51
|
Adaptive Solutions to the Problem of Vulnerability During Sleep. EVOLUTIONARY PSYCHOLOGICAL SCIENCE 2022. [DOI: 10.1007/s40806-022-00330-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
AbstractSleep is a behavioral state whose quantity and quality represent a trade-off between the costs and benefits this state provides versus the costs and benefits of wakefulness. Like many species, we humans are particularly vulnerable during sleep because of our reduced ability to monitor the external environment for nighttime predators and other environmental dangers. A number of variations in sleep characteristics may have evolved over the course of human history to reduce this vulnerability, at both the individual and group level. The goals of this interdisciplinary review paper are (1) to explore a number of biological/instinctual features of sleep that may have adaptive utility in terms of enhancing the detection of external threats, and (2) to consider relatively recent cultural developments that improve vigilance and reduce vulnerability during sleep and the nighttime. This paper will also discuss possible benefits of the proposed adaptations beyond vigilance, as well as the potential costs associated with each of these proposed adaptations. Finally, testable hypotheses will be presented to evaluate the validity of these proposed adaptations.
Collapse
|
52
|
Nemeth G. The route to recall a dream: theoretical considerations and methodological implications. PSYCHOLOGICAL RESEARCH 2022; 87:964-987. [PMID: 35960337 DOI: 10.1007/s00426-022-01722-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 07/28/2022] [Indexed: 10/15/2022]
Abstract
The goal of this paper is to shed new light on the relation between dream recall and dream experiences by providing a thorough analysis of the process that leads to dream reports. Three crucial steps of this process will be distinguished: dream production (the generation of a conscious experience during sleep), dream encoding (storing a trace of this experience in memory) and dream retrieval (accessing the memory trace upon awakening). The first part of the paper will assess how major theories think about the relationship between dream reports and these distinct steps. The second part will systematise how trait and state factors affecting dream recall-given different theoretical assumptions-might interact with dream production, encoding and retrieval. Understanding how the distinct steps of dream recall can be modulated by different factors is crucial for getting a better grip on how to acquire information about these steps empirically and for drawing methodological conclusions with regard to the tools dream research relies on to collect subjective data about dream experiences. The third part of the paper will analyse how laboratory reports, logs and retrospective scales interact with the different factors that affect the distinct steps leading to dream reports and will argue that prospective methods provide more direct access to data regarding dream production and encoding than retrospective methods, which-due to their inability to provide systematic control over the factors affecting the retrieval stage-screen-off the variability in the production and the encoding of dreams.
Collapse
Affiliation(s)
- Georgina Nemeth
- Center of Functionally Integrative Neuroscience, Aarhus University, Denmark, Universitetsbyen 3 Building 1710, 8000, Aarhus C, Denmark.
| |
Collapse
|
53
|
Cyrcadian Rhythm, Mood, and Temporal Patterns of Eating Chocolate: A Scoping Review of Physiology, Findings, and Future Directions. Nutrients 2022; 14:nu14153113. [PMID: 35956290 PMCID: PMC9370573 DOI: 10.3390/nu14153113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/24/2022] [Accepted: 07/25/2022] [Indexed: 12/04/2022] Open
Abstract
This paper discusses the effect of chrononutrition on the regulation of circadian rhythms; in particular, that of chocolate on the resynchronization of the human internal biological central and peripheral clocks with the main external synchronizers, light–dark cycle and nutrition-fasting cycle. The desynchronization of internal clocks with external synchronizers, which is so frequent in our modern society due to the tight rhythms imposed by work, social life, and technology, has a negative impact on our psycho-physical performance, well-being, and health. Taking small amounts of chocolate, in the morning at breakfast at the onset of the active phase, helps speed up resynchronization time. The high flavonoid contents in chocolate promote cardioprotection, metabolic regulation, neuroprotection, and neuromodulation with direct actions on brain function, neurogenesis, angiogenesis, and mood. Although the mechanisms of action of chocolate compounds on brain function and mood as well as on the regulation of circadian rhythms have yet to be fully understood, data from the literature currently available seem to agree in suggesting that chocolate intake, in compliance with chrononutrition, could be a strategy to reduce the negative effects of desynchronization. This strategy appears to be easily implemented in different age groups to improve work ability and daily life.
Collapse
|
54
|
Garnett EO, Chow HM, Limb S, Liu Y, Chang SE. Neural activity during solo and choral reading: A functional magnetic resonance imaging study of overt continuous speech production in adults who stutter. Front Hum Neurosci 2022; 16:894676. [PMID: 35937674 PMCID: PMC9353050 DOI: 10.3389/fnhum.2022.894676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 06/27/2022] [Indexed: 01/22/2023] Open
Abstract
Previous neuroimaging investigations of overt speech production in adults who stutter (AWS) found increased motor and decreased auditory activity compared to controls. Activity in the auditory cortex is heightened, however, under fluency-inducing conditions in which AWS temporarily become fluent while synchronizing their speech with an external rhythm, such as a metronome or another speaker. These findings suggest that stuttering is associated with disrupted auditory motor integration. Technical challenges in acquiring neuroimaging data during continuous overt speech production have limited experimental paradigms to short or covert speech tasks. Such paradigms are not ideal, as stuttering primarily occurs during longer speaking tasks. To address this gap, we used a validated spatial ICA technique designed to address speech movement artifacts during functional magnetic resonance imaging (fMRI) scanning. We compared brain activity and functional connectivity of the left auditory cortex during continuous speech production in two conditions: solo (stutter-prone) and choral (fluency-inducing) reading tasks. Overall, brain activity differences in AWS relative to controls in the two conditions were similar, showing expected patterns of hyperactivity in premotor/motor regions but underactivity in auditory regions. Functional connectivity of the left auditory cortex (STG) showed that within the AWS group there was increased correlated activity with the right insula and inferior frontal area during choral speech. The AWS also exhibited heightened connectivity between left STG and key regions of the default mode network (DMN) during solo speech. These findings indicate possible interference by the DMN during natural, stuttering-prone speech in AWS, and that enhanced coordination between auditory and motor regions may support fluent speech.
Collapse
Affiliation(s)
- Emily O. Garnett
- Michigan Medicine, Department of Psychiatry, University of Michigan, Ann Arbor, MI, United States
| | - Ho Ming Chow
- Michigan Medicine, Department of Psychiatry, University of Michigan, Ann Arbor, MI, United States
- Department of Communication Sciences and Disorders, University of Delaware, Newark, DE, United States
| | - Sarah Limb
- Michigan Medicine, Department of Psychiatry, University of Michigan, Ann Arbor, MI, United States
| | - Yanni Liu
- Michigan Medicine, Department of Psychiatry, University of Michigan, Ann Arbor, MI, United States
| | - Soo-Eun Chang
- Michigan Medicine, Department of Psychiatry, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
55
|
Vyshedskiy A. Language evolution is not limited to speech acquisition: a large study of language development in children with language deficits highlights the importance of the voluntary imagination component of language. RESEARCH IDEAS AND OUTCOMES 2022. [DOI: 10.3897/rio.8.e86401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Did the boy bite the cat or was it the other way around? When processing a sentence with several objects, one has to establish ‘who did what to whom’. When a sentence cannot be interpreted by recalling an image from memory, we rely on the special type of voluntary constructive imagination called Prefrontal synthesis (PFS). PFS is defined as the ability to juxtapose mental visuospatial objects at will. We hypothesised that PFS has fundamental importance for language acquisition. To test this hypothesis, we designed a PFS-targeting intervention and administered it to 6,454 children with language deficiencies (age 2 to 12 years). The results from the three-year-long study demonstrated that children who engaged with the PFS intervention showed 2.2-fold improvement in combinatorial language comprehension compared to children with similar initial evaluations. These findings suggest that language can be improved by training the PFS and exposes the importance of the visuospatial component of language. This manuscript reflects on the experimental findings from the point of view of human language evolution. When used as a proxy for evolutionary language acquisition, the study results suggest a dichotomy of language evolution, with its speech component and its visuospatial component developing in parallel. The study highlights the radical idea that evolutionary acquisition of language was driven primarily by improvements of voluntary imagination rather than by improvements in the speech apparatus.
Collapse
|
56
|
Murillo-Rodríguez E, Coronado-Álvarez A, López-Muciño LA, Pastrana-Trejo JC, Viana-Torre G, Barberena JJ, Soriano-Nava DM, García-García F. Neurobiology of dream activity and effects of stimulants on dreams. Curr Top Med Chem 2022; 22:1280-1295. [PMID: 35761491 DOI: 10.2174/1568026622666220627162032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 03/18/2022] [Accepted: 04/11/2022] [Indexed: 11/22/2022]
Abstract
The sleep-wake cycle is the result of the activity of a multiple neurobiological network interaction. Dreaming feature is one interesting sleep phenomena that represents sensorial components, mostly visual perceptions, accompanied with intense emotions. Further complexity has been added to the topic of the neurobiological mechanism of dreams generation by the current data that suggests the influence of drugs on dream generation. Here, we discuss the review on some of the neurobiological mechanism of the regulation of dream activity, with special emphasis on the effects of stimulants on dreaming.
Collapse
Affiliation(s)
- Eric Murillo-Rodríguez
- Laboratorio de Neurociencias Moleculares e Integrativas, Escuela de Medicina, División Ciencias de la Salud. Universidad Anáhuac Mayab. Mérida, Yucatán. México.,Intercontinental Neuroscience Research Group
| | - Astrid Coronado-Álvarez
- Laboratorio de Neurociencias Moleculares e Integrativas, Escuela de Medicina, División Ciencias de la Salud. Universidad Anáhuac Mayab. Mérida, Yucatán. México.,Intercontinental Neuroscience Research Group
| | - Luis Angel López-Muciño
- Health Sciences Program. Health Sciences Institute. Veracruzana University. Xalapa. Veracruz. Mexico
| | - José Carlos Pastrana-Trejo
- Laboratorio de Neurociencias Moleculares e Integrativas, Escuela de Medicina, División Ciencias de la Salud. Universidad Anáhuac Mayab. Mérida, Yucatán. México.,Intercontinental Neuroscience Research Group
| | - Gerardo Viana-Torre
- Laboratorio de Neurociencias Moleculares e Integrativas, Escuela de Medicina, División Ciencias de la Salud. Universidad Anáhuac Mayab. Mérida, Yucatán. México.,Intercontinental Neuroscience Research Group
| | - Juan José Barberena
- Laboratorio de Neurociencias Moleculares e Integrativas, Escuela de Medicina, División Ciencias de la Salud. Universidad Anáhuac Mayab. Mérida, Yucatán. México.,Intercontinental Neuroscience Research Group.,Escuela de Psicología, División Ciencias de la Salud. Universidad Anáhuac Mayab. Mérida, Yucatán. México
| | - Daniela Marcia Soriano-Nava
- Laboratorio de Neurociencias Moleculares e Integrativas, Escuela de Medicina, División Ciencias de la Salud. Universidad Anáhuac Mayab. Mérida, Yucatán. México.,Intercontinental Neuroscience Research Group
| | - Fabio García-García
- Intercontinental Neuroscience Research Group.,Health Sciences Program. Health Sciences Institute. Veracruzana University. Xalapa. Veracruz. Mexico
| |
Collapse
|
57
|
Aime M, Calcini N, Borsa M, Campelo T, Rusterholz T, Sattin A, Fellin T, Adamantidis A. Paradoxical somatodendritic decoupling supports cortical plasticity during REM sleep. Science 2022; 376:724-730. [PMID: 35549430 DOI: 10.1126/science.abk2734] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Rapid eye movement (REM) sleep is associated with the consolidation of emotional memories. Yet, the underlying neocortical circuits and synaptic mechanisms remain unclear. We found that REM sleep is associated with a somatodendritic decoupling in pyramidal neurons of the prefrontal cortex. This decoupling reflects a shift of inhibitory balance between parvalbumin neuron-mediated somatic inhibition and vasoactive intestinal peptide-mediated dendritic disinhibition, mostly driven by neurons from the central medial thalamus. REM-specific optogenetic suppression of dendritic activity led to a loss of danger-versus-safety discrimination during associative learning and a lack of synaptic plasticity, whereas optogenetic release of somatic inhibition resulted in enhanced discrimination and synaptic potentiation. Somatodendritic decoupling during REM sleep promotes opposite synaptic plasticity mechanisms that optimize emotional responses to future behavioral stressors.
Collapse
Affiliation(s)
- Mattia Aime
- Zentrum für Experimentelle Neurologie, Department of Neurology, Inselspital University Hospital Bern, Bern, Switzerland.,Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Niccolò Calcini
- Zentrum für Experimentelle Neurologie, Department of Neurology, Inselspital University Hospital Bern, Bern, Switzerland.,Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Micaela Borsa
- Zentrum für Experimentelle Neurologie, Department of Neurology, Inselspital University Hospital Bern, Bern, Switzerland.,Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Tiago Campelo
- Zentrum für Experimentelle Neurologie, Department of Neurology, Inselspital University Hospital Bern, Bern, Switzerland.,Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Thomas Rusterholz
- Zentrum für Experimentelle Neurologie, Department of Neurology, Inselspital University Hospital Bern, Bern, Switzerland.,Department of Biomedical Research, University of Bern, Bern, Switzerland
| | - Andrea Sattin
- Optical Approaches to Brain Function Laboratory, Istituto Italiano di Tecnologia, Genova, Italy
| | - Tommaso Fellin
- Optical Approaches to Brain Function Laboratory, Istituto Italiano di Tecnologia, Genova, Italy
| | - Antoine Adamantidis
- Zentrum für Experimentelle Neurologie, Department of Neurology, Inselspital University Hospital Bern, Bern, Switzerland.,Department of Biomedical Research, University of Bern, Bern, Switzerland
| |
Collapse
|
58
|
Vitali H, Campus C, De Giorgis V, Signorini S, Gori M. The vision of dreams: from ontogeny to dream engineering in blindness. J Clin Sleep Med 2022; 18:2051-2062. [PMID: 35499135 PMCID: PMC9340600 DOI: 10.5664/jcsm.10026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The mechanisms involved in the origin of dreams remain one of the great unknowns in science. In the 21st century, studies in the field have focused on 3 main topics: functional networks that underlie dreaming, neural correlates of dream contents, and signal propagation. We review neuroscientific studies about dreaming processes, focusing on their cortical correlations. The involvement of frontoparietal regions in the dream-retrieval process allows us to discuss it in light of the Global Workspace theory of consciousness. However, dreaming in distinct sleep stages maintains relevant differences, suggesting that multiple generators are implicated. Then, given the strong influence of light perception on sleep regulation and the mostly visual content of dreams, we investigate the effect of blindness on the organization of dreams. Blind individuals represent a worthwhile population to clarify the role of perceptual systems in dream generation, and to make inferences about their top-down and/or bottom-up origin. Indeed, congenitally blind people maintain the ability to produce visual dreams, suggesting that bottom-up mechanisms could be associated with innate body schemes or multisensory integration processes. Finally, we propose the new dream-engineering technique as a tool to clarify the mechanisms of multisensory integration during sleep and related mental activity, presenting possible implications for rehabilitation in sensory-impaired individuals. The Theory of Proto-consciousness suggests that the interaction of brain states underlying waking and dreaming ensures the optimal functioning of both. Therefore, understanding the origin of dreams and capabilities of our brain during a dreamlike state, we could introduce it as a rehabilitative tool. CITATION Vitali H, Campus C, De Giorgis V, Signorini S, Gori M. The vision of dreams: from ontogeny to dream engineering in blindness. J Clin Sleep Med. 2022;18(8):2051-2062.
Collapse
Affiliation(s)
- Helene Vitali
- U-VIP: Unit for Visually Impaired People, Istituto Italiano di Tecnologia, Genova, Italy
| | - Claudio Campus
- U-VIP: Unit for Visually Impaired People, Istituto Italiano di Tecnologia, Genova, Italy
| | | | | | - Monica Gori
- U-VIP: Unit for Visually Impaired People, Istituto Italiano di Tecnologia, Genova, Italy
| |
Collapse
|
59
|
Abstract
Memories of the past help us adaptively respond to similar situations in the future. Originally described by Schacter & Addis in 2007, the "constructive episodic simulation" hypothesis proposes that waking thought combines fragments of various past episodes into imagined simulations of events that may occur in the future. This same framework may be useful for understanding the function of dreaming. N = 48 college students were asked to identify waking life sources for a total of N = 469 dreams. Participants frequently traced dreams to at least one past or future episodic source (53.5% and 25.7% of dreams, respectively). Individual dreams were very often traced to multiple waking sources (43.9% of all dreams with content), with fragments of past memory incorporated into scenarios that anticipated future events. Waking-life dream sources are described in terms of their phenomenology and distribution across time and sleep stage, providing new evidence that dreams not only reflect the past, but also utilize memory in simulating potential futures.
Collapse
Affiliation(s)
- Erin J. Wamsley
- Department of Psychology and Program in Neuroscience, Furman University, Greenville, South Carolina, United States of America
| |
Collapse
|
60
|
Restricted truncal sagittal movements of rapid eye movement behaviour disorder. NPJ Parkinsons Dis 2022; 8:26. [PMID: 35292658 PMCID: PMC8924261 DOI: 10.1038/s41531-022-00292-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 02/17/2022] [Indexed: 11/12/2022] Open
Abstract
Unlike sleep-walkers, patients with rapid-eye-movement-behaviour disorder (RBD) rarely leave the bed during the re-enactment of their dreams. RBD movements may be independent of spatial co-ordinates of the ‘outside-world’, and instead rely on (allocentric) brain-generated virtual space-maps, as evident by patients’ limited truncal/axial movements. To confirm this, a semiology analysis of video-polysomnography records of 38 RBD patients was undertaken and paradoxically restricted truncal/thoraco-lumbar movements during complex dream re-enactments demonstrated.
Collapse
|
61
|
Seo J, Oliver KI, Daffre C, Moore KN, Gazecki S, Lasko NB, Milad MR, Pace-Schott EF. Associations of sleep measures with neural activations accompanying fear conditioning and extinction learning and memory in trauma-exposed individuals. Sleep 2022; 45:zsab261. [PMID: 34718807 PMCID: PMC8919204 DOI: 10.1093/sleep/zsab261] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 10/26/2021] [Indexed: 11/13/2022] Open
Abstract
STUDY OBJECTIVES Sleep disturbances increase risk of posttraumatic stress disorder (PTSD). Sleep effects on extinction may contribute to such risk. Neural activations to fear extinction were examined in trauma-exposed participants and associated with sleep variables. METHODS Individuals trauma-exposed within the past 2 years (N = 126, 63 PTSD) completed 2 weeks actigraphy and sleep diaries, three nights ambulatory polysomnography and a 2-day fMRI protocol with Fear-Conditioning, Extinction-Learning and, 24 h later, Extinction-Recall phases. Activations within the anterior cerebrum and regions of interest (ROI) were examined within the total, PTSD-diagnosed and trauma-exposed control (TEC) groups. Sleep variables were used to predict activations within groups and among total participants. Family wise error was controlled at p < 0.05 using nonparametric analysis with 5,000 permutations. RESULTS Initially, Fear Conditioning activated broad subcortical and cortical anterior-cerebral regions. Within-group analyses showed: (1) by end of Fear Conditioning activations decreased in TEC but not PTSD; (2) across Extinction Learning, TEC activated medial prefrontal areas associated with emotion regulation whereas PTSD did not; (3) beginning Extinction Recall, PTSD activated this emotion-regulatory region whereas TEC did not. However, the only between-group contrast reaching significance was greater activation of a hippocampal ROI in TEC at Extinction Recall. A greater number of sleep variables were associated with cortical activations in separate groups versus the entire sample and in PTSD versus TEC. CONCLUSIONS PTSD nonsignificantly delayed extinction learning relative to TEC possibly increasing vulnerability to pathological anxiety. The influence of sleep integrity on brain responses to threat and extinction may be greater in more symptomatic individuals.
Collapse
Affiliation(s)
- Jeehye Seo
- Department of Psychiatry, Massachusetts General Hospital, Charlestown MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, USA
- Department of Psychiatry, Harvard Medical School, Charlestown, MA, USA
- Department of Brain & Cognitive Engineering, Korea University, Seongbuk-gu, Seoul, South Korea
| | - Katelyn I Oliver
- Department of Psychiatry, Massachusetts General Hospital, Charlestown MA, USA
- Department of Psychiatry and Behavioral Sciences, Emory University, Atlanta, GA, USA
| | - Carolina Daffre
- Department of Psychiatry, Massachusetts General Hospital, Charlestown MA, USA
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
| | - Kylie N Moore
- Department of Psychiatry, Massachusetts General Hospital, Charlestown MA, USA
- Graduate Program in Neuroscience, Boston University, Boston, MA, USA
| | - Samuel Gazecki
- Department of Psychiatry, Massachusetts General Hospital, Charlestown MA, USA
- Rush Medical College, Chicago, IL, USA
| | - Natasha B Lasko
- Department of Psychiatry, Massachusetts General Hospital, Charlestown MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, USA
- Department of Psychiatry, Harvard Medical School, Charlestown, MA, USA
| | - Mohammed R Milad
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, USA
- Nathan Kline Institute for Psychiatric Research, Rockland, NY, USA
| | - Edward F Pace-Schott
- Department of Psychiatry, Massachusetts General Hospital, Charlestown MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Charlestown, MA, USA
- Department of Psychiatry, Harvard Medical School, Charlestown, MA, USA
| |
Collapse
|
62
|
Dong H, Chen ZK, Guo H, Yuan XS, Liu CW, Qu WM, Huang ZL. Striatal neurons expressing dopamine D 1 receptor promote wakefulness in mice. Curr Biol 2022; 32:600-613.e4. [PMID: 35021048 DOI: 10.1016/j.cub.2021.12.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 10/17/2021] [Accepted: 12/09/2021] [Indexed: 10/19/2022]
Abstract
Patients with Parkinson's disease (PD) suffer from severe sleep disorders. Pathophysiology of the basal ganglia (BG) underlies PD, and the dorsal striatum represents the major input pathway of the BG. However, the roles and mechanisms of the dorsal striatum in controlling sleep-wake cycles remain unknown. To demonstrate the contribution of dopamine D1 receptor (D1R)-positive neurons within the dorsal striatum in promoting wakefulness, we combined optogenetic manipulations and fiber photometry with electroencephalography/electromyography recording in D1R-Cre mice. As a result, optogenetic activation of striatal D1R neurons induced immediate transitions from non-rapid eye movement (NREM) sleep to wakefulness, whereas inhibition of striatal D1R neurons attenuated wakefulness by chemogenetics. Multi-channel fiber photometry recordings revealed that the activity of striatal D1R neurons synchronized with that of BG upstreams, namely the prefrontal cortex and mediodorsal thalamus, in terms of immediate increase in activity during NREM-to-wake transitions and rapid decease during wake-to-NREM transitions. Further optogenetic manipulations revealed a prominent contribution of striatal D1R neurons in control of wakefulness by upstream, corticostriatal, thalamostriatal, and nigrostriatal projections and via downstream, striato-entopeduncular, or striatonigral pathways. Taken together, our findings revealed a circuit regulating wakefulness through striatal D1R neurons. Striatal D1R neurons play an important role in controlling wakefulness by integrating the corticostriatal, thalamostriatal, and nigrostriatal projections and innervation of striato-entopeduncular or striatonigral pathways.
Collapse
Affiliation(s)
- Hui Dong
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Ze-Ka Chen
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Han Guo
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Xiang-Shan Yuan
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Cheng-Wei Liu
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China
| | - Wei-Min Qu
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China.
| | - Zhi-Li Huang
- Department of Pharmacology, School of Basic Medical Sciences, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai 200032, China.
| |
Collapse
|
63
|
Moyne M, Legendre G, Arnal L, Kumar S, Sterpenich V, Seeck M, Grandjean D, Schwartz S, Vuilleumier P, Domínguez-Borràs J. Brain reactivity to emotion persists in NREM sleep and is associated with individual dream recall. Cereb Cortex Commun 2022; 3:tgac003. [PMID: 35174329 PMCID: PMC8844542 DOI: 10.1093/texcom/tgac003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/07/2022] [Accepted: 01/07/2022] [Indexed: 12/02/2022] Open
Abstract
The waking brain efficiently detects emotional signals to promote survival. However, emotion detection during sleep is poorly understood and may be influenced by individual sleep characteristics or neural reactivity. Notably, dream recall frequency has been associated with stimulus reactivity during sleep, with enhanced stimulus-driven responses in high vs. low recallers. Using electroencephalography (EEG), we characterized the neural responses of healthy individuals to emotional, neutral voices, and control stimuli, both during wakefulness and NREM sleep. Then, we tested how these responses varied with individual dream recall frequency. Event-related potentials (ERPs) differed for emotional vs. neutral voices, both in wakefulness and NREM. Likewise, EEG arousals (sleep perturbations) increased selectively after the emotional voices, indicating emotion reactivity. Interestingly, sleep ERP amplitude and arousals after emotional voices increased linearly with participants' dream recall frequency. Similar correlations with dream recall were observed for beta and sigma responses, but not for theta. In contrast, dream recall correlations were absent for neutral or control stimuli. Our results reveal that brain reactivity to affective salience is preserved during NREM and is selectively associated to individual memory for dreams. Our findings also suggest that emotion-specific reactivity during sleep, and not generalized alertness, may contribute to the encoding/retrieval of dreams.
Collapse
Affiliation(s)
- Maëva Moyne
- Campus Biotech, chemin des mines, 9 CH-1202 Geneva, Switzerland
- Department of Neuroscience, University of Geneva, Rue Michel Servet 1, CH-1211 Geneva, Switzerland
| | - Guillaume Legendre
- Campus Biotech, chemin des mines, 9 CH-1202 Geneva, Switzerland
- Department of Neuroscience, University of Geneva, Rue Michel Servet 1, CH-1211 Geneva, Switzerland
| | - Luc Arnal
- Campus Biotech, chemin des mines, 9 CH-1202 Geneva, Switzerland
- Department of Neuroscience, University of Geneva, Rue Michel Servet 1, CH-1211 Geneva, Switzerland
| | - Samika Kumar
- Department of Psychology, University of Cambridge, Downing Street, Cambridge CB2 3EB, USA
| | - Virginie Sterpenich
- Campus Biotech, chemin des mines, 9 CH-1202 Geneva, Switzerland
- Department of Neuroscience, University of Geneva, Rue Michel Servet 1, CH-1211 Geneva, Switzerland
| | - Margitta Seeck
- Department of Clinical Neuroscience, Geneva University Hospitals, 4 rue Gabrielle-Perret-Gentil 4, CH-1211 Geneva, Switzerland
- Department of Clinical Neuroscience, University of Geneva, 4 rue Gabrielle-Perret-Gentil 4, CH-1211 Geneva, Switzerland
| | - Didier Grandjean
- Campus Biotech, chemin des mines, 9 CH-1202 Geneva, Switzerland
- Department of Psychology, University of Geneva, Uni Mail, bd du Pont-d’Arve 40, CH-1211 Geneva, Switzerland
| | - Sophie Schwartz
- Campus Biotech, chemin des mines, 9 CH-1202 Geneva, Switzerland
- Department of Neuroscience, University of Geneva, Rue Michel Servet 1, CH-1211 Geneva, Switzerland
- Center for Affective Sciences, CISA - chemin des mines 9, CH-1202 Geneva, Switzerland
| | - Patrik Vuilleumier
- Campus Biotech, chemin des mines, 9 CH-1202 Geneva, Switzerland
- Department of Neuroscience, University of Geneva, Rue Michel Servet 1, CH-1211 Geneva, Switzerland
- Center for Affective Sciences, CISA - chemin des mines 9, CH-1202 Geneva, Switzerland
| | - Judith Domínguez-Borràs
- Campus Biotech, chemin des mines, 9 CH-1202 Geneva, Switzerland
- Department of Clinical Neuroscience, University of Geneva, 4 rue Gabrielle-Perret-Gentil 4, CH-1211 Geneva, Switzerland
- Center for Affective Sciences, CISA - chemin des mines 9, CH-1202 Geneva, Switzerland
| |
Collapse
|
64
|
Chen L, Rao B, Li S, Gao L, Xie Y, Dai X, Fu K, Peng XZ, Xu H. Altered Effective Connectivity Measured by Resting-State Functional Magnetic Resonance Imaging in Posterior Parietal-Frontal-Striatum Circuit in Patients With Disorder of Consciousness. Front Neurosci 2022; 15:766633. [PMID: 35153656 PMCID: PMC8830329 DOI: 10.3389/fnins.2021.766633] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 12/13/2021] [Indexed: 11/30/2022] Open
Abstract
Objective Disorder of consciousness (DoC) resulting from severe brain injury is characterized by cortical and subcortical dysconnectivity. However, research on seed-based effective connectivity (EC) of DoC might be questioned as to the heterogeneity of prior assumptions. Methods Functional MRI data of 16 DoC patients and 16 demographically matched healthy individuals were analyzed. Revised coma recovery scale (CRS-R) scores of patients were acquired. Seed-based d mapping permutation of subject images (SDM-PSI) of meta-analysis was performed to quantitatively synthesize results from neuroimaging studies that evaluated resting-state functional activity in DoC patients. Spectral dynamic causal modeling (spDCM) was used to assess how EC altered between brain regions in DoC patients compared to healthy individuals. Results We found increased effective connectivity in left striatum and decreased effective connectivity in bilateral precuneus (preCUN)/posterior cingulate cortex (PCC), bilateral midcingulate cortex and left middle frontal gyrus in DoC compared with the healthy controls. The resulting pattern of interaction in DoC indicated disrupted connection and disturbance of posterior parietal-frontal-striatum, and reduced self-inhibition of preCUN/PCC. The strength of self-inhibition of preCUN/PCC was negatively correlated with the total score of CRS-R. Conclusion This impaired EC in DoC may underlie disruption in the posterior parietal-frontal-striatum circuit, particularly damage to the cortico-striatal connection and possible loss of preCUN/PCC function as the main regulatory hub.
Collapse
Affiliation(s)
- Linglong Chen
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Bo Rao
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Sirui Li
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Lei Gao
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yu Xie
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xuan Dai
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Kai Fu
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xu Zhi Peng
- Department of Neurology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Haibo Xu
- Department of Radiology, Zhongnan Hospital of Wuhan University, Wuhan, China
- *Correspondence: Haibo Xu,
| |
Collapse
|
65
|
Jiang G, Feng Y, Li M, Wen H, Wang T, Shen Y, Chen Z, Li S. Distinct alterations of functional connectivity of the basal forebrain subregions in insomnia disorder. Front Psychiatry 2022; 13:1036997. [PMID: 36311494 PMCID: PMC9606586 DOI: 10.3389/fpsyt.2022.1036997] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 09/22/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Cholinergic basal forebrain (BF) plays an important role in sleep-wake regulation and is implicated in cortical arousal and activation. However, less is known currently regarding the abnormal BF-related neuronal circuit in human patients with insomnia disorder (ID). In this study, we aimed to explore alterations of functional connectivity (FC) in subregions of the BF and the relationships between FC alterations and sleep and mood measures in ID. MATERIALS AND METHODS One hundred and two ID patients and ninety-six healthy controls (HC) were included in this study. Each subject underwent both resting-state fMRI and high-resolution anatomical scanning. All participants completed the sleep and mood questionnaires in ID patients. Voxel-based resting-state FC in each BF subregion (Ch_123 and Ch_4) were computed. For the voxel-wise FC differences between groups, a two-sample t-test was performed on the individual maps in a voxel-by-voxel manner. To examine linear relationships with sleep and mood measures, Pearson correlations were calculated between FC alterations and sleep and mood measures, respectively. RESULTS The ID group showed significantly decreased FC between the medial superior frontal gyrus and Ch_123 compared to HC. However, increased FC between the midbrain and Ch_4 was found in ID based on the voxel-wise analysis. The correlation analysis only revealed that the altered FC between the midbrain with Ch_4 was significantly negatively correlated with the self-rating anxiety scale. CONCLUSION Our findings of decreased FC between Ch_123 and medial superior frontal gyrus and increased FC between midbrain and Ch4 suggest distinct roles of subregions of BF underlying the neurobiology of ID.
Collapse
Affiliation(s)
- Guihua Jiang
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Ying Feng
- Department of Radiology, Affiliated Hospital of Chengdu University, Chengdu, China
| | - Meng Li
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Hua Wen
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Tianyue Wang
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Yanan Shen
- The First School of Clinical Medicine, Guangdong Medical University, Zhanjiang, China
| | - Ziwei Chen
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, Jinan University, Guangzhou, China
| | - Shumei Li
- Department of Medical Imaging, Guangdong Second Provincial General Hospital, Guangzhou, China
| |
Collapse
|
66
|
Rowley JA, Badr MS. Normal Sleep. Respir Med 2022. [DOI: 10.1007/978-3-030-93739-3_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
67
|
Van De Poll MN, van Swinderen B. Balancing Prediction and Surprise: A Role for Active Sleep at the Dawn of Consciousness? Front Syst Neurosci 2021; 15:768762. [PMID: 34803618 PMCID: PMC8602873 DOI: 10.3389/fnsys.2021.768762] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/08/2021] [Indexed: 11/14/2022] Open
Abstract
The brain is a prediction machine. Yet the world is never entirely predictable, for any animal. Unexpected events are surprising, and this typically evokes prediction error signatures in mammalian brains. In humans such mismatched expectations are often associated with an emotional response as well, and emotional dysregulation can lead to cognitive disorders such as depression or schizophrenia. Emotional responses are understood to be important for memory consolidation, suggesting that positive or negative 'valence' cues more generally constitute an ancient mechanism designed to potently refine and generalize internal models of the world and thereby minimize prediction errors. On the other hand, abolishing error detection and surprise entirely (as could happen by generalization or habituation) is probably maladaptive, as this might undermine the very mechanism that brains use to become better prediction machines. This paradoxical view of brain function as an ongoing balance between prediction and surprise suggests a compelling approach to study and understand the evolution of consciousness in animals. In particular, this view may provide insight into the function and evolution of 'active' sleep. Here, we propose that active sleep - when animals are behaviorally asleep but their brain seems awake - is widespread beyond mammals and birds, and may have evolved as a mechanism for optimizing predictive processing in motile creatures confronted with constantly changing environments. To explore our hypothesis, we progress from humans to invertebrates, investigating how a potential role for rapid eye movement (REM) sleep in emotional regulation in humans could be re-examined as a conserved sleep function that co-evolved alongside selective attention to maintain an adaptive balance between prediction and surprise. This view of active sleep has some interesting implications for the evolution of subjective awareness and consciousness in animals.
Collapse
Affiliation(s)
| | - Bruno van Swinderen
- Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
68
|
Abstract
The spontaneous dynamics of the brain modulate its function from moment to moment, shaping neural computation and cognition. Functional MRI (fMRI), while classically used as a tool for spatial localization, is increasingly being used to identify the temporal dynamics of brain activity. fMRI analyses focused on the temporal domain have revealed important new information about the dynamics underlying states such as arousal, attention, and sleep. Dense temporal sampling – either by using fast fMRI acquisition, or multiple repeated scan sessions within individuals – can further enrich the information present in these studies. This review focuses on recent developments in using fMRI to identify dynamics across brain states, particularly vigilance and sleep states, and the potential for highly temporally sampled fMRI to answer these questions.
Collapse
Affiliation(s)
- Zinong Yang
- Graduate Program in Neuroscience, Boston University, Boston MA, United States
| | - Laura D Lewis
- Department of Biomedical Engineering, Boston University, Boston MA, United States.,Center for Systems Neuroscience, Boston University, Boston MA, United States
| |
Collapse
|
69
|
Ona G, Sampedro F, Romero S, Valle M, Camacho V, Migliorelli C, Mañanas MÁ, Antonijoan RM, Puntes M, Coimbra J, Ballester MR, Garrido M, Riba J. The Kappa Opioid Receptor and the Sleep of Reason: Cortico-Subcortical Imbalance Following Salvinorin-A. Int J Neuropsychopharmacol 2021; 25:54-63. [PMID: 34537829 PMCID: PMC8756086 DOI: 10.1093/ijnp/pyab063] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 08/25/2021] [Accepted: 09/15/2021] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND The mechanisms through which kappa opioid receptor (KOR) agonists induce psychotomimetic effects are largely unknown, although the modulation of this receptor has attracted attention for its clinical use. In this work, we characterize the neuropharmacological effects of salvinorin-A, a highly selective KOR agonist. METHODS Changes in multimodal electroencephalography, single-photon emission computed tomography, and subjective effects following the acute administration of salvinorin-A are reported. The study included 2 sub-studies that employed a double-blind, crossover, randomized, placebo-controlled design. RESULTS The electroencephalography measures showed a marked increase in delta and gamma waves and a decrease in alpha waves while subjects were under the effect of salvinorin-A. Regarding single-photon emission computed tomography measures, significant decreases in regional cerebral blood flow were detected in multiple regions of the frontal, temporal, parietal, and occipital cortices. Significant regional cerebral blood flow increases were observed in some regions of the medial temporal lobe, including the amygdala, the hippocampal gyrus, and the cerebellum. The pattern of subjective effects induced by salvinorin-A was similar to those observed in relation to other psychotomimetic drugs but with an evidently dissociative nature. No dysphoric effects were reported. CONCLUSION The salvinorin-A-mediated KOR agonism induced dramatic psychotomimetic effects along with a generalized decrease in cerebral blood flow and electric activity within the cerebral cortex.
Collapse
Affiliation(s)
- Genís Ona
- Human Neuropsychopharmacology Group, Sant Pau Institute of Biomedical Research (IIB-Sant Pau), Barcelona, Spain
| | - Frederic Sampedro
- Sant Pau Institute of Biomedical Research (IIB-Sant Pau), Barcelona, Spain,Centro de Investigación en Red-Enfermedades Neurodegenerativas (CIBERNED), Barcelona, Spain,Correspondence: Frederic Sampedro, PhD, Hospital de Sant Pau Research Institute, Sant Quintí Street number 77, 08041 Barcelona, Spain ()
| | - Sergio Romero
- Department of Automatic Control (ESAII), Biomedical Engineering Research Center (CREB), Universitat Politècnica de Catalunya (UPC), Barcelona, Spain,Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona, Spain
| | - Marta Valle
- Departament de Farmacologia i Terapèutica, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Valle Camacho
- Nuclear Medicine Department, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Carolina Migliorelli
- Department of Automatic Control (ESAII), Biomedical Engineering Research Center (CREB), Universitat Politècnica de Catalunya (UPC), Barcelona, Spain,Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona, Spain
| | - Miguel Ángel Mañanas
- Department of Automatic Control (ESAII), Biomedical Engineering Research Center (CREB), Universitat Politècnica de Catalunya (UPC), Barcelona, Spain,Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Barcelona, Spain
| | - Rosa Maria Antonijoan
- Departament de Farmacologia i Terapèutica, Universitat Autònoma de Barcelona, Barcelona, Spain,Centre d’Investigació de Medicaments, Sant Pau Institute of Biomedical Research (IIB-Sant Pau), Barcelona, Spain,Servei de Farmacologia Clínica, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain,Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Spain
| | - Montserrat Puntes
- Centre d’Investigació de Medicaments, Sant Pau Institute of Biomedical Research (IIB-Sant Pau), Barcelona, Spain
| | - Jimena Coimbra
- Centre d’Investigació de Medicaments, Sant Pau Institute of Biomedical Research (IIB-Sant Pau), Barcelona, Spain
| | - Maria Rosa Ballester
- Centre d’Investigació de Medicaments, Sant Pau Institute of Biomedical Research (IIB-Sant Pau), Barcelona, Spain,Centro de Investigación Biomédica en Red de Salud Mental, CIBERSAM, Spain,Blanquerna School of Health Science, Universitat Ramon Llull, Barcelona, Spain
| | - Maite Garrido
- Centre d’Investigació de Medicaments, Sant Pau Institute of Biomedical Research (IIB-Sant Pau), Barcelona, Spain
| | - Jordi Riba
- Department of Neuropsychology and Psychopharmacology, Maastricht University, Maastricht,the Netherlands
| |
Collapse
|
70
|
Yousef Yengej DN, Ferando I, Kechechyan G, Nwaobi SE, Raman S, Charles A, Faas GC. Continuous long-term recording and triggering of brain neurovascular activity and behaviour in freely moving rodents. J Physiol 2021; 599:4545-4559. [PMID: 34438476 DOI: 10.1113/jp281514] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 08/23/2021] [Indexed: 11/08/2022] Open
Abstract
A minimally invasive, microchip-based approach enables continuous long-term recording of brain neurovascular activity, heart rate, and head movement in freely behaving rodents. This approach can also be used for transcranial optical triggering of cortical activity in mice expressing channelrhodopsin. The system uses optical intrinsic signal recording to measure cerebral blood volume, which under baseline conditions is correlated with spontaneous neuronal activity. The arterial pulse and breathing can be quantified as a component of the optical intrinsic signal. Multi-directional head movement is measured simultaneously with a movement sensor. A separate movement tracking element through a camera enables precise mapping of overall movement within an enclosure. Data is processed by a dedicated single board computer, and streamed from multiple enclosures to a central server, enabling simultaneous remote monitoring and triggering in many subjects. One application of this system described here is the characterization of changes in of cerebral blood volume, heart rate and behaviour that occur with the sleep-wake cycle over weeks. Another application is optical triggering and recording of cortical spreading depression (CSD), the slowly propagated wave of neurovascular activity that occurs in the setting of brain injury and migraine aura. The neurovascular features of CSD are remarkably different in the awake vs. anaesthetized state in the same mouse. With its capacity to continuously and synchronously record multiple types of physiological and behavioural data over extended time periods in combination with intermittent triggering of brain activity, this inexpensive method has the potential for widespread practical application in rodent research. KEY POINTS: Recording and triggering of brain activity in mice and rats has typically required breaching the skull, and experiments are often performed under anaesthesia A minimally invasive microchip system enables continuous recording and triggering of neurovascular activity, and analysis of heart rate and behaviour in freely behaving rodents over weeks This system can be used to characterize physiological and behavioural changes associated with the sleep-wake cycle over extended time periods This approach can also be used with mice expressing channelrhodopsin to trigger and record cortical spreading depression (CSD) in freely behaving subjects. The neurovascular responses to CSD are remarkably different under anaesthesia compared with the awake state. The method is inexpensive and straightforward to employ at a relatively large scale. It enables translational investigation of a wide range of physiological and pathological conditions in rodent models of neurological and systemic diseases.
Collapse
Affiliation(s)
- Dmitri N Yousef Yengej
- Department of Neurology, The David Geffen School of Medicine at UCLA, 635 Charles Young Drive South, Los Angeles, CA, 90095-733522, USA
| | - Isabella Ferando
- Department of Neurology, The David Geffen School of Medicine at UCLA, 635 Charles Young Drive South, Los Angeles, CA, 90095-733522, USA.,Department of Neurology, Miller School of Medicine at the University of Miami, 1150 NW 14th street, Miami, FL, 33136, USA
| | - Gayane Kechechyan
- Department of Neurology, The David Geffen School of Medicine at UCLA, 635 Charles Young Drive South, Los Angeles, CA, 90095-733522, USA.,University of California, San Diego, Skaggs School of Pharmacy and Pharmaceutical Sciences, 9500 Gilman Drive, MC 0657, La Jolla, CA, 92093-0657, USA
| | - Sinifunanya E Nwaobi
- Department of Neurology, The David Geffen School of Medicine at UCLA, 635 Charles Young Drive South, Los Angeles, CA, 90095-733522, USA
| | - Shrayes Raman
- School of Letters and Sciences, UCLA, 1309 Murphy Hall Box 951413, Los Angeles, CA, 90095-1413, USA
| | - Andrew Charles
- Department of Neurology, The David Geffen School of Medicine at UCLA, 635 Charles Young Drive South, Los Angeles, CA, 90095-733522, USA
| | - Guido C Faas
- Department of Neurology, The David Geffen School of Medicine at UCLA, 635 Charles Young Drive South, Los Angeles, CA, 90095-733522, USA
| |
Collapse
|
71
|
Eltanahy AM, Koluib YA, Gonzales A. Pericytes: Intrinsic Transportation Engineers of the CNS Microcirculation. Front Physiol 2021; 12:719701. [PMID: 34497540 PMCID: PMC8421025 DOI: 10.3389/fphys.2021.719701] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 07/29/2021] [Indexed: 12/15/2022] Open
Abstract
Pericytes in the brain are candidate regulators of microcirculatory blood flow because they are strategically positioned along the microvasculature, contain contractile proteins, respond rapidly to neuronal activation, and synchronize microvascular dynamics and neurovascular coupling within the capillary network. Analyses of mice with defects in pericyte generation demonstrate that pericytes are necessary for the formation of the blood-brain barrier, development of the glymphatic system, immune homeostasis, and white matter function. The development, identity, specialization, and progeny of different subtypes of pericytes, however, remain unclear. Pericytes perform brain-wide 'transportation engineering' functions in the capillary network, instructing, integrating, and coordinating signals within the cellular communicome in the neurovascular unit to efficiently distribute oxygen and nutrients ('goods and services') throughout the microvasculature ('transportation grid'). In this review, we identify emerging challenges in pericyte biology and shed light on potential pericyte-targeted therapeutic strategies.
Collapse
Affiliation(s)
- Ahmed M. Eltanahy
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno, NV, United States
| | - Yara A. Koluib
- Tanta University Hospitals, Faculty of Medicine, Tanta University, Tanta, Egypt
| | - Albert Gonzales
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno, NV, United States
| |
Collapse
|
72
|
Tivadar RI, Knight RT, Tzovara A. Automatic Sensory Predictions: A Review of Predictive Mechanisms in the Brain and Their Link to Conscious Processing. Front Hum Neurosci 2021; 15:702520. [PMID: 34489663 PMCID: PMC8416526 DOI: 10.3389/fnhum.2021.702520] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/12/2021] [Indexed: 01/22/2023] Open
Abstract
The human brain has the astonishing capacity of integrating streams of sensory information from the environment and forming predictions about future events in an automatic way. Despite being initially developed for visual processing, the bulk of predictive coding research has subsequently focused on auditory processing, with the famous mismatch negativity signal as possibly the most studied signature of a surprise or prediction error (PE) signal. Auditory PEs are present during various consciousness states. Intriguingly, their presence and characteristics have been linked with residual levels of consciousness and return of awareness. In this review we first give an overview of the neural substrates of predictive processes in the auditory modality and their relation to consciousness. Then, we focus on different states of consciousness - wakefulness, sleep, anesthesia, coma, meditation, and hypnosis - and on what mysteries predictive processing has been able to disclose about brain functioning in such states. We review studies investigating how the neural signatures of auditory predictions are modulated by states of reduced or lacking consciousness. As a future outlook, we propose the combination of electrophysiological and computational techniques that will allow investigation of which facets of sensory predictive processes are maintained when consciousness fades away.
Collapse
Affiliation(s)
| | - Robert T. Knight
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, United States
- Department of Psychology, University of California, Berkeley, Berkeley, CA, United States
| | - Athina Tzovara
- Institute of Computer Science, University of Bern, Bern, Switzerland
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, United States
- Sleep-Wake Epilepsy Center | NeuroTec, Department of Neurology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
73
|
Tsai CJ, Nagata T, Liu CY, Suganuma T, Kanda T, Miyazaki T, Liu K, Saitoh T, Nagase H, Lazarus M, Vogt KE, Yanagisawa M, Hayashi Y. Cerebral capillary blood flow upsurge during REM sleep is mediated by A2a receptors. Cell Rep 2021; 36:109558. [PMID: 34407410 DOI: 10.1016/j.celrep.2021.109558] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/05/2021] [Accepted: 07/28/2021] [Indexed: 11/16/2022] Open
Abstract
Sleep is generally viewed as a period of recovery, but how the supply of cerebral blood flow (CBF) changes across sleep/wake states has remained unclear. Here, we directly observe red blood cells (RBCs) within capillaries, where the actual substance exchange between the blood and neurons/glia occurs, by two-photon microscopy. Across multiple cortical areas, average capillary CBF is largely increased during rapid eye movement (REM) sleep, whereas it does not differ between periods of active wakefulness and non-REM sleep. Capillary RBC flow during REM sleep is further elevated following REM sleep deprivation, suggesting that capillary CBF reflects REM sleep pressure. At the molecular level, signaling via adenosine A2a receptors is crucial; in A2a-KO mice, capillary CBF upsurge during REM sleep is dampened, and effects of REM sleep pressure are abolished. These results provide evidence regarding the dynamics of capillary CBF across sleep/wake states and insights to the underlying mechanisms.
Collapse
Affiliation(s)
- Chia-Jung Tsai
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan; Japan Society for the Promotion of Science (JSPS) International Research Fellow, Tokyo 102-0083, Japan
| | - Takeshi Nagata
- PhD Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Chih-Yao Liu
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Takaya Suganuma
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Takeshi Kanda
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Takehiro Miyazaki
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Kai Liu
- Center for Mathematical Sciences, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Tsuyoshi Saitoh
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Hiroshi Nagase
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Michael Lazarus
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan; PhD Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Kaspar E Vogt
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan; PhD Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Masashi Yanagisawa
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan; PhD Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan; Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Life Science Center for Survival Dynamics (TARA), University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan; R&D Center for Frontiers of Mirai in Policy and Technology (F-MIRAI), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan
| | - Yu Hayashi
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan; PhD Program in Human Biology, School of Integrative and Global Majors, University of Tsukuba, Tsukuba, Ibaraki 305-8575, Japan; Department of Human Health Sciences, Graduate School of Medicine, Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 603-8363, Japan.
| |
Collapse
|
74
|
Wafford KA. Aberrant waste disposal in neurodegeneration: why improved sleep could be the solution. CEREBRAL CIRCULATION - COGNITION AND BEHAVIOR 2021; 2:100025. [PMID: 36324713 PMCID: PMC9616228 DOI: 10.1016/j.cccb.2021.100025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 08/11/2021] [Accepted: 08/12/2021] [Indexed: 06/16/2023]
Abstract
Sleep takes up a large percentage of our lives and the full functions of this state are still not understood. However, over the last 10 years a new and important function has emerged as a mediator of brain clearance. Removal of toxic metabolites and proteins from the brain parenchyma generated during waking activity and high levels of synaptic processing is critical to normal brain function and only enabled during deep sleep. Understanding of this process is revealing how impaired sleep contributes an important and likely causative role in the accumulation and aggregation of aberrant proteins such as β-amyloid and phosphorylated tau, as well as inflammation and neuronal damage. We are also beginning to understand how brain slow-wave activity interacts with vascular function allowing the flow of CSF and interstitial fluid to drain into the body's lymphatic system. New methodology is enabling visualization of this process in both animals and humans and is revealing how these processes break down during ageing and disease. With this understanding we can begin to envisage novel therapeutic approaches to the treatment of neurodegeneration, and how reversing sleep impairment in the correct manner may provide a way to slow these processes and improve brain function.
Collapse
Key Words
- AQP4, aquaporin-4
- Alzheimer's disease
- Amyloid
- Aquaporin-4
- Astrocyte
- Aβ, beta amyloid
- BOLD, blood-oxygen level dependent imaging
- CAA, cerebral amyloid angiopathy
- CSF, Cerebrospinal fluid
- Clearance
- EEG, electroencephalography
- EMG, electromyography
- Glymphatic
- ISF, interstitial fluid
- MCI, mild cognitive impairment
- MRI, magnetic resonance imaging
- NOS, nitric oxide synthase
- NREM, non-rapid eye movement
- OSA, obstructive sleep apnea
- PET, positron emission tomography
- REM, rapid-eye movement
- SWA, slow wave activity
- SWS, slow-wave sleep
- Slow-wave sleep
- iNPH, idiopathic normal pressure hydrocephalus
Collapse
|
75
|
Caviglia G. Working on dreams, from neuroscience to psychotherapy. RESEARCH IN PSYCHOTHERAPY 2021; 24:540. [PMID: 34568108 PMCID: PMC8451212 DOI: 10.4081/ripppo.2021.540] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/02/2021] [Indexed: 11/23/2022]
Abstract
Within the current clinical practice, the debate on the use of dream is still very topical. In this article, the author suggests to address this question with a notable scientific and cultural openness that embraces either the psychoanalytic approach (classical, modern and intersubjective), and the neurophysiological assumptions and both clinical research and cognitive hypotheses. The utility of dream - in the clinical work with patients - is supported by the author with extensive bibliographic references and personal clinical insights, drawn from his experience as a psychotherapist. Results: From an analysis of recent literature on this topic, the dream assumes a very different function and position in the clinical practice: from 'via regia to the unconscious' of Freudian theories - an expression of repressed infantile wishes of libidinal or aggressive drive nature - it becomes the very fulcrum of the analysis, a fundamental capacity to be developed, a necessary and decisive element for the patient's transformation. The dream can also be use with the function of thinking and mentalization, of problem solving, of adaptation, as well as an indicator of the relationship with the therapist in the analytic dialogue or of dissociated aspects of the self. Finally, the author proposes a challenging reading of the clinical relevance of dream: through listening to the dream, the clinician can help the patient to stand in the spaces of his own self in a more open and fluid way and therefore to know himself better, to regulate his affects, to think and to integrate oneself. A dream which is not interpreted is like a letter which is not read (Babylonian Talmud, tractate Berakhòt, folio 55a) A man is shown [a dream] only from the thoughts of his heart (Babylonian Talmud, tractate Berakhòt, folio 55b).
Collapse
Affiliation(s)
- Giorgio Caviglia
- Department of Psychology, University of Campania 'Luigi Vanvitelli', Caserta, Italy
| |
Collapse
|
76
|
Chen Y, Zhang J. How Energy Supports Our Brain to Yield Consciousness: Insights From Neuroimaging Based on the Neuroenergetics Hypothesis. Front Syst Neurosci 2021; 15:648860. [PMID: 34295226 PMCID: PMC8291083 DOI: 10.3389/fnsys.2021.648860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Accepted: 05/26/2021] [Indexed: 11/13/2022] Open
Abstract
Consciousness is considered a result of specific neuronal processes and mechanisms in the brain. Various suggested neuronal mechanisms, including the information integration theory (IIT), global neuronal workspace theory (GNWS), and neuronal construction of time and space as in the context of the temporospatial theory of consciousness (TTC), have been laid forth. However, despite their focus on different neuronal mechanisms, these theories neglect the energetic-metabolic basis of the neuronal mechanisms that are supposed to yield consciousness. Based on the findings of physiology-induced (sleep), pharmacology-induced (general anesthesia), and pathology-induced [vegetative state/unresponsive wakeful syndrome (VS/UWS)] loss of consciousness in both human subjects and animals, we, in this study, suggest that the energetic-metabolic processes focusing on ATP, glucose, and γ-aminobutyrate/glutamate are indispensable for functional connectivity (FC) of normal brain networks that renders consciousness possible. Therefore, we describe the energetic-metabolic predispositions of consciousness (EPC) that complement the current theories focused on the neural correlates of consciousness (NCC).
Collapse
Affiliation(s)
- Yali Chen
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Jun Zhang
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical college, Fudan University, Shanghai, China
| |
Collapse
|
77
|
Lydic R, Baghdoyan HA. Prefrontal Cortex Metabolome Is Modified by Opioids, Anesthesia, and Sleep. Physiology (Bethesda) 2021; 36:203-219. [PMID: 34159803 DOI: 10.1152/physiol.00043.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Obtundation of wakefulness caused by opioids and loss of wakefulness caused by anesthetics and sleep significantly alter concentrations of molecules comprising the prefrontal cortex (PFC) metabolome. Quantifying state-selective changes in the PFC metabolome is essential for advancing functional metabolomics. Diverse functions of the PFC suggest the PFC metabolome as a potential therapeutic entry point for countermeasures to state-selective autonomic dysfunction.
Collapse
Affiliation(s)
- Ralph Lydic
- Psychology, University of Tennessee, Knoxville, Tennessee.,Oak Ridge National Laboratory, Oak Ridge, Tennessee
| | - Helen A Baghdoyan
- Psychology, University of Tennessee, Knoxville, Tennessee.,Oak Ridge National Laboratory, Oak Ridge, Tennessee
| |
Collapse
|
78
|
Song B, Zhu JC. A Narrative Review of Cerebellar Malfunctions and Sleep Disturbances. Front Neurosci 2021; 15:590619. [PMID: 34248474 PMCID: PMC8267147 DOI: 10.3389/fnins.2021.590619] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 05/31/2021] [Indexed: 11/15/2022] Open
Abstract
Cerebellar malfunctions significantly impact the regulation of the sleep–wakefulness transition. The possible mechanism for this effect is still unknown. Evidence on the role of cerebellar processing in the sleep–wake cycle is derived mainly from animal studies, and clinical management of the sleep–wake cycle is also challenging. The purpose of this review is to investigate the role of cerebellar activity during normal sleep and the association between cerebellar dysfunction and sleep disorders. Large-scale, multicenter trials are still needed to confirm these findings and provide early identification and intervention strategies to improve cerebellar function and the sleep quality of patients.
Collapse
Affiliation(s)
- Bijia Song
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China.,Department of Anesthesiology, Beijing Friendship Hospital of Capital Medical University, Beijing, China
| | - Jun-Chao Zhu
- Department of Anesthesiology, Shengjing Hospital of China Medical University, Shenyang, China
| |
Collapse
|
79
|
Abstract
Sleep is essential for healthy being and healthy functioning of human body as a whole, as well as each organ and system. Sleep disorders, such as sleep-disordered breathing, insomnia, sleep fragmentation, and sleep deprivation are associated with the deterioration in human body functioning and increased cardiovascular risks. However, owing to the complex regulation and heterogeneous state sleep per se can be associated with cardiovascular dysfunction in susceptible subjects. The understanding of sleep as a multidimensional concept is important for better prevention and treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Lyudmila Korostovtseva
- Sleep Laboratory, Research Department for Hypertension, Department for Cardiology, Almazov National Medical Research Centre, 2 Akkuratov Street, St Petersburg 197341, Russia.
| | - Mikhail Bochkarev
- Sleep Laboratory, Research Department for Hypertension, Almazov National Medical Research Centre, 2 Akkuratov Street, St Petersburg 197341, Russia
| | - Yurii Sviryaev
- Research Department for Hypertension, Almazov National Medical Research Centre, 2 Akkuratov Street, St Petersburg 197341, Russia
| |
Collapse
|
80
|
Suzuki Y, Kawana F, Satoh M, Abe T. The abrupt shift to slower frequencies after arousal from sleep in healthy young adults. J Clin Sleep Med 2021; 17:2373-2381. [PMID: 34216203 DOI: 10.5664/jcsm.9434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
STUDY OBJECTIVES Post-arousal hypersynchrony (PAH) is an atypical arousal pattern in children's electroencephalography. PAH is an abrupt shift to slower frequencies in arousal-related responses, appearing as slow-wave clusters. In contrast, the prevalence of PAH in healthy young adults is still unknown. Here, we examined the prevalence and characteristics of PAH in healthy young participants. METHODS Thirty healthy young participants underwent one night of polysomnography (thirteen females, 22.8 ± 2.0 years [mean ± standard deviation]). We examined the prevalence of PAH as a function of sleep stage, sleep cycle, and time course (the first or the second half). The correlation between PAH and sleep variables was examined. The %N3 was compared for each sleep cycle and time course. RESULTS Twenty-eight out of 30 participants exhibited PAH (4.6 ± 4.8 times per night). PAH increased significantly during the first sleep cycle and the first half-sleep period. It was observed only in non-rapid eye movement (NREM) and not in REM sleep. The number of PAHs correlated with the number of arousals and arousal indices. The %N3 increased in the first half-sleep and the first sleep cycle. CONCLUSIONS PAH was relatively common in healthy young participants. Since PAH occurred in a state with a high prevalence of %N3, the first sleep cycle, or the first half-sleep, we suggest that PAH may be affected by the sleep homeostasis process. Since PAH occurred only in NREM sleep and correlated with arousal increment, it may have the function of suppressing NREM sleep's cortical arousal.
Collapse
Affiliation(s)
- Yoko Suzuki
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tennodai, Tsukuba, Ibaraki, Japan
| | - Fusae Kawana
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tennodai, Tsukuba, Ibaraki, Japan.,Cardiovascular Respiratory Sleep Medicine, Juntendo University Graduate School of Medicine, Hongo, Bunkyo-ku, Tokyo, Japan
| | - Makoto Satoh
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tennodai, Tsukuba, Ibaraki, Japan
| | - Takashi Abe
- International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tennodai, Tsukuba, Ibaraki, Japan
| |
Collapse
|
81
|
Houldin E, Fang Z, Ray LB, Stojanoski B, Owen AM, Fogel SM. Reversed and increased functional connectivity in non-REM sleep suggests an altered rather than reduced state of consciousness relative to wake. Sci Rep 2021; 11:11943. [PMID: 34099771 PMCID: PMC8184935 DOI: 10.1038/s41598-021-91211-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 05/18/2021] [Indexed: 12/02/2022] Open
Abstract
Sleep resting state network (RSN) functional connectivity (FC) is poorly understood, particularly for rapid eye movement (REM), and in non-sleep deprived subjects. REM and non-REM (NREM) sleep involve competing drives; towards hypersynchronous cortical oscillations in NREM; and towards wake-like desynchronized oscillations in REM. This study employed simultaneous electroencephalography-functional magnetic resonance imaging (EEG-fMRI) to explore whether sleep RSN FC reflects these opposing drives. As hypothesized, this was confirmed for the majority of functional connections modulated by sleep. Further, changes were directional: e.g., positive wake correlations trended towards negative correlations in NREM and back towards positive correlations in REM. Moreover, the majority did not merely reduce magnitude, but actually either reversed and strengthened in the opposite direction, or increased in magnitude during NREM. This finding supports the notion that NREM is best expressed as having altered, rather than reduced FC. Further, as many of these functional connections comprised “higher-order” RSNs (which have been previously linked to cognition and consciousness), such as the default mode network, this finding is suggestive of possibly concomitant alterations to cognition and consciousness.
Collapse
Affiliation(s)
- Evan Houldin
- Brain & Mind Institute, Western Interdisciplinary Research Building, Western University, London, N6A 5B7, Canada.,Department of Neuroscience, Western University, 1151 Richmond St. N., London, N6A 3K7, Canada.,Queensland Brain Institute, University of Queensland, Brisbane, 4072, Australia
| | - Zhuo Fang
- Brain & Mind Institute, Western Interdisciplinary Research Building, Western University, London, N6A 5B7, Canada.,University of Ottawa Brain and Mind Research Institute, 451 Smyth Rd, Ottawa, K1H 8M5, Canada
| | - Laura B Ray
- Brain & Mind Institute, Western Interdisciplinary Research Building, Western University, London, N6A 5B7, Canada.,The Royal's Institute for Mental Health Research, University of Ottawa, 1145 Carling Ave, Ottawa, K1Z 7K4, Canada
| | - Bobby Stojanoski
- Brain & Mind Institute, Western Interdisciplinary Research Building, Western University, London, N6A 5B7, Canada
| | - Adrian M Owen
- Brain & Mind Institute, Western Interdisciplinary Research Building, Western University, London, N6A 5B7, Canada.,Department of Psychology, Western University, London, N6A 5C2, Canada
| | - Stuart M Fogel
- Brain & Mind Institute, Western Interdisciplinary Research Building, Western University, London, N6A 5B7, Canada. .,University of Ottawa Brain and Mind Research Institute, 451 Smyth Rd, Ottawa, K1H 8M5, Canada. .,The Royal's Institute for Mental Health Research, University of Ottawa, 1145 Carling Ave, Ottawa, K1Z 7K4, Canada. .,Department of Psychology, Western University, London, N6A 5C2, Canada. .,School of Psychology, University of Ottawa, 136 Jean-Jacques Lussier, Ottawa, K1N 6N5, Canada.
| |
Collapse
|
82
|
Mächler P, Broggini T, Mateo C, Thunemann M, Fomin-Thunemann N, Doran PR, Sencan I, Kilic K, Desjardins M, Uhlirova H, Yaseen MA, Boas DA, Linninger AA, Vergassola M, Yu X, Lewis LD, Polimeni JR, Rosen BR, Sakadžić S, Buxton RB, Lauritzen M, Kleinfeld D, Devor A. A Suite of Neurophotonic Tools to Underpin the Contribution of Internal Brain States in fMRI. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2021; 18:100273. [PMID: 33959688 PMCID: PMC8095678 DOI: 10.1016/j.cobme.2021.100273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Recent developments in optical microscopy, applicable for large-scale and longitudinal imaging of cortical activity in behaving animals, open unprecedented opportunities to gain a deeper understanding of neurovascular and neurometabolic coupling during different brain states. Future studies will leverage these tools to deliver foundational knowledge about brain state-dependent regulation of cerebral blood flow and metabolism as well as regulation as a function of brain maturation and aging. This knowledge is of critical importance to interpret hemodynamic signals observed with functional magnetic resonance imaging (fMRI).
Collapse
Affiliation(s)
- Philipp Mächler
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
- Department of Physics, University of California San Diego, La Jolla, CA 92093, USA
| | - Thomas Broggini
- Department of Physics, University of California San Diego, La Jolla, CA 92093, USA
| | - Celine Mateo
- Department of Physics, University of California San Diego, La Jolla, CA 92093, USA
| | - Martin Thunemann
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | | | - Patrick R. Doran
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Ikbal Sencan
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Kivilcim Kilic
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Michèle Desjardins
- Département de Physique, de Génie Physique et d’Optique, Université Laval, Québec, QC G1V 0A6, Canada
| | - Hana Uhlirova
- Institute of Scientific Instruments of the Czech Academy of Science, Brno, Czech Republic
| | - Mohammad A. Yaseen
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Department of Bioengineering, Northeastern University, Boston, MA 02115, USA
| | - David A. Boas
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Andreas A. Linninger
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Massimo Vergassola
- Department of Physics, University of California San Diego, La Jolla, CA 92093, USA
- Département de Physique de l’Ecole Normale Supérieure, 75005 Paris, France
| | - Xin Yu
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Laura D. Lewis
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Jonathan R. Polimeni
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Bruce R. Rosen
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Sava Sakadžić
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Richard B. Buxton
- Department of Radiology, University of California San Diego, La Jolla, CA 92037, USA
| | - Martin Lauritzen
- Department of Neuroscience and Pharmacology, University of Copenhagen, Copenhagen N 2200, Denmark
- Department of Clinical Neurophysiology, Glostrup Hospital, Glostrup 2600, Denmark
| | - David Kleinfeld
- Department of Physics, University of California San Diego, La Jolla, CA 92093, USA
- Section on Neurobiology, University of California San Diego, La Jolla, CA 92093, USA
| | - Anna Devor
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA 02129, USA
| |
Collapse
|
83
|
Abstract
Understanding of the evolved biological function of sleep has advanced considerably in the past decade. However, no equivalent understanding of dreams has emerged. Contemporary neuroscientific theories often view dreams as epiphenomena, and many of the proposals for their biological function are contradicted by the phenomenology of dreams themselves. Now, the recent advent of deep neural networks (DNNs) has finally provided the novel conceptual framework within which to understand the evolved function of dreams. Notably, all DNNs face the issue of overfitting as they learn, which is when performance on one dataset increases but the network's performance fails to generalize (often measured by the divergence of performance on training versus testing datasets). This ubiquitous problem in DNNs is often solved by modelers via "noise injections" in the form of noisy or corrupted inputs. The goal of this paper is to argue that the brain faces a similar challenge of overfitting and that nightly dreams evolved to combat the brain's overfitting during its daily learning. That is, dreams are a biological mechanism for increasing generalizability via the creation of corrupted sensory inputs from stochastic activity across the hierarchy of neural structures. Sleep loss, specifically dream loss, leads to an overfitted brain that can still memorize and learn but fails to generalize appropriately. Herein this "overfitted brain hypothesis" is explicitly developed and then compared and contrasted with existing contemporary neuroscientific theories of dreams. Existing evidence for the hypothesis is surveyed within both neuroscience and deep learning, and a set of testable predictions is put forward that can be pursued both in vivo and in silico.
Collapse
Affiliation(s)
- Erik Hoel
- Allen Discovery Center, Tufts University, Medford, MA, USA
| |
Collapse
|
84
|
Jing W, Xia Y, Li M, Cui Y, Chen M, Xue M, Guo D, Biswal BB, Yao D. State-independent and state-dependent patterns in the rat default mode network. Neuroimage 2021; 237:118148. [PMID: 33984491 DOI: 10.1016/j.neuroimage.2021.118148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/04/2021] [Accepted: 05/04/2021] [Indexed: 10/21/2022] Open
Abstract
Resting-state studies have typically assumed constant functional connectivity (FC) between brain regions, and these parameters of interest provide meaningful descriptions of the functional organization of the brain. A number of studies have recently provided evidence pointing to dynamic FC fluctuations in the resting brain, especially in higher-order regions such as the default mode network (DMN). The neural activities underlying dynamic FC remain poorly understood. Here, we recorded electrophysiological signals from DMN regions in freely behaving rats. The dynamic FCs between signals within the DMN were estimated by the phase locking value (PLV) method with sliding time windows across vigilance states [quiet wakefulness (QW) and slow-wave and rapid eye movement sleep (SWS and REMS)]. Factor analysis was then performed to reveal the hidden patterns within the DMN. We identified distinct spatial FC patterns according to the similarities between their temporal dynamics. Interestingly, some of these patterns were vigilance state-dependent, while others were independent across states. The temporal contributions of these patterns fluctuated over time, and their interactive relationships were different across vigilance states. These spatial patterns with dynamic temporal contributions and combinations may offer a flexible framework for efficiently integrating information to support cognition and behavior. These findings provide novel insights into the dynamic functional organization of the rat DMN.
Collapse
Affiliation(s)
- Wei Jing
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for NeuroInformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China; Research Unit of NeuroInformation, Chinese Academy of Medical Sciences, 2019RU035 Chengdu, China; Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan 4030030, China
| | - Yang Xia
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for NeuroInformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China; Research Unit of NeuroInformation, Chinese Academy of Medical Sciences, 2019RU035 Chengdu, China
| | - Min Li
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for NeuroInformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China; Research Unit of NeuroInformation, Chinese Academy of Medical Sciences, 2019RU035 Chengdu, China
| | - Yan Cui
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for NeuroInformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China; Research Unit of NeuroInformation, Chinese Academy of Medical Sciences, 2019RU035 Chengdu, China
| | - Mingming Chen
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for NeuroInformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China; Research Unit of NeuroInformation, Chinese Academy of Medical Sciences, 2019RU035 Chengdu, China; School of Electrical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Miaomiao Xue
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for NeuroInformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China; Research Unit of NeuroInformation, Chinese Academy of Medical Sciences, 2019RU035 Chengdu, China
| | - Daqing Guo
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for NeuroInformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China; Research Unit of NeuroInformation, Chinese Academy of Medical Sciences, 2019RU035 Chengdu, China
| | - Bharat B Biswal
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for NeuroInformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China; Research Unit of NeuroInformation, Chinese Academy of Medical Sciences, 2019RU035 Chengdu, China; Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ 07103, United States.
| | - Dezhong Yao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for NeuroInformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China; Research Unit of NeuroInformation, Chinese Academy of Medical Sciences, 2019RU035 Chengdu, China; School of Electrical Engineering, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
85
|
Soon CS, Vinogradova K, Ong JL, Calhoun VD, Liu T, Zhou JH, Ng KK, Chee MWL. Respiratory, cardiac, EEG, BOLD signals and functional connectivity over multiple microsleep episodes. Neuroimage 2021; 237:118129. [PMID: 33951513 DOI: 10.1016/j.neuroimage.2021.118129] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 04/04/2021] [Accepted: 04/28/2021] [Indexed: 01/16/2023] Open
Abstract
Falling asleep is common in fMRI studies. By using long eyelid closures to detect microsleep onset, we showed that the onset and termination of short sleep episodes invokes a systematic sequence of BOLD signal changes that are large, widespread, and consistent across different microsleep durations. The signal changes are intimately intertwined with shifts in respiration and heart rate, indicating that autonomic contributions are integral to the brain physiology evaluated using fMRI and cannot be simply treated as nuisance signals. Additionally, resting state functional connectivity (RSFC) was altered in accord with the frequency of falling asleep and in a manner that global signal regression does not eliminate. Our findings point to the need to develop a consensus among neuroscientists using fMRI on how to deal with microsleep intrusions. SIGNIFICANCE STATEMENT: Sleep, breathing and cardiac action are influenced by common brainstem nuclei. We show that falling asleep and awakening are associated with a sequence of BOLD signal changes that are large, widespread and consistent across varied durations of sleep onset and awakening. These signal changes follow closely those associated with deceleration and acceleration of respiration and heart rate, calling into question the separation of the latter signals as 'noise' when the frequency of falling asleep, which is commonplace in RSFC studies, correlates with the extent of RSFC perturbation. Autonomic and central nervous system contributions to BOLD signal have to be jointly considered when interpreting fMRI and RSFC studies.
Collapse
Affiliation(s)
- Chun Siong Soon
- Centre for Sleep and Cognition, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Centre for Translational MR Imaging, Yong Loo Lin School of Medicine, National Unviersity of Singapore, Singapore.
| | - Ksenia Vinogradova
- Centre for Sleep and Cognition, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Ju Lynn Ong
- Centre for Sleep and Cognition, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Vince D Calhoun
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State, Georgia Tech, Emory, Atlanta, USA
| | - Thomas Liu
- UCSD Center for Functional MRI and Department of Radiology, UC San Diego School of Medicine, La Jolla, CA, USA
| | - Juan Helen Zhou
- Centre for Sleep and Cognition, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Centre for Translational MR Imaging, Yong Loo Lin School of Medicine, National Unviersity of Singapore, Singapore
| | - Kwun Kei Ng
- Centre for Sleep and Cognition, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Michael W L Chee
- Centre for Sleep and Cognition, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Centre for Translational MR Imaging, Yong Loo Lin School of Medicine, National Unviersity of Singapore, Singapore.
| |
Collapse
|
86
|
Debarnot U, Perrault AA, Sterpenich V, Legendre G, Huber C, Guillot A, Schwartz S. Motor imagery practice benefits during arm immobilization. Sci Rep 2021; 11:8928. [PMID: 33903619 PMCID: PMC8076317 DOI: 10.1038/s41598-021-88142-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 03/30/2021] [Indexed: 11/26/2022] Open
Abstract
Motor imagery (MI) is known to engage motor networks and is increasingly used as a relevant strategy in functional rehabilitation following immobilization, whereas its effects when applied during immobilization remain underexplored. Here, we hypothesized that MI practice during 11 h of arm-immobilization prevents immobilization-related changes at the sensorimotor and cortical representations of hand, as well as on sleep features. Fourteen participants were tested after a normal day (without immobilization), followed by two 11-h periods of immobilization, either with concomitant MI treatment or control tasks, one week apart. At the end of each condition, participants were tested on a hand laterality judgment task, then underwent transcranial magnetic stimulation to measure cortical excitability of the primary motor cortices (M1), followed by a night of sleep during which polysomnography data was recorded. We show that MI treatment applied during arm immobilization had beneficial effects on (1) the sensorimotor representation of hands, (2) the cortical excitability over M1 contralateral to arm-immobilization, and (3) sleep spindles over both M1s during the post-immobilization night. Furthermore, (4) the time spent in REM sleep was significantly longer, following the MI treatment. Altogether, these results support that implementing MI during immobilization may limit deleterious effects of limb disuse, at several levels of sensorimotor functioning.
Collapse
Affiliation(s)
- Ursula Debarnot
- Department of Neuroscience, Faculty of Medicine, University of Geneva, 1211, Geneva, Switzerland. .,Swiss Center for Affective Science, Campus Biotech, 1211, Geneva, Switzerland. .,Inter-University Laboratory of Human Movement Biology-EA 7424, University Claude Bernard Lyon 1, Villeurbanne, France. .,Institut Universitaire de France, Paris, France.
| | - Aurore A Perrault
- Department of Neuroscience, Faculty of Medicine, University of Geneva, 1211, Geneva, Switzerland.,Swiss Center for Affective Science, Campus Biotech, 1211, Geneva, Switzerland.,Sleep, Cognition and Neuroimaging Laboratory, Department of Health, Kinesiology and Applied Physiology, Concordia University, Montreal, Canada
| | - Virginie Sterpenich
- Department of Neuroscience, Faculty of Medicine, University of Geneva, 1211, Geneva, Switzerland.,Swiss Center for Affective Science, Campus Biotech, 1211, Geneva, Switzerland
| | - Guillaume Legendre
- Department of Neuroscience, Faculty of Medicine, University of Geneva, 1211, Geneva, Switzerland.,Swiss Center for Affective Science, Campus Biotech, 1211, Geneva, Switzerland
| | - Chieko Huber
- Department of Neuroscience, Faculty of Medicine, University of Geneva, 1211, Geneva, Switzerland.,Swiss Center for Affective Science, Campus Biotech, 1211, Geneva, Switzerland
| | - Aymeric Guillot
- Inter-University Laboratory of Human Movement Biology-EA 7424, University Claude Bernard Lyon 1, Villeurbanne, France
| | - Sophie Schwartz
- Department of Neuroscience, Faculty of Medicine, University of Geneva, 1211, Geneva, Switzerland.,Swiss Center for Affective Science, Campus Biotech, 1211, Geneva, Switzerland
| |
Collapse
|
87
|
Afrasiabi M, Redinbaugh MJ, Phillips JM, Kambi NA, Mohanta S, Raz A, Haun AM, Saalmann YB. Consciousness depends on integration between parietal cortex, striatum, and thalamus. Cell Syst 2021; 12:363-373.e11. [PMID: 33730543 PMCID: PMC8084606 DOI: 10.1016/j.cels.2021.02.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 11/10/2020] [Accepted: 02/18/2021] [Indexed: 11/19/2022]
Abstract
The neural substrates of consciousness remain elusive. Competing theories that attempt to explain consciousness disagree on the contribution of frontal versus posterior cortex and omit subcortical influences. This lack of understanding impedes the ability to monitor consciousness, which can lead to adverse clinical consequences. To test substrates and measures of consciousness, we recorded simultaneously from frontal cortex, parietal cortex, and subcortical structures, the striatum and thalamus, in awake, sleeping, and anesthetized macaques. We manipulated consciousness on a finer scale using thalamic stimulation, rousing macaques from continuously administered anesthesia. Our results show that, unlike measures targeting complexity, a measure additionally capturing neural integration (Φ∗) robustly correlated with changes in consciousness. Machine learning approaches show parietal cortex, striatum, and thalamus contributed more than frontal cortex to decoding differences in consciousness. These findings highlight the importance of integration between parietal and subcortical structures and challenge a key role for frontal cortex in consciousness.
Collapse
Affiliation(s)
- Mohsen Afrasiabi
- Department of Psychology, University of Wisconsin-Madison, Madison, WI 53705, USA.
| | | | - Jessica M Phillips
- Department of Psychology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Niranjan A Kambi
- Department of Psychology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Sounak Mohanta
- Department of Psychology, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Aeyal Raz
- Department of Anesthesiology, Rambam Health Care Campus, Haifa 3109601, Israel; The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa 3200003, Israel
| | - Andrew M Haun
- Department of Psychiatry, University of Wisconsin-Madison, Madison, WI 53705, USA
| | - Yuri B Saalmann
- Department of Psychology, University of Wisconsin-Madison, Madison, WI 53705, USA; Wisconsin National Primate Research Center, Madison, WI 53705, USA.
| |
Collapse
|
88
|
Zou G, Xu J, Zhou S, Liu J, Su ZH, Zou Q, Gao JH. Functional MRI of arousals in nonrapid eye movement sleep. Sleep 2021; 43:5573984. [PMID: 31555827 DOI: 10.1093/sleep/zsz218] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 07/26/2019] [Indexed: 11/13/2022] Open
Abstract
Arousals commonly occur during human sleep and have been associated with several sleep disorders. Arousals are characterized as an abrupt electroencephalography (EEG) frequency change to higher frequencies during sleep. However, the human brain regions involved in arousal are not yet clear. Simultaneous EEG and functional magnetic resonance imaging (fMRI) data were recorded during the early portion of the sleep period in healthy young adults. Arousals were identified based on the EEG data, and fMRI signal changes associated with 83 arousals from 19 subjects were analyzed. Subcortical regions, including the midbrain, thalamus, basal ganglia, and cerebellum, were activated with arousal. Cortices, including the temporal gyrus, occipital gyrus, and frontal gyrus, were deactivated with arousal. The activations associated with arousal in the subcortical regions were consistent with previous findings of subcortical involvement in behavioral arousal and consciousness. Cortical deactivations may serve as a mechanism to direct incoming sensory stimuli to specific brain regions, thereby monitoring environmental perturbations during sleep.
Collapse
Affiliation(s)
- Guangyuan Zou
- Beijing City Key Lab for Medical Physics and Engineering, Institution of Heavy Ion Physics, School of Physics, Peking University, Beijing, China.,Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Jing Xu
- Laboratory of Applied Brain and Cognitive Sciences, College of International Business, Shanghai International Studies University, Shanghai, China
| | - Shuqin Zhou
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.,Department of Biomedical Engineering, College of Engineering, Peking University, Beijing, China
| | - Jiayi Liu
- Beijing City Key Lab for Medical Physics and Engineering, Institution of Heavy Ion Physics, School of Physics, Peking University, Beijing, China.,Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Zi Hui Su
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.,Nuffield Department of Clinical Neurosciences, Oxford University, Oxford, United Kingdom
| | - Qihong Zou
- Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Jia-Hong Gao
- Beijing City Key Lab for Medical Physics and Engineering, Institution of Heavy Ion Physics, School of Physics, Peking University, Beijing, China.,Center for MRI Research, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.,McGovern Institute for Brain Research, Peking University, Beijing, China.,Shenzhen Institute of Neuroscience, Shenzhen, China
| |
Collapse
|
89
|
Caporale A, Lee H, Lei H, Rao H, Langham MC, Detre JA, Wu PH, Wehrli FW. Cerebral metabolic rate of oxygen during transition from wakefulness to sleep measured with high temporal resolution OxFlow MRI with concurrent EEG. J Cereb Blood Flow Metab 2021; 41:780-792. [PMID: 32538283 PMCID: PMC7983504 DOI: 10.1177/0271678x20919287] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 03/03/2020] [Accepted: 03/20/2020] [Indexed: 01/29/2023]
Abstract
During slow-wave sleep, synaptic transmissions are reduced with a concomitant reduction in brain energy consumption. We used 3 Tesla MRI to noninvasively quantify changes in the cerebral metabolic rate of O2 (CMRO2) during wakefulness and sleep, leveraging the 'OxFlow' method, which provides venous O2 saturation (SvO2) along with cerebral blood flow (CBF). Twelve healthy subjects (31.3 ± 5.6 years, eight males) underwent 45-60 min of continuous scanning during wakefulness and sleep, yielding one image set every 3.4 s. Concurrent electroencephalography (EEG) data were available in eight subjects. Mean values of the metabolic parameters measured during wakefulness were stable, with coefficients of variation below 7% (average values: CMRO2 = 118 ± 12 µmol O2/min/100 g, SvO2 = 67.0 ± 3.7% HbO2, CBF = 50.6 ±4.3 ml/min/100 g). During sleep, on average, CMRO2 decreased 21% (range: 14%-32%; average nadir = 98 ± 16 µmol O2/min/100 g), while EEG slow-wave activity, expressed in terms of δ -power, increased commensurately. Following sleep onset, CMRO2 was found to correlate negatively with relative δ -power (r = -0.6 to -0.8, P < 0.005), and positively with heart rate (r = 0.5 to 0.8, P < 0.0005). The data demonstrate that OxFlow MRI can noninvasively measure dynamic changes in cerebral metabolism associated with sleep, which should open new opportunities to study sleep physiology in health and disease.
Collapse
Affiliation(s)
- Alessandra Caporale
- Laboratory for Structural Physiologic and Functional Imaging, Department of Radiology, University of Pennsylvania Perelman School of Medicine, PA, USA
| | - Hyunyeol Lee
- Laboratory for Structural Physiologic and Functional Imaging, Department of Radiology, University of Pennsylvania Perelman School of Medicine, PA, USA
| | - Hui Lei
- Center for Functional Neuroimaging, Department of Neurology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Hengyi Rao
- Center for Functional Neuroimaging, Department of Neurology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
- Division of Sleep and Chronobiology, Department of Psychiatry, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Michael C Langham
- Laboratory for Structural Physiologic and Functional Imaging, Department of Radiology, University of Pennsylvania Perelman School of Medicine, PA, USA
| | - John A Detre
- Laboratory for Structural Physiologic and Functional Imaging, Department of Radiology, University of Pennsylvania Perelman School of Medicine, PA, USA
- Center for Functional Neuroimaging, Department of Neurology, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Pei-Hsin Wu
- Laboratory for Structural Physiologic and Functional Imaging, Department of Radiology, University of Pennsylvania Perelman School of Medicine, PA, USA
| | - Felix W Wehrli
- Laboratory for Structural Physiologic and Functional Imaging, Department of Radiology, University of Pennsylvania Perelman School of Medicine, PA, USA
| |
Collapse
|
90
|
Disrupted frontostriatal connectivity in primary insomnia: a DTI study. Brain Imaging Behav 2021; 15:2524-2531. [PMID: 33651331 DOI: 10.1007/s11682-021-00454-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 12/28/2020] [Accepted: 01/10/2021] [Indexed: 12/20/2022]
Abstract
Dysfunction of the sleep-wake transition is considered to be associated with the pathology of patients with primary insomnia (PI). Previous animal study had reported that brain circuits between the striatum and cortex can regulate sleep-wake transitions. So far, few studies have systematically explored the structural connectivity of the striatum-centered circuits and their potential roles in patients with PI. In this study, we chosen the striatum as the seed and 10 priori target regions as masks to assess the structural connectivity by using seed-based classification with a diffusion tensor imaging (DTI) probabilistic tractography method. Track strengths of the striatum-centered circuits were compared between 22 patients with PI (41.27 ± 9.21 years) and 30 healthy controls (HC) (35.2 ± 8.14 years). Pittsburgh Sleep Quality Index (PSQI) was used to measure the sleep quality in all participants. Lower track strengths (left striatum- anterior cingulate cortex (ACC), left striatum- dorsal anterior cingulate cortex (dACC), left striatum-Hippocampus, and right striatum-Hippocampus) were observed in patients with PI compared to HC. Additionally, the lower track strengths of brain circuits mentioned above were negatively correlated with PSQI. Taken together, our findings revealed the lower tract strength of frontostriatal circuits in patients with PI and HC, which provided the implications of the system-level structural connections of frontostriatal circuits in the pathology of PI. We suggested that the track strengths of the frontostriatal circuits calculated from DTI can be the potential neuroimaging biomarkers of the sleep quality in patients with PI.
Collapse
|
91
|
Hermann B, Stender J, Habert MO, Kas A, Denis-Valente M, Raimondo F, Pérez P, Rohaut B, Sitt JD, Naccache L. Multimodal FDG-PET and EEG assessment improves diagnosis and prognostication of disorders of consciousness. NEUROIMAGE-CLINICAL 2021; 30:102601. [PMID: 33652375 PMCID: PMC7921007 DOI: 10.1016/j.nicl.2021.102601] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 02/05/2021] [Accepted: 02/11/2021] [Indexed: 12/29/2022]
Abstract
FDG-PET metabolic index of the best hemisphere is robust to diagnose MCS. FDG-PET slightly outperforms EEG-based automatic classification of conscious state. Optimal diagnostic performances are obtained by combining PET and EEG. PET and EEG combination identifies cortical activation suggestive of residual consciousness. PET and EEG combination also predict patients 6-month command-following.
Introduction Functional brain-imaging techniques have revealed that clinical examination of disorders of consciousness (DoC) can underestimate the conscious level of patients. FDG-PET metabolic index of the best preserved hemisphere (MIBH) has been reported as a promising measure of consciousness but has never been externally validated and compared with other brain-imaging diagnostic procedures such as quantitative EEG. Methods FDG-PET, quantitative EEG and cognitive evoked potential using an auditory oddball paradigm were performed in minimally conscious state (MCS) and vegetative state (VS) patient. We compared out-sample diagnostic and prognostic performances of PET-MIBH and EEG-based classification of conscious state to the current behavioral gold-standard, the Coma Recovery Scale – revised (CRS-R). Results Between January 2016 and October 2019, 52 patients were included: 21 VS and 31 MCS. PET-MIBH had an AUC of 0.821 [0.694–0.930], sensitivity of 79% [62–91] and specificity of 78% [56–93], not significantly different from EEG (p = 0.628). Their combination accurately identified almost all MCS patients with a sensitivity of 94% [79–99%] and specificity of 67% [43–85]. Multimodal assessment also identified VS patients with neural correlate of consciousness (4/7 (57%) vs. 1/14 (7%), p = 0.025) and patients with 6-month recovery of command-following (9/24 (38%) vs. 0/16 (0%), p = 0.006), outperforming each technique taken in isolation. Conclusion FDG-PET MIBH is an accurate and robust procedure across sites to diagnose MCS. Its combination with EEG-based classification of conscious state not only optimizes diagnostic performances but also allows to detect covert cognition and to predict 6-month command-following recovery demonstrating the added value of multimodal assessment of DoC.
Collapse
Affiliation(s)
- Bertrand Hermann
- Institut du Cerveau et de la Moelle épinière - ICM, Inserm U1127, CNRS UMR 7225, F-75013 Paris, France; Faculté de Médecine, Université de Paris, Paris, France; Service de Médecine Intensive et Réanimation, Hôpital Européen Georges Pompidou, Assistance Publique des Hôpitaux de Paris (AP-HP), Paris, France.
| | - Johan Stender
- Institut du Cerveau et de la Moelle épinière - ICM, Inserm U1127, CNRS UMR 7225, F-75013 Paris, France
| | - Marie-Odile Habert
- Faculté de Médecine Pitié-Salpêtrière, Sorbonne Universités, UPMC Université Paris 06, Paris, France; Laboratoire d'Imagerie Biomédicale, Sorbonne Université, UPMC Université Paris 06, CNRS, INSERM, F-75013 Paris, France; Service de Médecine Nucléaire, Groupe hospitalier Pitié-Salpêtrière, Assistance Publique des Hôpitaux de Paris (AP-HP), Paris, France
| | - Aurélie Kas
- Faculté de Médecine Pitié-Salpêtrière, Sorbonne Universités, UPMC Université Paris 06, Paris, France; Laboratoire d'Imagerie Biomédicale, Sorbonne Université, UPMC Université Paris 06, CNRS, INSERM, F-75013 Paris, France; Service de Médecine Nucléaire, Groupe hospitalier Pitié-Salpêtrière, Assistance Publique des Hôpitaux de Paris (AP-HP), Paris, France
| | - Mélanie Denis-Valente
- Institut du Cerveau et de la Moelle épinière - ICM, Inserm U1127, CNRS UMR 7225, F-75013 Paris, France; Service de Neurophysiologie, Groupe hospitalier Pitié-Salpêtrière, Assistance Publique des Hôpitaux de Paris (AP-HP), Paris, France
| | - Federico Raimondo
- Institut du Cerveau et de la Moelle épinière - ICM, Inserm U1127, CNRS UMR 7225, F-75013 Paris, France; Coma Science Group, GIGA Consciousness, University of Liège, Belgium; Centre du Cerveau(2), University Hospital of Liège, Belgium
| | - Pauline Pérez
- Institut du Cerveau et de la Moelle épinière - ICM, Inserm U1127, CNRS UMR 7225, F-75013 Paris, France
| | - Benjamin Rohaut
- Institut du Cerveau et de la Moelle épinière - ICM, Inserm U1127, CNRS UMR 7225, F-75013 Paris, France; Faculté de Médecine Pitié-Salpêtrière, Sorbonne Universités, UPMC Université Paris 06, Paris, France
| | - Jacobo Diego Sitt
- Institut du Cerveau et de la Moelle épinière - ICM, Inserm U1127, CNRS UMR 7225, F-75013 Paris, France
| | - Lionel Naccache
- Institut du Cerveau et de la Moelle épinière - ICM, Inserm U1127, CNRS UMR 7225, F-75013 Paris, France; Faculté de Médecine Pitié-Salpêtrière, Sorbonne Universités, UPMC Université Paris 06, Paris, France; Service de Neurophysiologie, Groupe hospitalier Pitié-Salpêtrière, Assistance Publique des Hôpitaux de Paris (AP-HP), Paris, France
| |
Collapse
|
92
|
Scarpelli S, Alfonsi V, Gorgoni M, Giannini AM, De Gennaro L. Investigation on Neurobiological Mechanisms of Dreaming in the New Decade. Brain Sci 2021; 11:brainsci11020220. [PMID: 33670180 PMCID: PMC7916906 DOI: 10.3390/brainsci11020220] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/06/2021] [Accepted: 02/08/2021] [Indexed: 02/05/2023] Open
Abstract
Dream research has advanced significantly over the last twenty years, thanks to the new applications of neuroimaging and electrophysiological techniques. Many findings pointed out that mental activity during sleep and wakefulness shared similar neural bases. On the other side, recent studies have highlighted that dream experience is promoted by significant brain activation, characterized by reduced low frequencies and increased rapid frequencies. Additionally, several studies confirmed that the posterior parietal area and prefrontal cortex are responsible for dream experience. Further, early results revealed that dreaming might be manipulated by sensory stimulations that would provoke the incorporation of specific cues into the dream scenario. Recently, transcranial stimulation techniques have been applied to modulate the level of consciousness during sleep, supporting previous findings and adding new information about neural correlates of dream recall. Overall, although multiple studies suggest that both the continuity and activation hypotheses provide a growing understanding of neural processes underlying dreaming, several issues are still unsolved. The impact of state-/trait-like variables, the influence of circadian and homeostatic factors, and the examination of parasomnia-like events to access dream contents are all opened issues deserving further deepening in future research.
Collapse
Affiliation(s)
- Serena Scarpelli
- Body and Action Lab, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy; (V.A.); (L.D.G.)
- Department of Psychology, Sapienza University of Rome, 00185 Rome, Italy; (M.G.); (A.M.G.)
- Correspondence: ; Tel.: +39-06-4991-7508
| | - Valentina Alfonsi
- Body and Action Lab, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy; (V.A.); (L.D.G.)
| | - Maurizio Gorgoni
- Department of Psychology, Sapienza University of Rome, 00185 Rome, Italy; (M.G.); (A.M.G.)
| | - Anna Maria Giannini
- Department of Psychology, Sapienza University of Rome, 00185 Rome, Italy; (M.G.); (A.M.G.)
| | - Luigi De Gennaro
- Body and Action Lab, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy; (V.A.); (L.D.G.)
- Department of Psychology, Sapienza University of Rome, 00185 Rome, Italy; (M.G.); (A.M.G.)
| |
Collapse
|
93
|
Krishnan D. Orchestration of dreams: a possible tool for enhancement of mental productivity and efficiency. Sleep Biol Rhythms 2021; 19:207-213. [PMID: 33526967 PMCID: PMC7839624 DOI: 10.1007/s41105-021-00313-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 01/15/2021] [Indexed: 11/29/2022]
Abstract
Deciphering the significance of dreams, remains a dream till date. A little is known about its underlying mechanism, brain regions involved and implications with wake life. This review is aimed to investigate the latest developments to summarize the differences in nature of dreams in Rapid eye movement and Non rapid eye movement sleep, possible role of dreams in day to day life with larger focus on Lucid Dreaming- its significant role in elevating productivity and efficiency. To carry out this review, combination of keywords like Lucid Dreaming, Rapid eye movement, Non rapid eye movement, Sleep Cycle, Dream Patterns, molecular mechanism of dreaming etc. were entered in databases like National library of Medicine, Google Scholar etc. Nature and composition of dreams are distinct in different sleep phases and it tends to influence cognitive skills, memory consolidation, mood and personal temperaments. It was observed that dreams in distinct phases, can be directly/indirectly related to development of cognition, skill enhancements, learning, healing, and even stress management affecting overall performance and productivity of an individual. Understanding the nature of dream contents in different phases can possibly inculcate insights for not only recovery aid in several mental illnesses but for elevated efficiency and productivity in normal individuals as well. Realising dreams as an effective tool for its contribution in daily activities might help organising our mood and overall mental well-being, a foremost component to thrive in the contemporary world which is currently undergoing the chaos of Novel Coronavirus Disease 2019.
Collapse
Affiliation(s)
- Dolly Krishnan
- Westfälische Wilhelms-Universität Münster, Münster, Germany
| |
Collapse
|
94
|
Imagination in Autism: A Chance to Improve Early Language Therapy. Healthcare (Basel) 2021; 9:healthcare9010063. [PMID: 33440627 PMCID: PMC7826637 DOI: 10.3390/healthcare9010063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/07/2021] [Accepted: 01/08/2021] [Indexed: 02/02/2023] Open
Abstract
Children with autism often have difficulties in imaginative play, Theory of Mind, and playing out different scenarios in their minds. Research shows that the root of these problems may be the voluntary imagination network that involves the lateral prefrontal cortex and its long frontoposterior connections to the temporal-parietal-occipital area. Previously disconnected visuospatial issues (stimulus overselectivity and tunnel vision) and language issues (lack of comprehension of spatial prepositions and complex recursive sentences) may be explained by the same voluntary imagination deficit. This review highlights the new insights into the mechanism of voluntary imagination, its difference from involuntary imagination, and its unusually strong critical period. Clearer developmental terminology and a better understanding of voluntary imagination have the potential to facilitate communication between therapists and parents, and improve therapy outcomes in children.
Collapse
|
95
|
Irfan M, Schenck CH, Howell MJ. NonREM Disorders of Arousal and Related Parasomnias: an Updated Review. Neurotherapeutics 2021; 18:124-139. [PMID: 33527254 PMCID: PMC8116392 DOI: 10.1007/s13311-021-01011-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/14/2021] [Indexed: 12/14/2022] Open
Abstract
Parasomnias are abnormal behaviors and/or experiences emanating from or associated with sleep typically manifesting as motor movements of varying semiology. We discuss mainly nonrapid eye movement sleep and related parasomnias in this article. Sleepwalking (SW), sleep terrors (ST), confusional arousals, and related disorders result from an incomplete dissociation of wakefulness from nonrapid eye movement (NREM) sleep. Conditions that provoke repeated cortical arousals, and/or promote sleep inertia, lead to NREM parasomnias by impairing normal arousal mechanisms. Changes in the cyclic alternating pattern, a biomarker of arousal instability in NREM sleep, are noted in sleepwalking disorders. Sleep-related eating disorder (SRED) is characterized by a disruption of the nocturnal fast with episodes of feeding after arousal from sleep. SRED is often associated with the use of sedative-hypnotic medications, in particular the widely prescribed benzodiazepine receptor agonists. Compelling evidence suggests that nocturnal eating may in some cases be another nonmotor manifestation of Restless Legs Syndrome (RLS). Initial management should focus upon decreasing the potential for sleep-related injury followed by treating comorbid sleep disorders and eliminating incriminating drugs. Sexsomnia is a subtype of disorders of arousal, where sexual behavior emerges from partial arousal from nonREM sleep. Overlap parasomnia disorders consist of abnormal sleep-related behavior both in nonREM and REM sleep. Status dissociatus is referred to as a breakdown of the sleep architecture where an admixture of various sleep state markers is seen without any specific demarcation. Benzodiazepine therapy can be effective in controlling SW, ST, and sexsomnia, but not SRED. Paroxetine has been reported to provide benefit in some cases of ST. Topiramate, pramipexole, and sertraline can be effective in SRED. Pharmacotherapy for other parasomnias continues to be less certain, necessitating further investigation. NREM parasomnias may resolve spontaneously but require a review of priming and predisposing factors.
Collapse
Affiliation(s)
- Muna Irfan
- Department of Neurology, Minneapolis Veterans Affairs Medical Center/ Pulmonary allergy, Critical Care and Sleep, University of Minnesota, Minneapolis, MN USA
| | - Carlos H. Schenck
- Department of Psychiatry, Hennepin Health Care, University of Minnesota, Minneapolis, MN USA
| | - Michael J Howell
- Department of Neurology, Sleep Disorders Center, University of Minnesota Medical Center, Minneapolis, MN USA
| |
Collapse
|
96
|
Foundations of Human Consciousness: Imaging the Twilight Zone. J Neurosci 2020; 41:1769-1778. [PMID: 33372062 PMCID: PMC8115882 DOI: 10.1523/jneurosci.0775-20.2020] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 09/07/2020] [Accepted: 11/03/2020] [Indexed: 11/30/2022] Open
Abstract
What happens in the brain when conscious awareness of the surrounding world fades? We manipulated consciousness in two experiments in a group of healthy males and measured brain activity with positron emission tomography. Measurements were made during wakefulness, escalating and constant levels of two anesthetic agents (experiment 1, n = 39), and during sleep-deprived wakefulness and non-rapid eye movement sleep (experiment 2, n = 37). In experiment 1, the subjects were randomized to receive either propofol or dexmedetomidine until unresponsiveness. In both experiments, forced awakenings were applied to achieve rapid recovery from an unresponsive to a responsive state, followed by immediate and detailed interviews of subjective experiences during the preceding unresponsive condition. Unresponsiveness rarely denoted unconsciousness, as the majority of the subjects had internally generated experiences. Unresponsive anesthetic states and verified sleep stages, where a subsequent report of mental content included no signs of awareness of the surrounding world, indicated a disconnected state. Functional brain imaging comparing responsive and connected versus unresponsive and disconnected states of consciousness during constant anesthetic exposure revealed that activity of the thalamus, cingulate cortices, and angular gyri are fundamental for human consciousness. These brain structures were affected independent from the pharmacologic agent, drug concentration, and direction of change in the state of consciousness. Analogous findings were obtained when consciousness was regulated by physiological sleep. State-specific findings were distinct and separable from the overall effects of the interventions, which included widespread depression of brain activity across cortical areas. These findings identify a central core brain network critical for human consciousness. SIGNIFICANCE STATEMENT Trying to understand the biological basis of human consciousness is currently one of the greatest challenges of neuroscience. While the loss and return of consciousness regulated by anesthetic drugs and physiological sleep are used as model systems in experimental studies on consciousness, previous research results have been confounded by drug effects, by confusing behavioral “unresponsiveness” and internally generated consciousness, and by comparing brain activity levels across states that differ in several other respects than only consciousness. Here, we present carefully designed studies that overcome many previous confounders and for the first time reveal the neural mechanisms underlying human consciousness and its disconnection from behavioral responsiveness, both during anesthesia and during normal sleep, and in the same study subjects.
Collapse
|
97
|
Vyshedskiy A, Khokhlovich E, Dunn R, Faisman A, Elgart J, Lokshina L, Gankin Y, Ostrovsky S, deTorres L, Edelson SM, Ilyinskii PO. Novel Prefrontal Synthesis Intervention Improves Language in Children with Autism. Healthcare (Basel) 2020; 8:healthcare8040566. [PMID: 33339269 PMCID: PMC7765988 DOI: 10.3390/healthcare8040566] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 12/07/2020] [Accepted: 12/10/2020] [Indexed: 12/03/2022] Open
Abstract
Prefrontal synthesis (PFS) is defined as the ability to juxtapose mental visuospatial objects at will. Paralysis of PFS may be responsible for the lack of comprehension of spatial prepositions, semantically-reversible sentences, and recursive sentences observed in 30 to 40% of individuals with autism spectrum disorder (ASD). In this report we present data from a three-year-long clinical trial of 6454 ASD children age 2 to 12 years, which were administered a PFS-targeting intervention. Tablet-based verbal and nonverbal exercises emphasizing mental-juxtaposition-of-objects were organized into an application called Mental Imagery Therapy for Autism (MITA). The test group included participants who completed more than one thousand exercises and made no more than one error per exercise. The control group was selected from the rest of participants by a matching procedure. Each test group participant was matched to the control group participant by age, gender, expressive language, receptive language, sociability, cognitive awareness, and health score at first evaluation using propensity score analysis. The test group showed a 2.2-fold improvement in receptive language score vs. control group (p < 0.0001) and a 1.4-fold improvement in expressive language (p = 0.0144). No statistically significant change was detected in other subscales not targeted by the exercises. These findings show that language acquisition improves after training PFS and that a further investigation of the PFS-targeting intervention in a randomized controlled study is warranted.
Collapse
Affiliation(s)
- Andrey Vyshedskiy
- Biology Department, Boston University, Boston, MA 02215, USA
- ImagiRation, Boston, MA 02135, USA; (R.D.); (J.E.); (L.L.); (S.O.); (L.d.)
- Correspondence: ; Tel.: +1-(617)-433-7724
| | | | - Rita Dunn
- ImagiRation, Boston, MA 02135, USA; (R.D.); (J.E.); (L.L.); (S.O.); (L.d.)
| | | | - Jonah Elgart
- ImagiRation, Boston, MA 02135, USA; (R.D.); (J.E.); (L.L.); (S.O.); (L.d.)
| | - Lisa Lokshina
- ImagiRation, Boston, MA 02135, USA; (R.D.); (J.E.); (L.L.); (S.O.); (L.d.)
| | | | - Simone Ostrovsky
- ImagiRation, Boston, MA 02135, USA; (R.D.); (J.E.); (L.L.); (S.O.); (L.d.)
| | - Lauren deTorres
- ImagiRation, Boston, MA 02135, USA; (R.D.); (J.E.); (L.L.); (S.O.); (L.d.)
| | | | | |
Collapse
|
98
|
Waters F, Barnby JM, Blom JD. Hallucination, imagery, dreaming: reassembling stimulus-independent perceptions based on Edmund Parish's classic misperception framework. Philos Trans R Soc Lond B Biol Sci 2020; 376:20190701. [PMID: 33308065 DOI: 10.1098/rstb.2019.0701] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Within the broad field of human perception lies the category of stimulus-independent perceptions, which draws together experiences such as hallucinations, mental imagery and dreams. Traditional divisions between medical and psychological sciences have contributed to these experiences being investigated separately. This review aims to examine their similarities and differences at the levels of phenomenology and underlying brain function and thus reassemble them within a common framework. Using Edmund Parish's historical work as a guiding tool and the latest research findings in the cognitive, clinical and computational sciences, we consider how different perspectives may be reconciled and help generate novel hypotheses for future research. This article is part of the theme issue 'Offline perception: voluntary and spontaneous perceptual experiences without matching external stimulation'.
Collapse
Affiliation(s)
- Flavie Waters
- Clinical Research Centre, Graylands Hospital, North Metropolitan Health Service-Mental Health, Perth, Western Australia, Australia.,School of Psychological Sciences, University of Western Australia, Perth, Western Australia, Australia
| | - Joseph M Barnby
- Institute of Psychiatry, Psychology and Neuroscience, King's College, London, UK
| | - Jan Dirk Blom
- Faculty of Social and Behavioural Sciences, Leiden University, Leiden, The Netherlands.,Parnassia Psychiatric Institute, The Hague, The Netherlands.,Department of Psychiatry, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
99
|
Parkar A, Fedrigon DC, Alam F, Vanini G, Mashour GA, Pal D. Carbachol and Nicotine in Prefrontal Cortex Have Differential Effects on Sleep-Wake States. Front Neurosci 2020; 14:567849. [PMID: 33328847 PMCID: PMC7714754 DOI: 10.3389/fnins.2020.567849] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 10/16/2020] [Indexed: 11/13/2022] Open
Abstract
The role of the brainstem cholinergic system in the regulation of sleep-wake states has been studied extensively but relatively little is known about the role of cholinergic mechanisms in prefrontal cortex in the regulation of sleep-wake states. In a recent study, we showed that prefrontal cholinergic stimulation in anesthetized rat can reverse the traits associated with anesthesia and restore a wake-like state, thereby providing evidence for a causal role for prefrontal cholinergic mechanisms in modulating level of arousal. However, the effect of increase in prefrontal cholinergic tone on spontaneous sleep-wake states has yet to be demonstrated. Therefore, in this study, we tested the hypothesis that delivery of cholinergic agonists - carbachol or nicotine - into prefrontal cortex of rat during slow wave sleep (SWS) would produce behavioral arousal and increase the time spent in wake state. We show that unilateral microinjection (200 nL) of carbachol (1 mM) or nicotine (100 mM) into prefrontal cortex during SWS decreased the latency to the onset of wake state (p = 0.03 for carbachol, p = 0.03 for nicotine) and increased the latency to the onset of rapid eye movement sleep (p = 0.008 for carbachol, p = 0.006 for nicotine). Although the infusion of 1 mM carbachol increased the time spent in wake state (p = 0.01) and decreased the time spent in SWS (p = 0.01), infusion of 10 or 100 mM nicotine did not produce any statistically significant change in sleep-wake architecture. These data demonstrate a differential role of prefrontal cholinergic receptors in modulating spontaneous sleep-wake states.
Collapse
Affiliation(s)
- Anjum Parkar
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI, United States
| | - Donald C Fedrigon
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI, United States
| | - Farah Alam
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI, United States
| | - Giancarlo Vanini
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI, United States.,Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, United States.,Center for Consciousness Science, University of Michigan, Ann Arbor, MI, United States
| | - George A Mashour
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI, United States.,Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, United States.,Center for Consciousness Science, University of Michigan, Ann Arbor, MI, United States
| | - Dinesh Pal
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI, United States.,Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, United States.,Center for Consciousness Science, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
100
|
Galbiati A, Sforza M, Fasiello E, Casoni F, Marrella N, Leitner C, Zucconi M, Ferini-Strambi L. The association between emotional dysregulation and REM sleep features in insomnia disorder. Brain Cogn 2020; 146:105642. [PMID: 33190030 DOI: 10.1016/j.bandc.2020.105642] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 10/21/2020] [Indexed: 12/13/2022]
Abstract
Rapid Eye Movement (REM) sleep is involved in nightly emotional processing; therefore, its disruption might be associated with an impaired ability of emotional regulation during daytime. Accordingly, the aim of the present study was to evaluate the presence of emotional dysregulation in insomnia patients and to test its correlation with REM sleep features. Forty-six subjects (23 insomnia patients and 23 healthy controls) were enrolled. All subjects underwent an assessment for the evaluation of emotion dysregulation (Difficulties in Emotion Regulation Scale, DERS), sleep quality, insomnia severity, excessive daytime sleepiness, worry, rumination, depressive and anxious symptomatology. Insomnia patients underwent a nocturnal polysomnographic recording to characterize sleep macrostructure and REM sleep microstructure variables. Insomnia patients reported increased values of emotional dysregulation. REM sleep percentage and REM sleep latency significantly correlated with DERS total score, and with the subscales "Lack of Confidence in Emotional Regulation Skills", "Difficulties in Behavioral Control" and "Difficulty in recognizing emotions". Furthermore, positive correlations between REM arousal index and emotion dysregulation were found, whereas REM density negatively correlated with DERS. Our results suggest the presence of a relationship between REM sleep and emotional regulation in insomnia patients.
Collapse
Affiliation(s)
- Andrea Galbiati
- IRCCS San Raffaele Scientific Institute, Department of Clinical Neurosciences, Neurology - Sleep Disorders Center, Milan, Italy; "Vita-Salute" San Raffaele University, Faculty of Psychology, Milan, Italy.
| | - Marco Sforza
- IRCCS San Raffaele Scientific Institute, Department of Clinical Neurosciences, Neurology - Sleep Disorders Center, Milan, Italy; "Vita-Salute" San Raffaele University, Faculty of Psychology, Milan, Italy
| | - Elisabetta Fasiello
- IRCCS San Raffaele Scientific Institute, Department of Clinical Neurosciences, Neurology - Sleep Disorders Center, Milan, Italy
| | - Francesca Casoni
- IRCCS San Raffaele Scientific Institute, Department of Clinical Neurosciences, Neurology - Sleep Disorders Center, Milan, Italy
| | - Nadia Marrella
- IRCCS San Raffaele Scientific Institute, Department of Clinical Neurosciences, Neurology - Sleep Disorders Center, Milan, Italy
| | - Caterina Leitner
- IRCCS San Raffaele Scientific Institute, Department of Clinical Neurosciences, Neurology - Sleep Disorders Center, Milan, Italy
| | - Marco Zucconi
- IRCCS San Raffaele Scientific Institute, Department of Clinical Neurosciences, Neurology - Sleep Disorders Center, Milan, Italy
| | - Luigi Ferini-Strambi
- IRCCS San Raffaele Scientific Institute, Department of Clinical Neurosciences, Neurology - Sleep Disorders Center, Milan, Italy; "Vita-Salute" San Raffaele University, Faculty of Psychology, Milan, Italy
| |
Collapse
|