51
|
Maternal Subclinical Hypothyroidism in Rats Impairs Spatial Learning and Memory in Offspring by Disrupting Balance of the TrkA/p75 NTR Signal Pathway. Mol Neurobiol 2021; 58:4237-4250. [PMID: 33966253 PMCID: PMC8487421 DOI: 10.1007/s12035-021-02403-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 04/26/2021] [Indexed: 11/21/2022]
Abstract
Maternal subclinical hypothyroidism (SCH) during pregnancy can adversely affect the neurodevelopment of the offspring. The balance of nerve growth factor (NGF)-related tropomyosin receptor kinase A/p75 neurotrophin receptor (TrkA/p75NTR) signaling in the hippocampus is important in brain development, and whether it affects cognitive function in maternal SCH’s offspring is not clear. In this study, we found that compared with the control (CON) group, expression of proliferation-related proteins [NGF, p-TrkA, phospho-extracellular signal-regulated kinase 1/2 (p-ERK1/2) and phospho-cAMP response element-binding protein (p-CREB)] decreased in the hippocampus of the offspring in the SCH group, overt hypothyroidism (OHT) group, and the group with levothyroxine (L-T4) treatment for SCH from gestational day 17 (E17). In contrast, expression of apoptosis-related proteins [pro-NGF, p75NTR, phospho-C-Jun N-terminal kinase (p-JNK), p53, Bax and cleaved caspase-3] was increased. The two groups with treatment with L-T4 for SCH from E10 and E13, respectively, showed no significant difference compared with the CON group. L-T4 treatment enhanced relative expression of NGF by increasing NGF/proNGF ratio in offspring from maternal SCH rats. In conclusion, L-T4 treatment for SCH from early pregnancy dramatically ameliorated cognitive impairment via TrkA/p75NTR signaling, which involved activation of the neuronal proliferation and inhibition of neuronal apoptosis in SCH rats’ offspring.
Collapse
|
52
|
Tanwar J, Singh JB, Motiani RK. Molecular machinery regulating mitochondrial calcium levels: The nuts and bolts of mitochondrial calcium dynamics. Mitochondrion 2021; 57:9-22. [PMID: 33316420 PMCID: PMC7610953 DOI: 10.1016/j.mito.2020.12.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 11/18/2020] [Accepted: 12/03/2020] [Indexed: 02/06/2023]
Abstract
Mitochondria play vital role in regulating the cellular energetics and metabolism. Further, it is a signaling hub for cell survival and apoptotic pathways. One of the key determinants that calibrate both cellular energetics and survival functions is mitochondrial calcium (Ca2+) dynamics. Mitochondrial Ca2+ regulates three Ca2+-sensitive dehydrogenase enzymes involved in tricarboxylic acid cycle (TCA) cycle thereby directly controlling ATP synthesis. On the other hand, excessive Ca2+ concentration within the mitochondrial matrix elevates mitochondrial reactive oxygen species (mROS) levels and causes mitochondrial membrane depolarization. This leads to opening of the mitochondrial permeability transition pore (mPTP) and release of cytochrome c into cytosol eventually triggering apoptosis. Therefore, it is critical for cell to maintain mitochondrial Ca2+ concentration. Since cells can neither synthesize nor metabolize Ca2+, it is the dynamic interplay of Ca2+ handling proteins involved in mitochondrial Ca2+ influx and efflux that take the center stage. In this review we would discuss the key molecular machinery regulating mitochondrial Ca2+ concentration. We would focus on the channel complex involved in bringing Ca2+ into mitochondrial matrix i.e. Mitochondrial Ca2+ Uniporter (MCU) and its key regulators Mitochondrial Ca2+ Uptake proteins (MICU1, 2 and 3), MCU regulatory subunit b (MCUb), Essential MCU Regulator (EMRE) and Mitochondrial Ca2+ Uniporter Regulator 1 (MCUR1). Further, we would deliberate on major mitochondrial Ca2+ efflux proteins i.e. Mitochondrial Na+/Ca2+/Li+ exchanger (NCLX) and Leucine zipper EF hand-containing transmembrane1 (Letm1). Moreover, we would highlight the physiological functions of these proteins and discuss their relevance in human pathophysiology. Finally, we would highlight key outstanding questions in the field.
Collapse
Affiliation(s)
- Jyoti Tanwar
- CSIR-Institute of Genomics and Integrative Biology (IGIB), New Delhi 10025, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Jaya Bharti Singh
- Laboratory of Calciomics and Systemic Pathophysiology (LCSP), Regional Centre for Biotechnology (RCB), Faridabad, Delhi-NCR, India
| | - Rajender K Motiani
- Laboratory of Calciomics and Systemic Pathophysiology (LCSP), Regional Centre for Biotechnology (RCB), Faridabad, Delhi-NCR, India.
| |
Collapse
|
53
|
Nambu H, Takada S, Maekawa S, Matsumoto J, Kakutani N, Furihata T, Shirakawa R, Katayama T, Nakajima T, Yamanashi K, Obata Y, Nakano I, Tsuda M, Saito A, Fukushima A, Yokota T, Nio-Kobayashi J, Yasui H, Higashikawa K, Kuge Y, Anzai T, Sabe H, Kinugawa S. Inhibition of xanthine oxidase in the acute phase of myocardial infarction prevents skeletal muscle abnormalities and exercise intolerance. Cardiovasc Res 2021; 117:805-819. [PMID: 32402072 DOI: 10.1093/cvr/cvaa127] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 04/01/2020] [Indexed: 12/12/2022] Open
Abstract
AIMS Exercise intolerance in patients with heart failure (HF) is partly attributed to skeletal muscle abnormalities. We have shown that reactive oxygen species (ROS) play a crucial role in skeletal muscle abnormalities, but the pathogenic mechanism remains unclear. Xanthine oxidase (XO) is reported to be an important mediator of ROS overproduction in ischaemic tissue. Here, we tested the hypothesis that skeletal muscle abnormalities in HF are initially caused by XO-derived ROS and are prevented by the inhibition of their production. METHODS AND RESULTS Myocardial infarction (MI) was induced in male C57BL/6J mice, which eventually led to HF, and a sham operation was performed in control mice. The time course of XO-derived ROS production in mouse skeletal muscle post-MI was first analysed. XO-derived ROS production was significantly increased in MI mice from Days 1 to 3 post-surgery (acute phase), whereas it did not differ between the MI and sham groups from 7 to 28 days (chronic phase). Second, mice were divided into three groups: sham + vehicle (Sham + Veh), MI + vehicle (MI + Veh), and MI + febuxostat (an XO inhibitor, 5 mg/kg body weight/day; MI + Feb). Febuxostat or vehicle was administered at 1 and 24 h before surgery, and once-daily on Days 1-7 post-surgery. On Day 28 post-surgery, exercise capacity and mitochondrial respiration in skeletal muscle fibres were significantly decreased in MI + Veh compared with Sham + Veh mice. An increase in damaged mitochondria in MI + Veh compared with Sham + Veh mice was also observed. The wet weight and cross-sectional area of slow muscle fibres (higher XO-derived ROS) was reduced via the down-regulation of protein synthesis-associated mTOR-p70S6K signalling in MI + Veh compared with Sham + Veh mice. These impairments were ameliorated in MI + Feb mice, in association with a reduction of XO-derived ROS production, without affecting cardiac function. CONCLUSION XO inhibition during the acute phase post-MI can prevent skeletal muscle abnormalities and exercise intolerance in mice with HF.
Collapse
MESH Headings
- Animals
- Cell Hypoxia
- Cell Line
- Disease Models, Animal
- Enzyme Inhibitors/pharmacology
- Exercise Tolerance/drug effects
- Febuxostat/pharmacology
- Male
- Mice, Inbred C57BL
- Mitochondria, Muscle/drug effects
- Mitochondria, Muscle/enzymology
- Mitochondria, Muscle/pathology
- Muscle Fibers, Skeletal/drug effects
- Muscle Fibers, Skeletal/enzymology
- Muscle Fibers, Skeletal/pathology
- Muscle Strength/drug effects
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/enzymology
- Muscle, Skeletal/pathology
- Muscle, Skeletal/physiopathology
- Muscular Atrophy/enzymology
- Muscular Atrophy/pathology
- Muscular Atrophy/physiopathology
- Muscular Atrophy/prevention & control
- Myocardial Infarction/drug therapy
- Myocardial Infarction/enzymology
- Myocardial Infarction/pathology
- Myocardial Infarction/physiopathology
- Reactive Oxygen Species/metabolism
- Ribosomal Protein S6 Kinases, 70-kDa/metabolism
- TOR Serine-Threonine Kinases/metabolism
- Time Factors
- Xanthine Oxidase/antagonists & inhibitors
- Xanthine Oxidase/metabolism
- Mice
Collapse
Affiliation(s)
- Hideo Nambu
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Shingo Takada
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
- Department of Molecular Biology, Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
- Department of Sports Education, Faculty of Lifelong Sport, Hokusho University, Ebetsu, Japan
| | - Satoshi Maekawa
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Junichi Matsumoto
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Naoya Kakutani
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
- Research Fellow of the Japan Society for the Promotion of Science, Japan
| | - Takaaki Furihata
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Ryosuke Shirakawa
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Takashi Katayama
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Takayuki Nakajima
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Katsuma Yamanashi
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Yoshikuni Obata
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Ippei Nakano
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Masaya Tsuda
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Akimichi Saito
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
- Institute of Preventive Medical Sciences, Health Sciences University of Hokkaido, Sapporo, Japan
| | - Arata Fukushima
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Takashi Yokota
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Junko Nio-Kobayashi
- Laboratory of Histology and Cytology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Hironobu Yasui
- Central Institute of Isotope Science, Hokkaido University, Sapporo, Japan
| | - Kei Higashikawa
- Central Institute of Isotope Science, Hokkaido University, Sapporo, Japan
| | - Yuji Kuge
- Central Institute of Isotope Science, Hokkaido University, Sapporo, Japan
| | - Toshihisa Anzai
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Hisataka Sabe
- Department of Molecular Biology, Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Shintaro Kinugawa
- Department of Cardiovascular Medicine, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
54
|
Kong Y, Zhao X, Qiu M, Lin Y, Feng P, Li S, Liang B, Zhu Q, Huang H, Li C, Wang W. Tubular Mas receptor mediates lipid-induced kidney injury. Cell Death Dis 2021; 12:110. [PMID: 33479200 PMCID: PMC7817966 DOI: 10.1038/s41419-020-03375-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 12/22/2020] [Accepted: 12/23/2020] [Indexed: 12/14/2022]
Abstract
Obesity-related kidney diseases are becoming serious health problems worldwide, yet the mechanism by which obesity causes kidney injury is not fully understood. The purpose of current study was to investigate the role of Mas receptor in lipid-induced kidney injury. In mice fed with high-fat diet (HFD), the protein abundance of markers of autophagy, endoplasmic reticulum stress (ER stress) and apoptosis was dramatically increased in the kidney cortex, which was markedly prevented by Mas deletion (Mas-/-) or Mas receptor antagonist A779. Palmitic acid (PA) induced persistently increased autophagy, ER stress, and apoptosis as well as mitochondrial injuries in primary cultured proximal tubular cells from wild type, but not from Mas-/- mice. In human proximal tubular HK2 cells, PA-induced autophagy and ER stress was aggravated by Mas agonists Ang (1-7) or AVE0991, but attenuated by A779 or Mas knockdown. Stimulation of Mas resulted in elevated intracellular calcium levels [Ca2+]i in HK2 cells treated with PA, whereas inhibition or knockdown of Mas decreased [Ca2+]i. Mitochondrial outer membrane located voltage-dependent anion channel (VDAC1) was markedly upregulated in HK2 cells treated with PA, which was associated with impaired mitochondrial morphology and depolarization. These were enhanced by AVE0991 and suppressed by A779 or Mas knockdown. Mas knockdown in HK2 cells prevented impaired interactions among VDAC1, autophagy adaptor P62, and ubiquitin, induced by PA, leading to a potential ubiquitination of VDAC1. In conclusion, Mas receptor-mediated lipid-induced impaired autophagy and ER stress in the kidney, likely contributing to tubular injuries in obesity-related kidney diseases.
Collapse
Affiliation(s)
- Yonglun Kong
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Xiaoduo Zhao
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Miaojuan Qiu
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.,Research Center, The Seventh Affliated Hospital, Sun Yat-sen University, Shenzhen, 518107, China
| | - Yu Lin
- Department of Pathology, Zhujiang Hospitial, Southern Medical University, Guangzhou, 510282, China
| | - Pinning Feng
- Department of Clinical Laboratory, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Suchun Li
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Baien Liang
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Qing Zhu
- Guangdong Metabolic Disease Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Hui Huang
- Department of Cardiology, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, China
| | - Chunling Li
- Institute of Hypertension, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Weidong Wang
- Department of Pathophysiology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China. .,Department of Nephrology, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China.
| |
Collapse
|
55
|
Role of Phytochemicals in Perturbation of Redox Homeostasis in Cancer. Antioxidants (Basel) 2021; 10:antiox10010083. [PMID: 33435480 PMCID: PMC7827008 DOI: 10.3390/antiox10010083] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/05/2021] [Accepted: 01/05/2021] [Indexed: 12/12/2022] Open
Abstract
Over the past few decades, research on reactive oxygen species (ROS) has revealed their critical role in the initiation and progression of cancer by virtue of various transcription factors. At certain threshold values, ROS act as signaling molecules leading to activation of oncogenic pathways. However, if perturbated beyond the threshold values, ROS act in an anti-tumor manner leading to cellular death. ROS mediate cellular death through various programmed cell death (PCD) approaches such as apoptosis, autophagy, ferroptosis, etc. Thus, external stimulation of ROS beyond a threshold is considered a promising therapeutic strategy. Phytochemicals have been widely regarded as favorable therapeutic options in many diseased conditions. Over the past few decades, mechanistic studies on phytochemicals have revealed their effect on ROS homeostasis in cancer. Considering their favorable side effect profile, phytochemicals remain attractive treatment options in cancer. Herein, we review some of the most recent studies performed using phytochemicals and, we further delve into the mechanism of action enacted by individual phytochemicals for PCD in cancer.
Collapse
|
56
|
Cheng A, Kawahata I, Fukunaga K. Fatty Acid Binding Protein 5 Mediates Cell Death by Psychosine Exposure through Mitochondrial Macropores Formation in Oligodendrocytes. Biomedicines 2020; 8:biomedicines8120635. [PMID: 33419250 PMCID: PMC7766880 DOI: 10.3390/biomedicines8120635] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 12/08/2020] [Accepted: 12/17/2020] [Indexed: 12/21/2022] Open
Abstract
Oligodendrocytes, the myelinating cells in the central nervous system (CNS), are critical for producing myelin throughout the CNS. The loss of oligodendrocytes is associated with multiple neurodegenerative disorders mediated by psychosine. However, the involvement of psychosine in the critical biochemical pathogenetic mechanism of the loss of oligodendrocytes and myelin in krabbe disease (KD) remains unclear. Here, we addressed how oligodendrocytes are induced by psychosine treatment in both KG-1C human oligodendroglial cells and mouse oligodendrocyte precursor cells. We found that fatty acid binding protein 5 (FABP5) expressed in oligodendrocytes accelerates mitochondria-induced glial death by inducing mitochondrial macropore formation through voltage-dependent anion channels (VDAC-1) and BAX. These two proteins mediate mitochondrial outer membrane permeabilization, thereby leading to the release of mitochondrial DNA and cytochrome C into the cytosol, and the activation of apoptotic caspases. Furthermore, we confirmed that the inhibition of FABP5 functions by shRNA and FABP5-specific ligands blocking mitochondrial macropore formation, thereby rescuing psychosine-induced oligodendrocyte death. Taken together, we identified FABP5 as a critical factor in mitochondrial injury associated with psychosine-induced apoptosis in oligodendrocytes.
Collapse
|
57
|
Mfarej MG, Skibbens RV. An ever-changing landscape in Roberts syndrome biology: Implications for macromolecular damage. PLoS Genet 2020; 16:e1009219. [PMID: 33382686 PMCID: PMC7774850 DOI: 10.1371/journal.pgen.1009219] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Roberts syndrome (RBS) is a rare developmental disorder that can include craniofacial abnormalities, limb malformations, missing digits, intellectual disabilities, stillbirth, and early mortality. The genetic basis for RBS is linked to autosomal recessive loss-of-function mutation of the establishment of cohesion (ESCO) 2 acetyltransferase. ESCO2 is an essential gene that targets the DNA-binding cohesin complex. ESCO2 acetylates alternate subunits of cohesin to orchestrate vital cellular processes that include sister chromatid cohesion, chromosome condensation, transcription, and DNA repair. Although significant advances were made over the last 20 years in our understanding of ESCO2 and cohesin biology, the molecular etiology of RBS remains ambiguous. In this review, we highlight current models of RBS and reflect on data that suggests a novel role for macromolecular damage in the molecular etiology of RBS.
Collapse
Affiliation(s)
- Michael G. Mfarej
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania, United States of America
| | - Robert V. Skibbens
- Department of Biological Sciences, Lehigh University, Bethlehem, Pennsylvania, United States of America
| |
Collapse
|
58
|
Mitochondrial dysfunction in the development and progression of neurodegenerative diseases. Arch Biochem Biophys 2020; 702:108698. [PMID: 33259796 DOI: 10.1016/j.abb.2020.108698] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/11/2020] [Accepted: 11/21/2020] [Indexed: 02/07/2023]
Abstract
In addition to ATP synthesis, mitochondria are highly dynamic organelles that modulate apoptosis, ferroptosis, and inflammasome activation. Through executing these varied functions, the mitochondria play critical roles in the development and progression of neurodegenerative diseases including Alzheimer's disease, Parkinson's disease, Huntington's disease, and Friedreich ataxia, among others. Impaired mitochondrial biogenesis and abnormal mitochondrial dynamics contribute to mitochondrial dysfunction in these diseases. Additionally, dysfunctional mitochondria play critical roles in signaling for both inflammasome activation and ferroptosis. Therapeutics are being developed to circumvent inflammasome activation and ferroptosis in dysfunctional mitochondria. Targeting these aspects of mitochondrial dysfunction may present viable therapeutic strategies for combatting the neurodegenerative diseases. This review aims to summarize the role of the mitochondria in the development and progression of neurodegenerative diseases and to present current therapeutic approaches that target mitochondrial dysfunction in these diseases.
Collapse
|
59
|
Kim JY, Choi JH, Jun JH, Park S, Jung J, Bae SH, Kim GJ. Enhanced PRL-1 expression in placenta-derived mesenchymal stem cells accelerates hepatic function via mitochondrial dynamics in a cirrhotic rat model. Stem Cell Res Ther 2020; 11:512. [PMID: 33246509 PMCID: PMC7694436 DOI: 10.1186/s13287-020-02029-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 11/16/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Placenta-derived mesenchymal stem cells (PD-MSCs) have been highlighted as an alternative cell therapy agent that has become a next-generation stem cell treatment. Phosphatase of regenerating liver-1 (PRL-1), an immediate early gene, plays a critical role during liver regeneration. Here, we generated enhanced PRL-1 in PD-MSCs (PD-MSCsPRL-1, PRL-1+) using lentiviral and nonviral gene delivery systems and investigated mitochondrial functions by PD-MSCPRL-1 transplantation for hepatic functions in a rat bile duct ligation (BDL) model. METHODS PD-MSCsPRL-1 were generated by lentiviral and nonviral AMAXA gene delivery systems and analyzed for their characteristics and mitochondrial metabolic functions. Liver cirrhosis was induced in Sprague-Dawley (SD) rats using common BDL for 10 days. PKH67+ naïve and PD-MSCsPRL-1 using a nonviral sysyem (2 × 106 cells/animal) were intravenously administered into cirrhotic rats. The animals were sacrificed at 1, 2, 3, and 5 weeks after transplantation and engraftment of stem cells, and histopathological analysis and hepatic mitochondrial functions were performed. RESULTS PD-MSCsPRL-1 were successfully generated using lentiviral and nonviral AMAXA systems and maintained characteristics similar to those of naïve cells. Compared with naïve cells, PD-MSCsPRL-1 improved respirational metabolic states of mitochondria. In particular, mitochondria in PD-MSCsPRL-1 generated by the nonviral AMAXA system showed a significant increase in the respirational metabolic state, including ATP production and mitochondrial biogenesis (*p < 0.05). Furthermore, transplantation of PD-MSCsPRL-1 using a nonviral AMAXA system promoted engraftment into injured target liver tissues of a rat BDL cirrhotic model and enhanced the metabolism of mitochondria via increased mtDNA and ATP production, thereby improving therapeutic efficacy. CONCLUSIONS Our findings will further our understanding of the therapeutic mechanism of enhanced MSCs and provide useful data for the development of next-generation MSC-based cell therapy and therapeutic strategies for regenerative medicine in liver disease.
Collapse
Affiliation(s)
- Jae Yeon Kim
- Department of Biomedical Science, CHA University, Seongnam, 13488, Republic of Korea
| | - Jong Ho Choi
- Department of Oral Pathology, College of Dentistry, Gangneung-Wonju National University, Gangneung, 25457, Republic of Korea
| | - Ji Hye Jun
- Department of Biomedical Science, CHA University, Seongnam, 13488, Republic of Korea
| | - Sohae Park
- Department of Biomedical Science, CHA University, Seongnam, 13488, Republic of Korea
| | - Jieun Jung
- Department of Biomedical Science, CHA University, Seongnam, 13488, Republic of Korea
| | - Si Hyun Bae
- Department of Internal Medicine, Catholic University Medical College, Seoul, 06591, Republic of Korea
| | - Gi Jin Kim
- Department of Biomedical Science, CHA University, Seongnam, 13488, Republic of Korea.
| |
Collapse
|
60
|
Shoshan-Barmatz V, Shteinfer-Kuzmine A, Verma A. VDAC1 at the Intersection of Cell Metabolism, Apoptosis, and Diseases. Biomolecules 2020; 10:E1485. [PMID: 33114780 PMCID: PMC7693975 DOI: 10.3390/biom10111485] [Citation(s) in RCA: 105] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/02/2020] [Accepted: 10/22/2020] [Indexed: 02/07/2023] Open
Abstract
The voltage-dependent anion channel 1 (VDAC1) protein, is an important regulator of mitochondrial function, and serves as a mitochondrial gatekeeper, with responsibility for cellular fate. In addition to control over energy sources and metabolism, the protein also regulates epigenomic elements and apoptosis via mediating the release of apoptotic proteins from the mitochondria. Apoptotic and pathological conditions, as well as certain viruses, induce cell death by inducing VDAC1 overexpression leading to oligomerization, and the formation of a large channel within the VDAC1 homo-oligomer. This then permits the release of pro-apoptotic proteins from the mitochondria and subsequent apoptosis. Mitochondrial DNA can also be released through this channel, which triggers type-Ι interferon responses. VDAC1 also participates in endoplasmic reticulum (ER)-mitochondria cross-talk, and in the regulation of autophagy, and inflammation. Its location in the outer mitochondrial membrane, makes VDAC1 ideally placed to interact with over 100 proteins, and to orchestrate the interaction of mitochondrial and cellular activities through a number of signaling pathways. Here, we provide insights into the multiple functions of VDAC1 and describe its involvement in several diseases, which demonstrate the potential of this protein as a druggable target in a wide variety of pathologies, including cancer.
Collapse
Affiliation(s)
- Varda Shoshan-Barmatz
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel; (A.S.-K.); (A.V.)
| | | | | |
Collapse
|
61
|
Pham B, Chisholm CM, Foster J, Friis E, Fahie MA, Chen M. A pH-independent quiet OmpG pore with enhanced electrostatic repulsion among the extracellular loops. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1863:183485. [PMID: 33058855 DOI: 10.1016/j.bbamem.2020.183485] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 09/22/2020] [Indexed: 11/16/2022]
Abstract
Membrane protein pores have emerged as powerful nanopore sensors for single-molecule detection. OmpG, a monomeric nanopore, is comprised of fourteen β-strands connected by seven flexible extracellular loops. The OmpG nanopore exhibits pH-dependent gating as revealed by planar lipid bilayer studies. Current evidence strongly suggests that the dynamic movement of loop 6 is responsible for the gating mechanism. In this work, we have shown that enhancing the electrostatic repulsion forces between extracellular loops suppressed the pH-dependent gating. Our mutant containing additional negative charges in loop 6 and loop 1 exhibited minimal spontaneous gating and reduced sensitivity to pH changes compared to the wild type OmpG. These results provide new evidence to support the mechanism of OmpG gating controlled by the complex electrostatic network around the gating loop 6. The pH-independent quiet OmpG pores could potentially be used as a sensing platform that operates at a broad range of pH conditions.
Collapse
Affiliation(s)
- Bach Pham
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003, United States
| | - Christina M Chisholm
- Molecular and Cellular Biology Program, University of Massachusetts Amherst, Amherst, MA 01003, United States
| | - Joshua Foster
- Molecular and Cellular Biology Program, University of Massachusetts Amherst, Amherst, MA 01003, United States
| | - Emily Friis
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003, United States
| | - Monifa A Fahie
- Molecular and Cellular Biology Program, University of Massachusetts Amherst, Amherst, MA 01003, United States
| | - Min Chen
- Department of Chemistry, University of Massachusetts Amherst, Amherst, MA 01003, United States; Molecular and Cellular Biology Program, University of Massachusetts Amherst, Amherst, MA 01003, United States.
| |
Collapse
|
62
|
Macasoi I, Mioc A, Mioc M, Racoviceanu R, Soica I, Chevereșan A, Dehelean C, Dumitrașcu V. Targeting Mitochondria through the Use of Mitocans as Emerging Anticancer Agents. Curr Med Chem 2020; 27:5730-5757. [DOI: 10.2174/0929867326666190712150638] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 05/19/2019] [Accepted: 06/11/2019] [Indexed: 01/10/2023]
Abstract
Mitochondria are key players with a multi-functional role in many vital cellular processes,
such as energy metabolism, redox regulation, calcium homeostasis, Reactive Oxygen Species
(ROS) as well as in cell signaling, survival and apoptosis. These functions are mainly regulated
through important enzyme signaling cascades, which if altered may influence the outcome of cell
viability and apoptosis. Therefore some of the key enzymes that are vital for these signaling pathways
are emerging as important targets for new anticancer agent development. Mitocans are compounds
aimed at targeting mitochondria in cancer cells by altering mitochondrial functions thus
causing cell growth inhibition or apoptosis. This review summarizes the till present known classes
of mitocans, their mechanism of action and potential therapeutic use in different forms of cancer.
Collapse
Affiliation(s)
- Ioana Macasoi
- Faculty of Pharmacy, Victor Babes University of Medicine and Pharmacy, 2 Eftimie Murgu, Timisoara, Romania
| | - Alexandra Mioc
- Faculty of Pharmacy, Victor Babes University of Medicine and Pharmacy, 2 Eftimie Murgu, Timisoara, Romania
| | - Marius Mioc
- Faculty of Pharmacy, Victor Babes University of Medicine and Pharmacy, 2 Eftimie Murgu, Timisoara, Romania
| | - Roxana Racoviceanu
- Faculty of Pharmacy, Victor Babes University of Medicine and Pharmacy, 2 Eftimie Murgu, Timisoara, Romania
| | - Irina Soica
- Earlscliffe Sixth Form, Earlscliffe, 29 Shorncliffe Road, Folkestone, CT20 2NB, United Kingdom
| | - Adelina Chevereșan
- Faculty of Medicine, Victor Babes University of Medicine and Pharmacy, 2 Eftimie Murgu, Timisoara, Romania
| | - Cristina Dehelean
- Faculty of Pharmacy, Victor Babes University of Medicine and Pharmacy, 2 Eftimie Murgu, Timisoara, Romania
| | - Victor Dumitrașcu
- Faculty of Medicine, Victor Babes University of Medicine and Pharmacy, 2 Eftimie Murgu, Timisoara, Romania
| |
Collapse
|
63
|
Thévenod F, Lee WK, Garrick MD. Iron and Cadmium Entry Into Renal Mitochondria: Physiological and Toxicological Implications. Front Cell Dev Biol 2020; 8:848. [PMID: 32984336 PMCID: PMC7492674 DOI: 10.3389/fcell.2020.00848] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 08/07/2020] [Indexed: 12/15/2022] Open
Abstract
Regulation of body fluid homeostasis is a major renal function, occurring largely through epithelial solute transport in various nephron segments driven by Na+/K+-ATPase activity. Energy demands are greatest in the proximal tubule and thick ascending limb where mitochondrial ATP production occurs through oxidative phosphorylation. Mitochondria contain 20-80% of the cell's iron, copper, and manganese that are imported for their redox properties, primarily for electron transport. Redox reactions, however, also lead to reactive, toxic compounds, hence careful control of redox-active metal import into mitochondria is necessary. Current dogma claims the outer mitochondrial membrane (OMM) is freely permeable to metal ions, while the inner mitochondrial membrane (IMM) is selectively permeable. Yet we recently showed iron and manganese import at the OMM involves divalent metal transporter 1 (DMT1), an H+-coupled metal ion transporter. Thus, iron import is not only regulated by IMM mitoferrins, but also depends on the OMM to intermembrane space H+ gradient. We discuss how these mitochondrial transport processes contribute to renal injury in systemic (e.g., hemochromatosis) and local (e.g., hemoglobinuria) iron overload. Furthermore, the environmental toxicant cadmium selectively damages kidney mitochondria by "ionic mimicry" utilizing iron and calcium transporters, such as OMM DMT1 or IMM calcium uniporter, and by disrupting the electron transport chain. Consequently, unraveling mitochondrial metal ion transport may help develop new strategies to prevent kidney injury induced by metals.
Collapse
Affiliation(s)
- Frank Thévenod
- Faculty of Health, Centre for Biomedical Education and Research, Institute of Physiology, Pathophysiology and Toxicology, Witten/Herdecke University, Witten, Germany
| | - Wing-Kee Lee
- Faculty of Health, Centre for Biomedical Education and Research, Institute of Physiology, Pathophysiology and Toxicology, Witten/Herdecke University, Witten, Germany
| | - Michael D Garrick
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, Buffalo, NY, United States
| |
Collapse
|
64
|
Shahar N, Larisch S. Inhibiting the inhibitors: Targeting anti-apoptotic proteins in cancer and therapy resistance. Drug Resist Updat 2020; 52:100712. [DOI: 10.1016/j.drup.2020.100712] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/29/2020] [Accepted: 06/05/2020] [Indexed: 12/14/2022]
|
65
|
Plumbagin promotes mitochondrial mediated apoptosis in gefitinib sensitive and resistant A549 lung cancer cell line through enhancing reactive oxygen species generation. Mol Biol Rep 2020; 47:4155-4168. [DOI: 10.1007/s11033-020-05464-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 04/25/2020] [Indexed: 01/06/2023]
|
66
|
Yan J, Jiang J, He L, Chen L. Mitochondrial superoxide/hydrogen peroxide: An emerging therapeutic target for metabolic diseases. Free Radic Biol Med 2020; 152:33-42. [PMID: 32160947 DOI: 10.1016/j.freeradbiomed.2020.02.029] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 02/22/2020] [Accepted: 02/27/2020] [Indexed: 12/11/2022]
Abstract
Mitochondria are well known for their roles as energy and metabolic factory. Mitochondrial reactive oxygen species (mtROS) refer to superoxide anion radical (•O2-) and hydrogen peroxide (H2O2). They are byproducts of electron transport in mitochondrial respiratory chain and are implicated in the regulation of physiological and pathological signal transduction. Especially when mitochondrial •O2-/H2O2 production is disturbed, this disturbance is closely related to the occurrence and development of metabolic diseases. In this review, the sources of mitochondrial •O2-/H2O2 as well as mitochondrial antioxidant mechanisms are summarized. Furthermore, we particularly emphasize the essential role of mitochondrial •O2-/H2O2 in metabolic diseases. Specifically, perturbed mitochondrial •O2-/H2O2 regulation aggravates the progression of metabolic diseases, including diabetes, gout and nonalcoholic fatty liver disease (NAFLD). Given the deleterious effect of mitochondrial •O2-/H2O2 in the development of metabolic diseases, antioxidants targeting mitochondrial •O2-/H2O2 might be an attractive therapeutic approach for the prevention and treatment of metabolic diseases.
Collapse
Affiliation(s)
- Jialong Yan
- Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, 421001, China
| | - Jinyong Jiang
- Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, 421001, China
| | - Lu He
- Department of Pharmacy, The First Affiliated Hospital, University of South China, Hengyang, China.
| | - Linxi Chen
- Institute of Pharmacy and Pharmacology, Learning Key Laboratory for Pharmacoproteomics, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, Hengyang, 421001, China.
| |
Collapse
|
67
|
18-kDa translocator protein association complexes in the brain: From structure to function. Biochem Pharmacol 2020; 177:114015. [PMID: 32387458 DOI: 10.1016/j.bcp.2020.114015] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 05/04/2020] [Indexed: 12/14/2022]
Abstract
The outer mitochondrial membrane 18-kDa translocator protein (TSPO) is highly conserved in organisms of different species and ubiquitously expressed throughout tissues, including the nervous system. In the healthy adult brain, TSPO expression levels are low and promptly modulated under different pathological conditions, such as cancer, inflammatory states, and neurological and psychiatric disorders. Not surprisingly, several endogenous and synthetic molecules capable of binding TSPO have been proposed as drugs or diagnostic tools for brain diseases. The most studied biochemical function of TSPO is cholesterol translocation into mitochondria, which in turn affects the synthesis of steroids in the periphery and neurosteroids in the brain. In the last 30 years, roles for TSPO have also been suggested in other cellular processes, such as heme synthesis, apoptosis, autophagy, calcium signalling and reactive oxygen species production. Herein, we provide an overview of TSPO associations with different proteins, focusing particular attention on their related functions. Furthermore, recent TSPO-targeted therapeutic interventions are explored and discussed as prospect for innovative treatments in mental and brain diseases.
Collapse
|
68
|
Malla JA, Umesh RM, Yousf S, Mane S, Sharma S, Lahiri M, Talukdar P. A Glutathione Activatable Ion Channel Induces Apoptosis in Cancer Cells by Depleting Intracellular Glutathione Levels. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202000961] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Javid Ahmad Malla
- Department of Chemistry Indian Institute of Science Education and Research Pune Dr. Homi Bhabha Road, Pashan Pune 411008 Maharashtra India
| | - Rintu M. Umesh
- Department of Biology Indian Institute of Science Education and Research Pune Dr. Homi Bhabha Road, Pashan Pune 411008 Maharashtra India
| | - Saleem Yousf
- Department of Chemistry Indian Institute of Science Education and Research Pune Dr. Homi Bhabha Road, Pashan Pune 411008 Maharashtra India
| | - Shrunal Mane
- Department of Biology Indian Institute of Science Education and Research Pune Dr. Homi Bhabha Road, Pashan Pune 411008 Maharashtra India
| | - Shilpy Sharma
- Department of Biotechnology Savitribai Phule Pune University (Formerly University of Pune) Pune Maharashtra 411007 India
| | - Mayurika Lahiri
- Department of Biology Indian Institute of Science Education and Research Pune Dr. Homi Bhabha Road, Pashan Pune 411008 Maharashtra India
| | - Pinaki Talukdar
- Department of Chemistry Indian Institute of Science Education and Research Pune Dr. Homi Bhabha Road, Pashan Pune 411008 Maharashtra India
| |
Collapse
|
69
|
Malla JA, Umesh RM, Yousf S, Mane S, Sharma S, Lahiri M, Talukdar P. A Glutathione Activatable Ion Channel Induces Apoptosis in Cancer Cells by Depleting Intracellular Glutathione Levels. Angew Chem Int Ed Engl 2020; 59:7944-7952. [PMID: 32048775 DOI: 10.1002/anie.202000961] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 02/11/2020] [Indexed: 01/30/2023]
Abstract
Cancer cells use elevated glutathione (GSH) levels as an inner line of defense to evade apoptosis and develop drug resistance. In this study, we describe a novel 2,4-nitrobenzenesulfonyl (DNS) protected 2-hydroxyisophthalamide system that exploits GSH for its activation into free 2-hydroxyisophthalamide forming supramolecular M+ /Cl- channels. Better permeation of the DNS protected compound into MCF-7 cells compared to the free 2-hydroxyisophthalamide and GSH-activatable ion transport resulted in higher cytotoxicity, which was associated with increased oxidative stress that further reduced the intracellular GSH levels and altered mitochondrial membrane permeability leading to the induction of the intrinsic apoptosis pathway. The GSH-activatable transport-mediated cell death was further validated in rat insulinoma cells (INS-1E); wherein the intracellular GSH levels showed a direct correlation to the resulting cytotoxicity. Lastly, the active compound was found to restrict the growth and proliferation of 3D spheroids of MCF-7 cells with efficiency similar to that of the anticancer drug doxorubicin.
Collapse
Affiliation(s)
- Javid Ahmad Malla
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008, Maharashtra, India
| | - Rintu M Umesh
- Department of Biology, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008, Maharashtra, India
| | - Saleem Yousf
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008, Maharashtra, India
| | - Shrunal Mane
- Department of Biology, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008, Maharashtra, India
| | - Shilpy Sharma
- Department of Biotechnology, Savitribai Phule Pune University (Formerly University of Pune), Pune, Maharashtra, 411007, India
| | - Mayurika Lahiri
- Department of Biology, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008, Maharashtra, India
| | - Pinaki Talukdar
- Department of Chemistry, Indian Institute of Science Education and Research Pune, Dr. Homi Bhabha Road, Pashan, Pune, 411008, Maharashtra, India
| |
Collapse
|
70
|
Cao BL, Ma Q, Xu K. Silicon restrains drought-induced ROS accumulation by promoting energy dissipation in leaves of tomato. PROTOPLASMA 2020; 257:537-547. [PMID: 31811389 DOI: 10.1007/s00709-019-01449-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 10/18/2019] [Indexed: 05/23/2023]
Abstract
Energy dissipation plays a crucial role in mediating responses to oxidative stress in plants. Although the beneficial effects of silicon on plant resistance to drought stress have been well documented, the potential interactions between energy dissipation and Si in response to drought stress have not been examined. Here, a project was initiated that focused on the relationship between energy dissipation and the functions of Si. In this study, silicon-mediated proteins promoted the consumption of light energy capture and NPQ in chloroplasts. Additionally, we confirmed that the role of silicon-mediated energy dissipation in mitochondria was important for photosynthetic optimization. The energy dissipation in mitochondria was improved, which further optimized the energy dissipation in chloroplasts via Si-mediated alternative oxidase and the malate/oxaloacetate shuttle. ROS accumulation decreased because of the silicon-mediated energy dissipation.
Collapse
Affiliation(s)
- Bi-Li Cao
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, Shandong, China
- Key Laboratory of Crop Biology and Genetic Improvement of Horticultural Crops in Huanghuai Region, Shandong Agricultural University, Tai'an, 271018, Shandong, China
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Qiang Ma
- Tai'an Second Hospital of Traditional Chinese Medicine, Tai'an, 271000, Shandong, China
| | - Kun Xu
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai'an, 271018, Shandong, China.
- Key Laboratory of Crop Biology and Genetic Improvement of Horticultural Crops in Huanghuai Region, Shandong Agricultural University, Tai'an, 271018, Shandong, China.
- Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production in Shandong, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China.
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, Shandong, China.
| |
Collapse
|
71
|
Perillo B, Di Donato M, Pezone A, Di Zazzo E, Giovannelli P, Galasso G, Castoria G, Migliaccio A. ROS in cancer therapy: the bright side of the moon. Exp Mol Med 2020; 52:192-203. [PMID: 32060354 PMCID: PMC7062874 DOI: 10.1038/s12276-020-0384-2] [Citation(s) in RCA: 1150] [Impact Index Per Article: 287.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 01/02/2020] [Accepted: 01/03/2020] [Indexed: 12/14/2022] Open
Abstract
Reactive oxygen species (ROS) constitute a group of highly reactive molecules that have evolved as regulators of important signaling pathways. It is now well accepted that moderate levels of ROS are required for several cellular functions, including gene expression. The production of ROS is elevated in tumor cells as a consequence of increased metabolic rate, gene mutation and relative hypoxia, and excess ROS are quenched by increased antioxidant enzymatic and nonenzymatic pathways in the same cells. Moderate increases of ROS contribute to several pathologic conditions, among which are tumor promotion and progression, as they are involved in different signaling pathways and induce DNA mutation. However, ROS are also able to trigger programmed cell death (PCD). Our review will emphasize the molecular mechanisms useful for the development of therapeutic strategies that are based on modulating ROS levels to treat cancer. Specifically, we will report on the growing data that highlight the role of ROS generated by different metabolic pathways as Trojan horses to eliminate cancer cells. Highly reactive molecules called reactive oxygen species (ROS), which at low levels are natural regulators of important signaling pathways in cells, might be recruited to act as “Trojan horses” to kill cancer cells. Researchers in Italy led by Bruno Perillo of the Institute of Food Sciences in Avelllino review the growing evidence suggesting that stimulating production of natural ROS species could become useful in treating cancer. Although ROS production is elevated in cancer cells it can also promote a natural process called programmed cell death. This normally regulates cell turnover, but could be selectively activated to target diseased cells. The authors discuss molecular mechanisms underlying the potential anti-cancer activity of various ROS-producing strategies, including drugs and light-stimulated therapies. They expect modifying the production of ROS to have potential for developing new treatments.
Collapse
Affiliation(s)
- Bruno Perillo
- Istituto di Scienze dell'Alimentazione, C.N.R., 83100, Avellino, Italy. .,Istituto per l'Endocrinologia e l'Oncologia Sperimentale, C.N.R., 80131, Naples, Italy.
| | - Marzia Di Donato
- Dipartimento di Medicina di Precisione, Università della Campania "L. Vanvitelli", 80138, Naples, Italy
| | - Antonio Pezone
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli "Federico II", 80131, Naples, Italy
| | - Erika Di Zazzo
- Dipartimento di Medicina di Precisione, Università della Campania "L. Vanvitelli", 80138, Naples, Italy
| | - Pia Giovannelli
- Dipartimento di Medicina di Precisione, Università della Campania "L. Vanvitelli", 80138, Naples, Italy
| | - Giovanni Galasso
- Dipartimento di Medicina di Precisione, Università della Campania "L. Vanvitelli", 80138, Naples, Italy
| | - Gabriella Castoria
- Dipartimento di Medicina di Precisione, Università della Campania "L. Vanvitelli", 80138, Naples, Italy
| | - Antimo Migliaccio
- Dipartimento di Medicina di Precisione, Università della Campania "L. Vanvitelli", 80138, Naples, Italy
| |
Collapse
|
72
|
Malla JA, Umesh RM, Vijay A, Mukherjee A, Lahiri M, Talukdar P. Apoptosis-inducing activity of a fluorescent barrel-rosette M +/Cl - channel. Chem Sci 2020; 11:2420-2428. [PMID: 34084406 PMCID: PMC8157539 DOI: 10.1039/c9sc06520b] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 01/16/2020] [Indexed: 01/03/2023] Open
Abstract
Synthetic transmembrane ion transport systems are emerging as new tools for anticancer therapy. Here, a series of 2-hydroxy-N 1,N 3-diarylisophthalamide-based fluorescent ion channel-forming compounds are reported. Ion transport studies across large unilamellar vesicles confirmed that the compound with two 3,5-bis(trifluoromethyl)phenyl arms is the most efficient transporter among the series and it facilitates M+/Cl- symport. The compound formed supramolecular ion channels with a single-channel conductance of 100 ± 2 pS, a diameter of 5.06 ± 0.16 Å and a permeability ratio, P Cl- /P K+ , of 8.29 ± 1. The molecular dynamics simulations of the proposed M2.11 channel (i.e. 11 coaxial layers of a dimeric rosette) with K+ and Cl- in the preequilibrated POPC lipid bilayer with water molecules illustrated various aspects of channel formation and ion permeation. Cell viability assay with the designed compounds indicated that cell death is being induced by the individual compounds which follow the order of their ion transport activity and chloride and cations play roles in cell death. The inherent fluorescence of the most active transporter was helpful to monitor its permeation in cells by confocal microscopy. The apoptosis-inducing activity upon perturbation of intracellular ionic homeostasis was established by monitoring mitochondrial membrane depolarization, generation of reactive oxygen species, cytochrome c release, activation of the caspase 9 pathway, and finally the uptake of the propidium iodide dye in the treated MCF7 cells.
Collapse
Affiliation(s)
- Javid Ahmad Malla
- Department of Chemistry, Indian Institute of Science Education and Research Pune Dr Homi Bhabha Road, Pashan Pune 411008 Maharashtra India
| | - Rintu M Umesh
- Department of Biology, Indian Institute of Science Education and Research Pune Dr Homi Bhabha Road, Pashan Pune 411008 Maharashtra India
| | - Amal Vijay
- Department of Chemistry, Indian Institute of Science Education and Research Pune Dr Homi Bhabha Road, Pashan Pune 411008 Maharashtra India
| | - Arnab Mukherjee
- Department of Chemistry, Indian Institute of Science Education and Research Pune Dr Homi Bhabha Road, Pashan Pune 411008 Maharashtra India
| | - Mayurika Lahiri
- Department of Biology, Indian Institute of Science Education and Research Pune Dr Homi Bhabha Road, Pashan Pune 411008 Maharashtra India
| | - Pinaki Talukdar
- Department of Chemistry, Indian Institute of Science Education and Research Pune Dr Homi Bhabha Road, Pashan Pune 411008 Maharashtra India
| |
Collapse
|
73
|
Toyofuku T, Okamoto Y, Ishikawa T, Sasawatari S, Kumanogoh A. LRRK2 regulates endoplasmic reticulum-mitochondrial tethering through the PERK-mediated ubiquitination pathway. EMBO J 2020; 39:e100875. [PMID: 31821596 PMCID: PMC6960452 DOI: 10.15252/embj.2018100875] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 10/24/2019] [Accepted: 11/05/2019] [Indexed: 11/23/2022] Open
Abstract
Mutations in the leucine-rich repeat kinase 2 (LRRK2) gene are the most common cause of familial Parkinson's disease (PD). Impaired mitochondrial function is suspected to play a major role in PD. Nonetheless, the underlying mechanism by which impaired LRRK2 activity contributes to PD pathology remains unclear. Here, we identified the role of LRRK2 in endoplasmic reticulum (ER)-mitochondrial tethering, which is essential for mitochondrial bioenergetics. LRRK2 regulated the activities of E3 ubiquitin ligases MARCH5, MULAN, and Parkin via kinase-dependent protein-protein interactions. Kinase-active LRRK2(G2019S) dissociated from these ligases, leading to their PERK-mediated phosphorylation and activation, thereby increasing ubiquitin-mediated degradation of ER-mitochondrial tethering proteins. By contrast, kinase-dead LRRK2(D1994A)-bound ligases blocked PERK-mediated phosphorylation and activation of E3 ligases, thereby increasing the levels of ER-mitochondrial tethering proteins. Thus, the role of LRRK2 in the ER-mitochondrial interaction represents an important control point for cell fate and pathogenesis in PD.
Collapse
Affiliation(s)
- Toshihiko Toyofuku
- Department of Immunology and Molecular MedicineGraduate School of MedicineOsaka UniversitySuitaJapan
| | - Yuki Okamoto
- Department of Immunology and Molecular MedicineGraduate School of MedicineOsaka UniversitySuitaJapan
| | - Takako Ishikawa
- Department of Immunology and Molecular MedicineGraduate School of MedicineOsaka UniversitySuitaJapan
| | - Shigemi Sasawatari
- Department of Immunology and Molecular MedicineGraduate School of MedicineOsaka UniversitySuitaJapan
| | - Atsushi Kumanogoh
- Department of Respiratory Medicine and Clinical ImmunologyGraduate School of MedicineOsaka UniversitySuitaJapan
| |
Collapse
|
74
|
Pervaiz S, Bellot GL, Lemoine A, Brenner C. Redox signaling in the pathogenesis of human disease and the regulatory role of autophagy. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2020; 352:189-214. [DOI: 10.1016/bs.ircmb.2020.03.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
75
|
Lin CF, Chueh TH, Chung CH, Chung SD, Chang TC, Chien CT. Sulforaphane improves voiding function via the preserving mitochondrial function in diabetic rats. J Formos Med Assoc 2019; 119:1422-1430. [PMID: 31837923 DOI: 10.1016/j.jfma.2019.11.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 11/03/2019] [Accepted: 11/20/2019] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Hyperglycemia evoked oxidative stress contributing to diabetes (DM)-induced voiding dysfunction. We explored whether antioxidant sulforaphane,a NF-E2-related nuclear factor erythroid-2 (Nrf-2) activator, may ameliorate DM-induced bladder dysfunction. METHODS DM was induced by streptozotocin and sulforaphanewas administered before DM induction.Bladder reactive oxygen species (ROS) were determined by an ultrasensitive chemiluminescence analyzer. Mitochondrial function index mitochondrial Bax and cytosolic cytochrome c, antioxidant defense Nrf-2/HO-1, endoplasmic reticulum stress marker ATF-6/CHOP, and caspase 3/PARP were evaluated by Western blot. RESULTS DM increased Keap1 and reduced Nrf-2 expression, associated with increase of bladder ROS, mitochondrial Bax translocation, cytosolic cytochrome c release, ATF-6/CHOP, caspase-3/PARP in bladders which resulted in voiding dysfunction by increased intercontraction intervals and micturition duration. However, sulforaphanesignificantly increased nuclear Nrf-2/HO-1axis expression, decreased bladder ROS amount, mitochondrial Bax translocation, cytochrome c release, ATF-6/CHOP and caspase 3/PARP/apoptosis, thereby improved the voiding function by the shortened intercontraction intervals and micturition duration. CONCLUSION We suggest that sulforaphanevia activating Nrf-2/HO-1 signaling preserved mitochondrial function and suppressed DM-induced ROS, endoplasmic reticulum stress, apoptosis and voiding dysfunction.
Collapse
Affiliation(s)
- Chia-Fa Lin
- School of Life Science, National Taiwan Normal University, Taipei, 11677, Taiwan
| | - Tsung-Hung Chueh
- School of Life Science, National Taiwan Normal University, Taipei, 11677, Taiwan
| | - Cheng-Hsun Chung
- School of Life Science, National Taiwan Normal University, Taipei, 11677, Taiwan
| | - Shue-Dong Chung
- Department of Urology, Far-East Memory Hospital, New Taipei City, 220, Taiwan
| | - Tzu-Ching Chang
- School of Life Science, National Taiwan Normal University, Taipei, 11677, Taiwan.
| | - Chiang-Ting Chien
- School of Life Science, National Taiwan Normal University, Taipei, 11677, Taiwan.
| |
Collapse
|
76
|
Hou H, Huang X, Wei G, Xu F, Wang Y, Zhou S. Fenton Reaction-Assisted Photodynamic Therapy for Cancer with Multifunctional Magnetic Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2019; 11:29579-29592. [PMID: 31359756 DOI: 10.1021/acsami.9b09671] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Tumor hypoxia and the short half-life of reactive oxygen species (ROS) with small diffusion distance have greatly limited the therapeutic effect of photodynamic therapy (PDT). Here, a multifunctional nanoplatform is developed to enhance the PDT effect through increasing the oxygen concentration in tumor cells by the Fenton reaction and reducing the distance between the ROS and the target site by mitochondrial targeting. Fe3O4@Dex-TPP nanoparticles are first prepared by coprecipitation in the presence of triphenylphosphine (TPP)-grafted dextran (Dex-TPP) and Fe2+/Fe3+, which have a magnetic resonance imaging effect. Next, the photosensitizers of protoporphyrin IX (PpIX) and glutathione-responsive mPEG-ss-COOH are grafted on Fe3O4@Dex-TPP to form Fe3O4@Dex/TPP/PpIX/ss-mPEG nanoparticles. After the nanoparticles are internalized, part of Fe3O4 are decomposed into Fe2+/Fe3+ in the acidic lysosome and then Fe2+/Fe3+ diffused into the cytoplasm, and subsequently, Fe2+ reacted with the overproduced H2O2 to produce O2 and •OH. The undecomposed nanoparticles enter the cytoplasm by photoinduced internalization and targeted to the mitochondria, leading to ROS direct generation around the mitochondria. Simultaneously, the produced O2 by the Fenton reaction can serve as a raw material for PDT to continuously exert PDT effect. As a result, the Fenton reaction-assisted PDT can significantly improve the therapeutic efficacy of tumors.
Collapse
Affiliation(s)
- Huabo Hou
- Key Laboratory of Advanced Technologies of Material, Minister of Education, School of Materials Science and Engineering , Southwest Jiaotong University , Chengdu 610031 , Sichuan , P. R. China
| | - Xuehui Huang
- Key Laboratory of Advanced Technologies of Material, Minister of Education, School of Materials Science and Engineering , Southwest Jiaotong University , Chengdu 610031 , Sichuan , P. R. China
| | - Guoqing Wei
- Key Laboratory of Advanced Technologies of Material, Minister of Education, School of Materials Science and Engineering , Southwest Jiaotong University , Chengdu 610031 , Sichuan , P. R. China
| | - Funeng Xu
- Key Laboratory of Advanced Technologies of Material, Minister of Education, School of Materials Science and Engineering , Southwest Jiaotong University , Chengdu 610031 , Sichuan , P. R. China
| | - Yi Wang
- School of Life Science and Engineering , Southwest Jiaotong University , Chengdu 610031 , P. R. China
| | - Shaobing Zhou
- Key Laboratory of Advanced Technologies of Material, Minister of Education, School of Materials Science and Engineering , Southwest Jiaotong University , Chengdu 610031 , Sichuan , P. R. China
| |
Collapse
|
77
|
Shoshan-Barmatz V, Pittala S, Mizrachi D. VDAC1 and the TSPO: Expression, Interactions, and Associated Functions in Health and Disease States. Int J Mol Sci 2019; 20:ijms20133348. [PMID: 31288390 PMCID: PMC6651789 DOI: 10.3390/ijms20133348] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 07/02/2019] [Accepted: 07/03/2019] [Indexed: 12/12/2022] Open
Abstract
The translocator protein (TSPO), located at the outer mitochondrial membrane (OMM), serves multiple functions and contributes to numerous processes, including cholesterol import, mitochondrial metabolism, apoptosis, cell proliferation, Ca2+ signaling, oxidative stress, and inflammation. TSPO forms a complex with the voltage-dependent anion channel (VDAC), a protein that mediates the flux of ions, including Ca2+, nucleotides, and metabolites across the OMM, controls metabolism and apoptosis and interacts with many proteins. This review focuses on the two OMM proteins TSPO and VDAC1, addressing their structural interaction and associated functions. TSPO appears to be involved in the generation of reactive oxygen species, proposed to represent the link between TSPO activation and VDAC, thus playing a role in apoptotic cell death. In addition, expression of the two proteins in healthy brains and diseased states is considered, as is the relationship between TSPO and VDAC1 expression. Both proteins are over-expressed in in brains from Alzheimer’s disease patients. Finally, TSPO expression levels were proposed as a biomarker of some neuropathological settings, while TSPO-interacting ligands have been considered as a potential basis for drug development.
Collapse
Affiliation(s)
- Varda Shoshan-Barmatz
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel.
| | - Srinivas Pittala
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Dario Mizrachi
- Department of Physiology and Developmental Biology, Brigham Young University, Provo, UT 84602, USA
| |
Collapse
|
78
|
Mahmoud M, Gamal S, El-Fayoumi H. Baicalein Preconditioning Modulates Hepatocellular Injury following Liver Ischemia and Reperfusion in Rats via Anti-Inflammatory and Antioxidant Signaling. DUBAI MEDICAL JOURNAL 2019. [DOI: 10.1159/000501449] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
|
79
|
Crosstalk between Calcium and ROS in Pathophysiological Conditions. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:9324018. [PMID: 31178978 PMCID: PMC6507098 DOI: 10.1155/2019/9324018] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 04/01/2019] [Indexed: 12/12/2022]
Abstract
Calcium ions are highly versatile intracellular signals that regulate many cellular processes. The key to achieving this pleiotropic role is the spatiotemporal control of calcium concentration evoked by an extensive molecular repertoire of signalling components. Among these, reactive oxygen species (ROS) signalling, together with calcium signalling, plays a crucial role in controlling several physiopathological events. Although initially considered detrimental by-products of aerobic metabolism, it is now widely accepted that ROS, in subtoxic levels, act as signalling molecules. However, dysfunctions in the mechanisms controlling the physiological ROS concentration affect cellular homeostasis, leading to the pathogenesis of various disorders.
Collapse
|
80
|
Nutritional Regulators of Bcl-xL in the Brain. Molecules 2018; 23:molecules23113019. [PMID: 30463183 PMCID: PMC6278276 DOI: 10.3390/molecules23113019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 11/15/2018] [Accepted: 11/18/2018] [Indexed: 01/12/2023] Open
Abstract
B-cell lymphoma-extra large (Bcl-xL) is an anti-apoptotic Bcl-2 protein found in the mitochondrial membrane. Bcl-xL is reported to support normal brain development and protects neurons against toxic stimulation during pathological process via its roles in regulation of mitochondrial functions. Despite promising evidence showing neuroprotective properties of Bcl-xL, commonly applied molecular approaches such as genetic manipulation may not be readily applicable for human subjects. Therefore, findings at the bench may be slow to be translated into treatments for disease. Currently, there is no FDA approved application that specifically targets Bcl-xL and treats brain-associated pathology in humans. In this review, we will discuss naturally occurring nutrients that may exhibit regulatory effects on Bcl-xL expression or activity, thus potentially providing affordable, readily-applicable, easy, and safe strategies to protect the brain.
Collapse
|
81
|
Yang M, Xu Y, Heisner JS, Sun J, Stowe DF, Kwok WM, Camara AKS. Peroxynitrite nitrates adenine nucleotide translocase and voltage-dependent anion channel 1 and alters their interactions and association with hexokinase II in mitochondria. Mitochondrion 2018; 46:380-392. [PMID: 30391711 DOI: 10.1016/j.mito.2018.10.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 09/26/2018] [Accepted: 10/22/2018] [Indexed: 12/17/2022]
Abstract
Cardiac ischemia and reperfusion (IR) injury induces excessive emission of deleterious reactive O2 and N2 species (ROS/RNS), including the non-radical oxidant peroxynitrite (ONOO-) that can cause mitochondria dysfunction and cell death. In this study, we explored whether IR injury in isolated hearts induces tyrosine nitration of adenine nucleotide translocase (ANT) and alters its interaction with the voltage-dependent anion channel 1 (VDAC1). We found that IR injury induced tyrosine nitration of ANT and that exposure of isolated cardiac mitochondria to ONOO- induced ANT tyrosine, Y81, nitration. The exposure of isolated cardiac mitochondria to ONOO- also led ANT to form high molecular weight proteins and dissociation of ANT from VDAC1. We found that IR injury in isolated hearts, hypoxic injury in H9c2 cells, and ONOO- treatment of H9c2 cells and isolated mitochondria, each decreased mitochondrial bound-hexokinase II (HK II), which suggests that ONOO- caused HK II to dissociate from mitochondria. Moreover, we found that mitochondria exposed to ONOO- induced VDAC1 oligomerization which may decrease its binding with HK II. We have reported that ONOO- produced during cardiac IR injury induced tyrosine nitration of VDAC1, which resulted in conformational changes of the protein and increased channel conductance associated with compromised cardiac function on reperfusion. Thus, our results imply that ONOO- produced during IR injury and hypoxic stress impeded HK II association with VDAC1. ONOO- exposure nitrated mitochondrial proteins and also led to cytochrome c (cyt c) release from mitochondria. In addition, in isolated mitochondria exposed to ONOO- or obtained after IR, there was significant compromise in mitochondrial respiration and delayed repolarization of membrane potential during oxidative (ADP) phosphorylation. Taken together, ONOO- produced during cardiac IR injury can nitrate tyrosine residues of two key mitochondrial membrane proteins involved in bioenergetics and energy transfer to contribute to mitochondrial and cellular dysfunction.
Collapse
Affiliation(s)
- Meiying Yang
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Yanji Xu
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA; Department of Preventive Medicine, Medical College of Yanbian University, Yanji, Jilin, China
| | - James S Heisner
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Jie Sun
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA; Institute of Clinical Medicine Research, Suzhou Hospital affiliated with Nanjing Medical University, Suzhou, Jiangsu, China; Department of Gastroenterology and Hepatology, Suzhou Hospital affiliated with Nanjing Medical University, Suzhou, Jiangsu, China
| | - David F Stowe
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA; Department of Biomedical Engineering, Medical College of Wisconsin and Marquette University, Milwaukee, WI, USA; Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA; Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA; Research Service, Zablocki VA Medical Center, Milwaukee, WI, USA
| | - Wai-Meng Kwok
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA; Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, USA; Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA; Cancer Center, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Amadou K S Camara
- Department of Anesthesiology, Medical College of Wisconsin, Milwaukee, WI, USA; Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA; Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, USA; Cancer Center, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
82
|
Ma H, Xiang G, Li Z, Wang Y, Dou M, Su L, Yin X, Liu R, Wang Y, Xu Y. Grapevine VpPR10.1 functions in resistance to Plasmopara viticola through triggering a cell death-like defence response by interacting with VpVDAC3. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:1488-1501. [PMID: 29377445 PMCID: PMC6041444 DOI: 10.1111/pbi.12891] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 01/10/2018] [Accepted: 01/22/2018] [Indexed: 05/04/2023]
Abstract
As one of the most serious diseases in grape, downy mildew caused by Plasmopara viticola is a worldwide grape disease. Much effort has been focused on improving susceptible grapevine resistance, and wild resistant grapevine species are important for germplasm improvement of commercial cultivars. Using yeast two-hybrid screen followed by a series of immunoprecipitation experiments, we identified voltage-dependent anion channel 3 (VDAC3) protein from Vitis piasezkii 'Liuba-8' as an interacting partner of VpPR10.1 cloned from Vitis pseudoreticulata 'Baihe-35-1', which is an important germplasm for its resistance to a range of pathogens. Co-expression of VpPR10.1/VpVDAC3 induced cell death in Nicotiana benthamiana, which accompanied by ROS accumulation. VpPR10.1 transgenic grapevine line showed resistance to P. viticola. We conclude that the VpPR10.1/VpVDAC3 complex is responsible for cell death-mediated defence response to P. viticola in grapevine.
Collapse
Affiliation(s)
- Hui Ma
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of HorticultureNorthwest A&F UniversityYanglingShaanxiChina
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest ChinaMinistry of AgricultureNorthwest A&F UniversityYanglingShaanxiChina
| | - Gaoqing Xiang
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of HorticultureNorthwest A&F UniversityYanglingShaanxiChina
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest ChinaMinistry of AgricultureNorthwest A&F UniversityYanglingShaanxiChina
| | - Zhiqian Li
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of HorticultureNorthwest A&F UniversityYanglingShaanxiChina
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest ChinaMinistry of AgricultureNorthwest A&F UniversityYanglingShaanxiChina
| | - Yuting Wang
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of HorticultureNorthwest A&F UniversityYanglingShaanxiChina
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest ChinaMinistry of AgricultureNorthwest A&F UniversityYanglingShaanxiChina
| | - Mengru Dou
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of HorticultureNorthwest A&F UniversityYanglingShaanxiChina
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest ChinaMinistry of AgricultureNorthwest A&F UniversityYanglingShaanxiChina
| | - Li Su
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of HorticultureNorthwest A&F UniversityYanglingShaanxiChina
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest ChinaMinistry of AgricultureNorthwest A&F UniversityYanglingShaanxiChina
| | - Xiao Yin
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of HorticultureNorthwest A&F UniversityYanglingShaanxiChina
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest ChinaMinistry of AgricultureNorthwest A&F UniversityYanglingShaanxiChina
| | - Ruiqi Liu
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of HorticultureNorthwest A&F UniversityYanglingShaanxiChina
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest ChinaMinistry of AgricultureNorthwest A&F UniversityYanglingShaanxiChina
| | - Yuejin Wang
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of HorticultureNorthwest A&F UniversityYanglingShaanxiChina
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest ChinaMinistry of AgricultureNorthwest A&F UniversityYanglingShaanxiChina
| | - Yan Xu
- State Key Laboratory of Crop Stress Biology for Arid AreasCollege of HorticultureNorthwest A&F UniversityYanglingShaanxiChina
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest ChinaMinistry of AgricultureNorthwest A&F UniversityYanglingShaanxiChina
| |
Collapse
|
83
|
Abstract
Mitochondrial Ca2+ regulation is crucial for bioenergetics and cellular signaling. The mechanisms controlling mitochondrial calcium homeostasis have been recently unraveled with the discovery of mitochondrial inner membrane proteins that regulate mitochondrial Ca2+ uptake and extrusion. Mitochondrial Ca2+ uptake depends on a large complex of proteins centered around the Ca2+ channel protein, mitochondrial Ca2+ uniporter (MCU) in close interactions with several regulatory subunits (MCUb, EMRE, MICU1, MICU2). Mitochondrial Ca2+ extrusion is mainly mediated by the mitochondrial Na+/Ca2+/Li+ exchanger (NCLX). Here, we review the major players of mitochondrial Ca2+ homeostasis and their physiological functions.
Collapse
Affiliation(s)
- Trayambak Pathak
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Mohamed Trebak
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, PA, United States.
| |
Collapse
|
84
|
Zou X, Wang Y, Peng C, Wang B, Niu Z, Li Z, Niu J. Magnesium isoglycyrrhizinate has hepatoprotective effects in an oxaliplatin‑induced model of liver injury. Int J Mol Med 2018; 42:2020-2030. [PMID: 30066834 PMCID: PMC6108852 DOI: 10.3892/ijmm.2018.3787] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 07/05/2018] [Indexed: 12/24/2022] Open
Abstract
Oxaliplatin is a core chemotherapeutic agent used for the treatment of colorectal liver metastasis; however, liver injury caused by oxaliplatin increases the risk of peri‑operative morbidity and mortality. Magnesium isoglycyrrhizinate (MgiG) is a magnesium salt of 18‑α glycyrrhizic acid stereoisomer that has demonstrated liver‑protective effects against toxins and hepatitis. In the present study, the liver‑protective effect of MgiG against oxaliplatin‑induced hepatic injury was examined in vitro and in vivo. The results demonstrated that MgiG had a protective effect against oxaliplatin‑induced liver injury, as evidenced by the alleviation of hepatic pathological damage and transaminase levels. The protective effect of MgiG was demonstrated to be correlated with inhibition of oxidative stress, the interleukin‑6 pathway and the coagulation system. Altogether, the present findings suggested that MgiG may have potential value in the clinical prevention and treatment of oxaliplatin‑induced liver injury.
Collapse
Affiliation(s)
- Xueqing Zou
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Yongmei Wang
- Center of Diagnosis and Treatment of Breast Disease, The Affiliated Hospital of Qingdao University, Qingdao, Shandong 266000, P.R. China
| | - Cheng Peng
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Ben Wang
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Zhengchuan Niu
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Zequn Li
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Jun Niu
- Department of General Surgery, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
85
|
Van Acker ZP, Luyckx E, Dewilde S. Neuroglobin Expression in the Brain: a Story of Tissue Homeostasis Preservation. Mol Neurobiol 2018; 56:2101-2122. [DOI: 10.1007/s12035-018-1212-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 06/26/2018] [Indexed: 12/19/2022]
|
86
|
Shi X, Bai H, Zhao M, Li X, Sun X, Jiang H, Fu A. Treatment of acetaminophen-induced liver injury with exogenous mitochondria in mice. Transl Res 2018; 196:31-41. [PMID: 29548626 DOI: 10.1016/j.trsl.2018.02.003] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2017] [Revised: 02/20/2018] [Accepted: 02/20/2018] [Indexed: 01/07/2023]
Abstract
Drug-induced liver injury shares a common feature of mitochondrial dysfunction. Mitochondrial therapy (mitotherapy), which replaces malfunctional mitochondria with functional exogenous mitochondria, may be a fundamental approach for treating drug-mediated hepatotoxicity. Here, we suggested that mitochondria isolated from human hepatoma cell could be used to treat acetaminophen (APAP)-induced liver injury in mice. When the mitochondria were added into the cell media, they could enter primarily cultured mouse hepatocyte. When the mitochondria were intravenously injected into mice, they distribute in several tissues, including liver. In the model mice of APAP-induced liver injury, mitochondria treatment increased hepatocyte energy supply, reduced oxidation stress, and consequently ameliorated tissue injury. The study suggests that exogenous mitochondria could be an effective therapeutic strategy in treating APAP-induced liver injury.
Collapse
Affiliation(s)
- Xianxun Shi
- School of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Huiyuan Bai
- School of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Ming Zhao
- School of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Xiaorong Li
- School of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Xianchao Sun
- School of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Hongbo Jiang
- School of Pharmaceutical Sciences, Southwest University, Chongqing, China
| | - Ailing Fu
- School of Pharmaceutical Sciences, Southwest University, Chongqing, China.
| |
Collapse
|
87
|
Zou Z, Chang H, Li H, Wang S. Induction of reactive oxygen species: an emerging approach for cancer therapy. Apoptosis 2018; 22:1321-1335. [PMID: 28936716 DOI: 10.1007/s10495-017-1424-9] [Citation(s) in RCA: 356] [Impact Index Per Article: 59.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Reactive oxygen species (ROS), a group of ions and molecules, include hydroxyl radicals (·OH), alkoxyl radicals, superoxide anion (O2·-), singlet oxygen (1O2) and hydrogen peroxide (H2O2). Hydroxyl radicals and alkoxyl radicals are extremely and highly reactive species respectively. Endogenous ROS are mainly formed in mitochondrial respiratory chain. Low levels of ROS play important roles in regulating biological functions in mammalian cells. However, excess production of ROS can induce cell death by oxidative damaging effects to intracellular biomacromolecules. Cancer cell death types induced by ROS include apoptotic, autophagic, ferroptotic and necrotic cell death. Since abnormal metabolism in cancer cells, they have higher ROS content compared to normal cells. The higher endogenous ROS levels in cancer cells endow them more susceptible to the ROS-induction treatment. Indeed, some anticancer drugs currently used in clinic, such as molecular targeted drugs and chemotherapeutic agents, effectively kill cancer cells by inducing ROS generation. In addition, photodynamic therapy (PDT) is mainly based on induction of ROS burst to kill cancer cells. The mechanism of cell death induced by radiotherapy using ionizing radiation also refers to ROS production. Moreover, ROS play an important role in tumor immune therapy. Altogether, combining above traditional treatments with ROS-induced agents will be considered as a promising strategy in cancer therapy. In this review, we focus on our current understanding of the anticancer effects of ROS.
Collapse
Affiliation(s)
- Zhengzhi Zou
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China. .,Joint Laboratory of Laser Oncology with Cancer Center of Sun Yat-sen University, South China Normal University, Guangzhou, China.
| | - Haocai Chang
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Haolong Li
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Songmao Wang
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| |
Collapse
|
88
|
Wei X, Liu L, Guo X, Wang Y, Zhao J, Zhou S. Light-Activated ROS-Responsive Nanoplatform Codelivering Apatinib and Doxorubicin for Enhanced Chemo-Photodynamic Therapy of Multidrug-Resistant Tumors. ACS APPLIED MATERIALS & INTERFACES 2018; 10:17672-17684. [PMID: 29737828 DOI: 10.1021/acsami.8b04163] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Clinical chemotherapy confronts a challenge resulting from cancer-related multidrug resistance (MDR), which can directly lead to treatment failure. To address it, an innovative approach is proposed to construct a light-activated reactive oxygen species (ROS)-responsive nanoplatform based on a protoporphyrin (PpIX)-conjugated and dual chemotherapeutics-loaded polymer micelle. This system combines chemotherapy and photodynamic therapy (PDT) to defeat the MDR of tumors. Such an intelligent nanocarrier can prolong the circulation time in blood because of the negative polysaccharide component of chondroitin sulfate, and subsequently being selectively internalized by MCF-7/ADR cells [doxorubicin (DOX)-resistant]. When exposed to 635 nm red light, this nanoplatform generates sufficient ROS through the photoconversion of PpIX, further triggering the disassociation of the micelles to release the dual cargoes. Afterward, the released apatinib, serving as a reversal inhibitor of MDR, can recover the chemosensitivity of DOX by competitively inhibiting the P-glycoprotein drug pump in drug-resistant tumor cells, and the excessive ROS has a strong capacity to exert its PDT effect to act on the mitochondria or the nuclei, ultimately causing cell apoptosis. As expected, this intelligent nanosystem successfully reverses tumor MDR via the synergism between apatinib-enhanced DOX sensitivity and ROS-mediated PDT performance.
Collapse
|
89
|
Potential involvement of the 18 kDa translocator protein and reactive oxygen species in apoptosis of THP-1 macrophages induced by sonodynamic therapy. PLoS One 2018; 13:e0196541. [PMID: 29746502 PMCID: PMC5944937 DOI: 10.1371/journal.pone.0196541] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 04/14/2018] [Indexed: 11/19/2022] Open
Abstract
Sonodynamic therapy (SDT) with exogenous protoporphyrin IX (PpIX) or endogenous PpIX derived from 5-aminolevulinic acid (ALA) has been carried out to produce apoptotic effects on macrophages, indicating a potential treatment methodology for atherosclerosis. Our previous studies have found that mitochondria damage by reactive oxygen species (ROS) plays a major role in the SDT-induced apoptosis. This study aimed at investigating the potential involvement of the mitochondrial 18 kDa translocator protein (TSPO) and ROS in the pro-apoptotic effects of SDT on THP-1 macrophages. THP-1 macrophages were divided into control and SDT groups, and went through pretreatment of the specific TSPO ligand PK11195 and ROS scavengers N-Acetyl Cysteine (NAC), then compared with groups without pretreatment. Application of PK11195 reduced intracellular accumulation of endogenous PpIX. PK11195 and NAC reduced the generation of intracellular ROS and oxidation of cardiolipin induced by SDT, respectively. PK11195 and NAC also reduced SDT-induced mitochondrial membrane potential (ΔΨm) loss, the translocation of cytochrome c and cell apoptosis. PpIX accumulation, ROS generation and cell apoptosis were also attenuated by siTSPO. Our findings indicate the pivotal role of TSPO and ROS in SDT-induced cardiolipin oxidation, ΔΨm collapse, cytochrome c translocation and apoptosis in THP-1 macrophages.
Collapse
|
90
|
Antognelli C, Trapani E, Delle Monache S, Perrelli A, Daga M, Pizzimenti S, Barrera G, Cassoni P, Angelucci A, Trabalzini L, Talesa VN, Goitre L, Retta SF. KRIT1 loss-of-function induces a chronic Nrf2-mediated adaptive homeostasis that sensitizes cells to oxidative stress: Implication for Cerebral Cavernous Malformation disease. Free Radic Biol Med 2018; 115:202-218. [PMID: 29170092 PMCID: PMC5806631 DOI: 10.1016/j.freeradbiomed.2017.11.014] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Revised: 10/18/2017] [Accepted: 11/15/2017] [Indexed: 02/06/2023]
Abstract
KRIT1 (CCM1) is a disease gene responsible for Cerebral Cavernous Malformations (CCM), a major cerebrovascular disease of proven genetic origin affecting 0.3-0.5% of the population. Previously, we demonstrated that KRIT1 loss-of-function is associated with altered redox homeostasis and abnormal activation of the redox-sensitive transcription factor c-Jun, which collectively result in pro-oxidative, pro-inflammatory and pro-angiogenic effects, suggesting a novel pathogenic mechanism for CCM disease and raising the possibility that KRIT1 loss-of-function exerts pleiotropic effects on multiple redox-sensitive mechanisms. To address this possibility, we investigated major redox-sensitive pathways and enzymatic systems that play critical roles in fundamental cytoprotective mechanisms of adaptive responses to oxidative stress, including the master Nrf2 antioxidant defense pathway and its downstream target Glyoxalase 1 (Glo1), a pivotal stress-responsive defense enzyme involved in cellular protection against glycative and oxidative stress through the metabolism of methylglyoxal (MG). This is a potent post-translational protein modifier that may either contribute to increased oxidative molecular damage and cellular susceptibility to apoptosis, or enhance the activity of major apoptosis-protective proteins, including heat shock proteins (Hsps), promoting cell survival. Experimental outcomes showed that KRIT1 loss-of-function induces a redox-sensitive sustained upregulation of Nrf2 and Glo1, and a drop in intracellular levels of MG-modified Hsp70 and Hsp27 proteins, leading to a chronic adaptive redox homeostasis that counteracts intrinsic oxidative stress but increases susceptibility to oxidative DNA damage and apoptosis, sensitizing cells to further oxidative challenges. While supporting and extending the pleiotropic functions of KRIT1, these findings shed new light on the mechanistic relationship between KRIT1 loss-of-function and enhanced cell predisposition to oxidative damage, thus providing valuable new insights into CCM pathogenesis and novel options for the development of preventive and therapeutic strategies.
Collapse
Affiliation(s)
| | - Eliana Trapani
- Department of Clinical and Biological Sciences, University of Torino, Regione Gonzole 10, Orbassano, 10043 Torino, Italy
| | - Simona Delle Monache
- Department of Biotechnological and Applied Clinical Science, University of L'Aquila, Italy
| | - Andrea Perrelli
- Department of Clinical and Biological Sciences, University of Torino, Regione Gonzole 10, Orbassano, 10043 Torino, Italy
| | - Martina Daga
- Department of Clinical and Biological Sciences, University of Torino, Regione Gonzole 10, Orbassano, 10043 Torino, Italy
| | - Stefania Pizzimenti
- Department of Clinical and Biological Sciences, University of Torino, Regione Gonzole 10, Orbassano, 10043 Torino, Italy
| | - Giuseppina Barrera
- Department of Clinical and Biological Sciences, University of Torino, Regione Gonzole 10, Orbassano, 10043 Torino, Italy
| | - Paola Cassoni
- Department of Medical Sciences, University of Torino, Italy
| | - Adriano Angelucci
- Department of Biotechnological and Applied Clinical Science, University of L'Aquila, Italy
| | - Lorenza Trabalzini
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Italy
| | | | - Luca Goitre
- Department of Clinical and Biological Sciences, University of Torino, Regione Gonzole 10, Orbassano, 10043 Torino, Italy
| | - Saverio Francesco Retta
- Department of Clinical and Biological Sciences, University of Torino, Regione Gonzole 10, Orbassano, 10043 Torino, Italy.
| |
Collapse
|
91
|
Lombardo T, Folgar MG, Salaverry L, Rey-Roldán E, Alvarez EM, Carreras MC, Kornblihtt L, Blanco GA. Regulated Cell Death of Lymphoma Cells after Graded Mitochondrial Damage is Differentially Affected by Drugs Targeting Cell Stress Responses. Basic Clin Pharmacol Toxicol 2018; 122:489-500. [DOI: 10.1111/bcpt.12945] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 11/26/2017] [Indexed: 12/22/2022]
Affiliation(s)
- Tomás Lombardo
- Laboratory of Immunotoxicology (LaITo), IDEHU-CONICET, Clinics Hospital, José de San Martín; University of Buenos Aires (UBA); Buenos Aires Argentina
| | - Martín Gil Folgar
- Laboratory of Immunotoxicology (LaITo), IDEHU-CONICET, Clinics Hospital, José de San Martín; University of Buenos Aires (UBA); Buenos Aires Argentina
| | - Luciana Salaverry
- Laboratory of Reproductive Immunology (LAIR), IDEHU-CONICET, Faculty of Pharmacy and Biochemistry; UBA; Buenos Aires Argentina
| | - Estela Rey-Roldán
- Laboratory of Reproductive Immunology (LAIR), IDEHU-CONICET, Faculty of Pharmacy and Biochemistry; UBA; Buenos Aires Argentina
| | - Elida M. Alvarez
- Laboratory of Tumour Immunology (LIT), IDEHU-CONICET, Faculty of Pharmacy and Biochemistry; UBA; Buenos Aires Argentina
| | - María C. Carreras
- Laboratory of Oxygen Metabolism; University of Buenos Aires, INIGEM-CONICET; Buenos Aires Argentina
| | - Laura Kornblihtt
- Haematology Department, Clinics Hospital, José de San Martín; University of Buenos Aires (UBA); Buenos Aires Argentina
| | - Guillermo A. Blanco
- Laboratory of Immunotoxicology (LaITo), IDEHU-CONICET, Clinics Hospital, José de San Martín; University of Buenos Aires (UBA); Buenos Aires Argentina
| |
Collapse
|
92
|
Phull AR, Nasir B, Haq IU, Kim SJ. Oxidative stress, consequences and ROS mediated cellular signaling in rheumatoid arthritis. Chem Biol Interact 2017; 281:121-136. [PMID: 29258867 DOI: 10.1016/j.cbi.2017.12.024] [Citation(s) in RCA: 231] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Revised: 12/05/2017] [Accepted: 12/15/2017] [Indexed: 12/11/2022]
Abstract
There are numerous extra- and intra-cellular processes involved in the production of reactive oxygen species (ROS). Augmented ROS generation can cause the damage of biomolecules such as proteins, nucleic acid and lipids. ROS act as an intracellular signaling component and is associated with various inflammatory responses, chronic arthropathies, including rheumatoid arthritis (RA). It is well documented that ROS can activate different signaling pathways having a vital importance in the patho-physiology of RA. Hence, understanding of the molecular pathways and their interaction might be advantageous in the development of novel therapeutic approaches for RA.
Collapse
Affiliation(s)
- Abdul-Rehman Phull
- Department of Biological Sciences, College of Natural Sciences, Kongju National University, 56 Gongju Daehak-Ro, Gongju-Si, Chungnam, 32588, Republic of Korea
| | - Bakht Nasir
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Ihsan Ul Haq
- Department of Pharmacy, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Song Ja Kim
- Department of Biological Sciences, College of Natural Sciences, Kongju National University, 56 Gongju Daehak-Ro, Gongju-Si, Chungnam, 32588, Republic of Korea.
| |
Collapse
|
93
|
Takano Y, Munechika R, Biju V, Harashima H, Imahori H, Yamada Y. Optical control of mitochondrial reductive reactions in living cells using an electron donor-acceptor linked molecule. NANOSCALE 2017; 9:18690-18698. [PMID: 29165486 DOI: 10.1039/c7nr06310e] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
It has been known for decades that intracellular redox reactions control various vital functions in living systems, which include the synthesis of biomolecules, the modulation of protein functions, and cell signaling. Although there have been several reports on the control of such functions using DNA and RNA, the non-invasive optical control of biological functions is an important ongoing challenge. In this study, a hybrid of an electron donor-acceptor linked molecule based on a ferrocene(Fc)-porphyrin(ZnP)-fullerene(C60) analogue and an elaborately designed nano-carrier, referred to herein as a MITO-Porter, resulted in a successful photoinduced intermolecular electron transfer reaction via the long-lived intramolecular charge separation, leading to site-specific reductive reactions in the mitochondria of living HeLa cells. A Fc-ZnP-C60 linked molecule, 1-Oct, was designed and prepared for taking advantage of the unique photophysical properties with excellent efficiency (i.e. a long lifetime and a high quantum yield) for photoinduced charge separation. The targeted delivery of 1-Oct to mitochondria was accomplished by using a combination of the Fc-ZnP-C60 molecule and a drug delivery nano-carrier, MITO-Porter, that was recently established by our group for intracellular cargo delivery. The successful delivery of 1-Oct by the MITO-Porter permitted the optically-controlled generation of O2- in the mitochondria of HeLa cells and the following induction of apoptosis as a cell signalling response was observed in confocal laser microscopy experiments. The obtained results indicate the use of an electron donor-acceptor system such as this can be a promising tool for the non-invasive triggering of redox-coupled cellular activities in living systems.
Collapse
Affiliation(s)
- Yuta Takano
- Research Institute for Electronic Science, Hokkaido University, Kita-20 Nishi-10, Kita-ku, Sapporo 001-0020, Japan.
| | | | | | | | | | | |
Collapse
|
94
|
Cheung LTY, Manthey AL, Lai JSM, Chiu K. Targeted Delivery of Mitochondrial Calcium Channel Regulators: The Future of Glaucoma Treatment? Front Neurosci 2017; 11:648. [PMID: 29213227 PMCID: PMC5702640 DOI: 10.3389/fnins.2017.00648] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 11/07/2017] [Indexed: 11/18/2022] Open
Affiliation(s)
- Leanne T Y Cheung
- Department of Ophthalmology, University of Hong Kong, Hong Kong, China
| | - Abby L Manthey
- Department of Ophthalmology, University of Hong Kong, Hong Kong, China
| | - Jimmy S M Lai
- Department of Ophthalmology, University of Hong Kong, Hong Kong, China
| | - Kin Chiu
- Department of Ophthalmology, University of Hong Kong, Hong Kong, China
| |
Collapse
|
95
|
Shoshan-Barmatz V, Maldonado EN, Krelin Y. VDAC1 at the crossroads of cell metabolism, apoptosis and cell stress. Cell Stress 2017; 1:11-36. [PMID: 30542671 PMCID: PMC6287957 DOI: 10.15698/cst2017.10.104] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
This review presents current knowledge related to VDAC1 as a multi-functional mitochondrial protein acting on both sides of the coin, regulating cell life and death, and highlighting these functions in relation to disease. It is now recognized that VDAC1 plays a crucial role in regulating the metabolic and energetic functions of mitochondria. The location of VDAC1 at the outer mitochondrial membrane (OMM) allows the control of metabolic cross-talk between mitochondria and the rest of the cell and also enables interaction of VDAC1 with proteins involved in metabolic and survival pathways. Along with regulating cellular energy production and metabolism, VDAC1 is also involved in the process of mitochondria-mediated apoptosis by mediating the release of apoptotic proteins and interacting with anti-apoptotic proteins. VDAC1 functions in the release of apoptotic proteins located in the mitochondrial intermembrane space via oligomerization to form a large channel that allows passage of cytochrome c and AIF and their release to the cytosol, subsequently resulting in apoptotic cell death. VDAC1 also regulates apoptosis via interactions with apoptosis regulatory proteins, such as hexokinase, Bcl2 and Bcl-xL, some of which are also highly expressed in many cancers. This review also provides insight into VDAC1 function in Ca2+ homeostasis, oxidative stress, and presents VDAC1 as a hub protein interacting with over 100 proteins. Such interactions enable VDAC1 to mediate and regulate the integration of mitochondrial functions with cellular activities. VDAC1 can thus be considered as standing at the crossroads between mitochondrial metabolite transport and apoptosis and hence represents an emerging cancer drug target.
Collapse
Affiliation(s)
- Varda Shoshan-Barmatz
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| | - Eduardo N Maldonado
- Department of Drug Discovery & Biomedical Sciences, Medical University of South Carolina, Charleston, SC. USA
| | - Yakov Krelin
- Department of Life Sciences and the National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, 84105, Israel
| |
Collapse
|
96
|
Treatment of the Fluoroquinolone-Associated Disability: The Pathobiochemical Implications. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2017; 2017:8023935. [PMID: 29147464 PMCID: PMC5632915 DOI: 10.1155/2017/8023935] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Accepted: 08/20/2017] [Indexed: 12/24/2022]
Abstract
Long-term fluoroquinolone-associated disability (FQAD) after fluoroquinolone (FQ) antibiotic therapy appears in recent years as a significant medical and social problem, because patients suffer for many years after prescribed antimicrobial FQ treatment from tiredness, concentration problems, neuropathies, tendinopathies, and other symptoms. The knowledge about the molecular activity of FQs in the cells remains unclear in many details. The effective treatment of this chronic state remains difficult and not effective. The current paper reviews the pathobiochemical properties of FQs, hints the directions for further research, and reviews the research concerning the proposed treatment of patients. Based on the analysis of literature, the main directions of possible effective treatment of FQAD are proposed: (a) reduction of the oxidative stress, (b) restoring reduced mitochondrion potential ΔΨm, (c) supplementation of uni- and bivalent cations that are chelated by FQs and probably ineffectively transported to the cell (caution must be paid to Fe and Cu because they may generate Fenton reaction), (d) stimulating the mitochondrial proliferation, (e) removing FQs permanently accumulated in the cells (if this phenomenon takes place), and (f) regulating the disturbed gene expression and enzyme activity.
Collapse
|
97
|
Kumar J, Teoh SL, Das S, Mahakknaukrauh P. Oxidative Stress in Oral Diseases: Understanding Its Relation with Other Systemic Diseases. Front Physiol 2017; 8:693. [PMID: 28959211 PMCID: PMC5603668 DOI: 10.3389/fphys.2017.00693] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 08/29/2017] [Indexed: 12/18/2022] Open
Abstract
Oxidative stress occurs in diabetes, various cancers, liver diseases, stroke, rheumatoid arthritis, chronic inflammation, and other degenerative diseases related to the nervous system. The free radicals have deleterious effect on various organs of the body. This is due to lipid peroxidation and irreversible protein modification that leads to cellular apoptosis or programmed cell death. During recent years, there is a rise in the oral diseases related to oxidative stress. Oxidative stress in oral disease is related to other systemic diseases in the body such as periodontitis, cardiovascular, pancreatic, gastric, and liver diseases. In the present review, we discuss the various pathways that mediate oxidative cellular damage. Numerous pathways mediate oxidative cellular damage and these include caspase pathway, PERK/NRF2 pathway, NADPH oxidase 4 pathways and JNK/mitogen-activated protein (MAP) kinase pathway. We also discuss the role of inflammatory markers, lipid peroxidation, and role of oxygen species linked to oxidative stress. Knowledge of different pathways, role of inflammatory markers, and importance of low-density lipoprotein, fibrinogen, creatinine, nitric oxide, nitrates, and highly sensitive C-reactive proteins may be helpful in understanding the pathogenesis and plan better treatment for oral diseases which involve oxidative stress.
Collapse
Affiliation(s)
- Jaya Kumar
- Department of Physiology, Universiti Kebangsaan Malaysia Medical CentreKuala Lumpur, Malaysia
| | - Seong Lin Teoh
- Department of Anatomy, Universiti Kebangsaan Malaysia Medical CentreKuala Lumpur, Malaysia
| | - Srijit Das
- Department of Anatomy, Universiti Kebangsaan Malaysia Medical CentreKuala Lumpur, Malaysia
| | - Pasuk Mahakknaukrauh
- Forensic Osteology Research, Chiang Mai UniversityChiang Mai, Thailand
- Excellence in Osteology Research and Training Center, Chiang Mai UniversityChiang Mai, Thailand
- Department of Anatomy, Faculty of Medicine, Chiang Mai UniversityChiang Mai, Thailand
| |
Collapse
|
98
|
Shoshan-Barmatz V, Krelin Y, Shteinfer-Kuzmine A, Arif T. Voltage-Dependent Anion Channel 1 As an Emerging Drug Target for Novel Anti-Cancer Therapeutics. Front Oncol 2017; 7:154. [PMID: 28824871 PMCID: PMC5534932 DOI: 10.3389/fonc.2017.00154] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Accepted: 06/28/2017] [Indexed: 01/17/2023] Open
Abstract
Cancer cells share several properties, high proliferation potential, reprogramed metabolism, and resistance to apoptotic cues. Acquiring these hallmarks involves changes in key oncogenes and non-oncogenes essential for cancer cell survival and prosperity, and is accompanied by the increased energy requirements of proliferating cells. Mitochondria occupy a central position in cell life and death with mitochondrial bioenergetics, biosynthesis, and signaling are critical for tumorigenesis. Voltage-dependent anion channel 1 (VDAC1) is situated in the outer mitochondrial membrane (OMM) and serving as a mitochondrial gatekeeper. VDAC1 allowing the transfer of metabolites, fatty acid ions, Ca2+, reactive oxygen species, and cholesterol across the OMM and is a key player in mitochondrial-mediate apoptosis. Moreover, VDAC1 serves as a hub protein, interacting with diverse sets of proteins from the cytosol, endoplasmic reticulum, and mitochondria that together regulate metabolic and signaling pathways. The observation that VDAC1 is over-expressed in many cancers suggests that the protein may play a pivotal role in cancer cell survival. However, VDAC1 is also important in mitochondria-mediated apoptosis, mediating release of apoptotic proteins and interacting with anti-apoptotic proteins, such as B-cell lymphoma 2 (Bcl-2), Bcl-xL, and hexokinase (HK), which are also highly expressed in many cancers. Strategically located in a “bottleneck” position, controlling metabolic homeostasis and apoptosis, VDAC1 thus represents an emerging target for anti-cancer drugs. This review presents an overview on the multi-functional mitochondrial protein VDAC1 performing several functions and interacting with distinct sets of partners to regulate both cell life and death, and highlights the importance of the protein for cancer cell survival. We address recent results related to the mechanisms of VDAC1-mediated apoptosis and the potential of associated proteins to modulate of VDAC1 activity, with the aim of developing VDAC1-based approaches. The first strategy involves modification of cell metabolism using VDAC1-specific small interfering RNA leading to inhibition of cancer cell and tumor growth and reversed oncogenic properties. The second strategy involves activation of cancer cell death using VDAC1-based peptides that prevent cell death induction by anti-apoptotic proteins. Finally, we discuss the potential therapeutic benefits of treatments and drugs leading to enhanced VDAC1 expression or targeting VDAC1 to induce apoptosis.
Collapse
Affiliation(s)
- Varda Shoshan-Barmatz
- Department of Life Sciences, National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Yakov Krelin
- Department of Life Sciences, National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Anna Shteinfer-Kuzmine
- Department of Life Sciences, National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Tasleem Arif
- Department of Life Sciences, National Institute for Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| |
Collapse
|
99
|
Camara AKS, Zhou Y, Wen PC, Tajkhorshid E, Kwok WM. Mitochondrial VDAC1: A Key Gatekeeper as Potential Therapeutic Target. Front Physiol 2017; 8:460. [PMID: 28713289 PMCID: PMC5491678 DOI: 10.3389/fphys.2017.00460] [Citation(s) in RCA: 231] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 06/16/2017] [Indexed: 12/23/2022] Open
Abstract
Mitochondria are the key source of ATP that fuels cellular functions, and they are also central in cellular signaling, cell division and apoptosis. Dysfunction of mitochondria has been implicated in a wide range of diseases, including neurodegenerative and cardiac diseases, and various types of cancer. One of the key proteins that regulate mitochondrial function is the voltage-dependent anion channel 1 (VDAC1), the most abundant protein on the outer membrane of mitochondria. VDAC1 is the gatekeeper for the passages of metabolites, nucleotides, and ions; it plays a crucial role in regulating apoptosis due to its interaction with apoptotic and anti-apoptotic proteins, namely members of the Bcl-2 family of proteins and hexokinase. Therefore, regulation of VDAC1 is crucial not only for metabolic functions of mitochondria, but also for cell survival. In fact, multiple lines of evidence have confirmed the involvement of VDAC1 in several diseases. Consequently, modulation or dysregulation of VDAC1 function can potentially attenuate or exacerbate pathophysiological conditions. Understanding the role of VDAC1 in health and disease could lead to selective protection of cells in different tissues and diverse diseases. The purpose of this review is to discuss the role of VDAC1 in the pathogenesis of diseases and as a potentially effective target for therapeutic management of various pathologies.
Collapse
Affiliation(s)
- Amadou K S Camara
- Department of Anesthesiology, Medical College of WisconsinMilwaukee, WI, United States.,Cardiovascular Center, Medical College of WisconsinMilwaukee, WI, United States
| | - YiFan Zhou
- Department of Assay Development, HD BiosciencesShanghai, China
| | - Po-Chao Wen
- Department of Biochemistry, Beckman Institute for Advanced Science and Technology, Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-ChampaignUrbana, IL, United States
| | - Emad Tajkhorshid
- Department of Biochemistry, Beckman Institute for Advanced Science and Technology, Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-ChampaignUrbana, IL, United States
| | - Wai-Meng Kwok
- Department of Anesthesiology, Medical College of WisconsinMilwaukee, WI, United States.,Cardiovascular Center, Medical College of WisconsinMilwaukee, WI, United States.,Department of Pharmacology and Toxicology, Medical College of WisconsinMilwaukee, WI, United States
| |
Collapse
|
100
|
Raza MH, Siraj S, Arshad A, Waheed U, Aldakheel F, Alduraywish S, Arshad M. ROS-modulated therapeutic approaches in cancer treatment. J Cancer Res Clin Oncol 2017. [PMID: 28647857 DOI: 10.1007/s00432-017-2464-9] [Citation(s) in RCA: 186] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
PURPOSE Reactive oxygen species (ROS) are produced in cancer cells as a result of increased metabolic rate, dysfunction of mitochondria, elevated cell signaling, expression of oncogenes and increased peroxisome activities. Certain level of ROS is required by cancer cells, above or below which lead to cytotoxicity in cancer cells. This biochemical aspect can be exploited to develop novel therapeutic agents to preferentially and selectively target cancer cells. METHODS We searched various electronic databases including PubMed, Web of Science, and Google Scholar for peer-reviewed english-language articles. Selected articles ranging from research papers, clinical studies, and review articles on the ROS production in living systems, its role in cancer development and cancer treatment, and the role of microbiota in ROS-dependent cancer therapy were analyzed. RESULTS This review highlights oxidative stress in tumors, underlying mechanisms of different relationships of ROS and cancer cells, different ROS-mediated therapeutic strategies and the emerging role of microbiota in cancer therapy. CONCLUSION Cancer cells exhibit increased ROS stress and disturbed redox homeostasis which lead to ROS adaptations. ROS-dependent anticancer therapies including ROS scavenging anticancer therapy and ROS boosting anticancer therapy have shown promising results in vitro as well as in vivo. In addition, response to cancer therapy is modulated by the human microbiota which plays a critical role in systemic body functions.
Collapse
Affiliation(s)
- Muhammad Hassan Raza
- Department of Bioinformatics and Biotechnology, International Islamic University, Sector H-10, Islamabad, 44000, Pakistan.
| | - Sami Siraj
- Institute of Basic Medical Sciences, Khyber Medical University (KMU), Peshawar, 25000, Pakistan
| | - Abida Arshad
- Department of Biology, PMAS-Arid Agriculture University, Rawalpindi, 46000, Pakistan
| | - Usman Waheed
- Department of Pathology and Blood Bank, Shaheed Zulfiqar Ali Bhutto Medical University, Islamabad, 44000, Pakistan
| | - Fahad Aldakheel
- Department of Clinical Laboratory Medicine, College of Applied Medical Sciences, King Saud University, Riyadh, 11564, Saudi Arabia
| | - Shatha Alduraywish
- Department of Family and Community Medicine, College of Medicine, King Saud University, Riyadh, 11564, Saudi Arabia
| | - Muhammad Arshad
- Department of Bioinformatics and Biotechnology, International Islamic University, Sector H-10, Islamabad, 44000, Pakistan
| |
Collapse
|