51
|
Touaibia M, St-Coeur PD, Duff P, Faye DC, Pichaud N. 5-Benzylidene, 5-benzyl, and 3-benzylthiazolidine-2,4-diones as potential inhibitors of the mitochondrial pyruvate carrier: Effects on mitochondrial functions and survival in Drosophila melanogaster. Eur J Pharmacol 2021; 913:174627. [PMID: 34774497 DOI: 10.1016/j.ejphar.2021.174627] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 10/29/2021] [Accepted: 11/08/2021] [Indexed: 01/17/2023]
Abstract
A series of thiazolidinediones (TZDs) were synthesized and screened for their effect on the mitochondrial respiration as well as on several mitochondrial respiratory system components of Drosophila melanogaster. Substituted and non-substituted 5-benzylidene and 5-benzylthiazolidine-2,4-diones were investigated. The effect of a substitution in position 3, at the nitrogen atom, of the thiozolidine heterocycle was also investigated. The designed TZDs were compared to UK5099, the most potent mitochondrial pyruvate carrier (MPC) inhibitor, in in vitro and in vivo tests. Compared to 5-benzylthiazolidine-2,4-diones 6-7 and 3-benzylthiazolidine-2,4-dione 8, 5-benzylidenethiazolidine-2,4-diones 2-5 showed more inhibitory capacity on mitochondrial respiration. 5-(4-Hydroxybenzylidene)thiazolidine-2,4-dione (3) and 5-(3-hydroxy-4-methoxybenzylidene)thiazolidine-2,4-dione (5) were among the best compounds that compared well with UK5099. Additionally, TZDs 3 and 5, showed no effects on the non-coupled respiration and weak effects on pathways using substrates such as proline, succinate, and G3P. 5-Benzylidenethiazolidine-2,4-dione 3 showed a positive effect on survival and lifespan when added to Drosophila standard and high fat diet. Interestingly, analog 3 completely reversed the effects of high fat diet on Drosophila longevity and induced metabolic changes which suggests an in vivo inhibition of MPC at the mitochondrial level.
Collapse
Affiliation(s)
- Mohamed Touaibia
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, Canada.
| | | | - Patrick Duff
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, Canada
| | - Diene Codou Faye
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, Canada
| | - Nicolas Pichaud
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, Canada.
| |
Collapse
|
52
|
Reyes-Ortega P, Soria-Ortiz MB, Rodríguez VM, Vázquez-Martínez EO, Díaz-Muñoz M, Reyes-Haro D. Anorexia disrupts glutamate-glutamine homeostasis associated with astroglia in the prefrontal cortex of young female rats. Behav Brain Res 2021; 420:113715. [PMID: 34906609 DOI: 10.1016/j.bbr.2021.113715] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 11/19/2021] [Accepted: 12/09/2021] [Indexed: 01/01/2023]
Abstract
Anorexia nervosa (AN) is an eating disorder characterized by self-starvation and excessive weight loss with a notorious prevalence in young women. The neurobiology of AN is unknown but murine models, like dehydration induced anorexia (DIA), reproduce weight loss and avoidance of food despite its availability. Astrocytes are known to provide homeostatic support to neurons, but it is little explored if anorexia affects this function. In this study, we tested if DIA disrupts glutamate-glutamine homeostasis associated with astrocytes in the prefrontal cortex (PFC) of young female rats. Our results showed that anorexia reduced the redox state, as well as endogenous glutamate and glutamine. These effects correlated with a reduced expression of the glutamate transporters (GLT-1 and GLAST) and glutamine synthetase, all of them are preferentially expressed by astrocytes. Accordingly, the expression of GFAP was reduced. Anorexia reduced the astrocyte density, promoted a de-ramified morphology, and augmented the de-ramified/ramified astrocyte ratio in the medial prefrontal cortex (mPFC) and orbitofrontal cortex (OFC), but not in the motor cortex (M2). The increase of a de-ramified phenotype correlated with increased expression of vimentin and nestin. Based on these results, we conclude that anorexia disrupts glutamate-glutamine homeostasis and the redox state associated with astrocyte dysfunction.
Collapse
Affiliation(s)
- Pamela Reyes-Ortega
- Universidad Nacional Autónoma de México, Instituto de Neurobiología, Campus Juriquilla, Boulevard Juriquilla 3001, Juriquilla, Querétaro CP76230, Mexico
| | - María Berenice Soria-Ortiz
- Universidad Nacional Autónoma de México, Instituto de Neurobiología, Campus Juriquilla, Boulevard Juriquilla 3001, Juriquilla, Querétaro CP76230, Mexico
| | - Verónica M Rodríguez
- Universidad Nacional Autónoma de México, Instituto de Neurobiología, Campus Juriquilla, Boulevard Juriquilla 3001, Juriquilla, Querétaro CP76230, Mexico
| | - Eva Olivia Vázquez-Martínez
- Universidad Nacional Autónoma de México, Instituto de Neurobiología, Campus Juriquilla, Boulevard Juriquilla 3001, Juriquilla, Querétaro CP76230, Mexico
| | - Mauricio Díaz-Muñoz
- Universidad Nacional Autónoma de México, Instituto de Neurobiología, Campus Juriquilla, Boulevard Juriquilla 3001, Juriquilla, Querétaro CP76230, Mexico
| | - Daniel Reyes-Haro
- Universidad Nacional Autónoma de México, Instituto de Neurobiología, Campus Juriquilla, Boulevard Juriquilla 3001, Juriquilla, Querétaro CP76230, Mexico.
| |
Collapse
|
53
|
Graybeal K, Sanchez L, Zhang C, Stiles L, Zheng JJ. Characterizing the metabolic profile of dexamethasone treated human trabecular meshwork cells. Exp Eye Res 2021; 214:108888. [PMID: 34896106 DOI: 10.1016/j.exer.2021.108888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 11/29/2021] [Accepted: 12/03/2021] [Indexed: 11/19/2022]
Abstract
The trabecular meshwork (TM) is the leading site of aqueous humor outflow in the eye and plays a critical role in maintaining normal intraocular pressure. When the TM fails to maintain normal intraocular pressure, glaucoma may develop. Mitochondrial damage has previously been found in glaucomatous TM cells; however, the precise metabolic activity of glaucomatous TM cells has yet to be quantitatively assessed. Using dexamethasone (Dex) treated primary human TM cells to model glaucomatous TM cells, we measure the respiratory and glycolytic activity of Dex-treated TM cells with an extracellular flux assay. We found that Dex-treated TM cells had quantifiably altered metabolic profiles, including increased spare respiratory capacity and ATP production rate from oxidative phosphorylation. Therefore, we propose that reversing or preventing these metabolic changes may represent an avenue for future research.
Collapse
Affiliation(s)
- Kimberly Graybeal
- Stein Eye Institute, Department of Ophthalmology, David Geffen School of Medicine, The Molecular Biology Institute at the University of California, Los Angeles, Los Angeles, CA, USA
| | - Luis Sanchez
- Stein Eye Institute, Department of Ophthalmology, David Geffen School of Medicine, The Molecular Biology Institute at the University of California, Los Angeles, Los Angeles, CA, USA
| | - Chi Zhang
- Stein Eye Institute, Department of Ophthalmology, David Geffen School of Medicine, The Molecular Biology Institute at the University of California, Los Angeles, Los Angeles, CA, USA
| | - Linsey Stiles
- Department of Medicine, Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Endocrinology, Los Angeles, CA, USA
| | - Jie J Zheng
- Stein Eye Institute, Department of Ophthalmology, David Geffen School of Medicine, The Molecular Biology Institute at the University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
54
|
Sowers JL, Sowers ML, Shavkunov AS, Hawkins BE, Wu P, DeWitt DS, Prough DS, Zhang K. Traumatic brain injury induces region-specific glutamate metabolism changes as measured by multiple mass spectrometry methods. iScience 2021; 24:103108. [PMID: 34622161 PMCID: PMC8479783 DOI: 10.1016/j.isci.2021.103108] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 06/14/2021] [Accepted: 09/08/2021] [Indexed: 11/02/2022] Open
Abstract
The release of excess glutamate following traumatic brain injury (TBI) results in glutamate excitotoxicity and metabolic energy failure. Endogenous mechanisms for reducing glutamate concentration in the brain parenchyma following TBI are poorly understood. Using multiple mass spectrometry approaches, we examined TBI-induced changes to glutamate metabolism. We present evidence that glutamate concentration can be reduced by glutamate oxidation via a "truncated" tricarboxylic acid cycle coupled to the urea cycle. This process reduces glutamate levels, generates carbon for energy metabolism, leads to citrulline accumulation, and produces nitric oxide. Several key metabolites are identified by metabolomics in support of this mechanism and the locations of these metabolites in the injured hemisphere are demonstrated by MALDI-MS imaging. The results of this study establish the advantages of multiple mass spectrometry approaches and provide insights into glutamate metabolism following TBI that could lead to improved treatment approaches.
Collapse
Affiliation(s)
- James L Sowers
- MD-PhD Combined Degree Program, University of Texas Medical Branch, Galveston, TX 77555, USA.,Department of Neuroscience, Cell Biology, and Anatomy, University of Texas Medical Branch, Galveston, TX 77555, USA.,The Moody Project for Translational Traumatic Brain Injury Research, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Mark L Sowers
- MD-PhD Combined Degree Program, University of Texas Medical Branch, Galveston, TX 77555, USA.,Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Alexander S Shavkunov
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Bridget E Hawkins
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX 77555, USA.,The Moody Project for Translational Traumatic Brain Injury Research, University of Texas Medical Branch, Galveston, TX 77555, USA.,Research Innovation and Scientific Excellence (RISE) Center, School of Nursing, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Ping Wu
- Department of Neuroscience, Cell Biology, and Anatomy, University of Texas Medical Branch, Galveston, TX 77555, USA.,The Moody Project for Translational Traumatic Brain Injury Research, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Douglas S DeWitt
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX 77555, USA.,The Moody Project for Translational Traumatic Brain Injury Research, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Donald S Prough
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX 77555, USA.,The Moody Project for Translational Traumatic Brain Injury Research, University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Kangling Zhang
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX 77555, USA.,The Moody Project for Translational Traumatic Brain Injury Research, University of Texas Medical Branch, Galveston, TX 77555, USA
| |
Collapse
|
55
|
Kumar A, Cordes T, Thalacker-Mercer AE, Pajor AM, Murphy AN, Metallo CM. NaCT/SLC13A5 facilitates citrate import and metabolism under nutrient-limited conditions. Cell Rep 2021; 36:109701. [PMID: 34525352 PMCID: PMC8500708 DOI: 10.1016/j.celrep.2021.109701] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 06/19/2021] [Accepted: 08/20/2021] [Indexed: 01/11/2023] Open
Abstract
Citrate lies at a critical node of metabolism, linking tricarboxylic acid metabolism and lipogenesis via acetyl-coenzyme A. Recent studies have observed that deficiency of the sodium-dependent citrate transporter (NaCT), encoded by SLC13A5, dysregulates hepatic metabolism and drives pediatric epilepsy. To examine how NaCT contributes to citrate metabolism in cells relevant to the pathophysiology of these diseases, we apply 13C isotope tracing to SLC13A5-deficient hepatocellular carcinoma (HCC) cells and primary rat cortical neurons. Exogenous citrate appreciably contributes to intermediary metabolism only under hypoxic conditions. In the absence of glutamine, citrate supplementation increases de novo lipogenesis and growth of HCC cells. Knockout of SLC13A5 in Huh7 cells compromises citrate uptake and catabolism. Citrate supplementation rescues Huh7 cell viability in response to glutamine deprivation or Zn2+ treatment, and NaCT deficiency mitigates these effects. Collectively, these findings demonstrate that NaCT-mediated citrate uptake is metabolically important under nutrient-limited conditions and may facilitate resistance to metal toxicity.
Collapse
Affiliation(s)
- Avi Kumar
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Thekla Cordes
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Anna E Thalacker-Mercer
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14850, USA; Department of Cell, Developmental and Integrative Biology, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Ana M Pajor
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Anne N Murphy
- Department of Pharmacology, University of California, San Diego, La Jolla, CA 92093, USA
| | - Christian M Metallo
- Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA; Moores Cancer Center, University of California, San Diego, La Jolla, CA 92037, USA.
| |
Collapse
|
56
|
Mansour HM, Fawzy HM, El-Khatib AS, Khattab MM. Inhibition of mitochondrial pyruvate carrier 1 by lapatinib ditosylate mitigates Alzheimer's-like disease in D-galactose/ovariectomized rats. Neurochem Int 2021; 150:105178. [PMID: 34481907 DOI: 10.1016/j.neuint.2021.105178] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 08/19/2021] [Accepted: 09/01/2021] [Indexed: 11/26/2022]
Abstract
Mitochondrial, autophagic impairment, excitotoxicity, and also neuroinflammation are implicated in Alzheimer's disease (AD) pathophysiology. We postulated that inhibiting the mitochondrial pyruvate carrier-1 (MPC-1), which inhibits the activation of the mammalian target of rapamycin (mTOR), may ameliorate the neurodegeneration of hippocampal neurons in the rat AD model. To assess this, we used lapatinib ditosylate (LAP), an anti-cancer drug that inhibits MPC-1 through suppression of estrogen-related receptor-alpha (ERR-α), in D-galactose/ovariectomized rats. AD characteristics were developed in ovariectomized (OVX) rats following an 8-week injection of D-galactose (D-gal) (150 mg/kg, i.p.). The human epidermal growth factor receptor-2 (HER-2) inhibitor, LAP (100 mg/kg, p.o.) was daily administered for 3 weeks. LAP protected against D-gal/OVX-induced changes in cortical and hippocampal neurons along with improvement in learning and memory, as affirmed using Morris water maze (MWM) and novel object recognition (NOR) tests. Furthermore, LAP suppressed the hippocampal expression of Aβ1-42, p-tau, HER-2, p-mTOR, GluR-II, TNF-α, P38-MAPK, NOX-1, ERR-α, and MPC-1. Also, LAP treatment leads to activation of the pro-survival PI3K/Akt pathway. As an epilogue, targeting MPC-1 in the D-gal-induced AD in OVX rats resulted in the enhancement of autophagy, and suppression of neuroinflammation and excitotoxicity. Our work proves that alterations in metabolic signaling as a result of inhibiting MPC-1 were anti-inflammatory and neuroprotective in the AD model, revealing that HER-2, MPC-1, and ERR-α may be promising therapeutic targets for AD.
Collapse
Affiliation(s)
- Heba M Mansour
- Department of Pharmacology, Egyptian Drug Authority, EDA, formerly NODCAR, Giza, Egypt.
| | - Hala M Fawzy
- Department of Pharmacology, Egyptian Drug Authority, EDA, formerly NODCAR, Giza, Egypt
| | - Aiman S El-Khatib
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Mahmoud M Khattab
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
57
|
Mitochondrial Metabolism behind Region-Specific Resistance to Ischemia-Reperfusion Injury in Gerbil Hippocampus. Role of PKCβII and Phosphate-Activated Glutaminase. Int J Mol Sci 2021; 22:ijms22168504. [PMID: 34445210 PMCID: PMC8395184 DOI: 10.3390/ijms22168504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/03/2021] [Accepted: 08/03/2021] [Indexed: 11/17/2022] Open
Abstract
Ischemic episodes are a leading cause of death worldwide with limited therapeutic interventions. The current study explored mitochondrial phosphate-activated glutaminase (GLS1) activity modulation by PKCβII through GC-MS untargeted metabolomics approach. Mitochondria were used to elucidate the endogenous resistance of hippocampal CA2-4 and dentate gyrus (DG) to transient ischemia and reperfusion in a model of ischemic episode in gerbils. In the present investigation, male gerbils were subjected to bilateral carotids occlusion for 5 min followed by reperfusion (IR). Gerbils were randomly divided into three groups as vehicle-treated sham control, vehicle-treated IR and PKCβII specific inhibitor peptide βIIV5-3-treated IR. Vehicle or βIIV5-3 (3 mg/kg, i.v.) were administered at the moment of reperfusion. The gerbils hippocampal tissue were isolated at various time of reperfusion and cell lysates or mitochondria were isolated from CA1 and CA2-4,DG hippocampal regions. Recombinant proteins PKCβII and GLS1 were used in in vitro phosphorylation reaction and organotypic hippocampal cultures (OHC) transiently exposed to NMDA (25 μM) to evaluate the inhibition of GLS1 on neuronal viability. PKCβII co-precipitates with GAC (GLS1 isoform) in CA2-4,DG mitochondria and phosphorylates GLS1 in vitro. Cell death was dose dependently increased when GLS1 was inhibited by BPTA while inhibition of mitochondrial pyruvate carrier (MPC) attenuated cell death in NMDA-challenged OHC. Fumarate and malate were increased after IR 1h in CA2-4,DG and this was reversed by βIIV5-3 what correlated with GLS1 activity increases and earlier showed elevation of neuronal death (Krupska et al., 2017). The present study illustrates that CA2-4,DG resistance to ischemic episode at least partially rely on glutamine and glutamate utilization in mitochondria as a source of carbon to tricarboxylic acid cycle. This phenomenon depends on modulation of GLS1 activity by PKCβII and remodeling of MPC: all these do not occur in ischemia-vulnerable CA1.
Collapse
|
58
|
Jones AE, Arias NJ, Acevedo A, Reddy ST, Divakaruni AS, Meriwether D. A Single LC-MS/MS Analysis to Quantify CoA Biosynthetic Intermediates and Short-Chain Acyl CoAs. Metabolites 2021; 11:metabo11080468. [PMID: 34436409 PMCID: PMC8401288 DOI: 10.3390/metabo11080468] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/09/2021] [Accepted: 07/14/2021] [Indexed: 12/11/2022] Open
Abstract
Coenzyme A (CoA) is an essential cofactor for dozens of reactions in intermediary metabolism. Dysregulation of CoA synthesis or acyl CoA metabolism can result in metabolic or neurodegenerative disease. Although several methods use liquid chromatography coupled with mass spectrometry/mass spectrometry (LC-MS/MS) to quantify acyl CoA levels in biological samples, few allow for simultaneous measurement of intermediates in the CoA biosynthetic pathway. Here we describe a simple sample preparation and LC-MS/MS method that can measure both short-chain acyl CoAs and biosynthetic precursors of CoA. The method does not require use of a solid phase extraction column during sample preparation and exhibits high sensitivity, precision, and accuracy. It reproduces expected changes from known effectors of cellular CoA homeostasis and helps clarify the mechanism by which excess concentrations of etomoxir reduce intracellular CoA levels.
Collapse
Affiliation(s)
- Anthony E. Jones
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, 650 Charles E Young Dr. South, Los Angeles, CA 90095, USA; (A.E.J.); (N.J.A.); (A.A.); (S.T.R.)
| | - Nataly J. Arias
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, 650 Charles E Young Dr. South, Los Angeles, CA 90095, USA; (A.E.J.); (N.J.A.); (A.A.); (S.T.R.)
| | - Aracely Acevedo
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, 650 Charles E Young Dr. South, Los Angeles, CA 90095, USA; (A.E.J.); (N.J.A.); (A.A.); (S.T.R.)
| | - Srinivasa T. Reddy
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, 650 Charles E Young Dr. South, Los Angeles, CA 90095, USA; (A.E.J.); (N.J.A.); (A.A.); (S.T.R.)
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, 10833 Le Conte Avenue, Los Angeles, CA 90095, USA
| | - Ajit S. Divakaruni
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, 650 Charles E Young Dr. South, Los Angeles, CA 90095, USA; (A.E.J.); (N.J.A.); (A.A.); (S.T.R.)
- Correspondence: (A.S.D.); (D.M.)
| | - David Meriwether
- Department of Medicine, Division of Cardiology, David Geffen School of Medicine, University of California, Los Angeles, 10833 Le Conte Avenue, Los Angeles, CA 90095, USA
- Department of Medicine, Division of Digestive Diseases, David Geffen School of Medicine, University of California, Los Angeles, 10833 Le Conte Avenue, Los Angeles, CA 90095, USA
- Correspondence: (A.S.D.); (D.M.)
| |
Collapse
|
59
|
Buck SA, De Miranda BR, Logan RW, Fish KN, Greenamyre JT, Freyberg Z. VGLUT2 Is a Determinant of Dopamine Neuron Resilience in a Rotenone Model of Dopamine Neurodegeneration. J Neurosci 2021; 41:4937-4947. [PMID: 33893220 PMCID: PMC8260163 DOI: 10.1523/jneurosci.2770-20.2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 04/13/2021] [Accepted: 04/15/2021] [Indexed: 12/21/2022] Open
Abstract
Parkinson's disease (PD) is characterized by progressive dopamine (DA) neuron loss in the SNc. In contrast, DA neurons in the VTA are relatively protected from neurodegeneration, but the underlying mechanisms for this resilience remain poorly understood. Recent work suggests that expression of the vesicular glutamate transporter 2 (VGLUT2) selectively impacts midbrain DA neuron vulnerability. We investigated whether altered DA neuron VGLUT2 expression determines neuronal resilience in rats exposed to rotenone, a mitochondrial complex I inhibitor and toxicant model of PD. We discovered that VTA/SNc DA neurons that expressed VGLUT2 are more resilient to rotenone-induced DA neurodegeneration. Surprisingly, the density of neurons with detectable VGLUT2 expression in the VTA and SNc increases in response to rotenone. Furthermore, dopaminergic terminals within the NAc, where the majority of VGLUT2-expressing DA neurons project, exhibit greater resilience compared with DA terminals in the caudate/putamen. More broadly, VGLUT2-expressing terminals are protected throughout the striatum from rotenone-induced degeneration. Together, our data demonstrate that a distinct subpopulation of VGLUT2-expressing DA neurons are relatively protected from rotenone neurotoxicity. Rotenone-induced upregulation of the glutamatergic machinery in VTA and SNc neurons and their projections may be part of a broader neuroprotective mechanism. These findings offer a putative new target for neuronal resilience that can be manipulated to prevent toxicant-induced DA neurodegeneration in PD.SIGNIFICANCE STATEMENT Environmental exposures to pesticides contribute significantly to pathologic processes that culminate in Parkinson's disease (PD). The pesticide rotenone has been used to generate a PD model that replicates key features of the illness, including dopamine neurodegeneration. To date, longstanding questions remain: are there dopamine neuron subpopulations resilient to rotenone; and if so, what are the molecular determinants of this resilience? Here we show that the subpopulation of midbrain dopaminergic neurons that express the vesicular glutamate transporter 2 (VGLUT2) are more resilient to rotenone-induced neurodegeneration. Rotenone also upregulates VGLUT2 more broadly in the midbrain, suggesting that VGLUT2 expression generally confers increased resilience to rotenone. VGLUT2 may therefore be a new target for boosting neuronal resilience to prevent toxicant-induced DA neurodegeneration in PD.
Collapse
Affiliation(s)
- Silas A Buck
- Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213
| | - Briana R De Miranda
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260
- Department of Neurology, University of Alabama at Birmingham, Birmingham, Alabama, 35294
| | - Ryan W Logan
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, Massachusetts, 02118
- Center for Systems Neurogenetics of Addiction, The Jackson Laboratory, Bar Harbor, Maine, 04609
| | - Kenneth N Fish
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213
| | - J Timothy Greenamyre
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, Pennsylvania, 15260
| | - Zachary Freyberg
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, 15213
| |
Collapse
|
60
|
de Oliveira MF, Medeiros RCA, Mietto BS, Calvo TL, Mendonça APM, Rosa TLSA, da Silva DS, do Carmo de Vasconcelos KG, Pereira AMR, de Macedo CS, Pereira GMB, de Berrêdo Pinho Moreira M, Pessolani MCV, Moraes MO, Lara FA. Reduction of host cell mitochondrial activity as Mycobacterium leprae's strategy to evade host innate immunity. Immunol Rev 2021; 301:193-208. [PMID: 33913182 PMCID: PMC10084840 DOI: 10.1111/imr.12962] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 12/20/2022]
Abstract
Leprosy is a much-feared incapacitating infectious disease caused by Mycobacterium leprae or M lepromatosis, annually affecting roughly 200,000 people worldwide. During host-pathogen interaction, M leprae subverts the immune response, leading to development of disease. Throughout the last few decades, the impact of energy metabolism on the control of intracellular pathogens and leukocytic differentiation has become more evident. Mitochondria play a key role in regulating newly-discovered immune signaling pathways by controlling redox metabolism and the flow of energy besides activating inflammasome, xenophagy, and apoptosis. Likewise, this organelle, whose origin is probably an alphaproteobacterium, directly controls the intracellular pathogens attempting to invade its niche, a feature conquered at the expense of billions of years of coevolution. In the present review, we discuss the role of reduced host cell mitochondrial activity during M leprae infection and the consequential fates of M leprae and host innate immunity. Conceivably, inhibition of mitochondrial energy metabolism emerges as an overlooked and novel mechanism developed by M leprae to evade xenophagy and the host immune response.
Collapse
Affiliation(s)
- Marcus Fernandes de Oliveira
- Laboratório de Bioquímica de Resposta ao Estresse, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | | - Bruno Siqueira Mietto
- Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Minas Gerais, Brazil
| | - Thyago Leal Calvo
- Laboratório de Hanseníase, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - Ana Paula Miranda Mendonça
- Laboratório de Bioquímica de Resposta ao Estresse, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | | | | | | | | - Cristiana Santos de Macedo
- Laboratório de Microbiologia Celular, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
- Centro de Desenvolvimento Tecnológico em Saúde, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | | | | | | | | | - Flavio Alves Lara
- Laboratório de Microbiologia Celular, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
61
|
Buren C, Tu G, Raymond LA. Impaired Replenishment of Cortico-Striatal Synaptic Glutamate in Huntington's Disease Mouse Model. J Huntingtons Dis 2021; 9:149-161. [PMID: 32310183 DOI: 10.3233/jhd-200400] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BACKGROUND Huntington's disease (HD) is an inherited neurodegenerative disorder caused by expansion of CAG repeats in the Huntingtin gene (HTT). Studies suggest cortical to striatal (C-S) projections, which regulate movement and provide cell survival signals to SPNs, are altered in the pre-manifest and early symptomatic stages of HD. But whether and how presynaptic cortical terminals are affected in HD is not well explored. OBJECTIVE Test size and replenishment of readily releasable pool (RRP), and assess glutamate refill of C-S synapses in HD models. METHODS Immunocytochemistry was applied in C-S co-cultures generated from FVB/N (WT: wildtype) mice and YAC128, an HD mouse model expressing human HTT with 128 CAG repeats on the FVB/N background; Whole-cell patch clamp recordings from striatal neurons were performed both in cultures, with or without osmotic stimuli, and in acute brain slices from 6-month-old early symptomatic YAC128 mice and WT following prolonged trains of electrical stimuli in corpus callosum. RESULTS We found no change in the average size or vesicle replenishment rate of RRP in C-S synapses of YAC128, compared with WT, cultures at day in vitro 21, a time when immunocytochemistry showed comparable neuronal survival between the two genotypes. However, YAC128 C-S synapses showed a slowed rate of recovery of glutamate release in co-cultures as well as in acute brain slices. CONCLUSION Mutant HTT expression impairs glutamate refill but not RRP size or replenishment in C-S synapses. This work provides a foundation for examining the contribution of deficits in presynaptic cortical terminals on HD progression.
Collapse
Affiliation(s)
- Caodu Buren
- Graduate Program in Neuroscience, The University of British Columbia, Vancouver, Canada.,Department of Psychiatry and Djavad Mowafaghian Centre for Brain Health, The University of British Columbia, Vancouver, Canada
| | - Gaqi Tu
- School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.,Department of Psychology, University of Toronto, Toronto, Ontario, Canada
| | - Lynn A Raymond
- Department of Psychiatry and Djavad Mowafaghian Centre for Brain Health, The University of British Columbia, Vancouver, Canada
| |
Collapse
|
62
|
Campanella B, Colombaioni L, Nieri R, Benedetti E, Onor M, Bramanti E. Unraveling the Extracellular Metabolism of Immortalized Hippocampal Neurons Under Normal Growth Conditions. Front Chem 2021; 9:621548. [PMID: 33937186 PMCID: PMC8085660 DOI: 10.3389/fchem.2021.621548] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 02/16/2021] [Indexed: 01/17/2023] Open
Abstract
Metabolomic profiling of cell lines has shown many potential applications and advantages compared to animal models and human subjects, and an accurate cellular metabolite analysis is critical to understanding both the intracellular and extracellular environments in cell culture. This study provides a fast protocol to investigate in vitro metabolites of immortalized hippocampal neurons HN9.10e with minimal perturbation of the cell system using a targeted approach. HN9.10e neurons represent a reliable model of one of the most vulnerable regions of the central nervous system. Here, the assessment of their extracellular metabolic profile was performed by studying the cell culture medium before and after cell growth under standard conditions. The targeted analysis was performed by a direct, easy, high-throughput reversed-phase liquid chromatography with diode array detector (RP-HPLC-DAD) method and by headspace solid-phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS) for the study of volatile organic compounds (VOCs). The analysis of six different batches of cells has allowed to investigate the metabolic reproducibility of neuronal cells and to describe the metabolic "starting" conditions that are mandatory for a well-grounded interpretation of the results of any following cellular treatment. An accurate study of the metabolic profile of the HN9.10e cell line has never been performed before, and it could represent a quality parameter before any other targeting assay or further exploration.
Collapse
Affiliation(s)
- Beatrice Campanella
- National Research Council, Institute of Chemistry of Organometallic Compounds (CNR-ICCOM), Pisa, Italy
| | - Laura Colombaioni
- National Research Council, Institute of Neuroscience (CNR-IN), Pisa, Italy
| | - Riccardo Nieri
- National Research Council, Institute of Chemistry of Organometallic Compounds (CNR-ICCOM), Pisa, Italy
| | - Edoardo Benedetti
- Hematology Unit, Department of Oncology, University of Pisa, Pisa, Italy
| | - Massimo Onor
- National Research Council, Institute of Chemistry of Organometallic Compounds (CNR-ICCOM), Pisa, Italy
| | - Emilia Bramanti
- National Research Council, Institute of Chemistry of Organometallic Compounds (CNR-ICCOM), Pisa, Italy
| |
Collapse
|
63
|
Ruiz-Iglesias A, Mañes S. The Importance of Mitochondrial Pyruvate Carrier in Cancer Cell Metabolism and Tumorigenesis. Cancers (Basel) 2021; 13:cancers13071488. [PMID: 33804985 PMCID: PMC8037430 DOI: 10.3390/cancers13071488] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/16/2021] [Accepted: 03/19/2021] [Indexed: 02/06/2023] Open
Abstract
Simple Summary The characteristic metabolic hallmark of cancer cells is the massive catabolism of glucose by glycolysis, even under aerobic conditions—the so-called Warburg effect. Although energetically unfavorable, glycolysis provides “building blocks” to sustain the unlimited growth of malignant cells. Aberrant glycolysis is also responsible for lactate accumulation and acidosis in the tumor milieu, which fosters hypoxia and immunosuppression. One of the mechanisms used by cancer cells to increase glycolytic flow is the negative regulation of the proteins that conform the mitochondrial pyruvate carrier (MPC) complex, which transports pyruvate into the mitochondrial matrix to be metabolized in the tricarboxylic acid (TCA) cycle. Evidence suggests that MPC downregulation in tumor cells impacts many aspects of tumorigenesis, including cancer cell-intrinsic (proliferation, invasiveness, stemness, resistance to therapy) and -extrinsic (angiogenesis, anti-tumor immune activity) properties. In many cancers, but not in all, MPC downregulation is associated with poor survival. MPC regulation is therefore central to tackling glycolysis in tumors. Abstract Pyruvate is a key molecule in the metabolic fate of mammalian cells; it is the crossroads from where metabolism proceeds either oxidatively or ends with the production of lactic acid. Pyruvate metabolism is regulated by many enzymes that together control carbon flux. Mitochondrial pyruvate carrier (MPC) is responsible for importing pyruvate from the cytosol to the mitochondrial matrix, where it is oxidatively phosphorylated to produce adenosine triphosphate (ATP) and to generate intermediates used in multiple biosynthetic pathways. MPC activity has an important role in glucose homeostasis, and its alteration is associated with diabetes, heart failure, and neurodegeneration. In cancer, however, controversy surrounds MPC function. In some cancers, MPC upregulation appears to be associated with a poor prognosis. However, most transformed cells undergo a switch from oxidative to glycolytic metabolism, the so-called Warburg effect, which, amongst other possibilities, is induced by MPC malfunction or downregulation. Consequently, impaired MPC function might induce tumors with strong proliferative, migratory, and invasive capabilities. Moreover, glycolytic cancer cells secrete lactate, acidifying the microenvironment, which in turn induces angiogenesis, immunosuppression, and the expansion of stromal cell populations supporting tumor growth. This review examines the latest findings regarding the tumorigenic processes affected by MPC.
Collapse
|
64
|
Andreyev AY, Kushnareva YE, Starkova NN, Starkov AA. Metabolic ROS Signaling: To Immunity and Beyond. BIOCHEMISTRY (MOSCOW) 2021; 85:1650-1667. [PMID: 33705302 PMCID: PMC7768995 DOI: 10.1134/s0006297920120160] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Metabolism is a critical determinant of immune cell functionality. Immunometabolism, by definition, is a multidisciplinary area of immunology research that integrates the knowledge of energy transduction mechanisms and biochemical pathways. An important concept in the field is metabolic switch, a transition of immune cells upon activation to preferential utilization of select catabolic pathways for their energy needs. Mitochondria are not inert in this process and contribute to the metabolic adaptation by different mechanisms which include increasing ATP production to match dynamic bioenergetic demands and serving as a signaling platform. The latter involves generation of reactive oxygen species (ROS), one of the most intensively studied mitochondrial processes. While the role of mitochondrial ROS in the context of oxidative stress is well established, ROS signaling in immunity is an emerging and quickly changing field. In this review, we discuss ROS signaling and immunometabolism concepts from the standpoint of bioenergetics. We also provide a critical insight into the methodology for ROS assessment, outlining current challenges in the field. Finally, based on our analysis of the literature data, we hypothesize that regulatory ROS production, as opposed to oxidative stress, is controlled by mitochondrial biogenesis rather than metabolic switches.
Collapse
Affiliation(s)
- A Y Andreyev
- The Scripps Research Institute, 10550 N Torrey Pines Rd, La Jolla, CA 92037, USA.
| | - Y E Kushnareva
- La Jolla Institute for Allergy and Immunology, 9420 Athena Circle, La Jolla, CA 92037, USA.
| | - N N Starkova
- State University of New York, Maritime College, New York, NY 10465, USA.
| | - A A Starkov
- Brain and Mind Research Institute, Weill Medical College of Cornell University, New York, NY 10065, USA.
| |
Collapse
|
65
|
Plotegher N, Filadi R, Pizzo P, Duchen MR. Excitotoxicity Revisited: Mitochondria on the Verge of a Nervous Breakdown. Trends Neurosci 2021; 44:342-351. [PMID: 33608137 DOI: 10.1016/j.tins.2021.01.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 12/03/2020] [Accepted: 01/08/2021] [Indexed: 12/30/2022]
Abstract
Excitotoxicity is likely to occur in pathological scenarios in which mitochondrial function is already compromised, shaping neuronal responses to glutamate. In fact, mitochondria sustain cell bioenergetics, tune intracellular Ca2+ dynamics, and regulate glutamate availability by using it as metabolic substrate. Here, we suggest the need to explore glutamate toxicity in the context of specific disease models in which it may occur, re-evaluating the impact of mitochondrial dysfunction on glutamate excitotoxicity. Our aim is to signpost new approaches, perhaps combining glutamate and pathways to rescue mitochondrial function, as therapeutic targets in neurological disorders.
Collapse
Affiliation(s)
| | - Riccardo Filadi
- Department of Biomedical Sciences, University of Padova, Padova, Italy; Neuroscience Institute, National Research Council (CNR), Padua, Italy
| | - Paola Pizzo
- Department of Biomedical Sciences, University of Padova, Padova, Italy; Neuroscience Institute, National Research Council (CNR), Padua, Italy
| | - Michael R Duchen
- Department of Cell and Developmental Biology, University College London, London, UK.
| |
Collapse
|
66
|
Liu N, Lin MM, Huang SS, Liu ZQ, Wu JC, Liang ZQ, Qin ZH, Wang Y. NADPH and Mito-Apocynin Treatment Protects Against KA-Induced Excitotoxic Injury Through Autophagy Pathway. Front Cell Dev Biol 2021; 9:612554. [PMID: 33644049 PMCID: PMC7905037 DOI: 10.3389/fcell.2021.612554] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 01/18/2021] [Indexed: 02/06/2023] Open
Abstract
Aim Previous research recognizes that NADPH can produce reduced glutathione (GSH) as a coenzyme and produce ROS as a substrate of NADPH oxidase (NOX). Besides, excessive activation of glutamate receptors results in mitochondrial impairment. The study aims at spelling out the effects of NADPH and Mito-apocynin, a NOX inhibitor which specifically targets the mitochondria, on the excitotoxicity induced by Kainic acid (KA) and its mechanism. Methods The in vivo neuronal excitotoxicity model was constructed by stereotypically injecting KA into the unilateral striatum of mice. Administrated NADPH (i.v, intravenous) 30 min prior and Mito-apocynin (i.g, intragastric) 1 day prior, respectively, then kept administrating daily until mice were sacrificed 14 days later. Nissl staining measured the lesion of striatum and survival status of neurons. Cylinder test of forelimb asymmetry and the adhesive removal test reflected the behavioral deficit caused by neural dysfunction. Determined Total superoxide dismutase (T-SOD), malondialdehyde (MDA), and GSH indicated oxidative stress. Western blot presented the expression levels of LC3-II/LC3-I, SQSTM1/p62, TIGAR, and NOX4. Assessed oxygen consumption rate using High-Resolution Respirometry. In vitro, the MitoSOX Indicator reflected superoxide released by neuron mitochondria. JC-1 and ATP assay Kit were used to detect mitochondrial membrane potential (MMP) and energy metabolism, respectively. Results In this study, we have successfully established excitotoxic model by KA in vivo and in vitro. KA induced decreased SOD activity and increased MDA concentration. KA cause the change of LC3-II/LC3-I, SQSTM1/p62, and TIGAR expression, indicating the autophagy activation. NADPH plays a protective role in vivo and in vitro. It reversed the KA-mediated changes in LC3, SQSTM1/p62, TIGAR, and NOX4 protein expression. Mito-apocynin inhibited KA-induced increases in mitochondrial NOX4 expression and activity. Compared with NADPH, the combination showed more significant neuroprotective effects, presenting more neurons survive and better motor function recovery. The combination also better inhibited the over-activated autophagy. In vitro, combination of NADPH and Mito-apocynin performed better in restoring mitochondria membrane potential. Conclusion In summary, combined administration of NADPH and NOX inhibitors offers better neuroprotection by reducing NADPH as a NOX substrate to generate ROS. The combined use of NADPH and Mito-apocynin can better restore neurons and mitochondrial function through autophagy pathway.
Collapse
Affiliation(s)
- Na Liu
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases and Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Miao-Miao Lin
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases and Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Si-Si Huang
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases and Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Zi-Qi Liu
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases and Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Jun-Chao Wu
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases and Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Zhong-Qin Liang
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases and Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Zheng-Hong Qin
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases and Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| | - Yan Wang
- Department of Pharmacology and Laboratory of Aging and Nervous Diseases and Jiangsu Key Laboratory of Neuropsychiatric Diseases, College of Pharmaceutical Sciences, Soochow University, Suzhou, China
| |
Collapse
|
67
|
Szpręgiel I, Wrońska D, Kmiecik M, Pałka S, Kania BF. Glutamic Acid Decarboxylase Concentration Changes in Response to Stress and Altered Availability of Glutamic Acid in Rabbit ( Oryctolagus cuniculus) Brain Limbic Structures. Animals (Basel) 2021; 11:455. [PMID: 33572286 PMCID: PMC7915518 DOI: 10.3390/ani11020455] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 01/31/2021] [Accepted: 02/04/2021] [Indexed: 12/18/2022] Open
Abstract
Glutamic acid decarboxylase (GAD) is an enzyme that catalyses the formation of γ-aminobutyric acid (GABA), the most important inhibitory neurotransmitter, from glutamic acid (Glu), which is considered the most important excitatory transmitter in the central and peripheral nervous systems. GAD is a key enzyme that provides a balance between Glu and GABA concentration. Hence, it can be assumed that if the GAD executes the synthesis of GABA from Glu, it is important in the stress response, and thus also in triggering the emotional states of the body that accompany stress. The aim of the study was to investigate the concentration of the GAD in motivational structures in the brain of the rabbit (Oryctolagus cuniculus) under altered homeostatic conditions caused by stress and variable availability of Glu. Summarising, the experimental results clearly showed variable concentrations of GAD in the motivational structures of the rabbit brain. The highest concentration of GAD was found in the hypothalamus, which suggests a strong effect of Glu and GABA on the activity of this brain structure. The GAD concentrations in individual experimental groups depended to a greater extent on blocking the activity of glutamate receptors than on the effects of a single stress exposure. The results obtained clearly support the possibility that a rapid change in the concentration of GAD could shift bodily responses to quickly achieve homeostasis, especially in this species. Further studies are necessary to reveal the role of the Glu-GAD-GABA system in the modulation of stress situations as well as in body homeostasis.
Collapse
Affiliation(s)
- Izabela Szpręgiel
- Department of Animal Physiology and Endocrinology, Faculty of Animal Sciences, University of Agriculture in Krakow, Al. Mickiewicza 24/28, 30-059 Kraków, Poland;
| | - Danuta Wrońska
- Department of Animal Physiology and Endocrinology, Faculty of Animal Sciences, University of Agriculture in Krakow, Al. Mickiewicza 24/28, 30-059 Kraków, Poland;
| | - Michał Kmiecik
- Department of Genetics, Animal Breeding and Ethology, Faculty of Animal Sciences, University of Agriculture in Krakow, Al. Mickiewicza 24/28, 30-059 Kraków, Poland; (M.K.); (S.P.)
| | - Sylwia Pałka
- Department of Genetics, Animal Breeding and Ethology, Faculty of Animal Sciences, University of Agriculture in Krakow, Al. Mickiewicza 24/28, 30-059 Kraków, Poland; (M.K.); (S.P.)
| | - Bogdan F. Kania
- University Centre of Veterinary Medicine JU-AU, University of Agriculture in Kraków, Mickiewicza 24/28, 30-059 Kraków, Poland;
| |
Collapse
|
68
|
Salmina AB, Gorina YV, Erofeev AI, Balaban PM, Bezprozvanny IB, Vlasova OL. Optogenetic and chemogenetic modulation of astroglial secretory phenotype. Rev Neurosci 2021; 32:459-479. [PMID: 33550788 DOI: 10.1515/revneuro-2020-0119] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 11/28/2020] [Indexed: 12/20/2022]
Abstract
Astrocytes play a major role in brain function and alterations in astrocyte function that contribute to the pathogenesis of many brain disorders. The astrocytes are attractive cellular targets for neuroprotection and brain tissue regeneration. Development of novel approaches to monitor and to control astroglial function is of great importance for further progress in basic neurobiology and in clinical neurology, as well as psychiatry. Recently developed advanced optogenetic and chemogenetic techniques enable precise stimulation of astrocytes in vitro and in vivo, which can be achieved by the expression of light-sensitive channels and receptors, or by expression of receptors exclusively activated by designer drugs. Optogenetic stimulation of astrocytes leads to dramatic changes in intracellular calcium concentrations and causes the release of gliotransmitters. Optogenetic and chemogenetic protocols for astrocyte activation aid in extracting novel information regarding the function of brain's neurovascular unit. This review summarizes current data obtained by this approach and discusses a potential mechanistic connection between astrocyte stimulation and changes in brain physiology.
Collapse
Affiliation(s)
- Alla B Salmina
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia
- Research Institute of Molecular Medicine and Pathobiochemistry, Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, Russia
| | - Yana V Gorina
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia
- Research Institute of Molecular Medicine and Pathobiochemistry, Prof. V.F. Voino-Yasenetsky Krasnoyarsk State Medical University, Krasnoyarsk, Russia
| | - Alexander I Erofeev
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia
| | - Pavel M Balaban
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia
- Laboratory of Cellular Neurobiology of Learning, Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, Russia
| | - Ilya B Bezprozvanny
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia
- Department of Physiology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, USA
| | - Olga L Vlasova
- Laboratory of Molecular Neurodegeneration, Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russia
| |
Collapse
|
69
|
Díaz-García CM, Meyer DJ, Nathwani N, Rahman M, Martínez-François JR, Yellen G. The distinct roles of calcium in rapid control of neuronal glycolysis and the tricarboxylic acid cycle. eLife 2021; 10:e64821. [PMID: 33555254 PMCID: PMC7870136 DOI: 10.7554/elife.64821] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 01/26/2021] [Indexed: 12/31/2022] Open
Abstract
When neurons engage in intense periods of activity, the consequent increase in energy demand can be met by the coordinated activation of glycolysis, the tricarboxylic acid (TCA) cycle, and oxidative phosphorylation. However, the trigger for glycolytic activation is unknown and the role for Ca2+ in the mitochondrial responses has been debated. Using genetically encoded fluorescent biosensors and NAD(P)H autofluorescence imaging in acute hippocampal slices, here we find that Ca2+ uptake into the mitochondria is responsible for the buildup of mitochondrial NADH, probably through Ca2+ activation of dehydrogenases in the TCA cycle. In the cytosol, we do not observe a role for the Ca2+/calmodulin signaling pathway, or AMPK, in mediating the rise in glycolytic NADH in response to acute stimulation. Aerobic glycolysis in neurons is triggered mainly by the energy demand resulting from either Na+ or Ca2+ extrusion, and in mouse dentate granule cells, Ca2+ creates the majority of this demand.
Collapse
Affiliation(s)
| | - Dylan J Meyer
- Department of Neurobiology, Harvard Medical SchoolBostonUnited States
| | - Nidhi Nathwani
- Department of Neurobiology, Harvard Medical SchoolBostonUnited States
| | - Mahia Rahman
- Department of Neurobiology, Harvard Medical SchoolBostonUnited States
| | | | - Gary Yellen
- Department of Neurobiology, Harvard Medical SchoolBostonUnited States
| |
Collapse
|
70
|
Guimarães NC, Alves DS, Vilela WR, de-Souza-Ferreira E, Gomes BRB, Ott D, Murgott J, E N de Souza P, de Sousa MV, Galina A, Roth J, Fabro de Bem A, Veiga-Souza FH. Mitochondrial pyruvate carrier as a key regulator of fever and neuroinflammation. Brain Behav Immun 2021; 92:90-101. [PMID: 33242651 DOI: 10.1016/j.bbi.2020.11.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 10/26/2020] [Accepted: 11/22/2020] [Indexed: 02/07/2023] Open
Abstract
The mitochondrial pyruvate carrier (MPC) is an inner-membrane transporter that facilitates pyruvate uptake from the cytoplasm into mitochondria. We previously reported that MPC1 protein levels increase in the hypothalamus of animals during fever induced by lipopolysaccharide (LPS), but how this increase contributes to the LPS responses remains to be studied. Therefore, we investigated the effect of UK 5099, a classical MPC inhibitor, in a rat model of fever, on hypothalamic mitochondrial function and neuroinflammation in LPS-stimulated preoptic area (POA) primary microcultures. Intracerebroventricular administration of UK 5099 reduced the LPS-induced fever. High-resolution respirometry revealed an increase in oxygen consumption and oxygen flux related to ATP synthesis in the hypothalamic homogenate from LPS-treated animals linked to mitochondrial complex I plus II. Preincubation with UK 5099 prevented the LPS-induced increase in oxygen consumption, ATP synthesis and spare capacity only in complex I-linked respiration and reduced mitochondrial H2O2 production. In addition, treatment of rat POA microcultures with UK 5099 reduced the secretion of the proinflammatory and pyrogenic cytokines TNFα and IL-6 as well as the immunoreactivity of inflammatory transcription factors NF-κB and NF-IL6 four hours after LPS stimulation. These results suggest that the regulation of mitochondrial pyruvate metabolism through MPC inhibition may be effective in reducing neuroinflammation and fever.
Collapse
Affiliation(s)
- Natália C Guimarães
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, Institute of Biology, University of Brasília, Brasília, DF, Brazil
| | - Débora S Alves
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, Institute of Biology, University of Brasília, Brasília, DF, Brazil
| | - Wembley R Vilela
- Department of Physiological Sciences, Institute of Biology, University of Brasília, Brasília, DF, Brazil
| | - Eduardo de-Souza-Ferreira
- Laboratory of Bioenergetics and Mitochondrial Physiology, Institute of Medical Biochemistry Leopoldo de Meis, Center for Health Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Bruna R B Gomes
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, Institute of Biology, University of Brasília, Brasília, DF, Brazil
| | - Daniela Ott
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, Justus-Liebig-University of Giessen, Giessen, Hesse, Germany
| | - Jolanta Murgott
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, Justus-Liebig-University of Giessen, Giessen, Hesse, Germany
| | - Paulo E N de Souza
- Laboratory of Electron Paramagnetic Resonance, Institute of Physics, University of Brasília, Brasília, DF, Brazil
| | - Marcelo V de Sousa
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, Institute of Biology, University of Brasília, Brasília, DF, Brazil
| | - Antonio Galina
- Laboratory of Bioenergetics and Mitochondrial Physiology, Institute of Medical Biochemistry Leopoldo de Meis, Center for Health Sciences, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Joachim Roth
- Department of Veterinary Physiology and Biochemistry, Faculty of Veterinary Medicine, Justus-Liebig-University of Giessen, Giessen, Hesse, Germany
| | - Andreza Fabro de Bem
- Department of Physiological Sciences, Institute of Biology, University of Brasília, Brasília, DF, Brazil
| | - Fabiane H Veiga-Souza
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, Institute of Biology, University of Brasília, Brasília, DF, Brazil; School of Ceilândia, University of Brasília, Brasília, DF, Brazil.
| |
Collapse
|
71
|
Audano M, Pedretti S, Ligorio S, Giavarini F, Caruso D, Mitro N. Investigating metabolism by mass spectrometry: From steady state to dynamic view. JOURNAL OF MASS SPECTROMETRY : JMS 2021; 56:e4658. [PMID: 33084147 DOI: 10.1002/jms.4658] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/10/2020] [Accepted: 09/14/2020] [Indexed: 06/11/2023]
Abstract
Metabolism is the set of life-sustaining reactions in organisms. These biochemical reactions are organized in metabolic pathways, in which one metabolite is converted through a series of steps catalyzed by enzymes in another chemical compound. Metabolic reactions are categorized as catabolic, the breaking down of metabolites to produce energy, and/or anabolic, the synthesis of compounds that consume energy. The balance between catabolism of the preferential fuel substrate and anabolism defines the overall metabolism of a cell or tissue. Metabolomics is a powerful tool to gain new insights contributing to the identification of complex molecular mechanisms in the field of biomedical research, both basic and translational. The enormous potential of this kind of analyses consists of two key aspects: (i) the possibility of performing so-called targeted and untargeted experiments through which it is feasible to verify or formulate a hypothesis, respectively, and (ii) the opportunity to run either steady-state analyses to have snapshots of the metabolome at a given time under different experimental conditions or dynamic analyses through the use of labeled tracers. In this review, we will highlight the most important practical (e.g., different sample extraction approaches) and conceptual steps to consider for metabolomic analysis, describing also the main application contexts in which it is used. In addition, we will provide some insights into the most innovative approaches and progress in the field of data analysis and processing, highlighting how this part is essential for the proper extrapolation and interpretation of data.
Collapse
Affiliation(s)
- Matteo Audano
- DiSFeB, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, 20133, Italy
| | - Silvia Pedretti
- DiSFeB, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, 20133, Italy
| | - Simona Ligorio
- DiSFeB, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, 20133, Italy
| | - Flavio Giavarini
- DiSFeB, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, 20133, Italy
| | - Donatella Caruso
- DiSFeB, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, 20133, Italy
| | - Nico Mitro
- DiSFeB, Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, 20133, Italy
| |
Collapse
|
72
|
Veliova M, Ferreira CM, Benador IY, Jones AE, Mahdaviani K, Brownstein AJ, Desousa BR, Acín-Pérez R, Petcherski A, Assali EA, Stiles L, Divakaruni AS, Prentki M, Corkey BE, Liesa M, Oliveira MF, Shirihai OS. Blocking mitochondrial pyruvate import in brown adipocytes induces energy wasting via lipid cycling. EMBO Rep 2020; 21:e49634. [PMID: 33275313 PMCID: PMC7726774 DOI: 10.15252/embr.201949634] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 09/15/2020] [Accepted: 10/07/2020] [Indexed: 12/20/2022] Open
Abstract
Combined fatty acid esterification and lipolysis, termed lipid cycling, is an ATP‐consuming process that contributes to energy expenditure. Therefore, interventions that stimulate energy expenditure through lipid cycling are of great interest. Here we find that pharmacological and genetic inhibition of the mitochondrial pyruvate carrier (MPC) in brown adipocytes activates lipid cycling and energy expenditure, even in the absence of adrenergic stimulation. We show that the resulting increase in ATP demand elevates mitochondrial respiration coupled to ATP synthesis and fueled by lipid oxidation. We identify that glutamine consumption and the Malate‐Aspartate Shuttle are required for the increase in Energy Expenditure induced by MPC inhibition in Brown Adipocytes (MAShEEBA). We thus demonstrate that energy expenditure through enhanced lipid cycling can be activated in brown adipocytes by decreasing mitochondrial pyruvate availability. We present a new mechanism to increase energy expenditure and fat oxidation in brown adipocytes, which does not require adrenergic stimulation of mitochondrial uncoupling.
Collapse
Affiliation(s)
- Michaela Veliova
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.,Division of Endocrinology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Caroline M Ferreira
- Division of Endocrinology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.,Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Ilan Y Benador
- Division of Endocrinology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.,Nutrition and Metabolism, Graduate Medical Sciences, Boston University School of Medicine, Boston, MA, USA
| | - Anthony E Jones
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Kiana Mahdaviani
- Nutrition and Metabolism, Graduate Medical Sciences, Boston University School of Medicine, Boston, MA, USA
| | - Alexandra J Brownstein
- Division of Endocrinology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.,Molecular Cellular Integrative Physiology, University of California, Los Angeles, CA, USA
| | - Brandon R Desousa
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Rebeca Acín-Pérez
- Division of Endocrinology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Anton Petcherski
- Division of Endocrinology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Essam A Assali
- Division of Endocrinology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.,Department of Clinical Biochemistry, School of Medicine, Ben Gurion University of The Negev, Beer-Sheva, Israel
| | - Linsey Stiles
- Division of Endocrinology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Ajit S Divakaruni
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Marc Prentki
- Department of Nutrition, , Université de Montréal, Montreal Diabetes Research Center and CRCHUM, Montréal, QC, Canada
| | - Barbara E Corkey
- Nutrition and Metabolism, Graduate Medical Sciences, Boston University School of Medicine, Boston, MA, USA
| | - Marc Liesa
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.,Division of Endocrinology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Marcus F Oliveira
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Orian S Shirihai
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.,Division of Endocrinology, Department of Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA.,Nutrition and Metabolism, Graduate Medical Sciences, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
73
|
Insights on the Quest for the Structure-Function Relationship of the Mitochondrial Pyruvate Carrier. BIOLOGY 2020; 9:biology9110407. [PMID: 33227948 PMCID: PMC7699257 DOI: 10.3390/biology9110407] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 11/14/2020] [Accepted: 11/17/2020] [Indexed: 01/19/2023]
Abstract
Simple Summary The atomic structure of a biological macromolecule determines its function. Discovering how one or more amino acid chains fold and interact to form a protein complex is critical, from understanding the most fundamental cellular processes to developing new therapies. However, this is far from a straightforward task, especially when studying a membrane protein. The functional link between the oligomeric state and complex composition of the proteins involved in the active mitochondrial transport of cytosolic pyruvate is a decades-old question but remains urgent. We present a brief historical review beginning with the identification of the so-called mitochondrial pyruvate carrier (MPC) proteins, followed by a rigorous conceptual analysis of technical approaches in more recent biochemical studies that seek to isolate and reconstitute the functional MPC complex(es) in vitro. We correlate these studies with early kinetic observations and current experimental and computational knowledge to assess their main contributions, identify gaps, resolve ambiguities, and better define the research goal. Abstract The molecular identity of the mitochondrial pyruvate carrier (MPC) was presented in 2012, forty years after the active transport of cytosolic pyruvate into the mitochondrial matrix was first demonstrated. An impressive amount of in vivo and in vitro studies has since revealed an unexpected interplay between one, two, or even three protein subunits defining different functional MPC assemblies in a metabolic-specific context. These have clear implications in cell homeostasis and disease, and on the development of future therapies. Despite intensive efforts by different research groups using state-of-the-art computational tools and experimental techniques, MPCs’ structure-based mechanism remains elusive. Here, we review the current state of knowledge concerning MPCs’ molecular structures by examining both earlier and recent studies and presenting novel data to identify the regulatory, structural, and core transport activities to each of the known MPC subunits. We also discuss the potential application of cryogenic electron microscopy (cryo-EM) studies of MPC reconstituted into nanodiscs of synthetic copolymers for solving human MPC2.
Collapse
|
74
|
Jones AE, Sheng L, Acevedo A, Veliova M, Shirihai OS, Stiles L, Divakaruni AS. Forces, fluxes, and fuels: tracking mitochondrial metabolism by integrating measurements of membrane potential, respiration, and metabolites. Am J Physiol Cell Physiol 2020; 320:C80-C91. [PMID: 33147057 DOI: 10.1152/ajpcell.00235.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Assessing mitochondrial function in cell-based systems is a central component of metabolism research. However, the selection of an initial measurement technique may be complicated given the range of parameters that can be studied and the need to define the mitochondrial (dys)function of interest. This methods-focused review compares and contrasts the use of mitochondrial membrane potential measurements, plate-based respirometry, and metabolomics and stable isotope tracing. We demonstrate how measurements of 1) cellular substrate preference, 2) respiratory chain activity, 3) cell activation, and 4) mitochondrial biogenesis are enriched by integrating information from multiple methods. This manuscript is meant to serve as a perspective to help choose which technique might be an appropriate initial method to answer a given question, as well as provide a broad "roadmap" for designing follow-up assays to enrich datasets or resolve ambiguous results.
Collapse
Affiliation(s)
- Anthony E Jones
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, California
| | - Li Sheng
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, California
| | - Aracely Acevedo
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, California
| | - Michaela Veliova
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, California.,Department of Medicine, University of California, Los Angeles, California
| | - Orian S Shirihai
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, California.,Department of Medicine, University of California, Los Angeles, California
| | - Linsey Stiles
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, California.,Department of Medicine, University of California, Los Angeles, California
| | - Ajit S Divakaruni
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, California
| |
Collapse
|
75
|
Chella Krishnan K, Floyd RR, Sabir S, Jayasekera DW, Leon-Mimila PV, Jones AE, Cortez AA, Shravah V, Péterfy M, Stiles L, Canizales-Quinteros S, Divakaruni AS, Huertas-Vazquez A, Lusis AJ. Liver Pyruvate Kinase Promotes NAFLD/NASH in Both Mice and Humans in a Sex-Specific Manner. Cell Mol Gastroenterol Hepatol 2020; 11:389-406. [PMID: 32942044 PMCID: PMC7788245 DOI: 10.1016/j.jcmgh.2020.09.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 08/31/2020] [Accepted: 09/03/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS The etiology of nonalcoholic fatty liver disease (NAFLD) is poorly understood, with males and certain populations exhibiting markedly increased susceptibility. Using a systems genetics approach involving multi-omic analysis of ∼100 diverse inbred strains of mice, we recently identified several candidate genes driving NAFLD. We investigated the role of one of these, liver pyruvate kinase (L-PK or Pklr), in NAFLD by using patient samples and mouse models. METHODS We examined L-PK expression in mice of both sexes and in a cohort of bariatric surgery patients. We used liver-specific loss- and gain-of-function strategies in independent animal models of diet-induced steatosis and fibrosis. After treatment, we measured several metabolic phenotypes including obesity, insulin resistance, dyslipidemia, liver steatosis, and fibrosis. Liver tissues were used for gene expression and immunoblotting, and liver mitochondria bioenergetics was characterized. RESULTS In both mice and humans, L-PK expression is up-regulated in males via testosterone and is strongly associated with NAFLD severity. In a steatosis model, L-PK silencing in male mice improved glucose tolerance, insulin sensitivity, and lactate/pyruvate tolerance compared with controls. Furthermore, these animals had reduced plasma cholesterol levels and intrahepatic triglyceride accumulation. Conversely, L-PK overexpression in male mice resulted in augmented disease phenotypes. In contrast, female mice overexpressing L-PK were unaffected. Mechanistically, L-PK altered mitochondrial pyruvate flux and its incorporation into citrate, and this, in turn, increased liver triglycerides via up-regulated de novo lipogenesis and increased PNPLA3 levels accompanied by mitochondrial dysfunction. Also, L-PK increased plasma cholesterol levels via increased PCSK9 levels. On the other hand, L-PK silencing reduced de novo lipogenesis and PNPLA3 and PCSK9 levels and improved mitochondrial function. Finally, in fibrosis model, we demonstrate that L-PK silencing in male mice reduced both liver steatosis and fibrosis, accompanied by reduced de novo lipogenesis and improved mitochondrial function. CONCLUSIONS L-PK acts in a male-specific manner in the development of liver steatosis and fibrosis. Because NAFLD/nonalcoholic steatohepatitis exhibit sexual dimorphism, our results have important implications for the development of personalized therapeutics.
Collapse
Affiliation(s)
- Karthickeyan Chella Krishnan
- Department of Medicine/Division of Cardiology, University of California, Los Angeles, California,Correspondence Address correspondence to: Karthickeyan Chella Krishnan, PhD, UCLA Department of Medicine/Division of Cardiology, 650 Charles E. Young Drive South, Box 951679, Los Angeles, California 90095-1679. fax: (310) 794-7345, or
| | - Raquel R. Floyd
- Department of Biology, University of California, Los Angeles, California
| | - Simon Sabir
- Department of Psychology, University of California, Los Angeles, California
| | - Dulshan W. Jayasekera
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, California
| | - Paola V. Leon-Mimila
- Department of Medicine/Division of Cardiology, University of California, Los Angeles, California,Facultad de Química, UNAM/Instituto Nacional de Medicina Genómica (INMEGEN), Unidad de Genómica de Poblaciones Aplicada a la Salud, Mexico City, Mexico
| | - Anthony E. Jones
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, California
| | - Angel A. Cortez
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, California
| | - Varun Shravah
- Department of Chemistry, University of California, Los Angeles, California
| | - Miklós Péterfy
- Department of Medicine/Division of Cardiology, University of California, Los Angeles, California,Department of Basic Medical Sciences, Western University of Health Sciences, Pomona, California
| | - Linsey Stiles
- Department of Medicine/Division of Endocrinology, University of California, Los Angeles, California
| | - Samuel Canizales-Quinteros
- Facultad de Química, UNAM/Instituto Nacional de Medicina Genómica (INMEGEN), Unidad de Genómica de Poblaciones Aplicada a la Salud, Mexico City, Mexico
| | - Ajit S. Divakaruni
- Department of Molecular and Medical Pharmacology, University of California, Los Angeles, California
| | - Adriana Huertas-Vazquez
- Department of Medicine/Division of Cardiology, University of California, Los Angeles, California
| | - Aldons J. Lusis
- Department of Medicine/Division of Cardiology, University of California, Los Angeles, California,Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, California,Department of Human Genetics, University of California, Los Angeles, California,Aldons J. Lusis, PhD, UCLA Department of Medicine/Division of Cardiology, 650 Charles E. Young Drive South, Box 951679, Los Angeles, California 90095-1679.
| |
Collapse
|
76
|
Tompkins SC, Sheldon RD, Rauckhorst AJ, Noterman MF, Solst SR, Buchanan JL, Mapuskar KA, Pewa AD, Gray LR, Oonthonpan L, Sharma A, Scerbo DA, Dupuy AJ, Spitz DR, Taylor EB. Disrupting Mitochondrial Pyruvate Uptake Directs Glutamine into the TCA Cycle away from Glutathione Synthesis and Impairs Hepatocellular Tumorigenesis. Cell Rep 2020; 28:2608-2619.e6. [PMID: 31484072 PMCID: PMC6746334 DOI: 10.1016/j.celrep.2019.07.098] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 06/14/2019] [Accepted: 07/26/2019] [Indexed: 12/16/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is a devastating cancer increasingly caused by non-alcoholic fatty liver disease (NAFLD). Disrupting the liver Mitochondrial Pyruvate Carrier (MPC) in mice attenuates NAFLD. Thus, we considered whether liver MPC disruption also prevents HCC. Here, we use the N-nitrosodiethylamine plus carbon tetrachloride model of HCC development to test how liver-specific MPC knock out affects hepatocellular tumorigenesis. Our data show that liver MPC ablation markedly decreases tumorigenesis and that MPC-deficient tumors transcriptomically downregulate glutathione metabolism. We observe that MPC disruption and glutathione depletion in cultured hepatomas are synthetically lethal. Stable isotope tracing shows that hepatocyte MPC disruption reroutes glutamine from glutathione synthesis into the tricarboxylic acid (TCA) cycle. These results support a model where inducing metabolic competition for glutamine by MPC disruption impairs hepatocellular tumorigenesis by limiting glutathione synthesis. These findings raise the possibility that combining MPC disruption and glutathione stress may be therapeutically useful in HCC and additional cancers. Tompkins et al. utilize stable glutamine isotope tracers in vivo and ex vivo to demonstrate hepatocyte MPC disruption increases TCA cycle glutamine utilization at the expense of glutathione synthesis and decreases hepatocellular tumorigenesis.
Collapse
Affiliation(s)
- Sean C Tompkins
- Department of Biochemistry, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA
| | - Ryan D Sheldon
- Department of Biochemistry, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA
| | - Adam J Rauckhorst
- Department of Biochemistry, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA
| | - Maria F Noterman
- Department of Biochemistry, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA
| | - Shane R Solst
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA
| | - Jane L Buchanan
- Department of Biochemistry, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA
| | - Kranti A Mapuskar
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA
| | - Alvin D Pewa
- Department of Biochemistry, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA; FOEDRC Metabolomics Core Research Facility, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA
| | - Lawrence R Gray
- Department of Biochemistry, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA
| | - Lalita Oonthonpan
- Department of Biochemistry, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA
| | - Arpit Sharma
- Department of Biochemistry, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA
| | - Diego A Scerbo
- Department of Biochemistry, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA
| | - Adam J Dupuy
- Department of Anatomy and Cell Biology, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA; Holden Comprehensive Cancer Center, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA
| | - Douglas R Spitz
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA; Holden Comprehensive Cancer Center, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA
| | - Eric B Taylor
- Department of Biochemistry, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA; Holden Comprehensive Cancer Center, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA; Fraternal Order of Eagles Diabetes Research Center (FOEDRC), University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA; Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA; Pappajohn Biomedical Institute, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA; FOEDRC Metabolomics Core Research Facility, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA.
| |
Collapse
|
77
|
Stable retention of chloramphenicol-resistant mtDNA to rescue metabolically impaired cells. Sci Rep 2020; 10:14328. [PMID: 32868785 PMCID: PMC7459123 DOI: 10.1038/s41598-020-71199-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 08/10/2020] [Indexed: 12/27/2022] Open
Abstract
The permanent transfer of specific mtDNA sequences into mammalian cells could generate improved models of mtDNA disease and support future cell-based therapies. Previous studies documented multiple biochemical changes in recipient cells shortly after mtDNA transfer, but the long-term retention and function of transferred mtDNA remains unknown. Here, we evaluate mtDNA retention in new host cells using ‘MitoPunch’, a device that transfers isolated mitochondria into mouse and human cells. We show that newly introduced mtDNA is stably retained in mtDNA-deficient (ρ0) recipient cells following uridine-free selection, although exogenous mtDNA is lost from metabolically impaired, mtDNA-intact (ρ+) cells. We then introduced a second selective pressure by transferring chloramphenicol-resistant mitochondria into chloramphenicol-sensitive, metabolically impaired ρ+ mouse cybrid cells. Following double selection, recipient cells with mismatched nuclear (nDNA) and mitochondrial (mtDNA) genomes retained transferred mtDNA, which replaced the endogenous mutant mtDNA and improved cell respiration. However, recipient cells with matched mtDNA-nDNA failed to retain transferred mtDNA and sustained impaired respiration. Our results suggest that exogenous mtDNA retention in metabolically impaired ρ+ recipients depends on the degree of recipient mtDNA-nDNA co-evolution. Uncovering factors that stabilize exogenous mtDNA integration will improve our understanding of in vivo mitochondrial transfer and the interplay between mitochondrial and nuclear genomes.
Collapse
|
78
|
Magi S, Piccirillo S, Maiolino M, Lariccia V, Amoroso S. NCX1 and EAAC1 transporters are involved in the protective action of glutamate in an in vitro Alzheimer's disease-like model. Cell Calcium 2020; 91:102268. [PMID: 32827867 DOI: 10.1016/j.ceca.2020.102268] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/08/2020] [Accepted: 08/08/2020] [Indexed: 12/11/2022]
Abstract
Increasing evidence suggests that metabolic dysfunctions are at the roots of neurodegenerative disorders such as Alzheimer's disease (AD). In particular, defects in cerebral glucose metabolism, which have been often noted even before the occurrence of clinical symptoms and histopathological lesions, are now regarded as critical contributors to the pathogenesis of AD. Hence, the stimulation of energy metabolism, by enhancing the availability of specific metabolites, might be an alternative way to improve ATP synthesis and to positively affect AD progression. For instance, glutamate may serve as an intermediary metabolite for ATP synthesis through the tricarboxylic acid (TCA) cycle and the oxidative phosphorylation. We have recently shown that two transporters are critical for the anaplerotic use of glutamate: the Na+-dependent Excitatory Amino Acids Carrier 1 (EAAC1) and the Na+-Ca2+ exchanger 1 (NCX1). Therefore, in the present study, we established an AD-like phenotype by perturbing glucose metabolism in both primary rat cortical neurons and retinoic acid (RA)-differentiated SH-SY5Y cells, and we explored the potential of glutamate to halt cell damage by monitoring neurotoxicity, AD markers, ATP synthesis, cytosolic Ca2+ levels and EAAC1/NCX1 functional activities. We found that glutamate significantly increased ATP production and cell survival, reduced the increase of AD biomarkers (amyloid β protein and the hyperphosphorylated form of tau protein), and recovered the increase of NCX reverse-mode activity. The RNA silencing of either EAAC1 or NCX1 caused the loss of the beneficial effects of glutamate, suggesting the requirement of a functional interplay between these transporters for glutamate-induced protection. Remarkably, our results indicate, as proof-of-principle, that facilitating the use of alternative fuels, like glutamate, may be an effective approach to overcome deficits in glucose utilization and significantly slow down neuronal degenerative process in AD.
Collapse
Affiliation(s)
- Simona Magi
- Department of Biomedical Sciences, Public Health, School of Medicine, University "Politecnica delle Marche", Via Tronto 10/A, 60126, Ancona, Italy
| | - Silvia Piccirillo
- Department of Biomedical Sciences, Public Health, School of Medicine, University "Politecnica delle Marche", Via Tronto 10/A, 60126, Ancona, Italy
| | - Marta Maiolino
- Department of Biomedical Sciences, Public Health, School of Medicine, University "Politecnica delle Marche", Via Tronto 10/A, 60126, Ancona, Italy
| | - Vincenzo Lariccia
- Department of Biomedical Sciences, Public Health, School of Medicine, University "Politecnica delle Marche", Via Tronto 10/A, 60126, Ancona, Italy.
| | - Salvatore Amoroso
- Department of Biomedical Sciences, Public Health, School of Medicine, University "Politecnica delle Marche", Via Tronto 10/A, 60126, Ancona, Italy
| |
Collapse
|
79
|
Buchanan JL, Taylor EB. Mitochondrial Pyruvate Carrier Function in Health and Disease across the Lifespan. Biomolecules 2020; 10:biom10081162. [PMID: 32784379 PMCID: PMC7464753 DOI: 10.3390/biom10081162] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 08/05/2020] [Accepted: 08/06/2020] [Indexed: 12/25/2022] Open
Abstract
As a nodal mediator of pyruvate metabolism, the mitochondrial pyruvate carrier (MPC) plays a pivotal role in many physiological and pathological processes across the human lifespan, from embryonic development to aging-associated neurodegeneration. Emerging research highlights the importance of the MPC in diverse conditions, such as immune cell activation, cancer cell stemness, and dopamine production in Parkinson’s disease models. Whether MPC function ameliorates or contributes to disease is highly specific to tissue and cell type. Cell- and tissue-specific differences in MPC content and activity suggest that MPC function is tightly regulated as a mechanism of metabolic, cellular, and organismal control. Accordingly, recent studies on cancer and diabetes have identified protein–protein interactions, post-translational processes, and transcriptional factors that modulate MPC function. This growing body of literature demonstrates that the MPC and other mitochondrial carriers comprise a versatile and dynamic network undergirding the metabolism of health and disease.
Collapse
Affiliation(s)
- Jane L. Buchanan
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA;
| | - Eric B. Taylor
- Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA;
- Holden Comprehensive Cancer Center, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA
- Fraternal Order of Eagles Diabetes Research Center (FOEDRC), University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA
- Abboud Cardiovascular Research Center, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA
- Pappajohn Biomedical Institute, University of Iowa Carver College of Medicine, Iowa City, IA 52240, USA
- Correspondence:
| |
Collapse
|
80
|
Motori E, Atanassov I, Kochan SMV, Folz-Donahue K, Sakthivelu V, Giavalisco P, Toni N, Puyal J, Larsson NG. Neuronal metabolic rewiring promotes resilience to neurodegeneration caused by mitochondrial dysfunction. SCIENCE ADVANCES 2020; 6:eaba8271. [PMID: 32923630 PMCID: PMC7455195 DOI: 10.1126/sciadv.aba8271] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 07/15/2020] [Indexed: 05/03/2023]
Abstract
Neurodegeneration in mitochondrial disorders is considered irreversible because of limited metabolic plasticity in neurons, yet the cell-autonomous implications of mitochondrial dysfunction for neuronal metabolism in vivo are poorly understood. Here, we profiled the cell-specific proteome of Purkinje neurons undergoing progressive OXPHOS deficiency caused by disrupted mitochondrial fusion dynamics. We found that mitochondrial dysfunction triggers a profound rewiring of the proteomic landscape, culminating in the sequential activation of precise metabolic programs preceding cell death. Unexpectedly, we identified a marked induction of pyruvate carboxylase (PCx) and other anaplerotic enzymes involved in replenishing tricarboxylic acid cycle intermediates. Suppression of PCx aggravated oxidative stress and neurodegeneration, showing that anaplerosis is protective in OXPHOS-deficient neurons. Restoration of mitochondrial fusion in end-stage degenerating neurons fully reversed these metabolic hallmarks, thereby preventing cell death. Our findings identify a previously unappreciated pathway conferring resilience to mitochondrial dysfunction and show that neurodegeneration can be reversed even at advanced disease stages.
Collapse
Affiliation(s)
- E. Motori
- Department of Mitochondrial Biology, Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany
- Corresponding author. , (E.M.); (N.-G.L.)
| | - I. Atanassov
- Proteomics Core Facility, Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany
| | - S. M. V. Kochan
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), 50931 Cologne, Germany
| | - K. Folz-Donahue
- FACS & Imaging Core Facility, Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany
| | - V. Sakthivelu
- Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), 50931 Cologne, Germany
| | - P. Giavalisco
- Metabolomics Core Facility, Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany
| | - N. Toni
- Center for Psychiatric Neurosciences, Department of Psychiatry, Lausanne University Hospital, Lausanne University, Lausanne, Switzerland
| | - J. Puyal
- Department of Fundamental Neurosciences, University of Lausanne, 1005 Lausanne, Switzerland
| | - N.-G. Larsson
- Department of Mitochondrial Biology, Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 77 Stockholm, Sweden
- Max Planck Institute for Biology of Ageing–Karolinska Institutet Laboratory, Karolinska Institutet, Stockholm, Sweden
- Corresponding author. , (E.M.); (N.-G.L.)
| |
Collapse
|
81
|
The Multifaceted Pyruvate Metabolism: Role of the Mitochondrial Pyruvate Carrier. Biomolecules 2020; 10:biom10071068. [PMID: 32708919 PMCID: PMC7407832 DOI: 10.3390/biom10071068] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/09/2020] [Accepted: 07/14/2020] [Indexed: 12/17/2022] Open
Abstract
Pyruvate, the end product of glycolysis, plays a major role in cell metabolism. Produced in the cytosol, it is oxidized in the mitochondria where it fuels the citric acid cycle and boosts oxidative phosphorylation. Its sole entry point into mitochondria is through the recently identified mitochondrial pyruvate carrier (MPC). In this review, we report the latest findings on the physiology of the MPC and we discuss how a dysfunctional MPC can lead to diverse pathologies, including neurodegenerative diseases, metabolic disorders, and cancer.
Collapse
|
82
|
Toffoli M, Vieira SRL, Schapira AHV. Genetic causes of PD: A pathway to disease modification. Neuropharmacology 2020; 170:108022. [PMID: 32119885 DOI: 10.1016/j.neuropharm.2020.108022] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 02/17/2020] [Accepted: 02/26/2020] [Indexed: 01/08/2023]
Abstract
The underline neuropathology of Parkinson disease is pleiomorphic and its genetic background diverse. Possibly because of this heterogeneity, no effective disease modifying therapy is available. In this paper we give an overview of the genetics of Parkinson disease and explain how this is relevant for the development of new therapies. This article is part of the special issue entitled 'The Quest for Disease-Modifying Therapies for Neurodegenerative Disorders'.
Collapse
Affiliation(s)
- M Toffoli
- Department of Clinical and Movement Neurosciences, University College London Queen Square Institute of Neurology, London, United Kingdom
| | - S R L Vieira
- Department of Clinical and Movement Neurosciences, University College London Queen Square Institute of Neurology, London, United Kingdom
| | - A H V Schapira
- Department of Clinical and Movement Neurosciences, University College London Queen Square Institute of Neurology, London, United Kingdom.
| |
Collapse
|
83
|
Characteristic Analysis of Homo- and Heterodimeric Complexes of Human Mitochondrial Pyruvate Carrier Related to Metabolic Diseases. Int J Mol Sci 2020; 21:ijms21093403. [PMID: 32403431 PMCID: PMC7246999 DOI: 10.3390/ijms21093403] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/01/2020] [Accepted: 05/08/2020] [Indexed: 02/07/2023] Open
Abstract
Human mitochondrial pyruvate carriers (hMPCs), which are required for the uptake of pyruvate into mitochondria, are associated with several metabolic diseases, including type 2 diabetes and various cancers. Yeast MPC was recently demonstrated to form a functional unit of heterodimers. However, human MPC-1 (hMPC-1) and MPC-2 (hMPC-2) have not yet been individually isolated for their detailed characterization, in particular in terms of their structural and functional properties, namely, whether they exist as homo- or heterodimers. In this study, hMPC-1 and hMPC-2 were successfully isolated in micelles and they formed stable homodimers. However, the heterodimer state was found to be dominant when both hMPC-1 and hMPC-2 were present. In addition, as heterodimers, the molecules exhibited a higher binding capacity to both substrates and inhibitors, together with a larger structural stability than when they existed as homodimers. Taken together, our results demonstrated that the hetero-dimerization of hMPCs is the main functional unit of the pyruvate metabolism, providing a structural insight into the transport mechanisms of hMPCs.
Collapse
|
84
|
Garabadu D, Agrawal N, Sharma A, Sharma S. Mitochondrial metabolism: a common link between neuroinflammation and neurodegeneration. Behav Pharmacol 2020; 30:642-652. [PMID: 31625975 DOI: 10.1097/fbp.0000000000000505] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Neurodegenerative disorders have been considered as a growing health concern for decades. Increasing risk of neurodegenerative disorders creates a socioeconomic burden to both patients and care givers. Mitochondria are organelle that are involved in both neuroinflammation and neurodegeneration. There are few reports on the effect of mitochondrial metabolism on the progress of neurodegeneration and neuroinflammation. Therefore, the present review summarizes the potential contribution of mitochondrial metabolic pathways in the pathogenesis of neuroinflammation and neurodegeneration. Mitochondrial pyruvate metabolism plays a critical role in the pathogenesis of neurodegenerative disorders such as Parkinson's disease and Alzheimer's disease. However, there its potential contribution in other neurodegenerative disorders is as yet unproven. The mitochondrial pyruvate carrier and pyruvate dehydrogenase can modulate mitochondrial pyruvate metabolism to attenuate neuroinflammation and neurodegeneration. Further, it has been observed that the mitochondrial citric acid cycle can regulate the pathogenesis of neuroinflammation and neurodegeneration. Additional research should be undertaken to target tricarboxylic acid cycle enzymes to minimize the progress of neuroinflammation and neurodegeneration. It has also been observed that the mitochondrial urea cycle can potentially contribute to the progression of neurodegenerative disorders. Therefore, targeting this pathway may control the mitochondrial dysfunction-induced neuroinflammation and neurodegeneration. Furthermore, the mitochondrial malate-aspartate shuttle could be another target to control mitochondrial dysfunction-induced neuroinflammation and neurodegeneration in neurodegenerative disorders.
Collapse
Affiliation(s)
- Debapriya Garabadu
- Division of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, India
| | | | | | | |
Collapse
|
85
|
Cunningham CN, Rutter J. 20,000 picometers under the OMM: diving into the vastness of mitochondrial metabolite transport. EMBO Rep 2020; 21:e50071. [PMID: 32329174 DOI: 10.15252/embr.202050071] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 02/17/2020] [Accepted: 03/27/2020] [Indexed: 12/14/2022] Open
Abstract
The metabolic compartmentalization enabled by mitochondria is key feature of many cellular processes such as energy conversion to ATP production, redox balance, and the biosynthesis of heme, urea, nucleotides, lipids, and others. For a majority of these functions, metabolites need to be transported across the impermeable inner mitochondrial membrane by dedicated carrier proteins. Here, we examine the substrates, structural features, and human health implications of four mitochondrial metabolite carrier families: the SLC25A family, the mitochondrial ABCB transporters, the mitochondrial pyruvate carrier (MPC), and the sideroflexin proteins.
Collapse
Affiliation(s)
- Corey N Cunningham
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Jared Rutter
- Department of Biochemistry, University of Utah School of Medicine, Salt Lake City, UT, USA.,Howard Hughes Medical Institute, University of Utah School of Medicine, Salt Lake City, UT, USA
| |
Collapse
|
86
|
Mitochondria-Endoplasmic Reticulum Contacts in Reactive Astrocytes Promote Vascular Remodeling. Cell Metab 2020; 31:791-808.e8. [PMID: 32220306 PMCID: PMC7139200 DOI: 10.1016/j.cmet.2020.03.005] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 01/03/2020] [Accepted: 03/03/2020] [Indexed: 12/12/2022]
Abstract
Astrocytes have emerged for playing important roles in brain tissue repair; however, the underlying mechanisms remain poorly understood. We show that acute injury and blood-brain barrier disruption trigger the formation of a prominent mitochondrial-enriched compartment in astrocytic endfeet, which enables vascular remodeling. Integrated imaging approaches revealed that this mitochondrial clustering is part of an adaptive response regulated by fusion dynamics. Astrocyte-specific conditional deletion of Mitofusin 2 (Mfn2) suppressed perivascular mitochondrial clustering and disrupted mitochondria-endoplasmic reticulum (ER) contact sites. Functionally, two-photon imaging experiments showed that these structural changes were mirrored by impaired mitochondrial Ca2+ uptake leading to abnormal cytosolic transients within endfeet in vivo. At the tissue level, a compromised vascular complexity in the lesioned area was restored by boosting mitochondrial-ER perivascular tethering in MFN2-deficient astrocytes. These data unmask a crucial role for mitochondrial dynamics in coordinating astrocytic local domains and have important implications for repairing the injured brain.
Collapse
|
87
|
Abstract
In this issue of Neuron, Ashrafi et al. (2020) identify a feedforward signaling mechanism that couples neuronal activity to the homeostatic maintenance of axonal and synaptic ATP production. This mechanism is achieved via changes in cytoplasmic calcium and activation of brain-specific, mitochondrial MICU3.
Collapse
|
88
|
Arce-Molina R, Cortés-Molina F, Sandoval PY, Galaz A, Alegría K, Schirmeier S, Barros LF, San Martín A. A highly responsive pyruvate sensor reveals pathway-regulatory role of the mitochondrial pyruvate carrier MPC. eLife 2020; 9:53917. [PMID: 32142409 PMCID: PMC7077990 DOI: 10.7554/elife.53917] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 03/05/2020] [Indexed: 11/25/2022] Open
Abstract
Mitochondria generate ATP and building blocks for cell growth and regeneration, using pyruvate as the main substrate. Here we introduce PyronicSF, a user-friendly GFP-based sensor of improved dynamic range that enables real-time subcellular quantitation of mitochondrial pyruvate transport, concentration and flux. We report that cultured mouse astrocytes maintain mitochondrial pyruvate in the low micromolar range, below cytosolic pyruvate, which means that the mitochondrial pyruvate carrier MPC is poised to exert ultrasensitive control on the balance between respiration and anaplerosis/gluconeogenesis. The functionality of the sensor in living tissue is demonstrated in the brain of Drosophila melanogaster larvae. Mitochondrial subpopulations are known to coexist within a given cell, which differ in their morphology, mobility, membrane potential, and vicinity to other organelles. The present tool can be used to investigate how mitochondrial diversity relates to metabolism, to study the role of MPC in disease, and to screen for small-molecule MPC modulators.
Collapse
Affiliation(s)
- Robinson Arce-Molina
- Centro de Estudios Científicos-CECs, Valdivia, Chile.,Universidad Austral de Chile, Valdivia, Chile
| | | | | | - Alex Galaz
- Centro de Estudios Científicos-CECs, Valdivia, Chile
| | - Karin Alegría
- Centro de Estudios Científicos-CECs, Valdivia, Chile
| | - Stefanie Schirmeier
- Institut für Neuro- und Verhaltensbiologie, University of Münster, Münster, Germany
| | | | | |
Collapse
|
89
|
Cordes T, Lucas A, Divakaruni AS, Murphy AN, Cabrales P, Metallo CM. Itaconate modulates tricarboxylic acid and redox metabolism to mitigate reperfusion injury. Mol Metab 2020; 32:122-135. [PMID: 32029222 PMCID: PMC6961711 DOI: 10.1016/j.molmet.2019.11.019] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/25/2019] [Accepted: 11/29/2019] [Indexed: 02/02/2023] Open
Abstract
OBJECTIVES Cerebral ischemia/reperfusion (IR) drives oxidative stress and injurious metabolic processes that lead to redox imbalance, inflammation, and tissue damage. However, the key mediators of reperfusion injury remain unclear, and therefore, there is considerable interest in therapeutically targeting metabolism and the cellular response to oxidative stress. METHODS The objective of this study was to investigate the molecular, metabolic, and physiological impact of itaconate treatment to mitigate reperfusion injuries in in vitro and in vivo model systems. We conducted metabolic flux and bioenergetic studies in response to exogenous itaconate treatment in cultures of primary rat cortical neurons and astrocytes. In addition, we administered itaconate to mouse models of cerebral reperfusion injury with ischemia or traumatic brain injury followed by hemorrhagic shock resuscitation. We quantitatively characterized the metabolite levels, neurological behavior, markers of redox stress, leukocyte adhesion, arterial blood flow, and arteriolar diameter in the brains of the treated/untreated mice. RESULTS We demonstrate that the "immunometabolite" itaconate slowed tricarboxylic acid (TCA) cycle metabolism and buffered redox imbalance via succinate dehydrogenase (SDH) inhibition and induction of anti-oxidative stress response in primary cultures of astrocytes and neurons. The addition of itaconate to reperfusion fluids after mouse cerebral IR injury increased glutathione levels and reduced reactive oxygen/nitrogen species (ROS/RNS) to improve neurological function. Plasma organic acids increased post-reperfusion injury, while administration of itaconate normalized these metabolites. In mouse cranial window models, itaconate significantly improved hemodynamics while reducing leukocyte adhesion. Further, itaconate supplementation increased survival in mice experiencing traumatic brain injury (TBI) and hemorrhagic shock. CONCLUSIONS We hypothesize that itaconate transiently inhibits SDH to gradually "awaken" mitochondrial function upon reperfusion that minimizes ROS and tissue damage. Collectively, our data indicate that itaconate acts as a mitochondrial regulator that controls redox metabolism to improve physiological outcomes associated with IR injury.
Collapse
Affiliation(s)
- Thekla Cordes
- Department of Bioengineering, University of California, San Diego, 9500 Gilman Drive, 92093 La Jolla, CA, USA
| | - Alfredo Lucas
- Department of Bioengineering, University of California, San Diego, 9500 Gilman Drive, 92093 La Jolla, CA, USA
| | - Ajit S Divakaruni
- Department of Pharmacology, University of California, San Diego, 9500 Gilman Drive, 92093 La Jolla, CA, USA
| | - Anne N Murphy
- Department of Pharmacology, University of California, San Diego, 9500 Gilman Drive, 92093 La Jolla, CA, USA
| | - Pedro Cabrales
- Department of Bioengineering, University of California, San Diego, 9500 Gilman Drive, 92093 La Jolla, CA, USA
| | - Christian M Metallo
- Department of Bioengineering, University of California, San Diego, 9500 Gilman Drive, 92093 La Jolla, CA, USA.
| |
Collapse
|
90
|
Cao DY, Spivia WR, Veiras LC, Khan Z, Peng Z, Jones AE, Bernstein EA, Saito S, Okwan-Duodu D, Parker SJ, Giani JF, Divakaruni AS, Van Eyk JE, Bernstein KE. ACE overexpression in myeloid cells increases oxidative metabolism and cellular ATP. J Biol Chem 2020; 295:1369-1384. [PMID: 31871049 PMCID: PMC6996878 DOI: 10.1074/jbc.ra119.011244] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/05/2019] [Indexed: 12/26/2022] Open
Abstract
Angiotensin-converting enzyme (ACE) affects blood pressure. In addition, ACE overexpression in myeloid cells increases their immune function. Using MS and chemical analysis, we identified marked changes of intermediate metabolites in ACE-overexpressing macrophages and neutrophils, with increased cellular ATP (1.7-3.0-fold) and Krebs cycle intermediates, including citrate, isocitrate, succinate, and malate (1.4-3.9-fold). Increased ATP is due to ACE C-domain catalytic activity; it is reversed by an ACE inhibitor but not by an angiotensin II AT1 receptor antagonist. In contrast, macrophages from ACE knockout (null) mice averaged only 28% of the ATP levels found in WT mice. ACE overexpression does not change cell or mitochondrial size or number. However, expression levels of the electron transport chain proteins NDUFB8 (complex I), ATP5A, and ATP5β (complex V) are significantly increased in macrophages and neutrophils, and COX1 and COX2 (complex IV) are increased in macrophages overexpressing ACE. Macrophages overexpressing ACE have increased mitochondrial membrane potential (24% higher), ATP production rates (29% higher), and maximal respiratory rates (37% higher) compared with WT cells. Increased cellular ATP underpins increased myeloid cell superoxide production and phagocytosis associated with increased ACE expression. Myeloid cells overexpressing ACE indicate the existence of a novel pathway in which myeloid cell function can be enhanced, with a key feature being increased cellular ATP.
Collapse
Affiliation(s)
- Duo-Yao Cao
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California 90048
| | - Weston R Spivia
- Smidt Heart Institute and Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical Center, Los Angeles, California 90048
| | - Luciana C Veiras
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California 90048
| | - Zakir Khan
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California 90048
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California 90048
| | - Zhenzi Peng
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California 90048
| | - Anthony E Jones
- Department of Molecular and Medical Pharmacology, UCLA David Geffen School of Medicine, Los Angeles, California 90095
| | - Ellen A Bernstein
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California 90048
| | - Suguru Saito
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California 90048
| | - Derick Okwan-Duodu
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California 90048
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California 90048
| | - Sarah J Parker
- Smidt Heart Institute and Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical Center, Los Angeles, California 90048
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California 90048
| | - Jorge F Giani
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California 90048
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California 90048
| | - Ajit S Divakaruni
- Department of Molecular and Medical Pharmacology, UCLA David Geffen School of Medicine, Los Angeles, California 90095
| | - Jennifer E Van Eyk
- Smidt Heart Institute and Advanced Clinical Biosystems Research Institute, Cedars-Sinai Medical Center, Los Angeles, California 90048
| | - Kenneth E Bernstein
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, California 90048
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, California 90048
| |
Collapse
|
91
|
Cao DY, Spivia WR, Veiras LC, Khan Z, Peng Z, Jones AE, Bernstein EA, Saito S, Okwan-Duodu D, Parker SJ, Giani JF, Divakaruni AS, Van Eyk JE, Bernstein KE. ACE overexpression in myeloid cells increases oxidative metabolism and cellular ATP. J Biol Chem 2020. [DOI: 10.1016/s0021-9258(17)49895-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
92
|
Ashrafi G, de Juan-Sanz J, Farrell RJ, Ryan TA. Molecular Tuning of the Axonal Mitochondrial Ca 2+ Uniporter Ensures Metabolic Flexibility of Neurotransmission. Neuron 2019; 105:678-687.e5. [PMID: 31862210 DOI: 10.1016/j.neuron.2019.11.020] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 10/16/2019] [Accepted: 11/12/2019] [Indexed: 01/08/2023]
Abstract
The brain is a vulnerable metabolic organ and must adapt to different fuel conditions to sustain function. Nerve terminals are a locus of this vulnerability, but how they regulate ATP synthesis as fuel conditions vary is unknown. We show that synapses can switch from glycolytic to oxidative metabolism, but to do so, they rely on activity-driven presynaptic mitochondrial Ca2+ uptake to accelerate ATP production. We demonstrate that, whereas mitochondrial Ca2+ uptake requires elevated extramitochondrial Ca2+ in non-neuronal cells, axonal mitochondria readily take up Ca2+ in response to small changes in external Ca2+. We identified the brain-specific protein MICU3 as a critical driver of this tuning of Ca2+ sensitivity. Ablation of MICU3 renders axonal mitochondria similar to non-neuronal mitochondria, prevents acceleration of local ATP synthesis, and impairs presynaptic function under oxidative conditions. Thus, presynaptic mitochondria rely on MICU3 to facilitate mitochondrial Ca2+ uptake during activity and achieve metabolic flexibility.
Collapse
Affiliation(s)
- Ghazaleh Ashrafi
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Jaime de Juan-Sanz
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Ryan J Farrell
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA; David Rockefeller Graduate Program, Rockefeller University, New York, NY 10065, USA
| | - Timothy A Ryan
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA.
| |
Collapse
|
93
|
Germeys C, Vandoorne T, Bercier V, Van Den Bosch L. Existing and Emerging Metabolomic Tools for ALS Research. Genes (Basel) 2019; 10:E1011. [PMID: 31817338 PMCID: PMC6947647 DOI: 10.3390/genes10121011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/23/2019] [Accepted: 12/03/2019] [Indexed: 12/12/2022] Open
Abstract
Growing evidence suggests that aberrant energy metabolism could play an important role in the pathogenesis of amyotrophic lateral sclerosis (ALS). Despite this, studies applying advanced technologies to investigate energy metabolism in ALS remain scarce. The rapidly growing field of metabolomics offers exciting new possibilities for ALS research. Here, we review existing and emerging metabolomic tools that could be used to further investigate the role of metabolism in ALS. A better understanding of the metabolic state of motor neurons and their surrounding cells could hopefully result in novel therapeutic strategies.
Collapse
Affiliation(s)
- Christine Germeys
- Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute (LBI), KU Leuven—University of Leuven, 3000 Leuven, Belgium; (C.G.); (T.V.); (V.B.)
- VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, 3000 Leuven, Belgium
| | - Tijs Vandoorne
- Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute (LBI), KU Leuven—University of Leuven, 3000 Leuven, Belgium; (C.G.); (T.V.); (V.B.)
- VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, 3000 Leuven, Belgium
| | - Valérie Bercier
- Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute (LBI), KU Leuven—University of Leuven, 3000 Leuven, Belgium; (C.G.); (T.V.); (V.B.)
- VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, 3000 Leuven, Belgium
| | - Ludo Van Den Bosch
- Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute (LBI), KU Leuven—University of Leuven, 3000 Leuven, Belgium; (C.G.); (T.V.); (V.B.)
- VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, 3000 Leuven, Belgium
| |
Collapse
|
94
|
Magi S, Piccirillo S, Amoroso S, Lariccia V. Excitatory Amino Acid Transporters (EAATs): Glutamate Transport and Beyond. Int J Mol Sci 2019; 20:ijms20225674. [PMID: 31766111 PMCID: PMC6888595 DOI: 10.3390/ijms20225674] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/08/2019] [Accepted: 11/10/2019] [Indexed: 01/02/2023] Open
Abstract
Na+-dependent excitatory amino acid transporters (EAATs) are the major transport mechanisms for extracellular glutamate removal in the central nervous system (CNS). The primary function assigned to EAATs is the maintenance of low extracellular glutamate levels, thus allowing glutamate to be used as a signaling molecule in the brain and to avoid excitotoxicity. However, glutamate has other recognized functions. For instance, it is a key anaplerotic substrate for the tricarboxylic acid (TCA) cycle, as it can be converted to α-ketoglutarate by transaminases or glutamate dehydrogenase. Furthermore, glutamate is a precursor of the main antioxidant glutathione, which plays a pivotal role in preventing oxidative cell death. Therefore, glutamate signaling/use is at the crossroad of multiple metabolic pathways and accordingly, it can influence a plethora of cell functions, both in health and disease. Here, we provide an overview of the main functions of glutamate and its transport systems, analyzing its role as a neurotransmitter and at the same time, the possible metabolic fates it can undergo in the intracellular milieu. Specifically, the metabolic role of glutamate and the molecular machinery proposed to metabolically support its transport will be further analyzed.
Collapse
|
95
|
Tang BL. Targeting the Mitochondrial Pyruvate Carrier for Neuroprotection. Brain Sci 2019; 9:brainsci9090238. [PMID: 31540439 PMCID: PMC6770198 DOI: 10.3390/brainsci9090238] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 09/15/2019] [Accepted: 09/16/2019] [Indexed: 01/02/2023] Open
Abstract
The mitochondrial pyruvate carriers mediate pyruvate import into the mitochondria, which is key to the sustenance of the tricarboxylic cycle and oxidative phosphorylation. However, inhibition of mitochondria pyruvate carrier-mediated pyruvate transport was recently shown to be beneficial in experimental models of neurotoxicity pertaining to the context of Parkinson’s disease, and is also protective against excitotoxic neuronal death. These findings attested to the metabolic adaptability of neurons resulting from MPC inhibition, a phenomenon that has also been shown in other tissue types. In this short review, I discuss the mechanism and potential feasibility of mitochondrial pyruvate carrier inhibition as a neuroprotective strategy in neuronal injury and neurodegenerative diseases.
Collapse
Affiliation(s)
- Bor Luen Tang
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University Health System, Singapore 117596, Singapore.
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore 119077, Singapore.
| |
Collapse
|
96
|
Vandoorne T, Veys K, Guo W, Sicart A, Vints K, Swijsen A, Moisse M, Eelen G, Gounko NV, Fumagalli L, Fazal R, Germeys C, Quaegebeur A, Fendt SM, Carmeliet P, Verfaillie C, Van Damme P, Ghesquière B, De Bock K, Van Den Bosch L. Differentiation but not ALS mutations in FUS rewires motor neuron metabolism. Nat Commun 2019; 10:4147. [PMID: 31515480 PMCID: PMC6742665 DOI: 10.1038/s41467-019-12099-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 08/12/2019] [Indexed: 12/14/2022] Open
Abstract
Energy metabolism has been repeatedly linked to amyotrophic lateral sclerosis (ALS). Yet, motor neuron (MN) metabolism remains poorly studied and it is unknown if ALS MNs differ metabolically from healthy MNs. To address this question, we first performed a metabolic characterization of induced pluripotent stem cells (iPSCs) versus iPSC-derived MNs and subsequently compared MNs from ALS patients carrying FUS mutations to their CRISPR/Cas9-corrected counterparts. We discovered that human iPSCs undergo a lactate oxidation-fuelled prooxidative metabolic switch when they differentiate into functional MNs. Simultaneously, they rewire metabolic routes to import pyruvate into the TCA cycle in an energy substrate specific way. By comparing patient-derived MNs and their isogenic controls, we show that ALS-causing mutations in FUS did not affect glycolytic or mitochondrial energy metabolism of human MNs in vitro. These data show that metabolic dysfunction is not the underlying cause of the ALS-related phenotypes previously observed in these MNs.
Collapse
Affiliation(s)
- Tijs Vandoorne
- Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute, KU Leuven - University of Leuven, Leuven, Belgium
- VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium
| | - Koen Veys
- Department of Oncology, Laboratory of Angiogenesis and Vascular Metabolism, KU Leuven - University of Leuven, Leuven, Belgium
- VIB, Center for Cancer Biology, Laboratory of Angiogenesis and Vascular Metabolism, Leuven, Belgium
| | - Wenting Guo
- Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute, KU Leuven - University of Leuven, Leuven, Belgium
- VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium
- Department of Development and Regeneration, Stem Cell Institute, KU Leuven - University of Leuven, Leuven, Belgium
| | - Adria Sicart
- Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute, KU Leuven - University of Leuven, Leuven, Belgium
- VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium
| | - Katlijn Vints
- VIB, Center for Brain & Disease Research, Electron Microscopy Platform and VIB Bioimaging core facility, Leuven, Belgium
- Department of Neurosciences and Leuven Brain Institute, KU Leuven - University of Leuven, Leuven, Belgium
| | - Ann Swijsen
- Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute, KU Leuven - University of Leuven, Leuven, Belgium
- VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium
| | - Matthieu Moisse
- Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute, KU Leuven - University of Leuven, Leuven, Belgium
- VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium
| | - Guy Eelen
- Department of Oncology, Laboratory of Angiogenesis and Vascular Metabolism, KU Leuven - University of Leuven, Leuven, Belgium
- VIB, Center for Cancer Biology, Laboratory of Angiogenesis and Vascular Metabolism, Leuven, Belgium
| | - Natalia V Gounko
- VIB, Center for Brain & Disease Research, Electron Microscopy Platform and VIB Bioimaging core facility, Leuven, Belgium
- Department of Neurosciences and Leuven Brain Institute, KU Leuven - University of Leuven, Leuven, Belgium
| | - Laura Fumagalli
- Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute, KU Leuven - University of Leuven, Leuven, Belgium
- VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium
| | - Raheem Fazal
- Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute, KU Leuven - University of Leuven, Leuven, Belgium
- VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium
| | - Christine Germeys
- Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute, KU Leuven - University of Leuven, Leuven, Belgium
- VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium
| | - Annelies Quaegebeur
- Division of Neuropathology, The National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, UK
| | - Sarah-Maria Fendt
- VIB, VIB-KU Leuven Center for Cancer Biology, Laboratory of Cellular Metabolism and Metabolic Regulation, Leuven, Belgium
- Department of Oncology, Laboratory of Cellular Metabolism and Metabolic Regulation, KU Leuven and Leuven Cancer Institute (LKI), Leuven, Belgium
| | - Peter Carmeliet
- Department of Oncology, Laboratory of Angiogenesis and Vascular Metabolism, KU Leuven - University of Leuven, Leuven, Belgium
- VIB, Center for Cancer Biology, Laboratory of Angiogenesis and Vascular Metabolism, Leuven, Belgium
| | - Catherine Verfaillie
- Department of Development and Regeneration, Stem Cell Institute, KU Leuven - University of Leuven, Leuven, Belgium
| | - Philip Van Damme
- Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute, KU Leuven - University of Leuven, Leuven, Belgium
- VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium
- Department of Neurology, University Hospitals Leuven, Leuven, Belgium
| | - Bart Ghesquière
- Department of Oncology, Metabolomics Core Facility, KU Leuven - University of Leuven, Leuven, Belgium
- VIB, Department of Oncology, Metabolomics Core Facility, Leuven, Belgium
| | - Katrien De Bock
- ETH Zürich, Department of Health Sciences and Technology, Laboratory of Exercise and Health, Zürich, Switzerland
| | - Ludo Van Den Bosch
- Department of Neurosciences, Experimental Neurology, and Leuven Brain Institute, KU Leuven - University of Leuven, Leuven, Belgium.
- VIB, Center for Brain & Disease Research, Laboratory of Neurobiology, Leuven, Belgium.
| |
Collapse
|
97
|
Tavoulari S, Thangaratnarajah C, Mavridou V, Harbour ME, Martinou JC, Kunji ER. The yeast mitochondrial pyruvate carrier is a hetero-dimer in its functional state. EMBO J 2019; 38:e100785. [PMID: 30979775 PMCID: PMC6517818 DOI: 10.15252/embj.2018100785] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 03/13/2019] [Accepted: 03/20/2019] [Indexed: 02/02/2023] Open
Abstract
The mitochondrial pyruvate carrier (MPC) is critical for cellular homeostasis, as it is required in central metabolism for transporting pyruvate from the cytosol into the mitochondrial matrix. MPC has been implicated in many diseases and is being investigated as a drug target. A few years ago, small membrane proteins, called MPC1 and MPC2 in mammals and Mpc1, Mpc2 and Mpc3 in yeast, were proposed to form large protein complexes responsible for this function. However, the MPC complexes have never been isolated and their composition, oligomeric state and functional properties have not been defined. Here, we identify the functional unit of MPC from Saccharomyces cerevisiae In contrast to earlier hypotheses, we demonstrate that MPC is a hetero-dimer, not a multimeric complex. When not engaged in hetero-dimers, the yeast Mpc proteins can also form homo-dimers that are, however, inactive. We show that the earlier described substrate transport properties and inhibitor profiles are embodied by the hetero-dimer. This work provides a foundation for elucidating the structure of the functional complex and the mechanism of substrate transport and inhibition.
Collapse
Affiliation(s)
- Sotiria Tavoulari
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | | | - Vasiliki Mavridou
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Michael E Harbour
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | | | - Edmund Rs Kunji
- Medical Research Council Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| |
Collapse
|
98
|
Metabolic perturbations after pediatric TBI: It's not just about glucose. Exp Neurol 2019; 316:74-84. [PMID: 30951705 DOI: 10.1016/j.expneurol.2019.03.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 03/13/2019] [Accepted: 03/30/2019] [Indexed: 12/22/2022]
Abstract
Improved patient survival following pediatric traumatic brain injury (TBI) has uncovered a currently limited understanding of both the adaptive and maladaptive metabolic perturbations that occur during the acute and long-term phases of recovery. While much is known about the redundancy of metabolic pathways that provide adequate energy and substrates for normal brain growth and development, the field is only beginning to characterize perturbations in these metabolic pathways after pediatric TBI. To date, the majority of studies have focused on dysregulated oxidative glucose metabolism after injury; however, the immature brain is well-equipped to use alternative substrates to fuel energy production, growth, and development. A comprehensive understanding of metabolic changes associated with pediatric TBI cannot be limited to investigations of glucose metabolism alone. All energy substrates used by the brain should be considered in developing nutritional and pharmacological interventions for pediatric head trauma. This review summarizes post-injury changes in brain metabolism of glucose, lipids, ketone bodies, and amino acids with discussion of the therapeutic potential of altering substrate utilization to improve pediatric TBI outcomes.
Collapse
|
99
|
Magi S, Piccirillo S, Amoroso S. The dual face of glutamate: from a neurotoxin to a potential survival factor-metabolic implications in health and disease. Cell Mol Life Sci 2019; 76:1473-1488. [PMID: 30599069 PMCID: PMC11105246 DOI: 10.1007/s00018-018-3002-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 12/12/2018] [Accepted: 12/18/2018] [Indexed: 12/12/2022]
Abstract
Glutamate is the major excitatory neurotransmitter in the central nervous system. Beyond this function, glutamate also plays a key role in intermediary metabolism in all organs and tissues, linking carbohydrate and amino acid metabolism via the tricarboxylic acid cycle. Under both physiological and pathological conditions, we have recently found that the ability of glutamate to fuel cell metabolism selectively relies on the activity of two main transporters: the sodium-calcium exchanger (NCX) and the sodium-dependent excitatory amino-acid transporters (EAATs). In ischemic settings, when glutamate is administered at the onset of the reoxygenation phase, the coordinate activity of EAAT and NCX allows glutamate to improve cell viability by stimulating ATP production. So far, this phenomenon has been observed in both cardiac and neuronal models. In this review, we focus on the most recent findings exploring the unusual activity of glutamate as a potential survival factor in different settings.
Collapse
Affiliation(s)
- Simona Magi
- Department of Biomedical Sciences and Public Health, School of Medicine, University "Politecnica delle Marche", Via Tronto 10/A, 60126, Ancona, Italy.
| | - Silvia Piccirillo
- Department of Biomedical Sciences and Public Health, School of Medicine, University "Politecnica delle Marche", Via Tronto 10/A, 60126, Ancona, Italy
| | - Salvatore Amoroso
- Department of Biomedical Sciences and Public Health, School of Medicine, University "Politecnica delle Marche", Via Tronto 10/A, 60126, Ancona, Italy
| |
Collapse
|
100
|
Jonnalagadda S, Jonnalagadda SK, Ronayne CT, Nelson GL, Solano LN, Rumbley J, Holy J, Mereddy VR, Drewes LR. Novel N,N-dialkyl cyanocinnamic acids as monocarboxylate transporter 1 and 4 inhibitors. Oncotarget 2019; 10:2355-2368. [PMID: 31040927 PMCID: PMC6481325 DOI: 10.18632/oncotarget.26760] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 02/22/2019] [Indexed: 12/25/2022] Open
Abstract
Potent and dual monocarboxylate transporter (MCT) 1 and 4 inhibitors have been developed for the first time as potential anticancer agents based on α-cyanocinnamic acid structural template. Candidate inhibitors 1-9 have been evaluated for in vitro cell proliferation against MCT1 and MCT4 expressing cancer cell lines. Potential MCT1 and MCT4 binding interactions of the lead compound 9 have been studied through homology modeling and molecular docking prediction. In vitro effects on extracellular flux via glycolysis and mitochondrial stress tests suggest that candidate compounds 3 and 9 disrupt glycolysis and OxPhos efficiently in MCT1 expressing colorectal adenocarcinoma WiDr and MCT4 expressing triple negative breast cancer MDA-MB-231 cells. Fluorescence microscopy analyses in these cells also indicate that compound 9 is internalized and concentrated near mitochondria. In vivo tumor growth inhibition studies in WiDr and MDA-MB-231 xenograft tumor models in mice indicate that the candidate compound 9 exhibits a significant single agent activity.
Collapse
Affiliation(s)
- Shirisha Jonnalagadda
- Integrated Biosciences Graduate Program, University of Minnesota, Duluth, MN 55812, USA
| | - Sravan K Jonnalagadda
- Integrated Biosciences Graduate Program, University of Minnesota, Duluth, MN 55812, USA
| | - Conor T Ronayne
- Integrated Biosciences Graduate Program, University of Minnesota, Duluth, MN 55812, USA
| | - Grady L Nelson
- Integrated Biosciences Graduate Program, University of Minnesota, Duluth, MN 55812, USA
| | - Lucas N Solano
- Integrated Biosciences Graduate Program, University of Minnesota, Duluth, MN 55812, USA
| | - Jon Rumbley
- Integrated Biosciences Graduate Program, University of Minnesota, Duluth, MN 55812, USA.,Department of Pharmacy Practice & Pharmaceutical Sciences, University of Minnesota, Duluth, MN 55812, USA
| | - Jon Holy
- Integrated Biosciences Graduate Program, University of Minnesota, Duluth, MN 55812, USA.,Department of Biomedical Sciences, Medical School Duluth, University of Minnesota, Duluth, MN 55812, USA
| | - Venkatram R Mereddy
- Integrated Biosciences Graduate Program, University of Minnesota, Duluth, MN 55812, USA.,Department of Pharmacy Practice & Pharmaceutical Sciences, University of Minnesota, Duluth, MN 55812, USA.,Department of Chemistry and Biochemistry, University of Minnesota, Duluth, MN 55812, USA
| | - Lester R Drewes
- Integrated Biosciences Graduate Program, University of Minnesota, Duluth, MN 55812, USA.,Department of Biomedical Sciences, Medical School Duluth, University of Minnesota, Duluth, MN 55812, USA
| |
Collapse
|