51
|
Majid QA, Fricker ATR, Gregory DA, Davidenko N, Hernandez Cruz O, Jabbour RJ, Owen TJ, Basnett P, Lukasiewicz B, Stevens M, Best S, Cameron R, Sinha S, Harding SE, Roy I. Natural Biomaterials for Cardiac Tissue Engineering: A Highly Biocompatible Solution. Front Cardiovasc Med 2020; 7:554597. [PMID: 33195451 PMCID: PMC7644890 DOI: 10.3389/fcvm.2020.554597] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 09/10/2020] [Indexed: 02/06/2023] Open
Abstract
Cardiovascular diseases (CVD) constitute a major fraction of the current major global diseases and lead to about 30% of the deaths, i.e., 17.9 million deaths per year. CVD include coronary artery disease (CAD), myocardial infarction (MI), arrhythmias, heart failure, heart valve diseases, congenital heart disease, and cardiomyopathy. Cardiac Tissue Engineering (CTE) aims to address these conditions, the overall goal being the efficient regeneration of diseased cardiac tissue using an ideal combination of biomaterials and cells. Various cells have thus far been utilized in pre-clinical studies for CTE. These include adult stem cell populations (mesenchymal stem cells) and pluripotent stem cells (including autologous human induced pluripotent stem cells or allogenic human embryonic stem cells) with the latter undergoing differentiation to form functional cardiac cells. The ideal biomaterial for cardiac tissue engineering needs to have suitable material properties with the ability to support efficient attachment, growth, and differentiation of the cardiac cells, leading to the formation of functional cardiac tissue. In this review, we have focused on the use of biomaterials of natural origin for CTE. Natural biomaterials are generally known to be highly biocompatible and in addition are sustainable in nature. We have focused on those that have been widely explored in CTE and describe the original work and the current state of art. These include fibrinogen (in the context of Engineered Heart Tissue, EHT), collagen, alginate, silk, and Polyhydroxyalkanoates (PHAs). Amongst these, fibrinogen, collagen, alginate, and silk are isolated from natural sources whereas PHAs are produced via bacterial fermentation. Overall, these biomaterials have proven to be highly promising, displaying robust biocompatibility and, when combined with cells, an ability to enhance post-MI cardiac function in pre-clinical models. As such, CTE has great potential for future clinical solutions and hence can lead to a considerable reduction in mortality rates due to CVD.
Collapse
Affiliation(s)
- Qasim A. Majid
- Faculty of Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Annabelle T. R. Fricker
- Department of Material Science and Engineering, Faculty of Engineering, University of Sheffield, Sheffield, United Kingdom
| | - David A. Gregory
- Department of Material Science and Engineering, Faculty of Engineering, University of Sheffield, Sheffield, United Kingdom
| | - Natalia Davidenko
- Department of Materials Science and Metallurgy, Cambridge Centre for Medical Materials, University of Cambridge, Cambridge, United Kingdom
| | - Olivia Hernandez Cruz
- Faculty of Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom
- Department of Bioengineering, Department of Materials, IBME, Faculty of Engineering, Imperial College London, United Kingdom
| | - Richard J. Jabbour
- Faculty of Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Thomas J. Owen
- Faculty of Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Pooja Basnett
- Applied Biotechnology Research Group, School of Life Sciences, College of Liberal Arts and Sciences, University of Westminster, London, United Kingdom
| | - Barbara Lukasiewicz
- Applied Biotechnology Research Group, School of Life Sciences, College of Liberal Arts and Sciences, University of Westminster, London, United Kingdom
| | - Molly Stevens
- Department of Bioengineering, Department of Materials, IBME, Faculty of Engineering, Imperial College London, United Kingdom
| | - Serena Best
- Department of Materials Science and Metallurgy, Cambridge Centre for Medical Materials, University of Cambridge, Cambridge, United Kingdom
| | - Ruth Cameron
- Department of Materials Science and Metallurgy, Cambridge Centre for Medical Materials, University of Cambridge, Cambridge, United Kingdom
| | - Sanjay Sinha
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Cambridge, United Kingdom
| | - Sian E. Harding
- Faculty of Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Ipsita Roy
- Faculty of Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom
- Department of Material Science and Engineering, Faculty of Engineering, University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
52
|
Bauza G, Pasto A, Mcculloch P, Lintner D, Brozovich A, Niclot FB, Khan I, Francis LW, Tasciotti E, Taraballi F. Improving the immunosuppressive potential of articular chondroprogenitors in a three-dimensional culture setting. Sci Rep 2020; 10:16610. [PMID: 33024130 PMCID: PMC7538570 DOI: 10.1038/s41598-020-73188-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 09/09/2020] [Indexed: 12/23/2022] Open
Abstract
Cartilage repair in osteoarthritic patients remains a challenge. Identifying resident or donor stem/progenitor cell populations is crucial for augmenting the low intrinsic repair potential of hyaline cartilage. Furthermore, mediating the interaction between these cells and the local immunogenic environment is thought to be critical for long term repair and regeneration. In this study we propose articular cartilage progenitor/stem cells (CPSC) as a valid alternative to bone marrow-derived mesenchymal stem cells (BMMSC) for cartilage repair strategies after trauma. Similar to BMMSC, CPSC isolated from osteoarthritic patients express stem cell markers and have chondrogenic, osteogenic, and adipogenic differentiation ability. In an in vitro 2D setting, CPSC show higher expression of SPP1 and LEP, markers of osteogenic and adipogenic differentiation, respectively. CPSC also display a higher commitment toward chondrogenesis as demonstrated by a higher expression of ACAN. BMMSC and CPSC were cultured in vitro using a previously established collagen-chondroitin sulfate 3D scaffold. The scaffold mimics the cartilage niche, allowing both cell populations to maintain their stem cell features and improve their immunosuppressive potential, demonstrated by the inhibition of activated PBMC proliferation in a co-culture setting. As a result, this study suggests articular cartilage derived-CPSC can be used as a novel tool for cellular and acellular regenerative medicine approaches for osteoarthritis (OA). In addition, the benefit of utilizing a biomimetic acellular scaffold as an advanced 3D culture system to more accurately mimic the physiological environment is demonstrated.
Collapse
Affiliation(s)
- Guillermo Bauza
- Center for NanoHealth, Swansea University Medical School, Swansea University Bay, Singleton Park, Wales, SA2 8PP, UK
- Center for Musculoskeletal Regeneration, Houston Methodist Research Institute, 6670 Bertner Ave, Houston, TX, 77030, USA
- Orthopedics and Sports Medicine, Houston Methodist Hospital, 6565 Fannin Street, Houston, TX, 77030, USA
| | - Anna Pasto
- Center for Musculoskeletal Regeneration, Houston Methodist Research Institute, 6670 Bertner Ave, Houston, TX, 77030, USA
- Orthopedics and Sports Medicine, Houston Methodist Hospital, 6565 Fannin Street, Houston, TX, 77030, USA
| | - Patrick Mcculloch
- Orthopedics and Sports Medicine, Houston Methodist Hospital, 6565 Fannin Street, Houston, TX, 77030, USA
| | - David Lintner
- Orthopedics and Sports Medicine, Houston Methodist Hospital, 6565 Fannin Street, Houston, TX, 77030, USA
| | - Ava Brozovich
- Center for Musculoskeletal Regeneration, Houston Methodist Research Institute, 6670 Bertner Ave, Houston, TX, 77030, USA
- Orthopedics and Sports Medicine, Houston Methodist Hospital, 6565 Fannin Street, Houston, TX, 77030, USA
- Texas A&M College of Medicine, 8447 Highway 47, Bryan, TX, 77807, USA
| | - Federica Banche Niclot
- Center for Musculoskeletal Regeneration, Houston Methodist Research Institute, 6670 Bertner Ave, Houston, TX, 77030, USA
- Orthopedics and Sports Medicine, Houston Methodist Hospital, 6565 Fannin Street, Houston, TX, 77030, USA
- Department of Applied Science and Technology, Polytechnic of Turin, Corso Duca degli Abruzzi 24, 10129, Turin, Italy
| | - Ilyas Khan
- Center for NanoHealth, Swansea University Medical School, Swansea University Bay, Singleton Park, Wales, SA2 8PP, UK
| | - Lewis W Francis
- Center for NanoHealth, Swansea University Medical School, Swansea University Bay, Singleton Park, Wales, SA2 8PP, UK
| | - Ennio Tasciotti
- Center for NanoHealth, Swansea University Medical School, Swansea University Bay, Singleton Park, Wales, SA2 8PP, UK
- Center for Musculoskeletal Regeneration, Houston Methodist Research Institute, 6670 Bertner Ave, Houston, TX, 77030, USA
- Orthopedics and Sports Medicine, Houston Methodist Hospital, 6565 Fannin Street, Houston, TX, 77030, USA
| | - Francesca Taraballi
- Center for Musculoskeletal Regeneration, Houston Methodist Research Institute, 6670 Bertner Ave, Houston, TX, 77030, USA.
- Orthopedics and Sports Medicine, Houston Methodist Hospital, 6565 Fannin Street, Houston, TX, 77030, USA.
| |
Collapse
|
53
|
Kavianpour M, Saleh M, Verdi J. The role of mesenchymal stromal cells in immune modulation of COVID-19: focus on cytokine storm. Stem Cell Res Ther 2020; 11:404. [PMID: 32948252 PMCID: PMC7499002 DOI: 10.1186/s13287-020-01849-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 06/30/2020] [Accepted: 07/23/2020] [Indexed: 12/11/2022] Open
Abstract
The outbreak of coronavirus disease 2019 (COVID-19) pandemic is quickly spreading all over the world. This virus, which is called SARS-CoV-2, has infected tens of thousands of people. Based on symptoms, the pathogenesis of acute respiratory illness is responsible for highly homogenous coronaviruses as well as other pathogens. Evidence suggests that high inflammation rates, oxidation, and overwhelming immune response probably contribute to pathology of COVID-19. COVID-19 causes cytokine storm, which subsequently leads to acute respiratory distress syndrome (ARDS), often ending up in the death of patients. Mesenchymal stem cells (MSCs) are multipotential stem cells that are recognized via self-renewal capacity, generation of clonal populations, and multilineage differentiation. MSCs are present in nearly all tissues of the body, playing an essential role in repair and generation of tissues. Furthermore, MSCs have broad immunoregulatory properties through the interaction of immune cells in both innate and adaptive immune systems, leading to immunosuppression of many effector activities. MSCs can reduce the cytokine storm produced by coronavirus infection. In a number of studies, the administration of these cells has been beneficial for COVID-19 patients. Also, MSCs may be able to improve pulmonary fibrosis and lung function. In this review, we will review the newest research findings regarding MSC-based immunomodulation in patients with COVID-19.
Collapse
Affiliation(s)
- Maria Kavianpour
- Department of Tissue Engineering and Applied Cell Sciences, Faculty of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Cell-Based Therapies Research Center, Digestive Disease Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahshid Saleh
- Department of Tissue Engineering and Applied Cell Sciences, Faculty of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Javad Verdi
- Department of Tissue Engineering and Applied Cell Sciences, Faculty of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
54
|
Shanbhag S, Suliman S, Bolstad AI, Stavropoulos A, Mustafa K. Xeno-Free Spheroids of Human Gingiva-Derived Progenitor Cells for Bone Tissue Engineering. Front Bioeng Biotechnol 2020; 8:968. [PMID: 32974308 PMCID: PMC7466771 DOI: 10.3389/fbioe.2020.00968] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 07/27/2020] [Indexed: 12/19/2022] Open
Abstract
Gingiva has been identified as a minimally invasive source of multipotent progenitor cells (GPCs) for use in bone tissue engineering (BTE). To facilitate clinical translation, it is important to characterize GPCs in xeno-free cultures. Recent evidence indicates several advantages of three-dimensional (3D) spheroid cultures of mesenchymal stromal cells (MSCs) over conventional 2D monolayers. The present study aimed to characterize human GPCs in xeno-free 2D cultures, and to test their osteogenic potential in 3D cultures, in comparison to bone marrow MSCs (BMSCs). Primary GPCs and BMSCs were expanded in human platelet lysate (HPL) or fetal bovine serum (FBS) and characterized based on in vitro proliferation, immunophenotype and multi-lineage differentiation. Next, 3D spheroids of GPCs and BMSCs were formed via self-assembly and cultured in HPL. Expression of stemness- (SOX2, OCT4, NANOG) and osteogenesis-related markers (BMP2, RUNX2, OPN, OCN) was assessed at gene and protein levels in 3D and 2D cultures. The cytokine profile of 3D and 2D GPCs and BMSCs was assessed via a multiplex immunoassay. Monolayer GPCs in both HPL and FBS demonstrated a characteristic MSC-like immunophenotype and multi-lineage differentiation; osteogenic differentiation of GPCs was enhanced in HPL vs. FBS. CD271+ GPCs in HPL spontaneously acquired a neuronal phenotype and strongly expressed neuronal/glial markers. 3D spheroids of GPCs and BMSCs with high cell viability were formed in HPL media. Expression of stemness- and osteogenesis-related genes was significantly upregulated in 3D vs. 2D GPCs/BMSCs; the latter was independent of osteogenic induction. Synthesis of SOX2, BMP2 and OCN was confirmed via immunostaining, and in vitro mineralization via Alizarin red staining. Finally, secretion of several growth factors and chemokines was enhanced in GPC/BMSC spheroids, while that of pro-inflammatory cytokines was reduced, compared to monolayers. In summary, monolayer GPCs expanded in HPL demonstrate enhanced osteogenic differentiation potential, comparable to that of BMSCs. Xeno-free spheroid culture further enhances stemness- and osteogenesis-related gene expression, and cytokine secretion in GPCs, comparable to that of BMSCs.
Collapse
Affiliation(s)
- Siddharth Shanbhag
- Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Salwa Suliman
- Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Anne Isine Bolstad
- Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Andreas Stavropoulos
- Department of Periodontology, Faculty of Odontology, Malmö University, Malmö, Sweden.,Division of Regenerative Medicine and Periodontology, University Clinics of Dental Medicine, University of Geneva, Geneva, Switzerland
| | - Kamal Mustafa
- Department of Clinical Dentistry, Faculty of Medicine, University of Bergen, Bergen, Norway
| |
Collapse
|
55
|
Anupa G, Poorasamy J, Bhat MA, Sharma JB, Sengupta J, Ghosh D. Endometrial stromal cell inflammatory phenotype during severe ovarian endometriosis as a cause of endometriosis-associated infertility. Reprod Biomed Online 2020; 41:623-639. [PMID: 32792135 DOI: 10.1016/j.rbmo.2020.05.008] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 04/29/2020] [Accepted: 05/07/2020] [Indexed: 12/14/2022]
Abstract
RESEARCH QUESTION Do endometrial stromal cells from primary infertile patients with severe ovarian endometriosis display differential secretory profiles of inflammation-associated cytokines during the implantation window that may cause infertility? DESIGN Forty-eight cytokines were measured in conditioned medium of isolated endometrial stromal cells obtained from primary infertile patients without endometriosis (control group, n = 12) or with stage IV ovarian endometriosis (ovarian endometriosis group, n = 14) using multiplex assays. Key cytokines showing differential secretory profiles were validated using Western immunoblotting. Cellular phenotypic validation was carried out in vitro by comparing proliferation and migration capacity between control (n = 6) and ovarian endometriosis (n = 7) groups. RESULTS CCL3, CCL4, CCL5, CXCL10, FGF2, IFNG, IL1RN, IL5, TNFA, and VEGF could be detected only in the conditioned media of stromal cells obtained from the ovarian endometriosis group. Among other cytokines detected in the conditioned media of both groups, CCL2 (P = 0.0018), CSF3 (P = 0.0017), IL1B (P = 0.0066), IL4 (P = 0.036), IL6 (P = 0.0039) and IL13 (P = 0.036) were found to be higher, whereas the concentration of IL18 was lower (P = 0.023) in the ovarian endometriosis group. Concentrations of CCL2, IL1B, IL4 and IL13 in conditioned medium reflected significant diagnostic performance for predicting ovarian endometriosis. Cellular phenotypic validation in vitro revealed an enhanced proliferative phenotype (P = 0.046) with no change in cell migratory capacity of endometrial stromal cells from the ovarian endometriosis group. CONCLUSIONS Endometrial stromal cells derived from severe ovarian endometriosis samples displayed a hyperinflammatory and hyperproliferative bias in the endometrial stroma during the 'window of implantation' putatively causing loss of fecundability.
Collapse
Affiliation(s)
- Geethadevi Anupa
- Department of Physiology, All India Institute of Medical Sciences, New Delhi, Delhi, 110029, India; Department of Obstetrics and Gynaecology, All India Institute of Medical Sciences, New Delhi, Delhi, 110029, India
| | - Jeevitha Poorasamy
- Department of Physiology, All India Institute of Medical Sciences, New Delhi, Delhi, 110029, India
| | - Muzaffer A Bhat
- Department of Physiology, All India Institute of Medical Sciences, New Delhi, Delhi, 110029, India
| | - Jai Bhagwan Sharma
- Department of Obstetrics and Gynaecology, All India Institute of Medical Sciences, New Delhi, Delhi, 110029, India
| | - Jayasree Sengupta
- Department of Physiology, All India Institute of Medical Sciences, New Delhi, Delhi, 110029, India
| | - Debabrata Ghosh
- Department of Physiology, All India Institute of Medical Sciences, New Delhi, Delhi, 110029, India.
| |
Collapse
|
56
|
Borciani G, Montalbano G, Baldini N, Cerqueni G, Vitale-Brovarone C, Ciapetti G. Co-culture systems of osteoblasts and osteoclasts: Simulating in vitro bone remodeling in regenerative approaches. Acta Biomater 2020; 108:22-45. [PMID: 32251782 DOI: 10.1016/j.actbio.2020.03.043] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Revised: 03/20/2020] [Accepted: 03/30/2020] [Indexed: 02/08/2023]
Abstract
Bone is an extremely dynamic tissue, undergoing continuous remodeling for its whole lifetime, but its regeneration or augmentation due to bone loss or defects are not always easy to obtain. Bone tissue engineering (BTE) is a promising approach, and its success often relies on a "smart" scaffold, as a support to host and guide bone formation through bone cell precursors. Bone homeostasis is maintained by osteoblasts (OBs) and osteoclasts (OCs) within the basic multicellular unit, in a consecutive cycle of resorption and formation. Therefore, a functional scaffold should allow the best possible OB/OC cooperation for bone remodeling, as happens within the bone extracellular matrix in the body. In the present work OB/OC co-culture models, with and without scaffolds, are reviewed. These experimental systems are intended for different targets, including bone remodeling simulation, drug testing and the assessment of biomaterials and 3D scaffolds for BTE. As a consequence, several parameters, such as cell type, cell ratio, culture medium and inducers, culture times and setpoints, assay methods, etc. vary greatly. This review identifies and systematically reports the in vitro methods explored up to now, which, as they allow cellular communication, more closely resemble bone remodeling and/or the regeneration process in the framework of BTE. STATEMENT OF SIGNIFICANCE: Bone is a dynamic tissue under continuous remodeling, but spontaneous healing may fail in the case of excessive bone loss which often requires valid alternatives to conventional treatments to restore bone integrity, like bone tissue engineering (BTE). Pre-clinical evaluation of scaffolds for BTE requires in vitro testing where co-cultures combining innovative materials with osteoblasts (OBs) and osteoclasts (OCs) closely mimic the in vivo repair process. This review considers the direct and indirect OB/OC co-cultures relevant to BTE, from the early mouse-cell models to the recent bone regenerative systems. The co-culture modeling of bone microenvironment provides reliable information on bone cell cross-talk. Starting from improved knowledge on bone remodeling, bone disease mechanisms may be understood and new BTE solutions are designed.
Collapse
|
57
|
Qazi TH, Mooney DJ, Duda GN, Geissler S. Niche-mimicking interactions in peptide-functionalized 3D hydrogels amplify mesenchymal stromal cell paracrine effects. Biomaterials 2019; 230:119639. [PMID: 31776021 DOI: 10.1016/j.biomaterials.2019.119639] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 11/14/2019] [Accepted: 11/18/2019] [Indexed: 02/07/2023]
Abstract
Cells encounter complex environments in vivo where they interact with the extracellular matrix, neighboring cells, and soluble cues, which together influence their fate and function. However, the interplay of these interactions and their collective impact on the regenerative effects of mesenchymal stromal cells (MSCs) remains insufficiently explored. Here, we show that 3D culture in microporous (~125 μm) hydrogels that passively promote cell-cell interactions sensitizes MSCs to growth factors, particularly to IGF-1. IGF-1 enhances MSC paracrine secretion activity, and application of secreted factors to myoblasts potently stimulates their migration and differentiation. In contrast, the paracrine activity of MSCs encapsulated in nanoporous (~10 nm) hydrogels remain unchanged. Blocking N-cadherin on MSCs abrogates the stimulatory effects of IGF-1 in microporous but not nanoporous hydrogels. The role of N-cadherin in regulating MSC function is further clarified by functionalizing alginates with the HAVDI peptide sequence that is derived from the extracellular domain of N-cadherin and that acts to mimic cell-cell interactions. MSCs encapsulated in nanoporous HAVDI-gels, but not in gels functionalized with a scrambled sequence, show heightened paracrine activity in response to IGF-1. These findings reveal how interactions with the matrix, neighboring cells, and soluble factors impact and maximize the regenerative potential of MSCs.
Collapse
Affiliation(s)
- Taimoor H Qazi
- Julius Wolff Institute for Biomechanics and Musculoskeletal Regeneration, Charité Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany; Berlin-Brandenburg Center for Regenerative Therapies, Charité Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany; Department of Bioengineering, University of Pennsylvania, 210 South 33rd Street, Philadelphia, 19104, USA
| | - David J Mooney
- John A. Paulson School of Engineering and Applied Sciences, and Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02138, USA
| | - Georg N Duda
- Julius Wolff Institute for Biomechanics and Musculoskeletal Regeneration, Charité Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany; Berlin-Brandenburg Center for Regenerative Therapies, Charité Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany; Charité Universitätsmedizin Berlin, Berlin Institute of Health Center for Regenerative Therapies, Louisa-Karsch-Str. 2, 10178, Berlin, Germany
| | - Sven Geissler
- Julius Wolff Institute for Biomechanics and Musculoskeletal Regeneration, Charité Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany; Berlin-Brandenburg Center for Regenerative Therapies, Charité Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany; Charité Universitätsmedizin Berlin, Berlin Institute of Health Center for Regenerative Therapies, Louisa-Karsch-Str. 2, 10178, Berlin, Germany.
| |
Collapse
|
58
|
Chen Y, Shu Z, Qian K, Wang J, Zhu H. Harnessing the Properties of Biomaterial to Enhance the Immunomodulation of Mesenchymal Stem Cells. TISSUE ENGINEERING PART B-REVIEWS 2019; 25:492-499. [PMID: 31436142 DOI: 10.1089/ten.teb.2019.0131] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Mesenchymal stem cells (MSCs) have great therapeutic potential for tissue engineering and regenerative medicine due to their multipotency and paracrine functions. However, shortly after in vivo implantation, MSCs tend to migrate to the lungs and undergo apoptosis, which impairs their clinical efficacy. In addition, the ex vivo two-dimensional expansion of MSCs results in changes in their immunophenotype and functional activities compared to those in vivo. The use of biomaterials to culture and deliver MSCs has the potential to overcome these limitations. MSC-biomaterial constructs retain MSCs in situ and prolong their survival, while the MSCs ameliorate the foreign body reaction and fibrosis caused by the biomaterial. Biomaterial scaffolds can both preserve the tissue architecture and provide a three-dimensional biomimetic milieu for embedded MSCs, which enhance their paracrine functions, including their immunomodulatory potential. The dimensionality, physical characteristics, topographical cues, biochemistry, and microstructure can enhance the immunomodulatory potential of MSCs. Here, we review the link between the properties of biomaterial and the immunomodulatory potential of MSCs. Impact Statement Regeneration of cells, tissues, and whole organs is challenging. Mesenchymal stem cells (MSCs) have therapeutic potential in tissue engineering and regenerative medicine due to their paracrine functions, including immunomodulatory activity. The dimensionality, physical characteristics, topographical cues, biochemistry, and microstructure of biomaterial can be harnessed to enhance the immunomodulatory potential of MSCs for tissue engineering, which will increase their clinical efficacy, particularly for immune-related diseases.
Collapse
Affiliation(s)
- Yin Chen
- Department of Oral and Maxillofacial Surgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Zhanhao Shu
- Department of Oral and Maxillofacial Surgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Kejia Qian
- Department of Oral and Maxillofacial Surgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Jiaxiong Wang
- Department of Oral and Maxillofacial Surgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| | - Huiyong Zhu
- Department of Oral and Maxillofacial Surgery, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, People's Republic of China
| |
Collapse
|
59
|
Qazi TH, Tytgat L, Dubruel P, Duda GN, Van Vlierberghe S, Geissler S. Extrusion Printed Scaffolds with Varying Pore Size As Modulators of MSC Angiogenic Paracrine Effects. ACS Biomater Sci Eng 2019; 5:5348-5358. [PMID: 33464076 DOI: 10.1021/acsbiomaterials.9b00843] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Cell encapsulation in confining 3D hydrogels typically prevents encapsulated cells from spreading and establishing cell-cell contacts. Interactions with neighboring cells or with the extracellular matrix (ECM) influence the paracrine activity of mesenchymal stromal cells (MSCs), but how these interactions are regulated by structural properties of biomaterial scaffolds remains insufficiently explored. Here, we describe the use of extrusion-based 3D printing to fabricate acellular, gelatin-based scaffolds with programmed strut spacings of 400 (small), 500 (medium), and 600 μm (large). These scaffolds showed similar effective Young's moduli in the range of 2-5 kPa, and varied based on average pore size which ranged from ∼200 μm (small pore: SP) through ∼302 μm (medium pore: MP) to ∼382 μm (large pore: LP). When seeded with MSCs, pore size guided cell distribution on the scaffolds, with smaller pores preventing cell infiltration, medium ones causing cells to aggregate in between struts, and large ones causing cells to flow through after attachment on the struts. These changes in cell distribution regulated cell-cell and cell-matrix interactions at the gene level, as assessed by pathway focused PCR arrays. Medium pore size scaffolds stimulated the highest paracrine secretion of a panel of angiogenic cytokines. This enhancement of paracrine activity substantially improved endothelial cell migration in a chemotaxis assay, increased single cell migration kinetics such as velocity, and stimulated the formation of robust tubular structures. Together, these findings not only provide new insights on cellular interactions in scaffold environments but also demonstrate how 3D biomaterial design can instruct and enhance the regenerative paracrine activities of MSCs.
Collapse
Affiliation(s)
- Taimoor H Qazi
- Julius Wolff Institute for Biomechanics and Musculoskeletal Regeneration, Charité Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany.,Berlin-Brandenburg Center for Regenerative Therapies, Charité Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Liesbeth Tytgat
- Polymer Chemistry & Biomaterials Group - Centre of Macromolecular Chemistry (CMaC) - Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, S4-Bis, 9000 Ghent, Belgium.,Brussels Photonics (B-PHOT) - Department of Applied Physics and Photonics, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Peter Dubruel
- Polymer Chemistry & Biomaterials Group - Centre of Macromolecular Chemistry (CMaC) - Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, S4-Bis, 9000 Ghent, Belgium.,Brussels Photonics (B-PHOT) - Department of Applied Physics and Photonics, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Georg N Duda
- Julius Wolff Institute for Biomechanics and Musculoskeletal Regeneration, Charité Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany.,Berlin-Brandenburg Center for Regenerative Therapies, Charité Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany
| | - Sandra Van Vlierberghe
- Polymer Chemistry & Biomaterials Group - Centre of Macromolecular Chemistry (CMaC) - Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, S4-Bis, 9000 Ghent, Belgium.,Brussels Photonics (B-PHOT) - Department of Applied Physics and Photonics, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Sven Geissler
- Julius Wolff Institute for Biomechanics and Musculoskeletal Regeneration, Charité Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany.,Berlin-Brandenburg Center for Regenerative Therapies, Charité Universitätsmedizin Berlin, Augustenburger Platz 1, 13353 Berlin, Germany.,Berlin Institute of Health Center for Regenerative Therapies, Charité Universitätsmedizin Berlin, Louisa-Karsch-Str. 2, 10178 Berlin, Germany
| |
Collapse
|
60
|
Yin F, Wang WY, Jiang WH. Human umbilical cord mesenchymal stem cells ameliorate liver fibrosis in vitro and in vivo: From biological characteristics to therapeutic mechanisms. World J Stem Cells 2019; 11:548-564. [PMID: 31523373 PMCID: PMC6716089 DOI: 10.4252/wjsc.v11.i8.548] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 06/26/2019] [Accepted: 07/17/2019] [Indexed: 02/06/2023] Open
Abstract
Liver fibrosis is a wound-healing response to chronic injuries, characterized by the excessive accumulation of extracellular matrix or scar tissue within the liver; in addition, its formation is associated with multiple cytokines as well as several cell types and a variety of signaling pathways. When liver fibrosis is not well controlled, it can progress to liver cirrhosis, but it is reversible in principle. Thus far, no efficient therapy is available for treatment of liver fibrosis. Although liver transplantation is the preferred strategy, there are many challenges remaining in this approach, such as shortage of donor organs, immunological rejection, and surgical complications. Hence, there is a great need for an alternative therapeutic strategy. Currently, mesenchymal stem cell (MSC) therapy is considered a promising therapeutic strategy for the treatment of liver fibrosis; advantageously, the characteristics of MSCs are continuous self-renewal, proliferation, multipotent differentiation, and immunomodulatory activities. The human umbilical cord-derived (hUC)-MSCs possess not only the common attributes of MSCs but also more stable biological characteristics, relatively easy accessibility, abundant source, and no ethical issues (e.g., bone marrow being the adult source), making hUC-MSCs a good choice for treatment of liver fibrosis. In this review, we summarize the biological characteristics of hUC-MSCs and their paracrine effects, exerted by secretion of various cytokines, which ultimately promote liver repair through several signaling pathways. Additionally, we discuss the capacity of hUC-MSCs to differentiate into hepatocyte-like cells for compensating the function of existing hepatocytes, which may aid in amelioration of liver fibrosis. Finally, we discuss the current status of the research field and its future prospects.
Collapse
Affiliation(s)
- Fei Yin
- Department of Histology and Embryology, Basic Medical College of Jilin University, Changchun 130021, Jilin Province, China
| | - Wen-Ying Wang
- Department of Histology and Embryology, Basic Medical College of Jilin University, Changchun 130021, Jilin Province, China
| | - Wen-Hua Jiang
- Department of Histology and Embryology, Basic Medical College of Jilin University, Changchun 130021, Jilin Province, China
| |
Collapse
|
61
|
Noronha NDC, Mizukami A, Caliári-Oliveira C, Cominal JG, Rocha JLM, Covas DT, Swiech K, Malmegrim KCR. Priming approaches to improve the efficacy of mesenchymal stromal cell-based therapies. Stem Cell Res Ther 2019; 10:131. [PMID: 31046833 PMCID: PMC6498654 DOI: 10.1186/s13287-019-1224-y] [Citation(s) in RCA: 339] [Impact Index Per Article: 67.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Multipotent mesenchymal stromal cells (MSC) have been widely explored for cell-based therapy of immune-mediated, inflammatory, and degenerative diseases, due to their immunosuppressive, immunomodulatory, and regenerative potentials. Preclinical studies and clinical trials have demonstrated promising therapeutic results although these have been somewhat limited. Aspects such as low in vivo MSC survival in inhospitable disease microenvironments, requirements for ex vivo cell overexpansion prior to infusions, intrinsic differences between MSC and different sources and donors, variability of culturing protocols, and potency assays to evaluate MSC products have been described as limitations in the field. In recent years, priming approaches to empower MSC have been investigated, thereby generating cellular products with improved potential for different clinical applications. Herein, we review the current priming approaches that aim to increase MSC therapeutic efficacy. Priming with cytokines and growth factors, hypoxia, pharmacological drugs, biomaterials, and different culture conditions, as well as other diverse molecules, are revised from current and future perspectives.
Collapse
Affiliation(s)
- Nádia de Cássia Noronha
- Center for Cell-based Therapy, Regional Blood Center of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Graduate Program on Bioscience and Biotechnology, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Amanda Mizukami
- Center for Cell-based Therapy, Regional Blood Center of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | | | - Juçara Gastaldi Cominal
- Center for Cell-based Therapy, Regional Blood Center of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Graduate Program on Bioscience and Biotechnology, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - José Lucas M Rocha
- Center for Cell-based Therapy, Regional Blood Center of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Graduate Program on Basic and Applied Immunology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Dimas Tadeu Covas
- Center for Cell-based Therapy, Regional Blood Center of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Kamilla Swiech
- Center for Cell-based Therapy, Regional Blood Center of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil.,Department of Pharmaceutical Sciences, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | - Kelen C R Malmegrim
- Center for Cell-based Therapy, Regional Blood Center of Ribeirão Preto, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil. .,Department of Clinical, Toxicological and Bromatological Analysis, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Avenida do Café, s/n°, Ribeirão Preto, SP, 14010-903, Brazil.
| |
Collapse
|
62
|
Liu Z, Li Y, Ren Y, Jin Y, Yang J, Wang S, Zhu X, Xiong H, Zou G, Liu Y, Huang W. Enhancement of in vitro proliferation and bioactivity of human anterior cruciate ligament fibroblasts using an in situ tissue isolation method and basic fibroblast growth factor culture conditions: A pilot analysis. Medicine (Baltimore) 2019; 98:e15907. [PMID: 31145353 PMCID: PMC6708876 DOI: 10.1097/md.0000000000015907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Previous studies have reported poor proliferation and bioactivity of human anterior cruciate ligament fibroblasts (hACLFs) after injury. As hACLFs are one of the most significant and indispensable source of seed cells in constructing tissue-engineered ligament, enhancing hACLF proliferation would offer favorable cellular-biological ability and induce the extracellular matrix secretion of hACLFs after loading on multiple types of scaffolds. Enhancing the bioactivity of hACLFs would improve tissue repair and functional recovery after tissue-engineered ligament transplantation. This study compared cells prepared by collagenase digestion and the in situ culture of tissue pieces and investigated the effect of basic fibroblast growth factor (bFGF) on hACLFs. METHODS Six adult patients participated in this study. Of these patients, tissues from three were compared after culture establishment through collagenase digestion or in situ tissue isolation. hACLF phenotypic characteristics were assessed, and the effect of bFGF on hACLF cultures was observed. hACLFs cultured with and without bFGF served as the experimental and control groups, respectively. Cell Counting Kit-8 was used to detect proliferation. The expression of ligament-related genes and proteins was evaluated by immunofluorescence staining, real-time polymerase chain reaction (PCR) assays, and Western blot assays. RESULTS The morphology of hACLFs isolated using the two methods differed after the 2nd passage. The proliferation of cells obtained by in situ culture was higher than that of cells obtained by collagenase digestion. hACLFs cultured with bFGF after the 3rd passage exhibited a higher proliferation rate than the controls. Immunofluorescence staining, real-time PCR, and Western blot analysis showed a significant increase in ligament-related gene and protein expression in the hACLFs cultured with bFGF. CONCLUSIONS The in situ isolation of tissue pieces enhanced hACLF proliferation in vitro, and the hACLFs exhibited phenotypic characteristics of fibroblasts. hACLFs cultured with bFGF exhibited increased hACLF bioactivity.
Collapse
Affiliation(s)
- Ziming Liu
- Department of Orthopaedic Surgery, the First Affiliated Hospital of Chongqing Medical University
| | - Yuwan Li
- Department of Orthopaedic Surgery, the First Affiliated Hospital of Chongqing Medical University
| | - Youliang Ren
- Department of Orthopaedic Surgery, the Second Affiliated Hospital of Chongqing Medical University, Chongqing
| | - Ying Jin
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, P.R. China
| | - Jibin Yang
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, P.R. China
| | - Shengmin Wang
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, P.R. China
| | - Xizhong Zhu
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, P.R. China
| | - Huazhang Xiong
- Department of Orthopaedic Surgery, the Second Affiliated Hospital of Chongqing Medical University, Chongqing
| | - Gang Zou
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, P.R. China
| | - Yi Liu
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, P.R. China
| | - Wei Huang
- Department of Orthopaedic Surgery, the First Affiliated Hospital of Chongqing Medical University
| |
Collapse
|
63
|
Williams EK, García JR, Mannino RG, Schneider RS, Lam WA, García AJ. Enabling mesenchymal stromal cell immunomodulatory analysis using scalable platforms. Integr Biol (Camb) 2019; 11:154-162. [PMID: 31135880 DOI: 10.1093/intbio/zyz014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/21/2019] [Accepted: 05/04/2019] [Indexed: 11/14/2022]
Abstract
Human mesenchymal stromal cells (hMSCs) are a promising cell source for numerous regenerative medicine and cell therapy-based applications. However, MSC-based therapies have faced challenges in translation to the clinic, in part due to the lack of sufficient technologies that accurately predict MSC potency and are viable in the context of cell manufacturing. Microfluidic platforms may provide an innovative opportunity to address these challenges by enabling multiparameter analyses of small sample sizes in a high throughput and cost-effective manner, and may provide a more predictive environment in which to analyze hMSC potency. To this end, we demonstrate the feasibility of incorporating 3D culture environments into microfluidic platforms for analysis of hMSC secretory response to inflammatory stimuli and multi-parameter testing using cost-effective and scalable approaches. We first find that the cytokine secretion profile for hMSCs cultured within synthetic poly(ethylene glycol)-based hydrogels is significantly different compared to those cultured on glass substrates, both in growth media and following stimulation with IFN-γ and TNF-α, for cells derived from two donors. For both donors, perfusion with IFN-γ and TNF-α leads to differences in secretion of interleukin 6 (IL-6), interleukin 8 (IL-8), monocyte chemoattractant protein 1 (MCP-1), macrophage colony-stimulating factor (M-CSF), and interleukin-1 receptor antagonist (IL-1ra) between hMSCs cultured in hydrogels and those cultured on glass substrates. We then demonstrate the feasibility of analyzing the response of hMSCs to a stable concentration gradient of soluble factors such as inflammatory stimuli for potential future use in potency analyses, minimizing the amount of sample required for dose-response testing.
Collapse
Affiliation(s)
- Evelyn Kendall Williams
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA, USA.,Department of Pediatrics, Division of Pediatric Hematology/Oncology, Aflac Cancer Center and Blood Disorders Service of Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, USA.,Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - José R García
- Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA.,Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta GA, USA
| | - Robert G Mannino
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA, USA.,Department of Pediatrics, Division of Pediatric Hematology/Oncology, Aflac Cancer Center and Blood Disorders Service of Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, USA.,Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Rebecca S Schneider
- Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA.,School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Wilbur A Lam
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology & Emory University, Atlanta, GA, USA.,Department of Pediatrics, Division of Pediatric Hematology/Oncology, Aflac Cancer Center and Blood Disorders Service of Children's Healthcare of Atlanta, Emory University School of Medicine, Atlanta, GA, USA.,Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Andrés J García
- Parker H. Petit Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA.,Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta GA, USA
| |
Collapse
|
64
|
Adamo A, Brandi J, Caligola S, Delfino P, Bazzoni R, Carusone R, Cecconi D, Giugno R, Manfredi M, Robotti E, Marengo E, Bassi G, Takam Kamga P, Dal Collo G, Gatti A, Mercuri A, Arigoni M, Olivero M, Calogero RA, Krampera M. Extracellular Vesicles Mediate Mesenchymal Stromal Cell-Dependent Regulation of B Cell PI3K-AKT Signaling Pathway and Actin Cytoskeleton. Front Immunol 2019; 10:446. [PMID: 30915084 PMCID: PMC6423067 DOI: 10.3389/fimmu.2019.00446] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 02/19/2019] [Indexed: 12/11/2022] Open
Abstract
Mesenchymal stromal cells (MSCs) are adult, multipotent cells of mesodermal origin representing the progenitors of all stromal tissues. MSCs possess significant and broad immunomodulatory functions affecting both adaptive and innate immune responses once MSCs are primed by the inflammatory microenvironment. Recently, the role of extracellular vesicles (EVs) in mediating the therapeutic effects of MSCs has been recognized. Nevertheless, the molecular mechanisms responsible for the immunomodulatory properties of MSC-derived EVs (MSC-EVs) are still poorly characterized. Therefore, we carried out a molecular characterization of MSC-EV content by high-throughput approaches. We analyzed miRNA and protein expression profile in cellular and vesicular compartments both in normal and inflammatory conditions. We found several proteins and miRNAs involved in immunological processes, such as MOES, LG3BP, PTX3, and S10A6 proteins, miR-155-5p, and miR-497-5p. Different in silico approaches were also performed to correlate miRNA and protein expression profile and then to evaluate the putative molecules or pathways involved in immunoregulatory properties mediated by MSC-EVs. PI3K-AKT signaling pathway and the regulation of actin cytoskeleton were identified and functionally validated in vitro as key mediators of MSC/B cell communication mediated by MSC-EVs. In conclusion, we identified different molecules and pathways responsible for immunoregulatory properties mediated by MSC-EVs, thus identifying novel therapeutic targets as safer and more useful alternatives to cell or EV-based therapeutic approaches.
Collapse
Affiliation(s)
- Annalisa Adamo
- Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, Verona, Italy
| | - Jessica Brandi
- Proteomics and Mass Spectrometry Laboratory, Department of Biotechnology, University of Verona, Verona, Italy
| | - Simone Caligola
- Department of Computer Science, University of Verona, Verona, Italy
| | - Pietro Delfino
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Riccardo Bazzoni
- Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, Verona, Italy
| | - Roberta Carusone
- Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, Verona, Italy
| | - Daniela Cecconi
- Proteomics and Mass Spectrometry Laboratory, Department of Biotechnology, University of Verona, Verona, Italy
| | - Rosalba Giugno
- Department of Computer Science, University of Verona, Verona, Italy
| | - Marcello Manfredi
- Department of Sciences and Technological Innovation, University of Piemonte Orientale, Alessandria, Italy.,Center for Translational Research on Autoimmune and Allergic Diseases (CAAD), Novara, Italy
| | - Elisa Robotti
- Department of Sciences and Technological Innovation, University of Piemonte Orientale, Alessandria, Italy
| | - Emilio Marengo
- Department of Sciences and Technological Innovation, University of Piemonte Orientale, Alessandria, Italy.,Center for Translational Research on Autoimmune and Allergic Diseases (CAAD), Novara, Italy
| | - Giulio Bassi
- Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, Verona, Italy
| | - Paul Takam Kamga
- Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, Verona, Italy
| | - Giada Dal Collo
- Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, Verona, Italy
| | - Alessandro Gatti
- Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, Verona, Italy
| | - Angela Mercuri
- Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, Verona, Italy
| | - Maddalena Arigoni
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Turin, Italy
| | | | - Raffaele A Calogero
- Department of Molecular Biotechnology and Health Sciences, University of Torino, Turin, Italy
| | - Mauro Krampera
- Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, Verona, Italy
| |
Collapse
|
65
|
Immunomodulatory Functions of Mesenchymal Stem Cells in Tissue Engineering. Stem Cells Int 2019; 2019:9671206. [PMID: 30766609 PMCID: PMC6350611 DOI: 10.1155/2019/9671206] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 10/26/2018] [Accepted: 11/29/2018] [Indexed: 02/06/2023] Open
Abstract
The inflammatory response to chronic injury affects tissue regeneration and has become an important factor influencing the prognosis of patients. In previous stem cell treatments, it was revealed that stem cells not only have the ability for direct differentiation or regeneration in chronic tissue damage but also have a regulatory effect on the immune microenvironment. Stem cells can regulate the immune microenvironment during tissue repair and provide a good "soil" for tissue regeneration. In the current study, the regulation of immune cells by mesenchymal stem cells (MSCs) in the local tissue microenvironment and the tissue damage repair mechanisms are revealed. The application of the concepts of "seed" and "soil" has opened up new research avenues for regenerative medicine. Tissue engineering (TE) technology has been used in multiple tissues and organs using its biomimetic and cellular cell abilities, and scaffolds are now seen as an important part of building seed cell microenvironments. The effect of tissue engineering techniques on stem cell immune regulation is related to the shape and structure of the scaffold, the preinflammatory microenvironment constructed by the implanted scaffold, and the material selection of the scaffold. In the application of scaffold, stem cell technology has important applications in cartilage, bone, heart, and liver and other research fields. In this review, we separately explore the mechanism of MSCs in different tissue and organs through immunoregulation for tissue regeneration and MSC combined with 3D scaffolds to promote MSC immunoregulation to repair damaged tissues.
Collapse
|
66
|
Iwasaki K, Nagata M, Akazawa K, Watabe T, Morita I. Changes in characteristics of periodontal ligament stem cells in spheroid culture. J Periodontal Res 2018; 54:364-373. [PMID: 30597545 DOI: 10.1111/jre.12637] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 11/01/2018] [Accepted: 12/05/2018] [Indexed: 12/15/2022]
Abstract
OBJECTIVES The periodontal ligament (PDL) has important roles in maintaining homeostasis, wound healing, and regeneration of periodontal tissues by supplying stem/progenitor cells. Periodontal ligament stem cells (PDLSCs) have mesenchymal stem cell (MSC)-like characteristics and can be isolated from periodontal tissues. The aim of this study was to examine the effect of three-dimensional spheroid culture on the characteristics of PDLSCs. MATERIAL AND METHODS Periodontal ligament stem cells were isolated and cultured from healthy teeth, and PDLSC spheroids were formed by pellet culture in polypropylene tubes. The proliferation of PDLSCs in spheroids and conventional two-dimensional (2D) cultures were examined by immunostaining for Ki67. Cell death and cell size were analyzed using flow cytometry. Gene expression changes were investigated by quantitative real time PCR. RESULTS Periodontal ligament stem cells spontaneously formed spheroid masses in pellet culture. The size of PDLSC spheroids was inversely proportional to the culture period. Fewer Ki67-positive cells were detected in PDLSC spheroids compared to those in 2D culture. Flow cytometry revealed an increase in dead cells and a decrease in cell size in PDLSC spheroids. The expression levels of genes related to anti-inflammation (TSG6, COX2, MnSOD) and angiogenesis (VEGF, bFGF, HGF) were drastically increased by spheroid culture compared to 2D culture. TSG6 gene expression was inhibited in PDLSC spheroids in the presence of the apoptosis signal inhibitor, Z-VAD-FMK. Additionally, PDLSC spheroid transplantation into rat periodontal defects did not induce the regeneration of periodontal tissues. CONCLUSIONS We found that spheroid culture of PDLSCs affected several characteristics of PDLSCs, including the expression of genes related to anti-inflammation and angiogenesis; apoptosis signaling may be involved in these changes. Our results revealed the characteristics of PDLSCs in spheroid culture and have provided new information to the field of stem cell research.
Collapse
Affiliation(s)
- Kengo Iwasaki
- Institute of Dental Research, Osaka Dental University, Osaka, Japan.,Department of Nanomedicine (DNP), Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.,Department of Periodontology, Graduate School of Medical and Dental Science, Tokyo Medical and Dental University, Tokyo, Japan
| | - Mizuki Nagata
- Department of Periodontology, Graduate School of Medical and Dental Science, Tokyo Medical and Dental University, Tokyo, Japan
| | - Keiko Akazawa
- Department of Periodontology, Graduate School of Medical and Dental Science, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tetsuro Watabe
- Biochemistry, Graduate School of Medical and Dental Science, Tokyo Medical and Dental University, Tokyo, Japan
| | | |
Collapse
|
67
|
3D Bone Biomimetic Scaffolds for Basic and Translational Studies with Mesenchymal Stem Cells. Int J Mol Sci 2018; 19:ijms19103150. [PMID: 30322134 PMCID: PMC6213614 DOI: 10.3390/ijms19103150] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 10/04/2018] [Accepted: 10/10/2018] [Indexed: 12/22/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are recognized as an attractive tool owing to their self-renewal and differentiation capacity, and their ability to secrete bioactive molecules and to regulate the behavior of neighboring cells within different tissues. Accumulating evidence demonstrates that cells prefer three-dimensional (3D) to 2D culture conditions, at least because the former are closer to their natural environment. Thus, for in vitro studies and in vivo utilization, great effort is being dedicated to the optimization of MSC 3D culture systems in view of achieving the intended performance. This implies understanding cell–biomaterial interactions and manipulating the physicochemical characteristics of biomimetic scaffolds to elicit a specific cell behavior. In the bone field, biomimetic scaffolds can be used as 3D structures, where MSCs can be seeded, expanded, and then implanted in vivo for bone repair or bioactive molecules release. Actually, the union of MSCs and biomaterial has been greatly improving the field of tissue regeneration. Here, we will provide some examples of recent advances in basic as well as translational research about MSC-seeded scaffold systems. Overall, the proliferation of tools for a range of applications witnesses a fruitful collaboration among different branches of the scientific community.
Collapse
|
68
|
Ruehle MA, Stevens HY, Beedle AM, Guldberg RE, Call JA. Aggregate mesenchymal stem cell delivery ameliorates the regenerative niche for muscle repair. J Tissue Eng Regen Med 2018; 12:1867-1876. [PMID: 29774991 DOI: 10.1002/term.2707] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Revised: 04/18/2018] [Accepted: 05/08/2018] [Indexed: 01/02/2023]
Abstract
Duchenne muscular dystrophy is a severe muscle wasting disease due to the absence of the dystrophin protein from the muscle cell membrane, which renders the muscle susceptible to continuous damage. In Duchenne muscular dystrophy patients, muscle weakness, together with cycles of degeneration/regeneration and replacement with noncontractile tissue, limit mobility and lifespan. Because the loss of dystrophin results in loss of polarity and a reduction in the number of self-renewing satellite cells, it is postulated that these patients could achieve an improved quality of life if delivered cells could restore satellite cell function. In this study, we used both an established myotoxic injury model in wild-type (WT) mice and mdx mice alone (spontaneous muscle damage). Single (SC) and aggregated (AGG) mesenchymal stem cells (MSCs) were injected into the gastrocnemius muscles 4 hr after injury (WT mice). The recovery of peak isometric torque was longitudinally assessed over 5 weeks, with earlier takedowns for histological assessment of healing (fibre cross-section area and central nucleation) and MSC retention. AGG-treated WT mice had significantly greater torque recovery at Day 14 than SC or saline-treated mice and a greater CSA at Day 10, compared with SC/saline. AGG-treated mdx mice had a greater peak isometric torque compared with SC/saline. In vitro immunomodulatory factor secretion of AGG-MSCs was higher than SC-MSCs for all tested growth factors with the largest difference observed in hepatocyte growth factor. Future studies are necessary to pair immunomodulatory factor secretion with functional attributes, to better predict the potential therapeutic value of MSC treatment modalities.
Collapse
Affiliation(s)
- Marissa A Ruehle
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA.,Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, USA
| | - Hazel Y Stevens
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Aaron M Beedle
- Department of Pharmaceutical Sciences, SUNY Binghamton University, Binghamton, NY, USA
| | - Robert E Guldberg
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA.,George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Jarrod A Call
- Department of Kinesiology, University of Georgia, Athens, GA, USA.,Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
| |
Collapse
|
69
|
Egger D, Tripisciano C, Weber V, Dominici M, Kasper C. Dynamic Cultivation of Mesenchymal Stem Cell Aggregates. Bioengineering (Basel) 2018; 5:E48. [PMID: 29921755 PMCID: PMC6026937 DOI: 10.3390/bioengineering5020048] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 05/24/2018] [Accepted: 06/15/2018] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are considered as primary candidates for cell-based therapies due to their multiple effects in regenerative medicine. Pre-conditioning of MSCs under physiological conditions—such as hypoxia, three-dimensional environments, and dynamic cultivation—prior to transplantation proved to optimize their therapeutic efficiency. When cultivated as three-dimensional aggregates or spheroids, MSCs display increased angiogenic, anti-inflammatory, and immunomodulatory effects as well as improved stemness and survival rates after transplantation, and cultivation under dynamic conditions can increase their viability, proliferation, and paracrine effects, alike. Only few studies reported to date, however, have utilized dynamic conditions for three-dimensional aggregate cultivation of MSCs. Still, the integration of dynamic bioreactor systems, such as spinner flasks or stirred tank reactors might pave the way for a robust, scalable bulk expansion of MSC aggregates or MSC-derived extracellular vesicles. This review summarizes recent insights into the therapeutic potential of MSC aggregate cultivation and focuses on dynamic generation and cultivation techniques of MSC aggregates.
Collapse
Affiliation(s)
- Dominik Egger
- Department of Biotechnology, University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria.
| | - Carla Tripisciano
- Christian Doppler Laboratory for Innovative Therapy Approaches in Sepsis, Danube University Krems, Dr.-Karl-Dorrek-Straße 30, 3500 Krems, Austria.
| | - Viktoria Weber
- Christian Doppler Laboratory for Innovative Therapy Approaches in Sepsis, Danube University Krems, Dr.-Karl-Dorrek-Straße 30, 3500 Krems, Austria.
| | - Massimo Dominici
- Division of Oncology, Department of Medical and Surgical Sciences for Children & Adults, University-Hospital of Modena and Reggio Emilia, Via Università 4, 41121 Modena, Italy.
- Technopole of Mirandola TPM, 41037 Mirandola, Modena, Italy.
| | - Cornelia Kasper
- Department of Biotechnology, University of Natural Resources and Life Sciences, Muthgasse 18, 1190 Vienna, Austria.
| |
Collapse
|
70
|
Saleh LS, Bryant SJ. The Host Response in Tissue Engineering: Crosstalk Between Immune cells and Cell-laden Scaffolds. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2018; 6:58-65. [PMID: 30374467 DOI: 10.1016/j.cobme.2018.03.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Implantation of cell-laden scaffolds is a promising strategy for regenerating tissue that has been damaged due to injury or disease. However, the act of implantation initiates an acute inflammatory response. If the scaffold is non-biologic (i.e., a modified biologic scaffold or synthetic-based scaffold), inflammation will be prolonged through the foreign body response (FBR), which eventually forms a fibrous capsule and walls off the implant from the surrounding host tissue. This host response, from a cellular perspective, can create a harsh environment leading to long-lasting effects on the tissue engineering outcome. At the same time, cells embedded within the scaffold can respond to this environment and influence the interrogating immune cells (e.g., macrophages). This crosstalk, depending on the type of cell, can dramatically influence the host response. This review provides an overview of the FBR and highlights important and recent advancements in the host response to cell-laden scaffolds with a focus on the impact of the communication between immune cells and cells embedded within a scaffold. Understanding this complex interplay between the immune cells, notably macrophages, and the tissue engineering cells is a critically important component to a successful in vivo tissue engineering therapy.
Collapse
Affiliation(s)
- Leila S Saleh
- Department of Chemical and Biological Engineering, University of Colorado, 3415 Colorado Avenue, Boulder, CO 80303, USA
| | - Stephanie J Bryant
- Department of Chemical and Biological Engineering, University of Colorado, 3415 Colorado Avenue, Boulder, CO 80303, USA.,BioFrontiers Institute, University of Colorado, 3415 Colorado Avenue, Boulder, CO 80303, USA.,Material Science and Engineering Program, University of Colorado, 3415 Colorado Avenue, Boulder, CO 80303, USA
| |
Collapse
|
71
|
Retention and Functional Effect of Adipose-Derived Stromal Cells Administered in Alginate Hydrogel in a Rat Model of Acute Myocardial Infarction. Stem Cells Int 2018; 2018:7821461. [PMID: 29765421 PMCID: PMC5892231 DOI: 10.1155/2018/7821461] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 01/05/2018] [Accepted: 01/18/2018] [Indexed: 01/12/2023] Open
Abstract
Background Cell therapy for heart disease has been proven safe and efficacious, despite poor cell retention in the injected area. Improving cell retention is hypothesized to increase the treatment effect. In the present study, human adipose-derived stromal cells (ASCs) were delivered in an in situ forming alginate hydrogel following acute myocardial infarction (AMI) in rats. Methods ASCs were transduced with luciferase and tested for ASC phenotype. AMI was inducted in nude rats, with subsequent injection of saline (controls), 1 × 106 ASCs in saline or 1 × 106 ASCs in 1% (w/v) alginate hydrogel. ASCs were tracked by bioluminescence and functional measurements were assessed by magnetic resonance imaging (MRI) and 82rubidium positron emission tomography (PET). Results ASCs in both saline and alginate hydrogel significantly increased the ejection fraction (7.2% and 7.8% at 14 days and 7.2% and 8.0% at 28 days, resp.). After 28 days, there was a tendency for decreased infarct area and increased perfusion, compared to controls. No significant differences were observed between ASCs in saline or alginate hydrogel, in terms of retention and functional salvage. Conclusion ASCs improved the myocardial function after AMI, but administration in the alginate hydrogel did not further improve retention of the cells or myocardial function.
Collapse
|
72
|
Ezquer F, Morales P, Quintanilla ME, Santapau D, Lespay-Rebolledo C, Ezquer M, Herrera-Marschitz M, Israel Y. Intravenous administration of anti-inflammatory mesenchymal stem cell spheroids reduces chronic alcohol intake and abolishes binge-drinking. Sci Rep 2018; 8:4325. [PMID: 29567966 PMCID: PMC5864829 DOI: 10.1038/s41598-018-22750-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 02/22/2018] [Indexed: 02/06/2023] Open
Abstract
Chronic alcohol intake leads to neuroinflammation and astrocyte dysfunction, proposed to perpetuate alcohol consumption and to promote conditioned relapse-like binge drinking. In the present study, human mesenchymal stem cells (MSCs) were cultured in 3D-conditions to generate MSC-spheroids, which greatly increased MSCs anti-inflammatory ability and reduced cell volume by 90% versus conventionally 2D-cultured MSCs, enabling their intravenous administration and access to the brain. It is shown, in an animal model of chronic ethanol intake and relapse-drinking, that both the intravenous and intra-cerebroventricular administration of a single dose of MSC-spheroids inhibited chronic ethanol intake and relapse-like drinking by 80–90%, displaying significant effects over 3–5 weeks. The MSC-spheroid administration fully normalized alcohol-induced neuroinflammation, as shown by a reduced astrocyte activation, and markedly increased the levels of the astrocyte Na-glutamate (GLT-1) transporter. This research suggests that the intravenous administration of MSC-spheroids may constitute an effective new approach for the treatment of alcohol-use disorders.
Collapse
Affiliation(s)
- Fernando Ezquer
- Centro de Medicina Regenerativa, Facultad de Medicina Clínica Alemana-Universidad del Desarrollo, Santiago, Chile
| | - Paola Morales
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, University of Chile, Santiago, Chile.,Department of Neuroscience, Faculty of Medicine, University of Chile, Santiago, Chile
| | - María Elena Quintanilla
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | - Daniela Santapau
- Centro de Medicina Regenerativa, Facultad de Medicina Clínica Alemana-Universidad del Desarrollo, Santiago, Chile
| | - Carolyne Lespay-Rebolledo
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | - Marcelo Ezquer
- Centro de Medicina Regenerativa, Facultad de Medicina Clínica Alemana-Universidad del Desarrollo, Santiago, Chile
| | - Mario Herrera-Marschitz
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, University of Chile, Santiago, Chile
| | - Yedy Israel
- Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, University of Chile, Santiago, Chile.
| |
Collapse
|
73
|
Khan IU, Yoon Y, Kim WH, Kweon OK. Gelatin positively regulates the immunosuppressive capabilities of adipose-derived mesenchymal stem cells. Turk J Biol 2017; 41:969-978. [PMID: 30814861 DOI: 10.3906/biy-1706-45] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
This characteristics of adipose-derived mesenchymal stem cells (Ad-MSCs) can be selectively enhanced by altering the culture environment. We evaluated the effects of gelatin on Ad-MSCs when used in combination with culture media. Ad-MSCs were initially cultured in 0%, 0.5%, 1%, 2%, and 4% gelatin in Dulbecco's modified Eagle's medium (DMEM) to evaluate cell proliferation. This expression of inflammatory, antiinflammatory, antioxidant, and osteogenic markers was then assessed by rtPCR in Ad-MSCs cultured in 0.5% gelatin in DMEM (GMSCs), and without gelatin (MSCs), for 5 and 10 days. We found that 0.5% gelatin significantly increased the proliferation rate of Ad-MSCs after 24 h of incubation, up until 72 h. GMSCs had upregulated IL-10, VEGF, and HO-1 after 5 and 10 days of incubation, while IL-6 and TNF-α were upregulated after 5 days and then significantly decreased after 10 days of incubation. The osteogenic factors BMP-7, AXIN, and β-catenin were significantly upregulated in GMSCs after 5 and 10 days. Notably, there was 5- to 8-fold higher expression of BMP-7 in GMSCs than in MSCs. We conclude that culture medium containing 0.5% gelatin enhances the proliferation rate, induces immunosuppression, and activates BMP-7 and the wnt/AXIN/β-catenin pathway in Ad-MSCs.
Collapse
Affiliation(s)
- Imdad Ullah Khan
- Department of Veterinary Surgery, College of Veterinary Medicine, Seoul National University , Seoul , Korea
| | - Yongseok Yoon
- Department of Veterinary Surgery, College of Veterinary Medicine, Seoul National University , Seoul , Korea
| | - Wan Hee Kim
- Department of Veterinary Surgery, College of Veterinary Medicine, Seoul National University , Seoul , Korea
| | - Oh-Kyeong Kweon
- Department of Veterinary Surgery, College of Veterinary Medicine, Seoul National University , Seoul , Korea
| |
Collapse
|
74
|
Aggregation of Culture Expanded Human Mesenchymal Stem Cells in Microcarrier-based Bioreactor. Biochem Eng J 2017; 131:39-46. [PMID: 29736144 DOI: 10.1016/j.bej.2017.12.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Three-dimensional aggregation of human mesenchymal stem cells (hMSCs) has been used to enhance their therapeutic properties but current fabrication protocols depend on laboratory methods and are not scalable. In this study, we developed thermal responsive poly(N-isopropylacrylamide) grafted microcarriers (PNIPAM-MCs), which supported expansion and thermal detachment of hMSCs at reduced temperature (23.0 °C). hMSCs were cultured on the PNIPAM-MCs in both spinner flask (SF) and PBS Vertical-Wheel (PBS-VW) bioreactors for expansion. At room temperature, hMSCs were detached as small cell sheets, which subsequently self-assembled into 3D hMSC aggregates in PBS-VW bioreactor and remain as single cells in SF bioreactor owing to different hydrodynamic conditions. hMSC aggregates generated from the bioreactor maintained comparable immunomodulation and cytokine secretion properties compared to the ones made from the AggreWell®. The results of the current study demonstrate the feasibility of scale-up production of hMSC aggregates in the suspension bioreactor using thermal responsive microcarriers for integrated cell expansion and 3D aggregation in a close bioreactor system and highlight the critical role of hydrodynamics in self-assembly of detached hMSC in suspension.
Collapse
|
75
|
Martín-Saavedra F, Crespo L, Escudero-Duch C, Saldaña L, Gómez-Barrena E, Vilaboa N. Substrate Microarchitecture Shapes the Paracrine Crosstalk of Stem Cells with Endothelial Cells and Osteoblasts. Sci Rep 2017; 7:15182. [PMID: 29123118 PMCID: PMC5680323 DOI: 10.1038/s41598-017-15036-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 10/19/2017] [Indexed: 01/08/2023] Open
Abstract
We examined the hypothesis that substrate microarchitecture regulates the crosstalk between human mesenchymal stem cells (hMSC) and cell types involved in bone regeneration. Compared with polyester flat substrates having uniformly distributed homogenous pores (2D), three-dimensional polystyrene substrates with randomly oriented and interconnected pores of heterogeneous size (3D) stimulated the stromal secretion of IGF-1 while lessened the production of VEGFR-1, MCP-1 and IL-6. The medium conditioned by hMSC cultured in 3D substrates stimulated tube formation by human endothelial cells (hEC) to a higher extent than medium from 2D cultures. 3D co-cultures of hMSC and hEC contained higher secreted levels of IGF-1, EGF and FGF-2 than 2D co-cultures, resulting in increased hEC proliferation and migration. Substrate microarchitecture influenced the secretion of factors related to bone remodeling as the ratio RANKL to OPG, and the levels of M-CSF and IL-6 were higher in 3D co-cultures of hMSC and human osteoblasts (hOB) than in 2D co-cultures. Cytokine microenvironment in 3D co-cultures stimulated osteoblast matrix reorganization while demoted the late steps of osteoblastic maturation. Altogether, data in this study may unveil a new role of scaffold microarchitecture during bone regeneration, as modulator of the paracrine relationships that hMSC establish with hEC and hOB.
Collapse
Affiliation(s)
- Francisco Martín-Saavedra
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain.,Hospital Universitario La Paz-IdiPAZ, Paseo de la Castellana 261, 28046, Madrid, Spain
| | - Lara Crespo
- Hospital Universitario La Paz-IdiPAZ, Paseo de la Castellana 261, 28046, Madrid, Spain
| | - Clara Escudero-Duch
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain.,Hospital Universitario La Paz-IdiPAZ, Paseo de la Castellana 261, 28046, Madrid, Spain
| | - Laura Saldaña
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain.,Hospital Universitario La Paz-IdiPAZ, Paseo de la Castellana 261, 28046, Madrid, Spain
| | - Enrique Gómez-Barrena
- Hospital Universitario La Paz-IdiPAZ, Paseo de la Castellana 261, 28046, Madrid, Spain.,Departamento de Cirugía, Universidad Autónoma de Madrid, Calle del Arzobispo Morcillo 4, 28029, Madrid, Spain
| | - Nuria Vilaboa
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain. .,Hospital Universitario La Paz-IdiPAZ, Paseo de la Castellana 261, 28046, Madrid, Spain.
| |
Collapse
|
76
|
Tridimensional configurations of human mesenchymal stem/stromal cells to enhance cell paracrine potential towards wound healing processes. J Biotechnol 2017; 262:28-39. [PMID: 28965974 DOI: 10.1016/j.jbiotec.2017.09.020] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 09/27/2017] [Accepted: 09/27/2017] [Indexed: 02/06/2023]
Abstract
This study proposes to use alginate encapsulation as a strategy to assess the paracrine activity of 3D- and 2D-cultured human bone marrow mesenchymal stem/stromal cells (BM MSC) in the setting of wound repair and regeneration processes. A side-by-side comparison of MSC culture in three different 3D configurations (spheroids, encapsulated spheroids and encapsulated single cells) versus 2D monolayer cell culture is presented. The results reveal enhanced resistance to oxidative stress and paracrine potential of 3D spheroid-organized BM MSC. MSC spheroids (148±2μm diameter) encapsulated in alginate microbeads evidence increased angiogenic and chemotactic potential relatively to encapsulated single cells, as supported by higher secreted levels of angiogenic factors and by functional assays showing the capability of encapsulated MSC to promote formation of tubelike structures and migration of fibroblasts into a wounded area. In addition, a higher expression of the anti-inflammatory factor tumor necrosis factor alpha-induced protein 6 (TSG-6) was demonstrated by RT-PCR for encapsulated and non-encapsulated spheroids. Culture of spheroids within an alginate matrix maintains low aggregation levels below 5% and favors resistance to oxidative stress. These are important factors towards the establishment of more standardized and controlled systems, crucial to explore the paracrine effects of 3D-cultured MSC in therapeutic settings.
Collapse
|
77
|
Zhou P, Liu Z, Li X, Zhang B, Wang X, Lan J, Shi Q, Li D, Ju X. Migration ability and Toll-like receptor expression of human mesenchymal stem cells improves significantly after three-dimensional culture. Biochem Biophys Res Commun 2017; 491:323-328. [PMID: 28734835 DOI: 10.1016/j.bbrc.2017.07.102] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 07/18/2017] [Indexed: 12/13/2022]
Abstract
While the conventional two-dimensional (2D) culture protocol is well accepted for the culture of mesenchymal stem cells (MSCs), this method fails to recapitulate the in vivo native three-dimensional (3D) cellular microenvironment, and may result in phenotypic changes, and homing and migration capacity impairments. MSC preparation in 3D culture systems has been considered an attractive preparatory and delivery method recently. We seeded human umbilical cord-derived MSCs (hUCMSCs) in a 3D culture system with porcine acellular dermal matrix (PADM), and investigated the phenotypic changes, the expression changes of some important receptors, including Toll-like receptors (TLRs) and C-X-C chemokine receptor type 4 (CXCR4) when hUCMSCs were transferred from 2D to 3D systems, as well as the alterations in in vivo homing and migration potential. It was found that the percentage of CD105-positive cells decreased significantly, whereas that of CD34- and CD271-positive cells increased significantly in 3D culture, compared to that in 2D culture. The mRNA and protein expression levels of TLR2, TLR3, TLR4, TLR6, and CXCR4 in hUCMSCs were increased significantly upon culturing with PADM for 3 days, compared to the levels in 2D culture. The numbers of migratory 3D hUCMSCs in the heart, liver, spleen, and bone marrow were significantly greater than the numbers of 2D hUCMSCs, and the worst migration occurred in 3D + AMD3100 (CXCR4 antagonist) hUCMSCs. These results suggested that 3D culture of hUCMSCs with PADM could alter the phenotypic characteristics of hUCMSCs, increase their TLR and CXCR4 expression levels, and promote their migratory and homing capacity in which CXCR4 plays an important role.
Collapse
Affiliation(s)
- Panpan Zhou
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Zilin Liu
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Xue Li
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Bing Zhang
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Xiaoyuan Wang
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Jing Lan
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Qing Shi
- Cryomedicine Lab, Qilu Hospital of Shandong University, Jinan 250012, China
| | - Dong Li
- Cryomedicine Lab, Qilu Hospital of Shandong University, Jinan 250012, China.
| | - Xiuli Ju
- Department of Pediatrics, Qilu Hospital of Shandong University, Jinan 250012, China.
| |
Collapse
|
78
|
Wobma HM, Liu D, Vunjak-Novakovic G. Paracrine Effects of Mesenchymal Stromal Cells Cultured in Three-Dimensional Settings on Tissue Repair. ACS Biomater Sci Eng 2017; 4:1162-1175. [PMID: 33418654 DOI: 10.1021/acsbiomaterials.7b00005] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Mesenchymal stromal cells (MSCs) are a promising cell source for promoting tissue repair, due to their ability to release growth, angiogenic, and immunomodulatory factors. However, when injected as a suspension, these cells suffer from poor survival and localization, and suboptimal release of paracrine factors. While there have been attempts to overcome these limitations by modifying MSCs themselves, a more versatile solution is to grow them in three dimensions, as aggregates or embedded into biomaterials. Here we review the mechanisms by which 3D culture can influence the regenerative capacity of undifferentiated MSCs, focusing on recent examples from the literature. We further discuss how knowledge of these mechanisms can lead to strategic design of MSC therapies that overcome some of the challenges to their effective translation.
Collapse
|
79
|
Ceccaldi C, Bushkalova R, Cussac D, Duployer B, Tenailleau C, Bourin P, Parini A, Sallerin B, Girod Fullana S. Elaboration and evaluation of alginate foam scaffolds for soft tissue engineering. Int J Pharm 2017; 524:433-442. [DOI: 10.1016/j.ijpharm.2017.02.060] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 02/17/2017] [Accepted: 02/20/2017] [Indexed: 01/18/2023]
|
80
|
Petrenko Y, Syková E, Kubinová Š. The therapeutic potential of three-dimensional multipotent mesenchymal stromal cell spheroids. Stem Cell Res Ther 2017; 8:94. [PMID: 28446248 PMCID: PMC5406927 DOI: 10.1186/s13287-017-0558-6] [Citation(s) in RCA: 151] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The efficiency of clinical trials involving transplantation of multipotent mesenchymal stromal cells (MSCs) is often insufficient due to harsh conditions present within the target tissue including hypoxia, low nutrient supply as well as inflammatory reactions. This indicates the necessity for optimization of cell-based therapy approaches which might include either modification of the cell manufacturing process or specific cell pretreatment procedures prior to transplantation. Recent reports confirm evidence that the aggregation of MSCs into three-dimensional (3D) multicellular spheroids results in enhancement of the overall therapeutic potential of cells, by improving the anti-inflammatory and angiogenic properties, stemness and survival of MSCs after transplantation. Such an MSCs spheroid generation approach may open new opportunities for the enlargement of MSCs applications in clinical research and therapy. However, the unification and optimization of 3D spheroid generation techniques, including the selection of appropriate clinical-grade culture conditions and methods for their large-scale production, are still of great importance. The current review addresses questions regarding therapeutic-associated properties of 3D multicellular MSCs spheroids in vitro and during preclinical animal studies, with special attention to the possibilities of translating these research achievements toward further clinical manufacturing and applications.
Collapse
Affiliation(s)
- Yuriy Petrenko
- Department of Biomaterials and Biophysical Methods, Institute of Experimental Medicine AS CR v. v. i, Vídeňská 1083, 14220, Prague 4-Krč, Czech Republic.
| | - Eva Syková
- Department of Neuroscience, Charles University, Second Faculty of Medicine, V Uvalu 84, 15006, Prague, Czech Republic
| | - Šárka Kubinová
- Department of Biomaterials and Biophysical Methods, Institute of Experimental Medicine AS CR v. v. i, Vídeňská 1083, 14220, Prague 4-Krč, Czech Republic
| |
Collapse
|
81
|
Cagliani J, Grande D, Molmenti EP, Miller EJ, Rilo HL. Immunomodulation by Mesenchymal Stromal Cells and Their Clinical Applications. JOURNAL OF STEM CELL AND REGENERATIVE BIOLOGY 2017; 3:10.15436/2471-0598.17.022. [PMID: 29104965 PMCID: PMC5667922 DOI: 10.15436/2471-0598.17.022] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Mesenchymal stromal cells (MSCs) are multipotent progenitor cells that can be isolated and expanded from various sources. MSCs modulate the function of immune cells, including T and B lymphocytes, dendritic cells, and natural killer cells. An understanding of the interaction between MSCs and the inflammatory microenvironment will provide critical information in revealing the precise in vivo mechanisms involved in MSCs-mediated therapeutic effects, and for designing more practical protocols for the clinical use of these cells. In this review we describe the current knowledge of the unique biological properties of MSCs, the immunosuppressive effects on immune-competent cells and the paracrine role of soluble factors. A summary of the participation of MSCs in preclinical and clinical studies in treating autoimmune diseases and other diseases is described. We also discuss the current challenges of their use and their potential roles in cell therapies.
Collapse
Affiliation(s)
- Joaquin Cagliani
- The Feinstein Institute for Medical Research, Center for Heart and Lungs, Northwell Health System, Manhasset, N Y, USA
- The Elmezzi Graduate School of Molecular Medicine, Northwell Health System, Manhasset, NY, USA
| | - Daniel Grande
- The Feinstein Institute for Medical Research, Orthopedic Research Laboratory, Northwell Health System, Manhasset, N Y, USA
| | - Ernesto P Molmenti
- Transplantation of Surgery, Department of Surgery, Northwell Health System, Manhasset, NY, USA
| | - Edmund J. Miller
- The Feinstein Institute for Medical Research, Center for Heart and Lungs, Northwell Health System, Manhasset, N Y, USA
| | - Horacio L.R. Rilo
- Pancreas Disease Center, Department of Surgery, Northwell Health System, Manhasset, NY, USA
| |
Collapse
|
82
|
Wu RX, Yin Y, He XT, Li X, Chen FM. Engineering a Cell Home for Stem Cell Homing and Accommodation. ACTA ACUST UNITED AC 2017; 1:e1700004. [PMID: 32646164 DOI: 10.1002/adbi.201700004] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 02/27/2017] [Indexed: 12/14/2022]
Abstract
Distilling complexity to advance regenerative medicine from laboratory animals to humans, in situ regeneration will continue to evolve using biomaterial strategies to drive endogenous cells within the human body for therapeutic purposes; this approach avoids the need for delivering ex vivo-expanded cellular materials. Ensuring the recruitment of a significant number of reparative cells from an endogenous source to the site of interest is the first step toward achieving success. Subsequently, making the "cell home" cell-friendly by recapitulating the natural extracellular matrix (ECM) in terms of its chemistry, structure, dynamics, and function, and targeting specific aspects of the native stem cell niche (e.g., cell-ECM and cell-cell interactions) to program and steer the fates of those recruited stem cells play equally crucial roles in yielding a therapeutically regenerative solution. This review addresses the key aspects of material-guided cell homing and the engineering of novel biomaterials with desirable ECM composition, surface topography, biochemistry, and mechanical properties that can present both biochemical and physical cues required for in situ tissue regeneration. This growing body of knowledge will likely become a design basis for the development of regenerative biomaterials for, but not limited to, future in situ tissue engineering and regeneration.
Collapse
Affiliation(s)
- Rui-Xin Wu
- State Key Laboratory of Military Stomatology, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, P. R. China.,National Clinical Research Center for Oral Diseases, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, P.R. China
| | - Yuan Yin
- State Key Laboratory of Military Stomatology, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, P. R. China.,National Clinical Research Center for Oral Diseases, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, P.R. China
| | - Xiao-Tao He
- State Key Laboratory of Military Stomatology, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, P. R. China.,National Clinical Research Center for Oral Diseases, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, P.R. China
| | - Xuan Li
- State Key Laboratory of Military Stomatology, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, P. R. China.,National Clinical Research Center for Oral Diseases, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, P.R. China
| | - Fa-Ming Chen
- State Key Laboratory of Military Stomatology, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, P. R. China.,National Clinical Research Center for Oral Diseases, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, P.R. China
| |
Collapse
|
83
|
Dergilev KV, Makarevich PI, Tsokolaeva ZI, Boldyreva MA, Beloglazova IB, Zubkova ES, Menshikov MY, Parfyonova YV. Comparison of cardiac stem cell sheets detached by Versene solution and from thermoresponsive dishes reveals similar properties of constructs. Tissue Cell 2016; 49:64-71. [PMID: 28041835 DOI: 10.1016/j.tice.2016.12.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 11/13/2016] [Accepted: 12/03/2016] [Indexed: 01/04/2023]
Abstract
Cell sheets (CS) from c-kit+ cardiac stem cell (CSC) hold a potential for application in regenerative medicine. However, manufacture of CS may require thermoresponsive dishes, which increases cost and puts one in dependence on specific materials. Alternative approaches were established recently and we conducted a short study to compare approaches for detachment of CS from c-kit+ CSC. Our in-house developed method using chelation by Versene solution was compared to UpCell™ thermoresponsive plates in terms of CSC proliferation, viability, gap junction formation and engraftment in a model of myocardial infarction. Use of Versene solution instead of thermoresponsive dishes resulted in comparable CS thickness (approximately 100mcm), cell proliferation rate and no signs of apoptosis detected in both types of constructs. However, we observed a minor reduction of gap junction count in Versene-treated CS. At day 30 after delivery to infarcted myocardium both types of CS retained at the site of transplantation and contained comparable amounts of proliferating cells indicating engraftment. Thus, we may conclude that detachment of CS from c-kit+ CSC using Versene solution followed by mechanical treatment is an alternative to thermoresponsive plates allowing use of routinely available materials to generate constructs for cardiac repair.
Collapse
Affiliation(s)
- Konstantin V Dergilev
- Russian Cardiology Research and Production Complex, Laboratory of Angiogenesis, 121552, Moscow, Russian Federation
| | - Pavel I Makarevich
- Russian Cardiology Research and Production Complex, Laboratory of Angiogenesis, 121552, Moscow, Russian Federation; Lomonosov Moscow State University, Medical Research and Education Centre, Institute of Regenerative Medicine, Laboratory of gene and cell therapy, 119192, Moscow, Russian Federation.
| | - Zoya I Tsokolaeva
- Russian Cardiology Research and Production Complex, Laboratory of Angiogenesis, 121552, Moscow, Russian Federation
| | - Maria A Boldyreva
- Russian Cardiology Research and Production Complex, Laboratory of Angiogenesis, 121552, Moscow, Russian Federation
| | - Irina B Beloglazova
- Russian Cardiology Research and Production Complex, Laboratory of Angiogenesis, 121552, Moscow, Russian Federation
| | - Ekaterina S Zubkova
- Russian Cardiology Research and Production Complex, Laboratory of Angiogenesis, 121552, Moscow, Russian Federation
| | - Mikhail Yu Menshikov
- Russian Cardiology Research and Production Complex, Laboratory of Angiogenesis, 121552, Moscow, Russian Federation
| | - Yelena V Parfyonova
- Russian Cardiology Research and Production Complex, Laboratory of Angiogenesis, 121552, Moscow, Russian Federation; Lomonosov Moscow State University, Faculty of Medicine, Laboratory of gene and cell technologies, 119192, Moscow, Russian Federation
| |
Collapse
|
84
|
Sisakhtnezhad S, Alimoradi E, Akrami H. External factors influencing mesenchymal stem cell fate in vitro. Eur J Cell Biol 2016; 96:13-33. [PMID: 27988106 DOI: 10.1016/j.ejcb.2016.11.003] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 11/30/2016] [Accepted: 11/30/2016] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem cells (MSCs) have extensive potentials, which make them attractive candidates for the developmental biology, drug discovery and regenerative medicine. However, the use of MSCs is limited by their scarceness in tissues and in culture conditions. They also exhibit various degrees of potency which subsequently influencing their applications. Nowadays, questions remain about how self-renewal and differentiation of MSCs can be controlled in vitro and in vivo, how they will behave and migrate to the right place and how they modulate the immune system. Therefore, identification of factors and culture conditions to affect the fate and function of MSCs may be effective to enhance their applications in clinical situations. Studies have indicated that the fate of MSCs in culture is influenced by various external factors, including the specific cell source, donor age, plating density, passage number and plastic surface quality. Some other factors such as cell culture media and their supplementary factors, O2 concentration, mechano-/electro-stimuli and three-dimensional scaffolds are also shown to be influential. This review addresses the current state of MSC research for describing and discussing the findings about external factors that influence the fate and function of MSCs. Additionally, the new discoveries and suggestions regarding their molecular mechanisms will be explained.
Collapse
Affiliation(s)
| | - Elham Alimoradi
- Department of biology, Faculty of Science, Razi University, Kermanshah, Iran
| | - Hassan Akrami
- Department of biology, Faculty of Science, Razi University, Kermanshah, Iran
| |
Collapse
|
85
|
Liu Y, Muñoz N, Tsai AC, Logan TM, Ma T. Metabolic Reconfiguration Supports Reacquisition of Primitive Phenotype in Human Mesenchymal Stem Cell Aggregates. Stem Cells 2016; 35:398-410. [DOI: 10.1002/stem.2510] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 08/16/2016] [Accepted: 08/21/2016] [Indexed: 12/13/2022]
Affiliation(s)
- Yijun Liu
- Department of Chemical and Biomedical Engineering; Florida State University; Tallahassee Florida USA
| | - Nathalie Muñoz
- Graduate Program in Molecular Biophysics, Florida State University; Tallahassee Florida USA
| | - Ang-Chen Tsai
- Department of Chemical and Biomedical Engineering; Florida State University; Tallahassee Florida USA
| | - Timothy M. Logan
- Graduate Program in Molecular Biophysics, Florida State University; Tallahassee Florida USA
- Department of Chemistry and Biochemistry; Florida State University; Tallahassee Florida USA
| | - Teng Ma
- Department of Chemical and Biomedical Engineering; Florida State University; Tallahassee Florida USA
- Graduate Program in Molecular Biophysics, Florida State University; Tallahassee Florida USA
| |
Collapse
|