51
|
Sheth P, Seth A, Atkinson K, Gheyi T, Kale G, Giorgianni F, Desiderio D, Li C, Naren A, Rao R. Acetaldehyde dissociates the PTP1B-E-cadherin-beta-catenin complex in Caco-2 cell monolayers by a phosphorylation-dependent mechanism. Biochem J 2007; 402:291-300. [PMID: 17087658 PMCID: PMC1798442 DOI: 10.1042/bj20060665] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Interactions between E-cadherin, beta-catenin and PTP1B (protein tyrosine phosphatase 1B) are crucial for the organization of AJs (adherens junctions) and epithelial cell-cell adhesion. In the present study, the effect of acetaldehyde on the AJs and on the interactions between E-cadherin, beta-catenin and PTP1B was determined in Caco-2 cell monolayers. Treatment of cell monolayers with acetaldehyde induced redistribution of E-cadherin and beta-catenin from the intercellular junctions by a tyrosine phosphorylation-dependent mechanism. The PTPase activity associated with E-cadherin and beta-catenin was significantly reduced and the interaction of PTP1B with E-cadherin and beta-catenin was attenuated by acetaldehyde. Acetaldehyde treatment resulted in phosphorylation of beta-catenin on tyrosine residues, and abolished the interaction of beta-catenin with E-cadherin by a tyrosine kinase-dependent mechanism. Protein binding studies showed that the treatment of cells with acetaldehyde reduced the binding of beta-catenin to the C-terminal region of E-cadherin. Pairwise binding studies using purified proteins indicated that the direct interaction between E-cadherin and beta-catenin was reduced by tyrosine phosphorylation of beta-catenin, but was unaffected by tyrosine phosphorylation of E-cadherin-C. Treatment of cells with acetaldehyde also reduced the binding of E-cadherin to GST (glutathione S-transferase)-PTP1B. The pairwise binding study showed that GST-E-cadherin-C binds to recombinant PTP1B, but this binding was significantly reduced by tyrosine phosphorylation of E-cadherin. Acetaldehyde increased the phosphorylation of beta-catenin on Tyr-331, Tyr-333, Tyr-654 and Tyr-670. These results show that acetaldehyde induces disruption of interactions between E-cadherin, beta-catenin and PTP1B by a phosphorylation-dependent mechanism.
Collapse
Affiliation(s)
- Parimal Sheth
- *Department of Physiology, University of Tennessee Health Science Center, University of Memphis, Memphis, TN 38163, U.S.A
| | - Ankur Seth
- *Department of Physiology, University of Tennessee Health Science Center, University of Memphis, Memphis, TN 38163, U.S.A
| | - Katherine J. Atkinson
- *Department of Physiology, University of Tennessee Health Science Center, University of Memphis, Memphis, TN 38163, U.S.A
| | - Tarun Gheyi
- †Department of Chemistry, University of Tennessee Health Science Center, University of Memphis, Memphis, TN 38163, U.S.A
| | - Gautam Kale
- *Department of Physiology, University of Tennessee Health Science Center, University of Memphis, Memphis, TN 38163, U.S.A
| | - Francesco Giorgianni
- ‡Department of Neurology, University of Tennessee Health Science Center, University of Memphis, Memphis, TN 38163, U.S.A
- §Charles B. Stout Neuroscience Mass Spectrometry Laboratory, University of Tennessee Health Science Center, University of Memphis, Memphis, TN 38163, U.S.A
| | - Dominic M. Desiderio
- ‡Department of Neurology, University of Tennessee Health Science Center, University of Memphis, Memphis, TN 38163, U.S.A
- §Charles B. Stout Neuroscience Mass Spectrometry Laboratory, University of Tennessee Health Science Center, University of Memphis, Memphis, TN 38163, U.S.A
- ∥Department of Molecular Sciences, University of Tennessee Health Science Center, University of Memphis, Memphis, TN 38163, U.S.A
| | - Chunying Li
- *Department of Physiology, University of Tennessee Health Science Center, University of Memphis, Memphis, TN 38163, U.S.A
| | - Anjaparavanda Naren
- *Department of Physiology, University of Tennessee Health Science Center, University of Memphis, Memphis, TN 38163, U.S.A
| | - Radhakrishna Rao
- *Department of Physiology, University of Tennessee Health Science Center, University of Memphis, Memphis, TN 38163, U.S.A
- †Department of Chemistry, University of Tennessee Health Science Center, University of Memphis, Memphis, TN 38163, U.S.A
- To whom correspondence should be addressed (email )
| |
Collapse
|
52
|
Brusés JL. N-cadherin signaling in synapse formation and neuronal physiology. Mol Neurobiol 2007; 33:237-52. [PMID: 16954598 DOI: 10.1385/mn:33:3:237] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2005] [Revised: 11/30/1999] [Accepted: 02/22/2006] [Indexed: 11/11/2022]
Abstract
Neural cadherin (N-cadherin) is an adhesion receptor that is localized in abundance at neuronto- neuron synapses. N-cadherin contains an extracellular domain that binds to other cadherins on juxtaposed cell membranes, a single-pass transmembrane region, and a cytoplasmic tail that interacts with various proteins, including catenins, kinases, phosphatases, and presenilin 1. N-cadherin contributes to the structural and functional organization of the synaptic complex by ensuring the adhesion between synaptic membranes and organizing the underlying actin cytoskeleton. Additionally, recent findings have shown that N-cadherin may participate in synaptic physiology by regulating calcium influx through voltage-activated calcium currents. The diverse activities of N-cadherin stem from its ability to operate as both an adhesion molecule that links cytoskeletons across cell membranes and a ligand-activated homophilic receptor capable of initiating intracellular signaling. An important mechanism of cadherin signaling is the regulation of small Rho guanosine triphosphatase activity that affects cytoskeleton dynamics and calcium influx. Because both the regulation of cadherin adhesive activity and cadherin-mediated signaling are affected by the binding of molecules to the intracellular domain, changes in the composition of the N-cadherin complex are central to the regulation of cadherin-mediated functions. This article focuses on the roles that N-cadherin might play at the level of the synapse through its effect on adhesion and signaling in the proximity of the synaptic junction.
Collapse
Affiliation(s)
- Juan L Brusés
- Department of Anatomy and Cell Biology, Kansas University Medical Center, Kansas City, KS, USA.
| |
Collapse
|
53
|
Oblander SA, Ensslen-Craig SE, Longo FM, Brady-Kalnay SM. E-cadherin promotes retinal ganglion cell neurite outgrowth in a protein tyrosine phosphatase-mu-dependent manner. Mol Cell Neurosci 2007; 34:481-92. [PMID: 17276081 PMCID: PMC1853338 DOI: 10.1016/j.mcn.2006.12.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2006] [Revised: 12/01/2006] [Accepted: 12/06/2006] [Indexed: 10/23/2022] Open
Abstract
During development of the visual system, retinal ganglion cells (RGCs) require cell-cell adhesion molecules and extracellular matrix proteins for axon growth. In this study, we demonstrate that the classical cadherin, E-cadherin, is expressed in RGCs from E6 to E12 and promotes neurite outgrowth from all regions of the chick retina at E6, E8 and E10. E-cadherin is also expressed in the optic tectum. E-cadherin adhesion blocking antibodies specifically inhibit neurite outgrowth on an E-cadherin substrate. The receptor-type protein tyrosine phosphatase, PTPmu, associates with E-cadherin. In this manuscript, we demonstrate that antisense-mediated down-regulation of PTPmu, overexpression of catalytically inactive PTPmu and perturbation of endogenous PTPmu using a specific PTPmu inhibitor peptide results in a substantial reduction in neurite outgrowth on E-cadherin. Taken together, these findings demonstrate that E-cadherin is an important adhesion molecule for chick RGC neurite outgrowth and suggest that PTPmu expression and catalytic activity are required for outgrowth on an E-cadherin substrate.
Collapse
Affiliation(s)
| | | | - Frank M. Longo
- Department of Neurology and Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305 USA
| | - Susann M. Brady-Kalnay
- *Corresponding Author: Susann M. Brady-Kalnay, Department of Molecular Biology and Microbiology, School of Medicine, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106-4960, Phone: 216-368-0330, Fax: 216-368-3055, E-mail:
| |
Collapse
|
54
|
Siu R, Fladd C, Rotin D. N-cadherin is an in vivo substrate for protein tyrosine phosphatase sigma (PTPsigma) and participates in PTPsigma-mediated inhibition of axon growth. Mol Cell Biol 2006; 27:208-19. [PMID: 17060446 PMCID: PMC1800655 DOI: 10.1128/mcb.00707-06] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Protein tyrosine phosphatase sigma (PTPsigma) belongs to the LAR family of receptor tyrosine phosphatases and was previously shown to negatively regulate axon growth. The substrate for PTPsigma and the effector(s) mediating this inhibitory effect were unknown. Here we report the identification of N-cadherin as an in vivo substrate for PTPsigma. Using brain lysates from PTPsigma knockout mice, in combination with substrate trapping, we identified a hyper-tyrosine-phosphorylated protein of approximately 120 kDa in the knockout animals (relative to sibling controls), which was identified by mass spectrometry and immunoblotting as N-cadherin. beta-Catenin also precipitated in the complex and was also a substrate for PTPsigma. Dorsal root ganglion (DRG) neurons, which highly express endogenous N-cadherin and PTPsigma, exhibited a faster growth rate in the knockout mice than in the sibling controls when grown on laminin or N-cadherin substrata. However, when N-cadherin function was disrupted by an inhibitory peptide or lowering calcium concentrations, the differential growth rate between the knockout and sibling control mice was greatly diminished. These results suggest that the elevated tyrosine phosphorylation of N-cadherin in the PTPsigma(-/-) mice likely disrupted N-cadherin function, resulting in accelerated DRG nerve growth. We conclude that N-cadherin is a physiological substrate for PTPsigma and that N-cadherin (and likely beta-catenin) participates in PTPsigma-mediated inhibition of axon growth.
Collapse
Affiliation(s)
- Roberta Siu
- Program in Cell Biology, The Hospital for Sick Children, 555 University Avenue, Toronto M5G 1X8, Ontario, Canada
| | | | | |
Collapse
|
55
|
Besco JA, Hooft van Huijsduijnen R, Frostholm A, Rotter A. Intracellular substrates of brain-enriched receptor protein tyrosine phosphatase rho (RPTPrho/PTPRT). Brain Res 2006; 1116:50-7. [PMID: 16973135 DOI: 10.1016/j.brainres.2006.07.122] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2005] [Revised: 07/15/2006] [Accepted: 07/29/2006] [Indexed: 01/06/2023]
Abstract
Receptor protein tyrosine phosphatase rho (RPTPrho/PTPRT) is a transmembrane protein that is highly expressed in the developing and adult central nervous system. It is a member of the RPTP R2B subfamily, which includes PTPkappa, PTPmu and PCP-2. Glutathione-S-transferase (GST) pulldown assays were used to show that RPTPrho interacts with several adherens junctional proteins in brain, including E-cadherin, N-cadherin, VE-cadherin (cadherin-5), desmoglein, alpha, beta and gamma catenin, p120(ctn) and alpha-actinin. With the exception of E-cadherin and alpha-actinin, binding was considerably reduced at high sodium concentrations. Furthermore, immunoprecipitation phosphatase assays indicated that E-cadherin, and to a far lesser extent p120(ctn), were tyrosine dephosphorylated by a recombinant RPTPrho intracellular fragment, and thus, were likely to be primary substrates for RPTPrho. The interaction of RPTPrho with adherens junctional components suggests that this phosphatase may transduce extracellular signals to the actin cytoskeleton and thereby play a role in regulating cadherin-mediated cell adhesion in the central nervous system.
Collapse
Affiliation(s)
- Julie A Besco
- Department of Pharmacology, The Ohio State University, 333 W 10th Ave., Columbus, OH 43210, USA.
| | | | | | | |
Collapse
|
56
|
Gao L, Miller RH. Specification of optic nerve oligodendrocyte precursors by retinal ganglion cell axons. J Neurosci 2006; 26:7619-28. [PMID: 16855089 PMCID: PMC6674293 DOI: 10.1523/jneurosci.0855-06.2006] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Cell fate commitment in the developing CNS frequently depends on localized cell-cell interactions. In the avian visual system the optic nerve oligodendrocytes are derived from founder cells located at the floor of the third ventricle. Here we show that the induction of these founder cells is directly dependent on signaling from the retinal ganglion cell (RGC) axons. The appearance of oligodendrocyte precursor cells (OPCs) correlates with the projection of RGC axons, and early eye removal dramatically reduces the number of OPCs. In vitro signaling from retinal neurites induces OPCs in responsive tissue. Retinal axon induction of OPCs is dependent on sonic hedgehog (Shh) and neuregulin signaling, and the inhibition of either signal reduces OPC induction in vivo and in vitro. The dependence of OPCs on retinal axonal cues appears to be a common phenomenon, because ocular retardation (or(J)) mice lacking optic nerve have dramatically reduced OPCs in the midline of the third ventricle.
Collapse
|
57
|
Choe KM, Prakash S, Bright A, Clandinin TR. Liprin-alpha is required for photoreceptor target selection in Drosophila. Proc Natl Acad Sci U S A 2006; 103:11601-6. [PMID: 16864799 PMCID: PMC1544216 DOI: 10.1073/pnas.0601185103] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Classical cadherin-mediated interactions between axons and dendrites are critical to target selection and synapse assembly. However, the molecular mechanisms by which these interactions are controlled are incompletely understood. In the Drosophila visual system, N-cadherin is required in both photoreceptor (R cell) axons and their targets to mediate stabilizing interactions required for R cell target selection. Here we identify the scaffolding protein Liprin-alpha as a critical component in this process. We isolated mutations in Liprin-alpha in a genetic screen for mutations affecting the pattern of synaptic connections made by R1-R6 photoreceptors. Using eye-specific mosaics, we demonstrate a previously undescribed, axonal function for Liprin-alpha in target selection: Liprin-alpha is required to be cell-autonomous in all subtypes of R1-R6 cells for their axons to reach their targets. Because Liprin-alpha, the receptor tyrosine phosphatase LAR, and N-cadherin share qualitatively similar mutant phenotypes in R1-R6 cells and are coexpressed in R cells and their synaptic targets, we infer that these three genes act at the same step in the targeting process. However, unlike N-cadherin, neither Liprin-alpha nor LAR is required postsynaptically for R cells to project to their correct targets. Thus, these two proteins, unlike N-cadherin, are functionally asymmetric between axons and dendrites. We propose that the adhesive mechanisms that link pre- and postsynaptic cells before synapse formation may be differentially regulated in these two compartments.
Collapse
Affiliation(s)
- Kwang-Min Choe
- *Department of Neurobiology, 299 West Campus Drive, Stanford University, Stanford, CA 94305; and
- Department of Biology, Yonsei University, 134 Shinchon-dong, Seodaemun-gu, Seoul 120-749, South Korea
| | - Saurabh Prakash
- *Department of Neurobiology, 299 West Campus Drive, Stanford University, Stanford, CA 94305; and
| | - Ali Bright
- *Department of Neurobiology, 299 West Campus Drive, Stanford University, Stanford, CA 94305; and
| | - Thomas R. Clandinin
- *Department of Neurobiology, 299 West Campus Drive, Stanford University, Stanford, CA 94305; and
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
58
|
Abstract
Tyrosine phosphorylation is an important signalling mechanism in eukaryotic cells. In cancer, oncogenic activation of tyrosine kinases is a common feature, and novel anticancer drugs have been introduced that target these enzymes. Tyrosine phosphorylation is also controlled by protein-tyrosine phosphatases (PTPs). Recent evidence has shown that PTPs can function as tumour suppressors. In addition, some PTPs, including SHP2, positively regulate the signalling of growth-factor receptors, and can be oncogenic. An improved understanding of how these enzymes function and how they are regulated might aid the development of new anticancer agents.
Collapse
Affiliation(s)
- Arne Ostman
- Cancer Center Karolinska, Department of Pathology and Oncology, Karolinska Institutet, Stockholm, Sweden
| | | | | |
Collapse
|
59
|
Yan HX, Yang W, Zhang R, Chen L, Tang L, Zhai B, Liu SQ, Cao HF, Man XB, Wu HP, Wu MC, Wang HY. Protein-tyrosine phosphatase PCP-2 inhibits beta-catenin signaling and increases E-cadherin-dependent cell adhesion. J Biol Chem 2006; 281:15423-33. [PMID: 16574648 DOI: 10.1074/jbc.m602607200] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
beta-Catenin is a key molecule involved in both cell adhesion and Wnt signaling pathway. However, the exact relationship between these two roles has not been clearly elucidated. Tyrosine phosphorylation of beta-catenin was shown to decrease its binding to E-cadherin, leading to decreased cell adhesion and increased beta-catenin signaling. We have previously shown that receptor-like protein-tyrosine phosphatase PCP-2 localizes to the adherens junctions and directly binds and dephosphorylates beta-catenin, suggesting that PCP-2 might regulate the balance between signaling and adhesive beta-catenin. Here we demonstrate that PCP-2 can inhibit both the wild-type and constitutively active forms of beta-catenin in activating target genes such as c-myc. The phosphatase activity of PCP-2 is required for this effect since loss of catalytic activity attenuates its inhibitory effect on beta-catenin activation. Expression of PCP-2 in SW480 colon cancer cells can lead to stabilization of cytosolic pools of beta-catenin perhaps, by virtue of their physical interaction. PCP-2 expression also leads to increased membrane-bound E-cadherin and greater stabilization of adherens junctions by dephosphorylation of beta-catenin, which could further sequester cytosolic beta-catenin and thus inhibit beta-catenin mediated nuclear signaling. Furthermore, SW480 cells stably expressing PCP-2 have a reduced ability to proliferate and migrate. Thus, PCP-2 may play an important role in the maintenance of epithelial integrity, and a loss of its regulatory function may be an alternative mechanism for activating beta-catenin signaling.
Collapse
Affiliation(s)
- He-Xin Yan
- International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery Institute, Second Military Medical University, Shanghai 200438
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Sallee JL, Wittchen ES, Burridge K. Regulation of cell adhesion by protein-tyrosine phosphatases: II. Cell-cell adhesion. J Biol Chem 2006; 281:16189-92. [PMID: 16497667 DOI: 10.1074/jbc.r600003200] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Cell-cell adhesion is critical to the development and maintenance of multicellular organisms. The stability of many adhesions is regulated by protein tyrosine phosphorylation of cell adhesion molecules and their associated components, with high levels of phosphorylation promoting disassembly. The level of tyrosine phosphorylation reflects the balance between protein-tyrosine kinase and protein-tyrosine phosphatase activity. Many protein-tyrosine phosphatases associate with the cadherin-catenin complex, directly regulating the phosphorylation of these proteins, thereby affecting their interactions and the integrity of cell-cell junctions. Tyrosine phosphatases can also affect cell-cell adhesions indirectly by regulating the signaling pathways that control the activities of Rho family G proteins. In addition, receptor-type tyrosine phosphatases can mediate outside-in signaling through both ligand binding and dimerization of their extracellular domains. This review will discuss the role of protein-tyrosine phosphatases in cell-cell interactions, with an emphasis on cadherin-mediated adhesions.
Collapse
Affiliation(s)
- Jennifer L Sallee
- Department of Cell and Developmental Biology and Lineberger Cancer Center, University of North Carolina, Chapel Hill, NC 27599-7295, USA
| | | | | |
Collapse
|
61
|
Roitbak T, Surviladze Z, Tikkanen R, Wandinger-Ness A. A polycystin multiprotein complex constitutes a cholesterol-containing signalling microdomain in human kidney epithelia. Biochem J 2006; 392:29-38. [PMID: 16038619 PMCID: PMC1317661 DOI: 10.1042/bj20050645] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Polycystins are plasma membrane proteins that are expressed in kidney epithelial cells and associated with the progression of ADPKD (autosomal dominant polycystic kidney disease). A polycystin multiprotein complex, including adherens junction proteins, is thought to play an important role in cell polarity and differentiation. Sucrose gradient analyses and immunoprecipitation studies of primary human kidney epithelial cells showed the polycystins and their associated proteins E-cadherin and beta-catenin distributed in a complex with the raft marker flotillin-2, but not caveolin-1, in high-density gradient fractions. The integrity of the polycystin multiprotein complex was sensitive to cholesterol depletion, as shown by cyclodextrin treatment of immunoprecipitated complexes. The overexpressed C-terminus of polycystin-1 retained the ability to associate with flotillin-2. Flotillin-2 was found to contain CRAC (cholesterol recognition/interaction amino acid) cholesterol-binding domains and to promote plasma membrane cholesterol recruitment. Based on co-association of signalling molecules, such as Src kinases and phosphatases, we propose that the polycystin multiprotein complex is embedded in a cholesterol-containing signalling microdomain specified by flotillin-2, which is distinct from classical light-buoyant-density, detergent-resistant domains.
Collapse
Affiliation(s)
- Tamara Roitbak
- *Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, U.S.A
| | - Zurab Surviladze
- *Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, U.S.A
| | - Ritva Tikkanen
- †Institute of Biochemistry II, Medical School, University of Frankfurt, Theodor-Stern-Kai 7, D-60590 Frankfurt am Main, Germany
| | - Angela Wandinger-Ness
- *Department of Pathology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, U.S.A
- To whom correspondence should be addressed (email )
| |
Collapse
|
62
|
Phillips-Mason PJ, Gates TJ, Major DL, Sacks DB, Brady-Kalnay SM. The Receptor Protein-tyrosine Phosphatase PTPμ Interacts with IQGAP1. J Biol Chem 2006; 281:4903-10. [PMID: 16380380 DOI: 10.1074/jbc.m506414200] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The receptor protein-tyrosine phosphatase PTPmu is a member of the Ig superfamily of cell adhesion molecules. The extracellular domain of PTPmu contains motifs commonly found in cell adhesion molecules. The intracellular domain of PTPmu contains two conserved catalytic domains, only the membrane-proximal domain has catalytic activity. The unique features of PTPmu make it an attractive molecule to transduce signals upon cell-cell contact. PTPmu has been shown to regulate cadherin-mediated cell adhesion, neurite outgrowth, and axon guidance. Protein kinase C is a component of the PTPmu signaling pathway utilized to regulate these events. To aid in the further characterization of PTPmu signaling pathways, we used a series of GST-PTPmu fusion proteins, including catalytically inactive and substrate trapping mutants, to identify PTPmu-interacting proteins. We identified IQGAP1, a known regulator of the Rho GTPases, Cdc42 and Rac1, as a novel PTPmu-interacting protein. We show that this interaction is due to direct binding. In addition, we demonstrate that amino acid residues 765-958 of PTPmu, which include the juxtamembrane domain and 35 residues of the first phosphatase domain, mediate the binding to IQGAP1. Furthermore, we demonstrate that constitutively active Cdc42, and to a lesser extent Rac1, enhances the interaction of PTPmu and IQGAP1. These data indicate PTPmu may regulate Rho-GTPase-dependent functions of IQGAP1 and suggest that IQGAP1 is a component of the PTPmu signaling pathway. In support of this, we show that a peptide that competes IQGAP1 binding to Rho GTPases blocks PTPmu-mediated neurite outgrowth.
Collapse
Affiliation(s)
- Polly J Phillips-Mason
- Department of Molecular Biology and Microbiology, School of Medicine, Case Western Reserve University, Cleveland, Ohio 44106-4960, USA
| | | | | | | | | |
Collapse
|
63
|
Vogelmann R, Nguyen-Tat MD, Giehl K, Adler G, Wedlich D, Menke A. TGFbeta-induced downregulation of E-cadherin-based cell-cell adhesion depends on PI3-kinase and PTEN. J Cell Sci 2006; 118:4901-12. [PMID: 16219695 DOI: 10.1242/jcs.02594] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Transforming growth factor beta (TGFbeta) has profound growth-suppressive effects on normal epithelial cells, but supports metastasis formation in many tumour types. In most epithelial tumour cells TGFbeta(1) treatment results in epithelial dedifferentiation with reduced cell aggregation and enhanced cellular migration. Here we show that the epithelial dedifferentiation, accompanied by dissociation of the E-cadherin adhesion complex, induced by TGFbeta(1) depended on phosphatidylinositol 3-kinase (PI3-kinase) and the phosphatase PTEN as analysed in PANC-1 and Smad4-deficient BxPC-3 pancreatic carcinoma cells. TGFbeta(1) treatment enhanced tyrosine phosphorylation of alpha- and beta-catenin, which resulted in dissociation of the E-cadherin/catenin complex from the actin cytoskeleton and reduced cell-cell adhesion. The PI3-kinase and PTEN were found associated with the E-cadherin/catenin complex via beta-catenin. TGFbeta(1) treatment reduced the amount of PTEN bound to beta-catenin and markedly increased the tyrosine phosphorylation of beta-catenin. By contrast, forced expression of PTEN clearly reduced the TGFbeta(1)-induced phosphorylation of beta-catenin. The TGFbeta(1)-induced beta-catenin phosphorylation was also dependent on PI3-kinase and Ras activity. The described effects of TGFbeta(1) were independent of Smad4, which is homozygous deleted in BxPC-3 cells. Collectively, these data show that the TGFbeta(1)-induced destabilisation of E-cadherin-mediated cell-cell adhesion involves phosphorylation of beta-catenin, which is regulated by E-cadherin adhesion complex-associated PI3-kinase and PTEN.
Collapse
Affiliation(s)
- Roger Vogelmann
- Department of Internal Medicine I, University of Ulm, Robert-Koch-Strasse 8, 89070 Ulm, Germany
| | | | | | | | | | | |
Collapse
|
64
|
Abstract
The microvascular endothelial cell monolayer localized at the critical interface between the blood and vessel wall has the vital functions of regulating tissue fluid balance and supplying the essential nutrients needed for the survival of the organism. The endothelial cell is an exquisite “sensor” that responds to diverse signals generated in the blood, subendothelium, and interacting cells. The endothelial cell is able to dynamically regulate its paracellular and transcellular pathways for transport of plasma proteins, solutes, and liquid. The semipermeable characteristic of the endothelium (which distinguishes it from the epithelium) is crucial for establishing the transendothelial protein gradient (the colloid osmotic gradient) required for tissue fluid homeostasis. Interendothelial junctions comprise a complex array of proteins in series with the extracellular matrix constituents and serve to limit the transport of albumin and other plasma proteins by the paracellular pathway. This pathway is highly regulated by the activation of specific extrinsic and intrinsic signaling pathways. Recent evidence has also highlighted the importance of the heretofore enigmatic transcellular pathway in mediating albumin transport via transcytosis. Caveolae, the vesicular carriers filled with receptor-bound and unbound free solutes, have been shown to shuttle between the vascular and extravascular spaces depositing their contents outside the cell. This review summarizes and analyzes the recent data from genetic, physiological, cellular, and morphological studies that have addressed the signaling mechanisms involved in the regulation of both the paracellular and transcellular transport pathways.
Collapse
Affiliation(s)
- Dolly Mehta
- Center of Lung and Vascular Biology, Dept. of Pharmacology (M/C 868), University of Illinois, 835 S. Wolcott Avenue, Chicago, IL 60612, USA
| | | |
Collapse
|
65
|
Qi J, Wang J, Romanyuk O, Siu CH. Involvement of Src family kinases in N-cadherin phosphorylation and beta-catenin dissociation during transendothelial migration of melanoma cells. Mol Biol Cell 2005; 17:1261-72. [PMID: 16371504 PMCID: PMC1382315 DOI: 10.1091/mbc.e05-10-0927] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
N-cadherin is recruited to the heterotypic contact during transendothelial migration of melanoma cells in a coculture system with tumor cells seeded on top of a monolayer of endothelial cells. However, beta-catenin dissociates from N-cadherin and redistributes to the nucleus of transmigrating melanoma cells to activate gene transcription. In this report, we demonstrate that Src becomes activated at the heterotypic contact between the transmigrating melanoma cell and neighboring endothelial cells. Src activation shows close temporal correlation with tyrosine phosphorylation of N-cadherin. Expression of a dominant-negative Src in melanoma cells blocks N-cadherin phosphorylation, beta-catenin dissociation, and nuclear translocation in transmigrating cells, consistent with the involvement of Src family kinases. In in vitro binding assays, Src-mediated phosphorylation of the N-cadherin cytoplasmic domain results in a significant reduction in beta-catenin binding. Although five phospho-tyrosine residues can be identified on the N-cadherin cytoplasmic domain by mass spectrometry, site-specific mutagenesis indicates that Tyr-860 is the critical amino acid involved in beta-catenin binding. Overexpression of N-cadherin carrying the Y860F mutation inhibits the transmigration of transfected cells across the endothelium. Together, the data suggest a novel role for tyrosine phosphorylation of N-cadherin by Src family kinases in the regulation of beta-catenin association during transendothelial migration of melanoma cells.
Collapse
Affiliation(s)
- Jianfei Qi
- Banting and Best Department of Medical Research, University of Toronto, Toronto, Ontario M5G 1L6, Canada
| | | | | | | |
Collapse
|
66
|
Schnekenburger J, Mayerle J, Krüger B, Buchwalow I, Weiss FU, Albrecht E, Samoilova VE, Domschke W, Lerch MM. Protein tyrosine phosphatase kappa and SHP-1 are involved in the regulation of cell-cell contacts at adherens junctions in the exocrine pancreas. Gut 2005; 54:1445-55. [PMID: 15987791 PMCID: PMC1774702 DOI: 10.1136/gut.2004.063164] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND We have previously shown that cell contacts between pancreatic acinar cells dissociate early in pancreatitis and that this is a prerequisite for the development of pancreatic oedema. Here we studied the underlying mechanism. METHODS Employing experimental caerulein induced pancreatitis in vivo and isolated pancreatic acini ex vivo, in conjunction with protein chemistry, morphology, and electron microscopy, we determined whether cell contact regulation in the pancreas requires or involves: (1) changes in cadherin-catenin protein expression, (2) tyrosine phosphorylation of adhesion proteins, or (3) alterations in the actin cytoskeleton. RESULTS During initial cell-cell contact dissociation at adherens junctions, expression of adhesion proteins remained stable. At time points of dissociated adherens junctions, the cadherin-catenin complex was found to be tyrosine phosphorylated and internalised. The receptor type protein tyrosine phosphatase (PTP)kappa was constitutively associated with the cadherin-catenin complex at intact cell contacts whereas following the dissociation of adherens junctions, the internalised components of the cadherin-catenin complex were tyrosine phosphorylated and associated with the cytosolic PTP SHP-1. In isolated acini, inhibition of endogenous protein tyrosine phosphatases alone was sufficient to induce dissociation of adherens junctions analogous to that found with supramaximal caerulein stimulation. Dissociation of actin microfilaments had no effect on adherens junction integrity. CONCLUSIONS These data identify tyrosine phosphorylation as the key regulator for cell contacts at adherens junctions and suggest a definitive role for the protein tyrosine phosphatases PTPkappa and SHP-1 in the regulation, maintenance, and restitution of cell adhesions in a complex epithelial organ such as the pancreas.
Collapse
Affiliation(s)
- J Schnekenburger
- Department of Medicine B, Westfälische Wilhelms-Universität Münster, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
67
|
Murphy AM, Sheils OM, McDonald GSA, Kelleher DP. Detection of a tyrosine phosphatase LAR on intestinal epithelial cells and intraepithelial lymphocytes in the human duodenum. Mediators Inflamm 2005; 2005:23-30. [PMID: 15770063 PMCID: PMC1513056 DOI: 10.1155/mi.2005.23] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Studies of tyrosine phosphorylation in the human duodenum have
indicated that proliferating cells in the middle portion of the
duodenal crypt were devoid of this feature, suggesting that
tyrosine kinase activation is not a dominant factor in crypt cell
proliferation, and that consequently tyrosine phosphatase
activity may be a more critical factor in crypt cell development.
We investigated the expression of the leukocyte common
antigen-related receptor (LAR) family of tyrosine phosphatases. A
flow cytometry system was used to examine cells from the surface,
mid-portion, and lower part of the crypt. Individual cell
populations were immunostained with anti-LAR antibodies using
phycoerythrin-conjugated anti-CD3 to discriminate between
epithelial cells (CD3−) and intraepithelial
lymphocytes (CD3+). Epithelial cells expressed LAR
throughout the crypt. Expression of LAR was maximal in the
mid-portion of the crypt with lower expression at the top of the
villi. Intraepithelial lymphocytes expressed low levels of LAR at
the tips of the villi with stronger expression extending towards
the base of the crypt. These findings were confirmed by
immunohistochemistry on paraffin-fixed sections. Of note,
peripheral blood lymphocytes expressed less LAR than IEL. These
observations suggest the possibility that tyrosine phosphatase
LAR may be of importance in the regulation of crypt cell
proliferation. Moreover, as the extracellular domain of LAR has
homology with adhesion molecules, the finding of this molecule on
IEL could suggest a possible functional role in homing of this
unique lymphocyte.
Collapse
Affiliation(s)
- Anne M. Murphy
- Department of Clinical
Medicine, Institute of Molecular Medicine, Trinity Centre for
Health Sciences, Saint James Hospital, Dublin 8,
Ireland
| | - Orla M. Sheils
- Department of
Histopathology, Institute of Molecular Medicine, Trinity Centre
for Health Sciences, Saint James Hospital, Dublin 8,
Ireland
| | - George S. A. McDonald
- Department of
Histopathology, Institute of Molecular Medicine, Trinity Centre
for Health Sciences, Saint James Hospital, Dublin 8,
Ireland
| | - Dermot P. Kelleher
- Department of Clinical
Medicine, Institute of Molecular Medicine, Trinity Centre for
Health Sciences, Saint James Hospital, Dublin 8,
Ireland
- * Dermot P. Kelleher;
| |
Collapse
|
68
|
Rubio ME, Curcio C, Chauvet N, Brusés JL. Assembly of the N-cadherin complex during synapse formation involves uncoupling of p120-catenin and association with presenilin 1. Mol Cell Neurosci 2005; 30:118-30. [PMID: 16046145 DOI: 10.1016/j.mcn.2005.06.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2005] [Revised: 05/17/2005] [Accepted: 06/14/2005] [Indexed: 01/04/2023] Open
Abstract
N-cadherin is an adhesion receptor that participates in both interaction between immature pre- and postsynaptic neurons and in the stabilization and function of matured neuron-neuron synapses. To better understand how the N-cadherin complex contributes to synapse formation, we examined its distribution and composition during synapse formation in the chick ciliary neurons. It was found that at early phases of synaptogenesis, N-cadherin is distributed in small clusters on the cell surface and primarily associates with p120-catenin and beta-catenin. In contrast, as synaptic contacts matured, larger N-cadherin clusters were found localized adjacent to the active zone and associated with PS1 and gamma-catenin, while p120- and beta-catenin were dispersed among other cell regions, including axons. As it is known that PS1 binds gamma-catenin and that uncoupled p120-catenin can alter the cytoskeleton via its effect on Rho GTPases, these changes in the molecular composition of the N-cadherin complex (represented by the uncoupling of p120-catenin and association with PS1) may correspond to distinct functional states of the complex involved in synaptic maturation.
Collapse
Affiliation(s)
- Maria E Rubio
- Department of Physiology and Neurobiology, The University of Connecticut, 3107 Horsebarn Hill Road, Storrs, CT 06269, USA
| | | | | | | |
Collapse
|
69
|
Abstract
Cadherin cell-adhesion proteins mediate many facets of tissue morphogenesis. The dynamic regulation of cadherins in response to various extracellular signals controls cell sorting, cell rearrangements and cell movements. Cadherins are regulated at the cell surface by an inside-out signalling mechanism that is analogous to the integrins in platelets and leukocytes. Signal-transduction pathways impinge on the catenins (cytoplasmic cadherin-associated proteins), which transduce changes across the membrane to alter the state of the cadherin adhesive bond.
Collapse
Affiliation(s)
- Barry M Gumbiner
- Department of Cell Biology, University of Virginia, School of Medicine, PO BOX 800732, Charlottesville, Virginia 22908-0732, USA.
| |
Collapse
|
70
|
Khew-Goodall Y, Wadham C. A Perspective on Regulation of Cell-Cell Adhesion and Epithelial-Mesenchymal Transition: Known and Novel. Cells Tissues Organs 2005; 179:81-6. [PMID: 15942196 DOI: 10.1159/000084512] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
A number of recent reviews in the field have described many of the known growth factors and signalling pathways that may be involved in regulating epithelial-mesenchymal transitions. This perspective will focus on some aspects of posttranslational regulation of cell-cell adhesion that are less well understood and their potential role in initiating epithelial-mesenchymal transitions. In addition, a potential novel intermediate in the signalling pathway of epithelial-mesenchymal transition will also be described.
Collapse
Affiliation(s)
- Yeesim Khew-Goodall
- Division of Human Immunology, Hanson Institute, Institute of Medical and Veterinary Science, Adelaide, Australia.
| | | |
Collapse
|
71
|
Ensslen-Craig SE, Brady-Kalnay SM. PTP mu expression and catalytic activity are required for PTP mu-mediated neurite outgrowth and repulsion. Mol Cell Neurosci 2005; 28:177-88. [PMID: 15607952 DOI: 10.1016/j.mcn.2004.08.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2004] [Revised: 08/10/2004] [Accepted: 08/25/2004] [Indexed: 12/22/2022] Open
Abstract
Cell adhesion molecules (CAMs) regulate neural development via both homophilic and heterophilic binding interactions. Various members of the receptor protein tyrosine phosphatase (RPTP) subfamily of CAMs mediate neurite outgrowth, yet in many cases, their ligands remain unknown. However, the PTP mu subfamily members are homophilic binding proteins. PTP mu is a growth-permissive substrate for nasal retinal ganglion cell (RGC) neurites and a growth inhibitory substrate for temporal RGC neurites. Whether PTP mu regulates these distinct behaviors via homophilic or heterophilic binding interactions is not currently known. In this manuscript, we demonstrate that PTP mu influences RGC axon guidance behaviors only in the E8 retina and not earlier in development. In addition, we demonstrate that PTP mu is permissive only for neurites from ventral-nasal retina and is repulsive to neurites from all other retinal quadrants. Furthermore, we show that PTP mu-mediated nasal neurite outgrowth and temporal repulsion require PTP mu expression and catalytic activity. These results are consistent with PTP mu homophilic binding generating a tyrosine phosphatase-dependent signal that ultimately leads to axon outgrowth or repulsion and that PTP mu's role in regulating axon guidance may be tightly regulated developmentally. In summary, these data demonstrate that PTP mu expression and catalytic activity are important in vertebrate axon guidance.
Collapse
Affiliation(s)
- Sonya E Ensslen-Craig
- Department of Neurosciences, Case Western Reserve University, School of Medicine, Cleveland, OH 44106-7960, USA
| | | |
Collapse
|
72
|
Verin AD. Tyrosine phosphorylation and endothelial cell barrier regulation. THE AMERICAN JOURNAL OF PATHOLOGY 2005; 166:955-7. [PMID: 15793276 PMCID: PMC1602377 DOI: 10.1016/s0002-9440(10)62316-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Alexander D Verin
- The Johns Hopkins Asthma and Allergy Center, 5501 Hopkins Bayview Circle, 5A.50B, Baltimore, MD 21224-6801, USA.
| |
Collapse
|
73
|
Sui XF, Kiser TD, Hyun SW, Angelini DJ, Del Vecchio RL, Young BA, Hasday JD, Romer LH, Passaniti A, Tonks NK, Goldblum SE. Receptor protein tyrosine phosphatase micro regulates the paracellular pathway in human lung microvascular endothelia. THE AMERICAN JOURNAL OF PATHOLOGY 2005; 166:1247-58. [PMID: 15793303 PMCID: PMC1602370 DOI: 10.1016/s0002-9440(10)62343-7] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The pulmonary vascular endothelial paracellular pathway and zonula adherens (ZA) integrity are regulated, in part, through protein tyrosine phosphorylation. ZA-associated protein tyrosine phosphatase (PTP)s are thought to counterregulate tyrosine phosphorylation events within the ZA multiprotein complex. One such receptor PTP, PTPmu, is highly expressed in lung tissue and is almost exclusively restricted to the endothelium. We therefore studied whether PTPmu, in pulmonary vascular endothelia, associates with and/or regulates both the tyrosine phosphorylation state of vascular endothelial (VE)-cadherin and the paracellular pathway. PTPmu was expressed in postconfluent human pulmonary artery and lung microvascular endothelial cells (ECs) where it was almost exclusively restricted to EC-EC boundaries. In human lung microvascular ECs, knockdown of PTPmu through RNA interference dramatically impaired barrier function. In immortalized human microvascular ECs, overexpression of wild-type PTPmu enhanced barrier function. PTPmu-VE-cadherin interactions were demonstrated through reciprocal co-immunoprecipitation assays and co-localization with double-label fluorescence microscopy. When glutathione S-transferase-PTPmu was incubated with purified recombinant VE-cadherin, and when glutathione S-transferase-VE-cadherin was incubated with purified recombinant PTPmu, PTPmu directly bound to VE-cadherin. Overexpression of wild-type PTPmu decreased tyrosine phosphorylation of VE-cadherin. Therefore, PTPmu is expressed in human pulmonary vascular endothelia where it directly binds to VE-cadherin and regulates both the tyrosine phosphorylation state of VE-cadherin and barrier integrity.
Collapse
Affiliation(s)
- Xiu Fen Sui
- Department of Medicine and Pathology, Division of Infectious Diseases and Pulmonary Medicine, Mucosal Biology Research Center, University of Maryland School of Medicine, 22 Penn St., Baltimore, MD 21201, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
74
|
Kim HO, Blaskovich MA. Recent discovery and development of protein tyrosine phosphatase inhibitors. Expert Opin Ther Pat 2005. [DOI: 10.1517/13543776.12.6.871] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
75
|
Del Vecchio RL, Tonks NK. The Conserved Immunoglobulin Domain Controls the Subcellular Localization of the Homophilic Adhesion Receptor Protein-tyrosine Phosphatase μ. J Biol Chem 2005; 280:1603-12. [PMID: 15491993 DOI: 10.1074/jbc.m410181200] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The receptor protein-tyrosine phosphatase mu (PTPmu) is a homophilic adhesion protein thought to regulate cell-cell adhesion in the vascular endothelium through dephosphorylation of cell junction proteins. In subconfluent cell cultures, PTPmu resides in an intracellular membrane pool; however, as culture density increases and cell contacts form, the phosphatase localizes to sites of cell-cell contact, and its expression level increases. These characteristics of PTPmu, which are consistent with a role in cell-cell adhesion, suggest that control of subcellular localization is an important mechanism to regulate the function of this phosphatase. To gain a better understanding of how PTPmu is regulated, we examined the importance of the conserved immunoglobulin domain, containing the homophilic binding site, in control of the localization of the enzyme. Deletion of the immunoglobulin domain impaired localization of PTPmu to the cell-cell contacts in endothelial and epithelial cells. In addition, deletion of the immunoglobulin domain affected the distribution of PTPmu in subconfluent endothelial cells when homophilic binding to another PTPmu molecule on an apposing cell was not possible, resulting in an accumulation of the mutant phosphatase at the cell surface with a concentration at the cell periphery in the region occupied by focal adhesions. This aberrant localization correlated with reduced survival and alterations in normal focal adhesion and cytoskeleton morphology. This study therefore illustrates the critical role of the immunoglobulin domain in regulation of the localization of PTPmu and the importance of such control for the maintenance of normal cell physiology.
Collapse
|
76
|
Ensslen-Craig SE, Brady-Kalnay SM. Receptor protein tyrosine phosphatases regulate neural development and axon guidance. Dev Biol 2004; 275:12-22. [PMID: 15464569 DOI: 10.1016/j.ydbio.2004.08.009] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2004] [Revised: 08/05/2004] [Accepted: 08/08/2004] [Indexed: 01/06/2023]
Abstract
The regulation of tyrosine phosphorylation is recognized as an important developmental mechanism. Both addition and removal of phosphate moieties on tyrosine residues are tightly regulated during development. Originally, most attention focused on the role of tyrosine kinases during development, but more recently, the developmental importance of tyrosine phosphatases has been gaining interest. Receptor protein tyrosine phosphatases (RPTPs) are of particular interest to developmental biologists because the extracellular domains of RPTPs are similar to those of cell adhesion molecules (CAMs). This suggests that RPTPs may have functions in development similar to CAMs. This review focuses on the role of RPTPs in development of the nervous system in processes such as axon guidance, synapse formation, and neural tissue morphogenesis.
Collapse
Affiliation(s)
- Sonya E Ensslen-Craig
- Department of Neurosciences, Case Western Reserve University, School of Medicine, Cleveland, OH 44106-4960, USA
| | | |
Collapse
|
77
|
Brunton VG, MacPherson IRJ, Frame MC. Cell adhesion receptors, tyrosine kinases and actin modulators: a complex three-way circuitry. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2004; 1692:121-44. [PMID: 15246683 DOI: 10.1016/j.bbamcr.2004.04.010] [Citation(s) in RCA: 136] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2004] [Accepted: 04/19/2004] [Indexed: 12/31/2022]
Abstract
The interaction of cells with surrounding matrix and neighbouring cells governs many aspects of cell behaviour. Aside from transmitting signals from the external environment, adhesion receptors also receive signals from the cell interior. Here we review the interrelationship between adhesion receptors, tyrosine kinases (both growth factor receptor and non-receptor) and modulators of the actin cytoskeletal network. Deregulation of many aspects of these signalling pathways in cancer highlights the need for a better understanding of the complexities involved.
Collapse
Affiliation(s)
- V G Brunton
- The Beatson Institute for Cancer Research, Cancer Research UK Beatson Laboratories, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD.
| | | | | |
Collapse
|
78
|
Mruk DD, Cheng CY. Sertoli-Sertoli and Sertoli-germ cell interactions and their significance in germ cell movement in the seminiferous epithelium during spermatogenesis. Endocr Rev 2004; 25:747-806. [PMID: 15466940 DOI: 10.1210/er.2003-0022] [Citation(s) in RCA: 614] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Spermatogenesis is the process by which a single spermatogonium develops into 256 spermatozoa, one of which will fertilize the ovum. Since the 1950s when the stages of the epithelial cycle were first described, reproductive biologists have been in pursuit of one question: How can a spermatogonium traverse the epithelium, while at the same time differentiating into elongate spermatids that remain attached to the Sertoli cell throughout their development? Although it was generally agreed upon that junction restructuring was involved, at that time the types of junctions present in the testis were not even discerned. Today, it is known that tight, anchoring, and gap junctions are found in the testis. The testis also has two unique anchoring junction types, the ectoplasmic specialization and tubulobulbar complex. However, attention has recently shifted on identifying the regulatory molecules that "open" and "close" junctions, because this information will be useful in elucidating the mechanism of germ cell movement. For instance, cytokines have been shown to induce Sertoli cell tight junction disassembly by shutting down the production of tight junction proteins. Other factors such as proteases, protease inhibitors, GTPases, kinases, and phosphatases also come into play. In this review, we focus on this cellular phenomenon, recapping recent developments in the field.
Collapse
Affiliation(s)
- Dolores D Mruk
- Population Council, Center for Biomedical Research, New York, New York 10021, USA.
| | | |
Collapse
|
79
|
Bazzoni G, Dejana E. Endothelial cell-to-cell junctions: molecular organization and role in vascular homeostasis. Physiol Rev 2004; 84:869-901. [PMID: 15269339 DOI: 10.1152/physrev.00035.2003] [Citation(s) in RCA: 931] [Impact Index Per Article: 46.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Intercellular junctions mediate adhesion and communication between adjoining endothelial and epithelial cells. In the endothelium, junctional complexes comprise tight junctions, adherens junctions, and gap junctions. The expression and organization of these complexes depend on the type of vessels and the permeability requirements of perfused organs. Gap junctions are communication structures, which allow the passage of small molecular weight solutes between neighboring cells. Tight junctions serve the major functional purpose of providing a "barrier" and a "fence" within the membrane, by regulating paracellular permeability and maintaining cell polarity. Adherens junctions play an important role in contact inhibition of endothelial cell growth, paracellular permeability to circulating leukocytes and solutes. In addition, they are required for a correct organization of new vessels in angiogenesis. Extensive research in the past decade has identified several molecular components of the tight and adherens junctions, including integral membrane and intracellular proteins. These proteins interact both among themselves and with other molecules. Here, we review the individual molecules of junctions and their complex network of interactions. We also emphasize how the molecular architectures and interactions may represent a mechanistic basis for the function and regulation of junctions, focusing on junction assembly and permeability regulation. Finally, we analyze in vivo studies and highlight information that specifically relates to the role of junctions in vascular endothelial cells.
Collapse
Affiliation(s)
- Gianfranco Bazzoni
- Istituto di Ricerche Farmacologiche "Mario Negri," Via Eritrea 62, I-20157 Milan, Italy.
| | | |
Collapse
|
80
|
Ensslen SE, Brady-Kalnay SM. PTPmu signaling via PKCdelta is instructive for retinal ganglion cell guidance. Mol Cell Neurosci 2004; 25:558-71. [PMID: 15080886 DOI: 10.1016/j.mcn.2003.12.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2003] [Revised: 11/24/2003] [Accepted: 12/03/2003] [Indexed: 01/03/2023] Open
Abstract
The receptor protein tyrosine phosphatase (RPTP) PTPmu mediates distinct cellular responses in nasal and temporal retinal ganglion cell (RGC) axons. PTPmu is permissive for nasal RGC neurite outgrowth and inhibitory to temporal RGCs. In addition, PTPmu causes preferential temporal growth cone collapse. Previous studies demonstrated that PTPmu associates with the scaffolding protein RACK1 and the protein kinase C-delta (PKCdelta) isoform in chick retina and that PKCdelta activity is required for PTPmu-mediated RGC outgrowth. Using in vitro stripe and collapse assays, we find that PKCdelta activity is required for both inhibitory and permissive responses of RGCs to PTPmu, with higher levels of PKCdelta activation associated with temporal growth cone collapse and repulsion. A potential mechanism for differential PKCdelta activation is due to the gradient of PTPmu expression in the retina. PTPmu is expressed in a high temporal, low nasal step gradient in the retina. In support of this, overexpression of exogenous PTPmu in nasal neurites results in a phenotypic switch from permissive to repulsive in response to PTPmu. Together, these results suggest that the differential expression of PTPmu within the retina is instructive for RGC guidance and that the magnitude of PKCdelta activation in response to PTPmu signaling results in the distinct cellular behaviors of nasal and temporal RGCs.
Collapse
Affiliation(s)
- Sonya E Ensslen
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH 44106-4960, USA
| | | |
Collapse
|
81
|
Affiliation(s)
- Elisabetta Dejana
- Department of Biomolecular and Biotechnological Sciences, School of Sciences, Milan University, Italy.
| |
Collapse
|
82
|
Besco J, Popesco MC, Davuluri RV, Frostholm A, Rotter A. Genomic structure and alternative splicing of murine R2B receptor protein tyrosine phosphatases (PTPkappa, mu, rho and PCP-2). BMC Genomics 2004; 5:14. [PMID: 15040814 PMCID: PMC373446 DOI: 10.1186/1471-2164-5-14] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2003] [Accepted: 02/11/2004] [Indexed: 11/22/2022] Open
Abstract
Background Four genes designated as PTPRK (PTPκ), PTPRL/U (PCP-2), PTPRM (PTPμ) and PTPRT (PTPρ) code for a subfamily (type R2B) of receptor protein tyrosine phosphatases (RPTPs) uniquely characterized by the presence of an N-terminal MAM domain. These transmembrane molecules have been implicated in homophilic cell adhesion. In the human, the PTPRK gene is located on chromosome 6, PTPRL/U on 1, PTPRM on 18 and PTPRT on 20. In the mouse, the four genes ptprk, ptprl, ptprm and ptprt are located in syntenic regions of chromosomes 10, 4, 17 and 2, respectively. Results The genomic organization of murine R2B RPTP genes is described. The four genes varied greatly in size ranging from ~64 kb to ~1 Mb, primarily due to proportional differences in intron lengths. Although there were also minor variations in exon length, the number of exons and the phases of exon/intron junctions were highly conserved. In situ hybridization with digoxigenin-labeled cRNA probes was used to localize each of the four R2B transcripts to specific cell types within the murine central nervous system. Phylogenetic analysis of complete sequences indicated that PTPρ and PTPμ were most closely related, followed by PTPκ. The most distant family member was PCP-2. Alignment of RPTP polypeptide sequences predicted putative alternatively spliced exons. PCR experiments revealed that five of these exons were alternatively spliced, and that each of the four phosphatases incorporated them differently. The greatest variability in genomic organization and the majority of alternatively spliced exons were observed in the juxtamembrane domain, a region critical for the regulation of signal transduction. Conclusions Comparison of the four R2B RPTP genes revealed virtually identical principles of genomic organization, despite great disparities in gene size due to variations in intron length. Although subtle differences in exon length were also observed, it is likely that functional differences among these genes arise from the specific combinations of exons generated by alternative splicing.
Collapse
Affiliation(s)
- Julie Besco
- Department of Pharmacology, The Ohio State University, Columbus, Ohio 43210, USA
| | - Magdalena C Popesco
- Department of Pharmacology, The Ohio State University, Columbus, Ohio 43210, USA
| | - Ramana V Davuluri
- Division of Human Cancer Genetics, The Ohio State University, Columbus, Ohio 43210, USA
| | - Adrienne Frostholm
- Department of Pharmacology, The Ohio State University, Columbus, Ohio 43210, USA
| | - Andrej Rotter
- Department of Pharmacology, The Ohio State University, Columbus, Ohio 43210, USA
- Mathematical Biosciences Institute, The Ohio State University, Columbus, Ohio 43210, USA
| |
Collapse
|
83
|
Chattopadhyay N, Wang Z, Ashman LK, Brady-Kalnay SM, Kreidberg JA. alpha3beta1 integrin-CD151, a component of the cadherin-catenin complex, regulates PTPmu expression and cell-cell adhesion. ACTA ACUST UNITED AC 2004; 163:1351-62. [PMID: 14691142 PMCID: PMC2173722 DOI: 10.1083/jcb.200306067] [Citation(s) in RCA: 129] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The beta1 family of integrins has been primarily studied as a set of receptors for the extracellular matrix. In this paper, we define a novel role for alpha3beta1 integrin in association with the tetraspanin CD151 as a component of a cell-cell adhesion complex in epithelial cells that directly stimulates cadherin-mediated adhesion. The integrin-tetraspanin complex affects epithelial cell-cell adhesion at the level of gene expression both by regulating expression of PTPmu and by organizing a multimolecular complex containing PKCbetaII, RACK1, PTPmu, beta-catenin, and E-cadherin. These findings demonstrate how integrin-based signaling can regulate complex biological responses at multiple levels to determine cell morphology and behavior.
Collapse
Affiliation(s)
- Nibedita Chattopadhyay
- Division of Nephrology, Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
84
|
Ensslen SE, Rosdahl JA, Brady-Kalnay SM. The receptor protein tyrosine phosphatase mu, PTPmu, regulates histogenesis of the chick retina. Dev Biol 2004; 264:106-18. [PMID: 14623235 DOI: 10.1016/j.ydbio.2003.08.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The formation of laminae within the retina requires the coordinate regulation of cell differentiation and migration. The cell adhesion molecule and member of the immunoglobulin superfamily, receptor protein tyrosine phosphatase Mu, PTPmu, is expressed in precursor and early, differentiated cells of the prelaminated retina, and later becomes restricted to the inner plexiform, ganglion cell, and optic fiber layers. Since the timing of PTPmu expression correlates with the peak period of retinal lamination, we examined whether this RPTP could be regulating cell adhesion and migration within the retina, and thus influencing retinal development. Chick retinal organ cultures were infected with herpes simplex viruses encoding either an antisense sequence to PTPmu, wild-type PTPmu, or a catalytically inactive mutant form of PTPmu, and homophilic adhesion was blocked by using a function-blocking antibody. All conditions that perturbed PTPmu dramatically disrupted retinal histogenesis. Our findings demonstrate that catalytic activity and adhesion mediated by PTPmu regulate lamination of the retina, emphasizing the importance of adhesion and signaling via receptor protein tyrosine phosphatases in the developing nervous system. To our knowledge, this is the first demonstration that an Ig superfamily RPTP regulates the lamination of any neural tissue.
Collapse
Affiliation(s)
- Sonya E Ensslen
- Departments of Neurosciences and Molecular Biology and Microbiology, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA
| | | | | |
Collapse
|
85
|
Kellie S, Craggs G, Bird IN, Jones GE. The tyrosine phosphatase DEP-1 induces cytoskeletal rearrangements, aberrant cell-substratum interactions and a reduction in cell proliferation. J Cell Sci 2004; 117:609-18. [PMID: 14709717 DOI: 10.1242/jcs.00879] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The receptor protein tyrosine phosphatase density-enhanced phosphatase-1 (DEP-1) has been implicated in aberrant cancer cell growth and immune cell function, however, its function within cells has yet to be properly elucidated. To investigate the cellular function of DEP-1, stable cell lines inducibly expressing DEP-1 were generated. Induction of DEP-1 expression was found to decrease PDGF-stimulated tyrosine phosphorylation of a number of cellular proteins including the PDGF receptor, and to inhibit growth factor-stimulated phosphorylation of components of the MAPK pathway, indicating that DEP-1 antagonised PDGF receptor signalling. This was supported by data showing that DEP-1 expression resulted in a reduction in cell proliferation. DEP-1-expressing cells had fewer actin-containing microfilament bundles, reduced vinculin and paxillin-containing adhesion plaques, and were defective in interactions with fibronectin. Defective cell-substratum adhesion correlated with lack of activation of FAK in DEP-1-expressing cells. Time-lapse interference reflection microscopy of live cells revealed that although small focal contacts at the leading edge were generated in DEP-1-expressing cells, they failed to mature into stable focal adhesions, as found in control cells. Further motility analysis revealed that DEP-1-expressing cells retained limited random motility, but showed no chemotaxis towards a gradient of PDGF. In addition, cell-cell contacts were disrupted, with a change in the localisation of cadherin from discrete areas of cell-cell contact to large areas of membrane interaction, and there was a parallel redistribution of beta-catenin. These results demonstrate that DEP-1 is a negative regulator of cell proliferation, cell-substratum contacts, motility and chemotaxis in fibroblasts.
Collapse
Affiliation(s)
- Stuart Kellie
- School of Molecular and Microbial Sciences, Institute for Molecular Bioscience and CRC for Chronic Inflammatory Diseases, University of Queensland, Brisbane, QLD 4072, Australia.
| | | | | | | |
Collapse
|
86
|
Rosdahl JA, Ensslen SE, Niedenthal JA, Brady-Kalnay SM. PTP mu-dependent growth cone rearrangement is regulated by Cdc42. JOURNAL OF NEUROBIOLOGY 2003; 56:199-208. [PMID: 12884260 DOI: 10.1002/neu.10231] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
PTP mu is expressed in the developing nervous system and promotes growth and guidance of chick retinal ganglion cells. Using a newly developed growth cone rearrangement assay, we examined whether the small G-proteins were involved in PTP mu-dependent signaling. The stimulation of retinal cultures with purified PTP mu resulted in a striking morphological change in the growth cone, which becomes dominated by filopodia within 5 min of addition. This rearrangement in response to PTP mu stimulation was mediated by homophilic binding. We perturbed GTPase signaling using Toxin B, which inhibits Cdc42, Rac, and Rho, as well as the toxin Exoenzyme C3 that inhibits Rho. The PTP mu-induced growth cone rearrangement was blocked by Toxin B, but not by Exoenzyme C3. This result suggests that either Cdc42 or Rac are required but not Rho. To determine which GTPase was involved in PTP mu signaling, we utilized dominant-negative mutants of Cdc42 and Rac. Dominant-negative Cdc42 blocked PTP mu-induced rearrangement, while wild-type Cdc42 and dominant-negative Rac did not. Together, these results suggest a molecular signaling cascade beginning with PTP mu homophilic binding at the plasma membrane and the activation of Cdc42, which acts on the actin cytoskeleton to result in rearrangement of the growth cone.
Collapse
Affiliation(s)
- Jullia A Rosdahl
- Department of Molecular and Microbiology, Case Western Reserve University, School of Medicine, 10900 Euclid Ave., Cleveland, Ohio 44106-4960,USA
| | | | | | | |
Collapse
|
87
|
Konstantoulaki M, Kouklis P, Malik AB. Protein kinase C modifications of VE-cadherin, p120, and beta-catenin contribute to endothelial barrier dysregulation induced by thrombin. Am J Physiol Lung Cell Mol Physiol 2003; 285:L434-42. [PMID: 12740216 DOI: 10.1152/ajplung.00075.2003] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The adherens junction is a multiprotein complex consisting of the transmembrane vascular endothelial cadherin (VEC) and cytoplasmic catenins (p120, beta-catenin, plakoglobin, alpha-catenin) responsible for the maintenance of endothelial barrier function. Junctional disassembly and modifications in cadherin/catenin complex lead to increased paracellular permeability of the endothelial barrier. However, the mechanisms of junctional disassembly remain unclear. In this study, we used the proinflammatory mediator thrombin to compromise the barrier function and test the hypothesis that phosphorylation-induced alterations of VEC, beta-catenin, and p120 regulate junction disassembly and mediate the increased endothelial permeability response. The study showed that thrombin induced dephosphorylation of VEC, which is coupled to disassembly of cell-cell contacts, but VEC remained in aggregates at the plasma membrane. The cytoplasmic catenins dissociated from the VEC cytoplasmic domain in thin membrane projections formed in interendothelial gaps. We also showed that thrombin induced dephosphorylation of beta-catenin and phosphorylation of p120. Thrombin-induced interendothelial gap formation and increased endothelial permeability were blocked by protein kinase C inhibition using chelerythrine and Gö-6976 but not by LY-379196. Chelerythrine also prevented thrombin-induced phosphorylation changes of the cadherin/catenin complex. Thus the present study links posttranslational modifications of VEC, beta-catenin, and p120 to the mechanism of thrombin-induced increase in endothelial permeability.
Collapse
|
88
|
Young BA, Sui X, Kiser TD, Hyun SW, Wang P, Sakarya S, Angelini DJ, Schaphorst KL, Hasday JD, Cross AS, Romer LH, Passaniti A, Goldblum SE. Protein tyrosine phosphatase activity regulates endothelial cell-cell interactions, the paracellular pathway, and capillary tube stability. Am J Physiol Lung Cell Mol Physiol 2003; 285:L63-75. [PMID: 12626337 DOI: 10.1152/ajplung.00423.2002] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Protein tyrosine phosphorylation is tightly regulated through the actions of both protein tyrosine kinases and protein tyrosine phosphatases. In this study, we demonstrate that protein tyrosine phosphatase inhibition promotes tyrosine phosphorylation of endothelial cell-cell adherens junction proteins, opens an endothelial paracellular pathway, and increases both transendothelial albumin flux and neutrophil migration. Tyrosine phosphatase inhibition with sodium orthovanadate or phenylarsine oxide induced dose- and time-dependent increases in [14C]bovine serum albumin flux across postconfluent bovine pulmonary artery endothelial cell monolayers. These increases in albumin flux were coincident with actin reorganization and intercellular gap formation in both postconfluent monolayers and preformed endothelial cell capillary tubes. Vanadate (25 microM) increased tyrosine phosphorylation of endothelial cell proteins 12-fold within 1 h. Tyrosine phosphorylated proteins were immunolocalized to the intercellular boundaries, and several were identified as the endothelial cell-cell adherens junction proteins, vascular-endothelial cadherin, and beta-, gamma-, and p120-catenin as well as platelet endothelial cell adhesion molecule-1. Of note, these tyrosine phosphorylation events were not associated with disassembly of the adherens junction complex or its uncoupling from the actin cytoskeleton. The dose and time requirements for vanadate-induced increases in phosphorylation were comparable with those defined for increments in transendothelial [14C]albumin flux and neutrophil migration, and pretreatment with the tyrosine kinase inhibitor herbimycin A protected against these effects. These data suggest that protein tyrosine phosphatases and their substrates, which localize to the endothelial cell-cell boundaries, regulate adherens junctional integrity, the movement of macromolecules and cells through the endothelial paracellular pathway, and capillary tube stability.
Collapse
Affiliation(s)
- Bradford A Young
- Division of Infectious Diseases, Department of Veterans Affairs Medical Center, Baltimore 21201, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Grazia Lampugnani M, Zanetti A, Corada M, Takahashi T, Balconi G, Breviario F, Orsenigo F, Cattelino A, Kemler R, Daniel TO, Dejana E. Contact inhibition of VEGF-induced proliferation requires vascular endothelial cadherin, beta-catenin, and the phosphatase DEP-1/CD148. J Cell Biol 2003; 161:793-804. [PMID: 12771128 PMCID: PMC2199373 DOI: 10.1083/jcb.200209019] [Citation(s) in RCA: 304] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Confluent endothelial cells respond poorly to the proliferative signals of VEGF. Comparing isogenic endothelial cells differing for vascular endothelial cadherin (VE-cadherin) expression only, we found that the presence of this protein attenuates VEGF-induced VEGF receptor (VEGFR) 2 phosphorylation in tyrosine, p44/p42 MAP kinase phosphorylation, and cell proliferation. VE-cadherin truncated in beta-catenin but not p120 binding domain is unable to associate with VEGFR-2 and to induce its inactivation. beta-Catenin-null endothelial cells are not contact inhibited by VE-cadherin and are still responsive to VEGF, indicating that this protein is required to restrain growth factor signaling. A dominant-negative mutant of high cell density-enhanced PTP 1 (DEP-1)//CD148 as well as reduction of its expression by RNA interference partially restore VEGFR-2 phosphorylation and MAP kinase activation. Overall the data indicate that VE-cadherin-beta-catenin complex participates in contact inhibition of VEGF signaling. Upon stimulation with VEGF, VEGFR-2 associates with the complex and concentrates at cell-cell contacts, where it may be inactivated by junctional phosphatases such as DEP-1. In sparse cells or in VE-cadherin-null cells, this phenomenon cannot occur and the receptor is fully activated by the growth factor.
Collapse
|
90
|
Zhou L, An N, Haydon RC, Zhou Q, Cheng H, Peng Y, Jiang W, Luu HH, Vanichakarn P, Szatkowski JP, Park JY, Breyer B, He TC. Tyrosine kinase inhibitor STI-571/Gleevec down-regulates the beta-catenin signaling activity. Cancer Lett 2003; 193:161-70. [PMID: 12706873 PMCID: PMC4527752 DOI: 10.1016/s0304-3835(03)00013-2] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Beta-Catenin is a critical transducer of the Wnt signal pathway and plays an important role in many developmental and cellular processes. Deregulation of beta-catenin signaling has been observed in a broad range of human tumors. In this report, we investigated whether tyrosine kinase inhibitor STI-571 could inhibit the beta-catenin signaling activity and hence suppress cell proliferation. Our results demonstrated that STI-571 effectively inhibited the constitutive activity of beta-catenin signaling in human colon cancer cells as well as the Wnt1-induced activation of beta-catenin signaling in HOS, HTB-94, and HEK 293 cells. Furthermore, STI-571 was shown to effectively suppress the proliferation of human colon cancer cells. Finally, we demonstrated that the Wnt1-mediated activation of a GAL4-beta-catenin heterologous transcription system was effectively inhibited by STI-571. Thus, our findings suggest that tyrosine phosphorylation may play an important role in regulating beta-catenin signaling activity, and inhibition of this signaling pathway by STI-571 may be further explored as an important target for alternative/adjuvant treatments for a broader range of human cancer.
Collapse
Affiliation(s)
- Lan Zhou
- Molecular Oncology Laboratory, Department of Surgery, The University of Chicago Medical Center, 5841 South Maryland Avenue, MC3079, Chicago, IL 60637, USA
- Department of Biochemistry and Molecular Biology, Chongqing University of Medical Sciences, Chongqing 400046, China
| | - Naili An
- Molecular Oncology Laboratory, Department of Surgery, The University of Chicago Medical Center, 5841 South Maryland Avenue, MC3079, Chicago, IL 60637, USA
- Committee on Cancer Biology, The University of Chicago Medical Center, Chicago, IL 60637, USA
| | - Rex C. Haydon
- Molecular Oncology Laboratory, Department of Surgery, The University of Chicago Medical Center, 5841 South Maryland Avenue, MC3079, Chicago, IL 60637, USA
| | - Qixin Zhou
- Molecular Oncology Laboratory, Department of Surgery, The University of Chicago Medical Center, 5841 South Maryland Avenue, MC3079, Chicago, IL 60637, USA
- Department of Biochemistry and Molecular Biology, Chongqing University of Medical Sciences, Chongqing 400046, China
| | - Hongwei Cheng
- Molecular Oncology Laboratory, Department of Surgery, The University of Chicago Medical Center, 5841 South Maryland Avenue, MC3079, Chicago, IL 60637, USA
| | - Ying Peng
- Molecular Oncology Laboratory, Department of Surgery, The University of Chicago Medical Center, 5841 South Maryland Avenue, MC3079, Chicago, IL 60637, USA
- Committee on Genetics, The University of Chicago, Chicago, IL 60637, USA
| | - Wei Jiang
- Molecular Oncology Laboratory, Department of Surgery, The University of Chicago Medical Center, 5841 South Maryland Avenue, MC3079, Chicago, IL 60637, USA
| | - Hue H. Luu
- Molecular Oncology Laboratory, Department of Surgery, The University of Chicago Medical Center, 5841 South Maryland Avenue, MC3079, Chicago, IL 60637, USA
| | - Pantila Vanichakarn
- Molecular Oncology Laboratory, Department of Surgery, The University of Chicago Medical Center, 5841 South Maryland Avenue, MC3079, Chicago, IL 60637, USA
| | - Jan Paul Szatkowski
- Molecular Oncology Laboratory, Department of Surgery, The University of Chicago Medical Center, 5841 South Maryland Avenue, MC3079, Chicago, IL 60637, USA
| | - Jae Yoon Park
- Molecular Oncology Laboratory, Department of Surgery, The University of Chicago Medical Center, 5841 South Maryland Avenue, MC3079, Chicago, IL 60637, USA
| | - Benjamin Breyer
- Molecular Oncology Laboratory, Department of Surgery, The University of Chicago Medical Center, 5841 South Maryland Avenue, MC3079, Chicago, IL 60637, USA
| | - Tong-Chuan He
- Molecular Oncology Laboratory, Department of Surgery, The University of Chicago Medical Center, 5841 South Maryland Avenue, MC3079, Chicago, IL 60637, USA
- Committee on Cancer Biology, The University of Chicago Medical Center, Chicago, IL 60637, USA
- Committee on Genetics, The University of Chicago, Chicago, IL 60637, USA
- Corresponding author. Molecular Oncology Laboratory, Department of Surgery, The University of Chicago Medical Center, 5841 South Maryland Avenue, MC3079, Room J-611, Chicago, IL 60637, USA. Tel.: +1-773-702-7169; fax: +1-773-834-4598. (T.-C. He)
| |
Collapse
|
91
|
Takahashi T, Takahashi K, St John PL, Fleming PA, Tomemori T, Watanabe T, Abrahamson DR, Drake CJ, Shirasawa T, Daniel TO. A mutant receptor tyrosine phosphatase, CD148, causes defects in vascular development. Mol Cell Biol 2003; 23:1817-31. [PMID: 12588999 PMCID: PMC151692 DOI: 10.1128/mcb.23.5.1817-1831.2003] [Citation(s) in RCA: 82] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vascularization defects in genetic recombinant mice have defined critical roles for a number of specific receptor tyrosine kinases. Here we evaluated whether an endothelium-expressed receptor tyrosine phosphatase, CD148 (DEP-1/PTPeta), participates in developmental vascularization. A mutant allele, CD148(DeltaCyGFP), was constructed to eliminate CD148 phosphatase activity by in-frame replacement of cytoplasmic sequences with enhanced green fluorescent protein sequences. Homozygous mutant mice died at midgestation, before embryonic day 11.5 (E11.5), with vascularization failure marked by growth retardation and disorganized vascular structures. Structural abnormalities were observed as early as E8.25 in the yolk sac, prior to the appearance of intraembryonic defects. Homozygous mutant mice displayed enlarged vessels comprised of endothelial cells expressing markers of early differentiation, including VEGFR2 (Flk1), Tal1/SCL, CD31, ephrin-B2, and Tie2, with notable lack of endoglin expression. Increased endothelial cell numbers and mitotic activity indices were demonstrated. At E9.5, homozygous mutant embryos showed homogeneously enlarged primitive vessels defective in vascular remodeling and branching, with impaired pericyte investment adjacent to endothelial structures, in similarity to endoglin-deficient embryos. Developing cardiac tissues showed expanded endocardial projections accompanied by defective endocardial cushion formation. These findings implicate a member of the receptor tyrosine phosphatase family, CD148, in developmental vascular organization and provide evidence that it regulates endothelial proliferation and endothelium-pericyte interactions.
Collapse
Affiliation(s)
- Takamune Takahashi
- Nephrology Division and Center for Vascular Biology, Vanderbilt University Medical Center, Nashville, Tennessee 37232, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
92
|
Beltran PJ, Bixby JL, Masters BA. Expression of PTPRO during mouse development suggests involvement in axonogenesis and differentiation of NT-3 and NGF-dependent neurons. J Comp Neurol 2003; 456:384-95. [PMID: 12532410 DOI: 10.1002/cne.10532] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Competition and cooperation between type II and type III receptor protein tyrosine phosphatases (RPTPs) regulate axon extension and pathfinding in Drosophila. The first step to investigate whether RPTPs influence axon growth in the more complex vertebrate nervous system is to identify which neurons express a particular RPTP. We studied the expression of mouse PTPRO, a type III RPTP with an extracellular region containing eight fibronectin type III domains, during embryogenesis and after birth. Mouse PTPRO mRNA is expressed exclusively in two cell types: neurons and kidney podocytes. Maximal expression in the brain was coincident with mid to late gestation and axonogenesis in the brain. We cloned two cDNAs, including a splice variant without sequence coding of 28 amino acids within the juxtamembrane domain that was found mostly in kidney. In situ hybridization detected mPTPRO mRNA in the cerebral cortex, olfactory bulb and nucleus, hippocampus, motor neurons, and the spinal cord midline. In addition, mPTPRO mRNA was found throughout dorsal root, cranial, and sympathetic ganglia and within kidney glomeruli. Mouse PTPRO mRNA was observed in neuron populations expressing TrkA, the high-affinity nerve growth factor receptor, or TrkC, the neurotrophin-3 receptor, and immunoreactive mPTPRO and TrkC colocalized in large dorsal root ganglia proprioceptive neurons. Our results suggest that mPTPRO is involved in the differentiation and axonogenesis of central and peripheral nervous system neurons, where it is in a position to modulate intracellular responses to neurotrophin-3 and/or nerve growth factor.
Collapse
Affiliation(s)
- Pedro J Beltran
- The Neuroscience Program and Department of Molecular and Cellular Pharmacology, University of Miami School of Medicine, Miami, Florida 33136, USA
| | | | | |
Collapse
|
93
|
Tucker E, Buda A, Janghra B, Cpoad J, Moorghan M, Havler M, Dettmar P, Pignatelli M. Abnormalities of the cadherin-catenin complex in chemically-induced colo-rectal carcinogenesis. Proc Nutr Soc 2003; 62:229-36. [PMID: 12756972 DOI: 10.1079/pns2003217] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Beta-Catenin is a multifunctional protein originally identified as a component of the cadherin cell-cell adhesion complex. It also binds the adenomatous polyposis coli (APC) tumour suppressor which controls beta-catenin cellular levels through its degradation. (beta-Catenin and/or APC mutations result in increased cytoplasmic Beta-catenin and nuclear translocation. The aim of the present study was to examine the expression and cellular localisation of alpha and beta-catenin, p120 and E-cadherin in a chemically-induced mouse model of colo-rectal cancer using 1,2-dimethylhydrazine (DMH). Female Balb/C mice were injected subcutaneously with a solution providing 25 mg DMH base/kg body weight for 17 weeks. Animals were killed and tumours identified in the intestine with a dissecting microscope. Formalin-fixed paraffin-embedded sections of normal and dysplastic colonic mucosa were stained by an indirect avidin-biotin immunohistochemical technique using mouse monoclonal antibodies, and membranous, cytoplasmic and nuclear cellular localisation was assessed by light microscopy. Staining distribution scored as follows: 3, > 90 % positive epithelial cells; 2, >50 % positive epithelial cells; 1, <50 % positive epithelial cells. Non-dysplastic colonic epithelial cells revealed beta-catenin expression at the membrane (33/41 scored 3),areas of cytoplasmic expression (24/41 scored 1) and no nuclear staining. Dysplastic colonic epithelium revealed increased membranous and cytoplasmic, beta-catenin immunoreactivity (39/41 and 38/41 both scored 3) with focal nuclear staining (14/41). Expression patterns for ac-catenin, p120, and E-cadherin were similar to beta-catenin with increased membranous and cytoplasmic immunoreactivity in dysplastic mucosa, although no nuclear staining was observed. Increased cytoplasmic expression and nuclear localisation of beta-catenin are consistent with a possible mutation in its gene, and this finding was in keeping with the mutational analysis of exon 3 by single-strand conformational polymorphism. Increased immunoreactivity of the other catenins also suggests further disruption in catenin regulation. In summary, alterations in the beta-catenin expression and cellular localisation in the DMH-induced tumours are similar to those seen inhuman sporadic colorectal tumours. The DMH is therefore a useful model for studying the abnormalities of the E-cadherin-catenin pathway in colorectal carcinogenesis.
Collapse
Affiliation(s)
- Emma Tucker
- University of Bristol, Department of Pathology and Microbiology, School of Medical Sciences and Bristol Royal Infirmary, Bristol, UK
| | | | | | | | | | | | | | | |
Collapse
|
94
|
Abstract
Receptor protein tyrosine phosphatases (RPTPs) are key regulators of neuronal morphogenesis in a variety of different vertebrate and invertebrate systems, yet the mechanisms by which these proteins regulate central nervous system development are poorly understood. In the past few years, studies have begun to outline possible models for RPTP function by demonstrating in vivo roles for RPTPs in axon outgrowth, guidance, and synaptogenesis. In addition, the crystal structures of several RPTPs have been solved, numerous downstream effectors of RPTP signaling have been identified, and a small number of RPTP ligands have been described. In this review, we focus on how RPTPs transduce signals from the extracellular environment to the cytoplasm, using a detailed comparative analysis of the different RPTP subfamilies. Focusing on the roles RPTPs play in the development of the central nervous system, we discuss how the elucidation of RPTP crystal structures, the biochemical analysis of phosphatase enzyme catalysis, and the characterization of complex signal transduction cascades downstream of RPTPs have generated testable models of RPTP structure and function.
Collapse
Affiliation(s)
- Karl G Johnson
- Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02446, USA
| | | |
Collapse
|
95
|
Xu G, Arregui C, Lilien J, Balsamo J. PTP1B modulates the association of beta-catenin with N-cadherin through binding to an adjacent and partially overlapping target site. J Biol Chem 2002; 277:49989-97. [PMID: 12377785 DOI: 10.1074/jbc.m206454200] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The nonreceptor tyrosine phosphatase PTP1B associates with the cytoplasmic domain of N-cadherin and may regulate cadherin function through dephosphorylation of beta-catenin. We have now identified the domain on N-cadherin to which PTP1B binds and characterized the effect of perturbing this domain on cadherin function. Deletion constructs lacking amino acids 872-891 fail to bind PTP1B. This domain partially overlaps with the beta-catenin binding domain. To further define the relationship of these two sites, we used peptides to compete in vitro binding. A peptide representing the most NH(2)-terminal 8 amino acids of the PTP1B binding site, the region of overlap with the beta-catenin target, effectively competes for binding of beta-catenin but is much less effective in competing PTP1B, whereas two peptides representing the remaining 12 amino acids have no effect on beta-catenin binding but effectively compete for PTP1B binding. Introduction into embryonic chick retina cells of a cell-permeable peptide mimicking the 8 most COOH-terminal amino acids in the PTP1B target domain, the region most distant from the beta-catenin target site, prevents binding of PTP1B, increases the pool of free, tyrosine-phosphorylated beta-catenin, and results in loss of N-cadherin function. N-cadherin lacking this same region of the PTP1B target site does not associate with PTP1B or beta-catenin and is not efficiently expressed at the cell surface of transfected L cells. Thus, interaction of PTP1B with N-cadherin is essential for its association with beta-catenin, stable expression at the cell surface, and consequently, cadherin function.
Collapse
Affiliation(s)
- Gang Xu
- Department of Biological Sciences, University of Iowa, Iowa City, IA 52242, USA
| | | | | | | |
Collapse
|
96
|
Minnear FL. Vascular endothelial cells actively participate in high inflation pressure-induced permeability and edema. Am J Physiol Lung Cell Mol Physiol 2002; 283:L1200-2. [PMID: 12424146 DOI: 10.1152/ajplung.00213.2002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
97
|
Müller T, Bain G, Wang X, Papkoff J. Regulation of epithelial cell migration and tumor formation by beta-catenin signaling. Exp Cell Res 2002; 280:119-33. [PMID: 12372345 DOI: 10.1006/excr.2002.5630] [Citation(s) in RCA: 141] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Cell migration requires precise control, which is altered or lost when tumor cells become invasive and metastatic. beta-catenin plays a dual role in this process: as a member of adherens junctions it is essential to link cadherins to the cytoskeleton thereby allowing tight intercellular adhesion, and as a member of the Wnt-signaling pathway, beta-catenin is translocated into the nucleus and serves together with the LEF1/TCF-transcription factors to drive gene expression necessary for the epithelial-to-mesenchymal transition (EMT). Activated beta-catenin signaling has been implicated in the genesis of a variety of tumors. Here we demonstrate a pivotal function for beta-catenin signaling in epithelial cell migration and tumorigenesis. Hepatocyte growth factor (HGF) and epidermal growth factor (EGF) induce beta-catenin signaling under conditions where they stimulate cell motility. Ectopic expression of either stabilized beta-catenin or a regulatable form of activated beta-catenin induces cell migration in different cell types and cooperates with EGF and HGF in this process. Activation of beta-catenin signaling induces expression of the new target gene osteopontin during migration. Cells expressing stabilized beta-catenin also exhibit significantly increased capability to form tumors in a nude mouse xenograft model. The data suggest that a critical threshold of beta-catenin signaling, activated by cooperative mechanisms, may be important during the EMT and tumorigenesis.
Collapse
Affiliation(s)
- Thomas Müller
- Aventis Pharmaceuticals, Cambridge Genomics Center, Massachusetts 02139, USA.
| | | | | | | |
Collapse
|
98
|
Holsinger LJ, Ward K, Duffield B, Zachwieja J, Jallal B. The transmembrane receptor protein tyrosine phosphatase DEP1 interacts with p120(ctn). Oncogene 2002; 21:7067-76. [PMID: 12370829 DOI: 10.1038/sj.onc.1205858] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2002] [Revised: 07/03/2002] [Accepted: 07/09/2002] [Indexed: 12/22/2022]
Abstract
The receptor-like protein tyrosine phosphatase DEP1, also known as CD148, is expressed predominantly in epithelial cells, in a variety of tumor cell lines, and in lymphocytes. Expression of DEP1 is enhanced at high cell density, and this observation suggests that DEP1 may function in the regulation of cell adhesion and possibly contact inhibition of cell growth. In order to investigate the function of DEP1, substrate-trapping mutants of the phosphatase were used to identify potential substrates. GST-fusion proteins containing the DEP1 catalytic domain with a substrate-trapping D/A mutation were found to interact with p120(ctn), a component of adherens junctions. DEP1 also interacted with other members of the catenin gene family including beta-catenin and gamma-catenin. The interaction with p120(ctn) is likely to be direct, as the interaction occurs in K562 cells lacking functional adherens junctions and E-cadherin expression. Catalytic domains of the tyrosine phosphatases PTP-PEST, CD45, and PTPbeta did not interact with proteins of the catenin family to detectable levels, suggesting that the interaction of DEP1 with these proteins is specific. DEP1 expression was concentrated at sites of cell-cell contact in A549 cells. p120(ctn) was found to colocalize with these structures. Together these data suggest an important role for DEP-1 in the function of cell-cell contacts and adherens junctions.
Collapse
Affiliation(s)
- Leslie J Holsinger
- SUGEN Inc., 230 East Grand Avenue, South San Francisco, California, CA 94080, USA.
| | | | | | | | | |
Collapse
|
99
|
Ham C, Levkau B, Raines EW, Herren B. ADAM15 Is an Adherens Junction Molecule Whose Surface Expression Can Be Driven by VE-Cadherin. Exp Cell Res 2002; 279:239-47. [PMID: 12243749 DOI: 10.1006/excr.2002.5606] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
ADAM15 belongs to the family of proteins containing disintegrin and metalloprotease domains (ADAM) that have been implicated in cell adhesion via integrin binding and shedding of cell surface molecules. Here we provide the first report on the localization of an ADAM in adherens junctions. We show that ADAM15 colocalizes with a cell adhesion molecule, vascular endothelial (VE)-cadherin, which mediates endothelial cell adherens junction formation. In contrast, the distribution of ADAM15 correlates poorly with the localization in cell contacts of one of its proposed ligands, the beta1-integrin. Furthermore, ADAM15 accumulation in cell-cell contacts is preceded by VE-cadherin-mediated adherens junction formation. To investigate the dependence of ADAM15 surface expression on adherens junction formation, we coexpressed VE-cadherin with ADAM15 and an ADAM15 green fluorescence protein (GFP) fusion protein in Chinese hamster ovary cells. VE-cadherin coexpression results in the translocation of ADAM15-GFP to the cell periphery. Analysis of cell surface levels of ADAM15 and ADAM15-GFP, with or without VE-cadherin coexpression, clearly demonstrates that VE-cadherin can drive surface expression of ADAM15. Our data suggest that ADAM15 may be a novel component of adherens junctions and thus could play a role in endothelial functions that are mediated by these cell contacts.
Collapse
Affiliation(s)
- Claire Ham
- British Heart Foundation Laboratories, Department of Medicine, University College London, London, United Kingdom
| | | | | | | |
Collapse
|
100
|
Symons JR, LeVea CM, Mooney RA. Expression of the leucocyte common antigen-related (LAR) tyrosine phosphatase is regulated by cell density through functional E-cadherin complexes. Biochem J 2002; 365:513-9. [PMID: 12095414 PMCID: PMC1222702 DOI: 10.1042/bj20020381] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The leucocyte common antigen-related phosphatase (LAR) has been implicated in receptor tyrosine kinase signalling pathways while also displaying cell-density-dependency and localization to adherens junctions. Whereas physiological substrates for LAR have not been identified unequivocally, beta-catenin associates with LAR and is a substrate in vitro. With the implication that LAR may play a role in regulating E-cadherin-dependent cell-cell communication and contact inhibition, the relationship of LAR with E-cadherin was investigated. LAR expression increased with cell density in the human breast cancer cell line MCF-7 and in Ln 3 cells derived from the 13762NF rat mammary adenocarcinoma. LAR protein levels decreased rapidly when cells were replated at a low density after attaining high expression of LAR at high cell density. COS-7 cells displayed comparable density-dependent regulation of LAR expression when transiently expressing exogenous LAR under the control of a constitutively active promoter, indicating that the regulation of expression is not at the level of gene regulation. Disrupting homophilic E-cadherin complexes by chelating extracellular calcium caused a marked decrease in LAR protein levels. Similarly, blocking E-cadherin interactions with saturating amounts of E-cadherin antibody (HECD-1) also led to a rapid and pronounced loss of cellular LAR. In contrast, mimicking cell-surface E-cadherin engagement by plating cells at low density on to dishes coated with HECD-1 resulted in a 2-fold increase in LAR expression compared with controls. These results suggest that density-dependent regulation of LAR expression is mediated by functional E-cadherin and may play a role in density-dependent contact inhibition by regulating tyrosine phosphorylation in E-cadherin complexes.
Collapse
Affiliation(s)
- Javelle R Symons
- Department of Pathology and Laboratory Medicine, University of Rochester School of Medicine and Dentistry, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | | | | |
Collapse
|