51
|
Miyauchi K, Adachi Y, Tonouchi K, Yajima T, Harada Y, Fukuyama H, Deno S, Iwakura Y, Yoshimura A, Hasegawa H, Yugi K, Fujii SI, Ohara O, Takahashi Y, Kubo M. Influenza virus infection expands the breadth of antibody responses through IL-4 signalling in B cells. Nat Commun 2021; 12:3789. [PMID: 34145279 PMCID: PMC8213721 DOI: 10.1038/s41467-021-24090-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 05/26/2021] [Indexed: 01/12/2023] Open
Abstract
Influenza viruses are a major public health problem. Vaccines are the best available countermeasure to induce effective immunity against infection with seasonal influenza viruses; however, the breadth of antibody responses in infection versus vaccination is quite different. Here, we show that nasal infection controls two sequential processes to induce neutralizing IgG antibodies recognizing the hemagglutinin (HA) of heterotypic strains. The first is viral replication in the lung, which facilitates exposure of shared epitopes that are otherwise hidden from the immune system. The second process is the germinal center (GC) response, in particular, IL-4 derived from follicular helper T cells has an essential role in the expansion of rare GC-B cells recognizing the shared epitopes. Therefore, the combination of exposure of the shared epitopes and efficient proliferation of GC-B cells is critical for generating broadly-protective antibodies. These observations provide insight into mechanisms promoting broad protection from virus infection. The reasons why influenza infection promotes a broader antibody response compared with vaccines are not fully understood. Here the authors show that unmasking of haemagglutinin epitopes and IL-4 signals in the germinal centre contribute to broader antibody responses after infection.
Collapse
Affiliation(s)
- Kosuke Miyauchi
- Laboratory for Cytokine Regulation, Research Center for Integrative Medical Sciences (IMS), RIKEN Yokohama Institute, Yokohama, Kanagawa, Japan
| | - Yu Adachi
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan
| | - Keisuke Tonouchi
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan
| | - Taiki Yajima
- Division of Molecular Pathology, Research Institute for Biomedical Science, Tokyo University of Science, Chiba, Japan
| | - Yasuyo Harada
- Division of Molecular Pathology, Research Institute for Biomedical Science, Tokyo University of Science, Chiba, Japan
| | - Hidehiro Fukuyama
- Laboratory for Lymphocyte Differentiation, Research Center for Integrative Medical Sciences (IMS), RIKEN Yokohama Institute, Yokohama, Kanagawa, Japan
| | - Senka Deno
- Laboratory for Integrated Cellular Systems, Research Center for Integrative Medical Sciences (IMS), RIKEN Yokohama Institute, Yokohama, Kanagawa, Japan.,Institute for Advanced Biosciences, Keio University, Kanagawa, Fujisawa, Japan.,Systems Biology Program, Graduate School of Media and Governance, Keio University, Kanagawa, Fujisawa, Japan
| | - Yoichiro Iwakura
- Center for Animal Disease Models, Research Institute for Biomedical Science, Tokyo University of Science, Chiba, Japan
| | - Akihiko Yoshimura
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Hideki Hasegawa
- Influenza Virus Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Katsuyuki Yugi
- Laboratory for Integrated Cellular Systems, Research Center for Integrative Medical Sciences (IMS), RIKEN Yokohama Institute, Yokohama, Kanagawa, Japan.,Institute for Advanced Biosciences, Keio University, Kanagawa, Fujisawa, Japan
| | - Shin-Ichiro Fujii
- Laboratory for Immunotherapy, Research Center for Integrative Medical Sciences (IMS), RIKEN Yokohama Institute, Yokohama, Kanagawa, Japan
| | - Osamu Ohara
- Laboratory for Integrative Genomics, Research Center for Integrative Medical Sciences (IMS), RIKEN Yokohama Institute, Yokohama, Kanagawa, Japan
| | - Yoshimasa Takahashi
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Tokyo, Japan
| | - Masato Kubo
- Laboratory for Cytokine Regulation, Research Center for Integrative Medical Sciences (IMS), RIKEN Yokohama Institute, Yokohama, Kanagawa, Japan. .,Division of Molecular Pathology, Research Institute for Biomedical Science, Tokyo University of Science, Chiba, Japan.
| |
Collapse
|
52
|
Yamada A, Hirasawa T, Nishimura K, Shimura C, Kogo N, Fukuda K, Kato M, Yokomori M, Hayashi T, Umeda M, Yoshimura M, Iwakura Y, Nikaido I, Itohara S, Shinkai Y. Derepression of inflammation-related genes link to microglia activation and neural maturation defect in a mouse model of Kleefstra syndrome. iScience 2021; 24:102741. [PMID: 34258564 PMCID: PMC8258976 DOI: 10.1016/j.isci.2021.102741] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 05/02/2021] [Accepted: 06/15/2021] [Indexed: 11/30/2022] Open
Abstract
Haploinsufficiency of EHMT1, which encodes histone H3 lysine 9 (H3K9) methyltransferase G9a-like protein (GLP), causes Kleefstra syndrome (KS), a complex disorder of developmental delay and intellectual disability. Here, we examined whether postnatal supply of GLP can reverse the neurological phenotypes seen in Ehmt1Δ/+ mice as a KS model. Ubiquitous GLP supply from the juvenile stage ameliorated behavioral abnormalities in Ehmt1Δ/+ mice. Postnatal neuron-specific GLP supply was not sufficient for the improvement of abnormal behaviors but still reversed the reduction of H3K9me2 and spine number in Ehmt1Δ/+ mice. Interestingly, some inflammatory genes, including IL-1β (Il1b), were upregulated and activated microglial cells increased in the Ehmt1Δ/+ brain, and such phenotypes were also reversed by neuron-specific postnatal GLP supply. Il1b inactivation canceled the microglial and spine number phenotypes in the Ehmt1Δ/+ mice. Thus, H3K9me2 and some neurological phenotypes are reversible, but behavioral abnormalities are more difficult to improve depending on the timing of GLP supply. Activated microglias increase in a Ehmt1Δ/+ mouse model of Kleefstra syndrome Diminished H3K9me2 in Ehmt1Δ/+ mouse neurons is reversed by post-natal GLP supply GLP supply from the juvenile stage can improve abnormal behaviors of Ehmt1Δ/+ mice Il1b KO cancelles the microglial and spine number phenotypes in the Ehmt1Δ/+ mice
Collapse
Affiliation(s)
- Ayumi Yamada
- Cellular Memory Laboratory, Cluster for Pioneering Research, RIKEN, Wako, Saitama, Japan
| | - Takae Hirasawa
- Department of Biosciences, School of Science and Engineering, Teikyo University, 1-1 Toyosatodai, Utsunomiya, Tochigi, Japan
| | - Kayako Nishimura
- Cellular Memory Laboratory, Cluster for Pioneering Research, RIKEN, Wako, Saitama, Japan
| | - Chikako Shimura
- Cellular Memory Laboratory, Cluster for Pioneering Research, RIKEN, Wako, Saitama, Japan
| | - Naomi Kogo
- Laboratory for Behavioral Genetics, RIKEN Center for Brain Science, Wako, Saitama, Japan
| | - Kei Fukuda
- Cellular Memory Laboratory, Cluster for Pioneering Research, RIKEN, Wako, Saitama, Japan
| | - Madoka Kato
- Department of Biosciences, School of Science and Engineering, Teikyo University, 1-1 Toyosatodai, Utsunomiya, Tochigi, Japan
| | - Masaki Yokomori
- Department of Biosciences, School of Science and Engineering, Teikyo University, 1-1 Toyosatodai, Utsunomiya, Tochigi, Japan
| | - Tetsutaro Hayashi
- Laboratory for Bioinformatics Research, RIKEN Center for Biosystems Dynamics Research, Wako, Saitama, Japan
| | - Mana Umeda
- Laboratory for Bioinformatics Research, RIKEN Center for Biosystems Dynamics Research, Wako, Saitama, Japan
| | - Mika Yoshimura
- Laboratory for Bioinformatics Research, RIKEN Center for Biosystems Dynamics Research, Wako, Saitama, Japan
| | - Yoichiro Iwakura
- Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Itoshi Nikaido
- Laboratory for Bioinformatics Research, RIKEN Center for Biosystems Dynamics Research, Wako, Saitama, Japan.,Functional Genome Informatics, Medical Research Institute, Tokyo Medical and Dental University, Bunkyo, Tokyo, Japan.,Bioinformatics Course, Master's/Doctoral Program in Life Science Innovation (T-LSI), School of Integrative and Global Majors (SIGMA), University of Tsukuba, Wako, Saitama 351-0198, Japan
| | - Shigeyoshi Itohara
- Laboratory for Behavioral Genetics, RIKEN Center for Brain Science, Wako, Saitama, Japan
| | - Yoichi Shinkai
- Cellular Memory Laboratory, Cluster for Pioneering Research, RIKEN, Wako, Saitama, Japan
| |
Collapse
|
53
|
Eskilsson A, Shionoya K, Engblom D, Blomqvist A. Fever During Localized Inflammation in Mice Is Elicited by a Humoral Pathway and Depends on Brain Endothelial Interleukin-1 and Interleukin-6 Signaling and Central EP 3 Receptors. J Neurosci 2021; 41:5206-5218. [PMID: 33941650 PMCID: PMC8211540 DOI: 10.1523/jneurosci.0313-21.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/01/2021] [Accepted: 04/26/2021] [Indexed: 02/02/2023] Open
Abstract
We examined the signaling route for fever during localized inflammation in male and female mice, elicited by casein injection into a preformed air pouch. The localized inflammation gave rise to high concentrations of prostaglandins of the E species (PGE2) and cytokines in the air pouch and elevated levels of these inflammatory mediators in plasma. There were also elevated levels of PGE2 in the cerebrospinal fluid, although there was little evidence for PGE2 synthesis in the brain. Global deletion of the PGE2 prostaglandin E receptor 3 (EP3) abolished the febrile response as did deletion of the EP3 receptor in neural cells, whereas its deletion on peripheral nerves had no effect, implying that PGE2 action on this receptor in the CNS elicited the fever. Global deletion of the interleukin-1 receptor type 1 (IL-1R1) also abolished the febrile response, whereas its deletion on neural cells or peripheral nerves had no effect. However, deletion of the IL-1R1 on brain endothelial cells, as well as deletion of the interleukin-6 receptor α on these cells, attenuated the febrile response. In contrast, deletion of the PGE2 synthesizing enzymes cyclooxygenase-2 and microsomal prostaglandin synthase-1 in brain endothelial cells, known to attenuate fever evoked by systemic inflammation, had no effect. We conclude that fever during localized inflammation is not mediated by neural signaling from the inflamed site, as previously suggested, but is dependent on humoral signaling that involves interleukin actions on brain endothelial cells, probably facilitating PGE2 entry into the brain from the circulation and hence representing a mechanism distinct from that at work during systemic inflammation.
Collapse
Affiliation(s)
- Anna Eskilsson
- Division of Neurobiology and Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University, S-58185 Linköping, Sweden
| | - Kiseko Shionoya
- Division of Neurobiology and Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University, S-58185 Linköping, Sweden
| | - David Engblom
- Division of Neurobiology and Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University, S-58185 Linköping, Sweden
| | - Anders Blomqvist
- Division of Neurobiology and Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences, Linköping University, S-58185 Linköping, Sweden
| |
Collapse
|
54
|
Rasiuk AS, Walsh SR, Chan L, Viloria-Petit AM, Wootton SK, Karimi K, Bridle BW. The Role of Type I Interferon Signaling in Regulating Cytokine Production and Cell Survival in Bone Marrow-Derived Macrophages. Viral Immunol 2021; 34:470-482. [PMID: 34097550 DOI: 10.1089/vim.2020.0308] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
During viral infections, cells produce type I interferons (IFNs), which are detected by the IFNα/β receptor (IFNAR). To survive in hosts, viruses have strategies to downregulate IFN-mediated signaling. We hypothesized that macrophages, which are among the first myeloid cells to respond to viral infections, would produce a different cytokine profile if responding to ligation of pattern recognition receptors (PRRs) while IFNAR-mediated signaling was compromised. Specifically, IFNAR-mediated regulation of interleukin (IL)-1α, IL-6, IL-12, and tumor necrosis factor-α was studied in cultured murine bone marrow-derived macrophages. Since viruses like vesicular stomatitis virus can ligate PRRs such as Toll-like receptor (TLR)4 and 7, macrophages were stimulated with the TLR4 and TLR7 agonists lipopolysaccharide (LPS) or imiquimod, respectively, with or without antibody-mediated IFNAR-blockade. Cytokines and viability were assessed for 3 days poststimulation. Blocking IFNARs acutely exacerbated cytokine production by macrophages and aided their survival when they were treated with LPS. In contrast, cytokine concentrations were unaffected or slightly reduced by IFNAR blockade, but macrophages died at a greater rate when imiquimod was the stimulus. This demonstrated a differential role of IFNAR signaling in regulating PRR-induced cytokines. This suggests potential mechanisms whereby macrophages responding to viruses that inhibit type I IFN responses might contribute to excessive inflammation in some cases and inappropriately low-magnitude responses in others. This also provides a well-defined cell-based model for further dissecting the role of type I IFN signaling in macrophages responding to viral and other infections.
Collapse
Affiliation(s)
| | - Scott R Walsh
- Department of Pathobiology and University of Guelph, Guelph, Canada
| | - Lily Chan
- Department of Pathobiology and University of Guelph, Guelph, Canada
| | | | - Sarah K Wootton
- Department of Pathobiology and University of Guelph, Guelph, Canada
| | - Khalil Karimi
- Department of Pathobiology and University of Guelph, Guelph, Canada
| | - Byram W Bridle
- Department of Pathobiology and University of Guelph, Guelph, Canada
| |
Collapse
|
55
|
Evans LP, Boehme N, Wu S, Burghardt EL, Akurathi A, Todd BP, Newell EA, Ferguson PJ, Mahajan VB, Dutca LM, Harper MM, Bassuk AG. Sex Does Not Influence Visual Outcomes After Blast-Mediated Traumatic Brain Injury but IL-1 Pathway Mutations Confer Partial Rescue. Invest Ophthalmol Vis Sci 2021; 61:7. [PMID: 33030508 PMCID: PMC7582458 DOI: 10.1167/iovs.61.12.7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Purpose In a mouse model of blast-mediated traumatic brain injury (bTBI), interleukin-1 (IL-1)-pathway components were tested as potential therapeutic targets for bTBI-mediated retinal ganglion cell (RGC) dysfunction. Sex was also evaluated as a variable for RGC outcomes post-bTBI. Methods Male and female mice with null mutations in genes encoding IL-1α, IL-1β, or IL-1RI were compared to C57BL/6J wild-type (WT) mice after exposure to three 20-psi blast waves given at an interblast interval of 1 hour or to mice receiving sham injury. To determine if genetic blockade of IL-1α, IL-1β, or IL-1RI could prevent damage to RGCs, the function and structure of these cells were evaluated by pattern electroretinogram and optical coherence tomography, respectively, 5 weeks following blast or sham exposure. RGC survival was also quantitatively assessed via immunohistochemical staining of BRN3A at the completion of the study. Results Our results showed that male and female WT mice had a similar response to blast-induced retinal injury. Generally, constitutive deletion of IL-1α, IL-1β, or IL-1RI did not provide full protection from the effects of bTBI on visual outcomes; however, injured WT mice had significantly worse visual outcomes compared to the injured genetic knockout mice. Conclusions Sex does not affect RGC outcomes after bTBI. The genetic studies suggest that deletion of these IL-1 pathway components confers some protection, but global deletion from birth did not result in a complete rescue.
Collapse
Affiliation(s)
- Lucy P Evans
- Department of Pediatrics, University of Iowa, Iowa City, Iowa, United States.,Medical Scientist Training Program, University of Iowa, Iowa City, Iowa, United States
| | - Nickolas Boehme
- Iowa City VA Health Care System Center for the Prevention and Treatment of Visual Loss, Iowa City, Iowa, United States
| | - Shu Wu
- Department of Pediatrics, University of Iowa, Iowa City, Iowa, United States
| | - Elliot L Burghardt
- Medical Scientist Training Program, University of Iowa, Iowa City, Iowa, United States.,Department of Biostatistics, University of Iowa, Iowa City, Iowa, United States
| | - Abhigna Akurathi
- Iowa City VA Health Care System Center for the Prevention and Treatment of Visual Loss, Iowa City, Iowa, United States
| | - Brittany P Todd
- Department of Pediatrics, University of Iowa, Iowa City, Iowa, United States.,Medical Scientist Training Program, University of Iowa, Iowa City, Iowa, United States
| | - Elizabeth A Newell
- Department of Pediatrics, University of Iowa, Iowa City, Iowa, United States
| | - Polly J Ferguson
- Department of Pediatrics, University of Iowa, Iowa City, Iowa, United States
| | - Vinit B Mahajan
- Omics Laboratory, Byers Eye Institute, Department of Ophthalmology, Stanford University School of Medicine, Palo Alto, California, United States.,Veterans Affairs Palo Alto Health Care System, Palo Alto, California, United States
| | - Laura M Dutca
- Iowa City VA Health Care System Center for the Prevention and Treatment of Visual Loss, Iowa City, Iowa, United States.,Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, Iowa, United States
| | - Matthew M Harper
- Iowa City VA Health Care System Center for the Prevention and Treatment of Visual Loss, Iowa City, Iowa, United States.,Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, Iowa, United States
| | - Alexander G Bassuk
- Department of Pediatrics, University of Iowa, Iowa City, Iowa, United States
| |
Collapse
|
56
|
Ratitong B, Marshall M, Pearlman E. β-Glucan-stimulated neutrophil secretion of IL-1α is independent of GSDMD and mediated through extracellular vesicles. Cell Rep 2021; 35:109139. [PMID: 34010648 PMCID: PMC8186457 DOI: 10.1016/j.celrep.2021.109139] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 02/26/2021] [Accepted: 04/26/2021] [Indexed: 01/08/2023] Open
Abstract
Neutrophils are an important source of interleukin (IL)-1β and other cytokines because they are recruited to sites of infection and inflammation in high numbers. Although secretion of processed, bioactive IL-1β by neutrophils is dependent on NLRP3 and Gasdermin D (GSDMD), IL-1α secretion by neutrophils has not been reported. In this study, we demonstrate that neutrophils produce IL-1α following injection of Aspergillus fumigatus spores that express cell-surface β-Glucan. Although IL-1α secretion by lipopolysaccharide (LPS)/ATP-activated macrophages and dendritic cells is GSDMD dependent, IL-1α secretion by β-Glucan-stimulated neutrophils occurs independently of GSDMD. Instead, we found that bioactive IL-1α is in exosomes that were isolated from cell-free media of β-Glucan-stimulated neutrophils. Further, the exosome inhibitor GW4869 significantly reduces IL-1α in extracellular vesicles (EVs) and total cell-free supernatant. Together, these findings identify neutrophils as a source of IL-1α and demonstrate a role for EVs, specifically exosomes, in neutrophil secretion of bioactive IL-1α. Neutrophils have functional NLRP3 and NLRC4 and are recognized as an important source of IL-1β. Ratitong et al. demonstrate that murine neutrophils also produce IL-1α. Unlike macrophages, neutrophil IL-1α is secreted in extracellular vesicles and is released independently of gasdermin D and cell death.
Collapse
Affiliation(s)
- Bridget Ratitong
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, USA; Institute for Immunology, University of California, Irvine, Irvine, CA, USA.
| | - Michaela Marshall
- Department of Ophthalmology, University of California, Irvine, Irvine, CA, USA
| | - Eric Pearlman
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, USA; Department of Ophthalmology, University of California, Irvine, Irvine, CA, USA; Institute for Immunology, University of California, Irvine, Irvine, CA, USA.
| |
Collapse
|
57
|
Tartey S, Neale G, Vogel P, Malireddi RKS, Kanneganti TD. A MyD88/IL1R Axis Regulates PD-1 Expression on Tumor-Associated Macrophages and Sustains Their Immunosuppressive Function in Melanoma. Cancer Res 2021; 81:2358-2372. [PMID: 33619117 PMCID: PMC11645125 DOI: 10.1158/0008-5472.can-20-3510] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/22/2020] [Accepted: 02/18/2021] [Indexed: 11/16/2022]
Abstract
Macrophages are critical mediators of tissue homeostasis, cell proliferation, and tumor metastasis. Tumor-associated macrophages (TAM) are generally associated with tumor-promoting immunosuppressive functions in solid tumors. Here, we examined the transcriptional landscape of adaptor molecules downstream of Toll-like receptors in human cancers and found that higher expression of MYD88 correlated with tumor progression. In murine melanoma, MyD88, but not Trif, was essential for tumor progression, angiogenesis, and maintaining the immunosuppressive phenotype of TAMs. In addition, MyD88 expression in myeloid cells drove melanoma progression. The MyD88/IL1 receptor (IL1R) axis regulated programmed cell death (PD)-1 expression on TAMs by promoting recruitment of NF-κBp65 to the Pdcd1 promoter. Furthermore, a combinatorial immunotherapy approach combining the MyD88 inhibitor with anti-PD-1 blockade elicited strong antitumor effects. Thus, the MyD88/IL1R axis maintains the immunosuppressive function of TAMs and promotes tumor growth by regulating PD-1 expression. SIGNIFICANCE: These findings indicate that MyD88 regulates TAM-immunosuppressive activity, suggesting that macrophage-mediated immunotherapy combining MYD88 inhibitors with PD-1 blockade could result in better treatment outcomes in a wide variety of cancers. GRAPHICAL ABSTRACT: http://cancerres.aacrjournals.org/content/canres/81/9/2358/F1.large.jpg.
Collapse
Affiliation(s)
- Sarang Tartey
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Geoffrey Neale
- Hartwell Center for Bioinformatics and Biotechnology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Peter Vogel
- Animal Resources Center and the Veterinary Pathology Core, St. Jude Children's Research Hospital, Memphis, Tennessee
| | | | | |
Collapse
|
58
|
Inhibition of interleukin-6 signaling attenuates aortitis, left ventricular hypertrophy and arthritis in interleukin-1 receptor antagonist deficient mice. Clin Sci (Lond) 2021; 134:2771-2787. [PMID: 33064141 DOI: 10.1042/cs20201036] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/30/2020] [Accepted: 10/16/2020] [Indexed: 12/13/2022]
Abstract
The aim of the present study was to examine whether inhibition of Interleukin (IL)-6 signaling by MR16-1, an IL-6 receptor antibody, attenuates aortitis, cardiac hypertrophy, and arthritis in IL-1 receptor antagonist deficient (IL-1RA KO) mice. Four weeks old mice were intraperitoneally administered with either MR16-1 or non-immune IgG at dosages that were adjusted over time for 5 weeks. These mice were stratified into four groups: MR16-1 treatment groups, KO/MR low group (first 2.0 mg, following 0.5 mg/week, n=14) and KO/MR high group (first 4.0 mg, following 2.0 mg/week, n=19) in IL-1RA KO mice, and IgG treatment groups, KO/IgG group (first 2.0 mg, following 1.0 mg/week, n=22) in IL-1RA KO mice, and wild/IgG group (first 2.0 mg, following 1.0 mg/week, n=17) in wild mice. Aortitis, cardiac hypertrophy and arthropathy were histologically analyzed. Sixty-eight percent of the KO/IgG group developed aortitis (53% developed severe aortitis). In contrast, only 21% of the KO/MR high group developed mild aortitis, without severe aortitis (P<0.01, vs KO/IgG group). Infiltration of inflammatory cells, such as neutrophils, T cells, and macrophages, was frequently observed around aortic sinus of the KO/IgG group. Left ventricle and cardiomyocyte hypertrophy were observed in IL-1RA KO mice. Administration of high dosage of MR16-1 significantly suppressed cardiomyocyte hypertrophy. MR16-1 attenuated the incidence and severity of arthritis in IL-1RA KO mice in a dose-dependent manner. In conclusion, blockade of IL-6 signaling may exert a beneficial effect to attenuate severe aortitis, left ventricle hypertrophy, and arthritis.
Collapse
|
59
|
Experimental modulation of Interleukin 1 shows its key role in chronic kidney disease progression and anemia. Sci Rep 2021; 11:6288. [PMID: 33737665 PMCID: PMC7973507 DOI: 10.1038/s41598-021-85778-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 02/22/2021] [Indexed: 01/31/2023] Open
Abstract
Inflammation in chronic kidney disease (CKD) is mostly due to activation of the innate immune system, in which Interleukin-1 (IL-1) is a key player. Anemia of CKD may also be due to erythropoietin (EPO) resistance, clinically associated with inflammation. IL-1 receptor antagonist knockout (RaKO) mice show arthritis and excessive inflammation. Inhibition of IL-1 was shown to be beneficial in many inflammatory conditions, but its role in CKD and anemia is unknown. Here, we report that enhanced inflammation in RaKO mice with CKD provoked both higher degrees of renal insufficiency and anemia in comparison to wild-type CKD, in association with a downregulation of renal hypoxia inducible factor-2 (HIF2) as well as decreased bone marrow EPO-receptor (EPOR) and transferrin receptor (TFR). In contrast, administration of P2D7KK, an anti-IL1b monoclonal antibody, to CKD mice results in a lower grade of systemic inflammation, better renal function and blunted anemia. The latter was associated with upregulation of renal HIF-2α, bone marrow EPO-R and TFR. Altogether, this supports the key role of inflammation, and IL-1 particularly, in CKD progression and anemia. Novel treatments to reduce inflammation through this and other pathways, may improve renal function, attenuate the anemic state or increase the response to exogenous EPO.
Collapse
|
60
|
Mailhot B, Christin M, Tessandier N, Sotoudeh C, Bretheau F, Turmel R, Pellerin È, Wang F, Bories C, Joly-Beauparlant C, De Koninck Y, Droit A, Cicchetti F, Scherrer G, Boilard E, Sharif-Naeini R, Lacroix S. Neuronal interleukin-1 receptors mediate pain in chronic inflammatory diseases. J Exp Med 2021; 217:151879. [PMID: 32573694 PMCID: PMC7478735 DOI: 10.1084/jem.20191430] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 03/03/2020] [Accepted: 05/13/2020] [Indexed: 12/20/2022] Open
Abstract
Chronic pain is a major comorbidity of chronic inflammatory diseases. Here, we report that the cytokine IL-1β, which is abundantly produced during multiple sclerosis (MS), arthritis (RA), and osteoarthritis (OA) both in humans and in animal models, drives pain associated with these diseases. We found that the type 1 IL-1 receptor (IL-1R1) is highly expressed in the mouse and human by a subpopulation of TRPV1+ dorsal root ganglion neurons specialized in detecting painful stimuli, termed nociceptors. Strikingly, deletion of the Il1r1 gene specifically in TRPV1+ nociceptors prevented the development of mechanical allodynia without affecting clinical signs and disease progression in mice with experimental autoimmune encephalomyelitis and K/BxN serum transfer–induced RA. Conditional restoration of IL-1R1 expression in nociceptors of IL-1R1–knockout mice induced pain behavior but did not affect joint damage in monosodium iodoacetate–induced OA. Collectively, these data reveal that neuronal IL-1R1 signaling mediates pain, uncovering the potential benefit of anti–IL-1 therapies for pain management in patients with chronic inflammatory diseases.
Collapse
Affiliation(s)
- Benoit Mailhot
- Axe Neurosciences du Centre de recherche du CHU de Québec-Université Laval et Département de médecine moléculaire de l'Université Laval, Québec, Canada
| | - Marine Christin
- Department of Physiology and Cell Information Systems Group, McGill University, Montreal, Canada
| | - Nicolas Tessandier
- Axe Maladies infectieuses et immunitaires du Centre de recherche du CHU de Québec-Université Laval et Département de microbiologie-infectiologie et d'immunologie de l'Université Laval, Québec, Canada
| | - Chaudy Sotoudeh
- Department of Anesthesiology, Perioperative and Pain Medicine, Stanford University, Palo Alto, CA
| | - Floriane Bretheau
- Axe Neurosciences du Centre de recherche du CHU de Québec-Université Laval et Département de médecine moléculaire de l'Université Laval, Québec, Canada
| | - Roxanne Turmel
- Axe Neurosciences du Centre de recherche du CHU de Québec-Université Laval et Département de médecine moléculaire de l'Université Laval, Québec, Canada
| | - Ève Pellerin
- Axe Neurosciences du Centre de recherche du CHU de Québec-Université Laval et Département de médecine moléculaire de l'Université Laval, Québec, Canada
| | - Feng Wang
- Centre de recherche CERVO, Québec, Canada
| | | | - Charles Joly-Beauparlant
- Axe Endocrinologie-néphrologie du Centre de recherche du CHU de Québec-Université Laval et Département de médecine moléculaire de l'Université Laval, Québec, Canada
| | | | - Arnaud Droit
- Axe Endocrinologie-néphrologie du Centre de recherche du CHU de Québec-Université Laval et Département de médecine moléculaire de l'Université Laval, Québec, Canada
| | - Francesca Cicchetti
- Axe Neurosciences du Centre de recherche du CHU de Québec-Université Laval et Département de psychiatrie et de neurosciences de l'Université Laval, Québec, Canada
| | - Grégory Scherrer
- Department of Cell Biology and Physiology, University of North Carolina Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC.,New York Stem Cell Foundation - Robertson Investigator, The University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Eric Boilard
- Axe Maladies infectieuses et immunitaires du Centre de recherche du CHU de Québec-Université Laval et Département de microbiologie-infectiologie et d'immunologie de l'Université Laval, Québec, Canada
| | - Reza Sharif-Naeini
- Department of Physiology and Cell Information Systems Group, McGill University, Montreal, Canada
| | - Steve Lacroix
- Axe Neurosciences du Centre de recherche du CHU de Québec-Université Laval et Département de médecine moléculaire de l'Université Laval, Québec, Canada
| |
Collapse
|
61
|
Luo Y, Lin H. Inflammation initiates a vicious cycle between obesity and nonalcoholic fatty liver disease. IMMUNITY INFLAMMATION AND DISEASE 2020; 9:59-73. [PMID: 33332766 PMCID: PMC7860600 DOI: 10.1002/iid3.391] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 11/23/2020] [Accepted: 11/26/2020] [Indexed: 12/14/2022]
Abstract
Low‐level of chronic inflammation activation is characteristic of obesity. Nonalcoholic fatty liver disease (NAFLD) is closely linked to obesity and is an emerging health problem, it originates from abnormal accumulation of triglycerides in the liver, and sometimes causes inflammatory reactions that could contribute to cirrhosis and liver cancer, thus its pathogenesis needs to be clarified for more treatment options. Once NAFLD is established, it contributes to systemic inflammation, the low‐grade inflammation is continuously maintained during NAFLD causing impaired resolution of inflammation in obesity, which subsequently exacerbates its severity. This study focuses on the effects of obesity‐induced inflammations, which are the underlying causes of the disease progression and development of more severe inflammatory and fibrotic stages. Understanding the relationship between obesity and NAFLD could help in establishing attractive therapeutic targets or diagnostic markers in obesity‐induced inflammation response and provides new approaches for the prevention and treatment of NAFLD in obesity.
Collapse
Affiliation(s)
- Yunfei Luo
- Department of Pathophysiology, Schools of Basic Sciences, Jiangxi Provincial Key Laboratory of Tumor Pathogens and Molecular Pathology, Nanchang University, Nanchang, China
| | - Hui Lin
- Department of Pathophysiology, Schools of Basic Sciences, Jiangxi Provincial Key Laboratory of Tumor Pathogens and Molecular Pathology, Nanchang University, Nanchang, China
| |
Collapse
|
62
|
Tsujimaru K, Takanashi M, Sudo K, Ishikawa A, Mineo S, Ueda S, Kumagai K, Kuroda M. Extracellular microvesicles that originated adipose tissue derived mesenchymal stem cells have the potential ability to improve rheumatoid arthritis on mice. Regen Ther 2020; 15:305-311. [PMID: 33426233 PMCID: PMC7770341 DOI: 10.1016/j.reth.2020.08.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 07/22/2020] [Accepted: 08/27/2020] [Indexed: 01/12/2023] Open
Abstract
Introduction Mesenchymal stem cells (MSCs) are promising therapeutic tools in regenerative medicine. In particularly adipose tissue derived MSC (AMSC) has powerful potential for the therapeutics of rheumatoid arthritis (RA) because these cells can control immune balance. RA systemically occurs autoimmune disease. Interestingly, IL-1 receptor antagonist deficient (IL-1ra-/-) mice induce inflammation in joints like RA. In RA therapy, although AMSC improves the inflammation activity, it is little known to play roles of extracellular microvesicles (EV) for improvement of RA. To clarify the MSC-derived EVs are involved amelioration mechanisms for RA by themselves, we examined the functional effects of development for RA by AMSC-EVs. Methods We isolated AMSCs derived mice adipose tissue and purified EVs from the culture supernatant of AMSCs. To examine whether EVs can improve RA, we administrated EVs or AMSCs to IL-1ra knockout mice as RA model mice. We analyzed EVs-included factor by western blot methods and RA improvement effect by ELISA. Results In this study, we showed that the swellings of joints on mice in wild type AMSC and that in AMSC-EVs decreased than that in IL-1ra-/- mice-AMSC-EVs and in none-treated. We detected IL-1ra expression in AMSC-EVs in wild type mice but not that in IL-1ra-/- mice. Proinflammatory cytokine expression changes in mice showed in AMSCs and AMSC-EVs, but no apparent differences cytokine expressions were detected in IL-1ra-/- mice. Conclusions In this study, we concluded that MSCs might improve RA by the transferring of factors such as IL-1ra, which are included their MSC derived- EVs.
Collapse
Affiliation(s)
| | | | - Katsuko Sudo
- Preclinical Research Center, Tokyo Medical University, 6-1-1, Shinjuku, Shinjuku-ku, Tokyo, 160-8402, Japan
| | - Akio Ishikawa
- Department of Molecular Pathology, Tokyo Medical University, Japan
| | - Shoichiro Mineo
- Department of Molecular Pathology, Tokyo Medical University, Japan
| | - Shinobu Ueda
- Department of Molecular Pathology, Tokyo Medical University, Japan
| | - Katsuyoshi Kumagai
- Preclinical Research Center, Tokyo Medical University, 6-1-1, Shinjuku, Shinjuku-ku, Tokyo, 160-8402, Japan
| | - Masahiko Kuroda
- Department of Molecular Pathology, Tokyo Medical University, Japan
| |
Collapse
|
63
|
Chan JNE, Humphry M, Kitt L, Krzyzanska D, Filbey KJ, Bennett MR, Clarke MCH. Cell surface IL-1α trafficking is specifically inhibited by interferon-γ, and associates with the membrane via IL-1R2 and GPI anchors. Eur J Immunol 2020; 50:1663-1675. [PMID: 32447774 DOI: 10.1002/eji.201948521] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 04/24/2020] [Accepted: 05/19/2020] [Indexed: 12/11/2022]
Abstract
IL-1 is a powerful cytokine that drives inflammation and modulates adaptive immunity. Both IL-1α and IL-1β are translated as proforms that require cleavage for full cytokine activity and release, while IL-1α is reported to occur as an alternative plasma membrane-associated form on many cell types. However, the existence of cell surface IL-1α (csIL-1α) is contested, how IL-1α tethers to the membrane is unknown, and signaling pathways controlling trafficking are not specified. Using a robust and fully validated system, we show that macrophages present bona fide csIL-1α after ligation of TLRs. Pro-IL-1α tethers to the plasma membrane in part through IL-1R2 or via association with a glycosylphosphatidylinositol-anchored protein, and can be cleaved, activated, and released by proteases. csIL-1α requires de novo protein synthesis and its trafficking to the plasma membrane is exquisitely sensitive to inhibition by IFN-γ, independent of expression level. We also reveal how prior csIL-1α detection could occur through inadvertent cell permeabilisation, and that senescent cells do not drive the senescent-associated secretory phenotype via csIL-1α, but rather via soluble IL-1α. We believe these data are important for determining the local or systemic context in which IL-1α can contribute to disease and/or physiological processes.
Collapse
Affiliation(s)
- Julie N E Chan
- Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Melanie Humphry
- Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Lauren Kitt
- Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Dominika Krzyzanska
- Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Kara J Filbey
- Manchester Collaborative Centre for Inflammation Research, Lydia Becker Institute of Immunology and Inflammation, The University of Manchester, Core Technology Facility, Manchester, UK
| | - Martin R Bennett
- Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| | - Murray C H Clarke
- Division of Cardiovascular Medicine, Department of Medicine, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK
| |
Collapse
|
64
|
Gyorke CE, Kollipara A, Allen J, Zhang Y, Ezzell JA, Darville T, Montgomery SA, Nagarajan UM. IL-1α Is Essential for Oviduct Pathology during Genital Chlamydial Infection in Mice. THE JOURNAL OF IMMUNOLOGY 2020; 205:3037-3049. [PMID: 33087404 DOI: 10.4049/jimmunol.2000600] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 09/22/2020] [Indexed: 12/30/2022]
Abstract
Chlamydia trachomatis infection of the female genital tract can lead to irreversible fallopian tube scarring. In the mouse model of genital infection using Chlamydia muridarum, IL-1R signaling plays a critical role in oviduct tissue damage. In this study, we investigated the pathologic role of IL-1α, one of the two proinflammatory cytokines that bind to IL-1R. Il1a-/- mice infected with C. muridarum cleared infection at their cervix at the same rate as wild-type (WT) mice, but were significantly protected from end point oviduct damage and fibrosis. The contribution of IL-1α to oviduct pathology was more dramatic than observed in mice deficient for IL-1β. Although chlamydial burden was similar in WT and Il1a-/- oviduct during peak days of infection, levels of IL-1β, IL-6, CSF3, and CXCL2 were reduced in Il1a-/- oviduct lysates. During infection, Il1a-/- oviducts and uterine horns exhibited reduced neutrophil infiltration, and this reduction persisted after the infection resolved. The absence of IL-1α did not compromise CD4 T cell recruitment or function during primary or secondary chlamydial infection. IL-1α is expressed predominantly by luminal cells of the genital tract in response to infection, and low levels of expression persisted after the infection cleared. Ab-mediated depletion of IL-1α in WT mice prevented infection-induced oviduct damage, further supporting a key role for IL-1α in oviduct pathology.
Collapse
Affiliation(s)
- Clare E Gyorke
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Avinash Kollipara
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599.,Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599.,Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - John Allen
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Yugen Zhang
- Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - J Ashley Ezzell
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599; and.,Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Toni Darville
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599.,Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Stephanie A Montgomery
- Department of Pathology and Laboratory Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Uma M Nagarajan
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599; .,Department of Pediatrics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| |
Collapse
|
65
|
Sasaki Y, Otsuka K, Arimochi H, Tsukumo SI, Yasutomo K. Distinct Roles of IL-1β and IL-18 in NLRC4-Induced Autoinflammation. Front Immunol 2020; 11:591713. [PMID: 33178225 PMCID: PMC7592392 DOI: 10.3389/fimmu.2020.591713] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 09/16/2020] [Indexed: 01/25/2023] Open
Abstract
The NLRC4 inflammasome assembles in response to detection of bacterial invasion, and NLRC4 activation leads to the production of IL-1β and IL-18 together with pyroptosis-mediated cell death. Missense activating mutations in NLRC4 cause autoinflammatory disorders whose symptoms are distinctly dependent on the site of mutation and other aspects of the genetic background. To determine the involvement of IL-1β and IL-18 in the inflammation induced by NLRC4 mutation, we depleted IL-1β, IL-18, or both cytokines in Nlrc4-transgenic mice in which mutant Nlrc4 is expressed under the MHC class II promoter (Nlrc4-H443P-Tg mice). The deletion of the Il1b or Il18 gene in Nlrc4-H443P-Tg mice reduced the neutrophil numbers in the spleen, and mice with deletion of both genes had an equivalent number of neutrophils compared to wild-type mice. Deletion of Il1b ameliorated but did not eliminate bone marrow hyperplasia, while mice deficient in Il18 showed no bone marrow hyperplasia. In contrast, tail bone deformity remained in the presence of Il18 deficiency, but Il1b deficiency completely abolished bone deformity. The decreased bone density in Nlrc4-H443P-Tg mice was counteracted by Il1b but not Il18 deficiency. Our results demonstrate the distinct effects of IL-1β and IL-18 on NLRC4-induced inflammation among tissues, which suggests that blockers for each cytokine should be utilized depending on the site of inflammation.
Collapse
Affiliation(s)
- Yuki Sasaki
- Department of Immunology and Parasitology, Graduate School of Medicine, Tokushima University, Tokushima, Japan
| | - Kunihiro Otsuka
- Department of Interdisciplinary Researches for Medicine and Photonics, Institute of Post-LED Photonics, Tokushima University, Tokushima, Japan
| | - Hideki Arimochi
- Department of Immunology and Parasitology, Graduate School of Medicine, Tokushima University, Tokushima, Japan
| | - Shin-Ichi Tsukumo
- Department of Immunology and Parasitology, Graduate School of Medicine, Tokushima University, Tokushima, Japan.,Department of Interdisciplinary Researches for Medicine and Photonics, Institute of Post-LED Photonics, Tokushima University, Tokushima, Japan
| | - Koji Yasutomo
- Department of Immunology and Parasitology, Graduate School of Medicine, Tokushima University, Tokushima, Japan.,Department of Interdisciplinary Researches for Medicine and Photonics, Institute of Post-LED Photonics, Tokushima University, Tokushima, Japan.,The Research Cluster Program on Immunological Diseases, Tokushima University, Tokushima, Japan
| |
Collapse
|
66
|
Serial Systemic Injections of Endotoxin (LPS) Elicit Neuroprotective Spinal Cord Microglia through IL-1-Dependent Cross Talk with Endothelial Cells. J Neurosci 2020; 40:9103-9120. [PMID: 33051350 DOI: 10.1523/jneurosci.0131-20.2020] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 09/13/2020] [Accepted: 09/17/2020] [Indexed: 12/12/2022] Open
Abstract
Microglia are dynamic immunosurveillance cells in the CNS. Whether microglia are protective or pathologic is context dependent; the outcome varies as a function of time relative to the stimulus, activation state of neighboring cells in the microenvironment or within progression of a particular disease. Although brain microglia can be "primed" using bacterial lipopolysaccharide (LPS)/endotoxin, it is unknown whether LPS delivered systemically can also induce neuroprotective microglia in the spinal cord. Here, we show that serial systemic injections of LPS (1 mg/kg, i.p., daily) for 4 consecutive days (LPSx4) consistently elicit a reactive spinal cord microglia response marked by dramatic morphologic changes, increased production of IL-1, and enhanced proliferation without triggering leukocyte recruitment or overt neuropathology. Following LPSx4, reactive microglia frequently contact spinal cord endothelial cells. Targeted ablation or selective expression of IL-1 and IL-1 receptor (IL-1R) in either microglia or endothelia reveal that IL-1-dependent signaling between these cells mediates microglia activation. Using a mouse model of ischemic spinal cord injury in male and female mice, we show that preoperative LPSx4 provides complete protection from ischemia-induced neuron loss and hindlimb paralysis. Neuroprotection is partly reversed by either pharmacological elimination of microglia or selective removal of IL-1R in microglia or endothelia. These data indicate that spinal cord microglia are amenable to therapeutic reprogramming via systemic manipulation and that this potential can be harnessed to protect the spinal cord from injury.SIGNIFICANCE STATEMENT Data in this report indicate that a neuroprotective spinal cord microglia response can be triggered by daily systemic injections of LPS over a period of 4 d (LPSx4). The LPSx4 regimen induces morphologic transformation and enhances proliferation of spinal cord microglia without causing neuropathology. Using advanced transgenic mouse technology, we show that IL-1-dependent microglia-endothelia cross talk is necessary for eliciting this spinal cord microglia phenotype and also for conferring optimal protection to spinal motor neurons from ischemic spinal cord injury (ISCI). Collectively, these novel data show that it is possible to consistently elicit spinal cord microglia via systemic delivery of inflammogens to achieve a therapeutically effective neuroprotective response against ISCI.
Collapse
|
67
|
Emaciation, Congestive Heart Failure, and Systemic Amyloidosis in Severe Recessive Dystrophic Epidermolysis Bullosa: Possible Internal Complications Due to Skin-Derived Inflammatory Cytokines Derived from the Injured Skin. Dermatopathology (Basel) 2020; 7:41-47. [PMID: 32937752 PMCID: PMC7583596 DOI: 10.3390/dermatopathology7020007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 09/01/2020] [Accepted: 09/07/2020] [Indexed: 11/17/2022] Open
Abstract
Inherited epidermolysis bullosa (EB) is a rare genetic skin disorder characterized by epithelial tissue fragility. Recessive dystrophic epidermolysis bullosa (RDEB) is the most severe form, characterized by the presence of blisters, erosion, and ulcer formation, leading to scarring and contraction of the limbs. RDEB is also associated with extra-cutaneous complications, including emaciation, congestive heart failure, and systemic amyloidosis. The main cause of these clinical complications is unknown; however, we hypothesized that they are caused by elevated circulating inflammatory cytokines overproduced by injured keratinocytes. We addressed this phenomenon using keratin-14 driven, caspase-1 overexpressing, transgenic (KCASP1Tg) mice in which injured keratinocytes release high levels of IL-1α and β. KCASP1Tg showed severe spontaneous dermatitis, as well as systemic complications, including aberrant weight loss, cardiovascular disease, and extensive amyloid deposition with organ dysfunction, resembling the complications observed in severe EB. These morbid conditions were partially ameliorated by simultaneous administration of anti-IL-1α and β antibodies. The skin not only constitutes a physical barrier, but also functions as the largest immune organ. We suggest a novel role for IL-1 in the pathogenesis of EB and the use of anti-IL-1 antibodies as a potential therapy for EB complications.
Collapse
|
68
|
Liu X, Boyer MA, Holmgren AM, Shin S. Legionella-Infected Macrophages Engage the Alveolar Epithelium to Metabolically Reprogram Myeloid Cells and Promote Antibacterial Inflammation. Cell Host Microbe 2020; 28:683-698.e6. [PMID: 32841604 DOI: 10.1016/j.chom.2020.07.019] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 06/18/2020] [Accepted: 07/27/2020] [Indexed: 01/05/2023]
Abstract
Alveolar macrophages are among the first immune cells that respond to inhaled pathogens. However, numerous pathogens block macrophage-intrinsic immune responses, making it unclear how robust antimicrobial responses are generated. The intracellular bacterium Legionella pneumophila inhibits host translation, thereby impairing cytokine production by infected macrophages. Nevertheless, Legionella-infected macrophages induce an interleukin-1 (IL-1)-dependent inflammatory cytokine response by recruited monocytes and other cells that controls infection. How IL-1 directs these cells to produce inflammatory cytokines is unknown. Here, we show that collaboration with the alveolar epithelium is critical for controlling infection. IL-1 induces the alveolar epithelium to produce granulocyte-macrophage colony-stimulating factor (GM-CSF). Intriguingly, GM-CSF signaling amplifies inflammatory cytokine production in recruited monocytes by enhancing Toll-like receptor (TLR)-induced glycolysis. Our findings reveal that alveolar macrophages engage alveolar epithelial signals to metabolically reprogram monocytes for antibacterial inflammation.
Collapse
Affiliation(s)
- Xin Liu
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Mark A Boyer
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alicia M Holmgren
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Sunny Shin
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
69
|
Watanabe S, Usui-Kawanishi F, Komada T, Karasawa T, Kamata R, Yamada N, Kimura H, Dezaki K, Ohmori T, Takahashi M. ASC regulates platelet activation and contributes to thrombus formation independent of NLRP3 inflammasome. Biochem Biophys Res Commun 2020; 531:125-132. [PMID: 32782151 DOI: 10.1016/j.bbrc.2020.07.063] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 07/11/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Platelets are critical mediators of vascular homeostasis and thrombosis, and also contribute to the development of inflammation. NLRP3 inflammasome is a cytosolic multi-protein complex that consists of NLRP3, ASC and caspase-1, and regulates IL-1β-mediated inflammation. METHOD AND RESULTS Using two mouse models of thrombosis (i.e., occlusion of the middle cerebral artery and inferior vena cava), we found that thrombus formation was significantly enhanced in ASC-deficient (ASC-/-) mice, compared to that in wild-type (WT) and IL-1β-/- mice. ASC deficiency had no effects on blood coagulation parameters (i.e., prothrombin time [PT] and activated partial thromboplastin time [APTT]). Platelets from WT mice express ASC, but neither NLRP3 nor caspase-1. ASC deficiency significantly enhanced the expression of P-selectin and GPIIb/IIIa in response to a GPVI agonist (collagen-related peptide [CRP]), but not to thrombin, in platelets. CRP induced ASC speck formation in WT platelets. ASC deficiency also enhanced cytosolic Ca2+ elevation and phosphorylation of ERK1/2 and Akt in platelets. CONCLUSION Our results demonstrate that ASC negatively regulates GPVI signaling in platelets and enhances thrombus formation, independent of NLRP3 inflammasome and IL-1β, and provide novel insights into the link between inflammation and thrombosis.
Collapse
Affiliation(s)
- Sachiko Watanabe
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan
| | - Fumitake Usui-Kawanishi
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan; Department of Pharmaceutical Engineering, Toyama Prefectural University, Toyama, Japan
| | - Takanori Komada
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan
| | - Tadayoshi Karasawa
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan
| | - Ryo Kamata
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan
| | - Naoya Yamada
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan
| | - Hiroaki Kimura
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan
| | - Katsuya Dezaki
- Department of Physiology, Jichi Medical University, Tochigi, Japan
| | - Tsukasa Ohmori
- Department of Biochemistry, Jichi Medical University, Tochigi, Japan
| | - Masafumi Takahashi
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan.
| |
Collapse
|
70
|
Asano M. Various biological functions of carbohydrate chains learned from glycosyltransferase-deficient mice. Exp Anim 2020; 69:261-268. [PMID: 32281559 PMCID: PMC7445053 DOI: 10.1538/expanim.20-0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Carbohydrate chains are attached to various proteins and lipids and modify their functions. The complex structures of carbohydrate chains, which have various biological functions, are involved not only in regulating protein conformation, transport, and stability but also in cell-cell and cell-matrix interactions. These functional carbohydrate structures are designated as "glyco-codes." Carbohydrate chains are constructed through complex reactions of glycosyltransferases, glycosidases, nucleotide sugars, and protein and lipid substrates in a cell. To elucidate the functions of carbohydrate chains, I and my colleagues generated and characterized knockout (KO) mice of galactosyltransferase family genes. In this review, I introduce our studies about galactosyltransferase family genes together with related studies performed by other researchers, which I presented in my award lecture for the Ando-Tajima Prize of the Japanese Association for Laboratory Animal Science (JALAS) in 2019.
Collapse
Affiliation(s)
- Masahide Asano
- Institute of Laboratory Animals, Graduate School of Medicine, Kyoto University, Yoshida-konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
71
|
Wang Y, Ashbaugh AG, Dikeman DA, Zhang J, Ackerman NE, Kim SE, Falgons C, Ortines RV, Liu H, Joyce DP, Alphonse MP, Dillen CA, Thompson JM, Archer NK, Miller LS. Interleukin-1β and tumor necrosis factor are essential in controlling an experimental orthopedic implant-associated infection. J Orthop Res 2020; 38:1800-1809. [PMID: 31975434 PMCID: PMC7354231 DOI: 10.1002/jor.24608] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/15/2020] [Accepted: 01/22/2020] [Indexed: 02/04/2023]
Abstract
Orthopedic implant-associated infection (OIAI) is a major complication that leads to implant failure. In preclinical models of Staphylococcus aureus OIAI, osteomyelitis and septic arthritis, interleukin-1α (IL-1α), IL-1β, and tumor necrosis factor (TNF) are induced, but whether they have interactive or distinctive roles in host defense are unclear. Herein, a S. aureus OIAI model was performed in mice deficient in IL-1α, IL-1β, or TNF. Mice deficient in IL-1β or TNF (to a lesser extent) but not IL-1α had increased bacterial burden at the site of the OIAI throughout the 28-day experiment. IL-1β and TNF had a combined and critical role in host defense as mice deficient in both IL-1R and TNF (IL-1R/TNF-deficient mice) had a 40% mortality rate, which was associated with markedly increased bacterial burden at the site of the OIAI infection. Finally, IL-1α- and IL-1β-deficient mice had impaired neutrophil recruitment whereas IL-1β-, TNF-, and IL-1R/TNF-deficient mice all had impaired recruitment of both neutrophils and monocytes. Therefore, IL-1β and TNF contributed to host defense against S. aureus OIAI and neutrophil recruitment was primarily mediated by IL-1β and monocyte recruitment was mediated by both IL-1β and TNF.
Collapse
Affiliation(s)
- Yu Wang
- Department of Dermatology, Johns Hopkins University School
of Medicine, Baltimore, MD, 21231, USA
| | - Alyssa G. Ashbaugh
- Department of Dermatology, Johns Hopkins University School
of Medicine, Baltimore, MD, 21231, USA
| | - Dustin A. Dikeman
- Department of Dermatology, Johns Hopkins University School
of Medicine, Baltimore, MD, 21231, USA
| | - Jeffrey Zhang
- Department of Dermatology, Johns Hopkins University School
of Medicine, Baltimore, MD, 21231, USA
| | - Nicole E. Ackerman
- Department of Dermatology, Johns Hopkins University School
of Medicine, Baltimore, MD, 21231, USA
| | - Sophie E. Kim
- Department of Dermatology, Johns Hopkins University School
of Medicine, Baltimore, MD, 21231, USA
| | - Christian Falgons
- Department of Dermatology, Johns Hopkins University School
of Medicine, Baltimore, MD, 21231, USA
| | - Roger V. Ortines
- Department of Dermatology, Johns Hopkins University School
of Medicine, Baltimore, MD, 21231, USA
| | - Haiyun Liu
- Department of Dermatology, Johns Hopkins University School
of Medicine, Baltimore, MD, 21231, USA
| | - Daniel P. Joyce
- Department of Dermatology, Johns Hopkins University School
of Medicine, Baltimore, MD, 21231, USA
| | - Martin Prince Alphonse
- Department of Dermatology, Johns Hopkins University School
of Medicine, Baltimore, MD, 21231, USA
| | - Carly A. Dillen
- Department of Dermatology, Johns Hopkins University School
of Medicine, Baltimore, MD, 21231, USA
| | - John M. Thompson
- Department of Orthopaedic Surgery, Johns Hopkins University
School of Medicine, Baltimore, MD, 21287, USA
| | - Nathan K. Archer
- Department of Dermatology, Johns Hopkins University School
of Medicine, Baltimore, MD, 21231, USA
| | - Lloyd S. Miller
- Department of Dermatology, Johns Hopkins University School
of Medicine, Baltimore, MD, 21231, USA,Department of Orthopaedic Surgery, Johns Hopkins University
School of Medicine, Baltimore, MD, 21287, USA,Department of Medicine, Division of Infectious Diseases,
Johns Hopkins University School of Medicine, Baltimore, MD, 21287, USA,Department of Materials Science and Engineering, Johns
Hopkins University, Baltimore, MD, 21218, USA.,Janssen Research and Development, Spring House, PA, 19477,
USA.,Address correspondence to Lloyd S. Miller,
, Johns Hopkins Department of
Dermatology, Cancer Research Building II, Suite 205, 1550 Orleans Street,
Baltimore, MD 21231, Phone: (410) 955-8662, Fax: (410) 955-8645
| |
Collapse
|
72
|
Ito H, Kimura H, Karasawa T, Hisata S, Sadatomo A, Inoue Y, Yamada N, Aizawa E, Hishida E, Kamata R, Komada T, Watanabe S, Kasahara T, Suzuki T, Horie H, Kitayama J, Sata N, Yamaji-Kegan K, Takahashi M. NLRP3 Inflammasome Activation in Lung Vascular Endothelial Cells Contributes to Intestinal Ischemia/Reperfusion-Induced Acute Lung Injury. THE JOURNAL OF IMMUNOLOGY 2020; 205:1393-1405. [PMID: 32727891 DOI: 10.4049/jimmunol.2000217] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 07/06/2020] [Indexed: 12/19/2022]
Abstract
Intestinal ischemia/reperfusion (I/R) injury is a life-threatening complication that leads to inflammation and remote organ damage. The NLRP3 inflammasome regulates the caspase-1-dependent release of IL-1β, an early mediator of inflammation after I/R injury. In this study, we investigated the role of the NLRP3 inflammasome in mice with intestinal I/R injury. Deficiency of NLRP3, ASC, caspase-1/11, or IL-1β prolonged survival after intestinal I/R injury, but neither NLRP3 nor caspase-1/11 deficiency affected intestinal inflammation. Intestinal I/R injury caused acute lung injury (ALI) characterized by inflammation, reactive oxygen species generation, and vascular permeability, which was markedly improved by NLRP3 deficiency. Bone marrow chimeric experiments showed that NLRP3 in non-bone marrow-derived cells was the main contributor to development of intestinal I/R-induced ALI. The NLRP3 inflammasome in lung vascular endothelial cells is thought to be important to lung vascular permeability. Using mass spectrometry, we identified intestinal I/R-derived lipid mediators that enhanced NLRP3 inflammasome activation in lung vascular endothelial cells. Finally, we confirmed that serum levels of these lipid mediators were elevated in patients with intestinal ischemia. To our knowledge, these findings provide new insights into the mechanism underlying intestinal I/R-induced ALI and suggest that endothelial NLRP3 inflammasome-driven IL-1β is a novel potential target for treating and preventing this disorder.
Collapse
Affiliation(s)
- Homare Ito
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Tochigi 329-0498, Japan.,Department of Surgery, Jichi Medical University, Tochigi 329-0498, Japan
| | - Hiroaki Kimura
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Tochigi 329-0498, Japan
| | - Tadayoshi Karasawa
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Tochigi 329-0498, Japan
| | - Shu Hisata
- Division of Pulmonary Medicine, Department of Medicine, Jichi Medical University, Tochigi 329-0498, Japan; and
| | - Ai Sadatomo
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Tochigi 329-0498, Japan.,Department of Surgery, Jichi Medical University, Tochigi 329-0498, Japan
| | - Yoshiyuki Inoue
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Tochigi 329-0498, Japan.,Department of Surgery, Jichi Medical University, Tochigi 329-0498, Japan
| | - Naoya Yamada
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Tochigi 329-0498, Japan
| | - Emi Aizawa
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Tochigi 329-0498, Japan
| | - Erika Hishida
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Tochigi 329-0498, Japan
| | - Ryo Kamata
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Tochigi 329-0498, Japan
| | - Takanori Komada
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Tochigi 329-0498, Japan
| | - Sachiko Watanabe
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Tochigi 329-0498, Japan
| | - Tadashi Kasahara
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Tochigi 329-0498, Japan
| | - Takuji Suzuki
- Division of Pulmonary Medicine, Department of Medicine, Jichi Medical University, Tochigi 329-0498, Japan; and
| | - Hisanaga Horie
- Department of Surgery, Jichi Medical University, Tochigi 329-0498, Japan
| | - Joji Kitayama
- Department of Surgery, Jichi Medical University, Tochigi 329-0498, Japan
| | - Naohiro Sata
- Department of Surgery, Jichi Medical University, Tochigi 329-0498, Japan
| | - Kazuyo Yamaji-Kegan
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, MD 21201
| | - Masafumi Takahashi
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Tochigi 329-0498, Japan;
| |
Collapse
|
73
|
Sneezum L, Eislmayr K, Dworak H, Sedlyarov V, Le Heron A, Ebner F, Fischer I, Iwakura Y, Kovarik P. Context-Dependent IL-1 mRNA-Destabilization by TTP Prevents Dysregulation of Immune Homeostasis Under Steady State Conditions. Front Immunol 2020; 11:1398. [PMID: 32733464 PMCID: PMC7358311 DOI: 10.3389/fimmu.2020.01398] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 06/01/2020] [Indexed: 12/24/2022] Open
Abstract
The bioavailability of the major pro-inflammatory cytokines IL-1α and IL-1β is tightly controlled by transcription and post-translational processing to prevent hyperinflammation. The role of mRNA decay in maintenance of physiological IL-1 amounts remained unknown. Here we show that the down-regulation of Il1a and Il1b mRNA by the mRNA-destabilizing protein TTP (gene Zfp36) is required for immune homeostasis. The TTP deficiency syndrome, a multi organ inflammation in TTP-/- mice, was significantly ameliorated upon deletion of the IL-1 receptor. Il1a and Il1b played non-redundant roles in triggering the pathological IL-1 signaling in TTP-/- mice. Accordingly, tissues from TTP-/- animals contained increased amounts of Il1b mRNA. Unexpectedly, TTP destabilized Il1b mRNA in cell type-specific ways as evident from RNA-Seq and mRNA stability assays. These results demonstrate that TTP-driven mRNA destabilization depends on the cellular context. Moreover, such context-defined mRNA decay is essential for keeping steady state IL-1 levels in the physiological range.
Collapse
Affiliation(s)
- Lucy Sneezum
- Max Perutz Labs, Vienna Biocenter, University of Vienna, Vienna, Austria
| | - Kevin Eislmayr
- Max Perutz Labs, Vienna Biocenter, University of Vienna, Vienna, Austria
| | - Helene Dworak
- Max Perutz Labs, Vienna Biocenter, University of Vienna, Vienna, Austria
| | - Vitaly Sedlyarov
- Max Perutz Labs, Vienna Biocenter, University of Vienna, Vienna, Austria
| | - Anita Le Heron
- Max Perutz Labs, Vienna Biocenter, University of Vienna, Vienna, Austria
| | - Florian Ebner
- Max Perutz Labs, Vienna Biocenter, University of Vienna, Vienna, Austria
| | - Irmgard Fischer
- Max Perutz Labs, Vienna Biocenter, University of Vienna, Vienna, Austria
| | - Yoichiro Iwakura
- Research Institute for Biomedical Sciences, Tokyo University of Science, Tokyo, Japan
| | - Pavel Kovarik
- Max Perutz Labs, Vienna Biocenter, University of Vienna, Vienna, Austria
| |
Collapse
|
74
|
Pinteaux E, Abdulaal WH, Mufazalov IA, Humphreys NE, Simonsen-Jackson M, Francis S, Müller W, Waisman A. Cell-specific conditional deletion of interleukin-1 (IL-1) ligands and its receptors: a new toolbox to study the role of IL-1 in health and disease. J Mol Med (Berl) 2020; 98:923-930. [PMID: 32468079 PMCID: PMC7343756 DOI: 10.1007/s00109-020-01928-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/15/2020] [Accepted: 05/20/2020] [Indexed: 01/08/2023]
Abstract
The pro-inflammatory cytokine interleukin-1 (IL-1) plays a key role in many physiological processes and during the inflammatory and immune response to most common diseases. IL-1 exists as two agonists, IL-1α and IL-1β that bind to the only signaling IL-1 type 1 receptor (IL-1R1), while a second decoy IL-1 type 2 receptor (IL-1R2) binds both forms of IL-1 without inducing cell signaling. The field of immunology and inflammation research has, over the past 35 years, unraveled many mechanisms of IL-1 actions, through in vitro manipulation of the IL-1 system or by using genetically engineered mouse models that lack either member of the IL-1 family in ubiquitous constitutive manner. However, the limitation of global mouse knockout technology has significantly hampered our understanding of the precise mechanisms of IL-1 actions in animal models of disease. Here we report and review the recent generation of new conditional mouse mutants in which exons of Il1a, Il1b, Il1r1, and Il1r2 genes flanked by loxP sites (fl/fl) can be deleted in cell-/tissue-specific constitutive or inducible manner by Cre recombinase expression. Hence, IL-1αfl/fl, IL-1βfl/fl, IL-1R1fl/fl, and IL-1R2fl/fl mice constitute a new toolbox that will provide a step change in our understanding of the cell-specific role of IL-1 and its receptor in health and disease and the potential development of targeted IL-1 therapies.
Collapse
Affiliation(s)
- Emmanuel Pinteaux
- Faculty of Biology, Medicine and Health, University of Manchester, AV Hill Building, Oxford Road, Manchester, M13 9PT, United Kingdom.
| | - Wesam H Abdulaal
- Faculty of Biology, Medicine and Health, University of Manchester, AV Hill Building, Oxford Road, Manchester, M13 9PT, United Kingdom
- Biochemistry Department, Faculty of Sciences, King Abdulaziz University, P.O.BOX 80203, Jeddah, 21589, Kingdom of Saudi Arabia
| | - Ilgiz A Mufazalov
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University of Mainz, Langenbeckstrasse 1, Building 308A, 55131, Mainz, Germany
| | - Neil E Humphreys
- Faculty of Biology, Medicine and Health, University of Manchester, AV Hill Building, Oxford Road, Manchester, M13 9PT, United Kingdom
- Epigenetics and Neurobiology Unit, Adriano Buzzati-Traverso Campus, EMBL-Rome, Via Ramarini, 3200015, Monterotondo, RM, Italy
| | - Maj Simonsen-Jackson
- Faculty of Biology, Medicine and Health, University of Manchester, AV Hill Building, Oxford Road, Manchester, M13 9PT, United Kingdom
| | - Sheila Francis
- Department of Infection, Immunity & Cardiovascular Disease, Medical School, University of Sheffield, S10 2RX, Sheffield, United Kingdom
| | - Werner Müller
- Faculty of Biology, Medicine and Health, University of Manchester, AV Hill Building, Oxford Road, Manchester, M13 9PT, United Kingdom
| | - Ari Waisman
- Institute for Molecular Medicine, University Medical Center of the Johannes Gutenberg-University of Mainz, Langenbeckstrasse 1, Building 308A, 55131, Mainz, Germany
| |
Collapse
|
75
|
Yoshida S, Hagiwara Y, Tsuchiya M, Shinoda M, Koide M, Hatakeyama H, Chaweewannakorn C, Suzuki K, Yano T, Sogi Y, Itaya N, Sekiguchi T, Yabe Y, Sasaki K, Kanzaki M, Itoi E. Involvement of inflammasome activation via elevation of uric acid level in nociception in a mouse model of muscle pain. Mol Pain 2020; 15:1744806919858797. [PMID: 31161887 PMCID: PMC6614954 DOI: 10.1177/1744806919858797] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Muscle pain is a common condition in many diseases and is induced by muscle
overuse. Muscle overuse induces an increase in uric acid, which stimulates the
nucleotide-binding oligomerization domain-like receptor (NLR). This receptor
contains the pyrin domain NLRP-3 inflammasome which when activated, results in
the secretion of potent pro-inflammatory cytokines such as interleukin-1β
(IL-1β). The aim of this study was to investigate the involvement of
inflammasome activation via the elevation of uric acid level in nociception in a
mouse model of muscle pain. The right hind leg muscles of BALB/c mice were
stimulated electrically to induce excessive muscle contraction. The left hind
leg muscles were not stimulated as a control. Mechanical withdrawal thresholds,
levels of uric acid, IL-1β, and NLRP3, caspase-1 activity, and the number of
macrophages were investigated. Furthermore, the effects of xanthine oxidase
inhibitors, such as Brilliant Blue G, caspase-1 inhibitor, and clodronate
liposome, on pain were investigated. In the stimulated muscles, mechanical
withdrawal thresholds decreased, and the levels of uric acid, NLRP3, and IL-1β,
caspase-1 activity, and the number of macrophages increased compared to that in
the non-stimulated muscles. Administration of the inhibitors attenuated
hyperalgesia caused by excessive muscle contraction. These results suggested
that IL-1β secretion and NLRP3 inflammasome activation in macrophages produced
mechanical hyperalgesia by elevating uric acid level, and xanthine oxidase
inhibitors may potentially reduce over-exercised muscle pain.
Collapse
Affiliation(s)
- Shinichirou Yoshida
- 1 Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yoshihiro Hagiwara
- 1 Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | | | - Masamichi Shinoda
- 3 Department of Physiology, Nihon University School of Dentistry, Tokyo, Japan
| | - Masashi Koide
- 4 Department of Orthopaedic Surgery, Matsuda Hospital, Sendai, Japan
| | - Hiroyasu Hatakeyama
- 5 Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
| | | | - Kazuaki Suzuki
- 6 Department of Orthopaedic Surgery, JR Sendai Hospital, Sendai, Japan
| | - Toshihisa Yano
- 1 Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Yasuhito Sogi
- 1 Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Nobuyuki Itaya
- 6 Department of Orthopaedic Surgery, JR Sendai Hospital, Sendai, Japan
| | - Takuya Sekiguchi
- 7 Department of Orthopaedic Surgery, Iwate Prefectural Central Hospital, Morioka, Japan
| | - Yutaka Yabe
- 1 Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Keiichi Sasaki
- 8 Division of Advanced Prosthetic Dentistry, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Makoto Kanzaki
- 5 Graduate School of Biomedical Engineering, Tohoku University, Sendai, Japan
| | - Eiji Itoi
- 1 Department of Orthopaedic Surgery, Tohoku University Graduate School of Medicine, Sendai, Japan
| |
Collapse
|
76
|
Schölwer I, Habib P, Voelz C, Rolfes L, Beyer C, Slowik A. NLRP3 Depletion Fails to Mitigate Inflammation but Restores Diminished Phagocytosis in BV-2 Cells After In Vitro Hypoxia. Mol Neurobiol 2020; 57:2588-2599. [PMID: 32239449 DOI: 10.1007/s12035-020-01909-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 03/23/2020] [Indexed: 12/30/2022]
Abstract
Post-hypoxic/ischemic neuroinflammation is selectively driven by sterile inflammation, which implies the interplay of brain-intrinsic immune cells with other neural cells and immigrated peripheral immune cells. The resultant inflammatory cascade evolves extra- and intracellular pathogen and danger-associated receptors. The latter interacts with multiprotein complexes termed inflammasomes. The NLRP3 inflammasome is one of the best-described inflammasomes. However, its impact on post-ischemic neuroinflammation and its role in neuroprotection after ischemic stroke are still under debate. Microglial cells are known to be the main source of neuroinflammation; hence, we depleted NLRP3 in BV-2 microglial cells using shRNA to investigate its role in IL-1β maturation and phagocytosis after hypoxia (oxygen-glucose-deprivation (OGD)). We also examined the expression profiles of other inflammasomes (NLRC4, AIM2, ASC) and caspase-1 activity after OGD. OGD triggered caspase-1 activity and increased IL-1β secretion in BV-2 cells with no alteration after NLRP3 depletion. The expression of the AIM2 inflammasome was significantly higher after OGD in NLRP3-depleted cells, whereas NLRC4 was unaltered in all groups. Interestingly, OGD induced a complete inactivation of phagocytic activity in wild-type cells, while in NLRP3-depleted BV-2, this inactivity was restored after hypoxia. Our findings indicate a minor role of NLRP3 in the inflammatory response after hypoxic/ischemic stimulus. However, NLRP3 seems to play a pivotal role in the regulation of post-ischemic phagocytosis. This might be a prerequisite for the putative neuroprotective effect.
Collapse
Affiliation(s)
- Isabelle Schölwer
- Institute of Neuroanatomy, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Pardes Habib
- Department of Neurology, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Clara Voelz
- Institute of Neuroanatomy, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Leoni Rolfes
- Neurology Clinic and Institute for Translational Neurology, University of Muenster, Münster, Germany
| | - Cordian Beyer
- Institute of Neuroanatomy, Medical Faculty, RWTH Aachen University, Aachen, Germany
- JARA-Brain, RWTH Aachen University, Aachen, Germany
| | - Alexander Slowik
- Institute of Neuroanatomy, Medical Faculty, RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
77
|
Vasanthakumar A, Chisanga D, Blume J, Gloury R, Britt K, Henstridge DC, Zhan Y, Torres SV, Liene S, Collins N, Cao E, Sidwell T, Li C, Spallanzani RG, Liao Y, Beavis PA, Gebhardt T, Trevaskis N, Nutt SL, Zajac JD, Davey RA, Febbraio MA, Mathis D, Shi W, Kallies A. Sex-specific adipose tissue imprinting of regulatory T cells. Nature 2020; 579:581-585. [PMID: 32103173 PMCID: PMC7241647 DOI: 10.1038/s41586-020-2040-3] [Citation(s) in RCA: 158] [Impact Index Per Article: 31.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 01/14/2020] [Indexed: 12/16/2022]
Abstract
Adipose tissue is an energy store and a dynamic endocrine organ1,2. In particular, visceral adipose tissue (VAT) is critical for the regulation of systemic metabolism3,4. Impaired VAT function-for example, in obesity-is associated with insulin resistance and type 2 diabetes5,6. Regulatory T (Treg) cells that express the transcription factor FOXP3 are critical for limiting immune responses and suppressing tissue inflammation, including in the VAT7-9. Here we uncover pronounced sexual dimorphism in Treg cells in the VAT. Male VAT was enriched for Treg cells compared with female VAT, and Treg cells from male VAT were markedly different from their female counterparts in phenotype, transcriptional landscape and chromatin accessibility. Heightened inflammation in the male VAT facilitated the recruitment of Treg cells via the CCL2-CCR2 axis. Androgen regulated the differentiation of a unique IL-33-producing stromal cell population specific to the male VAT, which paralleled the local expansion of Treg cells. Sex hormones also regulated VAT inflammation, which shaped the transcriptional landscape of VAT-resident Treg cells in a BLIMP1 transcription factor-dependent manner. Overall, we find that sex-specific differences in Treg cells from VAT are determined by the tissue niche in a sex-hormone-dependent manner to limit adipose tissue inflammation.
Collapse
Affiliation(s)
- Ajithkumar Vasanthakumar
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia.
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia.
| | - David Chisanga
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Jonas Blume
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
| | - Renee Gloury
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
| | - Kara Britt
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Darren C Henstridge
- College of Health and Medicine, School of Health Sciences, University of Tasmania, Launceston, Tasmania, Australia
| | - Yifan Zhan
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Santiago Valle Torres
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Sebastian Liene
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
- Institute of Experimental Immunology, University of Bonn, Bonn, Germany
| | - Nicholas Collins
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Enyuan Cao
- Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia
| | - Tom Sidwell
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
| | - Chaoran Li
- Department of Immunology, Harvard Medical School, Boston, MA, USA
| | | | - Yang Liao
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Paul A Beavis
- Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia
| | - Thomas Gebhardt
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia
| | - Natalie Trevaskis
- Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia
| | - Stephen L Nutt
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
| | - Jeffrey D Zajac
- Department of Medicine, Austin Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Rachel A Davey
- Department of Medicine, Austin Health, The University of Melbourne, Melbourne, Victoria, Australia
| | - Mark A Febbraio
- Monash Institute of Pharmaceutical Sciences, Parkville, Victoria, Australia
| | - Diane Mathis
- Department of Immunology, Harvard Medical School, Boston, MA, USA
| | - Wei Shi
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
- Department of Computing and Information Systems, The University of Melbourne, Melbourne, Victoria, Australia
| | - Axel Kallies
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, Victoria, Australia.
- The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia.
| |
Collapse
|
78
|
Nosaka N, Martinon D, Moreira D, Crother TR, Arditi M, Shimada K. Autophagy Protects Against Developing Increased Lung Permeability and Hypoxemia by Down Regulating Inflammasome Activity and IL-1β in LPS Plus Mechanical Ventilation-Induced Acute Lung Injury. Front Immunol 2020; 11:207. [PMID: 32117318 PMCID: PMC7033480 DOI: 10.3389/fimmu.2020.00207] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 01/27/2020] [Indexed: 01/04/2023] Open
Abstract
Targeting inflammasome activation to modulate interleukin (IL)-1β is a promising treatment strategy against acute respiratory distress syndrome and ventilator-induced lung injury (VILI). Autophagy is a key regulator of inflammasome activation in macrophages. Here, we investigated the role of autophagy in the development of acute lung injury (ALI) induced by lipopolysaccharide (LPS) and mechanical ventilation (MV). Two hours before starting MV, 0.2 mg/kg LPS was administered to mice intratracheally. Mice were then placed on high-volume MV (30 ml/kg with 3 cmH2O positive end-expiratory pressure for 2.5 h without additional oxygen application). Mice with myeloid-specific deletion of the autophagic protein ATG16L1 (Atg16l1fl/flLysMCre) suffered severe hypoxemia (adjusted p < 0.05) and increased lung permeability (p < 0.05, albumin level in bronchoalveolar lavage fluid) with significantly higher IL-1β release into alveolar space (p < 0.05). Induction of autophagy by fasting-induced starvation led to improved arterial oxygenation (adjusted p < 0.0001) and lung permeability (p < 0.05), as well as significantly suppressed IL-1β production (p < 0.01). Intratracheal treatment with anti-mouse IL-1β monoclonal antibody (mAb; 2.5 mg/kg) significantly improved arterial oxygenation (adjusted p < 0.01) as well as lung permeability (p < 0.05). On the other hand, deletion of IL-1α gene or use of anti-mouse IL-1α mAb (2.5 mg/kg) provided no significant protection, suggesting that the LPS and MV-induced ALI is primarily dependent on IL-1β, but independent of IL-1α. These observations suggest that autophagy has a protective role in controlling inflammasome activation and production of IL-1β, which plays a critical role in developing hypoxemia and increased lung permeability in LPS plus MV-induced acute lung injury.
Collapse
Affiliation(s)
- Nobuyuki Nosaka
- Division of Infectious Diseases and Immunology, Department of Pediatrics, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Daisy Martinon
- Division of Infectious Diseases and Immunology, Department of Pediatrics, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Debbie Moreira
- Division of Infectious Diseases and Immunology, Department of Pediatrics, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Timothy R Crother
- Division of Infectious Diseases and Immunology, Department of Pediatrics, Cedars-Sinai Medical Center, Los Angeles, CA, United States.,Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Moshe Arditi
- Division of Infectious Diseases and Immunology, Department of Pediatrics, Cedars-Sinai Medical Center, Los Angeles, CA, United States.,Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| | - Kenichi Shimada
- Division of Infectious Diseases and Immunology, Department of Pediatrics, Cedars-Sinai Medical Center, Los Angeles, CA, United States.,Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, United States
| |
Collapse
|
79
|
Anzai F, Watanabe S, Kimura H, Kamata R, Karasawa T, Komada T, Nakamura J, Nagi-Miura N, Ohno N, Takeishi Y, Takahashi M. Crucial role of NLRP3 inflammasome in a murine model of Kawasaki disease. J Mol Cell Cardiol 2019; 138:185-196. [PMID: 31836541 DOI: 10.1016/j.yjmcc.2019.11.158] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 11/13/2019] [Accepted: 11/25/2019] [Indexed: 12/19/2022]
Abstract
Kawasaki disease (KD) is a systemic febrile syndrome during childhood that is characterized by coronary arteritis. The etiopathogenesis of KD remains to be elucidated. NLRP3 inflammasome is a large multiprotein complex that plays a key role in IL-1β-driven sterile inflammatory diseases. In the present study, we investigated the role of NLRP3 inflammasome in a murine model of KD induced by Candida albicans water-soluble fraction (CAWS) and found that NLRP3 inflammasome is required for the development of CAWS-induced vasculitis. CAWS administration induced IL-1β production, caspase-1 activation, leukocyte infiltration, and fibrotic changes in the aortic root and coronary arteries, which were significantly inhibited by a deficiency of IL-1β, NLRP3, and ASC. In vitro experiments showed that among cardiac resident cells, macrophages, but not endothelial cells or fibroblasts, expressed Dectin-2, but did not produce IL-1β in response to CAWS. In contrast, CAWS induced caspase-1 activation and IL-1β production in bone marrow-derived dendritic cells (BMDCs), which were inhibited by a specific caspase-1 inhibitor and a deficiency of NLRP3, ASC, and caspase-1. CAWS induced NLRP3 and pro-IL-1β expression through a Dectin-2/Syk/JNK/NF-κB pathway, and caspase-1 activation and cleavage of pro-IL-1β through Dectin-2/Syk/JNK-mediated mitochondrial ROS generation, indicating that CAWS induces the priming and activation of NLRP3 inflammasome in BMDCs. These findings provide new insights into the pathogenesis of KD vasculitis, and suggest that NLRP3 inflammasome may be a potential therapeutic target for KD.
Collapse
Affiliation(s)
- Fumiya Anzai
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan; Department of Cardiovascular Medicine, Fukushima Medical University, Fukushima, Japan
| | - Sachiko Watanabe
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan
| | - Hiroaki Kimura
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan
| | - Ryo Kamata
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan
| | - Tadayoshi Karasawa
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan
| | - Takanori Komada
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan
| | - Jun Nakamura
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan
| | - Noriko Nagi-Miura
- Laboratory for Immunopharmacology of Microbial Products, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Naohito Ohno
- Laboratory for Immunopharmacology of Microbial Products, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, Japan
| | - Yasuchika Takeishi
- Department of Cardiovascular Medicine, Fukushima Medical University, Fukushima, Japan
| | - Masafumi Takahashi
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University, Tochigi, Japan.
| |
Collapse
|
80
|
Kany S, Vollrath JT, Relja B. Cytokines in Inflammatory Disease. Int J Mol Sci 2019; 20:ijms20236008. [PMID: 31795299 PMCID: PMC6929211 DOI: 10.3390/ijms20236008] [Citation(s) in RCA: 1115] [Impact Index Per Article: 185.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/24/2019] [Accepted: 11/25/2019] [Indexed: 12/31/2022] Open
Abstract
This review aims to briefly discuss a short list of a broad variety of inflammatory cytokines. Numerous studies have implicated that inflammatory cytokines exert important effects with regard to various inflammatory diseases, yet the reports on their specific roles are not always consistent. They can be used as biomarkers to indicate or monitor disease or its progress, and also may serve as clinically applicable parameters for therapies. Yet, their precise role is not always clearly defined. Thus, in this review, we focus on the existing literature dealing with the biology of cytokines interleukin (IL)-6, IL-1, IL-33, tumor necrosis factor-alpha (TNF-α), IL-10, and IL-8. We will briefly focus on the correlations and role of these inflammatory mediators in the genesis of inflammatory impacts (e.g., shock, trauma, immune dysregulation, osteoporosis, and/or critical illness).
Collapse
Affiliation(s)
- Shinwan Kany
- Experimental Radiology, Department of Radiology and Nuclear Medicine, Otto von Guericke University Magdeburg, 39120 Magdeburg, Germany;
- Department of Cardiology with Emphasis on Electrophysiology, University Heart Centre, University Hospital Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Jan Tilmann Vollrath
- Department of Trauma, Hand and Reconstructive Surgery, Goethe University, 60590 Frankfurt, Germany
| | - Borna Relja
- Experimental Radiology, Department of Radiology and Nuclear Medicine, Otto von Guericke University Magdeburg, 39120 Magdeburg, Germany
- Correspondence: ; Tel.: +49-391-6721395
| |
Collapse
|
81
|
Yoshizaki T, Itoh S, Yamaguchi S, Numata T, Nambu A, Kimura N, Suto H, Okumura K, Sudo K, Yamaguchi A, Nakae S. IL-25 exacerbates autoimmune aortitis in IL-1 receptor antagonist-deficient mice. Sci Rep 2019; 9:17067. [PMID: 31745167 PMCID: PMC6864066 DOI: 10.1038/s41598-019-53633-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 11/04/2019] [Indexed: 12/12/2022] Open
Abstract
IL-25, a member of the IL-17 family of cytokines, is known to enhance type 2 immune responses, but suppress type 3 (IL-17A)-mediated immune responses. Mice deficient in IL-1 receptor antagonist (Il1rn−/− mice) have excessive IL-1 signaling, resulting in spontaneous development of IL-1–, TNF– and IL-17A–dependent aortitis. We found that expression of II25 mRNA was increased in the aortae of Il1rn−/− mice, suggesting that IL-25 may suppress development of IL-1–, TNF– and IL-17A–dependent aortitis in Il1rn−/− mice by inhibiting type 3-mediated immune responses. However, we unexpectedly found that Il25−/−Il1rn−/− mice showed attenuated development of aortitis, accompanied by reduced accumulation of inflammatory cells such as dendritic cells, macrophages and neutrophils and reduced mRNA expression of Il17a and Tnfa—but not Il4 or Il13—in local lesions compared with Il1rn−/− mice. Tissue–, but not immune cell–, derived IL-25 was crucial for development of aortitis. IL-25 enhanced IL-1β and TNF production by IL-25 receptor–expressing dendritic cells and macrophages, respectively, at inflammatory sites of aortae of Il1rn−/− mice, contributing to exacerbation of development of IL-1–, TNF– and IL-17A–dependent aortitis in those mice. Our findings suggest that neutralization of IL-25 may be a potential therapeutic target for aortitis.
Collapse
Affiliation(s)
- Takamichi Yoshizaki
- Laboratory of Systems Biology, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan.,Department of Cardiovascular Surgery, Saitama Medical Center, Jichi Medical University, Saitama, 330-8503, Japan
| | - Satoshi Itoh
- Department of Cardiovascular Surgery, Saitama Medical Center, Jichi Medical University, Saitama, 330-8503, Japan
| | - Sachiko Yamaguchi
- Laboratory of Systems Biology, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan
| | - Takafumi Numata
- Laboratory of Systems Biology, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan.,Department of Dermatology, Tokyo Medical University, Tokyo, 160-0023, Japan
| | - Aya Nambu
- Laboratory of Systems Biology, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan
| | - Naoyuki Kimura
- Laboratory of Systems Biology, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan.,Department of Cardiovascular Surgery, Saitama Medical Center, Jichi Medical University, Saitama, 330-8503, Japan
| | - Hajime Suto
- Atopy Research Center, Juntendo University School of Medicine, Tokyo, 113-8412, Japan
| | - Ko Okumura
- Atopy Research Center, Juntendo University School of Medicine, Tokyo, 113-8412, Japan
| | - Katsuko Sudo
- Animal Research Center, Tokyo Medical University, Tokyo, 160-8402, Japan
| | - Atsushi Yamaguchi
- Department of Cardiovascular Surgery, Saitama Medical Center, Jichi Medical University, Saitama, 330-8503, Japan
| | - Susumu Nakae
- Laboratory of Systems Biology, Center for Experimental Medicine and Systems Biology, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan. .,Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency, Saitama, 332-0012, Japan.
| |
Collapse
|
82
|
Kany S, Janicova A, Relja B. Innate Immunity and Alcohol. J Clin Med 2019; 8:jcm8111981. [PMID: 31739600 PMCID: PMC6912266 DOI: 10.3390/jcm8111981] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 11/11/2019] [Accepted: 11/11/2019] [Indexed: 02/07/2023] Open
Abstract
The innate immunity has evolved during millions of years, and thus, equivalent or comparable components are found in most vertebrates, invertebrates, and even plants. It constitutes the first line of defense against molecules, which are either pathogen-derived or a danger signal themselves, and not seldom both. These molecular patterns are comprised of highly conserved structures, a common trait in innate immunity, and constitute very potent triggers for inflammation mediated via extracellular or intracellular pattern recognition receptors. Human culture is often interweaved with the consumption of alcohol, in both drinking habits, its acute or chronical misuse. Apart from behavioral effects as often observed in intoxicated individuals, alcohol consumption also leads to immunological modulation on the humoral and cellular levels. In the last 20 years, major advances in this field of research have been made in clinical studies, as well as in vitro and in vivo research. As every physician will experience intoxicated patients, it is important to be aware of the changes that this cohort undergoes. This review will provide a summary of the current knowledge on the influence of alcohol consumption on certain factors of innate immunity after a hit, followed by the current studies that display the effect of alcohol with a description of the model, the mode of alcohol administration, as well as its dose. This will provide a way for the reader to evaluate the findings presented.
Collapse
|
83
|
Schwartz C, Moran T, Saunders SP, Kaszlikowska A, Floudas A, Bom J, Nunez G, Iwakura Y, O’Neill L, Irvine AD, McKenzie ANJ, Ogg G, Walsh PT, Demengeot J, Fallon PG. Spontaneous atopic dermatitis in mice with a defective skin barrier is independent of ILC2 and mediated by IL-1β. Allergy 2019; 74:1920-1933. [PMID: 30937919 PMCID: PMC6850072 DOI: 10.1111/all.13801] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 02/07/2019] [Accepted: 03/05/2019] [Indexed: 12/15/2022]
Abstract
BACKGROUND Atopic dermatitis (AD) is one of the most common skin diseases with a multifactorial etiology. Mutations leading to loss of skin barrier function are associated with the development of AD with group 2 innate lymphoid cells (ILC2) promoting acute skin inflammation. Filaggrin-mutant (Flgft/ft ) mice develop spontaneous skin inflammation accompanied by an increase in skin ILC2 numbers, IL-1β production, and other cytokines recapitulating human AD. Here, we investigated the role of ILC2, effector cytokines, inflammasome activation, and mast cell function on the development of chronic AD-like inflammation in mice. METHODS Mice with a frameshift mutation in the filaggrin gene develop spontaneous dermatitis. Flgft/ft mice were crossed to cell- or cytokine-deficient mouse strains, or bred under germ-free conditions. Skin inflammation was scored, and microbiome composition was analyzed. Skin protein expression was measured by multiplex immunoassay. Infiltrating cells were analyzed by flow cytometry. RESULTS Wild-type and Flgft/ft mice significantly differ in their microbiome composition. Furthermore, mutant mice do not develop skin inflammation under germ-free conditions. ILC2 deficiency did not ameliorate chronic dermatitis in Flgft/ft mice, which was also independent of IL-4, IL-5, IL-9, IL-13, IL-17A, and IL-22. Inflammation was independent of NLRP3 inflammasome activation but required IL-1β and IL-1R1-signaling. Mechanistically, IL-1β promoted hyperactivation of IL-1R1-expressing mast cells. Treatment with anti-IL-1β-antibody alleviated dermatitis exacerbation, while antibiotic intervention ameliorated dermatitis in neonatal mice but not in adults with established inflammation. CONCLUSIONS In summary, we identified a critical role for the microbiome and IL-1β mediating chronic inflammation in mice with an impaired skin barrier.
Collapse
Affiliation(s)
- Christian Schwartz
- School of MedicineTrinity Biomedical Sciences Institute, Trinity College DublinDublinIreland
- Mikrobiologisches Institut ‐ Klinische Mikrobiologie, Immunologie und HygieneUniversitätsklinikum Erlangen and Friedrich‐Alexander Universität (FAU) Erlangen‐NürnbergErlangenGermany
| | - Tara Moran
- School of MedicineTrinity Biomedical Sciences Institute, Trinity College DublinDublinIreland
- National Children’s Research Centre, Our Lady’s Children’s HospitalDublinIreland
| | - Sean P. Saunders
- School of MedicineTrinity Biomedical Sciences Institute, Trinity College DublinDublinIreland
- National Children’s Research Centre, Our Lady’s Children’s HospitalDublinIreland
| | - Agnieszka Kaszlikowska
- School of MedicineTrinity Biomedical Sciences Institute, Trinity College DublinDublinIreland
- National Children’s Research Centre, Our Lady’s Children’s HospitalDublinIreland
| | - Achilleas Floudas
- School of MedicineTrinity Biomedical Sciences Institute, Trinity College DublinDublinIreland
- National Children’s Research Centre, Our Lady’s Children’s HospitalDublinIreland
| | - Joana Bom
- Instituto Gulbenkian de CiênciaOeirasPortugal
| | - Gabriel Nunez
- Department of Pathology and Comprehensive Cancer CenterUniversity of Michigan Medical SchoolAnn ArborMichigan
| | - Yoichiro Iwakura
- Research Institute for Biomedical SciencesTokyo University of ScienceChibaJapan
| | - Luke O’Neill
- School of Biochemistry and ImmunologyTrinity Biomedical Sciences Institute, Trinity College DublinDublinIreland
| | - Alan D. Irvine
- National Children’s Research Centre, Our Lady’s Children’s HospitalDublinIreland
- Department of Paediatric DermatologyOur Lady’s Children’s HospitalDublinIreland
| | | | - Graham Ogg
- MRC Human Immunology Unit, Weatherall Institute of Molecular MedicineJohn Radcliffe HospitalUniversity of OxfordOxfordUK
| | - Patrick T. Walsh
- National Children’s Research Centre, Our Lady’s Children’s HospitalDublinIreland
- Trinity Translational Medicine Institute, St James’s Hospital, Trinity College DublinDublinIreland
| | | | - Padraic G. Fallon
- School of MedicineTrinity Biomedical Sciences Institute, Trinity College DublinDublinIreland
- National Children’s Research Centre, Our Lady’s Children’s HospitalDublinIreland
- Trinity Translational Medicine Institute, St James’s Hospital, Trinity College DublinDublinIreland
| |
Collapse
|
84
|
Hancz D, Westerlund E, Valfridsson C, Aemero GM, Bastiat-Sempe B, Orning P, Lien E, Wessels MR, Persson JJ. Streptolysin O Induces the Ubiquitination and Degradation of Pro-IL-1β. J Innate Immun 2019; 11:457-468. [PMID: 30889575 PMCID: PMC6758947 DOI: 10.1159/000496403] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 11/28/2018] [Indexed: 01/11/2023] Open
Abstract
Group A Streptococcus (GAS) is a common and versatile human pathogen causing a variety of diseases. One of the many virulence factors of GAS is the secreted pore-forming cytotoxin streptolysin O (SLO), which has been ascribed multiple properties, including inflammasome activation leading to release of the potent inflammatory cytokine IL-1β from infected macrophages. IL-1β is synthesized as an inactive pro-form, which is activated intracellularly through proteolytic cleavage. Here, we use a macrophage infection model to show that SLO specifically induces ubiquitination and degradation of pro-IL-1β. Ubiquitination was dependent on SLO being released from the infecting bacterium, and pore formation by SLO was required but not sufficient for the induction of ubiquitination. Our data provide evidence for a novel SLO-mediated mechanism of immune regulation, emphasizing the importance of this pore-forming toxin in bacterial virulence and pathogenesis.
Collapse
Affiliation(s)
- Dóra Hancz
- Immunology Section, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Elsa Westerlund
- Immunology Section, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Christine Valfridsson
- Immunology Section, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Getachew Melkamu Aemero
- Immunology Section, Department of Experimental Medical Sciences, Lund University, Lund, Sweden
| | - Benedicte Bastiat-Sempe
- Division of Infectious Diseases, Boston Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Pontus Orning
- Program in Innate Immunity, Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA,Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Egil Lien
- Program in Innate Immunity, Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, Massachusetts, USA,Centre of Molecular Inflammation Research, Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Michael R. Wessels
- Division of Infectious Diseases, Boston Children's Hospital and Department of Pediatrics, Harvard Medical School, Boston, Massachusetts, USA
| | - Jenny J. Persson
- Immunology Section, Department of Experimental Medical Sciences, Lund University, Lund, Sweden,*Prof. Jenny J. Persson, Immunology Section, Department of Experimental Medical Sciences, Lund University, BMC D14, SE–221 84 Lund (Sweden), E-Mail
| |
Collapse
|
85
|
Orsini F, Fumagalli S, Császár E, Tóth K, De Blasio D, Zangari R, Lénárt N, Dénes Á, De Simoni MG. Mannose-Binding Lectin Drives Platelet Inflammatory Phenotype and Vascular Damage After Cerebral Ischemia in Mice via IL (Interleukin)-1α. Arterioscler Thromb Vasc Biol 2019; 38:2678-2690. [PMID: 30354247 PMCID: PMC6221395 DOI: 10.1161/atvbaha.118.311058] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Supplemental Digital Content is available in the text. Objective— Circulating complement factors are activated by tissue damage and contribute to acute brain injury. The deposition of MBL (mannose-binding lectin), one of the initiators of the lectin complement pathway, on the cerebral endothelium activated by ischemia is a major pathogenic event leading to brain injury. The molecular mechanisms through which MBL influences outcome after ischemia are not understood yet. Approach and Results— Here we show that MBL-deficient (MBL−/−) mice subjected to cerebral ischemia display better flow recovery and less plasma extravasation in the brain than wild-type mice, as assessed by in vivo 2-photon microscopy. This results in reduced vascular dysfunction as shown by the shift from a pro- to an anti-inflammatory vascular phenotype associated with MBL deficiency. We also show that platelets directly bind MBL and that platelets from MBL−/− mice have reduced inflammatory phenotype as indicated by reduced IL-1α (interleukin-1α) content, as early as 6 hours after ischemia. Cultured human brain endothelial cells subjected to oxygen-glucose deprivation and exposed to platelets from MBL−/− mice present less cell death and lower CXCL1 (chemokine [C-X-C motif] ligand 1) release (downstream to IL-1α) than those exposed to wild-type platelets. In turn, MBL deposition on ischemic vessels significantly decreases after ischemia in mice treated with IL-1 receptor antagonist compared with controls, indicating a reciprocal interplay between MBL and IL-1α facilitating endothelial damage. Conclusions— We propose MBL as a hub of pathogenic vascular events. It acts as an early trigger of platelet IL-1α release, which in turn favors MBL deposition on ischemic vessels promoting an endothelial pro-inflammatory phenotype.
Collapse
Affiliation(s)
- Franca Orsini
- From the Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy (F.O., S.F., D.D.B., R.Z., M.-G.D.S.)
| | - Stefano Fumagalli
- From the Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy (F.O., S.F., D.D.B., R.Z., M.-G.D.S.)
| | - Eszter Császár
- Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary (E.C., K.T., N.L., A.D.)
| | - Krisztina Tóth
- Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary (E.C., K.T., N.L., A.D.)
| | - Daiana De Blasio
- From the Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy (F.O., S.F., D.D.B., R.Z., M.-G.D.S.)
| | - Rosalia Zangari
- From the Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy (F.O., S.F., D.D.B., R.Z., M.-G.D.S.)
| | - Nikolett Lénárt
- Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary (E.C., K.T., N.L., A.D.)
| | - Ádám Dénes
- Laboratory of Neuroimmunology, Institute of Experimental Medicine, Budapest, Hungary (E.C., K.T., N.L., A.D.)
| | - Maria-Grazia De Simoni
- From the Department of Neuroscience, Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Milano, Italy (F.O., S.F., D.D.B., R.Z., M.-G.D.S.)
| |
Collapse
|
86
|
Gorth DJ, Shapiro IM, Risbud MV. A New Understanding of the Role of IL-1 in Age-Related Intervertebral Disc Degeneration in a Murine Model. J Bone Miner Res 2019; 34:1531-1542. [PMID: 30875127 PMCID: PMC6697204 DOI: 10.1002/jbmr.3714] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 03/05/2019] [Accepted: 03/10/2019] [Indexed: 12/25/2022]
Abstract
Increased cytokine expression, in particular interleukin-1β (IL-1β), is considered a hallmark of intervertebral disc degeneration. However, the causative relationship between IL-1 and age-dependent degeneration has not been established. To investigate the role of IL-1 in driving age-related disc degeneration, we studied the spine phenotype of global IL-1α/β double knockout (IL-1KO) mice at 12 and 20 months. Multiplex ELISA analysis of blood revealed significant reductions in the concentrations of IFN-γ, IL-5, IL-15, TNF-α, IP-10, and a trend of reduced concentrations of IL-10, macrophage inflammatory protein 1α (MIP-1α), keratinocyte chemoattractant/human growth-regulated oncogene (KC/GRO), and IL-6. However, the circulating level of MIP-2, a neutrophil chemoattractant, was increased in the IL-1KO. The alterations in systemic cytokine levels coincided with altered bone morphology-IL-1KO mice exhibited significantly thicker caudal cortical bone at 12 and 20 months. Despite these systemic inflammatory and bony changes, IL-1 deletion only minimally affected disc health. Both wild-type (WT) and IL-1KO mice showed age-dependent disc degeneration. Unexpectedly, rather than protecting the animals from degeneration, the aging phenotype was more pronounced in IL-1KO animals: knockout mice evidenced significantly more degenerative changes in the annulus fibrosis (AF) together with alterations in collagen type and maturity. At 20 months, there were no changes in nucleus pulposus (NP) extracellular matrix composition or cellular marker expression; however, the IL-1KO NP cells occupied a smaller proportion of the NP compartment that those of WT controls. Taken together, these results show that IL-1 deletion altered the systemic inflammatory environment and vertebral bone morphology. However, instead of protecting discs from age-related disc degeneration, global IL-1 deletion amplified the degenerative phenotype. © 2019 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Deborah J Gorth
- Department of Orthopaedic Surgery and Graduate Program in Cell Biology and Regenerative Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - Irving M Shapiro
- Department of Orthopaedic Surgery and Graduate Program in Cell Biology and Regenerative Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - Makarand V Risbud
- Department of Orthopaedic Surgery and Graduate Program in Cell Biology and Regenerative Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
87
|
Li J, Gu Y, An H, Zhou Z, Zheng D, Wang Z, Wen Z, Shen HY, Wang Q, Wang H. Cerebrospinal fluid light and heavy neurofilament level increased in anti-N-methyl-d-aspartate receptor encephalitis. Brain Behav 2019; 9:e01354. [PMID: 31313506 PMCID: PMC6710226 DOI: 10.1002/brb3.1354] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Revised: 06/01/2019] [Accepted: 06/08/2019] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND Neurofilaments (Nf) are a series of highly specific scaffolding proteins of neurons. Neurofilament light chains (Nf-L) and the heavy one (Nf-H) are subunits of Nf, and they are recognized as potent productions of neural damage. The concentrations of Nf aggrandized significantly in neurological disease including neuromyelitis optica, multiple sclerosis, and Alzheimer's disease. However, whether Nf in cerebrospinal fluid (CSF) elevated in anti-N-methyl-d-aspartate receptor (NMDAR) encephalitis is unclear. Here, we aimed to detect whether CSF Nf is altered in NMDAR and whether changes in CSF Nf can serve as an objective and effective biomarker to evaluate disease severity and prognosis. METHODS We collected 24 anti-NMDAR encephalitis patients, 11 viral meningoencephalitis/encephalitis (VM) patients, and 21 controls in this study. CSF Nf-L, Nf-H, and cytokine levels (IL-1β, IL-6, and IL-17A) were determined by enzyme-linked immunosorbent assay (ELISA) and compared between groups. We evaluated patients' clinical outcomes or prognosis according to modified Rankin scale (mRS) score. RESULTS Compared with controls, both CSF Nf-L and Nf-H levels were significantly increased in anti-NMDAR encephalitis patients. While compared with VM patients, only Nf-L were increased in anti-NMDAR encephalitis patients. Moreover, CSF Nf-L were positively correlated with concentration of cytokines (IL-1β, IL-17A) and mRS scores in anti-NMDAR encephalitis patients. After treatment, both CSF Nf-L and Nf-H levels decreased. Furthermore, the Nf-L during follow-up positively correlated with 3-month mRS scores, and ΔNf-L positively correlated with ΔmRS. CONCLUSIONS Briefly, CSF Nf-L levels notably increased in anti-NMDAR encephalitis patients in acute phase and positively correlated with disease severity. It could be considered as a useful indicator for clinical outcomes and prognosis.
Collapse
Affiliation(s)
- Jiayu Li
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yong Gu
- Department of Encephalopathy, Hainan Provincial Hospital of Traditional Chinese Medicine, Haikou, China
| | - Hongwei An
- Department of Neurology, Liuzhou Traditional Chinese Medical Hospital, Liuzhou, China
| | - Zheyi Zhou
- Department of Neurology, Liuzhou Traditional Chinese Medical Hospital, Liuzhou, China
| | - Dong Zheng
- Department of Neurology, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhanhang Wang
- Department of Neurology, 999 Brain Hospital, Guangzhou, China
| | - Zehuai Wen
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hai-Ying Shen
- RS Dow Neurobiology Laboratories, Legacy Research Institute, Portland, Oregon
| | - Qi Wang
- Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Honghao Wang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
88
|
Chen Y, Yu CY, Deng WM. The role of pro-inflammatory cytokines in lipid metabolism of metabolic diseases. Int Rev Immunol 2019; 38:249-266. [PMID: 31353985 DOI: 10.1080/08830185.2019.1645138] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Adipose tissue has been considered as a crucial source of certain pro-inflammatory cytokines; conversely, these pro-inflammatory cytokines are involved in regulating the proliferation and apoptosis of adipocytes, promoting lipolysis, inhibiting lipid synthesis and decreasing blood lipids, etc. In recent decades, extensive studies have indicated that pro-inflammatory cytokines play important roles in the development of lipid metabolism of metabolic diseases, including obesity, atherosclerosis, steatohepatitis and hyperlipoproteinemia. However, the involved pro-inflammatory cytokines types and the underlying mechanisms remain largely unknown. The "re-discovery" of cancer as a metabolic disorder largely occurred in the last five years. Although pro-inflammatory cytokines have been intensively investigated in cancer research, there are very few studies about the roles of pro-inflammatory cytokines in the lipid metabolism of cancer. In the current review, we provide an overview of the progress that has been made in the roles of different pro-inflammatory cytokines in lipid metabolism of metabolic diseases including cancer.
Collapse
Affiliation(s)
- Yan Chen
- Department of Immunology, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Diseases and Microenvironment of Ministry of Education of China, Tianjin Medical University, Tianjin, China
| | - Chun-Yan Yu
- Department of Immunology, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Diseases and Microenvironment of Ministry of Education of China, Tianjin Medical University, Tianjin, China
| | - Wei-Min Deng
- Department of Immunology, Tianjin Key Laboratory of Cellular and Molecular Immunology, Key Laboratory of Diseases and Microenvironment of Ministry of Education of China, Tianjin Medical University, Tianjin, China
| |
Collapse
|
89
|
AIM2 inflammasome-derived IL-1β induces postoperative ileus in mice. Sci Rep 2019; 9:10602. [PMID: 31332247 PMCID: PMC6646358 DOI: 10.1038/s41598-019-46968-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 07/05/2019] [Indexed: 02/08/2023] Open
Abstract
Postoperative ileus (POI) is an intestinal dysmotility frequently occurring after abdominal surgery. An orchestrated neuroimmune response within the muscularis externa (ME) involves activation of resident macrophages, enteric glia and infiltration of blood-derived leukocytes. Interleukin-1 receptor type-I (IL1R1) signalling on enteric glia has been shown to be involved in POI development. Herein we investigated the distinct role of the IL1R1 ligands interleukin (IL) -1α and IL-1β and focused on the mechanism of IL-1β production. IL-1α and IL-1β deficient mice were protected from POI. Bone-marrow transplantation studies indicated that IL-1α originated from radio-resistant cells while IL-1β was released from the radio-sensitive infiltrating leukocytes. Mouse strains deficient in inflammasome formation identified the absent in melanoma 2 (AIM2) inflammasome to be crucial for IL-1β production in POI. Mechanistically, antibiotic-treated mice revealed a prominent role of the microbiome in IL-1β production. Our study provides new insights into distinct roles of IL-1α and IL-1β signalling during POI. While IL-1α release is most likely an immediate passive response to the surgical trauma, IL-1β production depends on AIM2 inflammasome formation and the microbiome. Selective interaction in this pathway might be a promising target to prevent POI in surgical patients.
Collapse
|
90
|
Bando K, Kuroishi T, Sugawara S, Endo Y. Interleukin-1 and histamine are essential for inducing nickel allergy in mice. Clin Exp Allergy 2019; 49:1362-1373. [PMID: 31325186 DOI: 10.1111/cea.13467] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 07/09/2019] [Accepted: 07/12/2019] [Indexed: 01/12/2023]
Abstract
BACKGROUND We previously reported that (a) lipopolysaccharide (LPS) is a potent adjuvant for inducing Nickel (Ni) allergy in mice at both the sensitization and elicitation steps, (b) LPS induces Interleukin-1 (IL-1) and histidine decarboxylase (HDC, the histamine-forming enzyme), and IL-1 induces HDC, (c) Ni allergy is induced in mast cell-deficient, but not IL-1-deficient (IL-1-KO) or HDC-KO mice. OBJECTIVE To examine the roles of IL-1 and HDC (or histamine) and their interrelationship during the establishment of Ni allergy. METHODS Ni (NiCl2 ) 1 mmol/L containing IL-1β and/or histamine was injected intraperitoneally (sensitization step). Ten days later, test substance(s) were intradermally injected into ear pinnas (elicitation step), and ear swelling was measured. RESULTS In wild-type mice, Ni + LPS or Ni + IL-1β injection at sensitization step followed by Ni alone at elicitation step induced Ni allergy. In IL-1-KO, injection of Ni + IL-1β (but not Ni + histamine) was required at both sensitization and elicitation steps to induce Ni allergy. In HDC-KO, Ni + IL-1β + histamine at sensitization step followed by Ni + histamine at elicitation step induced Ni allergy. In histamine H1 receptor-deficient mice, IL-1β induced HDC, but was ineffective as an adjuvant for inducing Ni allergy. In wild-type mice, injection into ear pinnas of Ni 10 mmol/L alone or Ni 1 mmol/L + LPS induced IL-1β, HDC and a prolonged swelling of ear pinnas. In non-sensitized mice, injection of IL-1β by itself into ear pinnas in IL-1-KO mice induced prolonged ear swelling. Ni augmented IL-1 production (both IL-1α and IL-1β) and HDC induction in wild-type mice sensitized to Ni. CONCLUSIONS In mice: (a) for inducing Ni allergy, IL-1 is essential at both the sensitization and elicitation steps, and HDC induction is involved in the effect of IL-1, (b) stimulation of H1 receptor is also essential for inducing Ni allergy at both sensitization and elicitation steps, and (c) the 'sensitization to Ni' state may be a state where tissues are primed for augmented production of IL-1α and/or IL-1β in response to Ni. (within 300 words, now 300).
Collapse
Affiliation(s)
- Kanan Bando
- Division of Orthodontics and Dentofacial Orthopedics, Graduate School of Dentistry, Tohoku University, Sendai, Japan
| | - Toshinobu Kuroishi
- Division of Oral Immunology, Department of Oral Biology, Graduate School of Dentistry, Tohoku University, Sendai, Japan
| | - Shunji Sugawara
- Division of Oral Immunology, Department of Oral Biology, Graduate School of Dentistry, Tohoku University, Sendai, Japan
| | - Yasuo Endo
- Division of Oral and Maxillofacial Surgery, Graduate School of Dentistry, Tohoku University, Sendai, Japan
| |
Collapse
|
91
|
Crucial Role of NLRP3 Inflammasome in the Development of Peritoneal Dialysis-related Peritoneal Fibrosis. Sci Rep 2019; 9:10363. [PMID: 31316105 PMCID: PMC6637185 DOI: 10.1038/s41598-019-46504-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 06/27/2019] [Indexed: 12/22/2022] Open
Abstract
Long-term peritoneal dialysis (PD) therapy leads to peritoneal inflammation and fibrosis. However, the mechanism underlying PD-related peritoneal inflammation and fibrosis remains unclear. NLRP3 inflammasome regulates the caspase-1-dependent release of interleukin-1β and mediates inflammation in various diseases. Here, we investigated the role of NLRP3 inflammasome in a murine model of PD-related peritoneal fibrosis induced by methylglyoxal (MGO). Inflammasome-related proteins were upregulated in the peritoneum of MGO-treated mice. MGO induced parietal and visceral peritoneal fibrosis in wild-type mice, which was significantly reduced in mice deficient in NLRP3, ASC, and interleukin-1β (IL-1β). ASC deficiency reduced the expression of inflammatory cytokines and fibrotic factors, and the infiltration of macrophages. However, myeloid cell-specific ASC deficiency failed to inhibit MGO-induced peritoneal fibrosis. MGO caused hemorrhagic ascites, fibrin deposition, and plasminogen activator inhibitor-1 upregulation, but all of these manifestations were inhibited by ASC deficiency. Furthermore, in vitro experiments showed that MGO induced cell death via the generation of reactive oxygen species in vascular endothelial cells, which was inhibited by ASC deficiency. Our results showed that endothelial NLRP3 inflammasome contributes to PD-related peritoneal inflammation and fibrosis, and provide new insights into the mechanisms underlying the pathogenesis of this disorder.
Collapse
|
92
|
Miyabe C, Miyabe Y, Bricio-Moreno L, Lian J, Rahimi RA, Miura NN, Ohno N, Iwakura Y, Kawakami T, Luster AD. Dectin-2-induced CCL2 production in tissue-resident macrophages ignites cardiac arteritis. J Clin Invest 2019; 129:3610-3624. [PMID: 31169521 DOI: 10.1172/jci123778] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Environmental triggers, including those from pathogens, are thought to play an important role in triggering autoimmune diseases, such as vasculitis, in genetically susceptible individuals. The mechanism by which activation of the innate immune system contributes to vessel-specific autoimmunity in vasculitis is not known. Systemic administration of Candida albicans water-soluble extract (CAWS) induces vasculitis in the aortic root and coronary arteries of mice that mimics human Kawasaki disease. We found that Dectin-2 signaling in macrophages resident in the aortic root of the heart induced early CCL2 production and the initial recruitment of CCR2+ inflammatory monocytes (iMo) into the aortic root and coronary arteries. iMo differentiated into monocyte-derived dendritic cells (Mo-DC) in the vessel wall and were induced to release IL-1β in a Dectin-2-Syk-NLRP3 inflammasome dependent pathway. IL-1β then activated cardiac endothelial cells to express CXCL1 and CCL2 and adhesion molecules that induced neutrophil and further iMo recruitment and accumulation in the aortic root and coronary arteries. Our findings demonstrate that Dectin-2-mediated induction of CCL2 production by macrophages resident in the aortic root and coronary arteries initiates vascular inflammation in a model of Kawasaki disease, suggesting an important role for the innate immune system in initiating vasculitis.
Collapse
Affiliation(s)
- Chie Miyabe
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Yoshishige Miyabe
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Laura Bricio-Moreno
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Jeffrey Lian
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Rod A Rahimi
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Noriko N Miura
- Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Naohito Ohno
- Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Yoichiro Iwakura
- Center for Animal Disease Models, Research Institute for Biomedical Sciences, Tokyo University of Science, Chiba, Japan
| | - Tamihiro Kawakami
- Division of Dermatology, Tohoku Medical and Pharmaceutical University, Sendai, Japan
| | - Andrew D Luster
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
93
|
Uncoupling the Senescence-Associated Secretory Phenotype from Cell Cycle Exit via Interleukin-1 Inactivation Unveils Its Protumorigenic Role. Mol Cell Biol 2019; 39:MCB.00586-18. [PMID: 30988157 DOI: 10.1128/mcb.00586-18] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 04/06/2019] [Indexed: 01/07/2023] Open
Abstract
Cellular senescence has emerged as a potent tumor suppressor mechanism in numerous human neoplasias. Senescent cells secrete a distinct set of factors, collectively termed the senescence-associated secretory phenotype (SASP), which has been postulated to carry both pro- and antitumorigenic properties depending on tissue context. However, the in vivo effect of the SASP is poorly understood due to the difficulty of studying the SASP independently of other senescence-associated phenotypes. Here, we report that disruption of the interleukin-1 (IL-1) pathway completely uncouples the SASP from other senescence-associated phenotypes such as cell cycle exit. Transcriptome profiling of IL-1 receptor (IL-1R)-depleted senescent cells indicates that IL-1 controls the late arm of the senescence secretome, which consists of proinflammatory cytokines induced by NF-κB. Our data suggest that both IL-1α and IL-1β signal through IL-1R to upregulate the SASP in a cooperative manner. Finally, we show that IL-1α inactivation impairs tumor progression and immune cell infiltration without affecting cell cycle arrest in a mouse model of pancreatic cancer, highlighting the protumorigenic property of the IL-1-dependent SASP in this context. These findings provide novel insight into the therapeutic potential of targeting the IL-1 pathway in inflammatory cancers.
Collapse
|
94
|
Mizushina Y, Karasawa T, Aizawa K, Kimura H, Watanabe S, Kamata R, Komada T, Mato N, Kasahara T, Koyama S, Bando M, Hagiwara K, Takahashi M. Inflammasome-Independent and Atypical Processing of IL-1β Contributes to Acid Aspiration–Induced Acute Lung Injury. THE JOURNAL OF IMMUNOLOGY 2019; 203:236-246. [DOI: 10.4049/jimmunol.1900168] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 04/17/2019] [Indexed: 12/22/2022]
|
95
|
Lilis I, Ntaliarda G, Papaleonidopoulos V, Giotopoulou GA, Oplopoiou M, Marazioti A, Spella M, Marwitz S, Goldmann T, Bravou V, Giopanou I, Stathopoulos GT. Interleukin-1β provided by KIT-competent mast cells is required for KRAS-mutant lung adenocarcinoma. Oncoimmunology 2019; 8:1593802. [PMID: 31143511 PMCID: PMC6527299 DOI: 10.1080/2162402x.2019.1593802] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 02/23/2019] [Accepted: 02/28/2019] [Indexed: 12/13/2022] Open
Abstract
Mast cells (MC) have been identified in human lung adenocarcinoma (LADC) tissues, but their functional role has not been investigated in vivo. For this, we applied three mouse models of KRAS-mutant LADC to two different MC-deficient mouse strains (cKitWsh and Cpa3.Cre). Moreover, we derived MC gene signatures from murine bone marrow-derived MC and used them to interrogate five human cohorts of LADC patients. Tumor-free cKitWsh and Cpa3.Cre mice were deficient in alveolar and skin KIT-dependent (KIT+) MC, but cKitWsh mice retained normal KIT-independent (KIT-) MC in the airways. Both KIT+ and KIT- MC infiltrated murine LADC to varying degrees, but KIT+ MC were more abundant and promoted LADC initiation and progression through interleukin-1β secretion. KIT+ MC and their transcriptional signature were significantly enriched in human LADC compared to adjacent normal tissue, especially in the subset of patients with KRAS mutations. Importantly, MC density increased with tumor stage and high overall expression of the KIT+ MC signature portended poor survival. Collectively, our results indicate that KIT+ MC foster LADC development and represent marked therapeutic targets.
Collapse
Affiliation(s)
- Ioannis Lilis
- Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, Faculty of Medicine, University of Patras, Rio, Achaia, Greece
| | - Giannoula Ntaliarda
- Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, Faculty of Medicine, University of Patras, Rio, Achaia, Greece
| | - Vassilios Papaleonidopoulos
- Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, Faculty of Medicine, University of Patras, Rio, Achaia, Greece
| | - Georgia A Giotopoulou
- Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, Faculty of Medicine, University of Patras, Rio, Achaia, Greece
| | - Maria Oplopoiou
- Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, Faculty of Medicine, University of Patras, Rio, Achaia, Greece
| | - Antonia Marazioti
- Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, Faculty of Medicine, University of Patras, Rio, Achaia, Greece
| | - Magda Spella
- Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, Faculty of Medicine, University of Patras, Rio, Achaia, Greece
| | - Sebastian Marwitz
- Clinical and Experimental Pathology, Research Center Borstel, Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Borstel, Germany
| | - Torsten Goldmann
- Clinical and Experimental Pathology, Research Center Borstel, Airway Research Center North (ARCN), Member of the German Center for Lung Research (DZL), Borstel, Germany
| | - Vasiliki Bravou
- Department of Anatomy-Histology-Embryology, Faculty of Medicine, University of Patras, Rio, Achaia, Greece
| | - Ioanna Giopanou
- Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, Faculty of Medicine, University of Patras, Rio, Achaia, Greece
| | - Georgios T Stathopoulos
- Laboratory for Molecular Respiratory Carcinogenesis, Department of Physiology, Faculty of Medicine, University of Patras, Rio, Achaia, Greece.,Comprehensive Pneumology Center (CPC) and Institute for Lung Biology and Disease (iLBD), University Hospital, Ludwig-Maximilians University and Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Bavaria, Germany
| |
Collapse
|
96
|
Matsushita N, Ishida N, Ibi M, Saito M, Takahashi M, Taniguchi S, Iwakura Y, Morino Y, Taira E, Sawa Y, Hirose M. IL-1β Plays an Important Role in Pressure Overload-Induced Atrial Fibrillation in Mice. Biol Pharm Bull 2019; 42:543-546. [DOI: 10.1248/bpb.b18-00363] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Naoko Matsushita
- Division of Molecular and Cellular Pharmacology, Department of Pathophysiology and Pharmacology, School of Pharmaceutical Sciences, Iwate Medical University
- Division of Cardiology, Department of Internal Medicine, School of Medicine, Iwate Medical University
| | - Nanae Ishida
- Division of Molecular and Cellular Pharmacology, Department of Pathophysiology and Pharmacology, School of Pharmaceutical Sciences, Iwate Medical University
| | - Miho Ibi
- Division of Molecular and Cellular Pharmacology, Department of Pathophysiology and Pharmacology, School of Pharmaceutical Sciences, Iwate Medical University
| | - Maki Saito
- Division of Molecular and Cellular Pharmacology, Department of Pathophysiology and Pharmacology, School of Pharmaceutical Sciences, Iwate Medical University
| | - Masafumi Takahashi
- Division of Inflammation Research, Center for Molecular Medicine, Jichi Medical University
| | - Shunichiro Taniguchi
- Department of Molecular Oncology, Graduate School of Medicine, Shinshu University
| | - Yoichiro Iwakura
- Division of Experimental Animal Immunology, Research Institute for Biological Sciences, Tokyo University of Science
| | - Yoshihiro Morino
- Division of Cardiology, Department of Internal Medicine, School of Medicine, Iwate Medical University
| | - Eiichi Taira
- Department of Molecular Oncology, Graduate School of Medicine, Shinshu University
| | - Yohei Sawa
- Division of Cardiology, Department of Internal Medicine, School of Medicine, Iwate Medical University
| | - Masamichi Hirose
- Division of Molecular and Cellular Pharmacology, Department of Pathophysiology and Pharmacology, School of Pharmaceutical Sciences, Iwate Medical University
| |
Collapse
|
97
|
Putnam NE, Fulbright LE, Curry JM, Ford CA, Petronglo JR, Hendrix AS, Cassat JE. MyD88 and IL-1R signaling drive antibacterial immunity and osteoclast-driven bone loss during Staphylococcus aureus osteomyelitis. PLoS Pathog 2019; 15:e1007744. [PMID: 30978245 PMCID: PMC6481883 DOI: 10.1371/journal.ppat.1007744] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 04/24/2019] [Accepted: 04/01/2019] [Indexed: 01/18/2023] Open
Abstract
Staphylococcus aureus is able to infect virtually all organ systems and is a frequently isolated etiologic agent of osteomyelitis, a common and debilitating invasive infection of bone. Treatment of osteomyelitis requires invasive surgical procedures and prolonged antibiotic therapy, yet is frequently unsuccessful due to extensive pathogen-induced bone damage that can limit antibiotic penetration and immune cell influx to the infectious focus. We previously established that S. aureus triggers profound alterations in bone remodeling in a murine model of osteomyelitis, in part through the production of osteolytic toxins. However, staphylococcal strains lacking osteolytic toxins still incite significant bone destruction, suggesting that host immune responses are also major drivers of pathologic bone remodeling during osteomyelitis. The objective of this study was to identify host immune pathways that contribute to antibacterial immunity during S. aureus osteomyelitis, and to define how these immune responses alter bone homeostasis and contribute to bone destruction. We specifically focused on the interleukin-1 receptor (IL-1R) and downstream adapter protein MyD88 given the prominent role of this signaling pathway in both antibacterial immunity and osteo-immunologic crosstalk. We discovered that while IL-1R signaling is necessary for local control of bacterial replication during osteomyelitis, it also contributes to bone loss during infection. Mechanistically, we demonstrate that S. aureus enhances osteoclastogenesis of myeloid precursors in vitro, and increases the abundance of osteoclasts residing on bone surfaces in vivo. This enhanced osteoclast abundance translates to trabecular bone loss, and is dependent on intact IL-1R signaling. Collectively, these data define IL-1R signaling as a critical component of the host response to S. aureus osteomyelitis, but also demonstrate that IL-1R-dependent immune responses trigger collateral bone damage through activation of osteoclast-mediated bone resorption.
Collapse
Affiliation(s)
- Nicole E. Putnam
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Laura E. Fulbright
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Jacob M. Curry
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Caleb A. Ford
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Jenna R. Petronglo
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Andrew S. Hendrix
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - James E. Cassat
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Department of Pediatrics, Division of Pediatric Infectious Diseases, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee, United States of America
- Vanderbilt Institute for Infection, Immunology and Inflammation (VI4), Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Vanderbilt Center for Bone Biology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| |
Collapse
|
98
|
Zheng R, Longmate WM, DeFreest L, Varney S, Wu L, DiPersio CM, Van De Water L. Keratinocyte Integrin α3β1 Promotes Secretion of IL-1α to Effect Paracrine Regulation of Fibroblast Gene Expression and Differentiation. J Invest Dermatol 2019; 139:2029-2038.e3. [PMID: 30878678 DOI: 10.1016/j.jid.2019.02.025] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 02/05/2019] [Accepted: 02/06/2019] [Indexed: 12/31/2022]
Abstract
After cutaneous injury, keratinocytes secrete paracrine factors that regulate wound cell functions; dysregulation of this signaling can lead to wound pathologies. Previously, we established that keratinocyte integrin α3β1 promotes wound angiogenesis through paracrine stimulation of endothelial cells. We hypothesize here that α3β1-dependent paracrine signaling from keratinocytes regulates the differentiation state of myofibroblasts. We report that epidermal α3-knockout mice exhibit more wound myofibroblasts and fewer cyclooxygenase 2 (Cox-2)-positive dermal cells than controls. We also found that conditioned medium from α3-expressing mouse keratinocytes (MKα3+), but not from α3-null MK cells (MKα3-), induces expression of Cox-2 in fibroblasts in a time- and dose-dependent manner and that this induction is mediated by IL-1α. Compared with MKα3- cells, MKα3+ cells secrete more IL-1α and less IL-1RA, a natural IL-1 receptor antagonist. Treatment with an IL-1α neutralizing antibody, recombinant IL-1RA, or IL-1 receptor-targeting small interfering RNA suppresses MKα3+ conditioned medium-dependent induction of Cox-2 expression in fibroblasts. Finally, active recombinant IL-1α is sufficient to induce Cox-2 in fibroblasts and to inhibit transforming growth factor-β-induced α-SMA expression. Our findings support a role for keratinocyte integrin α3β1 in controlling the secretion of IL-1α, a paracrine factor that regulates the wound myofibroblast phenotype.
Collapse
Affiliation(s)
- Rui Zheng
- Department of Surgery, Albany Medical College, Albany, New York, USA; Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, New York
| | | | - Lori DeFreest
- Department of Surgery, Albany Medical College, Albany, New York, USA
| | - Scott Varney
- Department of Surgery, Albany Medical College, Albany, New York, USA
| | - Lei Wu
- Department of Surgery, Albany Medical College, Albany, New York, USA
| | - C Michael DiPersio
- Department of Surgery, Albany Medical College, Albany, New York, USA; Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, New York
| | - Livingston Van De Water
- Department of Surgery, Albany Medical College, Albany, New York, USA; Department of Regenerative and Cancer Cell Biology, Albany Medical College, Albany, New York.
| |
Collapse
|
99
|
Colditz IG, Paull DR, Lloyd JB, Johnston L, Small AH. Efficacy of meloxicam in a pain model in sheep. Aust Vet J 2019; 97:23-32. [DOI: 10.1111/avj.12779] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 11/28/2018] [Accepted: 11/28/2018] [Indexed: 11/28/2022]
Affiliation(s)
- IG Colditz
- CSIRO FD McMaster Laboratory; Locked Bag 1, Delivery Centre, Armidale New South Wales 2350 Australia
| | - DR Paull
- CSIRO FD McMaster Laboratory; Locked Bag 1, Delivery Centre, Armidale New South Wales 2350 Australia
| | - JB Lloyd
- Joan Lloyd Consulting Pty Ltd; West Ryde, NSW Australia
| | - L Johnston
- Boehringer Ingelheim Animal Health Pty Ltd; Sydney NSW Australia
| | - AH Small
- CSIRO FD McMaster Laboratory; Locked Bag 1, Delivery Centre, Armidale New South Wales 2350 Australia
| |
Collapse
|
100
|
Van Gorp H, Van Opdenbosch N, Lamkanfi M. Inflammasome-Dependent Cytokines at the Crossroads of Health and Autoinflammatory Disease. Cold Spring Harb Perspect Biol 2019; 11:cshperspect.a028563. [PMID: 29038114 DOI: 10.1101/cshperspect.a028563] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
As key regulators of both innate and adaptive immunity, it is unsurprising that the activity of interleukin (IL)-1 cytokine family members is tightly controlled by decoy receptors, antagonists, and a variety of other mechanisms. Additionally, inflammasome-mediated proteolytic maturation is a prominent and distinguishing feature of two important members of this cytokine family, IL-1β and IL-18, because their full-length gene products are biologically inert. Although vital in antimicrobial host defense, deregulated inflammasome signaling is linked with a growing number of autoimmune and autoinflammatory diseases. Here, we focus on introducing the diverse inflammasome types and discussing their causal roles in periodic fever syndromes. Therapies targeting IL-1 or IL-18 show great efficacy in some of these autoinflammatory diseases, although further understanding of the molecular mechanisms leading to unregulated production of these key cytokines is required to benefit more patients.
Collapse
Affiliation(s)
- Hanne Van Gorp
- Center for Inflammation Research, VIB, Zwijnaarde B-9052, Belgium.,Department of Internal Medicine, Ghent University, Ghent B-9000, Belgium
| | - Nina Van Opdenbosch
- Center for Inflammation Research, VIB, Zwijnaarde B-9052, Belgium.,Department of Internal Medicine, Ghent University, Ghent B-9000, Belgium
| | - Mohamed Lamkanfi
- Center for Inflammation Research, VIB, Zwijnaarde B-9052, Belgium.,Department of Internal Medicine, Ghent University, Ghent B-9000, Belgium
| |
Collapse
|