These findings identify a role for alpha3beta1 in regulating two properties of tumor cells that facilitate cancer progression: invasiveness and ability to stimulate endothelial cells. They also reveal a novel role for COX-2 as a downstream effector of alpha3beta1 in tumor cells, thereby identifying alpha3beta1 as a potential therapeutic target to inhibit breast cancer.
Collapse
Affiliation(s)
- Kara Mitchell
- Center for Cell Biology & Cancer Research, Albany Medical College, Albany, New York 12208-3479, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
72
|
Dummula K, Vinukonda G, Xu H, Hu F, Zia MT, Braun A, Shi Q, Wolk J, Ballabh P. Development of integrins in the vasculature of germinal matrix, cerebral cortex, and white matter of fetuses and premature infants. J Neurosci Res 2010; 88:1193-204. [PMID: 19960540 DOI: 10.1002/jnr.22301] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Germinal matrix (GM) vasculature is selectively vulnerable to hemorrhage in premature infants during the first 48 hr of life. This is attributed to rapid angiogenesis of this brain region, resulting in formation of nascent vessels that show a paucity of pericytes and immaturity of extracellular matrix. Integrins are key regulators of angiogenesis and contribute to stabilization of cerebral vasculature by providing endothelial- and astrocyte-matrix adhesion. Therefore, we asked whether GM exhibited a distinct regional pattern of integrin expression that was dissimilar from that of the cerebral cortex and white matter in human fetuses and premature infants. To this end, we measured protein and gene expression of integrins in the GM, cortex, and white matter of human fetuses (15-22 weeks), premature infants (23-35 weeks), and mature infants (36-40 weeks). We found that protein levels of alpha5beta1 integrin were greater in the GM than in the cortex or white matter by 1.6-fold for both fetuses and premature infants. alpha5beta1 integrin mRNA expression was higher in the GM than in the cortex or white matter by 2-fold for fetuses but not for premature infants. alphaVbeta3, alphaVbeta5, alphaVbeta8, and alpha4beta1 integrin expression were comparable among GM, cortex, and white matter in fetuses and premature infants. Because alpha5beta1 integrin is a central regulator of angiogenesis, its elevation in the GM of fetuses and premature infants indicates that this might be a key activator of endothelial proliferation in this brain region. We speculate that selective alpha5beta1 integrin inhibition might suppress angiogenesis in the GM and thus prevent brain hemorrhage in premature infants.
Collapse
Affiliation(s)
- Krishna Dummula
- Department of Pediatrics, New York Medical College-Westchester Medical Center, Valhalla, New York, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
73
|
Mesenchymal migration as a therapeutic target in glioblastoma. JOURNAL OF ONCOLOGY 2010; 2010:430142. [PMID: 20652056 PMCID: PMC2905941 DOI: 10.1155/2010/430142] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Accepted: 04/28/2010] [Indexed: 12/29/2022]
Abstract
Extensive infiltration of the surrounding healthy brain tissue is a cardinal feature of glioblastomas, highly lethal brain tumors. Deep infiltration by the glioblastoma cells renders complete surgical excision difficult and contemporary adjuvant therapies have had little impact on long-term survival. Thus, deep infiltration and resistance to irradiation and chemotherapy remain a major cause of patient mortality. Modern therapies specifically targeted to this unique aspect of glioblastoma cell biology hold significant promise to substantially improve survival rates for glioblastoma patients. In the present paper, we focus on the role of adhesion signaling molecules and the actin cytoskeleton in the mesenchymal mode of motility that characterizes invading glioblastoma cells. We then review current approaches to targeting these elements of the glioblastoma cell migration machinery and discuss other aspects of cell migration that may improve the treatment of infiltrating glioblastoma.
Collapse
|
74
|
Kolmar H. Engineered cystine-knot miniproteins for diagnostic applications. Expert Rev Mol Diagn 2010; 10:361-8. [PMID: 20370592 DOI: 10.1586/erm.10.15] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Owing to their extraordinary thermal and biological stability, cystine-knot miniproteins provide an attractive scaffold for the development of peptide-based diagnostics. One of the major advantages of this scaffold lies in the fact that the disulfide-constrained structural core can be functionalized by decoration with bioactive-loop residues. Methods have been developed to generate miniproteins with prescribed binding characteristics to a broad spectrum of different target proteins. They combine structural, biophysical and functional features that are beneficial for applications in molecular diagnostics in vivo (i.e., high affinity and selectivity, small size, high biological stability and fast renal clearance). Promising candidates for tumor imaging have been generated recently and evaluated in animal models, and more applications are expected in the near future.
Collapse
Affiliation(s)
- Harald Kolmar
- Clemens-Schöpf-Institut für Biochemie und Organische Chemie, Technische Universität Darmstadt, Petersenstrasse 22, Darmstadt, Germany.
| |
Collapse
|
75
|
Bazaa A, Pasquier E, Defilles C, Limam I, Kessentini-Zouari R, Kallech-Ziri O, El Battari A, Braguer D, El Ayeb M, Marrakchi N, Luis J. MVL-PLA2, a snake venom phospholipase A2, inhibits angiogenesis through an increase in microtubule dynamics and disorganization of focal adhesions. PLoS One 2010; 5:e10124. [PMID: 20405031 PMCID: PMC2853567 DOI: 10.1371/journal.pone.0010124] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2009] [Accepted: 03/11/2010] [Indexed: 01/24/2023] Open
Abstract
Integrins are essential protagonists of the complex multi-step process of angiogenesis that has now become a major target for the development of anticancer therapies. We recently reported and characterized that MVL-PLA2, a novel phospholipase A2 from Macrovipera lebetina venom, exhibited anti-integrin activity. In this study, we show that MVL-PLA2 also displays potent anti-angiogenic properties. This phospholipase A2 inhibited adhesion and migration of human microvascular-endothelial cells (HMEC-1) in a dose-dependent manner without being cytotoxic. Using Matrigel and chick chorioallantoic membrane assays, we demonstrated that MVL-PLA2, as well as its catalytically inactivated form, significantly inhibited angiogenesis both in vitro and in vivo. We have also found that the actin cytoskeleton and the distribution of alphav beta3 integrin, a critical regulator of angiogenesis and a major component of focal adhesions, were disturbed after MVL-PLA2 treatment. In order to further investigate the mechanism of action of this protein on endothelial cells, we analyzed the dynamic instability behavior of microtubules in living endothelial cells. Interestingly, we showed that MVL-PLA2 significantly increased microtubule dynamicity in HMEC-1 cells by 40%. We propose that the enhancement of microtubule dynamics may explain the alterations in the formation of focal adhesions, leading to inhibition of cell adhesion and migration.
Collapse
Affiliation(s)
- Amine Bazaa
- Laboratoire des Venins et Toxines, Institut Pasteur de Tunis, Tunis, Tunisia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
76
|
CC-PLA2-1 and CC-PLA2-2, two Cerastes cerastes venom-derived phospholipases A2, inhibit angiogenesis both in vitro and in vivo. J Transl Med 2010; 90:510-9. [PMID: 20142800 DOI: 10.1038/labinvest.2009.137] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Integrins are essential in the complex multistep process of angiogenesis and are thus attractive targets for the development of antiangiogenic therapies. Integrins are antagonized by disintegrins and C-type lectin-like proteins, two protein families from snake venom. Here, we report that CC-PLA2-1 and CC-PLA2-2, two novel secreted phospholipases A(2) (PLA(2)) isolated from Cerastes cerastes venom, also showed anti-integrin activity. Indeed, both PLA(2)s efficiently inhibited human brain microvascular endothelial cell adhesion and migration to fibrinogen and fibronectin in a dose-dependent manner. Interestingly, we show that this anti-adhesive effect was mediated by alpha5beta1 and alphav-containing integrins. CC-PLA2s also impaired in vitro human brain microvascular endothelial cell tubulogenesis on Matrigel and showed antiangiogenic activity in vivo in chicken chorioallantoic membrane assay. The complete PLA(2) cDNAs were cloned from a venom gland cDNA library. Mature CC-PLA2-1 and CC-PLA2-2 contain 121 and 120 amino acids, respectively, including 14 cysteines each and showed 83% identity. Tertiary model structures of CC-PLA2-1 and CC-PLA2-2 were generated by homology modeling. This is thus the first study describing an antiangiogenic effect for snake venom PLA(2)s and reporting first clues to their mechanism of action on endothelial cells.
Collapse
|
77
|
Dempke WC, Suto T, Reck M. Targeted therapies for non-small cell lung cancer. Lung Cancer 2010; 67:257-74. [DOI: 10.1016/j.lungcan.2009.10.012] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2009] [Revised: 10/13/2009] [Accepted: 10/19/2009] [Indexed: 12/13/2022]
|
78
|
Kimura RH, Miao Z, Cheng Z, Gambhir SS, Cochran JR. A dual-labeled knottin peptide for PET and near-infrared fluorescence imaging of integrin expression in living subjects. Bioconjug Chem 2010; 21:436-44. [PMID: 20131753 DOI: 10.1021/bc9003102] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Previously, we used directed evolution to engineer mutants of the Ecballium elaterium trypsin inhibitor (EETI-II) knottin that bind to αvβ3 and αvβ5 integrin receptors with low nanomolar affinity, and showed that Cy5.5- or (64)Cu-DOTA-labeled knottin peptides could be used to image integrin expression in mouse tumor models using near-infrared fluorescence (NIRF) imaging or positron emission tomography (PET). Here, we report the development of a dual-labeled knottin peptide conjugated to both NIRF and PET imaging agents for multimodality imaging in living subjects. We created an orthogonally protected peptide-based linker for stoichiometric coupling of (64)Cu-DOTA and Cy5.5 onto the knottin N-terminus and confirmed that conjugation did not affect binding to αvβ3 and αvβ5 integrins. NIRF and PET imaging studies in tumor xenograft models showed that Cy5.5 conjugation significantly increased kidney uptake and retention compared to the knottin peptide labeled with (64)Cu-DOTA alone. In the tumor, the dual-labeled (64)Cu-DOTA/Cy5.5 knottin peptide showed decreased wash-out leading to significantly better retention (p < 0.05) compared to the (64)Cu-DOTA-labeled knottin peptide. Tumor uptake was significantly reduced (p < 0.05) when the dual-labeled knottin peptide was coinjected with an excess of unlabeled competitor and when tested in a tumor model with lower levels of integrin expression. Finally, plots of tumor-to-background tissue ratios for Cy5.5 versus (64)Cu uptake were well-correlated over several time points post injection, demonstrating pharmacokinetic cross validation of imaging labels. This dual-modality NIRF/PET imaging agent is promising for further development in clinical applications where high sensitivity and high resolution are desired, such as detection of tumors located deep within the body and image-guided surgical resection.
Collapse
Affiliation(s)
- Richard H Kimura
- Department of Radiology, Molecular Imaging Program, and Department of Bioengineering, Cancer Center, Bio-X Program, Stanford University, Stanford, California 94305
| | | | | | | | | |
Collapse
|
79
|
Other Molecular Targeted Agents in Non-small Cell Lung Cancer. Lung Cancer 2010. [DOI: 10.1007/978-1-60761-524-8_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
80
|
Abstract
Cells, including endothelial cells, continuously sense their surrounding environment and rapidly adapt to changes in order to assure tissues and organs homeostasis. The extracellular matrix (ECM) provides a physical scaffold for cell positioning and represents an instructive interface allowing cells to communicate over short distances. Cell surface receptors of the integrin family emerged through evolution as essential mediators and integrators of ECM-dependent communication. In preclinical studies, pharmacological inhibition of vascular integrins suppressed angiogenesis and inhibited tumor progression. alpha(V)beta(3) and alpha(V)beta(5) were the first integrins targeted to suppress tumor angiogenesis. Subsequently, additional integrins, in particular alpha(1)beta(1), alpha(2)beta(1), alpha(5)beta(1), and alpha(6)beta(4), emerged as potential therapeutic targets. Integrin inhibitors are currently tested in clinical trials for their safety and antiangiogenic/antitumor activity. In this chapter, we review the role of integrins in angiogenesis and present recent advances in the use of integrin antagonists as potential therapeutics in cancer and discuss future perspectives.
Collapse
|
81
|
Chou CH, Chen SU, Cheng JCH. Radiation-induced interleukin-6 expression through MAPK/p38/NF-kappaB signaling pathway and the resultant antiapoptotic effect on endothelial cells through Mcl-1 expression with sIL6-Ralpha. Int J Radiat Oncol Biol Phys 2009; 75:1553-61. [PMID: 19931737 DOI: 10.1016/j.ijrobp.2009.08.034] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2008] [Revised: 07/15/2009] [Accepted: 08/19/2009] [Indexed: 12/23/2022]
Abstract
PURPOSE To investigate the mechanism of interleukin-6 (IL-6) activity induced by ionizing radiation. METHODS AND MATERIALS Human umbilical vascular endothelial cells (HUVECs) were irradiated with different doses to induce IL-6. The IL-6 promoter assay and reverse transcriptase-polymerase chain reaction (RT-PCR) were used to examine transcriptional regulation. Specific chemical inhibitors, decoy double-stranded oligodeoxynucleotides, and Western blotting were conducted to investigate the signal transduction pathway. Recombinant soluble human IL-6 receptor alpha-chain (sIL6-Ralpha) and specific small interfering RNA were used to evaluate the biologic function of radiation-induced IL-6. RESULTS Four grays of radiation induced the highest level of IL-6 protein. The promoter assay and RT-PCR data revealed that the induction of IL-6 was mediated through transcriptional regulation. The p38 inhibitor SB203580, by blocking nuclear factor-kappaB (NF-kappaB) activation, prevented both the transcriptional and translational regulation of radiation-induced IL-6 expression. The addition of sIL6-Ralpha rescued HUVECs from radiation-induced death in an IL-6 concentratio-dependent manner. The antiapoptotic effect of combined sIL6-Ralpha and radiation-induced IL-6 was inhibited by mcl-1-specific small interfering RNA. CONCLUSION Radiation transcriptionally induces IL-6 expression in endothelial cells through mitogen-activated protein kinase/p38-mediated NF-kappaB/IkappaB (inhibitor of NF-kappaB) complex activation. In the presence of sIL6-Ralpha, radiation-induced IL-6 expression acts through Mcl-1 expression to rescue endothelial cells from radiation-induced death.
Collapse
Affiliation(s)
- Chia-Hung Chou
- Graduate Institute of Oncology, National Taiwan University College of Medicine, Taipei, Taiwan
| | | | | |
Collapse
|
82
|
Potential therapeutic radiotracers: preparation, biodistribution and metabolic characteristics of 177Lu-labeled cyclic RGDfK dimer. Amino Acids 2009; 39:111-20. [DOI: 10.1007/s00726-009-0382-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2009] [Accepted: 10/21/2009] [Indexed: 12/13/2022]
|
83
|
Kimura RH, Levin AM, Cochran FV, Cochran JR. Engineered cystine knot peptides that bind alphavbeta3, alphavbeta5, and alpha5beta1 integrins with low-nanomolar affinity. Proteins 2009; 77:359-69. [PMID: 19452550 DOI: 10.1002/prot.22441] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
There is a critical need for compounds that target cell surface integrin receptors for applications in cancer therapy and diagnosis. We used directed evolution to engineer the Ecballium elaterium trypsin inhibitor (EETI-II), a knottin peptide from the squash family of protease inhibitors, as a new class of integrin-binding agents. We generated yeast-displayed libraries of EETI-II by substituting its 6-amino acid trypsin binding loop with 11-amino acid loops containing the Arg-Gly-Asp integrin binding motif and randomized flanking residues. These libraries were screened in a high-throughput manner by fluorescence-activated cell sorting to identify mutants that bound to alpha(v)beta(3) integrin. Select peptides were synthesized and were shown to compete for natural ligand binding to integrin receptors expressed on the surface of U87MG glioblastoma cells with half-maximal inhibitory concentration values of 10-30 nM. Receptor specificity assays demonstrated that engineered knottin peptides bind to both alpha(v)beta(3) and alpha(v)beta(5) integrins with high affinity. Interestingly, we also discovered a peptide that binds with high affinity to alpha(v)beta(3), alpha(v)beta(5), and alpha(5)beta(1) integrins. This finding has important clinical implications because all three of these receptors can be coexpressed on tumors. In addition, we showed that engineered knottin peptides inhibit tumor cell adhesion to the extracellular matrix protein vitronectin, and in some cases fibronectin, depending on their integrin binding specificity. Collectively, these data validate EETI-II as a scaffold for protein engineering, and highlight the development of unique integrin-binding peptides with potential for translational applications in cancer.
Collapse
Affiliation(s)
- Richard H Kimura
- Department of Bioengineering, Cancer Center, Bio-X Program, Stanford University, Stanford, California 94305, USA
| | | | | | | |
Collapse
|
84
|
Robinson SD, Reynolds LE, Kostourou V, Reynolds AR, da Silva RG, Tavora B, Baker M, Marshall JF, Hodivala-Dilke KM. Alphav beta3 integrin limits the contribution of neuropilin-1 to vascular endothelial growth factor-induced angiogenesis. J Biol Chem 2009; 284:33966-81. [PMID: 19837659 DOI: 10.1074/jbc.m109.030700] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Both vascular endothelial growth factor receptors (VEGFR) and integrins are major regulators of VEGF-induced angiogenesis. Previous work has shown that beta3 integrin can regulate negatively VEGFR2 expression. Here we show that beta3 integrin can regulate negatively VEGF-mediated angiogenesis by limiting the interaction of the co-receptor NRP1 (neuropilin-1) with VEGFR2. In the presence of alphav beta3 integrin, NRP1 contributed minimally to VEGF-induced angiogenic processes in vivo, ex vivo, and in vitro. Conversely, when beta3 integrin expression is absent or low or its function is blocked with RGD-mimetic inhibitors, VEGF-mediated responses became NRP1-dependent. Indeed, combined inhibition of beta3 integrin and NRP1 decreased VEGF-mediated angiogenic responses further than individual inhibition of these receptors. We also show that alphav beta3 integrin can associate with NRP1 in a VEGF-dependent fashion. Our data suggest that beta3 integrin may, in part, negatively regulate VEGF signaling by sequestering NRP1 and preventing it from interacting with VEGFR2.
Collapse
Affiliation(s)
- Stephen D Robinson
- Adhesion and Angiogenesis Laboratory, Tumour Biology Centre, Institute of Cancer, Queen Mary University of London, John Vane Science Centre, Charterhouse Square, London EC1M 6BQ, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Njus BH, Chigaev A, Waller A, Wlodek D, Ostopovici-Halip L, Ursu O, Wang W, Oprea TI, Bologa CG, Sklar LA. Conformational mAb as a tool for integrin ligand discovery. Assay Drug Dev Technol 2009; 7:507-15. [PMID: 19754304 PMCID: PMC3096548 DOI: 10.1089/adt.2009.0203] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
alpha(4)beta(1)-Integrin (very late antigen-4 (VLA-4)) mediates cell adhesion to cell surface ligands (VCAM-1). Binding of VLA-4 to VCAM-1 initiates rolling and firm adhesion of leukocytes to vascular endothelium followed by the extravasation into the tissue. VLA-4-dependent adhesion plays a key role in controlling leukocyte adhesive events. Small molecules that bind to the integrin ligand-binding site and block its interaction with natural ligands represent promising candidates for treatment of several diseases. Following a flow cytometric screen for small molecule discovery, we took advantage of a conformationally sensitive anti-beta(1)-integrin antibody (HUTS-21) and a small LDV-containing ligand (LDV-FITC) with known affinity to study binding affinities of several known and recently discovered integrin ligands. We found that binding of the LDV-containing small molecule induced exposure of HUTS-21 epitope and that the EC(50) for antibody binding was equal to previously reported K(d) for fluorescent LDV (LDV-FITC). Thus, binding of HUTS-21 can be used to report ligand-binding site occupancy. We studied binding of two known integrin ligands (YLDV and TR14035), as well as of two novel compounds. EC(50) values for HUTS-21 binding showed good correlation with K(i)s determined in the competition assay with LDV-FITC for all ligands. A docking model suggests a common mode of binding for the small molecule VLA-4 ligands. This novel approach described here can be used to determine ligand-binding affinities for unlabeled integrin ligands, and can be adapted to a high-throughput screening format for identification of unknown integrin ligands.
Collapse
Affiliation(s)
- Ben H. Njus
- Department of Chemistry, University of New Mexico Health Sciences Center, Albuquerque, New Mexico.
| | - Alexandre Chigaev
- Department of Pathology and Cancer Center, University of New Mexico Health Sciences Center, Albuquerque, New Mexico.
| | - Anna Waller
- Department of Pathology and Cancer Center, University of New Mexico Health Sciences Center, Albuquerque, New Mexico.
| | - Danuta Wlodek
- Department of Pathology and Cancer Center, University of New Mexico Health Sciences Center, Albuquerque, New Mexico.
| | - Liliana Ostopovici-Halip
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico.
- Romanian Academy—Institute of Chemistry, Timisoara, Romania.
| | - Oleg Ursu
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico.
| | - Wei Wang
- Department of Chemistry, University of New Mexico Health Sciences Center, Albuquerque, New Mexico.
| | - Tudor I. Oprea
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico.
| | - Cristian G. Bologa
- Department of Biochemistry and Molecular Biology, University of New Mexico Health Sciences Center, Albuquerque, New Mexico.
| | - Larry A. Sklar
- Department of Pathology and Cancer Center, University of New Mexico Health Sciences Center, Albuquerque, New Mexico.
| |
Collapse
|
86
|
Hirayama Y, Sumpio BE. Role of Ligand-Specific Integrins in Endothelial Cell Alignment and Elongation Induced by Cyclic Strain. ACTA ACUST UNITED AC 2009; 14:275-83. [DOI: 10.1080/10623320701746248] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
87
|
Noda SE, El-Jawahri A, Patel D, Lautenschlaeger T, Siedow M, Chakravarti A. Molecular Advances of Brain Tumors in Radiation Oncology. Semin Radiat Oncol 2009; 19:171-8. [DOI: 10.1016/j.semradonc.2009.02.005] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
88
|
Okazaki T, Ni A, Ayeni OA, Baluk P, Yao LC, Vossmeyer D, Zischinsky G, Zahn G, Knolle J, Christner C, McDonald DM. alpha5beta1 Integrin blockade inhibits lymphangiogenesis in airway inflammation. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 174:2378-87. [PMID: 19443705 DOI: 10.2353/ajpath.2009.080942] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The integrin alpha5beta1 has been previously implicated in tumor angiogenesis, but its role in the remodeling of both blood vessels and lymphatics during inflammation is at an early stage of understanding. We examined this issue using a selective, small-molecule inhibitor of alpha5beta1 integrin, 2-aroylamino-3-{4-[(pyridin-2-ylaminomethyl)heterocyclyl]phenyl}propionic acid (JSM8757), in a model of sustained airway inflammation in mice with Mycoplasma pulmonis infection, which is known to be accompanied by robust blood vessel remodeling and lymphangiogenesis. The inhibitor significantly decreased the proliferation of lymphatic endothelial cells in culture and the number of lymphatic sprouts and new lymphatics in airways of mice infected for 2 weeks but did not reduce remodeling of blood vessels in the same airways. In inflamed airways, alpha5 integrin immunoreactivity was present on lymphatic sprouts, but not on collecting lymphatics or blood vessels, and was not found on any lymphatics of normal airways. Macrophages, potential targets of the inhibitor, did not have alpha5 integrin immunoreactivity in inflamed airways. In addition, macrophage recruitment, assessed in infected airways by quantitative reverse transcription-polymerase chain reaction measurements of expression of the marker protein ionized calcium-binding adapter molecule 1 (Iba1), was not reduced by JSM8757. We conclude that inhibition of the alpha5beta1 integrin reduces lymphangiogenesis in inflamed airways after M. pulmonis infection because expression of the integrin is selectively increased on lymphatic sprouts and plays an essential role in lymphatic growth.
Collapse
Affiliation(s)
- Tatsuma Okazaki
- Department of Anatomy, S1363, University of California, 513 Parnassus Avenue, San Francisco, CA 94143-0452, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Paschos KA, Canovas D, Bird NC. The role of cell adhesion molecules in the progression of colorectal cancer and the development of liver metastasis. Cell Signal 2009; 21:665-74. [DOI: 10.1016/j.cellsig.2009.01.006] [Citation(s) in RCA: 139] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2008] [Accepted: 01/02/2009] [Indexed: 11/26/2022]
|
90
|
Eccles SA, Court W, Patterson L, Sanderson S. In vitro assays for endothelial cell functions related to angiogenesis: proliferation, motility, tubular differentiation, and proteolysis. Methods Mol Biol 2009; 467:159-81. [PMID: 19301670 DOI: 10.1007/978-1-59745-241-0_9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
This chapter covers the breakdown of the process of angiogenesis into simple assays to measure discrete endothelial cell functions. The techniques described are suitable for studying stimulators or inhibitors of angiogenesis and determining which aspect of the process is modulated. The procedures outlined are robust and straightforward but cannot cover the complexity of the angiogenic process as a whole, incorporating as it does myriad positive and negative signals, three-dimensional interactions with host tissues and many accessory cells, including fibroblasts, macrophages, pericytes, and platelets. The extent to which in vitro assays predict responses in vivo (e.g., wound healing, tumor angiogenesis, or surrogate techniques such as Matrigel plugs, sponge implants, corneal assays, etc.) remains to be determined.
Collapse
Affiliation(s)
- Suzanne A Eccles
- Cancer Research UK Centre for Cancer Therapeutics, McElwain Laboratories, Institute of Cancer Research, Surrey, UK
| | | | | | | |
Collapse
|
91
|
Ong HT, Trejo TR, Pham LD, Oberg AL, Russell SJ, Peng KW. Intravascularly administered RGD-displaying measles viruses bind to and infect neovessel endothelial cells in vivo. Mol Ther 2009; 17:1012-21. [PMID: 19277014 DOI: 10.1038/mt.2009.39] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Systemically administered vectors must cross the endothelial lining of tumor blood vessels to access cancer cells. Vectors that interact with markers on the lumenal surface of these endothelial cells might have enhanced tumor localization. Here, we generated oncolytic measles viruses (MVs) displaying alpha(v)beta(3) integrin-binding peptides, cyclic arginine-glycine-aspartate (RGD) or echistatin, on the measles hemagglutinin protein. Both viruses had expanded tropisms, and efficiently entered target cells via binding to integrins, but also retained their native tropisms for CD46 and signaling lymphocyte activation molecule (SLAM). When fluorescently labeled and injected intravascularly into chick chorioallantoic membranes (CAMs), in contrast to unmodified viruses, the integrin-binding viral particles bound to the lumenal surface of the developing chick neovessels and infected the CAM vascular endothelial cells. In a mouse model of VEGF-induced angiogenesis in the ear pinna, the integrin-binding viruses, but not the parental virus, infected cells at sites of new blood vessel formation. When given intravenously to mice bearing tumor xenografts, the integrin-binding virus infected endothelial cells of tumor neovessels in addition to tumor parenchyma. To our knowledge, this is the first report demonstrating that oncolytic MVs can be engineered to target the lumenal endothelial surface of newly formed blood vessels when administered intravenously in living animals.
Collapse
Affiliation(s)
- Hooi Tin Ong
- Department of Molecular Medicine, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | | | | | | | | |
Collapse
|
92
|
Kimura RH, Cheng Z, Gambhir SS, Cochran JR. Engineered knottin peptides: a new class of agents for imaging integrin expression in living subjects. Cancer Res 2009; 69:2435-42. [PMID: 19276378 DOI: 10.1158/0008-5472.can-08-2495] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
There is a critical need for molecular imaging agents to detect cell surface integrin receptors that are present in human cancers. Previously, we used directed evolution to engineer knottin peptides that bind with high affinity ( approximately 10 to 30 nmol/L) to integrin receptors that are overexpressed on the surface of tumor cells and the tumor neovasculature. To evaluate these peptides as molecular imaging agents, we site-specifically conjugated Cy5.5 or (64)Cu-1,4,7,10-tetra-azacyclododecane-N,N',N'',N'''-tetraacetic acid (DOTA) to their N termini, and used optical and positron emission tomography (PET) imaging to measure their uptake and biodistribution in U87MG glioblastoma murine xenograft models. NIR fluorescence and microPET imaging both showed that integrin binding affinity plays a strong role in the tumor uptake of knottin peptides. Tumor uptake at 1 hour postinjection for two high-affinity (IC(50), approximately 20 nmol/L) (64)Cu-DOTA-conjugated knottin peptides was 4.47% +/- 1.21% and 4.56% +/- 0.64% injected dose/gram (%ID/g), compared with a low-affinity knottin peptide (IC(50), approximately 0.4 mumol/L; 1.48 +/- 0.53%ID/g) and c(RGDyK) (IC(50), approximately 1 mumol/L; 2.32 +/- 0.55%ID/g), a low-affinity cyclic pentapeptide under clinical development. Furthermore, (64)Cu-DOTA-conjugated knottin peptides generated lower levels of nonspecific liver uptake ( approximately 2%ID/g) compared with c(RGDyK) ( approximately 4%ID/g) 1 hour postinjection. MicroPET imaging results were confirmed by in vivo biodistribution studies. (64)Cu-DOTA-conjugated knottin peptides were stable in mouse serum, and in vivo metabolite analysis showed minimal degradation in the blood or tumor upon injection. Thus, engineered integrin-binding knottin peptides show great potential as clinical diagnostics for a variety of cancers.
Collapse
Affiliation(s)
- Richard H Kimura
- Department of Bioengineering, Cancer Center, Bio-X Program, Stanford University, Stanford, California, USA
| | | | | | | |
Collapse
|
93
|
Somanath PR, Malinin NL, Byzova TV. Cooperation between integrin alphavbeta3 and VEGFR2 in angiogenesis. Angiogenesis 2009; 12:177-85. [PMID: 19267251 DOI: 10.1007/s10456-009-9141-9] [Citation(s) in RCA: 188] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Accepted: 02/16/2009] [Indexed: 11/30/2022]
Abstract
The cross-talk between receptor tyrosine kinases and integrin receptors are known to be crucial for a number of cellular functions. On endothelial cells, an interaction between integrin alphavbeta3 and VEGFR2 seems to be particularly important process during vascularization. Importantly, the functional association between VEGFR2 and integrin alphavbeta3 is of reciprocal nature since each receptor is able to promote activation of its counterpart. This mutually beneficial relationship regulates a number of cellular activities involved in angiogenesis, including endothelial cell migration, survival and tube formation, and hematopoietic cell functions within vasculature. This article discusses several possible mechanisms reported by different labs which mediate formation of the complex between VEGFR-2 and alphavbeta3 on endothelial cells. The pathological consequences and regulatory events involved in this receptor cross-talk are also presented.
Collapse
Affiliation(s)
- Payaningal R Somanath
- Joseph J. Jacobs Center for Thrombosis and Vascular Biology, Department of Molecular Cardiology, NB50, Lerner Research Institute, The Cleveland Clinic, 9500 Euclid Avenue, Cleveland, OH 44195, USA
| | | | | |
Collapse
|
94
|
|
95
|
Alghisi GC, Ponsonnet L, Rüegg C. The integrin antagonist cilengitide activates alphaVbeta3, disrupts VE-cadherin localization at cell junctions and enhances permeability in endothelial cells. PLoS One 2009; 4:e4449. [PMID: 19212436 PMCID: PMC2636874 DOI: 10.1371/journal.pone.0004449] [Citation(s) in RCA: 111] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2008] [Accepted: 01/02/2009] [Indexed: 02/04/2023] Open
Abstract
Cilengitide is a high-affinity cyclic pentapeptdic αV integrin antagonist previously reported to suppress angiogenesis by inducing anoikis of endothelial cells adhering through αVβ3/αVβ5 integrins. Angiogenic endothelial cells express multiple integrins, in particular those of the β1 family, and little is known on the effect of cilengitide on endothelial cells expressing αVβ3 but adhering through β1 integrins. Through morphological, biochemical, pharmacological and functional approaches we investigated the effect of cilengitide on αVβ3-expressing human umbilical vein endothelial cells (HUVEC) cultured on the β1 ligands fibronectin and collagen I. We show that cilengitide activated cell surface αVβ3, stimulated phosphorylation of FAK (Y397 and Y576/577), Src (S418) and VE-cadherin (Y658 and Y731), redistributed αVβ3 at the cell periphery, caused disappearance of VE-cadherin from cellular junctions, increased the permeability of HUVEC monolayers and detached HUVEC adhering on low-density β1 integrin ligands. Pharmacological inhibition of Src kinase activity fully prevented cilengitide-induced phosphorylation of Src, FAK and VE-cadherin, and redistribution of αVβ3 and VE-cadherin and partially prevented increased permeability, but did not prevent HUVEC detachment from low-density matrices. Taken together, these observations reveal a previously unreported effect of cilengitide on endothelial cells namely its ability to elicit signaling events disrupting VE-cadherin localization at cellular contacts and to increase endothelial monolayer permeability. These effects are potentially relevant to the clinical use of cilengitide as anticancer agent.
Collapse
Affiliation(s)
- Gian Carlo Alghisi
- Division of Experimental Oncology, Centre Pluridisciplinaire d'Oncologie (CePO), Faculty of Biology and Medicine, University of Lausanne, and NCCR Molecular Oncology, ISREC, Epalinges, Switzerland
| | | | | |
Collapse
|
96
|
Abstract
Angiogenesis plays an important role in the pathophysiology of atherosclerosis and after myocardial infarction. Furthermore, angiogenesis has been the focus of many therapeutic strategies. In view of that, a direct and clear understanding of the role of these pathways in the living subject is needed. Molecular Imaging has emerged as a powerful tool to study biological processes non-invasively. In this review, evidence will be presented and discussed on the feasibility of different molecular imaging strategies to study the involvement of angiogenic pathways in the assessment of the atherosclerotic disease and as a tool to assess angiogenic therapy. Focus will be placed on those imaging modalities with the potential to be translated to clinical use.
Collapse
|
97
|
Battistini L, Burreddu P, Carta P, Rassu G, Auzzas L, Curti C, Zanardi F, Manzoni L, Araldi EMV, Scolastico C, Casiraghi G. 4-Aminoproline-based arginine-glycine-aspartate integrin binders with exposed ligation points: practical in-solution synthesis, conjugation and binding affinity evaluation. Org Biomol Chem 2009; 7:4924-35. [DOI: 10.1039/b914836a] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
98
|
Lijowski M, Caruthers S, Hu G, Zhang H, Scott MJ, Williams T, Erpelding T, Schmieder AH, Kiefer G, Gulyas G, Athey PS, Gaffney PJ, Wickline SA, Lanza GM. High sensitivity: high-resolution SPECT-CT/MR molecular imaging of angiogenesis in the Vx2 model. Invest Radiol 2009; 44:15-22. [PMID: 18836386 PMCID: PMC2703786 DOI: 10.1097/rli.0b013e31818935eb] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVES The use of antiangiogenic therapy in conjunction with traditional chemotherapy is becoming increasingly in cancer management, but the optimal benefit of these targeted pharmaceuticals has been limited to a subset of the population treated. Improved imaging probes that permit sensitive detection and high-resolution characterization of tumor angiogenesis could improve patient risk-benefit stratification. The overarching objective of these experiments was to develop a dual modality alpha(nu)beta3-targeted nanoparticle molecular imaging agent that affords sensitive nuclear detection in conjunction with high-resolution MR characterization of tumor angiogenesis. MATERIALS AND METHODS In part 1, New Zealand white rabbits (n = 21) bearing 14d Vx2 tumor received either alpha(nu)beta3-targeted 99mTc nanoparticles at doses of 11, 22, or 44 MBq/kg, nontargeted 99mTc nanoparticles at 22 MBq/kg, or alpha(nu)beta3-targeted 99mTc nanoparticles (22 MBq/kg) competitively inhibited with unlabeled alpha(nu)beta3-nanoparticles. All animals were imaged dynamically over 2 hours with a planar camera using a pinhole collimator. In part 2, the effectiveness of alpha(nu)beta3-targeted 99mTc nanoparticles in the Vx2 rabbit model was demonstrated using clinical SPECT-CT imaging techniques. Next, MR functionality was incorporated into alpha(nu)beta3-targeted 99mTc nanoparticles by inclusion of lipophilic gadolinium chelates into the outer phospholipid layer, and the concept of high sensitivity - high-resolution detection and characterization of tumor angiogenesis was shown using sequential SPECT-CT and MR molecular imaging with 3D neovascular mapping. RESULTS alpha(nu)beta3-Targeted 99mTc nanoparticles at 22 MBq/kg produced the highest tumor-to-muscle contrast ratio (8.56 +/- 0.13, TMR) versus the 11 MBq/kg (7.32 +/- 0.12) and 44 MBq/kg (6.55 +/- 0.07) doses, (P < 0.05). TMR of nontargeted particles at 22.2 MBq/kg (5.48 +/- 0.09) was less (P < 0.05) than the equivalent dosage of alpha(nu)beta3-targeted 99mTc nanoparticles. Competitively inhibition of 99mTc alpha(nu)beta3-integrin-targeted nanoparticles at 22.2 MBq/kg reduced (P < 0.05) TMR (5.31 +/- 0.06) to the nontargeted control contrast level. Multislice CT imaging could not distinguish the presence of Vx2 tumor implanted in the popliteal fossa from lymph nodes in the same fossa or in the contralateral leg. However, the use of 99mTc alpha(nu)beta3-nanoparticles with SPECT-CT produced a clear neovasculature signal from the tumor that was absent in the nonimplanted hind leg. Using alpha(nu)beta3-targeted 99mTc-gadolinium nanoparticles, the sensitive detection of the Vx2 tumor was extended to allow MR molecular imaging and 3D mapping of angiogenesis in the small tumor, revealing an asymmetrically distributed, patchy neovasculature along the periphery of the cancer. CONCLUSION Dual modality molecular imaging with alpha(nu)beta3-targeted 99mTc-gadolinium nanoparticles can afford highly sensitive and specific localization of tumor angiogenesis, which can be further characterized with high-resolution MR neovascular mapping, which may predict responsiveness to antiangiogenic therapy.
Collapse
Affiliation(s)
| | - Shelton Caruthers
- Washington University Medical School, St Louis, MO
- Philips Healthcare, Andover, MA
| | - Grace Hu
- Washington University Medical School, St Louis, MO
| | | | | | | | - Todd Erpelding
- Washington University Medical School, St Louis, MO
- Philips Research North America, Briarcliff Manor, NY
| | | | | | | | | | | | | | | |
Collapse
|
99
|
Ummanni R, Teller S, Junker H, Zimmermann U, Venz S, Scharf C, Giebel J, Walther R. Altered expression of tumor protein D52 regulates apoptosis and migration of prostate cancer cells. FEBS J 2008; 275:5703-13. [PMID: 18959755 DOI: 10.1111/j.1742-4658.2008.06697.x] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Tumor protein D52 (TPD52) is a protein found to be overexpressed in prostate and breast cancer due to gene amplification. However, its physiological function remains under investigation. In the present study, we investigated the response of the LNCaP human prostate carcinoma cell line to deregulation of TPD52 expression. Proteomic analysis of prostate biopsies showed TPD52 overexpression at the protein level, whereas its transcriptional upregulation was demonstrated by real-time PCR. Transfection of LNCaP cells with a specific small hairpin RNA giving efficient knockdown of TPD52 resulted in significant cell death of the carcinoma LNCaP cells. As demonstrated by activation of caspases (caspase-3 and -9), and by the loss of mitochondrial membrane potential, cell death occurs due to apoptosis. The disruption of the mitochondrial membrane potential indicates that TPD52 acts upstream of the mitochondrial apoptotic reaction. To study the effect of TPD52 expression on cell proliferation, LNCaP cells were either transfected with enhanced green fluorescence protein-TPD52 or a specific small hairpin RNA. Enhanced green fluorescence protein-TPD52 overexpressing cells showed an increased proliferation rate, whereas TPD52-depleted cells showed the reverse effect. Additionally, we demonstrate that exogenous expression of TPD52 promotes cell migration via alphav beta3 integrin in prostate cancer cells through activation of the protein kinase B/Akt signaling pathway. From these results, we conclude that TPD52 plays an important role in various molecular events, particularly in the morphological diversification and dissemination of prostate carcinoma cells, and may be a promising target with respect to developing new therapeutic strategies to treat prostate cancer.
Collapse
Affiliation(s)
- Ramesh Ummanni
- Department of Medical Biochemistry and Molecular Biology, University of Greifswald, Germany
| | | | | | | | | | | | | | | |
Collapse
|
100
|
Engineered cystine-knot peptides that bind alpha(v)beta(3) integrin with antibody-like affinities. J Mol Biol 2008; 385:1064-75. [PMID: 19038268 DOI: 10.1016/j.jmb.2008.11.004] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2008] [Revised: 11/03/2008] [Accepted: 11/05/2008] [Indexed: 11/21/2022]
Abstract
The alpha(v)beta(3) integrin receptor is an important cancer target due to its overexpression on many solid tumors and the tumor neovasculature and its role in metastasis and angiogenesis. We used a truncated form of the Agouti-related protein (AgRP), a 4-kDa cystine-knot peptide with four disulfide bonds and four solvent-exposed loops, as a scaffold for engineering peptides that bound to alpha(v)beta(3) integrins with high affinity and specificity. A yeast-displayed cystine-knot peptide library was generated by substituting a six amino acid loop of AgRP with a nine amino acid loop containing the Arg-Gly-Asp integrin recognition motif and randomized flanking residues. Mutant cystine-knot peptides were screened in a high-throughput manner by fluorescence-activated cell sorting to identify clones with high affinity to detergent-solubilized alpha(v)beta(3) integrin receptor. Select integrin-binding peptides were expressed recombinantly in Pichia pastoris and were tested for their ability to bind to human cancer cells expressing various integrin receptors. These studies showed that the engineered AgRP peptides bound to cells expressing alpha(v)beta(3) integrins with affinities ranging from 15 nM to 780 pM. Furthermore, the engineered peptides were shown to bind specifically to alpha(v)beta(3) integrins and had only minimal or no binding to alpha(v)beta(5), alpha(5)beta(1), and alpha(iib)beta(3) integrins. The engineered AgRP peptides were also shown to inhibit cell adhesion to the extracellular matrix protein vitronectin, which is a naturally occurring ligand for alpha(v)beta(3) and other integrins. Next, to evaluate whether the other three loops of AgRP could modulate integrin specificity, we made second-generation libraries by individually randomizing these loops in one of the high-affinity integrin-binding variants. Screening of these loop-randomized libraries against alpha(v)beta(3) integrins resulted in peptides that retained high affinities for alpha(v)beta(3) and had increased specificities for alpha(v)beta(3) over alpha(iib)beta(3) integrins. Collectively, these data validate AgRP as a scaffold for protein engineering and demonstrate that modification of a single loop can lead to AgRP-based peptides with antibody-like affinities for their target.
Collapse
|