51
|
Dini I. Bio Discarded from Waste to Resource. Foods 2021; 10:2652. [PMID: 34828933 PMCID: PMC8621767 DOI: 10.3390/foods10112652] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 10/26/2021] [Accepted: 10/27/2021] [Indexed: 12/21/2022] Open
Abstract
The modern linear agricultural production system allows the production of large quantities of food for an ever-growing population. However, it leads to large quantities of agricultural waste either being disposed of or treated for the purpose of reintroduction into the production chain with a new use. Various approaches in food waste management were explored to achieve social benefits and applications. The extraction of natural bioactive molecules (such as fibers and antioxidants) through innovative technologies represents a means of obtaining value-added products and an excellent measure to reduce the environmental impact. Cosmetic, pharmaceutical, and nutraceutical industries can use natural bioactive molecules as supplements and the food industry as feed and food additives. The bioactivities of phytochemicals contained in biowaste, their potential economic impact, and analytical procedures that allow their recovery are summarized in this study. Our results showed that although the recovery of bioactive molecules represents a sustainable means of achieving both waste reduction and resource utilization, further research is needed to optimize the valuable process for industrial-scale recovery.
Collapse
Affiliation(s)
- Irene Dini
- Department of Pharmacy, University of Naples Federico II, Via Domenico Montesano 49, 80131 Napoli, Italy
| |
Collapse
|
52
|
Cassini C, Zatti PH, Angeli VW, Branco CS, Salvador M. Mutual effects of free and nanoencapsulated phenolic compounds on human microbiota. Curr Med Chem 2021; 29:3160-3178. [PMID: 34720074 DOI: 10.2174/0929867328666211101095131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 07/08/2021] [Accepted: 08/26/2021] [Indexed: 11/22/2022]
Abstract
Phenolic compounds (PC) have many health benefits such as antioxidant, anticarcinogenic, neuroprotective, and anti-inflammatory activities. All of these activities depend on their chemical structures and their interaction with biological targets in the body. PC occur naturally in polymerized form, linked to glycosides and requires metabolic transformation from their ingestion to their absorption. The gut microbiota can transform PC into more easily absorbed metabolites. The PC, in turn, have prebiotic and antimicrobial actions on the microbiota. Despite this, their low oral bioavailability still compromises biological performance. Therefore, the use of nanocarriers has been demonstrated to be a useful strategy to improve PC absorption and, consequently, their health effects. Nanotechnology is an excellent alternative able to overcome the limits of oral bioavailability of PC, since it offers protection from degradation during their passage through the gastrointestinal tract. Moreover, nanotechnology is also capable of promoting controlled PC release and modulating the interaction between PC and the microbiota. However, little is known about the impact of the nanotechnology on PC effects on the gut microbiota. This review highlights the use of nanotechnology for PC delivery on gut microbiota, focusing on the ability of such formulations to enhance oral bioavailability by applying nanocarriers (polymeric nanoparticles, nanostructured lipid carriers, solid lipid nanoparticles). In addition, the effects of free and nanocarried PC or nanocarriers per se on gut microbiota are also described.
Collapse
Affiliation(s)
- Carina Cassini
- Institute of Biotechnology, University of Caxias do Sul, Caxias do Sul. Brazil
| | | | | | - Catia Santos Branco
- Institute of Biotechnology, University of Caxias do Sul, Caxias do Sul. Brazil
| | - Mirian Salvador
- Institute of Biotechnology, University of Caxias do Sul, Caxias do Sul. Brazil
| |
Collapse
|
53
|
Yaneva T, Dinkova R, Gotcheva V, Angelov A. Modulation of the antioxidant activity of a functional oat beverage by enrichment with chokeberry juice. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.16012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Teodora Yaneva
- Department of Biotechnology University of Food Technologies Plovdiv Bulgaria
| | - Rada Dinkova
- Department of Canning and Refrigeration Technology University of Food Technologies Plovdiv Bulgaria
| | - Velitchka Gotcheva
- Department of Biotechnology University of Food Technologies Plovdiv Bulgaria
| | - Angel Angelov
- Department of Biotechnology University of Food Technologies Plovdiv Bulgaria
| |
Collapse
|
54
|
Katsirma Z, Dimidi E, Rodriguez-Mateos A, Whelan K. Fruits and their impact on the gut microbiota, gut motility and constipation. Food Funct 2021; 12:8850-8866. [PMID: 34505614 DOI: 10.1039/d1fo01125a] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Fruits are the seed-bearing product of plants and have considerable nutritional importance in the human diet. The consumption of fruits is among the dietary strategies recommended for constipation due to its potential effects on the gut microbiota and gut motility. Dietary fiber from fruits has been the subject of research on the impact on gut microbiota, gut motility and constipation, however, fruits also contain other components that impact the intestinal luminal environment that may impact these outcomes including sorbitol and (poly)phenols. This review aims to explore the mechanisms of action and effectiveness of fruits and fruit products on the gut microbiota, gut motility and constipation, with a focus on fiber, sorbitol and (poly)phenols. In vitro, animal and human studies investigating the effects of fruits on gut motility and gut microbiota were sought through electronic database searches, hand searching and consulting with experts. Various fruits have been shown to modify the microbiota in human studies including blueberry powder (lactobacilli, bifidobacteria), prunes (bifidobacteria), kiwi fruit (Bacteroides, Faecalibacterium prausnitzii) and raisins (Ruminococcus, F. prausnitzii). Prunes, raisins and apple fiber isolate have been shown to increase fecal weight in humans, whilst kiwifruit to increase small bowel and fecal water content. Apple fiber isolate, kiwifruit, fig paste, and orange extract have been shown to reduce gut transit time, while prunes have not. There is limited evidence on which fruit components play a predominant role in regulating gut motility and constipation, or whether a synergy of multiple components is responsible for such effects.
Collapse
Affiliation(s)
- Zoi Katsirma
- Department of Nutritional Sciences, King's College London, 150 Stamford Street, SE1 9NH, London, UK.
| | - Eirini Dimidi
- Department of Nutritional Sciences, King's College London, 150 Stamford Street, SE1 9NH, London, UK.
| | - Ana Rodriguez-Mateos
- Department of Nutritional Sciences, King's College London, 150 Stamford Street, SE1 9NH, London, UK.
| | - Kevin Whelan
- Department of Nutritional Sciences, King's College London, 150 Stamford Street, SE1 9NH, London, UK.
| |
Collapse
|
55
|
Miłek M, Grabek-Lejko D, Stępień K, Sidor E, Mołoń M, Dżugan M. The enrichment of honey with Aronia melanocarpa fruits enhances its in vitro and in vivo antioxidant potential and intensifies its antibacterial and antiviral properties. Food Funct 2021; 12:8920-8931. [PMID: 34606549 DOI: 10.1039/d1fo02248b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The effect of adding the chokeberry fruit additive to rape honey was studied with regard to the physicochemical properties and biological activity. Two samples of dried powdered fruits were used to enrich the honey (1 and 4% v/v) during creaming. The obtained products were characterized in terms of sugar content, acidity, conductivity, total phenolic, flavonoid and anthocyanin contents and HPTLC polyphenol profiles. The antioxidant properties of enriched honeys were studied in vitro (FRAP, DPPH, and ABTS) and in vivo using a S. cerevisiae model. The inhibitory effect against 5 bacterial strains and coronavirus surrogate bacteriophage phi6 was tested. The addition of chokeberry significantly modified the physicochemical properties of honey and enhanced its antioxidant potential (from 3 to 15 times). Using HPTLC analysis, the occurrence of flavonoids, phenolic acids, and anthocyanins in chokeberry enriched honey was determined. The modified honey protected yeast cells against H2O2-induced oxidative stress when used as a pretreatment agent. All tested bacteria were susceptible to enriched honey in a dose-dependent manner. The antiviral potential of enriched honey against the model bacteriophage was discovered for the first time. In terms of numerous health benefits determined, honey enriched with Aronia melanocarpa fruits can be considered as an interesting novel functional food, which may increase the consumption of chokeberry superfruits.
Collapse
Affiliation(s)
- Michał Miłek
- Department of Chemistry and Food Toxicology, Institute of Food Technology and Nutrition, University of Rzeszow, Ćwiklińskiej 1a St., 35-601 Rzeszow, Poland.
| | - Dorota Grabek-Lejko
- Department of Bioenergetics, Food Analysis and Microbiology, Institute of Food Technology and Nutrition, University of Rzeszow, Zelwerowicza 4 St, 35-601 Rzeszow, Poland.
| | - Karolina Stępień
- Department of Biology, University of Rzeszow, Zelwerowicza 4 St., 35-601 Rzeszow, Poland.
| | - Ewelina Sidor
- Department of Chemistry and Food Toxicology, Institute of Food Technology and Nutrition, University of Rzeszow, Ćwiklińskiej 1a St., 35-601 Rzeszow, Poland.
| | - Mateusz Mołoń
- Department of Biology, University of Rzeszow, Zelwerowicza 4 St., 35-601 Rzeszow, Poland.
| | - Małgorzata Dżugan
- Department of Chemistry and Food Toxicology, Institute of Food Technology and Nutrition, University of Rzeszow, Ćwiklińskiej 1a St., 35-601 Rzeszow, Poland.
| |
Collapse
|
56
|
Role of Food Antioxidants in Modulating Gut Microbial Communities: Novel Understandings in Intestinal Oxidative Stress Damage and Their Impact on Host Health. Antioxidants (Basel) 2021; 10:antiox10101563. [PMID: 34679698 PMCID: PMC8533511 DOI: 10.3390/antiox10101563] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/21/2021] [Accepted: 09/26/2021] [Indexed: 02/07/2023] Open
Abstract
Dietary components have an important role on the structure and function of host gut microbial communities. Even though, various dietary components, such as carbohydrates, fats, proteins, fibers, and vitamins, have been studied in depth for their effect on gut microbiomes, little attention has been paid regarding the impact of several food antioxidants on the gut microbiome. The long-term exposure to reactive oxygen species (ROS) can cause microbial dysbiosis which leads to numerous intestinal diseases such as microbiota dysbiosis, intestinal injury, colorectal cancers, enteric infections, and inflammatory bowel diseases. Recently, it has been shown that the food derived antioxidant compounds might protect the host from intestinal oxidative stress via modulating the composition of beneficial microbial species in the gut. The present review summarizes the impact of food antioxidants including antioxidant vitamins, dietary polyphenols, carotenoids, and bioactive peptides on the structure as well as function of host gut microbial communities. Several in vitro, animal model, and clinical studies indicates that food antioxidants might modify the host gut microbial communities and their health status. However, still further clarification is needed as to whether changes in certain microbial species caused by food additives may lead to changes in metabolism and immune function.
Collapse
|
57
|
Kimble R, Murray L, Keane KM, Haggerty K, Howatson G, Lodge JK. The influence of tart cherries ( Prunus Cerasus) on vascular function and the urinary metabolome: a randomised placebo-controlled pilot study. J Nutr Sci 2021; 10:e73. [PMID: 34589205 PMCID: PMC8453453 DOI: 10.1017/jns.2021.68] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 08/11/2021] [Accepted: 08/19/2021] [Indexed: 01/24/2023] Open
Abstract
Montmorency tart cherries (MC) have been found to modulate indices of vascular function with interventions of varying duration. The objective of this preliminary study was to identify the chronic effects of MC supplementation on vascular function and the potential for urinary metabolomics to provide mechanistic evidence. We performed a placebo-controlled, double-blind, randomised study on 23 healthy individuals (18M, 7F) that consumed 30 ml MC or a placebo twice daily for 28 days. Whole body measures of vascular function and spot urine collections were taken at baseline and after supplementation. There were no significant changes to vascular function including blood pressure and arterial stiffness. Urinary metabolite profiling highlighted significant changes (P < 0⋅001) with putative discriminatory metabolites related to tryptophan and histidine metabolism. Overall, MC supplementation for 28 days does not improve indices of vascular function but changes to the urinary metabolome could be suggestive of potential mechanisms.
Collapse
Affiliation(s)
- Rachel Kimble
- Department of Sport, Exercise and Rehabilitation, Faculty of Health and Life Sciences, Northumbria University, Newcastle-upon-Tyne, UK
| | - Lucy Murray
- Department of Sport, Exercise and Rehabilitation, Faculty of Health and Life Sciences, Northumbria University, Newcastle-upon-Tyne, UK
| | - Karen M. Keane
- Department of Sport, Exercise and Rehabilitation, Faculty of Health and Life Sciences, Northumbria University, Newcastle-upon-Tyne, UK
| | - Karen Haggerty
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle-upon-Tyne, UK
| | - Glyn Howatson
- Department of Sport, Exercise and Rehabilitation, Faculty of Health and Life Sciences, Northumbria University, Newcastle-upon-Tyne, UK
| | - John K. Lodge
- Department of Applied Sciences, Faculty of Health and Life Sciences, Northumbria University, Newcastle-upon-Tyne, UK
| |
Collapse
|
58
|
Platonova EY, Shaposhnikov MV, Lee HY, Lee JH, Min KJ, Moskalev A. Black chokeberry (Aronia melanocarpa) extracts in terms of geroprotector criteria. Trends Food Sci Technol 2021. [DOI: 10.1016/j.tifs.2021.06.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
59
|
Minnebo Y, De Paepe K, Raes J, Van de Wiele T. Nutrient load acts as a driver of gut microbiota load, community composition and metabolic functionality in the simulator of the human intestinal microbial ecosystem. FEMS Microbiol Ecol 2021; 97:6329685. [PMID: 34320208 DOI: 10.1093/femsec/fiab111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 07/26/2021] [Indexed: 11/13/2022] Open
Abstract
A recently introduced quantitative framework for gut microbiota analysis indicated that microbial load alterations can be linked to various diseases, making it essential to pinpoint its determinants. We identified nutrient load as a main driver of the quantitative microbial community composition and functionality in vitro by stepwise decreasing standardised feed concentrations from 100% to 33, 20 and 10% in five-day intervals. While the proportional composition and metabolic profile were mainly determined by the inter-individual variability (35 and 41%), nutrient load accounted for 58%, 23% and 65% of the observed variation in the microbial load, quantitative composition and net daily metabolite production, respectively. After the tenfold nutrient reduction, the microbial load decreased by 79.72 ± 9% and 82.96 ± 1.66% in the proximal and distal colon, respectively, while the net total short-chain fatty acid production dropped by 79.42 ± 4.42% and 84.58 ± 2.42%, respectively. The majority of microbial taxa quantitatively decreased, whereas a select group of nutritional specialists, such as Akkermansia muciniphila and Bilophila wadsworthia and a number of opportunistic pathogens remained unaffected. This shows that nutrient load is an important driver of the human gut microbiome and should be considered in future in vitro and in vivo dietary research.
Collapse
Affiliation(s)
- Yorick Minnebo
- Center for Microbial Ecology and Technology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Kim De Paepe
- Center for Microbial Ecology and Technology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Jeroen Raes
- Laboratory of Molecular Bacteriology, Department of Microbiology and Immunology, KU Leuven, Herestraat 49, 3000 Leuven, Belgium.,Center for Microbiology, VIB, Herestraat 49, 3000 Leuven, Belgium
| | - Tom Van de Wiele
- Center for Microbial Ecology and Technology, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| |
Collapse
|
60
|
Ahles S, Joris PJ, Plat J. Effects of Berry Anthocyanins on Cognitive Performance, Vascular Function and Cardiometabolic Risk Markers: A Systematic Review of Randomized Placebo-Controlled Intervention Studies in Humans. Int J Mol Sci 2021; 22:ijms22126482. [PMID: 34204250 PMCID: PMC8234025 DOI: 10.3390/ijms22126482] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/09/2021] [Accepted: 06/14/2021] [Indexed: 12/15/2022] Open
Abstract
Supplementation with anthocyanins, which are a type of flavonoids mainly found in various berries, is hypothesized to be a promising approach to lower the risk of developing cognitive decline. The aim of this systematic review was to provide a comprehensive overview of dietary intervention trials describing effects of berry anthocyanins on cognitive performance in humans, while also addressing potential underlying mechanisms. A total of 1197 articles were identified through a systematic search, and 49 studies reporting effects on cognitive performance (n = 18), vascular function (n = 22), or cardiometabolic risk markers (n = 32) were included. Significant improvements were observed on memory, while some of the studies also reported effects on attention and psychomotor speed or executive function. Vascular function markers such as brachial artery flow-mediated vasodilation were also affected and consistent evidence was provided for the beneficial effects of berry anthocyanins on endothelial function. Finally, studies reported improvements in blood pressure, but effects on metabolic risk markers (e.g. carbohydrate and lipid metabolism) were less consistent. In conclusion, this review provides evidence for the beneficial effects of berry anthocyanins on cognitive performance as memory improved. Whether observed anthocyanin-induced improvements in vascular function and blood pressure underlie beneficial effects on cognitive performance warrants further study.
Collapse
Affiliation(s)
- Sanne Ahles
- Department of Nutrition and Movement Sciences, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, 6200 MD Maastricht, The Netherlands; (S.A.); (P.J.J.)
- BioActor BV, Gaetano Martinolaan 85, 6229 GS Maastricht, The Netherlands
| | - Peter J. Joris
- Department of Nutrition and Movement Sciences, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, 6200 MD Maastricht, The Netherlands; (S.A.); (P.J.J.)
| | - Jogchum Plat
- Department of Nutrition and Movement Sciences, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, 6200 MD Maastricht, The Netherlands; (S.A.); (P.J.J.)
- Correspondence:
| |
Collapse
|
61
|
Chelakkot AL, Vazhappilly CG. Plant polyphenols effect on gut microbiota: Recent advancements in clinical trials. EXCLI JOURNAL 2021; 20:1091-1095. [PMID: 34267618 PMCID: PMC8278224 DOI: 10.17179/excli2021-3900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 06/02/2021] [Indexed: 11/10/2022]
Affiliation(s)
| | - Cijo George Vazhappilly
- Department of Biotechnology, American University of Ras Al Khaimah, Ras Al Khaimah, United Arab Emirates
| |
Collapse
|
62
|
Huang L, Xiao D, Zhang X, Sandhu AK, Chandra P, Kay C, Edirisinghe I, Burton-Freeman B. Strawberry Consumption, Cardiometabolic Risk Factors, and Vascular Function: A Randomized Controlled Trial in Adults with Moderate Hypercholesterolemia. J Nutr 2021; 151:1517-1526. [PMID: 33758944 DOI: 10.1093/jn/nxab034] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 01/05/2021] [Accepted: 01/28/2021] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Certain fruits, such as strawberries, may impart cardiometabolic benefits due to their phytochemical content. OBJECTIVES Study aims were to assess the effects of strawberry intake on cardiometabolic risk factors and vascular endothelial function in adults with moderate hypercholesterolemia. METHODS This study was a randomized, controlled, double-blinded, 2-arm, 2-period (4-wk/period) crossover trial. Adults (n = 34; male/female 1:1; mean ± SEM age, 53 ± 1 y; BMI, 31 ± 1 kg/m2; LDL cholesterol, 133 ± 3 mg/dL) were randomly allocated to 1 of 2 study sequences in a 1:1 ratio. Participants drank study beverages twice daily containing freeze-dried strawberry powder (2 × 25 g) or energy-, volume-matched control powder for 4 wk separated by a 4-wk washout. The primary outcome variable was the difference in fasting LDL cholesterol after 4-wk interventions. Secondary outcomes were metabolic markers, inflammation, quantitative (poly)phenolic metabolomics, flow-mediated dilation (FMD), and blood pressure (BP), with the latter (FMD, BP) also assessed acutely at 1 h and 2 h after a 50-g bolus strawberry or control beverage. Mixed-model analysis of repeated measures via PROC MIXED, PC-SAS was performed on primary and secondary outcome variables. RESULTS LDL cholesterol did not differ after the 4-wk interventions (P > 0.05), nor did fasting total cholesterol, triglycerides, glucose, insulin, high-sensitivity C-reactive protein, FMD, or BP (all P > 0.05). Significant intervention-by-hour interaction for FMD (P = 0.03) and BP (P = 0.05) revealed increased FMD at 1 h after strawberry compared with control by 1.5 ± 0.38% (P = 0.0008) and attenuated systolic BP at 2 h by 3.1 ± 0.99 mmHg (P = 0.02). Select phenolic metabolites increased significantly (P < 0.05) in blood following strawberry consumption while others decreased, including 3-(4-methoxyphenyl)propanoic acid-3-O-glucuronide, which was significantly correlated with increased FMD (P < 0.05). CONCLUSION Strawberries may improve vascular health, independent of other metabolic changes. The effect may be related to changes in microbial-derived phenolic metabolites after strawberry consumption influencing endothelial function. Data support inclusion of strawberries in a heart-healthy diet in adults with moderate hypercholesterolemia.This trial was registered at clinicaltrials.gov as NCT02612090.
Collapse
Affiliation(s)
- Leailin Huang
- Department of Food Science and Nutrition, Center for Nutrition Research, Institute for Food Safety and Health, Illinois Institute of Technology, Chicago, IL, USA
| | - Di Xiao
- Department of Food Science and Nutrition, Center for Nutrition Research, Institute for Food Safety and Health, Illinois Institute of Technology, Chicago, IL, USA
| | - Xuhuiqun Zhang
- Department of Food Science and Nutrition, Center for Nutrition Research, Institute for Food Safety and Health, Illinois Institute of Technology, Chicago, IL, USA
| | - Amandeep K Sandhu
- Department of Food Science and Nutrition, Center for Nutrition Research, Institute for Food Safety and Health, Illinois Institute of Technology, Chicago, IL, USA
| | - Preeti Chandra
- Food Bioprocessing & Nutrition Sciences, Plants for Human Health Institute, North Carolina State University, North Carolina Research Campus, Kannapolis, NC, USA
| | - Colin Kay
- Food Bioprocessing & Nutrition Sciences, Plants for Human Health Institute, North Carolina State University, North Carolina Research Campus, Kannapolis, NC, USA
| | - Indika Edirisinghe
- Department of Food Science and Nutrition, Center for Nutrition Research, Institute for Food Safety and Health, Illinois Institute of Technology, Chicago, IL, USA
| | - Britt Burton-Freeman
- Department of Food Science and Nutrition, Center for Nutrition Research, Institute for Food Safety and Health, Illinois Institute of Technology, Chicago, IL, USA
| |
Collapse
|
63
|
Emamat H, Asadian S, Zahedmehr A, Ghanavati M, Nasrollahzadeh J. The effect of barberry (Berberis vulgaris) consumption on flow-mediated dilation and inflammatory biomarkers in patients with hypertension: A randomized controlled trial. Phytother Res 2021; 35:2607-2615. [PMID: 33350540 DOI: 10.1002/ptr.7000] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/05/2020] [Accepted: 12/13/2020] [Indexed: 01/02/2023]
Abstract
Hypertension is considered as an important cardiovascular risk factor and evidence suggests that hypertension and endothelial dysfunction reinforce each other. Polyphenol-rich foods, such as barberry can reduce the risk of cardiovascular disease. Our aim was to investigate the effects of barberry consumption on vascular function and inflammatory markers in hypertensive subject. In this randomized controlled parallel trial, 84 hypertensive subjects of both genders (aged 54.06 ± 10.19 years; body mass index 28.02 ± 2.18 kg/m2 ) were randomly allocated to consume barberry (10 g/day dried barberry) or placebo for 8 weeks. Before and after the intervention, changes in brachial flow-mediated dilation (FMD) and plasma macrophage/monocyte chemo-attractant protein-1 (MCP-1), vascular cellular adhesion molecule-1, and intracellular adhesion molecule-1 (ICAM-1) were measured. An intention-to-treat analysis was performed. Compared to placebo (n = 42), barberry consumption (n = 42) improved FMD (B [95% CI] was 6.54% [4.39, 8.70]; p < .001) and decreased plasma ICAM-1 (B [95% CI] was -1.61 ng/ml [-2.74, -0.48]; p = .006). MCP-1 was significantly lower in the barberry group compared with the placebo group (B [95% CI] was -37.62 pg/ml [-72.07, -3.17]; p = .033). Our results indicate that barberry consumption improves FMD and has a beneficial effect on plasma ICAM-1 and MCP-1 in hypertensive patients. This trial was registered at the Iranian Registry of Clinical Trial (IRCT) with number IRCT20160702028742N8.
Collapse
Affiliation(s)
- Hadi Emamat
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sanaz Asadian
- Department of Radiology, Shahid Rajaie Cardiovascular, Medical & Research Center, Tehran, Iran
| | - Ali Zahedmehr
- Cardiovascular Intervention Research Center, Shahid Rajaei Cardiovascular, Medical & Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Matin Ghanavati
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Javad Nasrollahzadeh
- Department of Clinical Nutrition and Dietetics, Faculty of Nutrition Sciences and Food Technology, National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
64
|
Arruda HS, Silva EK, Peixoto Araujo NM, Pereira GA, Pastore GM, Marostica Junior MR. Anthocyanins Recovered from Agri-Food By-Products Using Innovative Processes: Trends, Challenges, and Perspectives for Their Application in Food Systems. Molecules 2021; 26:2632. [PMID: 33946376 PMCID: PMC8125576 DOI: 10.3390/molecules26092632] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/23/2021] [Accepted: 04/29/2021] [Indexed: 12/15/2022] Open
Abstract
Anthocyanins are naturally occurring phytochemicals that have attracted growing interest from consumers and the food industry due to their multiple biological properties and technological applications. Nevertheless, conventional extraction techniques based on thermal technologies can compromise both the recovery and stability of anthocyanins, reducing their global yield and/or limiting their application in food systems. The current review provides an overview of the main innovative processes (e.g., pulsed electric field, microwave, and ultrasound) used to recover anthocyanins from agri-food waste/by-products and the mechanisms involved in anthocyanin extraction and their impacts on the stability of these compounds. Moreover, trends and perspectives of anthocyanins' applications in food systems, such as antioxidants, natural colorants, preservatives, and active and smart packaging components, are addressed. Challenges behind anthocyanin implementation in food systems are displayed and potential solutions to overcome these drawbacks are proposed.
Collapse
Affiliation(s)
- Henrique Silvano Arruda
- Department of Food and Nutrition, School of Food Engineering, University of Campinas, Monteiro Lobato Street 80, Campinas 13083-862, Brazil;
- Department of Food Science, School of Food Engineering, University of Campinas, Monteiro Lobato Street 80, Campinas 13083-862, Brazil; (N.M.P.A.); (G.M.P.)
| | - Eric Keven Silva
- Department of Food Engineering, School of Food Engineering, University of Campinas, Monteiro Lobato Street 80, Campinas 13083-862, Brazil;
| | - Nayara Macêdo Peixoto Araujo
- Department of Food Science, School of Food Engineering, University of Campinas, Monteiro Lobato Street 80, Campinas 13083-862, Brazil; (N.M.P.A.); (G.M.P.)
| | - Gustavo Araujo Pereira
- School of Food Engineering, Institute of Technology, Federal University of Pará, Augusto Corrêa Street S/N, Belém 66075-110, Brazil;
| | - Glaucia Maria Pastore
- Department of Food Science, School of Food Engineering, University of Campinas, Monteiro Lobato Street 80, Campinas 13083-862, Brazil; (N.M.P.A.); (G.M.P.)
| | - Mario Roberto Marostica Junior
- Department of Food and Nutrition, School of Food Engineering, University of Campinas, Monteiro Lobato Street 80, Campinas 13083-862, Brazil;
| |
Collapse
|
65
|
Kimble R, Keane KM, Lodge JK, Howatson G. The Influence of Tart Cherry ( Prunus cerasus, cv Montmorency) Concentrate Supplementation for 3 Months on Cardiometabolic Risk Factors in Middle-Aged Adults: A Randomised, Placebo-Controlled Trial. Nutrients 2021; 13:1417. [PMID: 33922493 PMCID: PMC8145763 DOI: 10.3390/nu13051417] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 04/19/2021] [Accepted: 04/20/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Tart Montmorency cherries (MC) have been shown to be rich in anthocyanins and other phytochemicals known to have anti-inflammatory properties and influence pathways that might improve cardiometabolic health. However, there is limited evidence for the longer-term use of tart cherries on these indices. The aim of the current study was to investigate the influence of MC concentrate on cardiometabolic health indices following a 3-month supplementation period. METHODS Fifty middle-aged adults (34 males and 16 females; mean ± SD age: 48 ± 6 years and BMI: 27.6 ± 3.7 kg/m2) completed a randomised, placebo-controlled parallel study in which they either received MC or an isocaloric placebo. Participants drank 30 mL of their allocated treatment twice per day for 3 months. Vascular function (blood pressure [BP], heart rate [HR], pulse wave velocity and analysis [PWV/A], and flow mediated dilation [FMD]) as well as indices of metabolic health (insulin, glucose, lipid profiles, and high sensitivity C reactive protein) were measured following an overnight fast before and after the 3 months. RESULTS No effect of the intervention between the groups was observed for vascular function or metabolic health variables following the intervention (p > 0.05). However, MC concentrate was shown to be safe and well-tolerated and, importantly, did not have any deleterious effects on these outcomes. In conclusion, MC has no influence on cardiometabolic indices in middle-aged adults.
Collapse
Affiliation(s)
- Rachel Kimble
- Faculty of Health and Life Sciences, Northumbria University, Newcastle-upon-Tyne NE1 8ST, UK; (R.K.); (J.K.L.)
| | - Karen M. Keane
- Galway-Mayo Institute of Technology, School of Science and Computing, H91 T8NW Galway, Ireland;
| | - John K. Lodge
- Faculty of Health and Life Sciences, Northumbria University, Newcastle-upon-Tyne NE1 8ST, UK; (R.K.); (J.K.L.)
| | - Glyn Howatson
- Faculty of Health and Life Sciences, Northumbria University, Newcastle-upon-Tyne NE1 8ST, UK; (R.K.); (J.K.L.)
- Water Research Group, School of Environmental Sciences and Development, Northwest University, Potchefstroom 2520, South Africa
| |
Collapse
|
66
|
Liu X, Martin DA, Valdez JC, Sudakaran S, Rey F, Bolling BW. Aronia berry polyphenols have matrix-dependent effects on the gut microbiota. Food Chem 2021; 359:129831. [PMID: 33957324 DOI: 10.1016/j.foodchem.2021.129831] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 04/02/2021] [Accepted: 04/11/2021] [Indexed: 12/18/2022]
Abstract
The objective of this study was to determine the extent that the aronia berry matrix affects gut microbiota composition, fecal short chain fatty acids (SCFAs), and colonic anthocyanins in healthy mice. C57BL/6J mice were fed AIN-93 M control diet (C) or C with whole aronia berry (AB), aronia extract (AE), or polyphenol-depleted AB (D) at the expense of cornstarch. After one week of feeding, AB and D increased fecal anthocyanins more than AE. Diets differentially affected SCFA and microbiota. AB fecal SCFA was associated with increased metabolism of succinate and pyruvate to butyrate. D increased acetic acid production, was associated with increased abundance of predicted genes for fermentation of carbohydrates to acetyl-coA. AB and D also increased predicted abundance of microbial catechol metabolism pathway I relative to C, which was attributed to enrichment of Lachnospiraceae. Therefore, the berry matrix impacts how aronia polyphenols interact with the gut microbiota in healthy mice.
Collapse
Affiliation(s)
- Xiaocao Liu
- College of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China; University of Wisconsin-Madison, Department of Food Science, 1605 Linden Dr., Madison, WI 53706, USA
| | - Derek A Martin
- University of Wisconsin-Madison, Department of Food Science, 1605 Linden Dr., Madison, WI 53706, USA
| | - Jonathan C Valdez
- University of Wisconsin-Madison, Department of Food Science, 1605 Linden Dr., Madison, WI 53706, USA
| | - Sailendharan Sudakaran
- University of Wisconsin-Madison, Wisconsin Institute for Discovery, 330 North Orchard St., Madison, WI 53715, USA
| | - Federico Rey
- University of Wisconsin-Madison, Department of Bacteriology, 1550 Linden Dr., Madison, WI 53706, USA
| | - Bradley W Bolling
- University of Wisconsin-Madison, Department of Food Science, 1605 Linden Dr., Madison, WI 53706, USA.
| |
Collapse
|
67
|
Is There a FADS2-Modulated Link between Long-Chain Polyunsaturated Fatty Acids in Plasma Phospholipids and Polyphenol Intake in Adult Subjects Who Are Overweight? Nutrients 2021; 13:nu13020296. [PMID: 33494132 PMCID: PMC7909565 DOI: 10.3390/nu13020296] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/30/2020] [Accepted: 01/05/2021] [Indexed: 02/07/2023] Open
Abstract
Dietary polyphenols promote cardiometabolic health and are linked with long-chain polyunsaturated fatty acids in plasma phospholipids (LC-PUFA). The FADS2 polymorphisms are associated with LC-PUFA metabolism and overweight/obesity. This 4-week study examined the link between polyphenol intake, FADS2 variants (rs174593, rs174616, rs174576) and obesity in 62 overweight adults (BMI ≥ 25), allocated to consume 100 mL daily of either: Aronia juice, a rich source of polyphenols, with 1177.11 mg polyphenols (expressed as gallic acid equivalents)/100 mL (AJ, n = 22), Aronia juice with 294.28 mg polyphenols/100 mL (MJ, n = 20), or nutritionally matched polyphenol-lacking placebo as a control (PLB, n = 20). We analyzed LC-PUFA (% of total pool) by gas chromatography and FADS2 variants by real-time PCR. Four-week changes in LC-PUFA, BMI, and body weight were included in statistical models, controlling for gender and PUFA intake. Only upon AJ and MJ, the presence of FADS2 variant alleles affected changes in linoleic, arachidonic, and eicosapentaenoic acid (EPA). Upon MJ treatment, changes in EPA were inversely linked with changes in BMI (β= -0.73, p = 0.029) and weight gain (β= -2.17, p = 0.024). Only in subjects drinking AJ, the link between changes in EPA and anthropometric indices was modified by the rs174576 variant allele. Our results indicate the interaction between FADS2, fatty acid metabolism, and polyphenol intake in overweight subjects.
Collapse
|
68
|
Zawada A, Rychter AM, Ratajczak AE, Lisiecka-Masian A, Dobrowolska A, Krela-Kaźmierczak I. Does Gut-Microbiome Interaction Protect against Obesity and Obesity-Associated Metabolic Disorders? Microorganisms 2020; 9:microorganisms9010018. [PMID: 33374597 PMCID: PMC7822472 DOI: 10.3390/microorganisms9010018] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/15/2020] [Accepted: 12/21/2020] [Indexed: 02/06/2023] Open
Abstract
More research has recently focused on the role of the gut microbiota in the development or course of numerous diseases, including non-communicable diseases. As obesity remains prevalent, the question arises as to what microbial changes are associated with increased obesity prevalence and what kind of prevention and treatment approaches it could provide. Moreover, the influence of the gut-brain axis on obesity is also crucial, since it can affect metabolism and food intake. The quantitative and qualitative changes in the microbiota composition are called dysbiosis; however, in view of the current knowledge, it is difficult to conclude which microbial imbalances are adverse or beneficial. Increased numbers of pathological microorganisms were observed among patients with obesity and comorbidities associated with it, such as diabetes, cardiovascular disease, and insulin resistance. Our review provides current knowledge regarding changes in the intestinal microbiota associated with obesity and obesity-associated comorbidities. Nevertheless, given that dietary patterns and nutrients are two of the factors affecting the intestinal microbiota, we also discuss the role of different dietary approaches, vitamins, and minerals in the shaping of the intestinal microbiota.
Collapse
|
69
|
Arruda HS, Neri-Numa IA, Kido LA, Maróstica Júnior MR, Pastore GM. Recent advances and possibilities for the use of plant phenolic compounds to manage ageing-related diseases. J Funct Foods 2020. [DOI: 10.1016/j.jff.2020.104203] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
70
|
Hameed A, Galli M, Adamska-Patruno E, Krętowski A, Ciborowski M. Select Polyphenol-Rich Berry Consumption to Defer or Deter Diabetes and Diabetes-Related Complications. Nutrients 2020; 12:E2538. [PMID: 32825710 PMCID: PMC7551116 DOI: 10.3390/nu12092538] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/11/2020] [Accepted: 08/11/2020] [Indexed: 12/20/2022] Open
Abstract
Berries are considered "promising functional fruits" due to their distinct and ubiquitous therapeutic contents of anthocyanins, proanthocyanidins, phenolic acids, flavonoids, flavanols, alkaloids, polysaccharides, hydroxycinnamic, ellagic acid derivatives, and organic acids. These polyphenols are part of berries and the human diet, and evidence suggests that their intake is associated with a reduced risk or the reversal of metabolic pathophysiologies related to diabetes, obesity, oxidative stress, inflammation, and hypertension. This work reviewed and summarized both clinical and non-clinical findings that the consumption of berries, berry extracts, purified compounds, juices, jams, jellies, and other berry byproducts aided in the prevention and or otherwise management of type 2 diabetes mellitus (T2DM) and related complications. The integration of berries and berries-derived byproducts into high-carbohydrate (HCD) and high-fat (HFD) diets, also reversed/reduced the HCD/HFD-induced alterations in glucose metabolism-related pathways, and markers of oxidative stress, inflammation, and lipid oxidation in healthy/obese/diabetic subjects. The berry polyphenols also modulate the intestinal microflora ecology by opposing the diabetic and obesity rendered symbolic reduction of Bacteroidetes/Firmicutes ratio, intestinal mucosal barrier dysfunction-restoring bacteria, short-chain fatty acids, and organic acid producing microflora. All studies proposed a number of potential mechanisms of action of respective berry bioactive compounds, although further mechanistic and molecular studies are warranted. The metabolic profiling of each berry is also included to provide up-to-date information regarding the potential anti-oxidative/antidiabetic constituents of each berry.
Collapse
Affiliation(s)
- Ahsan Hameed
- Clinical Research Center, Medical University of Bialystok, 15-089 Bialystok, Poland; (A.H.); (E.A.-P.); (A.K.)
| | - Mauro Galli
- Department of Medical Biology, Medical University of Bialystok, 15-222 Bialystok, Poland;
| | - Edyta Adamska-Patruno
- Clinical Research Center, Medical University of Bialystok, 15-089 Bialystok, Poland; (A.H.); (E.A.-P.); (A.K.)
| | - Adam Krętowski
- Clinical Research Center, Medical University of Bialystok, 15-089 Bialystok, Poland; (A.H.); (E.A.-P.); (A.K.)
- Department of Endocrinology, Diabetology, and Internal Medicine, Medical University of Bialystok, 15-089 Bialystok, Poland
| | - Michal Ciborowski
- Clinical Research Center, Medical University of Bialystok, 15-089 Bialystok, Poland; (A.H.); (E.A.-P.); (A.K.)
| |
Collapse
|
71
|
Ahles S, Stevens YR, Joris PJ, Vauzour D, Adam J, de Groot E, Plat J. The Effect of Long-Term Aronia melanocarpa Extract Supplementation on Cognitive Performance, Mood, and Vascular Function: A Randomized Controlled Trial in Healthy, Middle-Aged Individuals. Nutrients 2020; 12:nu12082475. [PMID: 32824483 PMCID: PMC7468716 DOI: 10.3390/nu12082475] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Revised: 07/27/2020] [Accepted: 08/14/2020] [Indexed: 12/13/2022] Open
Abstract
Cognitive decline is associated with lifestyle-related factors such as overweight, blood pressure, and dietary composition. Studies have reported beneficial effects of dietary anthocyanins on cognition in older adults and children. However, the effect of anthocyanin-rich Aronia melanocarpa extract (AME) on cognition is unknown. Therefore, this study aimed to determine the effect of long-term supplementation with AME on cognitive performance, mood, and vascular function in healthy, middle-aged, overweight adults. In a randomized double-blind placebo-controlled parallel study, 101 participants either consumed 90 mg AME, 150 mg AME, or placebo for 24 weeks. The grooved pegboard test, number cross-out test, and Stroop test were performed as measures for psychomotor speed, attention, and cognitive flexibility. Mood was evaluated with a visual analogue scale, serum brain-derived neurotrophic factor (BDNF) was determined, and vascular function was assessed by carotid ultrasounds and blood pressure measurements. AME improved psychomotor speed compared to placebo (90 mg AME: change = -3.37; p = 0.009). Furthermore, 150 mg AME decreased brachial diastolic blood pressure compared to 90 mg AME (change = 2.44; p = 0.011), but not compared to placebo. Attention, cognitive flexibility, BDNF, and other vascular parameters were not affected. In conclusion, AME supplementation showed an indication of beneficial effects on cognitive performance and blood pressure in individuals at risk of cognitive decline.
Collapse
Affiliation(s)
- Sanne Ahles
- Department of Nutrition and Movement Sciences, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, 6200 MD Maastricht, The Netherlands; (S.A.); (P.J.J.); (J.A.)
- BioActor BV, Gaetano Martinolaan 85, 6229 GS Maastricht, The Netherlands;
| | - Yala R. Stevens
- BioActor BV, Gaetano Martinolaan 85, 6229 GS Maastricht, The Netherlands;
- Department of Internal Medicine, Division of Gastroenterology-Hepatology, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, 6200 MD Maastricht, The Netherlands
| | - Peter J. Joris
- Department of Nutrition and Movement Sciences, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, 6200 MD Maastricht, The Netherlands; (S.A.); (P.J.J.); (J.A.)
| | - David Vauzour
- Biomedical Research Centre, Norwich Medical School, Faculty of Medicine and Health Sciences, University of East Anglia, Norwich NR4 7TJ, UK;
| | - Jos Adam
- Department of Nutrition and Movement Sciences, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, 6200 MD Maastricht, The Netherlands; (S.A.); (P.J.J.); (J.A.)
| | - Eric de Groot
- Imagelabonline & Cardiovascular, 4117 GV Erichem, The Netherlands;
- Department of Gastroenterology, Amsterdam UMC—Location Academic Medical Centre, 1105 AZ Amsterdam, The Netherlands
| | - Jogchum Plat
- Department of Nutrition and Movement Sciences, School of Nutrition and Translational Research in Metabolism (NUTRIM), Maastricht University, 6200 MD Maastricht, The Netherlands; (S.A.); (P.J.J.); (J.A.)
- Correspondence:
| |
Collapse
|
72
|
Fanton S, Cardozo LFMF, Combet E, Shiels PG, Stenvinkel P, Vieira IO, Narciso HR, Schmitz J, Mafra D. The sweet side of dark chocolate for chronic kidney disease patients. Clin Nutr 2020; 40:15-26. [PMID: 32718711 DOI: 10.1016/j.clnu.2020.06.039] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 06/27/2020] [Accepted: 06/29/2020] [Indexed: 12/11/2022]
Abstract
Chocolate is a widely appreciated foodstuff with historical appreciation as a food from the gods. In addition to its highly palatable taste, it is a rich source of (poly)phenolics, which have several proposed salutogenic effects, including neuroprotective anti-inflammatory, anti-oxidant and cardioprotective capabilities. Despite the known benefits of this ancient foodstuff, there is a paucity of information on the effects of chocolate in the context of chronic kidney disease (CKD). This review focusses on the potential salutogenic contribution of chocolate intake, to mitigate inflammatory and oxidative burden in CKD, its potential, for cardiovascular protection and on the maintenance of diversity in gut microbiota, as well as clinical perspectives, on regular chocolate intake by CKD patients.
Collapse
Affiliation(s)
- Susane Fanton
- Renal Vida Association, Blumenau, SC, Brazil; Graduate Program in Cardiovascular Sciences, Federal Fluminense University, Niterói-Rio de Janeiro RJ, Brazil.
| | - Ludmila F M F Cardozo
- Graduate Program in Cardiovascular Sciences, Federal Fluminense University, Niterói-Rio de Janeiro RJ, Brazil
| | - Emilie Combet
- School of Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, UK
| | - Paul G Shiels
- Wolfson Wohl Translational Research Centre, Institute of Cancer Sciences, University of Glasgow, UK
| | - Peter Stenvinkel
- Division of Renal Medicine and Baxter Novum, Department of Clinical Science, Technology and Intervention, Karolinska Instituted, Stockholm, Sweden
| | | | | | | | - Denise Mafra
- Graduate Program in Cardiovascular Sciences, Federal Fluminense University, Niterói-Rio de Janeiro RJ, Brazil; Graduate Program in Medical Sciences, Federal Fluminense University, Niterói-Rio de Janeiro RJ, Brazil.
| |
Collapse
|
73
|
Gomes A, Godinho-Pereira J, Oudot C, Sequeira CO, Macià A, Carvalho F, Motilva MJ, Pereira SA, Matzapetakis M, Brenner C, Santos CN. Berry fruits modulate kidney dysfunction and urine metabolome in Dahl salt-sensitive rats. Free Radic Biol Med 2020; 154:119-131. [PMID: 32437928 DOI: 10.1016/j.freeradbiomed.2020.05.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/21/2020] [Accepted: 05/02/2020] [Indexed: 01/12/2023]
Abstract
Berries are rich sources of (poly)phenols which have been associated with the prevention of cardiovascular diseases in animal models and in human clinical trials. Recently, a berry enriched diet was reported to decrease blood pressure and attenuate kidney disease progression on Dahl salt-sensitive rats. However, the relationship between kidney function, metabolism and (poly)phenols was not evaluated. We hypothesize that berries promote metabolic alterations concomitantly with an attenuation of the progression of renal disease. For that, kidney and urinary metabolomic changes induced by the berry enriched diet in hypertensive rats (Dahl salt-sensitive) were analyzed using liquid chromatography (UPLC-MS/MS) and 1H NMR techniques. Moreover, physiological and metabolic parameters, and kidney histopathological data were also collected. The severity of the kidney lesions promoted in Dahl rats by a high salt diet was significantly reduced by berries, namely a decrease in sclerotic glomeruli. In addition, was observed a high urinary excretion of metabolites that are indicators of alterations in glycolysis/gluconeogenesis, citrate cycle, and pyruvate metabolism in the salt induced-hypertensive rats, a metabolic profile counteracted by berries consumption. We also provide novel insights that relates (poly)phenols consumption with alterations in cysteine redox pools. Cysteine contribute to the redox signaling that is normally disrupted during kidney disease onset and progression. Our findings provide a vision about the metabolic responses of hypertensive rats to a (poly)phenol enriched diet, which may contribute to the understanding of the beneficial effects of (poly)phenols in salt-induced hypertension.
Collapse
Affiliation(s)
- A Gomes
- Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901, Oeiras, Portugal; Instituto de Tecnologia Química e Biológica, Universidade NOVA de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
| | - J Godinho-Pereira
- Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901, Oeiras, Portugal; Instituto de Tecnologia Química e Biológica, Universidade NOVA de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
| | - C Oudot
- INSERM UMR-S 1180, University of Paris-Sud, University of Paris-Saclay, 5 rue Jean-Baptiste Clément, 92296, Châtenay Malabry, France
| | - C O Sequeira
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School|Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056, Lisboa, Portugal
| | - A Macià
- Food Technology Department, Agrotecnio Center, Escuela Técnica Superior de Ingeniería Agraria, University of Lleida, Lleida, Spain
| | - F Carvalho
- Laboratório de Morfologia Renal, Hospital Curry Cabral, EPE, Rua da Beneficência n. 8, 1069-166, Lisboa, Portugal
| | - M J Motilva
- Instituto de Ciencias de la Vid y del Vino-ICVV, CSIC-Universidad de La Rioja-Gobierno de La Rioja, Finca "La Grajera", Carretera de Burgos km 6, 26007, Logroño, La Rioja, Spain
| | - S A Pereira
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School|Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056, Lisboa, Portugal
| | - M Matzapetakis
- Instituto de Tecnologia Química e Biológica, Universidade NOVA de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
| | - C Brenner
- Université Paris-Saclay, CNRS, Institut Gustave Roussy, Aspects métaboliques et systémiques de l'oncogénèse pour de nouvelles approches thérapeutiques, 94805, Villejuif, France
| | - C N Santos
- Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2780-901, Oeiras, Portugal; Instituto de Tecnologia Química e Biológica, Universidade NOVA de Lisboa, Av. da República, 2780-157, Oeiras, Portugal; CEDOC, Chronic Diseases Research Centre, NOVA Medical School|Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Campo dos Mártires da Pátria, 130, 1169-056, Lisboa, Portugal.
| |
Collapse
|
74
|
Consumption of Stilbenes and Flavonoids is Linked to Reduced Risk of Obesity Independently of Fiber Intake. Nutrients 2020; 12:nu12061871. [PMID: 32585900 PMCID: PMC7353284 DOI: 10.3390/nu12061871] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/15/2020] [Accepted: 06/18/2020] [Indexed: 02/06/2023] Open
Abstract
Background: Polyphenol consumption is implicated in gut microbiome composition and improved metabolic outcomes, but it is unclear whether the effect is independent of dietary fiber. Methods: We investigated the links between (poly)phenol intake, gut microbiome composition (16s RNA) and obesity independently of fiber intake in UK women (n = 1810) and in a small group of UK men (n = 64). Results: (Poly)phenol intakes correlated with microbiome alpha diversity (Shannon Index) after adjusting for confounders and fiber intake. Moreover, flavonoid intake was significantly correlated with the abundance of Veillonella, (a genus known to improve physical performance), and stilbene intake with that of butyrate-producing bacteria (Lachnospira and Faecalibacterium). Stilbene and flavonoid intake also correlated with lower odds of prevalent obesity (Stilbenes: Odds Ratio (95% Confidence Interval) (OR(95%CI)) = 0.80 (0.73, 0.87), p = 4.90 × 10−7; Flavonoids: OR(95%CI) = 0.77 (0.65, 0.91), p = 0.002). Formal mediation analyses revealed that gut microbiome mediates ~11% of the total effect of flavonoid and stilbene intake on prevalent obesity. Conclusions: Our findings highlight the importance of (poly)phenol consumption for optimal human health.
Collapse
|
75
|
Zhou N, Gu X, Zhuang T, Xu Y, Yang L, Zhou M. Gut Microbiota: A Pivotal Hub for Polyphenols as Antidepressants. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:6007-6020. [PMID: 32394713 DOI: 10.1021/acs.jafc.0c01461] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Polyphenols, present in a broad range of plants, have been thought to be responsible for many beneficial health effects, such as an antidepressant. Despite that polyphenols can be absorbed in the small intestine directly, most of them have low bioavailability and reach the large intestine without any modifications due to their complex structures. The interaction between microbial communities and polyphenols in the intestine is important for the latter to exert antidepressant effects. Gut microbiota can improve the bioavailability of polyphenols; in turn, polyphenols can maintain the intestinal barrier as well as the community of the gut microbiota in normal status. Furthermore, gut microbita catabolize polyphenols to more active, better-absorbed metabolites, further ameliorating depression through the microbial-gut-brain (MGB) axis. Based on this evidence, the review illustrates the potential role of gut microbiota in the processes of polyphenols or their metabolites acting as antidepressants and further envisions the gut microbiota as therapeutic targets for depression.
Collapse
Affiliation(s)
- Nian Zhou
- Center for Chinese Medicine Therapy and Systems Biology, Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Xinyi Gu
- Center for Chinese Medicine Therapy and Systems Biology, Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Tongxi Zhuang
- Center for Chinese Medicine Therapy and Systems Biology, Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Ying Xu
- Department of Physiology, School of Basic Medical Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Li Yang
- Center for Chinese Medicine Therapy and Systems Biology, Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Mingmei Zhou
- Center for Chinese Medicine Therapy and Systems Biology, Institute for Interdisciplinary Medicine Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
76
|
Cladis DP, Debelo H, Lachcik PJ, Ferruzzi MG, Weaver CM. Increasing Doses of Blueberry Polyphenols Alters Colonic Metabolism and Calcium Absorption in Ovariectomized Rats. Mol Nutr Food Res 2020; 64:e2000031. [PMID: 32386352 PMCID: PMC9558423 DOI: 10.1002/mnfr.202000031] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/25/2020] [Indexed: 12/31/2022]
Abstract
SCOPE Blueberries are rich sources of bioactive polyphenols that may provide health benefits when consumed regularly, leading to their increased marketing as dietary supplements. However, the metabolic changes associated with consuming concentrated doses of purified polyphenols, as may be present in dietary supplements, are unknown, especially when considering the colonic metabolites formed. This study aimed to evaluate the pharmacokinetics of high doses of purified blueberry polyphenols. METHODS AND RESULTS 5-month old, ovariectomized Sprague-Dawley rats are acutely dosed with purified blueberry polyphenols (0, 75, 350, and 1000 mg total polyphenols per kg body weight (bw)) and 45 Ca to measure calcium absorption. Blood and urine are collected for 48 h after dosing and phenolic metabolites measured via ultra high-pressure liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). The most prominent metabolites are colonically generated cinnamic and hippuric acids. Smaller amounts of other phenolic acids, flavonols, and anthocyanins are also detected. Most metabolites follow a dose-response relationship, though several show saturated absorption. Maximal metabolite concentrations are reached within 12 h for a majority of compounds measured, while some (e.g., hippuric acid) peaked up to 24 h post-dosing. Calcium absorption is significantly increased in the highest dose group (p = 0.03). CONCLUSION These results indicate that increased doses of blueberry polyphenols induce changes in intestinal phenolic metabolism and increase calcium absorption.
Collapse
Affiliation(s)
- Dennis P. Cladis
- Dept. of Food Science, Purdue University, 745 Agriculture Mall Dr, W Lafayette, IN 47907, USA
| | - Hawi Debelo
- Plants for Human Health Institute, North Carolina State University, 600 Laureate Way, Kannapolis, NC 28081, USA
| | - Pamela J. Lachcik
- Dept. of Nutrition Science, Purdue University, 700 W State St, W Lafayette, IN 47907, USA
| | - Mario G. Ferruzzi
- Plants for Human Health Institute, North Carolina State University, 600 Laureate Way, Kannapolis, NC 28081, USA
| | - Connie M. Weaver
- Dept. of Food Science, Purdue University, 745 Agriculture Mall Dr, W Lafayette, IN 47907, USA
| |
Collapse
|
77
|
Moorthy M, Chaiyakunapruk N, Jacob SA, Palanisamy UD. Prebiotic potential of polyphenols, its effect on gut microbiota and anthropometric/clinical markers: A systematic review of randomised controlled trials. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2020.03.036] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
78
|
Acute Ingestion of A Novel Nitrate-Rich Dietary Supplement Significantly Increases Plasma Nitrate/Nitrite in Physically Active Men and Women. Nutrients 2020; 12:nu12041176. [PMID: 32331477 PMCID: PMC7230498 DOI: 10.3390/nu12041176] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 04/18/2020] [Accepted: 04/20/2020] [Indexed: 11/21/2022] Open
Abstract
Background: Dietary supplements purported to increase circulating nitric oxide are very popular among consumers. We determined the acute impact of two novel dietary supplements on plasma nitrate/nitrite (NOx) and nitrite alone. Methods: 20 men and women (age: 24 ± 5 years) ingested two different nitrate-rich supplements (Resync Recovery Blend at 7.5 g and 15 g; Resync Collagen Blend at 21 g), or placebo, on four different days. Fasting blood samples were obtained before and 75 min following ingestion and analyzed for NOx and nitrite. Results: Nitrite was not differently impacted by treatment (p > 0.05). The NOx response for men and women was very similar, with no sex interactions noted (p > 0.05). Condition (p < 0.0001), time (p < 0.0001), and condition x time (p < 0.0001) effects were noted for NOx. Values increased from baseline to post-ingestion for the Resync Recovery Blend at 7.5 g (11 ± 9 to 101 ± 48 µM) and at 15 g (9 ± 5 to 176 ± 91 µM), as well as for the Resync Collagen Blend (9 ± 9 to 46 ± 21 µM), while values for placebo remained stable (9 ± 7 to 8 ± 5 µM). Conclusion: While nitrite alone was not impacted by treatment, both Resync products result in an increase in plasma NOx, with the increase proportionate to the quantity of “nitric oxide blend” ingredients contained within each product. Future studies are needed to determine the physiological implications of the increased NOx, as pertaining to exercise performance and recovery, in addition to other aspects of human health.
Collapse
|
79
|
Neri-Numa IA, Pastore GM. Novel insights into prebiotic properties on human health: A review. Food Res Int 2020; 131:108973. [PMID: 32247494 DOI: 10.1016/j.foodres.2019.108973] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 10/05/2019] [Accepted: 12/30/2019] [Indexed: 02/07/2023]
Abstract
Dietary prebiotics can be metabolized by different colonic microorganisms and release several classes of metabolites, particularly SCFAs into the intestine lumen, influencing the host physiology. Thus, human microbiota has been the focus of one of the most dynamic research fields of our time and their efforts are directed to understand how prebiotics structures and the microbiota-derived metabolites acts on signaling cell pathways and epigenetic control. Therefore, the aim of this review is to provide an overview about the new concept of prebiotics and their mechanistic local and systemically insights related to the host health.
Collapse
Affiliation(s)
| | - Glaucia Maria Pastore
- Department of Food Science, Faculty of Food Engineering, University of Campinas, Brazil
| |
Collapse
|
80
|
Muggeridge DJ, Goszcz K, Treweeke A, Adamson J, Hickson K, Crabtree D, Megson IL. Co-ingestion of Antioxidant Drinks With an Unhealthy Challenge Meal Fails to Prevent Post-prandial Endothelial Dysfunction: An Open-Label, Crossover Study in Older Overweight Volunteers. Front Physiol 2019; 10:1293. [PMID: 31681007 PMCID: PMC6797614 DOI: 10.3389/fphys.2019.01293] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Accepted: 09/25/2019] [Indexed: 12/16/2022] Open
Abstract
Eating a high calorie meal is known to induce endothelial dysfunction and it is reported that consuming drinks rich in antioxidants may be protective against this. In this study we assessed the effects of three antioxidant drinks with considerable disparity in their antioxidant content on endothelial function. Seven apparently healthy overweight and older adults (BMI 25-35; mean age 57 ± 3 years; one male, six females) completed four trials in a randomized counterbalanced design. Water (control), orange juice, green tea, or red wine were consumed with a high calorie meal (>900 kcal). Endothelial function was measured by flow-mediated dilatation immediately before (fasted, baseline) and 2 h after the meal. Blood samples were also obtained for lipid and glucose analysis, plasma nitrite ( NO 2 - ) and oxidized low-density lipoprotein (ox-LDL). Participants returned after a minimum 3 days washout to complete the remaining arms of the study. The results found that the high calorie meal induced a substantial increase in triglycerides, but not cholesterol or glucose, at 2 h after meal ingestion. FMD was significantly reduced by ∼35% at this timepoint, but the effect was not attenuated by co-ingestion of any of the antioxidant drinks. Reduced FMD was mirrored by a reduction in NO 2 - , but ox-LDL was not increased at 2 h after the meal. None of the undertaken measures were influenced by the antioxidant drinks. We conclude that co-ingestion of none of our test antioxidant drinks protected against the substantial post-prandial endothelial dysfunction induced by an unhealthy meal challenge in our sample population at a 2 h timepoint.
Collapse
Affiliation(s)
- David J. Muggeridge
- Free Radical Research Facility, Division of Biomedical Sciences, Institute of Health Research and Innovation, University of the Highlands and Islands, Inverness, United Kingdom
- Active Health Exercise Laboratory, Division of Biomedical Sciences, Institute of Health Research and Innovation, University of the Highlands and Islands, Inverness, United Kingdom
| | - Katarzyna Goszcz
- Free Radical Research Facility, Division of Biomedical Sciences, Institute of Health Research and Innovation, University of the Highlands and Islands, Inverness, United Kingdom
| | - Andrew Treweeke
- Free Radical Research Facility, Division of Biomedical Sciences, Institute of Health Research and Innovation, University of the Highlands and Islands, Inverness, United Kingdom
| | - Janet Adamson
- Free Radical Research Facility, Division of Biomedical Sciences, Institute of Health Research and Innovation, University of the Highlands and Islands, Inverness, United Kingdom
| | - Kirsty Hickson
- Free Radical Research Facility, Division of Biomedical Sciences, Institute of Health Research and Innovation, University of the Highlands and Islands, Inverness, United Kingdom
- Active Health Exercise Laboratory, Division of Biomedical Sciences, Institute of Health Research and Innovation, University of the Highlands and Islands, Inverness, United Kingdom
| | - Daniel Crabtree
- Active Health Exercise Laboratory, Division of Biomedical Sciences, Institute of Health Research and Innovation, University of the Highlands and Islands, Inverness, United Kingdom
| | - Ian L. Megson
- Free Radical Research Facility, Division of Biomedical Sciences, Institute of Health Research and Innovation, University of the Highlands and Islands, Inverness, United Kingdom
| |
Collapse
|
81
|
Stevanović V, Pantović A, Krga I, Zeković M, Šarac I, Glibetić M, Vidović N. Aronia juice consumption prior to half-marathon race can acutely affect platelet activation in recreational runners. Appl Physiol Nutr Metab 2019; 45:393-400. [PMID: 31539487 DOI: 10.1139/apnm-2019-0267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Long-distance running, especially in non-professional runners, can increase cardiac arrest risk by enhancing platelet activation and aggregation. Polyphenols can exert cardioprotective effects by positively influencing platelet function. This study aimed to examine the acute effects of polyphenol-rich aronia juice consumption, before simulation of a half-marathon race, on platelet activation and aggregation with leukocytes in recreational runners. In this acute crossover study,10 healthy male runners (age 30.8 ± 2.3 years) consumed breakfast with 200 mL of aronia juice or 200 mL of placebo. They warmed-up and ran a simulated half-marathon race (21.1 km). Blood was collected at baseline, and at 15 min, 1 h, and 24 h after the run. All variables were analyzed with 4 (time) × 2 (group) ANOVA with repeated measures on both factors. Results revealed a significant effect of group on platelet activation parameters: P-selectin and GPIIb-IIIa expressions significantly decreased in the aronia group compared with the placebo group (F[1,9] = 10.282, p = 0.011 and F[1,9] = 7.860, p = 0.021, respectively). The effect of time was significant on both platelet aggregation markers: platelet-monocyte and platelet-neutrophil aggregates were significantly lower after the race (F[3,7] = 4.227, p = 0.014 and F[3,7] = 70.065, p = 0.000, respectively), with changes more pronounced in the later. All effects remained when platelets were exposed to an agonist. These results suggest that aronia consumption could counteract the half-marathon race-induced changes in platelet function. Novelty Aronia juice consumption significantly decreased the expression of platelet activation markers but did not affect platelet aggregation. The race itself did significantly reduce platelet-neutrophil aggregation. Aronia juice may serve as a supplement beverage for recreational runners to alleviate enhanced platelet reactivity caused by prolonged running.
Collapse
Affiliation(s)
- Vuk Stevanović
- Institute for Medical Research, Centre of Research Excellence in Nutrition and Metabolism, University of Belgrade, Tadeuša Košćuškog st. 1, 11000 Belgrade, Serbia
| | - Ana Pantović
- Institute for Medical Research, Centre of Research Excellence in Nutrition and Metabolism, University of Belgrade, Tadeuša Košćuškog st. 1, 11000 Belgrade, Serbia
| | - Irena Krga
- Institute for Medical Research, Centre of Research Excellence in Nutrition and Metabolism, University of Belgrade, Tadeuša Košćuškog st. 1, 11000 Belgrade, Serbia.,Institute for Medical Research, Centre of Research Excellence in Nutrition and Metabolism, University of Belgrade, Tadeuša Košćuškog st. 1, 11000 Belgrade, Serbia
| | - Milica Zeković
- Institute for Medical Research, Centre of Research Excellence in Nutrition and Metabolism, University of Belgrade, Tadeuša Košćuškog st. 1, 11000 Belgrade, Serbia.,Institute for Medical Research, Centre of Research Excellence in Nutrition and Metabolism, University of Belgrade, Tadeuša Košćuškog st. 1, 11000 Belgrade, Serbia
| | - Ivana Šarac
- Institute for Medical Research, Centre of Research Excellence in Nutrition and Metabolism, University of Belgrade, Tadeuša Košćuškog st. 1, 11000 Belgrade, Serbia.,Institute for Medical Research, Centre of Research Excellence in Nutrition and Metabolism, University of Belgrade, Tadeuša Košćuškog st. 1, 11000 Belgrade, Serbia
| | - Maria Glibetić
- Institute for Medical Research, Centre of Research Excellence in Nutrition and Metabolism, University of Belgrade, Tadeuša Košćuškog st. 1, 11000 Belgrade, Serbia.,Institute for Medical Research, Centre of Research Excellence in Nutrition and Metabolism, University of Belgrade, Tadeuša Košćuškog st. 1, 11000 Belgrade, Serbia
| | - Nevena Vidović
- Institute for Medical Research, Centre of Research Excellence in Nutrition and Metabolism, University of Belgrade, Tadeuša Košćuškog st. 1, 11000 Belgrade, Serbia.,Institute for Medical Research, Centre of Research Excellence in Nutrition and Metabolism, University of Belgrade, Tadeuša Košćuškog st. 1, 11000 Belgrade, Serbia
| |
Collapse
|
82
|
Dietary Neuroketotherapeutics for Alzheimer's Disease: An Evidence Update and the Potential Role for Diet Quality. Nutrients 2019; 11:nu11081910. [PMID: 31443216 PMCID: PMC6722814 DOI: 10.3390/nu11081910] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 07/29/2019] [Accepted: 08/13/2019] [Indexed: 12/20/2022] Open
Abstract
Alzheimer’s disease (AD) is a devastating neurodegenerative disease with growing prevalence as the global population ages. Currently available treatments for AD have minimal efficacy and there are no proven treatments for its prodrome, mild cognitive impairment (MCI). AD etiology is not well understood and various hypotheses of disease pathogenesis are currently under investigation. A consistent hallmark in patients with AD is reduced brain glucose utilization; however, evidence suggests that brain ketone metabolism remains unimpaired, thus, there is a great deal of increased interest in the potential value of ketone-inducing therapies for the treatment of AD (neuroketotherapeutics; NKT). The goal of this review was to discuss dietary NKT approaches and mechanisms by which they exert a possible therapeutic benefit, update the evidence available on NKTs in AD and consider a potential role of diet quality in the clinical use of dietary NKTs. Whether NKTs affect AD symptoms through the restoration of bioenergetics, the direct and indirect modulation of antioxidant and inflammation pathways, or both, preliminary positive evidence suggests that further study of dietary NKTs as a disease-modifying treatment in AD is warranted.
Collapse
|