51
|
Rhodes JW, Tong O, Harman AN, Turville SG. Human Dendritic Cell Subsets, Ontogeny, and Impact on HIV Infection. Front Immunol 2019; 10:1088. [PMID: 31156637 PMCID: PMC6532592 DOI: 10.3389/fimmu.2019.01088] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 04/29/2019] [Indexed: 12/18/2022] Open
Abstract
Dendritic cells (DCs) play important roles in orchestrating host immunity against invading pathogens, representing one of the first responders to infection by mucosal invaders. From their discovery by Ralph Steinman in the 1970s followed shortly after with descriptions of their in vivo diversity and distribution by Derek Hart, we are still continuing to progressively elucidate the spectrum of DCs present in various anatomical compartments. With the power of high-dimensional approaches such as single-cell sequencing and multiparameter cytometry, recent studies have shed new light on the identities and functions of DC subtypes. Notable examples include the reclassification of plasmacytoid DCs as purely interferon-producing cells and re-evaluation of intestinal conventional DCs and macrophages as derived from monocyte precursors. Collectively, these observations have changed how we view these cells not only in steady-state immunity but also during disease and infection. In this review, we will discuss the current landscape of DCs and their ontogeny, and how this influences our understanding of their roles during HIV infection.
Collapse
Affiliation(s)
- Jake William Rhodes
- Centre for Virus Research, The Westmead Institute for Medical Research, Sydney, NSW, Australia.,Sydney Medical School, The University of Sydney, Sydney, NSW, Australia
| | - Orion Tong
- Centre for Virus Research, The Westmead Institute for Medical Research, Sydney, NSW, Australia
| | - Andrew Nicholas Harman
- Centre for Virus Research, The Westmead Institute for Medical Research, Sydney, NSW, Australia.,Discipline of Applied Medical Sciences, School of Medical Sciences, The University of Sydney, Sydney, NSW, Australia
| | - Stuart Grant Turville
- University of New South Wales, Sydney, NSW, Australia.,Kirby Institute, Kensington, NSW, Australia
| |
Collapse
|
52
|
Wang L, Fan J, Ye W, Han J, Zhang Y, Zhao L, Duan J, Yin D, Yi Y. The Expression of ILT4 in Myeloid Dendritic Cells in Patients with Hepatocellular Carcinoma. Immunol Invest 2019; 48:704-718. [PMID: 31044626 DOI: 10.1080/08820139.2019.1571507] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Immunoglobulin-like transcript (ILT) 4 is an inhibitory immune receptor of the immunoglobulin superfamily, which could deliver inhibitory signals and induce immunosuppression. The significance of the expression of ILT4 in mDCs subsets in patients with hepatocellular carcinoma (HCC) remains unclear. In this study, the frequency of mDCs subsets in the peripheral blood of 121 patients with HCC and 103 normal controls, and in the tumor and tumor free liver tissues (TFL) of 43 HCC patients was analyzed by flow cytometry. Then, the expressions of ILT4 in mDCs subsets in the microenvironment of liver cancer were also analyzed. Results showed that the percentage of CD1c+ subset was dramatically decreased in peripheral blood mononuclear cells (PBMCs) of HCC patients compared with normal controls, and also significantly decreased in tumor tissue compared with the TFL. The decreased of CD1c+ subset in blood could be a diagnostic factor for HCC with the area under the receiver operating characteristic curve 0.975 (P < 0.01). The percentage of ILT4+CD1c+ subset was dramatically increased in tumor than that of TFL and blood. There were significant correlations between the percentage of ILT4+ in CD1c+ subset in tumor and that of in blood. The percentage of ILT4+CD1c+ subset in tumor tissue was strongly associated with the Edmondson-Steiner stage in HCC (P = 0.03). Furthermore, the capacity of ILT4+CD1c+ subset producing IFN-γ was lower than ILT4- CD1c subset in PBMC of HCC patients following Poly I:C stimulation. Taken together, the increased ILT4+CD1c+ subset in tumor tissue might play an important role in immune suppression for patients with HCC.
Collapse
Affiliation(s)
- Lili Wang
- Clinical Research Center, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine , Nanjing , PR China
| | - Jing Fan
- Clinical Research Center, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine , Nanjing , PR China
| | - Wei Ye
- Clinical Research Center, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine , Nanjing , PR China
| | - Jianbo Han
- Department of Hepatobiliary Surgery, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine , Nanjing , PR China
| | - Yufeng Zhang
- Department of Hepatobiliary Surgery, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine , Nanjing , PR China
| | - Liang Zhao
- Department of Hepatobiliary Surgery, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine , Nanjing , PR China
| | - Jie Duan
- Department of Hepatobiliary Surgery, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine , Nanjing , PR China
| | - Dandan Yin
- Clinical Research Center, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine , Nanjing , PR China
| | - Yongxiang Yi
- Department of Hepatobiliary Surgery, The Second Hospital of Nanjing, Nanjing University of Chinese Medicine , Nanjing , PR China
| |
Collapse
|
53
|
Findlay EG, Currie AJ, Zhang A, Ovciarikova J, Young L, Stevens H, McHugh BJ, Canel M, Gray M, Milling SWF, Campbell JDM, Savill J, Serrels A, Davidson DJ. Exposure to the antimicrobial peptide LL-37 produces dendritic cells optimized for immunotherapy. Oncoimmunology 2019; 8:1608106. [PMID: 31413918 PMCID: PMC6682359 DOI: 10.1080/2162402x.2019.1608106] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 03/13/2019] [Indexed: 12/14/2022] Open
Abstract
Immunization of patients with autologous, ex vivo matured dendritic cell (DC) preparations, in order to prime antitumor T-cell responses, is the focus of intense research. Despite progress and approval of clinical approaches, significant enhancement of these personalized immunotherapies is urgently needed to improve efficacy. We show that immunotherapeutic murine and human DC, generated in the presence of the antimicrobial host defense peptide LL-37, have dramatically enhanced expansion and differentiation of cells with key features of the critical CD103+/CD141+ DC subsets, including enhanced cross-presentation and co-stimulatory capacity, and upregulation of CCR7 with improved migratory capacity. These LL-37-DC enhanced proliferation, activation and cytokine production by CD8+ (but not CD4+) T cells in vitro and in vivo. Critically, tumor antigen-presenting LL-37-DC increased migration of primed, activated CD8+ T cells into established squamous cell carcinomas in mice, and resulted in tumor regression. This advance therefore has the potential to dramatically enhance DC immunotherapy protocols.
Collapse
Affiliation(s)
- Emily Gwyer Findlay
- University of Edinburgh Centre for Inflammation Research, Queen's Medical Research Institute, Edinburgh, UK
| | - Andrew J Currie
- School of Veterinary and Life Sciences, Murdoch University, Perth, Western Australia, Australia
| | - Ailiang Zhang
- University of Edinburgh Centre for Inflammation Research, Queen's Medical Research Institute, Edinburgh, UK
| | - Jana Ovciarikova
- University of Edinburgh Centre for Inflammation Research, Queen's Medical Research Institute, Edinburgh, UK
| | - Lisa Young
- University of Edinburgh Centre for Inflammation Research, Queen's Medical Research Institute, Edinburgh, UK
| | - Holly Stevens
- University of Edinburgh Centre for Inflammation Research, Queen's Medical Research Institute, Edinburgh, UK
| | - Brian J McHugh
- University of Edinburgh Centre for Inflammation Research, Queen's Medical Research Institute, Edinburgh, UK
| | - Marta Canel
- University of Edinburgh Centre for Inflammation Research, Queen's Medical Research Institute, Edinburgh, UK
| | - Mohini Gray
- University of Edinburgh Centre for Inflammation Research, Queen's Medical Research Institute, Edinburgh, UK
| | - Simon W F Milling
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - John D M Campbell
- Scottish National Blood Transfusion Service, Heriot Watt Research Park, Edinburgh, UK
| | - John Savill
- University of Edinburgh Centre for Inflammation Research, Queen's Medical Research Institute, Edinburgh, UK
| | - Alan Serrels
- University of Edinburgh Centre for Inflammation Research, Queen's Medical Research Institute, Edinburgh, UK
| | - Donald J Davidson
- University of Edinburgh Centre for Inflammation Research, Queen's Medical Research Institute, Edinburgh, UK.,School of Veterinary and Life Sciences, Murdoch University, Perth, Western Australia, Australia
| |
Collapse
|
54
|
Guttman-Yassky E, Zhou L, Krueger JG. The skin as an immune organ: Tolerance versus effector responses and applications to food allergy and hypersensitivity reactions. J Allergy Clin Immunol 2019; 144:362-374. [PMID: 30954522 DOI: 10.1016/j.jaci.2019.03.021] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 02/22/2019] [Accepted: 03/27/2019] [Indexed: 01/06/2023]
Abstract
Skin is replete with immunocompetent cells that modulate signaling pathways to maintain a salubrious immunogenic/tolerogenic balance. This fertile immune environment plays a significant role in the development of allergic responses and sensitivities, but the mechanisms underlying these pathways have been underappreciated and underused with respect to developing therapeutics. Among the complex repertoire of cells that promote tolerogenic pathways in the periphery, 2 key classes include dendritic cells and regulatory T (Treg) cells. Immature dendritic cells are the first line of defense, patrolling the periphery, sampling antigens, and secreting cytokines that suppress immune cells and promote the survival of Treg cells. Skin-homing Treg cells also play a critical role in mitigating the reactivity of immune cells, secreting high levels of cytokines that promote tolerance. Therapeutic approaches that capitalize on our knowledge of the rich cellular and molecular environment are emerging and show great promise. We will discuss the advantages and challenges of 5 such strategies and how these therapies might mitigate the atopic march by facilitating tolerance. We conclude that skin is a multifaceted structure that provides a fertile ground for therapeutic discovery. Accordingly, ongoing work in this domain will no doubt continue to deliver exciting progress for improved health outcomes.
Collapse
Affiliation(s)
- Emma Guttman-Yassky
- Laboratory of Inflammatory Skin Diseases, Department of Dermatology, Icahn School of Medicine at Mount Sinai Medical Center, New York, NY.
| | - Lisa Zhou
- Columbia University Medical Center, New York, NY
| | - James G Krueger
- Laboratory for Investigative Dermatology, The Rockefeller University, New York, NY
| |
Collapse
|
55
|
Comi M, Avancini D, Santoni de Sio F, Villa M, Uyeda MJ, Floris M, Tomasoni D, Bulfone A, Roncarolo MG, Gregori S. Coexpression of CD163 and CD141 identifies human circulating IL-10-producing dendritic cells (DC-10). Cell Mol Immunol 2019; 17:95-107. [PMID: 30842629 PMCID: PMC6952411 DOI: 10.1038/s41423-019-0218-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 02/08/2019] [Indexed: 01/13/2023] Open
Abstract
Tolerogenic dendritic cells (DCs) are key players in maintaining immunological homeostasis, dampening immune responses, and promoting tolerance. DC-10, a tolerogenic population of human IL-10-producing DCs characterized by the expression of HLA-G and ILT4, play a pivotal role in promoting tolerance via T regulatory type 1 (Tr1) cells. Thus far, the absence of markers that uniquely identify DC-10 has limited in vivo studies. By in vitro gene expression profiling of differentiated human DCs, we identified CD141 and CD163 as surface markers for DC-10. The coexpression of CD141 and CD163 in combination with CD14 and CD16 enables the ex vivo isolation of DC-10 from the peripheral blood. CD14+CD16+CD141+CD163+ cells isolated from the peripheral blood of healthy subjects (ex vivo DC-10) produced spontaneously and upon activation of IL-10 and limited levels of IL-12. Moreover, in vitro stimulation of allogeneic naive CD4+ T cells with ex vivo DC-10 induced the differentiation of alloantigen-specific CD49b+LAG-3+ Tr1 cells. Finally, ex vivo DC-10 and in vitro generated DC-10 exhibited a similar transcriptional profile, which are characterized by an anti-inflammatory and pro-tolerogenic signature. These results provide new insights into the phenotype and molecular signature of DC-10 and highlight the tolerogenic properties of circulating DC-10. These findings open the opportunity to track DC-10 in vivo and to define their role in physiological and pathological settings.
Collapse
Affiliation(s)
- Michela Comi
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), San Raffaele Scientific Institute (IRCCS), Milan, Italy.,PhD Program in Translational and Molecular Medicine (DIMET), University of Milan-Bicocca, Milan, Italy
| | - Daniele Avancini
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), San Raffaele Scientific Institute (IRCCS), Milan, Italy
| | - Francesca Santoni de Sio
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), San Raffaele Scientific Institute (IRCCS), Milan, Italy
| | - Matteo Villa
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), San Raffaele Scientific Institute (IRCCS), Milan, Italy
| | - Molly Javier Uyeda
- Division of Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, ISCBRM, Stanford School of Medicine, Stanford, CA, USA
| | | | - Daniela Tomasoni
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), San Raffaele Scientific Institute (IRCCS), Milan, Italy
| | | | - Maria Grazia Roncarolo
- Division of Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, ISCBRM, Stanford School of Medicine, Stanford, CA, USA
| | - Silvia Gregori
- San Raffaele Telethon Institute for Gene Therapy (SR-TIGET), San Raffaele Scientific Institute (IRCCS), Milan, Italy.
| |
Collapse
|
56
|
Gudmundsdottir AB, Brynjolfsdottir A, Olafsdottir ES, Hardardottir I, Freysdottir J. Exopolysaccharides from Cyanobacterium aponinum induce a regulatory dendritic cell phenotype and inhibit SYK and CLEC7A expression in dendritic cells, T cells and keratinocytes. Int Immunopharmacol 2019; 69:328-336. [PMID: 30772700 DOI: 10.1016/j.intimp.2019.01.044] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 01/29/2019] [Accepted: 01/29/2019] [Indexed: 12/24/2022]
Abstract
Regular bathing in the Blue Lagoon has beneficial effects on psoriasis. Previously, we showed that exopolysaccharides (EPS-Ca) secreted by Cyanobacterium aponinum, a dominating organism in the Blue Lagoon, increased IL-10 secretion by human dendritic cells (DCs). In addition, co-culturing allogeneic CD4+ T cells with DCs matured in the presence of EPS-Ca increased differentiation of T cells into T regulatory cells at the cost of the disease inducing Th17 cells. In the present study, EPS-Ca increased the proportion of DCs expressing CD141, a surface molecule linked to regulatory DCs, and the CD141+ cells secreted more IL-10 than the CD141- cells. EPS-Ca decreased T cell secretion of IL-17, IL-13 and IL-10 and the proportion of T cells expressing the activation marker CD69 that has also been linked to lymphocyte retention. In addition, EPS-Ca reduced keratinocyte secretion of CCL20 and CXCL10, chemokines implicated in recruitment of inflammatory cells. EPS-Ca decreased DC expression of Dectin-1/CLEC7A and SYK, keratinocyte expression of CLEC7A, SYK and CAMP (the gene for LL37), and T cell expression of phosphorylated Zap70. These results indicate that EPS-Ca may induce a regulatory phenotype of DCs, T cells that are less active/inflammatory and less prone to being retained in the skin, and keratinocytes that induce less recruitment of inflammatory cells to the skin and that these effects may be mediated by the effects of EPS-Ca on CLEC7A and SYK. Overall the results indicate that EPS-Ca may be involved in the beneficial effects psoriasis patients experience when bathing in the Blue Lagoon.
Collapse
Affiliation(s)
- Asa B Gudmundsdottir
- Faculty of Medicine, University of Iceland, Biomedical Center, Vatnsmyrarvegur 16, IS-101 Reykjavik, Iceland; Department of Immunology, Landspitali-The National University Hospital of Iceland, Bld 14 at Eiriksgata, IS-101 Reykjavik, Iceland; Center for Rheumatology Research, Landspitali-The National University Hospital of Iceland, Bld 14 at Eiriksgata, IS-101 Reykjavik, Iceland
| | | | - Elin Soffia Olafsdottir
- Faculty of Pharmaceutical Sciences, University of Iceland, Hofsvallagata 53, IS-107 Reykjavik, Iceland
| | - Ingibjorg Hardardottir
- Faculty of Medicine, University of Iceland, Biomedical Center, Vatnsmyrarvegur 16, IS-101 Reykjavik, Iceland; Department of Immunology, Landspitali-The National University Hospital of Iceland, Bld 14 at Eiriksgata, IS-101 Reykjavik, Iceland
| | - Jona Freysdottir
- Faculty of Medicine, University of Iceland, Biomedical Center, Vatnsmyrarvegur 16, IS-101 Reykjavik, Iceland; Department of Immunology, Landspitali-The National University Hospital of Iceland, Bld 14 at Eiriksgata, IS-101 Reykjavik, Iceland; Center for Rheumatology Research, Landspitali-The National University Hospital of Iceland, Bld 14 at Eiriksgata, IS-101 Reykjavik, Iceland.
| |
Collapse
|
57
|
Chiang CLL, Kandalaft LE. In vivo cancer vaccination: Which dendritic cells to target and how? Cancer Treat Rev 2018; 71:88-101. [PMID: 30390423 DOI: 10.1016/j.ctrv.2018.10.012] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 10/20/2018] [Accepted: 10/22/2018] [Indexed: 12/24/2022]
Abstract
The field of cancer immunotherapy has been revolutionized with the use of immune checkpoint blockade antibodies such as anti-programmed cell death 1 protein (PD-1) and chimeric antigen receptor T cells. Significant clinical benefits are observed in different cancer types with these treatments. While considerable efforts are made in augmenting tumor-specific T cell responses with these therapies, other immunotherapies that actively stimulate endogenous anti-tumor T cells and generating long-term memory have received less attention. Given the high cost of cancer immunotherapies especially with chimeric antigen receptor T cells, not many patients will have access to such treatments. The next-generation of cancer immunotherapy could entail in vivo cancer vaccination to activate both the innate and adaptive anti-tumor responses. This could potentially be achieved via in vivo targeting of dendritic cells which are an indispensable link between the innate and adaptive immunities. Dendritic cells highly expressed toll-like receptors for recognizing and eliminating pathogens. Synthetic toll-like receptors agonists could be synthesized at a low cost and have shown promise in preclinical and clinical trials. As different subsets of human dendritic cells exist in the immune system, activation with different toll-like receptor agonists could exert profound effects on the quality and magnitude of anti-tumor T cell responses. Here, we reviewed the different subsets of human dendritic cells. Using published preclinical and clinical cancers studies available on PubMed, we discussed the use of clinically approved and emerging toll-like receptor agonists to activate dendritic cells in vivo for cancer immunotherapy. Finally, we searched www.clinicaltrials.gov and summarized the active cancer trials evaluating toll-like receptor agonists as an adjuvant.
Collapse
Affiliation(s)
- Cheryl Lai-Lai Chiang
- Ludwig Institute for Cancer Research, and Department of Oncology, University Hospital of Lausanne (CHUV), Lausanne CH-1066, Switzerland
| | - Lana E Kandalaft
- Ludwig Institute for Cancer Research, and Department of Oncology, University Hospital of Lausanne (CHUV), Lausanne CH-1066, Switzerland; Ovarian Cancer Research Center, University of Pennsylvania Medical Center, Smilow Translational Research Center 8th Floor, 186B, 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA.
| |
Collapse
|
58
|
Solano-Gálvez SG, Tovar-Torres SM, Tron-Gómez MS, Weiser-Smeke AE, Álvarez-Hernández DA, Franyuti-Kelly GA, Tapia-Moreno M, Ibarra A, Gutiérrez-Kobeh L, Vázquez-López R. Human Dendritic Cells: Ontogeny and Their Subsets in Health and Disease. Med Sci (Basel) 2018; 6:medsci6040088. [PMID: 30297662 PMCID: PMC6313400 DOI: 10.3390/medsci6040088] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 09/13/2018] [Accepted: 10/04/2018] [Indexed: 12/14/2022] Open
Abstract
Dendritic cells (DCs) are a type of cells derived from bone marrow that represent 1% or less of the total hematopoietic cells of any lymphoid organ or of the total cell count of the blood or epithelia. Dendritic cells comprise a heterogeneous population of cells localized in different tissues where they act as sentinels continuously capturing antigens to present them to T cells. Dendritic cells are uniquely capable of attracting and activating naïve CD4+ and CD8+ T cells to initiate and modulate primary immune responses. They have the ability to coordinate tolerance or immunity depending on their activation status, which is why they are also considered as the orchestrating cells of the immune response. The purpose of this review is to provide a general overview of the current knowledge on ontogeny and subsets of human dendritic cells as well as their function and different biological roles.
Collapse
Affiliation(s)
- Sandra Georgina Solano-Gálvez
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico.
| | - Sonia Margarita Tovar-Torres
- Departamento de Microbiología, Centro de Investigación en Ciencias de la Salud, Facultad de Ciencias de la Salud (CICSA), Universidad Anáhuac México Campus Norte, Estado de México 52786, Mexico.
| | - María Sofía Tron-Gómez
- Departamento de Microbiología, Centro de Investigación en Ciencias de la Salud, Facultad de Ciencias de la Salud (CICSA), Universidad Anáhuac México Campus Norte, Estado de México 52786, Mexico.
| | - Ariane Estrella Weiser-Smeke
- Departamento de Microbiología, Centro de Investigación en Ciencias de la Salud, Facultad de Ciencias de la Salud (CICSA), Universidad Anáhuac México Campus Norte, Estado de México 52786, Mexico.
| | - Diego Abelardo Álvarez-Hernández
- Departamento de Microbiología, Centro de Investigación en Ciencias de la Salud, Facultad de Ciencias de la Salud (CICSA), Universidad Anáhuac México Campus Norte, Estado de México 52786, Mexico.
| | | | | | - Antonio Ibarra
- Coordinación del Centro de Investigación en Ciencias de la Salud, Facultad de Ciencias de la Salud (CICSA), Universidad Anáhuac México Campus Norte, Estado de México 52786, Mexico.
| | - Laila Gutiérrez-Kobeh
- Unidad de Investigación UNAM-INC, División Investigación, Facultad de Medicina, Universidad Nacional Autónoma de México-Instituto Nacional de Cardiología "Ignacio Chávez", Mexico City 14080, Mexico.
| | - Rosalino Vázquez-López
- Departamento de Microbiología, Centro de Investigación en Ciencias de la Salud, Facultad de Ciencias de la Salud (CICSA), Universidad Anáhuac México Campus Norte, Estado de México 52786, Mexico.
| |
Collapse
|
59
|
van Ee TJ, Van Acker HH, van Oorschot TG, Van Tendeloo VF, Smits EL, Bakdash G, Schreibelt G, de Vries IJM. BDCA1+CD14+ Immunosuppressive Cells in Cancer, a Potential Target? Vaccines (Basel) 2018; 6:E65. [PMID: 30235890 PMCID: PMC6161086 DOI: 10.3390/vaccines6030065] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 09/17/2018] [Accepted: 09/18/2018] [Indexed: 12/22/2022] Open
Abstract
Dendritic cell (DC) vaccines show promising effects in cancer immunotherapy. However, their efficacy is affected by a number of factors, including (1) the quality of the DC vaccine and (2) tumor immune evasion. The recently characterized BDCA1+CD14+ immunosuppressive cells combine both aspects; their presence in DC vaccines may directly hamper vaccine efficacy, whereas, in patients, BDCA1+CD14+ cells may suppress the induced immune response in an antigen-specific manner systemically and at the tumor site. We hypothesize that BDCA1+CD14+ cells are present in a broad spectrum of cancers and demand further investigation to reveal treatment opportunities and/or improvement for DC vaccines. In this review, we summarize the findings on BDCA1+CD14+ cells in solid cancers. In addition, we evaluate the presence of BDCA1+CD14+ cells in leukemic cancers. Preliminary results suggest that the presence of BDCA1+CD14+ cells correlates with clinical features of acute and chronic myeloid leukemia. Future research focusing on the differentiation from monocytes towards BDCA1+CD14+ cells could reveal more about their cell biology and clinical significance. Targeting these cells in cancer patients may improve the outcome of cancer immunotherapy.
Collapse
Affiliation(s)
- Thomas J van Ee
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen 6525 GA, The Netherlands.
| | - Heleen H Van Acker
- Laboratory of Experimental Hematology, University of Antwerp, Antwerp 2000, Belgium.
| | - Tom G van Oorschot
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen 6525 GA, The Netherlands.
| | - Viggo F Van Tendeloo
- Laboratory of Experimental Hematology, University of Antwerp, Antwerp 2000, Belgium.
| | - Evelien L Smits
- Laboratory of Experimental Hematology, University of Antwerp, Antwerp 2000, Belgium.
- Center for Oncological Research, University of Antwerp, Antwerp 2000, Belgium.
| | - Ghaith Bakdash
- Allergic Inflammation Discovery Performance Unit, Respiratory Therapy Area, GlaxoSmithKline, Stevenage SG1 2NY, UK.
| | - Gerty Schreibelt
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen 6525 GA, The Netherlands.
| | - I Jolanda M de Vries
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen 6525 GA, The Netherlands.
- Department of Medical Oncology; Radboud Institute for Molecular Life Sciences, Radboudumc, Nijmegen 6525 GA, The Netherlands.
| |
Collapse
|
60
|
Collin M, Bigley V. Human dendritic cell subsets: an update. Immunology 2018; 154:3-20. [PMID: 29313948 PMCID: PMC5904714 DOI: 10.1111/imm.12888] [Citation(s) in RCA: 808] [Impact Index Per Article: 134.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 11/30/2017] [Accepted: 12/04/2017] [Indexed: 02/06/2023] Open
Abstract
Dendritic cells (DC) are a class of bone-marrow-derived cells arising from lympho-myeloid haematopoiesis that form an essential interface between the innate sensing of pathogens and the activation of adaptive immunity. This task requires a wide range of mechanisms and responses, which are divided between three major DC subsets: plasmacytoid DC (pDC), myeloid/conventional DC1 (cDC1) and myeloid/conventional DC2 (cDC2). Each DC subset develops under the control of a specific repertoire of transcription factors involving differential levels of IRF8 and IRF4 in collaboration with PU.1, ID2, E2-2, ZEB2, KLF4, IKZF1 and BATF3. DC haematopoiesis is conserved between mammalian species and is distinct from monocyte development. Although monocytes can differentiate into DC, especially during inflammation, most quiescent tissues contain significant resident populations of DC lineage cells. An extended range of surface markers facilitates the identification of specific DC subsets although it remains difficult to dissociate cDC2 from monocyte-derived DC in some settings. Recent studies based on an increasing level of resolution of phenotype and gene expression have identified pre-DC in human blood and heterogeneity among cDC2. These advances facilitate the integration of mouse and human immunology, support efforts to unravel human DC function in vivo and continue to present new translational opportunities to medicine.
Collapse
Affiliation(s)
- Matthew Collin
- Human Dendritic Cell LabInstitute of Cellular Medicine and NIHR Newcastle Biomedical Research Centre Newcastle upon Tyne Hospitals NHS Foundation Trust and Newcastle UniversityNewcastle upon TyneUK
| | - Venetia Bigley
- Human Dendritic Cell LabInstitute of Cellular Medicine and NIHR Newcastle Biomedical Research Centre Newcastle upon Tyne Hospitals NHS Foundation Trust and Newcastle UniversityNewcastle upon TyneUK
| |
Collapse
|
61
|
Kotb IS, Lewis BJ, Barker RN, Ormerod AD. Differential effects of phototherapy, adalimumab and betamethasone-calcipotriol on effector and regulatory T cells in psoriasis. Br J Dermatol 2018; 179:127-135. [PMID: 29330859 DOI: 10.1111/bjd.16336] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2017] [Indexed: 01/17/2023]
Abstract
BACKGROUND Psoriasis is a chronic T-cell-mediated skin disease with marked social and economic burdens. Current treatments are unsatisfactory, with unpredictable remission times and incompletely understood modes of action. Recent advances in our understanding of the pathogenesis of psoriasis have identified the imbalance between CD4+ T effector cells, particularly the T helper (Th)17 subset, and regulatory T cells (Tregs) as key to the development of psoriatic lesions, and therefore a novel therapeutic target. OBJECTIVES To quantify in patients the effects of three commonly used psoriasis treatment modalities on the Th1, Th2, Th17 and Treg subsets, and to test whether any change correlates with clinical response. METHODS Flow cytometry was used to enumerate Th1, Th2, Th17 and Treg subsets in blood and skin of patients with psoriasis before and after receiving any of the following treatments: narrowband ultraviolet B (NB-UVB), adalimumab and topical betamethasone-calcipotriol combination (Dovobet® ) RESULTS: All patients responded clinically to the treatments. NB-UVB significantly increased the numbers of circulating and skin Tregs, while, by contrast, adalimumab reduced Th17 cells in these compartments, and Dovobet had dual effects by both increasing Tregs and reducing Th17 cells. CONCLUSIONS The differential effects reported here for the above-mentioned treatment modalities could be exploited to optimize or design therapeutic strategies to overcome the inflammatory drivers more effectively and restore the Th17-Treg balance in psoriasis.
Collapse
Affiliation(s)
- I S Kotb
- Immunity, Infection and Inflammation Programme, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, U.K.,Department of Dermatology, Andrology and STDs, Mansoura University, Mansoura, Egypt
| | - B J Lewis
- Immunity, Infection and Inflammation Programme, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, U.K
| | - R N Barker
- Immunity, Infection and Inflammation Programme, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, U.K
| | - A D Ormerod
- Immunity, Infection and Inflammation Programme, Institute of Medical Sciences, University of Aberdeen, Foresterhill, Aberdeen, U.K
| |
Collapse
|
62
|
Abstract
Dendritic cells (DCs) are a heterogeneous population playing a pivotal role in immune responses and tolerance. DCs promote immune tolerance by participating in the negative selection of autoreactive T cells in the thymus. Furthermore, to eliminate autoreactive T cells that have escaped thymic deletion, DCs also induce immune tolerance in the periphery through various mechanisms. Breakdown of these functions leads to autoimmune diseases. Moreover, DCs play a critical role in maintenance of homeostasis in body organs, especially the skin and intestine. In this review, we focus on recent developments in our understanding of the mechanisms of tolerance induction by DCs in the body.
Collapse
Affiliation(s)
- Hitoshi Hasegawa
- Department of Hematology, Clinical Immunology and Infectious Diseases, Ehime University Graduate School of Medicine, Toon, Japan
| | - Takuya Matsumoto
- Department of Hematology, Clinical Immunology and Infectious Diseases, Ehime University Graduate School of Medicine, Toon, Japan
| |
Collapse
|
63
|
Iizuka-Koga M, Asashima H, Ando M, Lai CY, Mochizuki S, Nakanishi M, Nishimura T, Tsuboi H, Hirota T, Takahashi H, Matsumoto I, Otsu M, Sumida T. Functional Analysis of Dendritic Cells Generated from T-iPSCs from CD4+ T Cell Clones of Sjögren's Syndrome. Stem Cell Reports 2018; 8:1155-1163. [PMID: 28494936 PMCID: PMC5425788 DOI: 10.1016/j.stemcr.2017.04.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 04/07/2017] [Accepted: 04/10/2017] [Indexed: 12/24/2022] Open
Abstract
Although it is important to clarify the pathogenic functions of T cells in human samples, their examination is often limited due to difficulty in obtaining sufficient numbers of dendritic cells (DCs), used as antigen-presenting cells, especially in autoimmune diseases. We describe the generation of DCs from induced pluripotent stem cells derived from T cells (T-iPSCs). We reprogrammed CD4+ T cell clones from a patient with Sjögren's syndrome (SS) into iPSCs, which were differentiated into DCs (T-iPS-DCs). T-iPS-DCs had dendritic cell-like morphology, and expressed CD11c, HLA-DR, CD80, CD86, and also BDCA-3. Compared with monocyte-derived DCs, the capacity for antigen processing was similar, and T-iPS-DCs induced the proliferative response of autoreactive CD4+ T cells. Moreover, we could evaluate T cell functions of the patient with SS. In conclusion, we obtained adequate numbers of DCs from T-iPSCs, which could be used to characterize pathogenic T cells in autoimmune diseases such as SS. Dendritic cells were generated from iPSCs derived from CD4+ T cells (T-iPS-DCs) Adequate numbers of functional DCs were generated from a small blood sample The comparison between T-iPS-DCs and monocyte-derived DCs was evaluated The functional assays of T cells in Sjögren's syndrome were analyzed by T-iPS-DCs
Collapse
Affiliation(s)
- Mana Iizuka-Koga
- Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Hiromitsu Asashima
- Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Miki Ando
- Division of Stem Cell Therapy, Center for Stem Cell Biology and Regenerative Medicine, Tokyo 108-8639, Japan; Department of Transfusion Medicine and Stem Cell Regulation, Juntendo University School of Medicine, Tokyo 113-8421, Japan
| | - Chen-Yi Lai
- Division of Stem Cell Processing/Stem Cell Bank, Center for Stem Cell Biology and Regenerative Medicine, Tokyo 108-8639, Japan
| | - Shinji Mochizuki
- Division of Stem Cell Processing/Stem Cell Bank, Center for Stem Cell Biology and Regenerative Medicine, Tokyo 108-8639, Japan
| | - Mahito Nakanishi
- Research Laboratory for Stem Cell Engineering, Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8565, Japan
| | - Toshinobu Nishimura
- Division of Stem Cell Therapy, Center for Stem Cell Biology and Regenerative Medicine, Institute for Stem Cell Biology and Regenerative Medicine, Stanford University School of Medicine, CA 94305, USA
| | - Hiroto Tsuboi
- Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Tomoya Hirota
- Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Hiroyuki Takahashi
- Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Isao Matsumoto
- Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan
| | - Makoto Otsu
- Division of Stem Cell Therapy, Center for Stem Cell Biology and Regenerative Medicine, Tokyo 108-8639, Japan; Division of Stem Cell Processing/Stem Cell Bank, Center for Stem Cell Biology and Regenerative Medicine, Tokyo 108-8639, Japan
| | - Takayuki Sumida
- Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba 305-8575, Japan.
| |
Collapse
|
64
|
Sachamitr P, Leishman AJ, Davies TJ, Fairchild PJ. Directed Differentiation of Human Induced Pluripotent Stem Cells into Dendritic Cells Displaying Tolerogenic Properties and Resembling the CD141 + Subset. Front Immunol 2018; 8:1935. [PMID: 29358940 PMCID: PMC5766641 DOI: 10.3389/fimmu.2017.01935] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 12/15/2017] [Indexed: 12/24/2022] Open
Abstract
The advent of induced pluripotent stem cells (iPSCs) has begun to revolutionize cell therapy by providing a convenient source of rare cell types not normally available from patients in sufficient numbers for therapeutic purposes. In particular, the development of protocols for the differentiation of populations of leukocytes as diverse as naïve T cells, macrophages, and natural killer cells provides opportunities for their scale-up and quality control prior to administration. One population of leukocytes whose therapeutic potential has yet to be explored is the subset of conventional dendritic cells (DCs) defined by their surface expression of CD141. While these cells stimulate cytotoxic T cells in response to inflammation through the cross-presentation of viral and tumor-associated antigens in an MHC class I-restricted manner, under steady-state conditions CD141+ DCs resident in interstitial tissues are focused on the maintenance of homeostasis through the induction of tolerance to local antigens. Here, we describe protocols for the directed differentiation of human iPSCs into a mixed population of CD11c+ DCs through the spontaneous formation of embryoid bodies and exposure to a cocktail of growth factors, the scheduled withdrawal of which serves to guide the process of differentiation. Furthermore, we describe the enrichment of DCs expressing CD141 through depletion of CD1c+ cells, thereby obtaining a population of “untouched” DCs unaffected by cross-linking of surface CD141. The resulting cells display characteristic phagocytic and endocytic capacity and acquire an immunostimulatory phenotype following exposure to inflammatory cytokines and toll-like receptor agonists. Nevertheless, under steady-state conditions, these cells share some of the tolerogenic properties of tissue-resident CD141+ DCs, which may be further reinforced by exposure to a range of pharmacological agents including interleukin-10, rapamycin, dexamethasone, and 1α,25-dihydoxyvitamin D3. Our protocols therefore provide access to a novel source of DCs analogous to the CD141+ subset under steady-state conditions in vivo and may, therefore, find utility in the treatment of a range of disease states requiring the establishment of immunological tolerance.
Collapse
Affiliation(s)
- Patty Sachamitr
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Alison J Leishman
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Timothy J Davies
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Paul J Fairchild
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
65
|
Abstract
Dendritic cells (DC) are professional antigen presenting cells comprising a variety of subsets, as either resident or migrating cells, in lymphoid and non-lymphoid organs. In the steady state DC continually process and present antigens on MHCI and MHCII, processes that are highly upregulated upon activation. By expressing differential sets of pattern recognition receptors different DC subsets are able to respond to a range of pathogenic and danger stimuli, enabling functional specialisation of the DC. The knowledge of functional specialisation of DC subsets is key to efficient priming of T cells, to the design of effective vaccine adjuvants and to understanding the role of different DC in health and disease. This review outlines mouse and human steady state DC subsets and key attributes that define their distinct functions.
Collapse
|
66
|
Obregon C, Kumar R, Pascual MA, Vassalli G, Golshayan D. Update on Dendritic Cell-Induced Immunological and Clinical Tolerance. Front Immunol 2017; 8:1514. [PMID: 29250057 PMCID: PMC5715373 DOI: 10.3389/fimmu.2017.01514] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 10/26/2017] [Indexed: 12/18/2022] Open
Abstract
Dendritic cells (DCs) as highly efficient antigen-presenting cells are at the interface of innate and adaptive immunity. As such, they are key mediators of immunity and antigen-specific immune tolerance. Due to their functional specialization, research efforts have focused on the characterization of DCs subsets involved in the initiation of immunogenic responses and in the maintenance of tissue homeostasis. Tolerogenic DCs (tolDCs)-based therapies have been designed as promising strategies to prevent and control autoimmune diseases as well as allograft rejection after solid organ transplantation (SOT). Despite successful experimental studies and ongoing phase I/II clinical trials using autologous tolDCs in patients with type 1 diabetes, rheumatoid arthritis, multiple sclerosis, and in SOT recipients, additional basic research will be required to determine the optimal DC subset(s) and conditioning regimens for tolDCs-based treatments in vivo. In this review, we discuss the characteristics of human DCs and recent advances in their classification, as well as the role of DCs in immune regulation and their susceptibility to in vitro or in vivo manipulation for the development of tolerogenic therapies, with a focus on the potential of tolDCs for the treatment of autoimmune diseases and the prevention of allograft rejection after SOT.
Collapse
Affiliation(s)
- Carolina Obregon
- Department of Medicine, Transplantation Centre and Transplantation Immunopathology Laboratory, Service of Immunology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Rajesh Kumar
- Department of Medicine, Transplantation Centre and Transplantation Immunopathology Laboratory, Service of Immunology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Manuel Antonio Pascual
- Department of Medicine, Transplantation Centre and Transplantation Immunopathology Laboratory, Service of Immunology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland.,Department of Surgery, Transplantation Centre, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| | - Giuseppe Vassalli
- Département coeur-vaisseaux, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland.,Fondazione Cardiocentro Ticino, Swiss Institute of Regenerative Medicine (SIRM), Lugano, Switzerland
| | - Déla Golshayan
- Department of Medicine, Transplantation Centre and Transplantation Immunopathology Laboratory, Service of Immunology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland.,Department of Surgery, Transplantation Centre, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
67
|
Multiple sclerosis: Skin-induced antigen-specific immune tolerance. J Neuroimmunol 2017; 311:49-58. [DOI: 10.1016/j.jneuroim.2017.08.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 07/26/2017] [Accepted: 08/01/2017] [Indexed: 12/15/2022]
|
68
|
Korenfeld D, Gorvel L, Munk A, Man J, Schaffer A, Tung T, Mann C, Klechevsky E. A type of human skin dendritic cell marked by CD5 is associated with the development of inflammatory skin disease. JCI Insight 2017; 2:96101. [PMID: 28931765 DOI: 10.1172/jci.insight.96101] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 08/10/2017] [Indexed: 12/14/2022] Open
Abstract
Dendritic cells (DCs) are important in regulating immunity and tolerance and consist of functionally distinct subsets that differentially regulate T lymphocyte function. The underlying basis for this subset specificity is lacking, particularly in humans, where the classification of tissue DCs is currently incomplete. Examination of healthy human epidermal Langerhans cells and dermal skin cells revealed a tissue CD5-expressing DC subtype. The CD5+ DCs were potent inducers of cytotoxic T cells and Th22 cells. The products of these T cells, IL-22 and IFN-γ, play a key role in the pathogenesis of psoriasis. Remarkably, CD5+ DCs were significantly enriched in lesional psoriatic skin compared with distal tissues, suggesting their involvement in the disease. We show that CD5+ DCs can be differentiated from hematopoietic progenitor cells independently of the CD5- DCs. A progenitor population found in human cord blood and in the dermal skin layer, marked as CD34-CD123+CD117dimCD45RA+, was an immediate precursor of these CD11c+CD1c+CD5+ DCs. Overall, our discovery of the CD5-expressing DC subtype suggests that strategies to regulate their composition or function in the skin will represent an innovative approach for the treatment of immune-mediated disorders in and beyond the skin.
Collapse
Affiliation(s)
- Daniel Korenfeld
- Department of Pathology and Immunology, Division of Immunobiology
| | - Laurent Gorvel
- Department of Pathology and Immunology, Division of Immunobiology
| | - Adiel Munk
- Department of Pathology and Immunology, Division of Immunobiology
| | - Joshua Man
- Department of Pathology and Immunology, Division of Immunobiology
| | - Andras Schaffer
- Department of Pathology and Immunology, Dermatopathology Center
| | - Thomas Tung
- Department of Surgery, Division of Plastic and Reconstructive Surgery, and
| | - Caroline Mann
- Department of Medicine, Division of Dermatology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, USA
| | - Eynav Klechevsky
- Department of Pathology and Immunology, Division of Immunobiology
| |
Collapse
|
69
|
Abstract
The maintenance of monocytes, macrophages, and dendritic cells (DCs) involves manifold pathways of ontogeny and homeostasis that have been the subject of intense study in recent years. The concept of a peripheral mononuclear phagocyte system continually renewed by blood-borne monocytes has been modified to include specialized DC pathways of development that do not involve monocytes, and longevity through self-renewal of tissue macrophages. The study of development remains difficult owing to the plasticity of phenotypes and misconceptions about the fundamental structure of hematopoiesis. However, greater clarity has been achieved in distinguishing inflammatory monocyte-derived DCs from DCs arising in the steady state, and new concepts of conjoined lymphomyeloid hematopoiesis more easily accommodate the shared lymphoid and myeloid phenotypes of some DCs. Cross-species comparisons have also yielded coherent systems of nomenclature for all mammalian monocytes, macrophages, and DCs. Finally, the clear relationships between ontogeny and functional specialization offer information about the regulation of immune responses and provide new tools for the therapeutic manipulation of myeloid mononuclear cells in medicine.
Collapse
|
70
|
Padovan E. Modulation of CD4+ T Helper Cell Memory Responses in the Human Skin. Int Arch Allergy Immunol 2017; 173:121-137. [PMID: 28787717 DOI: 10.1159/000477728] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Immunological memory is defined as the capacity to mount faster and more effective immune responses against antigenic challenges that have been previously encountered by the host. CD4+ T helper (Th) cells play central roles in the establishment of immunological memory as they assist the functions of other leukocytes. Th cells express polarized cytokine profiles and distinct migratory and seeding capacities, but also retain a certain functional plasticity that allows them to modulate their proliferation, activity, and homing behaviour upon need. Thus, in healthy individuals, T cell immunomodulation fulfils the task of eliciting protective immune responses where they are needed. At times, however, Th plasticity can lead to collateral tissue damage and progression to autoimmune diseases or, conversely, incapacity to reject malignant tissues and clear chronic infections. Furthermore, common immune players and molecular pathways of diseases can lead to different outcomes in different individuals. A mechanistic understanding of those pathways is therefore crucial for developing precise and curative medical interventions. Here, I focus on the skin microenvironment and comprehensively describe some of the cellular and molecular determinants of CD4+ T cell memory responses in homeostatic and pathological conditions. In discussing the cellular network orchestrating cutaneous immunity, I comprehensively describe the bidirectional interaction of skin antigen-presenting cells and mononuclear phagocytes with Th17 lymphocytes, and examine how the outcome of this interaction is influenced by endogenous skin molecules, including sodium salts and neuropeptides.
Collapse
Affiliation(s)
- Elisabetta Padovan
- Department of Biomedicine, University Hospital, University of Basel, Basel, Switzerland
| |
Collapse
|
71
|
Ali N, Rosenblum MD. Regulatory T cells in skin. Immunology 2017; 152:372-381. [PMID: 28699278 DOI: 10.1111/imm.12791] [Citation(s) in RCA: 106] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 07/03/2017] [Accepted: 07/05/2017] [Indexed: 12/17/2022] Open
Abstract
Foxp3+ CD4+ regulatory T (Treg) cells are a subset of immune cells that function to regulate tissue inflammation. Skin is one of the largest organs and is home to a large proportion of the body's Treg cells. However, relative to other tissues (such as the spleen and gastrointestinal tract) the function of Treg cells in skin is less well defined. Here, we review our understanding of how Treg cells migrate to skin and the cellular and molecular pathways required for their maintenance in this tissue. In addition, we outline what is known about the specialized functions of Treg cells in skin. Namely, the orchestration of stem cell-mediated hair follicle regeneration, augmentation of wound healing, and promoting adaptive immune tolerance to skin commensal microbes. A comprehensive understanding of the biology of skin Treg cells may lead to novel therapeutic approaches that preferentially target these cells to treat cutaneous autoimmunity, skin cancers and disorders of skin regeneration.
Collapse
Affiliation(s)
- Niwa Ali
- Department of Dermatology, University of California at San Francisco, San Francisco, CA, USA.,Cutaneous Medicine Unit, St John's Institute of Dermatology, King's College London, London, UK
| | - Michael D Rosenblum
- Department of Dermatology, University of California at San Francisco, San Francisco, CA, USA
| |
Collapse
|
72
|
Kosten IJ, van de Ven R, Thon M, Gibbs S, de Gruijl TD. Comparative phenotypic and functional analysis of migratory dendritic cell subsets from human oral mucosa and skin. PLoS One 2017; 12:e0180333. [PMID: 28704477 PMCID: PMC5509153 DOI: 10.1371/journal.pone.0180333] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 06/14/2017] [Indexed: 12/13/2022] Open
Abstract
Antigen exposure to oral mucosa is generally thought to lead to immune tolerance induction. However, very little is known about the subset composition and function of dendritic cells (DC) migrating from human oral mucosa. Here we show that migratory DC from healthy human gingival explants consist of the same phenotypic subsets in the same frequency distribution as DC migrating from human skin. The gingival CD1a+ Langerhans cell and interstitial DC subsets lacked CXCR4 expression in contrast to their cutaneous counterparts, pointing to different migration mechanisms, consistent with previous observations in constructed skin and gingival equivalents. Remarkably, without any exogenous conditioning, gingival explants released higher levels of inflammatory cytokines than human skin explants, resulting in higher DC migration rates and a superior ability of migrated DC to prime allogeneic T cells and to induce type-1 effector T cell differentiation. From these observations we conclude that rather than an intrinsic ability to induce T cell tolerance, DC migrating from oral mucosa may have a propensity to induce effector T cell immunity and maintain a high state of alert against possible pathogenic intruders in the steady state. These findings may have implications for oral immunization strategies.
Collapse
Affiliation(s)
| | - Rieneke van de Ven
- Department of Medical Oncology, VU University Medical Center, Amsterdam, the Netherlands
| | - Maria Thon
- Department of Dermatology, VU University Medical Center, Amsterdam, the Netherlands
| | - Susan Gibbs
- Department of Dermatology, VU University Medical Center, Amsterdam, the Netherlands.,Department of Oral Cell Biology, Academic Center for Dentistry Amsterdam, University of Amsterdam and VU University, Amsterdam, the Netherlands
| | - Tanja D de Gruijl
- Department of Medical Oncology, VU University Medical Center, Amsterdam, the Netherlands
| |
Collapse
|
73
|
Gorvel L, Korenfeld D, Tung T, Klechevsky E. Dendritic Cell-Derived IL-32α: A Novel Inhibitory Cytokine of NK Cell Function. THE JOURNAL OF IMMUNOLOGY 2017; 199:1290-1300. [PMID: 28701509 DOI: 10.4049/jimmunol.1601477] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 06/11/2017] [Indexed: 12/15/2022]
Abstract
Cytokines produced by dendritic cells (DCs) can largely determine the direction of immunity. Transcriptional analysis revealed that besides IL-15, IL-32 was the only other cytokine expressed by human Langerhans cells. IL-32 is a human cytokine that exists in four main isoforms. Currently, little is known about the regulation and function of the various IL-32 isoforms. In this study, we found that IL-15 is a potent inducer of IL-32α in DCs. Because IL-15 promotes NK cell activation, we investigated the interplay between IL-32 and IL-15 and their role in NK cell activity. We show that IL-32α acts on NK cells to inhibit IL-15-mediated STAT5 phosphorylation and to suppress their IL-15-induced effector molecule expression and cytolytic capacity. IL-32α also acted on DCs by downregulating IL-15-induced IL-18 production, an important cytokine in NK cell activity. Blocking IL-32α during DC:NK cell coculture enhanced NK cell effector molecule expression as well as their cytolytic capacity. Taken together, our findings suggest a feedback inhibition of IL-15-mediated NK cell activity by IL-32α.
Collapse
Affiliation(s)
- Laurent Gorvel
- Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110; and
| | - Daniel Korenfeld
- Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110; and
| | - Thomas Tung
- Division of Plastic and Reconstructive Surgery, Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110
| | - Eynav Klechevsky
- Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110; and
| |
Collapse
|
74
|
Botting RA, Bertram KM, Baharlou H, Sandgren KJ, Fletcher J, Rhodes JW, Rana H, Plasto TM, Wang XM, Lim JJK, Barnouti L, Kohout MP, Papadopoulos T, Merten S, Olbourne N, Cunningham AL, Haniffa M, Harman AN. Phenotypic and functional consequences of different isolation protocols on skin mononuclear phagocytes. J Leukoc Biol 2017; 101:1393-1403. [PMID: 28270408 PMCID: PMC5433859 DOI: 10.1189/jlb.4a1116-496r] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 02/06/2017] [Accepted: 02/14/2017] [Indexed: 12/24/2022] Open
Abstract
Mononuclear phagocytes are present in skin and mucosa and represent one of the first lines of defense against invading pathogens, which they detect via an array of pathogen-binding receptors expressed on their surface. However, their extraction from tissue is difficult, and the isolation technique used has functional consequences on the cells obtained. Here, we compare mononuclear phagocytes isolated from human skin using either enzymatic digestion or spontaneous migration. Cells isolated via enzymatic digestion are in an immature state, and all subsets are easily defined. However, cells isolated by spontaneous migration are in a mature state, and CD141 cross-presenting DCs (cDC1) are more difficult to define. Different pathogen-binding receptors are susceptible to cleavage by blends of collagenase, demonstrating that great care must be taken in choosing the correct enzyme blend to digest tissue if carrying out pathogen-interaction assays. Finally, we have optimized mononuclear phagocyte culture conditions to enhance their survival after liberation from the tissue.
Collapse
Affiliation(s)
- Rachel A Botting
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- The University of Sydney, Sydney, New South Wales, Australia
| | - Kirstie M Bertram
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- The University of Sydney, Sydney, New South Wales, Australia
| | - Heeva Baharlou
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- The University of Sydney, Sydney, New South Wales, Australia
| | - Kerrie J Sandgren
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- The University of Sydney, Sydney, New South Wales, Australia
| | - James Fletcher
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Jake W Rhodes
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- The University of Sydney, Sydney, New South Wales, Australia
| | - Hafsa Rana
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- The University of Sydney, Sydney, New South Wales, Australia
| | - Toby M Plasto
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- The University of Sydney, Sydney, New South Wales, Australia
| | - Xin Maggie Wang
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
| | | | - Laith Barnouti
- Australia Plastic Surgery, Sydney, New South Wales, Australia
| | - Mark P Kohout
- Australia Plastic Surgery, Sydney, New South Wales, Australia
| | | | - Steve Merten
- Pure Aesthetics Plastic Surgery, Sydney, New South Wales, Australia
| | | | - Anthony L Cunningham
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia
- The University of Sydney, Sydney, New South Wales, Australia
| | - Muzlifah Haniffa
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, United Kingdom
- Department of Dermatology, Royal Victoria Infirmary, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, United Kingdom
| | - Andrew N Harman
- Centre for Virus Research, The Westmead Institute for Medical Research, Westmead, New South Wales, Australia;
- The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
75
|
Conejero L, Khouili SC, Martínez-Cano S, Izquierdo HM, Brandi P, Sancho D. Lung CD103+ dendritic cells restrain allergic airway inflammation through IL-12 production. JCI Insight 2017; 2:90420. [PMID: 28515363 DOI: 10.1172/jci.insight.90420] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Accepted: 04/07/2017] [Indexed: 12/16/2022] Open
Abstract
DCs are necessary and sufficient for induction of allergic airway inflammation. CD11b+ DCs direct the underlying Th2 immunity, but debate surrounds the function of CD103+ DCs in lung immunity and asthma after an allergic challenge. We challenged Batf3-/- mice, which lacked lung CD103+ DCs, with the relevant allergen house dust mite (HDM) as a model to ascertain their role in asthma. We show that acute and chronic HDM exposure leads to defective Th1 immunity in Batf3-deficient mice. In addition, chronic HDM challenge in Batf3-/- mice results in increased Th2 and Th17 immune responses and exacerbated airway inflammation. Mechanistically, Batf3 absence does not affect induction of Treg or IL-10 production by lung CD4+ T cells following acute HDM challenge. Batf3-dependent CD103+ migratory DCs are the main source of IL-12p40 in the mediastinal lymph node DC compartment in the steady state. Moreover, CD103+ DCs selectively increase their IL-12p40 production upon HDM administration. In vivo IL-12 treatment reverts exacerbated allergic airway inflammation upon chronic HDM challenge in Batf3-/- mice, restraining Th2 and Th17 responses without triggering Th1 immunity. These results suggest a protective role for lung CD103+ DCs to HDM allergic airway inflammation through the production of IL-12.
Collapse
|
76
|
Bscheider M, Butcher EC. Vitamin D immunoregulation through dendritic cells. Immunology 2017; 148:227-36. [PMID: 27040466 PMCID: PMC4913286 DOI: 10.1111/imm.12610] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 04/01/2016] [Indexed: 12/20/2022] Open
Abstract
Vitamin D (VD3) has been linked to immunological processes, and its supplementation may have a role in treatment or prevention of diseases with underlying autoimmune or pro‐inflammatory states. As initiators of the immune responses, dendritic cells (DC) are a potential target of VD3 to dampen autoimmunity and inflammation, but the role of DC in VD3‐mediated immunomodulation in vivo is not understood. In addition to being targets of VD3, DC can provide a local source of bioactive VD3 for regulation of T‐cell responses. Here we review existing studies that describe the tolerogenic potential of VD3 on DC, and discuss them in the context of current understanding of DC development and function. We speculate on mechanisms that might account for the potent but poorly understood tolerogenic activities of VD3 and the role of DC as both targets and sources of this hormone.
Collapse
Affiliation(s)
- Michael Bscheider
- Laboratory of Immunology and Vascular Biology, Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Eugene C Butcher
- Laboratory of Immunology and Vascular Biology, Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA.,The Center for Molecular Biology and Medicine, Veterans Affairs Palo Alto Health Care System, The Palo Alto Veterans Institute for Research, Palo Alto, CA, USA
| |
Collapse
|
77
|
Affiliation(s)
- Sakeen W. Kashem
- Department of Dermatology, Center for Immunology, University of Minnesota, Minneapolis, Minnesota 55455
| | - Muzlifah Haniffa
- Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne NE2 4HH, United Kingdom
- Department of Dermatology, Royal Victoria Infirmary, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne NE1 4LP, United Kingdom
| | - Daniel H. Kaplan
- Department of Dermatology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
- Department of Immunology, University of Pittsburgh, Pittsburgh, Pennsylvania 15261
| |
Collapse
|
78
|
Fehres CM, Duinkerken S, Bruijns SC, Kalay H, van Vliet SJ, Ambrosini M, de Gruijl TD, Unger WW, Garcia-Vallejo JJ, van Kooyk Y. Langerin-mediated internalization of a modified peptide routes antigens to early endosomes and enhances cross-presentation by human Langerhans cells. Cell Mol Immunol 2017; 14:360-370. [PMID: 26456691 PMCID: PMC5380941 DOI: 10.1038/cmi.2015.87] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 08/16/2015] [Accepted: 08/17/2015] [Indexed: 12/27/2022] Open
Abstract
The potential of the skin immune system to generate immune responses is well established, and the skin is actively exploited as a vaccination site. Human skin contains several antigen-presenting cell subsets with specialized functions. In particular, the capacity to cross-present exogenous antigens to CD8+ T cells is of interest for the design of effective immunotherapies against viruses or cancer. Here, we show that primary human Langerhans cells (LCs) were able to cross-present a synthetic long peptide (SLP) to CD8+ T cells. In addition, modification of this SLP using antibodies against the receptor langerin, but not dectin-1, further enhanced the cross-presenting capacity of LCs through routing of internalized antigens to less proteolytic early endosome antigen 1+ early endosomes. The potency of LCs to enhance CD8+ T-cell responses could be further increased through activation of LCs with the toll-like receptor 3 ligand polyinosinic:polycytidylic acid (pI:C). Altogether, the data provide evidence that human LCs are able to cross-present antigens after langerin-mediated internalization. Furthermore, the potential for antigen modification to target LCs specifically provides a rationale for generating effective anti-tumor or anti-viral cytotoxic T lymphocyte responses.
Collapse
Affiliation(s)
- Cynthia M Fehres
- Department of Molecular Cell Biology and Immunology,VU University Medical Center, Amsterdam, the Netherlands
| | - Sanne Duinkerken
- Department of Molecular Cell Biology and Immunology,VU University Medical Center, Amsterdam, the Netherlands
| | - Sven Cm Bruijns
- Department of Molecular Cell Biology and Immunology,VU University Medical Center, Amsterdam, the Netherlands
| | - Hakan Kalay
- Department of Molecular Cell Biology and Immunology,VU University Medical Center, Amsterdam, the Netherlands
| | - Sandra J van Vliet
- Department of Molecular Cell Biology and Immunology,VU University Medical Center, Amsterdam, the Netherlands
| | - Martino Ambrosini
- Department of Molecular Cell Biology and Immunology,VU University Medical Center, Amsterdam, the Netherlands
| | - Tanja D de Gruijl
- Department of Medical Oncology, VU University Medical Center, Amsterdam, the Netherlands
| | - Wendy Wj Unger
- Department of Molecular Cell Biology and Immunology,VU University Medical Center, Amsterdam, the Netherlands
| | - Juan J Garcia-Vallejo
- Department of Molecular Cell Biology and Immunology,VU University Medical Center, Amsterdam, the Netherlands
| | - Yvette van Kooyk
- Department of Molecular Cell Biology and Immunology,VU University Medical Center, Amsterdam, the Netherlands
| |
Collapse
|
79
|
Zhou H, Wu L. The development and function of dendritic cell populations and their regulation by miRNAs. Protein Cell 2017; 8:501-513. [PMID: 28364278 PMCID: PMC5498339 DOI: 10.1007/s13238-017-0398-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 10/10/2016] [Indexed: 12/17/2022] Open
Abstract
Dendritic cells (DCs) are important immune cells linking innate and adaptive immune responses. DCs encounter various self and non-self antigens present in the environment and induce different types of antigen specific adaptive immune responses. DCs can be classified into lymphoid tissue-resident DCs, migratory DCs, non-lymphoid resident DCs, and monocyte derived DCs (moDCs). Recent work has also established that DCs consist of developmentally and functionally distinct subsets that differentially regulate T lymphocyte function. The development of different DC subsets has been found to be regulated by a network of different cytokines and transcriptional factors. Moreover, the response of DC is tightly regulated to maintain the homeostasis of immune system. MicroRNAs (miRNAs) are an important class of cellular regulators that modulate gene expression and thereby influence cell fate and function. In the immune system, miRNAs act at checkpoints during hematopoietic development and cell subset differentiation, they modulate effector cell function, and are implicated in the maintenance of homeostasis. DCs are also regulated by miRNAs. In the past decade, much progress has been made to understand the role of miRNAs in regulating the development and function of DCs. In this review, we summarize the origin and distribution of different mouse DC subsets in both lymphoid and non-lymphoid tissues. The DC subsets identified in human are also described. Recent progress on the function of miRNAs in the development and activation of DCs and their functional relevance to autoimmune diseases are discussed.
Collapse
Affiliation(s)
- Haibo Zhou
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University School of Medicine, Institute of Immunology Tsinghua University, Beijing, 100084, China
| | - Li Wu
- Tsinghua-Peking Joint Center for Life Sciences, Tsinghua University School of Medicine, Institute of Immunology Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
80
|
Slobodin G, Rimar D. Regulatory T Cells in Systemic Sclerosis: a Comprehensive Review. Clin Rev Allergy Immunol 2017; 52:194-201. [PMID: 27318947 DOI: 10.1007/s12016-016-8563-6] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Systemic sclerosis (SSc) is a chronic inflammatory disease with complex pathogenesis, based on the sophisticated interplay of injury to the vascular endothelium, exaggerated tissue regeneration and fibrosis, and extensive immune abnormalities. The role of regulatory T cells (Tregs) in the development of SSc has started being studied during the last decade with new aspects being disclosed continuously, in parallel with the better understanding of Tregs physiology. There is a general agreement in the medical literature regarding the decreased functional capacity of circulating Tregs in SSc. Some patients, particularly those with active disease, may have increased numbers of circulating Tregs, representing the inhibitory response of the immune system to its inappropriate activation or occurring as a compensatory move for Tregs' decreased suppressive ability. Decreased pool of circulating Tregs can be seen in other SSc patients, with even lower Treg percentages seen in patients with long-standing disease. Skin-resident Tregs are depleted in advanced SSc but can be active and have a role in earlier disease stages. In addition to diminished suppressive ability, Tregs can contribute to SSc evolution by their microenvironment-dependent transformation to pathogenic effector T cells of Th17 or Th2 lineages with respective pro-inflammatory or pro-fibrotic activity. The current data on the effects of existing treatment modalities, including autologous stem cell transplantation, on Tregs function in SSc, is controversial, not being sufficiently elaborated.
Collapse
Affiliation(s)
- Gleb Slobodin
- Rheumatology, Bnai Zion Medical Center, Haifa, Israel. .,Ruth and Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel.
| | - Doron Rimar
- Rheumatology, Bnai Zion Medical Center, Haifa, Israel.,Ruth and Bruce Rappaport Faculty of Medicine, Technion, Haifa, Israel
| |
Collapse
|
81
|
Martini E, Wikén M, Cheuk S, Gallais Sérézal I, Baharom F, Ståhle M, Smed-Sörensen A, Eidsmo L. Dynamic Changes in Resident and Infiltrating Epidermal Dendritic Cells in Active and Resolved Psoriasis. J Invest Dermatol 2016; 137:865-873. [PMID: 28011143 DOI: 10.1016/j.jid.2016.11.033] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 11/07/2016] [Accepted: 11/17/2016] [Indexed: 12/24/2022]
Abstract
Epidermal Langerhans cells (LCs) are spatially separated from dermal dendritic cells (DCs) in healthy human skin. In active psoriasis, maintained by local production of IL-23 and IL-17, inflammatory DCs infiltrate both skin compartments. Here we show that CCR2+ epidermal DCs (eDCs) were confined to lesional psoriasis and phenotypically distinct from dermal DCs. The eDCs exceeded the number of LCs and displayed high expression of genes involved in neutrophil recruitment and the activation of keratinocytes and T cells. Resident LCs responded to toll-like receptor 4 and toll-like receptor 7/8 activation with increased IL-23 production, whereas eDCs additionally produced IL-1β together with IL-23 and tumor necrosis factor. Psoriasis typically recur in fixed skin lesions. eDCs were absent from resolved psoriasis. Instead, LCs from anti-tumor necrosis factor-treated lesions retained high IL23A expression and responded to toll-like receptor stimulation by producing IL-23. Our results reveal phenotypic and functional properties of eDCs and resident LCs in different clinical phases of psoriasis, and the capacity of these cells to amplify the epidermal microenvironment through the secretion of IL-17 polarizing cytokines.
Collapse
Affiliation(s)
- Elisa Martini
- Department of Dermatology, Karolinska University Hospital, Stockholm, Sweden; Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Maria Wikén
- Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Stanley Cheuk
- Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Irène Gallais Sérézal
- Department of Dermatology, Karolinska University Hospital, Stockholm, Sweden; Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Faezzah Baharom
- Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Mona Ståhle
- Department of Dermatology, Karolinska University Hospital, Stockholm, Sweden; Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | | | - Liv Eidsmo
- Department of Dermatology, Karolinska University Hospital, Stockholm, Sweden; Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
82
|
Nirschl CJ, Anandasabapathy N. Duality at the gate: Skin dendritic cells as mediators of vaccine immunity and tolerance. Hum Vaccin Immunother 2016; 12:104-16. [PMID: 26836327 DOI: 10.1080/21645515.2015.1066050] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Since Edward Jenner's discovery that intentional exposure to cowpox could provide lifelong protection from smallpox, vaccinations have been a major focus of medical research. However, while the protective benefits of many vaccines have been successfully translated into the clinic, the cellular and molecular mechanisms that differentiate effective vaccines from sub-optimal ones are not well understood. Dendritic cells (DCs) are the gatekeepers of the immune system, and are ultimately responsible for the generation of adaptive immunity and lifelong protective memory through interactions with T cells. In addition to lymph node and spleen resident DCs, a number of tissue resident DC populations have been identified at barrier tissues, such as the skin, which migrate to the local lymph node (migDC). These populations have unique characteristics, and play a key role in the function of cutaneous vaccinations by shuttling antigen from the vaccination site to the draining lymph node, rapidly capturing freely draining antigens in the lymph node, and providing key stimuli to T cells. However, while migDCs are responsible for the generation of immunity following exposure to certain pathogens and vaccines, recent work has identified a tolerogenic role for migDCs in the steady state as well as during protein immunization. Here, we examine the roles and functions of skin DC populations in the generation of protective immunity, as well as their role as regulators of the immune system.
Collapse
Affiliation(s)
- Christopher J Nirschl
- a Department of Dermatology ; Harvard Skin Disease Research Center; Brigham and Women's Hospital ; Boston , MA USA
| | - Niroshana Anandasabapathy
- a Department of Dermatology ; Harvard Skin Disease Research Center; Brigham and Women's Hospital ; Boston , MA USA
| |
Collapse
|
83
|
Batf3 selectively determines acquisition of CD8 + dendritic cell phenotype and function. Immunol Cell Biol 2016; 95:215-223. [PMID: 27897162 PMCID: PMC5309136 DOI: 10.1038/icb.2016.83] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 08/29/2016] [Accepted: 08/30/2016] [Indexed: 12/26/2022]
Abstract
Batf3 is a transcription factor that impacts the development of CD103+ tissue-resident dendritic cells (DCs). However, whether Batf3 is absolutely required for the development of CD8+ DCs remains controversial. Id2 is required for CD8+ DC development. Here we show that bone marrow chimeric mice with a deletion of Id2 in the CD11c compartment lose the ability to reject a skin graft expressing a non-self protein antigen or mount a delayed hypersensitivity response. In contrast, Batf3-/- mice remained competent for skin graft rejection and delayed hypersensitivity, and retained a CD8+ DC population with markers characteristic of the CD11b+ DC lineage, including CD11b, CD4 and CD172α, as well as the key regulator transcription factor IRF4, but lacked IRF8 expression. CD8+ DCs in Batf3-/- mice took up and cleaved protein antigen and larger particles but were unable to phagocytose dying cells, a characteristic feature to the CD8+ DC lineage. These data clarify a requirement for CD8+ lineage DCs to induce effectors of neo-antigen-driven skin graft rejection, and improve our understanding of DC subtype commitment by demonstrating that in the absence of Batf3 CD8+ DCs can change their fate and become CD11b+ DCs.
Collapse
|
84
|
DLL4 + dendritic cells: Key regulators of Notch Signaling in effector T cell responses. Pharmacol Res 2016; 113:449-457. [PMID: 27639599 DOI: 10.1016/j.phrs.2016.09.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 09/02/2016] [Indexed: 01/07/2023]
Abstract
Dendritic cells (DCs) are critical regulators of adaptive immune responses. DCs can elicit primary T cell responses at low DC:T cell ratios through their expression of high levels of antigen-presenting molecules and costimulatory molecules. DCs are important for induction of functionally diverse T cell subsets such as CD4+ T helper (Th)1 and Th17 cells and effector CD8+ T cells able to reside in epithelial tissues. Recent studies begin illuminating the underlying mechanism by which DCs regulate specialized T cell subsets. DCs are composed of subsets that differ in their phenotype, localization and function. DCs expressing high levels of DLL4 (DLL4+ DCs), which is a member of Notch ligand family, are newly discovered cells that have greater ability than DLL4- DCs to promote the generation of Th1 and Th17 CD4+ T cells. DLL4 derived from DLL4+ DCs is also important for promoting the differentiation and expansion of effector CD8+ T cells. Experimental studies have demonstrated that selective deletion of DLL4 in DCs causes impaired antitumor immunity. In contrast, blocking DLL4 leads to dramatic reduction of inflammatory T cell responses and their-mediated tissue damage. We will discuss emerging functional specialization within the DLL4+ DC compartment, DLL4+ DC biology and the impact of pharmacological modulation of DLL4 to control inflammatory disorders.
Collapse
|
85
|
Topical application of a vitamin D3 analogue and corticosteroid to psoriasis plaques decreases skin infiltration of TH17 cells and their ex vivo expansion. J Allergy Clin Immunol 2016; 138:517-528.e5. [DOI: 10.1016/j.jaci.2016.03.048] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 03/08/2016] [Accepted: 03/31/2016] [Indexed: 11/21/2022]
|
86
|
Bakdash G, Buschow SI, Gorris MAJ, Halilovic A, Hato SV, Sköld AE, Schreibelt G, Sittig SP, Torensma R, Duiveman-de Boer T, Schröder C, Smits EL, Figdor CG, de Vries IJM. Expansion of a BDCA1+CD14+ Myeloid Cell Population in Melanoma Patients May Attenuate the Efficacy of Dendritic Cell Vaccines. Cancer Res 2016; 76:4332-46. [PMID: 27325645 DOI: 10.1158/0008-5472.can-15-1695] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Accepted: 04/30/2016] [Indexed: 11/16/2022]
Abstract
The tumor microenvironment is characterized by regulatory T cells, type II macrophages, myeloid-derived suppressor cells, and other immunosuppressive cells that promote malignant progression. Here we report the identification of a novel BDCA1(+)CD14(+) population of immunosuppressive myeloid cells that are expanded in melanoma patients and are present in dendritic cell-based vaccines, where they suppress CD4(+) T cells in an antigen-specific manner. Mechanistic investigations showed that BDCA1(+)CD14(+) cells expressed high levels of the immune checkpoint molecule PD-L1 to hinder T-cell proliferation. While this BDCA1(+)CD14(+) cell population expressed markers of both BDCA1(+) dendritic cells and monocytes, analyses of function, transcriptome, and proteome established their unique nature as exploited by tumors for immune escape. We propose that targeting these cells may improve the efficacy of cancer immunotherapy. Cancer Res; 76(15); 4332-46. ©2016 AACR.
Collapse
Affiliation(s)
- Ghaith Bakdash
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Sonja I Buschow
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands. Department of Gastroenterology and Hepatology, Erasmus MC University Medical Center, Rotterdam, the Netherlands
| | - Mark A J Gorris
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Altuna Halilovic
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands. Department of Pathology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Stanleyson V Hato
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Annette E Sköld
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands. Department of Oncology and Pathology, Karolinska University Hospital Solna, Karolinska Institute, Stockholm, Sweden
| | - Gerty Schreibelt
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Simone P Sittig
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Ruurd Torensma
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Tjitske Duiveman-de Boer
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Christoph Schröder
- Sciomics GmbH, Heidelberg, Germany. Division of Functional Genome Analysis, Deutsches Krebsforschungszentrum (DKFZ), Heidelberg, Germany
| | - Evelien L Smits
- Laboratory of Experimental Hematology, Vaccine and Infectious Disease Institute, University of Antwerp, Antwerp, Belgium. Center for Oncological Research, University of Antwerp, Antwerp, Belgium
| | - Carl G Figdor
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands
| | - I Jolanda M de Vries
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, the Netherlands. Department of Medical Oncology, Radboud University Medical Center, Nijmegen, the Netherlands.
| |
Collapse
|
87
|
Czubala MA, Finsterbusch K, Ivory MO, Mitchell JP, Ahmed Z, Shimauchi T, Karoo ROS, Coulman SA, Gateley C, Birchall JC, Blanchet FP, Piguet V. TGFβ Induces a SAMHD1-Independent Post-Entry Restriction to HIV-1 Infection of Human Epithelial Langerhans Cells. J Invest Dermatol 2016; 136:1981-1989. [PMID: 27375111 DOI: 10.1016/j.jid.2016.05.123] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 05/13/2016] [Accepted: 05/31/2016] [Indexed: 11/24/2022]
Abstract
Sterile alpha motif (SAM) and histidine-aspartic (HD) domains protein 1 (SAMHD1) was previously identified as a critical post-entry restriction factor to HIV-1 infection in myeloid dendritic cells. Here we show that SAMHD1 is also expressed in epidermis-isolated Langerhans cells (LC), but degradation of SAMHD1 does not rescue HIV-1 or vesicular stomatitis virus G-pseudotyped lentivectors infection in LC. Strikingly, using Langerhans cells model systems (mutz-3-derived LC, monocyte-derived LC [MDLC], and freshly isolated epidermal LC), we characterize previously unreported post-entry restriction activity to HIV-1 in these cells, which acts at HIV-1 reverse transcription, but remains independent of restriction factors SAMHD1 and myxovirus resistance 2 (MX2). We demonstrate that transforming growth factor-β signaling confers this potent HIV-1 restriction in MDLC during their differentiation and blocking of mothers against decapentaplegic homolog 2 (SMAD2) signaling in MDLC restores cells' infectivity. Interestingly, maturation of MDLC with a toll-like receptor 2 agonist or transforming growth factor-α significantly increases cells' susceptibility to HIV-1 infection, which may explain why HIV-1 acquisition is increased during coinfection with sexually transmitted infections. In conclusion, we report a SAMHD1-independent post-entry restriction in MDLC and LC isolated from epidermis, which inhibits HIV-1 replication. A better understanding of HIV-1 restriction and propagation from LC to CD4(+) T cells may help in the development of new microbicides or vaccines to curb HIV-1 infection at its earliest stages during mucosal transmission.
Collapse
Affiliation(s)
- Magdalena A Czubala
- Department of Dermatology and Academic Wound Healing, Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | - Katja Finsterbusch
- Department of Dermatology and Academic Wound Healing, Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | - Matthew O Ivory
- Department of Dermatology and Academic Wound Healing, Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK; Cardiff University School of Pharmacy and Pharmaceutical Sciences, Cardiff CF10 3NB, UK
| | - J Paul Mitchell
- Department of Dermatology and Academic Wound Healing, Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | - Zahra Ahmed
- Department of Dermatology and Academic Wound Healing, Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | - Takatoshi Shimauchi
- Department of Dermatology and Academic Wound Healing, Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | | | - Sion A Coulman
- Cardiff University School of Pharmacy and Pharmaceutical Sciences, Cardiff CF10 3NB, UK
| | - Christopher Gateley
- Aneurin Bevan University Health Board Royal Gwent Hospital, Newport NP20 2UB, UK
| | - James C Birchall
- Cardiff University School of Pharmacy and Pharmaceutical Sciences, Cardiff CF10 3NB, UK
| | - Fabien P Blanchet
- Department of Dermatology and Academic Wound Healing, Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK
| | - Vincent Piguet
- Department of Dermatology and Academic Wound Healing, Institute of Infection and Immunity, Cardiff University School of Medicine, Heath Park, Cardiff CF14 4XN, UK.
| |
Collapse
|
88
|
Dendritic cells generated in the presence of vitamin D3 and stimulated with lipopolysaccharide secrete IL-8, IL-1β, IL-10 and induce relatively low levels of CD4+CD25hiFoxp3+ T cells. BIOMEDICA 2016; 36:239-50. [PMID: 27622485 DOI: 10.7705/biomedica.v36i2.2885] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 09/24/2015] [Indexed: 12/24/2022]
Abstract
INTRODUCTION Vitamin D3 (VD3) has been described as a modulator of immune system cells, including dendritic cells (DC). Previous studies have shown its importance in in vitro generation of tolerogenic DC, which have a similar function and phenotype to that of CD141 dermal DCs that produce IL-10 and induce (LTreg) CD4+ T regulator cells. OBJECTIVE This paper presents a study that compares the phenotype and cytokines produced by DC generated in presence and absence of VD3, which were matured with lipopolysaccharide (LPS), and their ability to induce LTreg from naïve allogeneic CD4+ T cells. MATERIALS AND METHODS In order to compare them, peripheral blood mononuclear cells were isolated to select monocytes CD14+ T cells and differentiate them in vitro from DC in the presence and absence of VD3, and to mature them with LPS. Phenotype and cytokine levels were also analyzed in the culture supernatants. Dendritic cells were then co-cultured with naïve allogeneic CD4+ T cells and the frequencies of LTreg were determined (naïve-activated). RESULTS The results showed that unstimulated DC generated with VD3 kept the CD14. When activated with LPS, they expressed lower levels of C83, CD83 and CD86; HLA-DR; higher amounts of IL-1β, IL-8, IL-10, and tended to lessen IL-6, IL-12p70 and TGF-β1, compared to DCs not treated with VD3. The frequency of naïve LTreg was similar, although immature DC generated with VD3 tended to induce activated LTregs. CONCLUSION Based on these results, it is possible to conclude that DCs generated with VD3 and treated with LPS presented a 'semi-mature' phenotype, and were able to secrete pro-inflammatory and anti-inflammatory cytokines. Besides, they did not increase their capacity to promote the polarization of naïve allogenic CD4+ T cells towards LTregs.
Collapse
|
89
|
Chandra J, Miao Y, Romoff N, Frazer IH. Epithelium Expressing the E7 Oncoprotein of HPV16 Attracts Immune-Modulatory Dendritic Cells to the Skin and Suppresses Their Antigen-Processing Capacity. PLoS One 2016; 11:e0152886. [PMID: 27031095 PMCID: PMC4816461 DOI: 10.1371/journal.pone.0152886] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 03/21/2016] [Indexed: 12/31/2022] Open
Abstract
Antigen presenting cells (APCs) in skin can promote either antigen-specific effector functions or antigen tolerance, and thus determine clearance or persistence of cutaneous viral infections. Human papillomavirus (HPV) infections can persist in squamous epithelium in immunocompetent individuals, and some persisting HPV infections, particularly with HPV16, promote malignant epithelial transformation. Here, we investigate whether local expression of the HPV16 protein most associated with malignant transformation, HPV16-E7, affects the phenotype and function of APC subsets in the skin. We demonstrate an expanded population of Langerhans cells in HPV16-E7 transgenic skin with distinct cell surface markers which express immune-modulatory enzymes and cytokines not expressed by cells from non transgenic skin. Furthermore, HPV16-E7 transgene expression in keratinocytes attracts new APC subsets to the epidermis. In vivo migration and transport of antigen to the draining lymph node by these APCs is markedly enhanced in HPV16-E7 expressing skin, whereas antigen-processing, as measured by proteolytic cleavage of DQ-OVA and activation of T cells in vivo by APCs, is significantly impaired. These data suggest that local expression of HPV16-E7 in keratinocytes can contribute to persisting infection with this oncogenic virus, by altering the phenotype and function of local APCs.
Collapse
Affiliation(s)
- Janin Chandra
- University of Queensland Diamantina Institute, Translational Research Institute, Woolloongabba, Queensland 4102, Australia
| | - Yan Miao
- University of Queensland Diamantina Institute, Translational Research Institute, Woolloongabba, Queensland 4102, Australia
| | - Natasha Romoff
- University of Queensland Diamantina Institute, Translational Research Institute, Woolloongabba, Queensland 4102, Australia
| | - Ian H. Frazer
- University of Queensland Diamantina Institute, Translational Research Institute, Woolloongabba, Queensland 4102, Australia
- * E-mail:
| |
Collapse
|
90
|
Volovitz I, Melzer S, Amar S, Bocsi J, Bloch M, Efroni S, Ram Z, Tárnok A. Dendritic Cells in the Context of Human Tumors: Biology and Experimental Tools. Int Rev Immunol 2016; 35:116-35. [DOI: 10.3109/08830185.2015.1096935] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
91
|
Desch AN, Gibbings SL, Goyal R, Kolde R, Bednarek J, Bruno T, Slansky JE, Jacobelli J, Mason R, Ito Y, Messier E, Randolph GJ, Prabagar M, Atif SM, Segura E, Xavier RJ, Bratton DL, Janssen WJ, Henson PM, Jakubzick CV. Flow Cytometric Analysis of Mononuclear Phagocytes in Nondiseased Human Lung and Lung-Draining Lymph Nodes. Am J Respir Crit Care Med 2016; 193:614-26. [PMID: 26551758 PMCID: PMC4824940 DOI: 10.1164/rccm.201507-1376oc] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 11/02/2015] [Indexed: 12/24/2022] Open
Abstract
RATIONALE The pulmonary mononuclear phagocyte system is a critical host defense mechanism composed of macrophages, monocytes, monocyte-derived cells, and dendritic cells. However, our current characterization of these cells is limited because it is derived largely from animal studies and analysis of human mononuclear phagocytes from blood and small tissue resections around tumors. OBJECTIVES Phenotypic and morphologic characterization of mononuclear phagocytes that potentially access inhaled antigens in human lungs. METHODS We acquired and analyzed pulmonary mononuclear phagocytes from fully intact nondiseased human lungs (including the major blood vessels and draining lymph nodes) obtained en bloc from 72 individual donors. Differential labeling of hematopoietic cells via intrabronchial and intravenous administration of antibodies within the same lobe was used to identify extravascular tissue-resident mononuclear phagocytes and exclude cells within the vascular lumen. Multiparameter flow cytometry was used to identify mononuclear phagocyte populations among cells labeled by each route of antibody delivery. MEASUREMENTS AND MAIN RESULTS We performed a phenotypic analysis of pulmonary mononuclear phagocytes isolated from whole nondiseased human lungs and lung-draining lymph nodes. Five pulmonary mononuclear phagocytes were observed, including macrophages, monocyte-derived cells, and dendritic cells that were phenotypically distinct from cell populations found in blood. CONCLUSIONS Different mononuclear phagocytes, particularly dendritic cells, were labeled by intravascular and intrabronchial antibody delivery, countering the notion that tissue and blood mononuclear phagocytes are equivalent systems. Phenotypic descriptions of the mononuclear phagocytes in nondiseased lungs provide a precedent for comparative studies in diseased lungs and potential targets for therapeutics.
Collapse
Affiliation(s)
- A. Nicole Desch
- Department of Immunology and Microbiology, University of Colorado Denver Anschutz Campus, Denver, Colorado
- Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- The Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts
| | | | - Rajni Goyal
- Department of Pediatrics, National Jewish Health, Denver, Colorado
| | - Raivo Kolde
- Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- The Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts
| | - Joe Bednarek
- Department of Pediatrics, National Jewish Health, Denver, Colorado
| | - Tullia Bruno
- Department of Immunology and Microbiology, University of Colorado Denver Anschutz Campus, Denver, Colorado
| | - Jill E. Slansky
- Department of Immunology and Microbiology, University of Colorado Denver Anschutz Campus, Denver, Colorado
| | - Jordan Jacobelli
- Department of Immunology and Microbiology, University of Colorado Denver Anschutz Campus, Denver, Colorado
| | - Robert Mason
- Department of Medicine, National Jewish Health and University of Colorado Denver Anschutz Campus, Denver, Colorado
| | - Yoko Ito
- Department of Medicine, National Jewish Health and University of Colorado Denver Anschutz Campus, Denver, Colorado
| | - Elise Messier
- Department of Medicine, National Jewish Health and University of Colorado Denver Anschutz Campus, Denver, Colorado
| | - Gwendalyn J. Randolph
- Department of Pathology and Immunology, Washington University Medical School, St. Louis, Missouri
| | - Miglena Prabagar
- Department of Pediatrics, National Jewish Health, Denver, Colorado
| | - Shaikh M. Atif
- Department of Pediatrics, National Jewish Health, Denver, Colorado
| | - Elodie Segura
- INSERM U932, Paris, France; and
- Institut Curie, Paris, France
| | - Ramnik J. Xavier
- Center for Computational and Integrative Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- The Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts
| | - Donna L. Bratton
- Department of Pediatrics, National Jewish Health, Denver, Colorado
| | - William J. Janssen
- Department of Medicine, National Jewish Health and University of Colorado Denver Anschutz Campus, Denver, Colorado
| | - Peter M. Henson
- Department of Immunology and Microbiology, University of Colorado Denver Anschutz Campus, Denver, Colorado
- Department of Pediatrics, National Jewish Health, Denver, Colorado
| | - Claudia V. Jakubzick
- Department of Immunology and Microbiology, University of Colorado Denver Anschutz Campus, Denver, Colorado
- Department of Pediatrics, National Jewish Health, Denver, Colorado
| |
Collapse
|
92
|
Colletti NJ, Liu H, Gower AC, Alekseyev YO, Arendt CW, Shaw MH. TLR3 Signaling Promotes the Induction of Unique Human BDCA-3 Dendritic Cell Populations. Front Immunol 2016; 7:88. [PMID: 27014268 PMCID: PMC4789364 DOI: 10.3389/fimmu.2016.00088] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 02/22/2016] [Indexed: 01/13/2023] Open
Abstract
Conventional and plasmacytoid dendritic cells (cDCs and pDCs) are the two populations of DCs that can be readily identified in human blood. Conventional DCs have been subdivided into CD1c+, or blood dendritic cells antigen (BDCA) 1 and CD141+, or BDCA-3, DCs, each having both unique gene expression profiles and functions. BDCA-3 DCs express high levels of toll-like receptor 3 and upon stimulation with Poly I:C secrete IFN-β, CXCL10, and IL-12p70. In this article, we show that activation of human BDCA-3 DCs with Poly I:C induces the expression of activation markers (CD40, CD80, and CD86) and immunoglobulin-like transcript (ILT) 3 and 4. This Poly I:C stimulation results in four populations identifiable by flow cytometry based on their expression of ILT3 and ILT4. We focused our efforts on profiling the ILT4− and ILT4+ DCs. These ILT-expressing BDCA-3 populations exhibit similar levels of activation as measured by CD40, CD80, and CD86; however, they exhibit differential cytokine secretion profiles, unique gene signatures, and vary in their ability to prime allogenic naïve T cells. Taken together, these data illustrate that within a pool of BDCA-3 DCs, there are cells poised to respond differently to a given input stimulus with unique output of immune functions.
Collapse
Affiliation(s)
- Nicholas J Colletti
- Sanofi Pharmaceuticals, Cambridge, MA, USA; Department of Biological Science, Seton Hall University, South Orange, NJ, USA
| | - Hong Liu
- Sanofi Pharmaceuticals , Cambridge, MA , USA
| | - Adam C Gower
- Clinical and Translational Science Institute, Boston University , Boston, MA , USA
| | - Yuriy O Alekseyev
- Department of Pathology and Laboratory Medicine, Boston University , Boston, MA , USA
| | | | | |
Collapse
|
93
|
Carpentier S, Vu Manh TP, Chelbi R, Henri S, Malissen B, Haniffa M, Ginhoux F, Dalod M. Comparative genomics analysis of mononuclear phagocyte subsets confirms homology between lymphoid tissue-resident and dermal XCR1(+) DCs in mouse and human and distinguishes them from Langerhans cells. J Immunol Methods 2016; 432:35-49. [PMID: 26966045 PMCID: PMC4859332 DOI: 10.1016/j.jim.2016.02.023] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2015] [Revised: 02/01/2016] [Accepted: 02/25/2016] [Indexed: 12/24/2022]
Abstract
Dendritic cells (DC) are mononuclear phagocytes which exhibit a branching (dendritic) morphology and excel at naïve T cell activation. DC encompass several subsets initially identified by their expression of cell surface molecules and later shown to possess distinct functions. DC subset differentiation is orchestrated by transcription factors, growth factors and cytokines. Identifying DC subsets is challenging as very few cell surface molecules are uniquely expressed on any one of these cell populations. There is no standard consensus to identify mononuclear phagocyte subsets; varying antigens are employed depending on the tissue and animal species studied and between laboratories. This has led to confusion in how to accurately define and classify DCs across tissues and between species. Here we report a comparative genomics strategy that enables universal definition of DC and other mononuclear phagocyte subsets across species. We performed a meta-analysis of several public datasets of human and mouse mononuclear phagocyte subsets isolated from blood, spleen, skin or cutaneous lymph nodes, including by using a novel and user friendly software, BubbleGUM, which generates and integrates gene signatures for high throughput gene set enrichment analysis. This analysis demonstrates the equivalence between human and mouse skin XCR1(+) DCs, and between mouse and human Langerhans cells.
Collapse
Affiliation(s)
- Sabrina Carpentier
- Mi-mAbs (C/O Centre d'Immunologie de Marseille-Luminy), F-13009 Marseille, France
| | - Thien-Phong Vu Manh
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université UM2, Inserm, U1104, CNRS UMR7280, F-13288 Marseille Cedex 09, France
| | - Rabie Chelbi
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université UM2, Inserm, U1104, CNRS UMR7280, F-13288 Marseille Cedex 09, France
| | - Sandrine Henri
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université UM2, Inserm, U1104, CNRS UMR7280, F-13288 Marseille Cedex 09, France
| | - Bernard Malissen
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université UM2, Inserm, U1104, CNRS UMR7280, F-13288 Marseille Cedex 09, France
| | - Muzlifah Haniffa
- Human Dendritic Cell Laboratory, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne, UK.
| | - Florent Ginhoux
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore.
| | - Marc Dalod
- Centre d'Immunologie de Marseille-Luminy, Aix Marseille Université UM2, Inserm, U1104, CNRS UMR7280, F-13288 Marseille Cedex 09, France.
| |
Collapse
|
94
|
Caucheteux SM, Mitchell JP, Ivory MO, Hirosue S, Hakobyan S, Dolton G, Ladell K, Miners K, Price DA, Kan-Mitchell J, Sewell AK, Nestle F, Moris A, Karoo RO, Birchall JC, Swartz MA, Hubbel JA, Blanchet FP, Piguet V. Polypropylene Sulfide Nanoparticle p24 Vaccine Promotes Dendritic Cell-Mediated Specific Immune Responses against HIV-1. J Invest Dermatol 2016; 136:1172-1181. [PMID: 26896775 DOI: 10.1016/j.jid.2016.01.033] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 01/12/2016] [Accepted: 01/14/2016] [Indexed: 12/24/2022]
Abstract
Delivery of vaccine formulations into the dermis using antigen-coated microneedle patches is a promising and safe approach because of efficient antigen delivery and safety. We evaluated an intradermal vaccine using HIV-1 p24 Gag peptide-conjugated polypropylene sulfide nanoparticles to induce immunity against HIV-1. This peptide-conjugated polypropylene sulfide nanoparticle formulation did not accelerate the maturation of blood- or skin-derived subsets of dendritic cells, either generated in vitro or purified ex vivo, despite efficient uptake in the absence of adjuvant. Moreover, dendritic cell-mediated capture of particulate antigen in this form induced potent HIV-1-specific CD4(+) T-cell responses, as well as B-cell-mediated antibody production. Nanoparticle-based intradermal antigen delivery may therefore provide a new option in the global effort to develop an effective vaccine against HIV-1.
Collapse
Affiliation(s)
- Stephan M Caucheteux
- Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - John P Mitchell
- Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - Matthew O Ivory
- Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK; School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK
| | - Sachiko Hirosue
- Institute of Bioengineering, School of Life Sciences and School of Engineering, Lausanne, Switzerland
| | - Svetlana Hakobyan
- Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - Garry Dolton
- Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - Kristin Ladell
- Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - Kelly Miners
- Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - David A Price
- Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK; Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - June Kan-Mitchell
- Department of Biological Sciences, University of Texas at El Paso, El Paso, Texas, USA
| | - Andrew K Sewell
- Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - Frank Nestle
- St. John's Institute of Dermatology, King's College London, London, UK
| | - Arnaud Moris
- Sorbonne Universités, UPMC Paris 06, INSERM U1135, CNRS ERL 8255, Center for Immunology and Microbial Infections, F-75013, Paris, France
| | | | - James C Birchall
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK
| | - Melody A Swartz
- Institute of Bioengineering, School of Life Sciences and School of Engineering, Lausanne, Switzerland; Institute for Molecular Engineering, University of Chicago, Chicago, Illinois, USA
| | - Jeffrey A Hubbel
- Institute of Bioengineering, School of Life Sciences and School of Engineering, Lausanne, Switzerland; Institute for Molecular Engineering, University of Chicago, Chicago, Illinois, USA
| | - Fabien P Blanchet
- Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK
| | - Vincent Piguet
- Institute of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, UK.
| |
Collapse
|
95
|
A Comparative Study of the T Cell Stimulatory and Polarizing Capacity of Human Primary Blood Dendritic Cell Subsets. Mediators Inflamm 2016; 2016:3605643. [PMID: 27057096 PMCID: PMC4761397 DOI: 10.1155/2016/3605643] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 12/21/2015] [Accepted: 01/04/2016] [Indexed: 12/24/2022] Open
Abstract
Dendritic cells (DCs) are central players of immune responses; they become activated upon infection or inflammation and migrate to lymph nodes, where they can initiate an antigen-specific immune response by activating naive T cells. Two major types of naturally occurring DCs circulate in peripheral blood, namely, myeloid and plasmacytoid DCs (pDCs). Myeloid DCs (mDCs) can be subdivided based on the expression of either CD1c or CD141. These human DC subsets differ in surface marker expression, Toll-like receptor (TLR) repertoire, and transcriptional profile, suggesting functional differences between them. Here, we directly compared the capacity of human blood mDCs and pDCs to activate and polarize CD4(+) T cells. CD141(+) mDCs show an overall more mature phenotype over CD1c(+) mDC and pDCs; they produce less IL-10 and more IL-12 than CD1c(+) mDCs. Despite these differences, all subsets can induce the production of IFN-γ in naive CD4(+) T cells. CD1c(+) and CD141(+) mDCs especially induce a strong T helper 1 profile. Importantly, naive CD4(+) T cells are not polarized towards regulatory T cells by any subset. These findings further establish all three human blood DCs-despite their differences-as promising candidates for immunostimulatory effectors in cancer immunotherapy.
Collapse
|
96
|
Norelli M, Camisa B, Bondanza A. Modeling Human Graft-Versus-Host Disease in Immunocompromised Mice. Methods Mol Biol 2016; 1393:127-32. [PMID: 27033222 DOI: 10.1007/978-1-4939-3338-9_12] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Hematopoietic stem cell transplantation (HSCT) from an allogeneic donor is an effective form of cancer immunotherapy, especially for acute leukemias. HSCT is however frequently complicated by the occurrence of graft-versus-host disease (GVHD). Immunocompromised mice infused with human T cells often develop a clinical syndrome resembling human GVHD (xenogeneic or X-GVHD). Herein, we describe a method for inducing X-GVHD in a highly reproducible manner. Given the human nature of immune effectors, this xenogeneic model can be routinely adopted for screening the efficacy of new treatments for GVHD.
Collapse
Affiliation(s)
- Margherita Norelli
- Innovative Immunotherapies Unit, IRCCS San Raffaele Hospital, Via Olgettina 60, Milano, 21032, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Barbara Camisa
- Innovative Immunotherapies Unit, IRCCS San Raffaele Hospital, Via Olgettina 60, Milano, 21032, Italy
| | - Attilio Bondanza
- Vita-Salute San Raffaele University, Milano, Italy.
- Innovative Immunotherapies Unit, IRCCS San Raffaele Hospital Scientific Institute, Via Olgettina 60, Milano, 21032, Italy.
| |
Collapse
|
97
|
Phenotypic and Functional Properties of Human Steady State CD14+ and CD1a+ Antigen Presenting Cells and Epidermal Langerhans Cells. PLoS One 2015; 10:e0143519. [PMID: 26605924 PMCID: PMC4659545 DOI: 10.1371/journal.pone.0143519] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 11/05/2015] [Indexed: 12/24/2022] Open
Abstract
Cutaneous antigen presenting cells (APCs) are critical for the induction and regulation of skin immune responses. The human skin contains phenotypically and functionally distinct APCs subsets that are present at two separated locations. While CD1ahigh LCs form a dense network in the epidermis, the CD14+ and CD1a+ APCs reside in the dermal compartment. A better understanding of the biology of human skin APC subsets is necessary for the improvement of vaccine strategies that use the skin as administration route. In particular, progress in the characterization of uptake and activatory receptors will certainly improve APC-targeting strategies in vaccination. Here we performed a detailed analysis of the expression and function of glycan-binding and pattern-recognition receptors in skin APC subsets. The results demonstrate that under steady state conditions human CD1a+ dermal dendritic cells (DCs) were phenotypically most mature as measured by the expression of CD83 and CD86, whereas the CD14+ cells showed a higher expression of the CLRs DC-SIGN, mannose receptor and DCIR and had potent antigen uptake capacity. Furthermore, steady state LCs showed superior antigen cross-presentation as compared to the dermal APC subsets. Our results also demonstrate that the TLR3 ligand polyribosinic-polyribocytidylic acid (pI:C) was the most potent stimulator of cytokine production by both LCs and dDCs. These studies warrant further exploration of human CD1a+ dDCs and LCs as target cells for cancer vaccination to induce anti-tumor immune responses.
Collapse
|
98
|
Raker VK, Domogalla MP, Steinbrink K. Tolerogenic Dendritic Cells for Regulatory T Cell Induction in Man. Front Immunol 2015; 6:569. [PMID: 26617604 PMCID: PMC4638142 DOI: 10.3389/fimmu.2015.00569] [Citation(s) in RCA: 176] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2015] [Accepted: 10/26/2015] [Indexed: 01/01/2023] Open
Abstract
Dendritic cells (DCs) are highly specialized professional antigen-presenting cells that regulate immune responses, maintaining the balance between tolerance and immunity. Mechanisms via which they can promote central and peripheral tolerance include clonal deletion, the inhibition of memory T cell responses, T cell anergy, and induction of regulatory T cells (Tregs). These properties have led to the analysis of human tolerogenic DCs as a therapeutic strategy for the induction or re-establishment of tolerance. In recent years, numerous protocols for the generation of human tolerogenic DCs have been developed and their tolerogenic mechanisms, including induction of Tregs, are relatively well understood. Phase I trials have been conducted in autoimmune disease, with results that emphasize the feasibility and safety of treatments with tolerogenic DCs. Therefore, the scientific rationale for the use of tolerogenic DCs therapy in the fields of transplantation medicine and allergic and autoimmune diseases is strong. This review will give an overview on efforts and protocols to generate human tolerogenic DCs with focus on IL-10-modulated DCs as inducers of Tregs and discuss their clinical applications and challenges faced in further developing this form of immunotherapy.
Collapse
Affiliation(s)
- Verena K Raker
- Department of Dermatology, University Medical Center Mainz, Johannes Gutenberg-University Mainz , Mainz , Germany
| | - Matthias P Domogalla
- Department of Dermatology, University Medical Center Mainz, Johannes Gutenberg-University Mainz , Mainz , Germany
| | - Kerstin Steinbrink
- Department of Dermatology, University Medical Center Mainz, Johannes Gutenberg-University Mainz , Mainz , Germany
| |
Collapse
|
99
|
O'Keeffe M, Mok WH, Radford KJ. Human dendritic cell subsets and function in health and disease. Cell Mol Life Sci 2015; 72:4309-25. [PMID: 26243730 PMCID: PMC11113503 DOI: 10.1007/s00018-015-2005-0] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 07/15/2015] [Accepted: 07/28/2015] [Indexed: 12/24/2022]
Abstract
The method of choice for the development of new vaccines is to target distinct dendritic cell subsets with antigen in vivo and to harness their function in situ to enhance cell-mediated immunity or induce tolerance to specific antigens. The innate functions of dendritic cells themselves may also be targeted by inhibitors or activators that would target a specific function such as interferon production, potentially important in autoimmune disease and chronic viral infections. Importantly targeting dendritic cells requires detailed knowledge of both the surface phenotype and function of each dendritic cell subset, including how they may respond to different types of vaccine adjuvants, their ability to produce soluble mediators and to process and present antigens and induce priming of naïve T cells. This review summarizes our knowledge of the functional attributes of the human dendritic cell subsets in the steady state and upon activation and their roles in human disease.
Collapse
Affiliation(s)
- Meredith O'Keeffe
- Centre for Biomedical Research, Burnet Institute, 85 Commercial Road, Melbourne, VIC, 3004, Australia
- Department of Immunology, Monash University, Clayton, VIC, 3800, Australia
| | - Wai Hong Mok
- Mater Research Institute, University of Queensland, 37 Kent St, Woolloongabba, QLD, 4012, Australia
| | - Kristen J Radford
- Mater Research Institute, University of Queensland, 37 Kent St, Woolloongabba, QLD, 4012, Australia.
| |
Collapse
|
100
|
Effects of the Staphylococcus aureus and Staphylococcus epidermidis Secretomes Isolated from the Skin Microbiota of Atopic Children on CD4+ T Cell Activation. PLoS One 2015; 10:e0141067. [PMID: 26510097 PMCID: PMC4624846 DOI: 10.1371/journal.pone.0141067] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 10/05/2015] [Indexed: 11/19/2022] Open
Abstract
Interactions between the immune system and skin bacteria are of major importance in the pathophysiology of atopic dermatitis (AD), yet our understanding of them is limited. From a cohort of very young AD children (1 to 3 years old), sensitized to Dermatophagoides pteronyssinus allergens (Der p), we conducted culturomic analysis of skin microbiota, cutaneous transcript profiling and quantification of anti-Der p CD4+ T cells. This showed that the presence of S. aureus in inflamed skin of AD patients was associated with a high IgE response, increased expression of inflammatory and Th2/Th22 transcripts and the prevalence of a peripheral Th2 anti-Der p response. Monocyte-derived dendritic cells (moDC) exposed to the S. aureus and S. epidermidis secretomes were found to release pro-inflammatory IFN-γ and anti-inflammatory IL-10, respectively. Allogeneic moDC exposed to the S. aureus secretome also induced the proliferation of CD4+ T cells and this effect was counteracted by concurrent exposure to the S. epidermidis secretome. In addition, whereas the S. epidermidis secretome promoted the activity of regulatory T cells (Treg) in suppressing the proliferation of conventional CD4+ T cells, the Treg lost this ability in the presence of the S. aureus secretome. We therefore conclude that S. aureus may cause and promote inflammation in the skin of AD children through concomitant Th2 activation and the silencing of resident Treg cells. Commensals such as S. epidermidis may counteract these effects by inducing the release of IL-10 by skin dendritic cells.
Collapse
|