51
|
Abstract
The transformative success of antibodies targeting the PD-1 (programmed death 1)/B7-H1 (B7 homolog 1) pathway (anti-PD therapy) has revolutionized cancer treatment. However, only a fraction of patients with solid tumors and some hematopoietic malignancies respond to anti-PD therapy, and the reason for failure in other patients is less known. By dissecting the mechanisms underlying this resistance, current studies reveal that the tumor microenvironment is a major location for resistance to occur. Furthermore, the resistance mechanisms appear to be highly heterogeneous. Here, we discuss recent human cancer data identifying mechanisms of resistance to anti-PD therapy. We review evidence for immune-based resistance mechanisms such as loss of neoantigens, defects in antigen presentation and interferon signaling, immune inhibitory molecules, and exclusion of T cells. We also review the clinical evidence for emerging mechanisms of resistance to anti-PD therapy, such as alterations in metabolism, microbiota, and epigenetics. Finally, we discuss strategies to overcome anti-PD therapy resistance and emphasize the need to develop additional immunotherapies based on the concept of normalization cancer immunotherapy.
Collapse
Affiliation(s)
- Matthew D Vesely
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA; .,Department of Dermatology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Tianxiang Zhang
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA;
| | - Lieping Chen
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA; .,Department of Dermatology, Yale University School of Medicine, New Haven, Connecticut, USA.,Department of Medicine (Medical Oncology), Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
52
|
Wei Y, Li Z. LAG3-PD-1 Combo Overcome the Disadvantage of Drug Resistance. Front Oncol 2022; 12:831407. [PMID: 35494015 PMCID: PMC9048820 DOI: 10.3389/fonc.2022.831407] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/22/2022] [Indexed: 12/13/2022] Open
Abstract
Although PD-1 blockade therapy has been promising in cancer treatment, only 4% (pancreatic cancer) to 70% (melanoma) of patients have a positive response to this blockade therapy, which is one of its important disadvantages. Therefore, it is important to seek out new targets for cancer immunotherapy to improve the overall response rate in patients. Lymphocyte activation gene-3 (LAG-3), an immune checkpoint receptor, is mainly expressed in activated immune cells. LAG-3 maintains the body’s immune homeostasis under physiological conditions while mediating tumour immune escape. Several preclinical and clinical examinations have shown that LAG-3 blockade effectively alleviates the patient’s tolerance to PD-1 immune checkpoint inhibitors. Moreover, the combination of LAG-3 and PD-1 blockade has good clinical efficacy in cancers. Hence, synchronous LAG-3 and PD-1 inhibition may be a potential new strategy for tumour immunotherapy.
Collapse
|
53
|
Laspidea V, Puigdelloses M, Labiano S, Marrodán L, Garcia-Moure M, Zalacain M, Gonzalez-Huarriz M, Martínez-Vélez N, Ausejo-Mauleon I, de la Nava D, Herrador-Cañete G, Marco-Sanz J, Guruceaga E, de Andrea CE, Villalba M, Becher O, Squatrito M, Matía V, Gállego Pérez-Larraya J, Patiño-García A, Gupta S, Gomez-Manzano C, Fueyo J, Alonso MM. Exploiting 4-1BB immune checkpoint to enhance the efficacy of oncolytic virotherapy for diffuse intrinsic pontine gliomas. JCI Insight 2022; 7:154812. [PMID: 35393952 PMCID: PMC9057625 DOI: 10.1172/jci.insight.154812] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 02/25/2022] [Indexed: 12/28/2022] Open
Abstract
Diffuse intrinsic pontine gliomas (DIPGs) are aggressive pediatric brain tumors, and patient survival has not changed despite many therapeutic efforts, emphasizing the urgent need for effective treatments. Here, we evaluated the anti-DIPG effect of the oncolytic adenovirus Delta-24-ACT, which was engineered to express the costimulatory ligand 4-1BBL to potentiate the antitumor immune response of the virus. Delta-24-ACT induced the expression of functional 4-1BBL on the membranes of infected DIPG cells, which enhanced the costimulation of CD8+ T lymphocytes. In vivo, Delta-24-ACT treatment of murine DIPG orthotopic tumors significantly improved the survival of treated mice, leading to long-term survivors that developed immunological memory against these tumors. In addition, Delta-24-ACT was safe and caused no local or systemic toxicity. Mechanistic studies showed that Delta-24-ACT modulated the tumor-immune content, not only increasing the number, but also improving the functionality of immune cells. All of these data highlight the safety and potential therapeutic benefit of Delta-24-ACT the treatment of patients with DIPG.
Collapse
Affiliation(s)
- Virginia Laspidea
- Health Research Institute of Navarra, Pamplona, Navarra, Spain.,Solid Tumor Program, Center for the Applied Medical Research, Pamplona, Navarra, Spain.,Department of Pediatrics, Navarra University Clinic, Pamplona, Spain
| | - Montserrat Puigdelloses
- Health Research Institute of Navarra, Pamplona, Navarra, Spain.,Solid Tumor Program, Center for the Applied Medical Research, Pamplona, Navarra, Spain.,Department of Pediatrics, Navarra University Clinic, Pamplona, Spain
| | - Sara Labiano
- Health Research Institute of Navarra, Pamplona, Navarra, Spain.,Solid Tumor Program, Center for the Applied Medical Research, Pamplona, Navarra, Spain.,Department of Pediatrics, Navarra University Clinic, Pamplona, Spain
| | - Lucía Marrodán
- Health Research Institute of Navarra, Pamplona, Navarra, Spain.,Solid Tumor Program, Center for the Applied Medical Research, Pamplona, Navarra, Spain.,Department of Pediatrics, Navarra University Clinic, Pamplona, Spain
| | - Marc Garcia-Moure
- Health Research Institute of Navarra, Pamplona, Navarra, Spain.,Solid Tumor Program, Center for the Applied Medical Research, Pamplona, Navarra, Spain.,Department of Pediatrics, Navarra University Clinic, Pamplona, Spain
| | - Marta Zalacain
- Health Research Institute of Navarra, Pamplona, Navarra, Spain.,Solid Tumor Program, Center for the Applied Medical Research, Pamplona, Navarra, Spain.,Department of Pediatrics, Navarra University Clinic, Pamplona, Spain
| | - Marisol Gonzalez-Huarriz
- Health Research Institute of Navarra, Pamplona, Navarra, Spain.,Solid Tumor Program, Center for the Applied Medical Research, Pamplona, Navarra, Spain.,Department of Pediatrics, Navarra University Clinic, Pamplona, Spain
| | - Naiara Martínez-Vélez
- Health Research Institute of Navarra, Pamplona, Navarra, Spain.,Solid Tumor Program, Center for the Applied Medical Research, Pamplona, Navarra, Spain.,Department of Pediatrics, Navarra University Clinic, Pamplona, Spain
| | - Iker Ausejo-Mauleon
- Health Research Institute of Navarra, Pamplona, Navarra, Spain.,Solid Tumor Program, Center for the Applied Medical Research, Pamplona, Navarra, Spain.,Department of Pediatrics, Navarra University Clinic, Pamplona, Spain
| | - Daniel de la Nava
- Health Research Institute of Navarra, Pamplona, Navarra, Spain.,Solid Tumor Program, Center for the Applied Medical Research, Pamplona, Navarra, Spain.,Department of Pediatrics, Navarra University Clinic, Pamplona, Spain
| | - Guillermo Herrador-Cañete
- Health Research Institute of Navarra, Pamplona, Navarra, Spain.,Solid Tumor Program, Center for the Applied Medical Research, Pamplona, Navarra, Spain.,Gene Therapy and Regulation of Gene Expression Program, Center for the Applied Medical Research, Pamplona, Navarra, Spain
| | - Javier Marco-Sanz
- Health Research Institute of Navarra, Pamplona, Navarra, Spain.,Solid Tumor Program, Center for the Applied Medical Research, Pamplona, Navarra, Spain.,Department of Pediatrics, Navarra University Clinic, Pamplona, Spain
| | - Elisabeth Guruceaga
- Health Research Institute of Navarra, Pamplona, Navarra, Spain.,Bioinformatics Platform, El Centro de Investigación Médica Aplicada (CIMA), University of Navarra, Pamplona, Spain
| | - Carlos E de Andrea
- Health Research Institute of Navarra, Pamplona, Navarra, Spain.,Department of Pathology, Navarra University Clinic, Pamplona, Spain
| | - María Villalba
- Health Research Institute of Navarra, Pamplona, Navarra, Spain.,Department of Pathology, Navarra University Clinic, Pamplona, Spain
| | - Oren Becher
- Department of Pediatrics.,Department of Biochemistry and Molecular Genetics, and.,Lurie Comprehensive Cancer Center, Northwestern University, Chicago, Illinois, USA.,Division of Hematology Oncology and Stem Cell Transplant, Ann & Robert H. Lurie Children's Hospital, Chicago, Illinois, USA
| | - Massimo Squatrito
- Seve Ballesteros Foundation Brain Tumor Group, Molecular Oncology Programme, Spanish National Cancer Research Center, Madrid, Spain
| | - Verónica Matía
- Seve Ballesteros Foundation Brain Tumor Group, Molecular Oncology Programme, Spanish National Cancer Research Center, Madrid, Spain
| | - Jaime Gállego Pérez-Larraya
- Health Research Institute of Navarra, Pamplona, Navarra, Spain.,Solid Tumor Program, Center for the Applied Medical Research, Pamplona, Navarra, Spain.,Department of Neurology, Navarra University Clinic, Pamplona, Spain
| | - Ana Patiño-García
- Health Research Institute of Navarra, Pamplona, Navarra, Spain.,Solid Tumor Program, Center for the Applied Medical Research, Pamplona, Navarra, Spain.,Department of Pediatrics, Navarra University Clinic, Pamplona, Spain
| | - Sumit Gupta
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Candelaria Gomez-Manzano
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Juan Fueyo
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Marta M Alonso
- Health Research Institute of Navarra, Pamplona, Navarra, Spain.,Solid Tumor Program, Center for the Applied Medical Research, Pamplona, Navarra, Spain.,Department of Pediatrics, Navarra University Clinic, Pamplona, Spain
| |
Collapse
|
54
|
Glez-Vaz J, Azpilikueta A, Olivera I, Cirella A, Teijeira A, Ochoa MC, Alvarez M, Eguren-Santamaria I, Luri-Rey C, Rodriguez-Ruiz ME, Nie X, Chen L, Guedan S, Sanamed MF, Luis Perez Gracia J, Melero I. Soluble CD137 as a dynamic biomarker to monitor agonist CD137 immunotherapies. J Immunother Cancer 2022; 10:jitc-2021-003532. [PMID: 35236742 PMCID: PMC8896037 DOI: 10.1136/jitc-2021-003532] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2022] [Indexed: 11/30/2022] Open
Abstract
Background On the basis of efficacy in mouse tumor models, multiple CD137 (4-1BB) agonist agents are being preclinically and clinically developed. The costimulatory molecule CD137 is inducibly expressed as a transmembrane or as a soluble protein (sCD137). Moreover, the CD137 cytoplasmic signaling domain is a key part in approved chimeric antigen receptors (CARs). Reliable pharmacodynamic biomarkers for CD137 ligation and costimulation of T cells will facilitate clinical development of CD137 agonists in the clinic. Methods We used human and mouse CD8 T cells undergoing activation to measure CD137 transcription and protein expression levels determining both the membrane-bound and soluble forms. In tumor-bearing mice plasma sCD137 concentrations were monitored on treatment with agonist anti-CD137 monoclonal antibodies (mAbs). Human CD137 knock-in mice were treated with clinical-grade agonist anti-human CD137 mAb (Urelumab). Sequential plasma samples were collected from the first patients intratumorally treated with Urelumab in the INTRUST clinical trial. Anti-mesothelin CD137-encompassing CAR-transduced T cells were stimulated with mesothelin coated microbeads. sCD137 was measured by sandwich ELISA and Luminex. Flow cytometry was used to monitor CD137 surface expression. Results CD137 costimulation upregulates transcription and protein expression of CD137 itself including sCD137 in human and mouse CD8 T cells. Immunotherapy with anti-CD137 agonist mAb resulted in increased plasma sCD137 in mice bearing syngeneic tumors. sCD137 induction is also observed in human CD137 knock-in mice treated with Urelumab and in mice transiently humanized with T cells undergoing CD137 costimulation inside subcutaneously implanted Matrigel plugs. The CD137 signaling domain-containing CAR T cells readily released sCD137 and acquired CD137 surface expression on antigen recognition. Patients treated intratumorally with low dose Urelumab showed increased plasma concentrations of sCD137. Conclusion sCD137 in plasma and CD137 surface expression can be used as quantitative parameters dynamically reflecting therapeutic costimulatory activity elicited by agonist CD137-targeted agents.
Collapse
Affiliation(s)
- Javier Glez-Vaz
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain.,Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Arantza Azpilikueta
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain.,Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Irene Olivera
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain.,Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Assunta Cirella
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain.,Navarra Institute for Health Research (IDISNA), Pamplona, Spain.,Departments of Immunology-Immunotherapy and Oncology, Clínica Universidad de Navarra, Pamplona, Spain
| | - Alvaro Teijeira
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain.,Navarra Institute for Health Research (IDISNA), Pamplona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Maria C Ochoa
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain.,Navarra Institute for Health Research (IDISNA), Pamplona, Spain.,Departments of Immunology-Immunotherapy and Oncology, Clínica Universidad de Navarra, Pamplona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Maite Alvarez
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain.,Navarra Institute for Health Research (IDISNA), Pamplona, Spain.,Departments of Immunology-Immunotherapy and Oncology, Clínica Universidad de Navarra, Pamplona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Iñaki Eguren-Santamaria
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain.,Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Carlos Luri-Rey
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain.,Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Maria E Rodriguez-Ruiz
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain.,Navarra Institute for Health Research (IDISNA), Pamplona, Spain.,Departments of Immunology-Immunotherapy and Oncology, Clínica Universidad de Navarra, Pamplona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Xinxin Nie
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Lieping Chen
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut, USA.,Department of Medicine (Medical Oncology), Yale University School of Medicine, New Haven, Connecticut, USA
| | - Sonia Guedan
- Department of Hematology and Oncology, Hospital Clinic. Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Miguel F Sanamed
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain.,Navarra Institute for Health Research (IDISNA), Pamplona, Spain.,Departments of Immunology-Immunotherapy and Oncology, Clínica Universidad de Navarra, Pamplona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Jose Luis Perez Gracia
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain.,Navarra Institute for Health Research (IDISNA), Pamplona, Spain.,Departments of Immunology-Immunotherapy and Oncology, Clínica Universidad de Navarra, Pamplona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Ignacio Melero
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Spain .,Navarra Institute for Health Research (IDISNA), Pamplona, Spain.,Departments of Immunology-Immunotherapy and Oncology, Clínica Universidad de Navarra, Pamplona, Spain.,Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| |
Collapse
|
55
|
Update on lymphocyte-activation gene 3 (LAG-3) in cancers: from biological properties to clinical applications. Chin Med J (Engl) 2022; 135:1203-1212. [PMID: 35170503 PMCID: PMC9337260 DOI: 10.1097/cm9.0000000000001981] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Immunotherapy that targets checkpoints, especially programmed cell death protein 1 and programmed cell death ligand 1, has revolutionized cancer therapy regimens. The overall response rate to mono-immunotherapy, however, is limited, emphasizing the need to potentiate the efficacy of these regimens. The functions of immune cells are modulated by multiple stimulatory and inhibitory molecules, including lymphocyte activation gene 3 (LAG-3). LAG-3 is co-expressed together with other inhibitory checkpoints and plays key roles in immune suppression. Increasing evidence, particularly in the last 5 years, has shown the potential of LAG-3 blockade in anti-tumor immunity. This review provides an update on the biological properties and clinical applications of LAG-3 in cancers.
Collapse
|
56
|
Aschmoneit N, Kocher K, Siegemund M, Lutz MS, Kühl L, Seifert O, Kontermann RE. Fc-based Duokines: dual-acting costimulatory molecules comprising TNFSF ligands in the single-chain format fused to a heterodimerizing Fc (scDk-Fc). Oncoimmunology 2022; 11:2028961. [PMID: 35083097 PMCID: PMC8786347 DOI: 10.1080/2162402x.2022.2028961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Targeting costimulatory receptors of the tumor necrosis factor superfamily (TNFSF) to activate T-cells and promote anti-tumor T-cell function have emerged as a promising strategy in cancer immunotherapy. Previous studies have shown that combining two different members of the TNFSF resulted in dual-acting costimulatory molecules with the ability to activate two different receptors either on the same cell or on different cell types. To achieve prolonged plasma half-life and extended drug disposition, we have developed novel dual-acting molecules by fusing single-chain ligands of the TNFSF to heterodimerizing Fc chains (scDuokine-Fc, scDk-Fc). Incorporating costimulatory ligands of the TNF superfamily into a scDk-Fc molecule resulted in enhanced T-cell proliferation translating in an increased anti-tumor activity in combination with a primary T-cell-activating bispecific antibody. Our data show that the scDk-Fc molecules are potent immune-stimulatory molecules that are able to enhance T-cell mediated anti-tumor responses.
Collapse
Affiliation(s)
- Nadine Aschmoneit
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Katharina Kocher
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Martin Siegemund
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Martina S. Lutz
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Lennart Kühl
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Oliver Seifert
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
- Stuttgart Research Center Systems Biology (SRCSB), University of Stuttgart, Stuttgart, Germany
| | - Roland E. Kontermann
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
- Stuttgart Research Center Systems Biology (SRCSB), University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
57
|
Masle-Farquhar E, Peters TJ, Miosge LA, Parish IA, Weigel C, Oakes CC, Reed JH, Goodnow CC. Uncontrolled CD21low age-associated and B1 B cell accumulation caused by failure of an EGR2/3 tolerance checkpoint. Cell Rep 2022; 38:110259. [DOI: 10.1016/j.celrep.2021.110259] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 11/03/2021] [Accepted: 12/21/2021] [Indexed: 11/28/2022] Open
|
58
|
Chen X, MacNabb BW, Flood B, Blazar BR, Kline J. Divergent fates of antigen-specific CD8 + T cell clones in mice with acute leukemia. Cell Rep 2021; 37:109991. [PMID: 34758311 PMCID: PMC8656370 DOI: 10.1016/j.celrep.2021.109991] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 09/28/2021] [Accepted: 10/21/2021] [Indexed: 01/22/2023] Open
Abstract
The existence of a dysfunctional CD8+ T cell state in cancer is well established. However, the degree to which CD8+ T cell fates are influenced by the context in which they encounter cognate tumor antigen is less clear. We previously demonstrated that CD8+ T cells reactive to a model leukemia antigen were deleted by antigen cross-presenting type 1 conventional dendritic cells (cDC1s). Here, through a study of T cell receptor (TCR) transgenic CD8+ T cells (TCRTg101) reactive to a native C1498 leukemia cell antigen, we uncover a different mode of T cell tolerance in which TCRTg101 undergo progressive expansion and differentiation into an exhausted state. Antigen encounter by TCRTg101 requires leukemia cell major histocompatibility complex (MHC)-I expression and is independent of DCs, implying that leukemia cells directly mediate the exhausted TCRTg101 phenotype. Collectively, our data reveal that leukemia antigens are presented to CD8+ T cells via discrete pathways, leading to distinct tolerant states.
Collapse
Affiliation(s)
- Xiufen Chen
- Department of Medicine, University of Chicago, Chicago, IL, USA
| | | | - Blake Flood
- Committee on Immunology, University of Chicago, Chicago, IL, USA
| | - Bruce R Blazar
- Department of Pediatrics, Division of Blood and Marrow Transplantation, University of Minnesota, Minneapolis, MN, USA
| | - Justin Kline
- Department of Medicine, University of Chicago, Chicago, IL, USA; Committee on Immunology, University of Chicago, Chicago, IL, USA; University of Chicago Comprehensive Cancer Center, Chicago, IL, USA.
| |
Collapse
|
59
|
Horton BL, Morgan DM, Momin N, Zagorulya M, Torres-Mejia E, Bhandarkar V, Wittrup KD, Love JC, Spranger S. Lack of CD8 + T cell effector differentiation during priming mediates checkpoint blockade resistance in non-small cell lung cancer. Sci Immunol 2021; 6:eabi8800. [PMID: 34714687 PMCID: PMC10786005 DOI: 10.1126/sciimmunol.abi8800] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In non–small cell lung cancer (NSCLC), response to immune checkpoint blockade (ICB) is associated with programmed cell death ligand 1 expression that is induced by interferon-γ–producing, tumor-infiltrating CD8+ T cells. However, not all tumors with a CD8+ T cell infiltrate respond to ICB, and little is known about the mechanisms governing ICB resistance in T cell–infiltrated NSCLC. We used an orthotopic NSCLC mouse model to study ICB-refractory CD8+ T cell responses. Single-cell RNA sequencing of the NSCLC mouse tumors revealed that lung cancer–specific tumor-infiltrating CD8+ T cells exhibited clonal expansion but lacked expression of genes associated with effector and exhausted T cell responses, indicating that they underwent a differentiation program distinct from conventional T cell exhaustion. This lung cancer–specific T cell dysfunction program was established early during priming in the mediastinal lymph node and was characterized by robust proliferation but a failed up-regulation of effector and exhausted T cell characteristics. Intriguingly, CD8+ T cells from patients with NSCLC expressed an analogous gene expression program, which appeared distinct from conventional T cell exhaustion. Administration of recombinant interleukin-2 (IL-2) and IL-12 was sufficient to restore effector T cell differentiation and induce control of KP lung tumors. These findings imply that a CD8+ T cell differentiation trajectory, activated during T cell priming in the mediastinal lymph node, limits the response of CD8+ T cells to ICB and thereby may contribute to failure of ICB in a subset T cell–infiltrated NSCLC.
Collapse
Affiliation(s)
- Brendan L. Horton
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
| | - Duncan M. Morgan
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Department of Chemical Engineering, MIT, Cambridge, MA, USA
| | - Noor Momin
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Department of Biological Engineering, MIT, Cambridge, MA, USA
| | - Maria Zagorulya
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Department of Biology, MIT, Cambridge, MA, USA
| | - Elen Torres-Mejia
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
| | - Vidit Bhandarkar
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Department of Biology, MIT, Cambridge, MA, USA
| | - K. Dane Wittrup
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Department of Chemical Engineering, MIT, Cambridge, MA, USA
- Department of Biological Engineering, MIT, Cambridge, MA, USA
| | - J. Christopher Love
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Department of Chemical Engineering, MIT, Cambridge, MA, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| | - Stefani Spranger
- Koch Institute for Integrative Cancer Research, MIT, Cambridge, MA, USA
- Department of Biology, MIT, Cambridge, MA, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA, USA
| |
Collapse
|
60
|
Meyer M, Wang Y, Edwards D, Smith GR, Rubenstein AB, Ramanathan P, Mire CE, Pietzsch C, Chen X, Ge Y, Cheng WS, Henry C, Woods A, Ma L, Stewart-Jones GB, Bock KW, Minai M, Nagata BM, Periasamy S, Shi PY, Graham BS, Moore IN, Ramos I, Troyanskaya OG, Zaslavsky E, Carfi A, Sealfon SC, Bukreyev A. Attenuated activation of pulmonary immune cells in mRNA-1273-vaccinated hamsters after SARS-CoV-2 infection. J Clin Invest 2021; 131:e148036. [PMID: 34449440 PMCID: PMC8516449 DOI: 10.1172/jci148036] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 08/24/2021] [Indexed: 12/31/2022] Open
Abstract
The mRNA-1273 vaccine is effective against SARS-CoV-2 and was granted emergency use authorization by the FDA. Clinical studies, however, cannot provide the controlled response to infection and complex immunological insight that are only possible with preclinical studies. Hamsters are the only model that reliably exhibits severe SARS-CoV-2 disease similar to that in hospitalized patients, making them pertinent for vaccine evaluation. We demonstrate that prime or prime-boost administration of mRNA-1273 in hamsters elicited robust neutralizing antibodies, ameliorated weight loss, suppressed SARS-CoV-2 replication in the airways, and better protected against disease at the highest prime-boost dose. Unlike in mice and nonhuman primates, low-level virus replication in mRNA-1273-vaccinated hamsters coincided with an anamnestic response. Single-cell RNA sequencing of lung tissue permitted high-resolution analysis that is not possible in vaccinated humans. mRNA-1273 prevented inflammatory cell infiltration and the reduction of lymphocyte proportions, but enabled antiviral responses conducive to lung homeostasis. Surprisingly, infection triggered transcriptome programs in some types of immune cells from vaccinated hamsters that were shared, albeit attenuated, with mock-vaccinated hamsters. Our results support the use of mRNA-1273 in a 2-dose schedule and provide insight into the potential responses within the lungs of vaccinated humans who are exposed to SARS-CoV-2.
Collapse
Affiliation(s)
- Michelle Meyer
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
- Galveston National Laboratory, Galveston, Texas, USA
| | - Yuan Wang
- Department of Computer Science and
- Lewis-Sigler Institute of Integrative Genomics, Princeton University, Princeton, New Jersey, USA
| | | | - Gregory R. Smith
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Aliza B. Rubenstein
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Palaniappan Ramanathan
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
- Galveston National Laboratory, Galveston, Texas, USA
| | - Chad E. Mire
- Galveston National Laboratory, Galveston, Texas, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Colette Pietzsch
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
- Galveston National Laboratory, Galveston, Texas, USA
| | - Xi Chen
- Lewis-Sigler Institute of Integrative Genomics, Princeton University, Princeton, New Jersey, USA
- Center for Computational Biology, Flatiron Institute, Simons Foundation, New York, New York, USA
| | - Yongchao Ge
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Wan Sze Cheng
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | | | | | - LingZhi Ma
- Moderna Inc., Cambridge, Massachusetts, USA
| | | | - Kevin W. Bock
- Infectious Disease Pathogenesis Section, Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - Mahnaz Minai
- Infectious Disease Pathogenesis Section, Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - Bianca M. Nagata
- Infectious Disease Pathogenesis Section, Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - Sivakumar Periasamy
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
- Galveston National Laboratory, Galveston, Texas, USA
| | - Pei-Yong Shi
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, Texas, USA
| | - Barney S. Graham
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Ian N. Moore
- Infectious Disease Pathogenesis Section, Comparative Medicine Branch, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - Irene Ramos
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Olga G. Troyanskaya
- Department of Computer Science and
- Lewis-Sigler Institute of Integrative Genomics, Princeton University, Princeton, New Jersey, USA
- Center for Computational Biology, Flatiron Institute, Simons Foundation, New York, New York, USA
| | - Elena Zaslavsky
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | | | - Stuart C. Sealfon
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Alexander Bukreyev
- Department of Pathology, University of Texas Medical Branch, Galveston, Texas, USA
- Galveston National Laboratory, Galveston, Texas, USA
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, Texas, USA
| |
Collapse
|
61
|
Immune checkpoints and reproductive immunology: Pioneers in the future therapy of infertility related Disorders? Int Immunopharmacol 2021; 99:107935. [PMID: 34304000 DOI: 10.1016/j.intimp.2021.107935] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/27/2021] [Accepted: 06/28/2021] [Indexed: 01/01/2023]
Abstract
As co-stimulatory receptors, immune checkpoint molecules are found on the surface of various immune cells and transduce inhibitory signals following ligand binding. The most studied members in this regard include PD-1, TIM-3, and CTLA-4. The physiological part immune checkpoints possess is the prevention of dangerous immune attacks towards self-antigens throughout an immune response, which takes place through the negative regulation of the effector immune cells, through the induction of T-cell exhaustion, for instance. It has recently been suggested that each checkpoint reduces immunoactivation via distinct intracellular mechanisms of signaling. Regulators of immune checkpoints are supposed to participate actively in immune defense mechanisms against infections, preventing autoimmunity, transplantation, and tumor immune evasion. In pregnancy, as an active immunotolerance mechanism which is also natural, the maternal immune system encounters two simultaneous challenges; in addition to accepting the semi-allogeneic fetus, the maternal immune system should also prevent infections. In this regard, the part immune checkpoint molecules possess is particularly interesting. Herein, the current understanding of such part in reproductive immunology is described.
Collapse
|
62
|
Etxeberria I, Glez-Vaz J, Teijeira Á, Melero I. New emerging targets in cancer immunotherapy: CD137/4-1BB costimulatory axis. ESMO Open 2021; 4:e000733. [PMID: 32611557 PMCID: PMC7333812 DOI: 10.1136/esmoopen-2020-000733] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/26/2020] [Accepted: 04/27/2020] [Indexed: 12/23/2022] Open
Abstract
CD137 (4-1BB) is a surface glycoprotein that belongs to the tumour necrosis factor receptor family (TNFRSF9). Its expression is induced on activation on a number of leucocyte types. Interestingly, for cancer immunotherapy, CD137 becomes expressed on primed T and natural killer (NK) cells, which on ligation provides powerful costimulatory signals. Perturbation of CD137 by CD137L or agonist monoclonal antibodies on activated CD8 T cells protects such antigen-specific cytotoxic T lymphocytes from apoptosis, enhances effector functionalities and favours persistence and memory differentiation. As a consequence, agonist antibodies exert potent antitumour effects in mouse models and the CD137 signalling domain is critical in chimeric antigen receptors (CAR) of CAR T cells approved to be used in the clinic. New formats of CD137 agonist moieties are being clinically developed, seeking potent costimulation targeted to the tumour microenvironment to avoid liver inflammation side effects, that have thus far limited and delayed clinical development.
Collapse
Affiliation(s)
- Iñaki Etxeberria
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Navarra, Spain.
| | - Javier Glez-Vaz
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Navarra, Spain
| | - Álvaro Teijeira
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Navarra, Spain
| | - Ignacio Melero
- Program of Immunology and Immunotherapy, Center for Applied Medical Research (CIMA), Pamplona, Navarra, Spain; Department of Immunology, Clinica Universidad de Navarra, Pamplona, Navarra, Spain
| |
Collapse
|
63
|
You G, Won J, Lee Y, Moon D, Park Y, Lee SH, Lee SW. Bispecific Antibodies: A Smart Arsenal for Cancer Immunotherapies. Vaccines (Basel) 2021; 9:724. [PMID: 34358141 PMCID: PMC8310217 DOI: 10.3390/vaccines9070724] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/05/2021] [Accepted: 06/28/2021] [Indexed: 12/13/2022] Open
Abstract
Following the clinical success of cancer immunotherapies such as immune checkpoint inhibitors blocking B7/CTLA-4 or PD-1/PD-L1 signaling and ongoing numerous combination therapies in the clinic,3 bispecific antibodies (BsAbs) are now emerging as a growing class of immunotherapies with the potential to improve clinical efficacy and safety further. Here, we describe four classes of BsAbs: (a) immune effector cell redirectors; (b) tumor-targeted immunomodulators; (c) dual immunomodulators; and (d) dual tumor-targeting BsAbs. This review describes each of these classes of BsAbs and presents examples of BsAbs in development. We reviewed the biological rationales and characteristics of BsAbs and summarized the current status and limitations of clinical development of BsAbs and strategies to overcome limitations. The field of BsAb-based cancer immunotherapy is growing, and more data from clinical trials are accumulating. Thus, BsAbs could be the next generation of new treatment options for cancer patients.
Collapse
Affiliation(s)
- Gihoon You
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea; (G.Y.); (D.M.)
| | - Jonghwa Won
- ABL Bio Inc., Seongnam 13488, Korea; (J.W.); (Y.L.); (S.H.L.)
| | - Yangsoon Lee
- ABL Bio Inc., Seongnam 13488, Korea; (J.W.); (Y.L.); (S.H.L.)
| | - Dain Moon
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea; (G.Y.); (D.M.)
| | - Yunji Park
- Biotechcenter, POSTECH, Pohang 37673, Korea;
| | - Sang Hoon Lee
- ABL Bio Inc., Seongnam 13488, Korea; (J.W.); (Y.L.); (S.H.L.)
| | - Seung-Woo Lee
- Department of Life Sciences, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea; (G.Y.); (D.M.)
| |
Collapse
|
64
|
Antitumor efficacy and reduced toxicity using an anti-CD137 Probody therapeutic. Proc Natl Acad Sci U S A 2021; 118:2025930118. [PMID: 34172583 DOI: 10.1073/pnas.2025930118] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Costimulation via CD137 (4-1BB) enhances antitumor immunity mediated by cytotoxic T lymphocytes. Anti-CD137 agonist antibodies elicit mild liver inflammation in mice, and the maximum tolerated dose of Urelumab, an anti-human CD137 agonist monoclonal antibody, in the clinic was defined by liver inflammation-related side effects. A protease-activated prodrug form of the anti-mouse CD137 agonist antibody 1D8 (1D8 Probody therapeutic, Pb-Tx) was constructed and found to be selectively activated in the tumor microenvironment. This construct, which encompasses a protease-cleavable linker holding in place a peptide that masks the antigen binding site, exerted antitumor effects comparable to the unmodified antibody but did not result in liver inflammation. Moreover, it efficaciously synergized with both PD-1 blockade and adoptive T-cell therapy. Surprisingly, minimal active Pb-Tx reached tumor-draining lymph nodes, and regional lymphadenectomy did not abrogate antitumor efficacy. By contrast, S1P receptor-dependent recirculation of T cells was absolutely required for efficacy. The preferential cleavage of the anti-CD137 Pb-Tx by tumor proteases offers multiple therapeutic opportunities, including neoadjuvant therapy, as shown by experiments in which the Pb-Tx is given prior to surgery to avoid spontaneous metastases.
Collapse
|
65
|
Chocarro L, Blanco E, Zuazo M, Arasanz H, Bocanegra A, Fernández-Rubio L, Morente P, Fernández-Hinojal G, Echaide M, Garnica M, Ramos P, Vera R, Kochan G, Escors D. Understanding LAG-3 Signaling. Int J Mol Sci 2021; 22:ijms22105282. [PMID: 34067904 PMCID: PMC8156499 DOI: 10.3390/ijms22105282] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/12/2021] [Accepted: 05/13/2021] [Indexed: 12/14/2022] Open
Abstract
Lymphocyte activation gene 3 (LAG-3) is a cell surface inhibitory receptor with multiple biological activities over T cell activation and effector functions. LAG-3 plays a regulatory role in immunity and emerged some time ago as an inhibitory immune checkpoint molecule comparable to PD-1 and CTLA-4 and a potential target for enhancing anti-cancer immune responses. LAG-3 is the third inhibitory receptor to be exploited in human anti-cancer immunotherapies, and it is considered a potential next-generation cancer immunotherapy target in human therapy, right next to PD-1 and CTLA-4. Unlike PD-1 and CTLA-4, the exact mechanisms of action of LAG-3 and its relationship with other immune checkpoint molecules remain poorly understood. This is partly caused by the presence of non-conventional signaling motifs in its intracellular domain that are different from other conventional immunoregulatory signaling motifs but with similar inhibitory activities. Here we summarize the current understanding of LAG-3 signaling and its role in LAG-3 functions, from its mechanisms of action to clinical applications.
Collapse
Affiliation(s)
- Luisa Chocarro
- Oncoimmunology Group, Navarrabiomed-Public University of Navarre, IdISNA, 31008 Pamplona, Navarra, Spain; (L.C.); (E.B.); (M.Z.); (H.A.); (A.B.); (L.F.-R.); (P.M.); (G.F.-H.); (M.E.); (M.G.); (P.R.)
| | - Ester Blanco
- Oncoimmunology Group, Navarrabiomed-Public University of Navarre, IdISNA, 31008 Pamplona, Navarra, Spain; (L.C.); (E.B.); (M.Z.); (H.A.); (A.B.); (L.F.-R.); (P.M.); (G.F.-H.); (M.E.); (M.G.); (P.R.)
| | - Miren Zuazo
- Oncoimmunology Group, Navarrabiomed-Public University of Navarre, IdISNA, 31008 Pamplona, Navarra, Spain; (L.C.); (E.B.); (M.Z.); (H.A.); (A.B.); (L.F.-R.); (P.M.); (G.F.-H.); (M.E.); (M.G.); (P.R.)
| | - Hugo Arasanz
- Oncoimmunology Group, Navarrabiomed-Public University of Navarre, IdISNA, 31008 Pamplona, Navarra, Spain; (L.C.); (E.B.); (M.Z.); (H.A.); (A.B.); (L.F.-R.); (P.M.); (G.F.-H.); (M.E.); (M.G.); (P.R.)
- Department of Medical Oncology, Complejo Hospitalario de Navarra CHN-IdISNA, 31008 Pamplona, Navarra, Spain;
| | - Ana Bocanegra
- Oncoimmunology Group, Navarrabiomed-Public University of Navarre, IdISNA, 31008 Pamplona, Navarra, Spain; (L.C.); (E.B.); (M.Z.); (H.A.); (A.B.); (L.F.-R.); (P.M.); (G.F.-H.); (M.E.); (M.G.); (P.R.)
| | - Leticia Fernández-Rubio
- Oncoimmunology Group, Navarrabiomed-Public University of Navarre, IdISNA, 31008 Pamplona, Navarra, Spain; (L.C.); (E.B.); (M.Z.); (H.A.); (A.B.); (L.F.-R.); (P.M.); (G.F.-H.); (M.E.); (M.G.); (P.R.)
| | - Pilar Morente
- Oncoimmunology Group, Navarrabiomed-Public University of Navarre, IdISNA, 31008 Pamplona, Navarra, Spain; (L.C.); (E.B.); (M.Z.); (H.A.); (A.B.); (L.F.-R.); (P.M.); (G.F.-H.); (M.E.); (M.G.); (P.R.)
| | - Gonzalo Fernández-Hinojal
- Oncoimmunology Group, Navarrabiomed-Public University of Navarre, IdISNA, 31008 Pamplona, Navarra, Spain; (L.C.); (E.B.); (M.Z.); (H.A.); (A.B.); (L.F.-R.); (P.M.); (G.F.-H.); (M.E.); (M.G.); (P.R.)
- Department of Medical Oncology, Complejo Hospitalario de Navarra CHN-IdISNA, 31008 Pamplona, Navarra, Spain;
| | - Miriam Echaide
- Oncoimmunology Group, Navarrabiomed-Public University of Navarre, IdISNA, 31008 Pamplona, Navarra, Spain; (L.C.); (E.B.); (M.Z.); (H.A.); (A.B.); (L.F.-R.); (P.M.); (G.F.-H.); (M.E.); (M.G.); (P.R.)
| | - Maider Garnica
- Oncoimmunology Group, Navarrabiomed-Public University of Navarre, IdISNA, 31008 Pamplona, Navarra, Spain; (L.C.); (E.B.); (M.Z.); (H.A.); (A.B.); (L.F.-R.); (P.M.); (G.F.-H.); (M.E.); (M.G.); (P.R.)
| | - Pablo Ramos
- Oncoimmunology Group, Navarrabiomed-Public University of Navarre, IdISNA, 31008 Pamplona, Navarra, Spain; (L.C.); (E.B.); (M.Z.); (H.A.); (A.B.); (L.F.-R.); (P.M.); (G.F.-H.); (M.E.); (M.G.); (P.R.)
| | - Ruth Vera
- Department of Medical Oncology, Complejo Hospitalario de Navarra CHN-IdISNA, 31008 Pamplona, Navarra, Spain;
| | - Grazyna Kochan
- Oncoimmunology Group, Navarrabiomed-Public University of Navarre, IdISNA, 31008 Pamplona, Navarra, Spain; (L.C.); (E.B.); (M.Z.); (H.A.); (A.B.); (L.F.-R.); (P.M.); (G.F.-H.); (M.E.); (M.G.); (P.R.)
- Correspondence: (G.K.); (D.E.)
| | - David Escors
- Oncoimmunology Group, Navarrabiomed-Public University of Navarre, IdISNA, 31008 Pamplona, Navarra, Spain; (L.C.); (E.B.); (M.Z.); (H.A.); (A.B.); (L.F.-R.); (P.M.); (G.F.-H.); (M.E.); (M.G.); (P.R.)
- Correspondence: (G.K.); (D.E.)
| |
Collapse
|
66
|
Antigen-driven EGR2 expression is required for exhausted CD8 + T cell stability and maintenance. Nat Commun 2021; 12:2782. [PMID: 33986293 PMCID: PMC8119420 DOI: 10.1038/s41467-021-23044-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 04/09/2021] [Indexed: 12/13/2022] Open
Abstract
Chronic stimulation of CD8+ T cells triggers exhaustion, a distinct differentiation state with diminished effector function. Exhausted cells exist in multiple differentiation states, from stem-like progenitors that are the key mediators of the response to checkpoint blockade, through to terminally exhausted cells. Due to its clinical relevance, there is substantial interest in defining the pathways that control differentiation and maintenance of these subsets. Here, we show that chronic antigen induces the anergy-associated transcription factor EGR2 selectively within progenitor exhausted cells in both chronic LCMV and tumours. EGR2 enables terminal exhaustion and stabilizes the exhausted transcriptional state by both direct EGR2-dependent control of key exhaustion-associated genes, and indirect maintenance of the exhausted epigenetic state. We show that EGR2 is a regulator of exhaustion that epigenetically and transcriptionally maintains the differentiation competency of progenitor exhausted cells.
Collapse
|
67
|
Hashimoto K. CD137 as an Attractive T Cell Co-Stimulatory Target in the TNFRSF for Immuno-Oncology Drug Development. Cancers (Basel) 2021; 13:2288. [PMID: 34064598 PMCID: PMC8150789 DOI: 10.3390/cancers13102288] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/07/2021] [Accepted: 05/08/2021] [Indexed: 12/24/2022] Open
Abstract
Immune checkpoint inhibitors have altered the treatment landscape significantly in several cancers, yet not enough for many cancer patients. T cell costimulatory receptors have been pursued as targets for the next generation of cancer immunotherapies, however, sufficient clinical efficacy has not yet been achieved. CD137 (TNFRSF9, 4-1BB) provides co-stimulatory signals and activates cytotoxic effects of CD8+ T cells and helps to form memory T cells. In addition, CD137 signalling can activate NK cells and dendritic cells which further supports cytotoxic T cell activation. An agonistic monoclonal antibody to CD137, urelumab, provided promising clinical efficacy signals but the responses were achieved above the maximum tolerated dose. Utomilumab is another CD137 monoclonal antibody to CD137 but is not as potent as urelumab. Recent advances in antibody engineering technologies have enabled mitigation of the hepato-toxicity that hampered clinical application of urelumab and have enabled to maintain similar potency to urelumab. Next generation CD137 targeting molecules currently in clinical trials support T cell and NK cell expansion in patient samples. CD137 targeting molecules in combination with checkpoint inhibitors or ADCC-enhancing monoclonal antibodies have been sought to improve both clinical safety and efficacy. Further investigation on patient samples will be required to provide insights to understand compensating pathways for future combination strategies involving CD137 targeting agents to optimize and maintain the T cell activation status in tumors.
Collapse
Affiliation(s)
- Kenji Hashimoto
- Crescendo Biologics, Ltd., Meditrina Building 260, Babraham Research Campus, Cambridge CB22 3AT, UK
| |
Collapse
|
68
|
Liu CJ, Schaettler M, Blaha DT, Bowman-Kirigin JA, Kobayashi DK, Livingstone AJ, Bender D, Miller CA, Kranz DM, Johanns TM, Dunn GP. Treatment of an aggressive orthotopic murine glioblastoma model with combination checkpoint blockade and a multivalent neoantigen vaccine. Neuro Oncol 2021; 22:1276-1288. [PMID: 32133512 DOI: 10.1093/neuonc/noaa050] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Although clinical trials testing immunotherapies in glioblastoma (GBM) have yielded mixed results, new strategies targeting tumor-specific somatic coding mutations, termed "neoantigens," represent promising therapeutic approaches. We characterized the microenvironment and neoantigen landscape of the aggressive CT2A GBM model in order to develop a platform to test combination checkpoint blockade and neoantigen vaccination. METHODS Flow cytometric analysis was performed on intracranial CT2A and GL261 tumor-infiltrating lymphocytes (TILs). Whole-exome DNA and RNA sequencing of the CT2A murine GBM was employed to identify expressed, somatic mutations. Predicted neoantigens were identified using the pVAC-seq software suite, and top-ranking candidates were screened for reactivity by interferon-gamma enzyme linked immunospot assays. Survival analysis was performed comparing neoantigen vaccination, anti-programmed cell death ligand 1 (αPD-L1), or combination therapy. RESULTS Compared with the GL261 model, CT2A exhibited immunologic features consistent with human GBM including reduced αPD-L1 sensitivity and hypofunctional TILs. Of the 29 CT2A neoantigens screened, we identified neoantigen-specific CD8+ T-cell responses in the intracranial TIL and draining lymph nodes to two H2-Kb restricted (Epb4H471L and Pomgnt1R497L) and one H2-Db restricted neoantigen (Plin2G332R). Survival analysis showed that therapeutic neoantigen vaccination with Epb4H471L, Pomgnt1R497L, and Plin2G332R, in combination with αPD-L1 treatment was superior to αPD-L1 alone. CONCLUSIONS We identified endogenous neoantigen specific CD8+ T cells within an αPD-L1 resistant murine GBM and show that neoantigen vaccination significantly augments survival benefit in combination with αPD-L1 treatment. These observations provide important preclinical correlates for GBM immunotherapy trials and support further investigation into the effects of multimodal immunotherapeutic interventions on antiglioma immunity. KEY POINTS 1. Neoantigen vaccines combined with checkpoint blockade may be promising treatments.2. CT2A tumors exhibit features of human GBM microenvironments.3. Differential scanning fluorimetry assays may complement in silico neoantigen prediction tools.
Collapse
Affiliation(s)
- Connor J Liu
- Department of Neurological Surgery, Washington University School of Medicine, St Louis, Missouri.,Department of Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri
| | - Maximilian Schaettler
- Department of Neurological Surgery, Washington University School of Medicine, St Louis, Missouri.,Department of Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri
| | - Dylan T Blaha
- Department of Biochemistry, University of Illinois, Urbana, Illinois
| | - Jay A Bowman-Kirigin
- Department of Neurological Surgery, Washington University School of Medicine, St Louis, Missouri.,Department of Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri
| | - Dale K Kobayashi
- Department of Neurological Surgery, Washington University School of Medicine, St Louis, Missouri.,Department of Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri
| | - Alexandra J Livingstone
- Division of Oncology, Department of Medicine, Washington University School of Medicine, St Louis, Missouri
| | - Diane Bender
- Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St Louis, Missouri
| | - Christopher A Miller
- The McDonnell Genome Institute, Washington University in St Louis, St Louis, Missouri
| | - David M Kranz
- Department of Biochemistry, University of Illinois, Urbana, Illinois
| | - Tanner M Johanns
- Andrew M. and Jane M. Bursky Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St Louis, Missouri.,Division of Oncology, Department of Medicine, Washington University School of Medicine, St Louis, Missouri.,The Alvin J. Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine, St Louis, Missouri
| | - Gavin P Dunn
- Department of Pathology and Immunology, Washington University School of Medicine, St Louis, Missouri.,The Alvin J. Siteman Cancer Center at Barnes-Jewish Hospital and Washington University School of Medicine, St Louis, Missouri
| |
Collapse
|
69
|
ElTanbouly MA, Noelle RJ. Rethinking peripheral T cell tolerance: checkpoints across a T cell's journey. Nat Rev Immunol 2021; 21:257-267. [PMID: 33077935 DOI: 10.1038/s41577-020-00454-2] [Citation(s) in RCA: 127] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/18/2020] [Indexed: 01/10/2023]
Abstract
Following their exit from the thymus, T cells are endowed with potent effector functions but must spare host tissue from harm. The fate of these cells is dictated by a series of checkpoints that regulate the quality and magnitude of T cell-mediated immunity, known as tolerance checkpoints. In this Perspective, we discuss the mediators and networks that control the six main peripheral tolerance checkpoints throughout the life of a T cell: quiescence, ignorance, anergy, exhaustion, senescence and death. At the naive T cell stage, two intrinsic checkpoints that actively maintain tolerance are quiescence and ignorance. In the presence of co-stimulation-deficient T cell activation, anergy is a dominant hallmark that mandates T cell unresponsiveness. When T cells are successfully stimulated and reach the effector stage, exhaustion and senescence can limit excessive inflammation and prevent immunopathology. At every stage of the T cell's journey, cell death exists as a checkpoint to limit clonal expansion and to terminate unrestrained responses. Here, we compare and contrast the T cell tolerance checkpoints and discuss their specific roles, with the aim of providing an integrated view of T cell peripheral tolerance and fate regulation.
Collapse
Affiliation(s)
- Mohamed A ElTanbouly
- Department of Microbiology and Immunology, Geisel School of Medicine, Norris Cotton Cancer Center, Dartmouth College, Hanover, NH, USA
| | - Randolph J Noelle
- Department of Microbiology and Immunology, Geisel School of Medicine, Norris Cotton Cancer Center, Dartmouth College, Hanover, NH, USA.
| |
Collapse
|
70
|
Sobhani N, Tardiel-Cyril DR, Davtyan A, Generali D, Roudi R, Li Y. CTLA-4 in Regulatory T Cells for Cancer Immunotherapy. Cancers (Basel) 2021; 13:1440. [PMID: 33809974 PMCID: PMC8005092 DOI: 10.3390/cancers13061440] [Citation(s) in RCA: 97] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 12/14/2022] Open
Abstract
Immune checkpoint inhibitors (ICIs) have obtained durable responses in many cancers, making it possible to foresee their potential in improving the health of cancer patients. However, immunotherapies are currently limited to a minority of patients and there is a need to develop a better understanding of the basic molecular mechanisms and functions of pivotal immune regulatory molecules. Immune checkpoint cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) and regulatory T (Treg) cells play pivotal roles in hindering the anticancer immunity. Treg cells suppress antigen-presenting cells (APCs) by depleting immune stimulating cytokines, producing immunosuppressive cytokines and constitutively expressing CTLA-4. CTLA-4 molecules bind to CD80 and CD86 with a higher affinity than CD28 and act as competitive inhibitors of CD28 in APCs. The purpose of this review is to summarize state-of-the-art understanding of the molecular mechanisms underlining CTLA-4 immune regulation and the correlation of the ICI response with CTLA-4 expression in Treg cells from preclinical and clinical studies for possibly improving CTLA-4-based immunotherapies, while highlighting the knowledge gap.
Collapse
Affiliation(s)
- Navid Sobhani
- Department of Medicine, Section of Epidemiology and Population Sciences, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Dana Rae Tardiel-Cyril
- Department of Medicine, Section of Epidemiology and Population Sciences, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Aram Davtyan
- Atomwise, 717 Market St, San Francisco, CA 94103, USA;
| | - Daniele Generali
- Department of Medical, Surgery and Health Sciences, University of Trieste, 34147 Trieste, Italy;
| | - Raheleh Roudi
- Department of Medicine, University of Minnesota Medical School, Minneapolis, MN 55455, USA;
| | - Yong Li
- Department of Medicine, Section of Epidemiology and Population Sciences, Baylor College of Medicine, Houston, TX 77030, USA;
| |
Collapse
|
71
|
Lou JS, Wang JF, Fei MM, Zhang Y, Wang J, Guo Y, Bian JJ, Deng XM. Targeting Lymphocyte Activation Gene 3 to Reverse T-Lymphocyte Dysfunction and Improve Survival in Murine Polymicrobial Sepsis. J Infect Dis 2021; 222:1051-1061. [PMID: 32347939 DOI: 10.1093/infdis/jiaa191] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Accepted: 04/24/2020] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND Lymphocyte activation gene 3 (LAG-3) is one of the immune checkpoint molecules, negatively regulating the T-cell reactions. The present study investigated the role of LAG-3 in sepsis-induced T-lymphocyte disability. METHODS Mice sepsis was induced by cecal ligation and puncture (CLP). LAG-3 expression on some immune cells were detected 24 hours after CLP. LAG-3 knockout and anti-LAG-3 antibody were applied to investigate the effects on the survival, bacterial clearance. Cytokine levels, T-cell counts, and the presence of apoptosis (in blood, spleen, and thymus) were also determined. In vitro T-cell apoptosis, interferon γ secretion, and proliferation were measured. The expression of interleukin 2 receptor on T cells was also determined after CLP. RESULTS LAG-3 was up-regulated on CD4+/CD8+ T, CD19+ B, natural killer, CD4+CD25+ regulatory T cells and dendritic cells. Both LAG-3 knockout and anti-LAG-3 antibody had a positive effect on survival and on blood or peritoneal bacterial clearance in mice undergoing CLP. Cytokine levels and T-cell apoptosis decreased in anti-LAG-3 antibody-treated mice. Induced T-cell apoptosis decreased, whereas interferon γ secretion and proliferation were improved by anti-LAG-3 antibody in vitro. Interleukin 2 receptor was up-regulated on T cells in both wild-type and LAG-3-knockout mice undergoing CLP. CONCLUSIONS LAG-3 knockout or anti-LAG-3 antibody blockade protected mice undergoing CLP from sepsis-associated immunodysfunction and may be a new target for the treatment.
Collapse
Affiliation(s)
- Jing-Sheng Lou
- Faculty of Anesthesiology, Changhai Hospital, Second Military Medical University, Shanghai, China.,Anesthesia and Operation Center, Chinese PLA General Hospital, Beijing, China
| | - Jia-Feng Wang
- Faculty of Anesthesiology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Miao-Miao Fei
- Faculty of Anesthesiology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Yan Zhang
- Faculty of Anesthesiology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Jun Wang
- Faculty of Anesthesiology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Yu Guo
- Faculty of Anesthesiology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Jin-Jun Bian
- Faculty of Anesthesiology, Changhai Hospital, Second Military Medical University, Shanghai, China
| | - Xiao-Ming Deng
- Faculty of Anesthesiology, Changhai Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
72
|
Singh A, Dees S, Grewal IS. Overcoming the challenges associated with CD3+ T-cell redirection in cancer. Br J Cancer 2021; 124:1037-1048. [PMID: 33469153 PMCID: PMC7960983 DOI: 10.1038/s41416-020-01225-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 11/24/2020] [Accepted: 11/30/2020] [Indexed: 01/30/2023] Open
Abstract
The development of bispecific antibodies that redirect the cytotoxic activity of CD3+ T cells to tumours is a promising immunotherapeutic strategy for the treatment of haematological malignancies and solid cancers. Since the landmark FDA approval at the end of 2014 of the anti-CD3 × anti-CD19 bispecific antibody blinatumomab (Blincyto®) for the treatment of relapsed/refractory B-cell acute lymphoblastic leukaemia, ~100 clinical trials investigating the safety and efficacy of CD3+ bispecific T-cell redirectors for cancer have been initiated. However, despite early success, numerous challenges pertaining to CD3+ T-cell redirection in the context of cancer exist, including the recruitment of counterproductive CD3+ T-cell subsets, the release of systemic cytokines, the expansion of immune checkpoint molecules, the presence of an immunosuppressive tumour microenvironment, tumour antigen loss/escape, on-target off-tumour toxicity and suboptimal potency. The aim of the present review is to discuss novel approaches to overcome the key challenges associated with CD3+ bispecific T-cell redirection in order to achieve an optimal balance of anti-tumour activity and safety.
Collapse
Affiliation(s)
- Ajit Singh
- University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Sundee Dees
- Janssen Biotherapeutics, The Janssen Pharmaceutical Companies of Johnson & Johnson, Spring House, PA, USA
| | - Iqbal S Grewal
- Janssen Biotherapeutics, The Janssen Pharmaceutical Companies of Johnson & Johnson, Spring House, PA, USA.
| |
Collapse
|
73
|
Watkins EA, Antane JT, Roberts JL, Lorentz KM, Zuerndorfer S, Dunaif AC, Bailey LJ, Tremain AC, Nguyen M, De Loera RC, Wallace RP, Weathered RK, Kontos S, Hubbell JA. Persistent antigen exposure via the eryptotic pathway drives terminal T cell dysfunction. Sci Immunol 2021; 6:6/56/eabe1801. [PMID: 33637595 DOI: 10.1126/sciimmunol.abe1801] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 01/28/2021] [Indexed: 12/15/2022]
Abstract
Although most current treatments for autoimmunity involve broad immunosuppression, recent efforts have aimed to suppress T cells in an antigen-specific manner to minimize risk of infection. One such effort is through targeting antigen to the apoptotic pathway to increase presentation of the antigen of interest in a tolerogenic context. Erythrocytes present a rational candidate to target because of their high rate of eryptosis, which facilitates continual uptake by antigen-presenting cells in the spleen. Here, we develop an approach that binds antigens to erythrocytes to induce sustained T cell dysfunction. Transcriptomic and phenotypic analyses revealed signatures of self-tolerance and exhaustion, including up-regulation of PD-1, CTLA4, Lag3, and TOX. Antigen-specific T cells were incapable of responding to an adjuvanted antigenic challenge even months after antigen clearance. With this strategy, we prevented pathology in a mouse experimental autoimmune encephalomyelitis model. CD8+ T cell education occurred in the spleen and was dependent on cross-presenting Batf3+ dendritic cells. These results demonstrate that antigens associated with eryptotic erythrocytes induce lasting T cell dysfunction that could be protective in deactivating pathogenic T cells.
Collapse
Affiliation(s)
- Elyse A Watkins
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Jennifer T Antane
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Jaeda L Roberts
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | | | | | - Anya C Dunaif
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | | | - Andrew C Tremain
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA.,Committee on Immunology, University of Chicago, Chicago, IL 60637, USA
| | - Mindy Nguyen
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Roberto C De Loera
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Rachel P Wallace
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | - Rachel K Weathered
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA
| | | | - Jeffrey A Hubbell
- Pritzker School of Molecular Engineering, University of Chicago, Chicago, IL 60637, USA. .,Committee on Immunology, University of Chicago, Chicago, IL 60637, USA.,Committee on Cancer Biology, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
74
|
Zha H, Jiang Y, Wang X, Shang J, Wang N, Yu L, Zhao W, Li Z, An J, Zhang X, Chen H, Zhu B, Li Z. Non-canonical PD-1 signaling in cancer and its potential implications in clinic. J Immunother Cancer 2021; 9:jitc-2020-001230. [PMID: 33593825 PMCID: PMC7888367 DOI: 10.1136/jitc-2020-001230] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/12/2021] [Indexed: 12/14/2022] Open
Abstract
Programmed cell death 1 (PD-1)-based immunotherapy has revolutionized the treatment of various cancers. However, only a certain group of patients benefit from PD-1 blockade therapy and many patients succumb to hyperprogressive disease. Although, CD8 T cells and conventional T cells are generally considered to be the primary source of PD-1 in cancer, accumulating evidence suggests that other distinct cell types, including B cells, regulatory T cells, natural killer cells, dendritic cells, tumor-associated macrophages and cancer cells, also express PD-1. Hence, the response of patients with cancer to PD-1 blockade therapy is a cumulative effect of anti-PD-1 antibodies acting on a myriad of cell types. Although, the contribution of CD8 T cells to PD-1 blockade therapy has been well-established, recent studies also suggest the involvement of non-canonical PD-1 signaling in blockade therapy. This review discusses the role of non-canonical PD-1 signaling in distinct cell types and explores how the available knowledge can improve PD-1 blockade immunotherapy, particularly in identifying novel biomarkers and combination treatment strategies.
Collapse
Affiliation(s)
- Haoran Zha
- Department of Oncology, PLA Rocket Force Characteristic Medical Center, Beijing, P.R. China
| | - Ying Jiang
- Postgraduate Training Base in Rocket Army Special Medical Center of the PLA, Jinzhou Medical University, Jinzhou, P.R. China
| | - Xi Wang
- Otorhinolaryngology, PLA Rocket Force Characteristic Medical Center, Beijing, P.R. China
| | - Jin Shang
- Department of Health Service, Guard Bureau of the Joint Staff Department, Central Military Commission of PLA, Beijing, P.R. China
| | - Ning Wang
- Department of Oncology, PLA Rocket Force Characteristic Medical Center, Beijing, P.R. China
| | - Lei Yu
- Department of Oncology, PLA Rocket Force Characteristic Medical Center, Beijing, P.R. China
| | - Wei Zhao
- Department of Oncology, PLA Rocket Force Characteristic Medical Center, Beijing, P.R. China
| | - Zhihua Li
- Department of Oncology, PLA Rocket Force Characteristic Medical Center, Beijing, P.R. China
| | - Juan An
- Department of Oncology, PLA Rocket Force Characteristic Medical Center, Beijing, P.R. China
| | - Xiaochun Zhang
- Department of Oncology, PLA Rocket Force Characteristic Medical Center, Beijing, P.R. China
| | - Huoming Chen
- Department of Oncology, PLA Rocket Force Characteristic Medical Center, Beijing, P.R. China
| | - Bo Zhu
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing, P.R. China
| | - Zhaoxia Li
- Department of Oncology, PLA Rocket Force Characteristic Medical Center, Beijing, P.R. China
| |
Collapse
|
75
|
Lu T, Chen L, Mansour AG, Yu MJ, Brooks N, Teng KY, Li Z, Zhang J, Barr T, Yu J, Caligiuri MA. Cbl-b Is Upregulated and Plays a Negative Role in Activated Human NK Cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 206:677-685. [PMID: 33419766 PMCID: PMC8184061 DOI: 10.4049/jimmunol.2000177] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 11/30/2020] [Indexed: 12/12/2022]
Abstract
The E3 ubiquitin ligase Cbl-b has been characterized as an intracellular checkpoint in T cells; however, the function of Cbl-b in primary human NK cells, an innate immune anti-tumor effector cell, is not well defined. In this study, we show that the expression of Cbl-b is significantly upregulated in primary human NK cells activated by IL-15, IL-2, and the human NK cell-sensitive tumor cell line K562 that lacks MHC class I expression. Pretreatment with JAK or AKT inhibitors prior to IL-15 stimulation reversed Cbl-b upregulation. Downregulation of Cbl-b resulted in significant increases in granzyme B and perforin expression, IFN-γ production, and cytotoxic activity against tumor cells. Collectively, we demonstrate upregulation of Cbl-b and its inhibitory effects in IL-15/IL-2/K562-activated human NK cells, suggesting that Cbl-b plays a negative feedback role in human NK cells.
Collapse
Affiliation(s)
- Ting Lu
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA 91010
| | - Li Chen
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA 91010
| | - Anthony G Mansour
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA 91010
| | - Melissa J Yu
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA 91010
| | - Noah Brooks
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA 91010
| | - Kun-Yu Teng
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA 91010
| | - Zhenlong Li
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA 91010
| | - Jianying Zhang
- Department of Computational and Quantitative Medicine, City of Hope National Medical Center, Duarte, CA 91010
| | - Tasha Barr
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA 91010
| | - Jianhua Yu
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA 91010
- Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Duarte, CA 91010
- Department of Immuno-Oncology, Duarte, CA 91010; and
- City of Hope Comprehensive Cancer Center, Duarte, CA 91010
| | - Michael A Caligiuri
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope National Medical Center, Duarte, CA 91010;
- Hematologic Malignancies and Stem Cell Transplantation Institute, City of Hope National Medical Center, Duarte, CA 91010
- Department of Immuno-Oncology, Duarte, CA 91010; and
- City of Hope Comprehensive Cancer Center, Duarte, CA 91010
| |
Collapse
|
76
|
Marotel M, Villard M, Drouillard A, Tout I, Besson L, Allatif O, Pujol M, Rocca Y, Ainouze M, Roblot G, Viel S, Gomez M, Loustaud V, Alain S, Durantel D, Walzer T, Hasan U, Marçais A. Peripheral natural killer cells in chronic hepatitis B patients display multiple molecular features of T cell exhaustion. eLife 2021; 10:60095. [PMID: 33507150 PMCID: PMC7870135 DOI: 10.7554/elife.60095] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 01/28/2021] [Indexed: 12/11/2022] Open
Abstract
Antiviral effectors such as natural killer (NK) cells have impaired functions in chronic hepatitis B (CHB) patients. The molecular mechanism responsible for this dysfunction remains poorly characterised. We show that decreased cytokine production capacity of peripheral NK cells from CHB patients was associated with reduced expression of NKp30 and CD16, and defective mTOR pathway activity. Transcriptome analysis of patients NK cells revealed an enrichment for transcripts expressed in exhausted T cells suggesting that NK cell dysfunction and T cell exhaustion employ common mechanisms. In particular, the transcription factor TOX and several of its targets were over-expressed in NK cells of CHB patients. This signature was predicted to be dependent on the calcium-associated transcription factor NFAT. Stimulation of the calcium-dependent pathway recapitulated features of NK cells from CHB patients. Thus, deregulated calcium signalling could be a central event in both T cell exhaustion and NK cell dysfunction occurring during chronic infections.
Collapse
Affiliation(s)
- Marie Marotel
- CIRI, Centre International de Recherche en Infectiologie, Team Innate Immunity in Infectious and Autoimmune Diseases, Univ Lyon, Inserm, Université Claude Bernard Lyon 1, CNRS, Lyon, France
| | - Marine Villard
- CIRI, Centre International de Recherche en Infectiologie, Team Innate Immunity in Infectious and Autoimmune Diseases, Univ Lyon, Inserm, Université Claude Bernard Lyon 1, CNRS, Lyon, France.,Service d'Immunologie biologique, Hôpital Lyon Sud, Hospices Civils de Lyon, Lyon, France
| | - Annabelle Drouillard
- CIRI, Centre International de Recherche en Infectiologie, Team Innate Immunity in Infectious and Autoimmune Diseases, Univ Lyon, Inserm, Université Claude Bernard Lyon 1, CNRS, Lyon, France
| | - Issam Tout
- CIRI, Centre International de Recherche en Infectiologie, Team Innate Immunity in Infectious and Autoimmune Diseases, Univ Lyon, Inserm, Université Claude Bernard Lyon 1, CNRS, Lyon, France
| | - Laurie Besson
- CIRI, Centre International de Recherche en Infectiologie, Team Innate Immunity in Infectious and Autoimmune Diseases, Univ Lyon, Inserm, Université Claude Bernard Lyon 1, CNRS, Lyon, France.,Service d'Immunologie biologique, Hôpital Lyon Sud, Hospices Civils de Lyon, Lyon, France
| | - Omran Allatif
- CIRI, Centre International de Recherche en Infectiologie, Team Innate Immunity in Infectious and Autoimmune Diseases, Univ Lyon, Inserm, Université Claude Bernard Lyon 1, CNRS, Lyon, France
| | - Marine Pujol
- CIRI, Centre International de Recherche en Infectiologie, Team Innate Immunity in Infectious and Autoimmune Diseases, Univ Lyon, Inserm, Université Claude Bernard Lyon 1, CNRS, Lyon, France
| | - Yamila Rocca
- CIRI, Centre International de Recherche en Infectiologie, Team Innate Immunity in Infectious and Autoimmune Diseases, Univ Lyon, Inserm, Université Claude Bernard Lyon 1, CNRS, Lyon, France
| | - Michelle Ainouze
- CIRI, Centre International de Recherche en Infectiologie, Team Innate Immunity in Infectious and Autoimmune Diseases, Univ Lyon, Inserm, Université Claude Bernard Lyon 1, CNRS, Lyon, France
| | - Guillaume Roblot
- CIRI, Centre International de Recherche en Infectiologie, Team Innate Immunity in Infectious and Autoimmune Diseases, Univ Lyon, Inserm, Université Claude Bernard Lyon 1, CNRS, Lyon, France
| | - Sébastien Viel
- CIRI, Centre International de Recherche en Infectiologie, Team Innate Immunity in Infectious and Autoimmune Diseases, Univ Lyon, Inserm, Université Claude Bernard Lyon 1, CNRS, Lyon, France.,Service d'Immunologie biologique, Hôpital Lyon Sud, Hospices Civils de Lyon, Lyon, France
| | - Melissa Gomez
- CHU Limoges, Service d'Hépatogastroentérologie, U1248 INSERM, Université Limoges, Limoges, France
| | - Veronique Loustaud
- CHU Limoges, Service d'Hépatogastroentérologie, U1248 INSERM, Université Limoges, Limoges, France
| | - Sophie Alain
- Département de Microbiologie, CHU de Limoges, Faculté de médecine-Université de Limoges, Limoges, France
| | - David Durantel
- Centre de Recherche en Cancérologie de Lyon (CRCL), INSERM, U1052, CNRS, Université de Lyon, Lyon, France
| | - Thierry Walzer
- CIRI, Centre International de Recherche en Infectiologie, Team Innate Immunity in Infectious and Autoimmune Diseases, Univ Lyon, Inserm, Université Claude Bernard Lyon 1, CNRS, Lyon, France
| | - Uzma Hasan
- CIRI, Centre International de Recherche en Infectiologie, Team Innate Immunity in Infectious and Autoimmune Diseases, Univ Lyon, Inserm, Université Claude Bernard Lyon 1, CNRS, Lyon, France
| | - Antoine Marçais
- CIRI, Centre International de Recherche en Infectiologie, Team Innate Immunity in Infectious and Autoimmune Diseases, Univ Lyon, Inserm, Université Claude Bernard Lyon 1, CNRS, Lyon, France
| |
Collapse
|
77
|
You G, Lee Y, Kang YW, Park HW, Park K, Kim H, Kim YM, Kim S, Kim JH, Moon D, Chung H, Son W, Jung UJ, Park E, Lee S, Son YG, Eom J, Won J, Park Y, Jung J, Lee SW. B7-H3×4-1BB bispecific antibody augments antitumor immunity by enhancing terminally differentiated CD8 + tumor-infiltrating lymphocytes. SCIENCE ADVANCES 2021; 7:7/3/eaax3160. [PMID: 33523913 PMCID: PMC7810375 DOI: 10.1126/sciadv.aax3160] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 11/19/2020] [Indexed: 05/17/2023]
Abstract
Cancer immunotherapy with 4-1BB agonists has limited further clinical development because of dose-limiting toxicity. Here, we developed a bispecific antibody (bsAb; B7-H3×4-1BB), targeting human B7-H3 (hB7-H3) and mouse or human 4-1BB, to restrict the 4-1BB stimulation in tumors. B7-H3×m4-1BB elicited a 4-1BB-dependent antitumor response in hB7-H3-overexpressing tumor models without systemic toxicity. BsAb primarily targets CD8 T cells in the tumor and increases their proliferation and cytokine production. Among the CD8 T cell population in the tumor, 4-1BB is solely expressed on PD-1+Tim-3+ "terminally differentiated" subset, and bsAb potentiates these cells for eliminating the tumor. Furthermore, the combination of bsAb and PD-1 blockade synergistically inhibits tumor growth accompanied by further increasing terminally differentiated CD8 T cells. B7-H3×h4-1BB also shows antitumor activity in h4-1BB-expressing mice. Our data suggest that B7-H3×4-1BB is an effective and safe therapeutic agent against B7-H3-positive cancers as monotherapy and combination therapy with PD-1 blockade.
Collapse
Affiliation(s)
- Gihoon You
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | | | - Yeon-Woo Kang
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Han Wook Park
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | | | - Hyekang Kim
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Young-Min Kim
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Sora Kim
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Ji-Hae Kim
- Department of Life Sciences, POSTECH, Pohang, Republic of Korea
| | - Dain Moon
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | | | - Wonjun Son
- ABL Bio Inc., Seongnam, Republic of Korea
| | | | | | - Shinai Lee
- ABL Bio Inc., Seongnam, Republic of Korea
| | | | | | | | - Yunji Park
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea
| | - Jaeho Jung
- ABL Bio Inc., Seongnam, Republic of Korea.
| | - Seung-Woo Lee
- Division of Integrative Biosciences and Biotechnology, Pohang University of Science and Technology (POSTECH), Pohang, Republic of Korea.
- Department of Life Sciences, POSTECH, Pohang, Republic of Korea
| |
Collapse
|
78
|
Carreira B, Acúrcio RC, Matos AI, Peres C, Pozzi S, Vaskovich‐Koubi D, Kleiner R, Bento M, Satchi‐Fainaro R, Florindo HF. Nanomedicines as Multifunctional Modulators of Melanoma Immune Microenvironment. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202000147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Barbara Carreira
- Research Institute for Medicines (iMed.ULisboa) Faculty of Pharmacy, University of Lisbon Av. Prof. Gama Pinto Lisboa 1649‐003 Portugal
| | - Rita C. Acúrcio
- Research Institute for Medicines (iMed.ULisboa) Faculty of Pharmacy, University of Lisbon Av. Prof. Gama Pinto Lisboa 1649‐003 Portugal
| | - Ana I. Matos
- Research Institute for Medicines (iMed.ULisboa) Faculty of Pharmacy, University of Lisbon Av. Prof. Gama Pinto Lisboa 1649‐003 Portugal
| | - Carina Peres
- Research Institute for Medicines (iMed.ULisboa) Faculty of Pharmacy, University of Lisbon Av. Prof. Gama Pinto Lisboa 1649‐003 Portugal
| | - Sabina Pozzi
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine Tel Aviv University Tel Aviv 6997801 Israel
| | - Daniella Vaskovich‐Koubi
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine Tel Aviv University Tel Aviv 6997801 Israel
| | - Ron Kleiner
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine Tel Aviv University Tel Aviv 6997801 Israel
| | - Mariana Bento
- Research Institute for Medicines (iMed.ULisboa) Faculty of Pharmacy, University of Lisbon Av. Prof. Gama Pinto Lisboa 1649‐003 Portugal
| | - Ronit Satchi‐Fainaro
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine Tel Aviv University Tel Aviv 6997801 Israel
| | - Helena F. Florindo
- Research Institute for Medicines (iMed.ULisboa) Faculty of Pharmacy, University of Lisbon Av. Prof. Gama Pinto Lisboa 1649‐003 Portugal
| |
Collapse
|
79
|
Freeman ZT, Nirschl TR, Hovelson DH, Johnston RJ, Engelhardt JJ, Selby MJ, Kochel CM, Lan RY, Zhai J, Ghasemzadeh A, Gupta A, Skaist AM, Wheelan SJ, Jiang H, Pearson AT, Snyder LA, Korman AJ, Tomlins SA, Yegnasubramanian S, Drake CG. A conserved intratumoral regulatory T cell signature identifies 4-1BB as a pan-cancer target. J Clin Invest 2020; 130:1405-1416. [PMID: 32015231 DOI: 10.1172/jci128672] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 11/13/2019] [Indexed: 12/19/2022] Open
Abstract
Despite advancements in targeting the immune checkpoints program cell death protein 1 (PD-1), programmed death ligand 1 (PD-L1), and cytotoxic T lymphocyte-associated protein 4 (CTLA-4) for cancer immunotherapy, a large number of patients and cancer types remain unresponsive. Current immunotherapies focus on modulating an antitumor immune response by directly or indirectly expanding antitumor CD8 T cells. A complementary strategy might involve inhibition of Tregs that otherwise suppress antitumor immune responses. Here, we sought to identify functional immune molecules preferentially expressed on tumor-infiltrating Tregs. Using genome-wide RNA-Seq analysis of purified Tregs sorted from multiple human cancer types, we identified a conserved Treg immune checkpoint signature. Using immunocompetent murine tumor models, we found that antibody-mediated depletion of 4-1BB-expressing cells (4-1BB is also known as TNFRSF9 or CD137) decreased tumor growth without negatively affecting CD8 T cell function. Furthermore, we found that the immune checkpoint 4-1BB had a high selectivity for human tumor Tregs and was associated with worse survival outcomes in patients with multiple tumor types. Thus, antibody-mediated depletion of 4-1BB-expressing Tregs represents a strategy with potential activity across cancer types.
Collapse
Affiliation(s)
- Zachary T Freeman
- Department of Oncology and.,Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA.,Unit for Laboratory Animal Medicine, Medical School.,Rogel Cancer Center, and
| | - Thomas R Nirschl
- Department of Oncology and.,Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Daniel H Hovelson
- Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | | | | | - Mark J Selby
- Bristol-Myers Squibb, Redwood City, California, USA
| | - Christina M Kochel
- Department of Oncology and.,Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Ruth Y Lan
- Bristol-Myers Squibb, Redwood City, California, USA
| | - Jingyi Zhai
- Department of Biostatistics, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Ali Ghasemzadeh
- Department of Oncology and.,Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Anuj Gupta
- Department of Oncology and.,Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Alyza M Skaist
- Department of Oncology and.,Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Sarah J Wheelan
- Department of Oncology and.,Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Hui Jiang
- Rogel Cancer Center, and.,Department of Biostatistics, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Alexander T Pearson
- Section of Hematology/Oncology, Department of Medicine, University of Chicago, Chicago, Illinois, USA
| | - Linda A Snyder
- Oncology Discovery, Janssen R&D, Spring House, Pennsylvania, USA
| | | | - Scott A Tomlins
- Rogel Cancer Center, and.,Department of Pathology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA.,Michigan Center for Translational Pathology, Department of Pathology, and.,Department of Urology, Michigan Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Srinivasan Yegnasubramanian
- Department of Oncology and.,Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA.,Brady Urological Institute, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
| | - Charles G Drake
- Department of Oncology and.,Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA.,Brady Urological Institute, School of Medicine, Johns Hopkins University, Baltimore, Maryland, USA.,Division of Hematology and Oncology, Herbert Irving Comprehensive Cancer Center, Columbia University Medical Center, New York, New York, USA
| |
Collapse
|
80
|
Flümann R, Rehkämper T, Nieper P, Pfeiffer P, Holzem A, Klein S, Bhatia S, Kochanek M, Kisis I, Pelzer BW, Ahlert H, Hauer J, da Palma Guerreiro A, Ryan JA, Reimann M, Riabinska A, Wiederstein J, Krüger M, Deckert M, Altmüller J, Klatt AR, Frenzel LP, Pasqualucci L, Béguelin W, Melnick AM, Sander S, Montesinos-Rongen M, Brunn A, Lohneis P, Büttner R, Kashkar H, Borkhardt A, Letai A, Persigehl T, Peifer M, Schmitt CA, Reinhardt HC, Knittel G. An Autochthonous Mouse Model of Myd88- and BCL2-Driven Diffuse Large B-cell Lymphoma Reveals Actionable Molecular Vulnerabilities. Blood Cancer Discov 2020; 2:70-91. [PMID: 33447829 DOI: 10.1158/2643-3230.bcd-19-0059] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Based on gene expression profiles, diffuse large B cell lymphoma (DLBCL) is sub-divided into germinal center B cell-like (GCB) and activated B cell-like (ABC) DLBCL. Two of the most common genomic aberrations in ABC-DLBCL are mutations in MYD88, as well as BCL2 copy number gains. Here, we employ immune phenotyping, RNA-Seq and whole exome sequencing to characterize a Myd88 and Bcl2-driven mouse model of ABC-DLBCL. We show that this model resembles features of human ABC-DLBCL. We further demonstrate an actionable dependence of our murine ABC-DLBCL model on BCL2. This BCL2 dependence was also detectable in human ABC-DLBCL cell lines. Moreover, human ABC-DLBCLs displayed increased PD-L1 expression, compared to GCB-DLBCL. In vivo experiments in our ABC-DLBCL model showed that combined venetoclax and RMP1-14 significantly increased the overall survival of lymphoma bearing animals, indicating that this combination may be a viable option for selected human ABC-DLBCL cases harboring MYD88 and BCL2 aberrations.
Collapse
Affiliation(s)
- Ruth Flümann
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Clinic I of Internal Medicine, Cologne, Germany.,Center for Integrated Oncology, University of Cologne, Cologne, Germany.,Center for Molecular Medicine, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Tim Rehkämper
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Clinic I of Internal Medicine, Cologne, Germany.,Center for Integrated Oncology, University of Cologne, Cologne, Germany.,Center for Molecular Medicine, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Pascal Nieper
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Clinic I of Internal Medicine, Cologne, Germany.,Center for Integrated Oncology, University of Cologne, Cologne, Germany.,Center for Molecular Medicine, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Pauline Pfeiffer
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Clinic I of Internal Medicine, Cologne, Germany.,Center for Integrated Oncology, University of Cologne, Cologne, Germany.,Center for Molecular Medicine, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Alessandra Holzem
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Clinic I of Internal Medicine, Cologne, Germany.,Center for Integrated Oncology, University of Cologne, Cologne, Germany.,Center for Molecular Medicine, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Sebastian Klein
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Institute of Pathology, Cologne, Germany
| | - Sanil Bhatia
- Heinrich Heine University Düsseldorf, Medical Faculty, Department of Pediatric Oncology, Hematology and Clinical Immunology, Düsseldorf, Germany
| | - Moritz Kochanek
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Clinic I of Internal Medicine, Cologne, Germany.,Center for Integrated Oncology, University of Cologne, Cologne, Germany.,Center for Molecular Medicine, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Ilmars Kisis
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Clinic I of Internal Medicine, Cologne, Germany.,Center for Integrated Oncology, University of Cologne, Cologne, Germany.,Center for Molecular Medicine, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Benedikt W Pelzer
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Clinic I of Internal Medicine, Cologne, Germany.,Center for Integrated Oncology, University of Cologne, Cologne, Germany.,Center for Molecular Medicine, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Heinz Ahlert
- Heinrich Heine University Düsseldorf, Medical Faculty, Department of Pediatric Oncology, Hematology and Clinical Immunology, Düsseldorf, Germany
| | - Julia Hauer
- Department of Pediatrics, Pediatric Hematology and Oncology, University Hospital Carl Gustav Carus, Technische Universität Dresden, Germany.,National Center for Tumor Diseases (NCT), Dresden, Germany
| | - Alexandra da Palma Guerreiro
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Clinic I of Internal Medicine, Cologne, Germany.,Center for Integrated Oncology, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Jeremy A Ryan
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, USA
| | - Maurice Reimann
- Charité Universitätsmedizin Berlin, Medical Department of Hematology, Oncology and Tumor Immunology, and Molekulares Krebsforschungszentrum - MKFZ, Virchow Campus, Berlin, Germany
| | - Arina Riabinska
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Clinic I of Internal Medicine, Cologne, Germany.,Center for Integrated Oncology, University of Cologne, Cologne, Germany.,Center for Molecular Medicine, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Janica Wiederstein
- Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Marcus Krüger
- Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Martina Deckert
- Center for Integrated Oncology, University of Cologne, Cologne, Germany.,University of Cologne, Faculty of Medicine and University Hospital Cologne, Institute of Neuropathology, Cologne, Germany
| | - Janine Altmüller
- Cologne Center for Genomics (CCG), University of Cologne, Cologne, Germany
| | - Andreas R Klatt
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Institute of Clinical Chemistry, Cologne, Germany
| | - Lukas P Frenzel
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Clinic I of Internal Medicine, Cologne, Germany.,Center for Integrated Oncology, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Laura Pasqualucci
- Department of Pathology and Cell Biology, Institute for Cancer Genetics and the Herbert Irving Comprehensive Cancer Center, Columbia University, New York, USA
| | - Wendy Béguelin
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, Cornell University, New York, USA
| | - Ari M Melnick
- Division of Hematology/Oncology, Department of Medicine, Weill Cornell Medicine, Cornell University, New York, USA
| | - Sandrine Sander
- Adaptive Immunity and Lymphoma Group, German Cancer Research Center/National Center for Tumor Diseases Heidelberg, Heidelberg, Germany
| | - Manuel Montesinos-Rongen
- Center for Integrated Oncology, University of Cologne, Cologne, Germany.,University of Cologne, Faculty of Medicine and University Hospital Cologne, Institute of Neuropathology, Cologne, Germany
| | - Anna Brunn
- Center for Integrated Oncology, University of Cologne, Cologne, Germany.,University of Cologne, Faculty of Medicine and University Hospital Cologne, Institute of Neuropathology, Cologne, Germany
| | - Philipp Lohneis
- Center for Integrated Oncology, University of Cologne, Cologne, Germany.,Center for Molecular Medicine, University of Cologne, Cologne, Germany.,University of Cologne, Faculty of Medicine and University Hospital Cologne, Institute of Pathology, Cologne, Germany
| | - Reinhard Büttner
- Center for Integrated Oncology, University of Cologne, Cologne, Germany.,Center for Molecular Medicine, University of Cologne, Cologne, Germany.,University of Cologne, Faculty of Medicine and University Hospital Cologne, Institute of Pathology, Cologne, Germany
| | - Hamid Kashkar
- Center for Molecular Medicine, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany.,University of Cologne, Faculty of Medicine and University Hospital Cologne, Institute for Medical Microbiology, Immunology and Hygiene, Cologne, Germany
| | - Arndt Borkhardt
- Heinrich Heine University Düsseldorf, Medical Faculty, Department of Pediatric Oncology, Hematology and Clinical Immunology, Düsseldorf, Germany
| | - Anthony Letai
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, USA
| | - Thorsten Persigehl
- Center for Integrated Oncology, University of Cologne, Cologne, Germany.,University of Cologne, Faculty of Medicine and University Hospital Cologne, Department of Radiology and Interventional Radiology, Cologne, Germany
| | - Martin Peifer
- Center for Integrated Oncology, University of Cologne, Cologne, Germany.,Center for Molecular Medicine, University of Cologne, Cologne, Germany.,University of Cologne, Department of Translational Genomics, Cologne, Germany
| | - Clemens A Schmitt
- Charité Universitätsmedizin Berlin, Medical Department of Hematology, Oncology and Tumor Immunology, and Molekulares Krebsforschungszentrum - MKFZ, Virchow Campus, Berlin, Germany.,Kepler Universitätsklinikum, Medical Department of Hematology and Oncology, Johannes Kepler University, Linz, Austria
| | - Hans Christian Reinhardt
- Department of Hematology and Stem Cell Transplantation, University Hospital Essen, University Duisburg-Essen, German Cancer Consortium (DKTK partner site Essen), Essen, Germany
| | - Gero Knittel
- University of Cologne, Faculty of Medicine and University Hospital Cologne, Clinic I of Internal Medicine, Cologne, Germany.,Center for Integrated Oncology, University of Cologne, Cologne, Germany.,Center for Molecular Medicine, University of Cologne, Cologne, Germany.,Cologne Excellence Cluster on Cellular Stress Response in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| |
Collapse
|
81
|
Resident Memory T Cells in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1273:39-68. [PMID: 33119875 DOI: 10.1007/978-3-030-49270-0_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Tissue-resident memory T (TRM) cells are strategically positioned within the epithelial layers of many tissues to provide enduring site-specific immunological memory. This unique T-cell lineage is endowed with the capacity to rapidly respond to tissue perturbations and has a well-documented role in eradicating pathogens upon reexposure. Emerging evidence has highlighted a key role for TRM cells in cancer immunity. Single-cell approaches have identified TRM cells among other CD8+ tumor-infiltrating lymphocyte (TIL) subsets, and their presence is a positive indicator of clinical outcome in cancer patients. Furthermore, recent preclinical studies have elegantly demonstrated that TRM cells are a critical component of the antitumor immune response. Given their unique functional abilities, TRM cells have emerged as a potential immunotherapeutic target. Here, we discuss TRM cells in the framework of the cancer-immunity cycle and in the context of the T cell- and non-T cell-inflamed tumor microenvironments (TME). We highlight how their core features make TRM cells uniquely suited to function within the metabolically demanding TME. Finally, we consider potential therapeutic avenues that target TRM cells to augment the antitumor immune response.
Collapse
|
82
|
Li Y, Wang Z, Jiang W, Zeng H, Liu Z, Lin Z, Qu Y, Xiong Y, Wang J, Chang Y, Bai Q, Wang Y, Liu L, Zhu Y, Xu L, Xia Y, Guo J, Xu J. Tumor-infiltrating TNFRSF9 + CD8 + T cells define different subsets of clear cell renal cell carcinoma with prognosis and immunotherapeutic response. Oncoimmunology 2020; 9:1838141. [PMID: 33178496 PMCID: PMC7595587 DOI: 10.1080/2162402x.2020.1838141] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 10/14/2020] [Indexed: 12/21/2022] Open
Abstract
Objectives Tumor necrosis receptor super family (TNFRSF) plays an important role in regulating the function of CD8+ T cells. In this study, we explored the clinical significance and immune profile of TNFRSF9+ CD8+ T cells in clear cell renal cell carcinoma (ccRCC). Methods The infiltration of immune cells was determined by immunohistochemistry in ZS cohort from our hospital and their prognostic value was further determined by Cox regression. Functional status of CD8+ T cells in ccRCC was determined by flow cytometry in 29 fresh tumor samples. In silico analysis on a TCGA cohort and other datasets was performed to further demonstrate our findings. Results High TNFRSF9+ CD8+ T cells infiltration was associated with inferior overall survival in ZS cohort (p = .0016) and TCGA-KIRC cohort (p = .018). TNFRSF9+ CD8+ T cells expressed higher exhaustion markers (PD-1, TIM-3, CTLA-4, and TIGIT), and effector markers (IFN-γ, GZMB, CD107a, and Ki-67), than their TNFRSF9 negative counterparts. In silico analysis indicated the expression of TNFRSF9 was significantly correlated with IFNG, GZMK, MKI-67, PDCD1, HAVCR2, TIGIT, and CTLA-4 in CD8+ T cells. However, higher TNFRSF9 signature was correlated with larger tumor size shrinkage (p = .003) and better progression-free survival (p = .012) in patients treated with nivolumab but not everolimus. Conclusion TNFRSF9+ CD8+ T cells, which possessed both exhaustion and effector phenotype, were identified as an adverse prognosticator in ccRCC. These cells enrichment was associated with better immunotherapy response which indicated these cells potentially be crucial in immunotherapy.
Collapse
Affiliation(s)
- Yaohui Li
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zewei Wang
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wenbin Jiang
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Han Zeng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Zhaopei Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Zhiyuan Lin
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yang Qu
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ying Xiong
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jiajun Wang
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yuan Chang
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Qi Bai
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yiwei Wang
- Department of Urology, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Li Liu
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yu Zhu
- Department of Urology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Le Xu
- Department of Urology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Xia
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jianming Guo
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jiejie Xu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
83
|
Zhu J, Wang Y, Li D, Zhang H, Guo Z, Yang X. Interleukin-35 promotes progression of prostate cancer and inhibits anti-tumour immunity. Cancer Cell Int 2020; 20:487. [PMID: 33041668 PMCID: PMC7541216 DOI: 10.1186/s12935-020-01583-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 09/28/2020] [Indexed: 12/16/2022] Open
Abstract
Background Interleukin-35 (IL-35) has been reported to play an important role in the progression of cancers. The role of IL-35 in prostate cancer (PCA) is not well understood. In this study, we investigated the effects of IL-35 on PCA and its immunoregulatory effect on PCA. Methods The protein and mRNA expression of IL-35 in PCA cells was detected by western blot and RT-PCR. The invasion and migration of cells were detected using transwell and wound-healing assays. A CCK-8 assay was conducted to observe cell proliferation. In vivo, IL-35 plasma concentration was test by enzyme-linked immunosorbent assay. The role of IL-35 in tumour cell proliferation and angiogenesis of mice was detected by immunohistochemical stains. The mouse survival and tumour volumes were calculated, and lung metastasis rate was detected by HE staining. The modulatory effects of IL-35 on myeloid-derived inhibitory cells (MDSCs), regulatory T cells (Tregs), CD4+ T cells and CD8+ T cells from PCA mice were investigated by immunohistochemical stains and flow cytometry. Results High levels of IL-35 significantly promoted the migration, invasion and cell proliferation of PCA cells in vitro. IL-35 was associated with tumour growth, metastasis and poor prognosis in PCA mice. Additionally, high levels of IL-35 significantly increased the proportions of MDSCs and Tregs and decreased the proportions of CD4+ and CD8+ T cells in the spleen, blood and tumour microenvironment. The IL-35 neutralizing antibody played the opposite role. Conclusions IL-35 contributed to the progression of PCA through promoting cell proliferation and tumour angiogenesis. IL-35 might limit the anti-tumour immune response by upregulating the proportions of Tregs and MDSCs and by reducing the proportions of CD4+ and CD8+ T cells. IL-35 might serve as a novel therapeutic target for PCA.
Collapse
Affiliation(s)
- Jialin Zhu
- Department of Ultrasound Diagnosis and Treatment, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center of Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060 China
| | - Yan Wang
- Department of Radiology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310000 China
| | - Dai Li
- Department of Geriatrics, Laboratory of Neuro-Trauma and Neurodegenerative Disorders, Tianjin Geriatrics Institute, Tianjin Medical University General Hospital, Tianjin, 300000 China
| | - Haonan Zhang
- Department of Interventional Therapy, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Huan Hu West Road, Tianjin, 300060 China
| | - Zhi Guo
- Department of Interventional Therapy, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Huan Hu West Road, Tianjin, 300060 China
| | - Xueling Yang
- Department of Interventional Therapy, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Huan Hu West Road, Tianjin, 300060 China
| |
Collapse
|
84
|
Stairiker CJ, Thomas GD, Salek-Ardakani S. EZH2 as a Regulator of CD8+ T Cell Fate and Function. Front Immunol 2020; 11:593203. [PMID: 33117406 PMCID: PMC7574680 DOI: 10.3389/fimmu.2020.593203] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 09/01/2020] [Indexed: 12/31/2022] Open
Abstract
Enhancer of zeste 2 (EZH2) is the catalytic subunit of the Polycomb Repressive Complex 2 (PRC2) that mediates di- and trimethylation of histone 3 lysine 27 effectively precluding successful gene transcription at these loci. This class of epigenetic modifications facilitates the maintenance of tissue-specific cellular transcriptional programs as cells undergoing successive rounds of proliferation. CD8+ T cells are effective mediators of adaptive immunity and function to eliminate virus- and bacteria-infected cells as well as tumor cells. Upon recognition of cognate antigen, T cells undergo activation/proliferation to clear the target cells. The heterogeneous population of responding T cells formed during these proliferative events thus rely on epigenetic modifications to ensure identity and confer functional capabilities. In this review, we will focus on the role of the dynamic expression EZH2 in shaping the epigenetic landscape of CD8+ T cell fate and function, with a particular emphasis on infection and cancer. We also explore competing hypotheses pertaining to EZH2 function and the prospects of clinical EZH2 inhibitors in fine-tuning T cell responses.
Collapse
Affiliation(s)
- Christopher J Stairiker
- Cancer Immunology Discovery, Worldwide Research, Development and Medical, Pfizer Inc., San Diego, CA, United States
| | - Graham D Thomas
- Cancer Immunology Discovery, Worldwide Research, Development and Medical, Pfizer Inc., San Diego, CA, United States
| | - Shahram Salek-Ardakani
- Cancer Immunology Discovery, Worldwide Research, Development and Medical, Pfizer Inc., San Diego, CA, United States
| |
Collapse
|
85
|
Dhodapkar MV, Dhodapkar KM. Tissue-resident memory-like T cells in tumor immunity: Clinical implications. Semin Immunol 2020; 49:101415. [PMID: 33011063 DOI: 10.1016/j.smim.2020.101415] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 09/06/2020] [Accepted: 09/21/2020] [Indexed: 12/13/2022]
Abstract
Tissue-resident memory (TRM) T cells are distinct population of non-circulating lymphocytes that play an important role in mediating regional immunity. TRM- like cells have now been identified as a component of tumor-infiltrating lymphocytes in several human tumors and correlate with outcome and response to immunotherapy. TRM cells have also been shown to mediate anti-tumor immunity in murine models. Biology of TRM cells has several implications for clinical cancer immunotherapy. Here we discuss newer insights into the biology of TRM T cells and discuss their implications for understanding the heterogeneity of immune microenvironment in tumors as well as improving the efficacy of cancer vaccines, immune-checkpoint blockade and adoptive cellular therapies in the clinic.
Collapse
Affiliation(s)
- Madhav V Dhodapkar
- Department of Hematology / Medical Oncology, Emory University, Atlanta, GA, United States; Winship Cancer Institute, Emory University, Atlanta, GA, United States
| | - Kavita M Dhodapkar
- Winship Cancer Institute, Emory University, Atlanta, GA, United States; Aflac Cancer and Blood Disorders Center, Children's Healthcare of Atlanta, Emory University, Atlanta, GA, United States.
| |
Collapse
|
86
|
Antibody-Based Immunotherapeutic Strategies for the Treatment of Hematological Malignancies. BIOMED RESEARCH INTERNATIONAL 2020; 2020:4956946. [PMID: 33015169 PMCID: PMC7519992 DOI: 10.1155/2020/4956946] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 09/01/2020] [Accepted: 09/07/2020] [Indexed: 01/03/2023]
Abstract
As the most common type of cancer in the world, hematological malignancies (HM) account for 10% of all annual cancer deaths and have attracted more attention. Conventional treatments, such as chemotherapy, radiotherapy, and hematopoietic stem cell transplantation (HSCT), could relieve patients suffering HM. However, serious side effects and high costs bring patients both physical complaints and mental pressure. Recently, compared with conventional therapeutic strategies for HM patients, antibody-based immunotherapies, including cancer vaccines, oncolytic virus therapies, monoclonal antibody treatments, and CAR-T cell therapies, have displayed longer survival time and fewer adverse reactions, even though specific efficacy and safety of these antibody-based immunotherapies still need to be evaluated and improved. This review summarized the advantages of antibody-based immunotherapies over conventional treatments, as well as its existing difficulties and solutions, thereby enhancing the understanding and applications of antibody-based immunotherapies in HM treatment.
Collapse
|
87
|
Impact of Bone Marrow miR-21 Expression on Acute Myeloid Leukemia T Lymphocyte Fragility and Dysfunction. Cells 2020; 9:cells9092053. [PMID: 32911844 PMCID: PMC7563595 DOI: 10.3390/cells9092053] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/18/2020] [Accepted: 09/01/2020] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Acute myeloid leukemia (AML) is a hematopoietic malignancy in which antitumor immunity is impaired. The therapeutic management of AML requires understanding the mechanisms involved in the fragility and immune dysfunction of AML T lymphocytes. METHODS In this study, T lymphocytes from healthy donors (HD) and AML patients were used. Extracellular vesicles (EVs) from leukemic cells were screened for their microRNA content and impact on T lymphocytes. Flow cytometry, transcriptomic as well as lentiviral transduction techniques were used to carry out the research. RESULTS We observed increased cell death of T lymphocytes from AML patients. EVs from leukemia myeloid cell lines harbored several miRNAs, including miR-21, and were able to induce T lymphocyte death. Compared to that in HD, miR-21 was overexpressed in both the bone marrow fluid and infiltrating T lymphocytes of AML patients. MiR-21 induces T lymphocyte cell death by upregulating proapoptotic gene expression. It also increases the immunosuppressive profile of T lymphocytes by upregulating the IL13, IL4, IL10, and FoxP3 genes. CONCLUSIONS Our results demonstrate that miR-21 plays a significant role in AML T lymphocyte dysfunction and apoptosis. Targeting miR-21 may be a novel approach to restore the efficacy of the immune response against AML.
Collapse
|
88
|
Gao Y, Xu H, Li N, Wang H, Ma L, Chen S, Liu J, Zheng Y, Zhang Y. Renal cancer-derived exosomes induce tumor immune tolerance by MDSCs-mediated antigen-specific immunosuppression. Cell Commun Signal 2020; 18:106. [PMID: 32641056 PMCID: PMC7341585 DOI: 10.1186/s12964-020-00611-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 06/08/2020] [Indexed: 12/15/2022] Open
Abstract
Backgound Although Myeloid-derived suppressor cells (MDSCs) have a prominent ability to suppress the immune responses of T lymphocytes and propel tumor immune escape, a lack of profound systemic immunesuppression in tumor-bearing mice and tumor patients. The underlying mechanism of these remains unclear. Methods For this purpose, renal cancer-derived exosomes (RDEs) were first labeled with PKH67 and been observed the internalization by MDSCs. Flow cytometry analysis showed the proportion and activity change of MDSCs in spleen and bone marrow induced by RDEs. Further, western blot experiments were used to verify triggered mechanism of MDSCs by RDEs. Finally, proliferation and cytotoxicity of cytotoxic T lymphocytes (CTLs) co-cultured with MDSCs in vitro and a series of experiments in vivo were performed to demonstrate the specific inhibitory effect of RDEs-induced MDSCs. Results This study suggested that RDEs crucially contributed to presenting antigenic information, activating and driving specific immunosuppressive effect to MDSCs. HSP70, which is highly expressed in RDEs, initiate this process in a toll like receptor 2 (TLR2)-dependent manner. Importantly, RDEs-induced MDSCs could exert an antigen-specific immunosuppression effect on CTL and specific promote renal tumors-growth and immune escape in consequence. Conclusion The immunosuppression mediated by MDSCs which is induced by RDEs is antigen-specific. HSP70, which is highly expressed in RDEs, plays a pivotal role in this process. Targeted abrogating the function of MDSCs, or eliminating the expression of HSP70 in exosomes, or blocking the crosstalk between them provides a new direction and theoretical support for future immunotherapy. Video abstract
Graphical abstract ![]()
Collapse
Affiliation(s)
- Yingying Gao
- Department of Laboratory Diagnosis, Chongqing Medical University, Chongqing, 408000, China.,Department of Laboratory Diagnosis, Jiamusi University, Jiamusi, 154000, Heilongjiang, China
| | - Haoyu Xu
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, No. 1, medical college road, Yuzhong district, Chongqing, 408000, China
| | - Nan Li
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, No. 1, medical college road, Yuzhong district, Chongqing, 408000, China
| | - Hexi Wang
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, No. 1, medical college road, Yuzhong district, Chongqing, 408000, China
| | - Lei Ma
- Department of Laboratory Diagnosis, The First Affiliated Hospital of Jiamusi University, Jiamusi, 154000, Heilongjiang, China
| | - Shiyou Chen
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, No. 1, medical college road, Yuzhong district, Chongqing, 408000, China
| | - Jiayu Liu
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, No. 1, medical college road, Yuzhong district, Chongqing, 408000, China
| | - Yongbo Zheng
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, No. 1, medical college road, Yuzhong district, Chongqing, 408000, China
| | - Yao Zhang
- Department of Urology, The First Affiliated Hospital of Chongqing Medical University, No. 1, medical college road, Yuzhong district, Chongqing, 408000, China.
| |
Collapse
|
89
|
Mohammadzadeh A. Co-inhibitory receptors, transcription factors and tolerance. Int Immunopharmacol 2020; 84:106572. [DOI: 10.1016/j.intimp.2020.106572] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/20/2020] [Accepted: 05/04/2020] [Indexed: 12/23/2022]
|
90
|
Huo Q, Li Z, Cheng L, Yang F, Xie N. SIRT7 Is a Prognostic Biomarker Associated With Immune Infiltration in Luminal Breast Cancer. Front Oncol 2020; 10:621. [PMID: 32528869 PMCID: PMC7247806 DOI: 10.3389/fonc.2020.00621] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 04/03/2020] [Indexed: 12/20/2022] Open
Abstract
Background: Sirtuin 7 (SIRT7), a protein-coding gene whose abnormal expression and function are associated with carcinogenesis. However, the prognosis of SIRT7 in different breast cancer subtypes and its correlation with tumor-infiltrating lymphocytes remain unclear. Methods: The expression and survival data of SIRT7 in patients with breast cancer were analyzed using Tumor Immune Estimation Resource (TIMER), Gene Expression Profiling Interaction Analysis (GEPIA), The Human Protein Atlas (HPA), UALCAN, Breast Cancer Gene-Expression Miner (BC-GenExMiner), and Kaplan-Meier plotter databases. Also, the expression correlations between SIRT7 and immune infiltration gene markers were analyzed using TIMER and further verified the results using immunohistochemistry. Results: SIRT7 exhibited higher expression levels in breast cancer tissues than the adjacent normal tissues. SIRT7 expression was significantly correlated with sample type, subclass, cancer stage, menopause status, age, nodal status, estrogen receptor (ER), progesterone receptor (PR), and triple-negative status. High SIRT7 expression was associated with poor prognosis in breast cancer-luminal A [overall survival (OS): hazard ratio (HR) = 1.54, p = 1.70e-02; distant metastasis-free survival (DMFS): HR = 1.56, p = 2.60e-03]. Moreover, the expression of SIRT7 was positively correlated with the expression of IRF5 (M1 macrophages marker, r = 0.165, p = 1.13e-04) and PD1 (T cell exhaustion marker, r = 0.134, p = 1.74e-03). These results suggested that the expression of SIRT7 was related to M1 macrophages and T cell exhaustion infiltration in breast cancer-luminal. Conclusions: These findings demonstrate that the high expression of SIRT7 indicates poor prognosis in breast cancer as well as increased immune infiltration levels of M1 macrophages and T cell exhaustion in breast cancer-luminal. Thus, SIRT7 may serve as a candidate prognostic biomarker for determining prognosis associated with immune infiltration in breast cancer-luminal.
Collapse
Affiliation(s)
- Qin Huo
- Biobank, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Zhenwei Li
- Institute of Translational Medicine, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Lixin Cheng
- Shenzhen People's Hospital, First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, China
| | - Fan Yang
- Biobank, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Ni Xie
- Biobank, Shenzhen Second People's Hospital, First Affiliated Hospital of Shenzhen University, Shenzhen, China
| |
Collapse
|
91
|
Mookerjee‐Basu J, Hooper R, Gross S, Schultz B, Go CK, Samakai E, Ladner J, Nicolas E, Tian Y, Zhou B, Zaidi MR, Tourtellotte W, He S, Zhang Y, Kappes DJ, Soboloff J. Suppression of Ca 2+ signals by EGR4 controls Th1 differentiation and anti-cancer immunity in vivo. EMBO Rep 2020; 21:e48904. [PMID: 32212315 PMCID: PMC7202224 DOI: 10.15252/embr.201948904] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 02/24/2020] [Accepted: 02/27/2020] [Indexed: 12/19/2022] Open
Abstract
While the zinc finger transcription factors EGR1, EGR2, and EGR3 are recognized as critical for T-cell function, the role of EGR4 remains unstudied. Here, we show that EGR4 is rapidly upregulated upon TCR engagement, serving as a critical "brake" on T-cell activation. Hence, TCR engagement of EGR4-/- T cells leads to enhanced Ca2+ responses, driving sustained NFAT activation and hyperproliferation. This causes profound increases in IFNγ production under resting and diverse polarizing conditions that could be reversed by pharmacological attenuation of Ca2+ entry. Finally, an in vivo melanoma lung colonization assay reveals enhanced anti-tumor immunity in EGR4-/- mice, attributable to Th1 bias, Treg loss, and increased CTL generation in the tumor microenvironment. Overall, these observations reveal for the first time that EGR4 is a key regulator of T-cell differentiation and function.
Collapse
Affiliation(s)
| | - Robert Hooper
- Fels Institute for Cancer Research and Molecular BiologyPhiladelphiaPAUSA,Department of Medical Genetics & Molecular BiochemistryTemple University School of MedicinePhiladelphiaPAUSA
| | - Scott Gross
- Fels Institute for Cancer Research and Molecular BiologyPhiladelphiaPAUSA,Department of Medical Genetics & Molecular BiochemistryTemple University School of MedicinePhiladelphiaPAUSA
| | - Bryant Schultz
- Fels Institute for Cancer Research and Molecular BiologyPhiladelphiaPAUSA,Department of Medical Genetics & Molecular BiochemistryTemple University School of MedicinePhiladelphiaPAUSA
| | - Christina K Go
- Fels Institute for Cancer Research and Molecular BiologyPhiladelphiaPAUSA,Department of Medical Genetics & Molecular BiochemistryTemple University School of MedicinePhiladelphiaPAUSA
| | - Elsie Samakai
- Fels Institute for Cancer Research and Molecular BiologyPhiladelphiaPAUSA,Department of Medical Genetics & Molecular BiochemistryTemple University School of MedicinePhiladelphiaPAUSA
| | | | | | - Yuanyuan Tian
- Fels Institute for Cancer Research and Molecular BiologyPhiladelphiaPAUSA,Department of ImmunologyTemple University School of MedicinePhiladelphiaPAUSA
| | - Bo Zhou
- Fels Institute for Cancer Research and Molecular BiologyPhiladelphiaPAUSA
| | - M Raza Zaidi
- Fels Institute for Cancer Research and Molecular BiologyPhiladelphiaPAUSA,Department of Medical Genetics & Molecular BiochemistryTemple University School of MedicinePhiladelphiaPAUSA
| | - Warren Tourtellotte
- Department of Pathology and Laboratory MedicineCedars Sinai Medical CenterWest HollywoodCAUSA
| | - Shan He
- Fels Institute for Cancer Research and Molecular BiologyPhiladelphiaPAUSA,Department of ImmunologyTemple University School of MedicinePhiladelphiaPAUSA
| | - Yi Zhang
- Fels Institute for Cancer Research and Molecular BiologyPhiladelphiaPAUSA,Department of ImmunologyTemple University School of MedicinePhiladelphiaPAUSA
| | | | - Jonathan Soboloff
- Fels Institute for Cancer Research and Molecular BiologyPhiladelphiaPAUSA,Department of Medical Genetics & Molecular BiochemistryTemple University School of MedicinePhiladelphiaPAUSA
| |
Collapse
|
92
|
Gaspar M, Pravin J, Rodrigues L, Uhlenbroich S, Everett KL, Wollerton F, Morrow M, Tuna M, Brewis N. CD137/OX40 Bispecific Antibody Induces Potent Antitumor Activity that Is Dependent on Target Coengagement. Cancer Immunol Res 2020; 8:781-793. [PMID: 32273279 DOI: 10.1158/2326-6066.cir-19-0798] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 01/31/2020] [Accepted: 03/31/2020] [Indexed: 11/16/2022]
Abstract
Following the success of immune checkpoint blockade therapy against cancer, agonistic antibodies targeting T-cell costimulatory pathways are in clinical trials. The TNF superfamily of receptors (TNFRSF) members CD137 and OX40 are costimulatory receptors that stimulate T-cell proliferation and activation upon interaction with their cognate ligands. Activating CD137 and OX40 with agonistic mAbs stimulates the immune system due to their broad expression on CD4+ and CD8+ T cells and natural killer cells and has antitumor effects in preclinical models. Most TNFRSF agonist antibodies require crosslinking via Fcγ receptors (FcγR), which can limit their clinical activity. FS120 mAb2, a dual agonist bispecific antibody targeting CD137 and OX40, activated both CD4+ and CD8+ T cells in an FcγR-independent mechanism, dependent on concurrent binding. A mouse surrogate version of the bispecific antibody displayed antitumor activity in syngeneic tumor models, independent of T regulatory cell depletion and of FcγR interaction, but associated with peripheral T-cell activation and proliferation. When compared with a crosslink-independent CD137 agonist mAb, the FS120 surrogate induced lower liver T-cell infiltration. These data support initiation of clinical development of FS120, a first-in-class dual agonist bispecific antibody for the treatment of human cancer.
Collapse
Affiliation(s)
| | - John Pravin
- F-star Therapeutics Ltd., Cambridge, United Kingdom
| | | | | | | | | | | | | | - Neil Brewis
- F-star Therapeutics Ltd., Cambridge, United Kingdom.
| |
Collapse
|
93
|
Figueiredo CR, Kalirai H, Sacco JJ, Azevedo RA, Duckworth A, Slupsky JR, Coulson JM, Coupland SE. Loss of BAP1 expression is associated with an immunosuppressive microenvironment in uveal melanoma, with implications for immunotherapy development. J Pathol 2020; 250:420-439. [PMID: 31960425 PMCID: PMC7216965 DOI: 10.1002/path.5384] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 12/28/2019] [Accepted: 01/14/2020] [Indexed: 12/22/2022]
Abstract
Immunotherapy using immune checkpoint inhibitors (ICIs) induces durable responses in many metastatic cancers. Metastatic uveal melanoma (mUM), typically occurring in the liver, is one of the most refractory tumours to ICIs and has dismal outcomes. Monosomy 3 (M3), polysomy 8q, and BAP1 loss in primary uveal melanoma (pUM) are associated with poor prognoses. The presence of tumour-infiltrating lymphocytes (TILs) within pUM and surrounding mUM - and some evidence of clinical responses to adoptive TIL transfer - strongly suggests that UMs are indeed immunogenic despite their low mutational burden. The mechanisms that suppress TILs in pUM and mUM are unknown. We show that BAP1 loss is correlated with upregulation of several genes associated with suppressive immune responses, some of which build an immune suppressive axis, including HLA-DR, CD38, and CD74. Further, single-cell analysis of pUM by mass cytometry confirmed the expression of these and other markers revealing important functions of infiltrating immune cells in UM, most being regulatory CD8+ T lymphocytes and tumour-associated macrophages (TAMs). Transcriptomic analysis of hepatic mUM revealed similar immune profiles to pUM with BAP1 loss, including the expression of IDO1. At the protein level, we observed TAMs and TILs entrapped within peritumoural fibrotic areas surrounding mUM, with increased expression of IDO1, PD-L1, and β-catenin (CTNNB1), suggesting tumour-driven immune exclusion and hence the immunotherapy resistance. These findings aid the understanding of how the immune response is organised in BAP1 - mUM, which will further enable functional validation of detected biomarkers and the development of focused immunotherapeutic approaches. © 2020 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Carlos R Figueiredo
- Department of Molecular and Clinical Cancer Medicine, ITMUniversity of LiverpoolLiverpoolUK
- Department of the Faculty of Medicine, MediCity Research Laboratory and Institute of BiomedicineUniversity of TurkuTurkuFinland
| | - Helen Kalirai
- Department of Molecular and Clinical Cancer Medicine, ITMUniversity of LiverpoolLiverpoolUK
| | - Joseph J Sacco
- Department of Molecular and Clinical Cancer Medicine, ITMUniversity of LiverpoolLiverpoolUK
- Department of Medical OncologyThe Clatterbridge Cancer CentreWirralUK
| | - Ricardo A Azevedo
- Department of Cancer BiologyThe University of Texas–MD Anderson Cancer CenterHoustonTXUSA
| | - Andrew Duckworth
- Department of Molecular and Clinical Cancer Medicine, ITMUniversity of LiverpoolLiverpoolUK
| | - Joseph R Slupsky
- Department of Molecular and Clinical Cancer Medicine, ITMUniversity of LiverpoolLiverpoolUK
| | - Judy M Coulson
- Department of Cellular and Molecular PhysiologyUniversity of LiverpoolLiverpoolUK
| | - Sarah E Coupland
- Department of Molecular and Clinical Cancer Medicine, ITMUniversity of LiverpoolLiverpoolUK
- Liverpool Clinical LaboratoriesRoyal Liverpool University HospitalLiverpoolUK
| |
Collapse
|
94
|
Lymphocyte activation gene 3 (LAG3) protein expression on tumor-infiltrating lymphocytes in aggressive and TP53-mutated salivary gland carcinomas. Cancer Immunol Immunother 2020; 69:1363-1373. [PMID: 32232506 PMCID: PMC7370910 DOI: 10.1007/s00262-020-02551-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2019] [Accepted: 03/17/2020] [Indexed: 12/16/2022]
Abstract
Salivary gland carcinomas (SGCs) are rare and can be subdivided into distinct entities, some of which confer a poor prognosis. As targets for effective systemic therapy are warranted, some studies investigated the role of immune-checkpoint proteins PD-L1 and CTLA-4 in SGC. Our study depicts the expression of lymphocyte activation gene 3 (LAG3) in a test cohort and a larger validation cohort, totaling 139 SGCs. LAG3 is expressed on tumor-infiltrating lymphocytes (TILs), mediates T cell exhaustion and is subject to numerous currently recruiting clinical studies. Overall, one-third of SGCs were infiltrated by LAG3-expressing TILs with a strikingly high concordance between the test cohort and the validation cohort (30% and 28.2%, respectively). In the validation cohort, entity-wise LAG3 expression frequencies were highly variable. The highest rates were observed in salivary duct carcinoma (SDC; 66.7%) and adenocarcinoma not otherwise specified (ANOS; 50.0%). We observed LAG3 expression on effector T cells and in smaller frequencies also on FOXP3− T helper cells and FOXP3+ Tregs. LAG3 expression significantly correlated with advanced nodal metastases, cytotoxic T cell infiltrate and TP53 mutations. In the group of adenoid cystic carcinomas, LAG3 expression was also associated with a shorter event-free survival (EFS). Tumors with TP53 nonsense mutations (TP53 null type) exhibited higher LAG3 frequencies and a shorter EFS compared to TP53 wild type. This is the first report of LAG3 expression in SGC, a promising target for immunotherapy. LAG3 blockage could be distinctly applicable for SDC and ANOS, two SGC types with a particularly poor outcome.
Collapse
|
95
|
Jeong S, Park SH. Co-Stimulatory Receptors in Cancers and Their Implications for Cancer Immunotherapy. Immune Netw 2020; 20:e3. [PMID: 32158591 PMCID: PMC7049585 DOI: 10.4110/in.2020.20.e3] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 01/27/2020] [Accepted: 01/27/2020] [Indexed: 12/12/2022] Open
Abstract
Immune checkpoint inhibitors (ICIs), including anti-PD-1 and anti-CTLA-4 therapeutic agents, are now approved by the Food and Drug Administration for treatment of various types of cancer. However, the therapeutic efficacy of ICIs varies among patients and cancer types. Moreover, most patients do not develop durable antitumor responses after ICI therapy due to an ephemeral reversal of T-cell dysfunction. As co-stimulatory receptors play key roles in regulating the effector functions of T cells, activating co-stimulatory pathways may improve checkpoint inhibition efficacy, and lead to durable antitumor responses. Here, we review recent advances in our understating of co-stimulatory receptors in cancers, providing the necessary groundwork for the rational design of cancer immunotherapy.
Collapse
Affiliation(s)
- Seongju Jeong
- Biomedical Science and Engineering Interdisciplinary Program, KAIST, Daejeon 34141, Korea
| | - Su-Hyung Park
- Biomedical Science and Engineering Interdisciplinary Program, KAIST, Daejeon 34141, Korea.,Laboratory of Translational Immunology and Vaccinology, Graduate School of Medical Science and Engineering, KAIST, Daejeon 34141, Korea
| |
Collapse
|
96
|
Chen SMY, Krinsky AL, Woolaver RA, Wang X, Chen Z, Wang JH. Tumor immune microenvironment in head and neck cancers. Mol Carcinog 2020; 59:766-774. [PMID: 32017286 DOI: 10.1002/mc.23162] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 01/18/2020] [Accepted: 01/22/2020] [Indexed: 12/24/2022]
Abstract
Head and neck cancers are a heterogeneous group of tumors that are highly aggressive and collectively represent the sixth most common cancer worldwide. Ninety percent of head and neck cancers are squamous cell carcinomas (HNSCCs). The tumor microenvironment (TME) of HNSCCs consists of many different subsets of cells that infiltrate the tumors and interact with the tumor cells or with each other through various networks. Both innate and adaptive immune cells play a crucial role in mediating immune surveillance and controlling tumor growth. Here, we discuss the different subsets of immune cells and how they contribute to an immunosuppressive TME of HNSCCs. We also briefly summarize recent advances in immunotherapeutic approaches for HNSCC treatment. A better understanding of the multiple factors that play pivotal roles in HNSCC tumorigenesis and tumor progression may help define novel targets to develop more effective immunotherapies for patients with HNSCC.
Collapse
Affiliation(s)
- Samantha M Y Chen
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Alexandra L Krinsky
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Rachel A Woolaver
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Xiaoguang Wang
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Zhangguo Chen
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Jing H Wang
- Department of Immunology and Microbiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| |
Collapse
|
97
|
Kim JH, Kim BS, Lee SK. Regulatory T Cells in Tumor Microenvironment and Approach for Anticancer Immunotherapy. Immune Netw 2020; 20:e4. [PMID: 32158592 PMCID: PMC7049587 DOI: 10.4110/in.2020.20.e4] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 01/30/2020] [Accepted: 02/02/2020] [Indexed: 12/21/2022] Open
Abstract
Tregs have a role in immunological tolerance and immune homeostasis by suppressing immune reactions, and its therapeutic potential is critical in autoimmune diseases and cancers. There have been multiple studies conducted on Tregs because of their roles in immune suppression and therapeutic potential. In tumor immunity, Tregs can promote the development and progression of tumors by preventing effective anti-tumor immune responses in tumor-bearing hosts. High infiltration of Tregs into tumor tissue results in poor survival in various types of cancer patients. Identifying factors specifically expressed in Tregs that affect the maintenance of stability and function of Tregs is important for understanding cancer pathogenesis and identifying therapeutic targets. Thus, manipulation of Tregs is a promising anticancer strategy, but finding markers for Treg-specific depletion and controlling these cells require fine-tuning and further research. Here, we discuss the role of Tregs in cancer and the development of Treg-targeted therapies to promote cancer immunotherapy.
Collapse
Affiliation(s)
- Jung-Ho Kim
- Research Institute for Precision Immune-Medicine, Good T Cells, Inc., Seoul 03722, Korea
| | - Beom Seok Kim
- Research Institute for Precision Immune-Medicine, Good T Cells, Inc., Seoul 03722, Korea
| | - Sang-Kyou Lee
- Research Institute for Precision Immune-Medicine, Good T Cells, Inc., Seoul 03722, Korea
- Department of Biotechnology, College of Life Science and Biotechnology, Yonsei University, Seoul 03722, Korea
| |
Collapse
|
98
|
Williams JB, Li S, Higgs EF, Cabanov A, Wang X, Huang H, Gajewski TF. Tumor heterogeneity and clonal cooperation influence the immune selection of IFN-γ-signaling mutant cancer cells. Nat Commun 2020; 11:602. [PMID: 32001684 PMCID: PMC6992737 DOI: 10.1038/s41467-020-14290-4] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 12/10/2019] [Indexed: 01/09/2023] Open
Abstract
PD-1/PD-L1 blockade can promote robust tumor regression yet secondary resistance often occurs as immune selective pressure drives outgrowth of resistant tumor clones. Here using a genome-wide CRISPR screen in B16.SIY melanoma cells, we confirm Ifngr2 and Jak1 as important genes conferring sensitivity to T cell-mediated killing in vitro. However, when implanted into mice, these Ifngr2- and Jak1-deficient tumors paradoxically are better controlled immunologically. This phenotype maps to defective PD-L1 upregulation on mutant tumor cells, which improves anti-tumor efficacy of CD8+ T cells. To reconcile these observations with clinical reports of anti-PD-1 resistance linked to emergence of IFN-γ signaling mutants, we show that when mixed with wild-type tumor cells, IFN-γ-insensitive tumor cells indeed grow out, which depends upon PD-L1 expression by wild-type cells. Our results illustrate the complexity of functions for IFN-γ in anti-tumor immunity and demonstrate that intratumor heterogeneity and clonal cooperation can contribute to immunotherapy resistance.
Collapse
Affiliation(s)
- Jason B Williams
- Department of Pathology, The University of Chicago, Chicago, IL, 60637, United States
| | - Shuyin Li
- Department of Pathology, The University of Chicago, Chicago, IL, 60637, United States
| | - Emily F Higgs
- Department of Pathology, The University of Chicago, Chicago, IL, 60637, United States
| | - Alexandra Cabanov
- Department of Pathology, The University of Chicago, Chicago, IL, 60637, United States
| | - Xiaozhong Wang
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, 60208, United States
| | - Haochu Huang
- Department of Pathology, The University of Chicago, Chicago, IL, 60637, United States
| | - Thomas F Gajewski
- Department of Pathology, The University of Chicago, Chicago, IL, 60637, United States.
- Departments of Medicine, Section of Hematology/Oncology, Chicago, IL, 60208, United States.
- The Ben May Department for Cancer Research, The University of Chicago, Chicago, IL, 60637, United States.
| |
Collapse
|
99
|
Zhang YH, Sun HX. Immune checkpoint molecules in pregnancy: Focus on regulatory T cells. Eur J Immunol 2020; 50:160-169. [PMID: 31953958 DOI: 10.1002/eji.201948382] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Revised: 11/15/2019] [Accepted: 01/16/2020] [Indexed: 12/22/2022]
Abstract
Regulatory T (Treg) cells are a specialized subpopulation of T cells that plays critical roles in the maintenance of immune homeostasis. Although efforts have been done, their role in human pregnancy is not fully understood. Numerous studies reported the presence of Treg cells throughout gestation by promoting maternal-fetal tolerance and fetal development. Furthermore, Treg population is heterogeneous as it is expressing different immune checkpoint molecules favoring immune suppressive function. Therefore, better understanding of the heterogeneity and function of Treg cells during pregnancy is critical for an effective immune intervention. Latest evidence has shown that several immune checkpoint molecules are closely associated with pregnancy outcome via multiple inhibitory mechanisms. Majority of these studies demonstrated the modulatory effects of immune checkpoint molecules on effector T-cell immunity, but their effects on Treg activation and function are still an enigma. In this review, we emphasize the potential influence of multiple immune checkpoint molecules, including CTLA-4, PD-1, Tim-3, LAG-3, and TIGIT, either in membrane or soluble form, on the function of decidual and peripheral Treg cells during pregnancy. Additionally, we discuss the promising future of targeting Treg cells via immune checkpoint molecules for pregnancy maintenance and prevention of complicated pregnancies.
Collapse
Affiliation(s)
- Yong-Hong Zhang
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University School of Medicine, Nanjing, China
| | - Hai-Xiang Sun
- Reproductive Medicine Center, The Affiliated Drum Tower Hospital of Nanjing University School of Medicine, Nanjing, China
| |
Collapse
|
100
|
Aznar MA, Molina C, Teijeira A, Rodriguez I, Azpilikueta A, Garasa S, Sanchez‐Paulete AR, Cordeiro L, Etxeberria I, Alvarez M, Rius‐Rocabert S, Nistal‐Villan E, Berraondo P, Melero I. Repurposing the yellow fever vaccine for intratumoral immunotherapy. EMBO Mol Med 2020; 12:e10375. [PMID: 31746149 PMCID: PMC6949490 DOI: 10.15252/emmm.201910375] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 10/22/2019] [Accepted: 10/24/2019] [Indexed: 11/27/2022] Open
Abstract
Live 17D is widely used as a prophylactic vaccine strain for yellow fever virus that induces potent neutralizing humoral and cellular immunity against the wild-type pathogen. 17D replicates and kills mouse and human tumor cell lines but not non-transformed human cells. Intratumoral injections with viable 17D markedly delay transplanted tumor progression in a CD8 T-cell-dependent manner. In mice bearing bilateral tumors in which only one is intratumorally injected, contralateral therapeutic effects are observed consistent with more prominent CD8 T-cell infiltrates and a treatment-related reduction of Tregs. Additive efficacy effects were observed upon co-treatment with intratumoral 17D and systemic anti-CD137 and anti-PD-1 immunostimulatory monoclonal antibodies. Importantly, when mice were preimmunized with 17D, intratumoral 17D treatment achieved better local and distant antitumor immunity. Such beneficial effects of prevaccination are in part explained by the potentiation of CD4 and CD8 T-cell infiltration in the treated tumor. The repurposed use of a GMP-grade vaccine to be given via the intratumoral route in prevaccinated patients constitutes a clinically feasible and safe immunotherapy approach.
Collapse
Affiliation(s)
- Maria Angela Aznar
- Center for Applied Medical Research (CIMA)University of NavarraPamplonaSpain
- Present address:
Center for Cellular ImmunotherapiesPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - Carmen Molina
- Center for Applied Medical Research (CIMA)University of NavarraPamplonaSpain
| | - Alvaro Teijeira
- Center for Applied Medical Research (CIMA)University of NavarraPamplonaSpain
- CIBERONCMadridSpain
- Instituto de investigación de Navarra (IDISNA)PamplonaSpain
| | - Inmaculada Rodriguez
- Center for Applied Medical Research (CIMA)University of NavarraPamplonaSpain
- CIBERONCMadridSpain
- Instituto de investigación de Navarra (IDISNA)PamplonaSpain
| | - Arantza Azpilikueta
- Center for Applied Medical Research (CIMA)University of NavarraPamplonaSpain
- Instituto de investigación de Navarra (IDISNA)PamplonaSpain
| | - Saray Garasa
- Center for Applied Medical Research (CIMA)University of NavarraPamplonaSpain
- Instituto de investigación de Navarra (IDISNA)PamplonaSpain
| | - Alfonso R Sanchez‐Paulete
- Center for Applied Medical Research (CIMA)University of NavarraPamplonaSpain
- Present address:
Department of Genetics and Genomic SciencesIcahn School of Medicine at Mount SinaiNew YorkNYUSA
| | - Luna Cordeiro
- Center for Applied Medical Research (CIMA)University of NavarraPamplonaSpain
- Instituto de investigación de Navarra (IDISNA)PamplonaSpain
| | - Iñaki Etxeberria
- Center for Applied Medical Research (CIMA)University of NavarraPamplonaSpain
| | - Maite Alvarez
- Center for Applied Medical Research (CIMA)University of NavarraPamplonaSpain
| | - Sergio Rius‐Rocabert
- Microbiology SectionDpto. CC, Farmaceuticas y de la SaludFacultad de FarmaciaUniversidad CEU San PabloCEU UniversityBoadilla del Monte, MadridSpain
- Instituto de Medicina Molecular Aplicada (IMMA)Universidad CEU San Pablo, Pablo‐CEU, CEU UniversitiesBoadilla del Monte, MadridSpain
| | - Estanislao Nistal‐Villan
- Microbiology SectionDpto. CC, Farmaceuticas y de la SaludFacultad de FarmaciaUniversidad CEU San PabloCEU UniversityBoadilla del Monte, MadridSpain
- Instituto de Medicina Molecular Aplicada (IMMA)Universidad CEU San Pablo, Pablo‐CEU, CEU UniversitiesBoadilla del Monte, MadridSpain
| | - Pedro Berraondo
- Center for Applied Medical Research (CIMA)University of NavarraPamplonaSpain
- CIBERONCMadridSpain
- Instituto de investigación de Navarra (IDISNA)PamplonaSpain
| | - Ignacio Melero
- Center for Applied Medical Research (CIMA)University of NavarraPamplonaSpain
- CIBERONCMadridSpain
- Instituto de investigación de Navarra (IDISNA)PamplonaSpain
| |
Collapse
|