51
|
Sin MK, Zamrini E, Ahmed A, Nho K, Hajjar I. Anti-Amyloid Therapy, AD, and ARIA: Untangling the Role of CAA. J Clin Med 2023; 12:6792. [PMID: 37959255 PMCID: PMC10647766 DOI: 10.3390/jcm12216792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/22/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023] Open
Abstract
Anti-amyloid therapies (AATs), such as anti-amyloid monoclonal antibodies, are emerging treatments for people with early Alzheimer's disease (AD). AATs target amyloid β plaques in the brain. Amyloid-related imaging abnormalities (ARIA), abnormal signals seen on magnetic resonance imaging (MRI) of the brain in patients with AD, may occur spontaneously but occur more frequently as side effects of AATs. Cerebral amyloid angiopathy (CAA) is a major risk factor for ARIA. Amyloid β plays a key role in the pathogenesis of AD and of CAA. Amyloid β accumulation in the brain parenchyma as plaques is a pathological hallmark of AD, whereas amyloid β accumulation in cerebral vessels leads to CAA. A better understanding of the pathophysiology of ARIA is necessary for early detection of those at highest risk. This could lead to improved risk stratification and the ultimate reduction of symptomatic ARIA. Histopathological confirmation of CAA by brain biopsy or autopsy is the gold standard but is not clinically feasible. MRI is an available in vivo tool for detecting CAA. Cerebrospinal fluid amyloid β level testing and amyloid PET imaging are available but do not offer specificity for CAA vs amyloid plaques in AD. Thus, developing and testing biomarkers as reliable and sensitive screening tools for the presence and severity of CAA is a priority to minimize ARIA complications.
Collapse
Affiliation(s)
- Mo-Kyung Sin
- College of Nursing, Seattle University, Seattle, WA 98122, USA
| | | | - Ali Ahmed
- VA Medical Center, Washington, DC 20242, USA;
| | - Kwangsik Nho
- School of Medicine, Indianna University, Indianapolis, IN 46202, USA;
| | - Ihab Hajjar
- School of Medicine, University of Texas Southwestern, Dallas, TX 75390, USA;
| |
Collapse
|
52
|
Park H, Kim H, Kwak S, Youm Y, Chey J. Association between Loneliness and Memory Function through White Matter Hyperintensities in Older Adults: The Moderating Role of Gender. Behav Sci (Basel) 2023; 13:869. [PMID: 37887519 PMCID: PMC10604491 DOI: 10.3390/bs13100869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/16/2023] [Accepted: 10/19/2023] [Indexed: 10/28/2023] Open
Abstract
Loneliness has an important impact on memory function in late life. However, the neural mechanism by which loneliness detrimentally influences memory function remains elusive. Furthermore, it remains unclear whether the association between loneliness and memory function varies by gender. The current study aimed to investigate the neural mechanism underlying the association between loneliness and episodic memory function and explore whether it varies with gender among cognitively normal older adults. A total of 173 community-dwelling adults aged 60 years or older from the Korean Social Life, Health, and Aging Project (KSHAP) study (mean age = 71.87) underwent an assessment of loneliness, neuropsychological testing, and structural magnetic resonance imaging. The association between loneliness and episodic memory function was mediated by the volume of white matter hyperintensities (WMHs), but not by hippocampal or gray matter volumes. In addition, the association between loneliness and memory function through WMHs was significantly moderated by gender; specifically, the indirect effect was significant among men but not among women. The study suggests that WMHs may be a potential neurological mechanism that causes late-life memory dysfunction associated with loneliness in older men. The findings underscore the need for gender-specific interventions to mitigate memory impairment associated with late-life loneliness, with significant public health implications.
Collapse
Affiliation(s)
- Hyeyoung Park
- Department of Psychology, Seoul National University, Seoul 08826, Republic of Korea; (H.P.); (H.K.)
| | - Hairin Kim
- Department of Psychology, Seoul National University, Seoul 08826, Republic of Korea; (H.P.); (H.K.)
| | - Seyul Kwak
- Department of Psychology, Pusan National University, Busan 46241, Republic of Korea;
| | - Yoosik Youm
- Department of Sociology, Yonsei University, Seoul 03722, Republic of Korea;
| | - Jeanyung Chey
- Department of Psychology, Seoul National University, Seoul 08826, Republic of Korea; (H.P.); (H.K.)
| |
Collapse
|
53
|
Wei C, Yu X, Chen Y, Yang T, Li S, Li J, Chen X. Can Patients with Asymptomatic/Mild Illness and Moderate Illness COVID-19 Have White Matter Damage? Int J Gen Med 2023; 16:4585-4593. [PMID: 37840824 PMCID: PMC10576465 DOI: 10.2147/ijgm.s434968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 10/04/2023] [Indexed: 10/17/2023] Open
Abstract
Background and Purpose Studies have shown that severe coronavirus pandemic 2019 infection could lead to white matter hyperintensities, but the relationship between asymptomatic/mild illness and moderate illness coronavirus pandemic 2019 and white matter hyperintensities remains largely unknown. This study aimed to investigate the relationship between asymptomatic/mild illness and moderate illness coronavirus pandemic 2019 and the risk of white matter hyperintensities. Methods Hospitalized patients who were confirmed to have coronavirus pandemic 2019 for the first time were enrolled. Fazekas scores were used for assessment of the severity of white matter hyperintensities. We also rated the 90-day functional outcome after discharge. Results Of the 157 enrolled patients, 124 (78.98%) coronavirus pandemic 2019 patients were classified as having asymptomatic or mild illness, and 33 (21.02%) were classified as having moderate illness. The results showed that the Fazekas scale scores at baseline (periventricular white matter hyperintensities, 1.31±1.16 vs 2.06±1.20; Deep white matter hyperintensities, 1.04±0.97 vs 1.73±1.13 P <0.01) and at follow-up (periventricular white matter hyperintensities, 1.38±1.21 vs 2.09±1.21; Deep white matter hyperintensities, 1.13±1.04 vs 1.79±1.14 P <0.01) were lower in patients with symptomatic or mild illness than in those with moderate illness. Moreover, no significant difference (7.26% vs 3.03%; P =0.377) was observed between the two divided groups in terms of white matter hyperintensities progression. Conclusion Our findings suggest that moderate COVID-19 is related to severe white matter hyperintensities compared with asymptomatic/mild illness but not to the progression of white matter hyperintensities.
Collapse
Affiliation(s)
- Cunsheng Wei
- Department of Neurology, Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, Jiangsu, 211100, People’s Republic of China
| | - Xiaorong Yu
- Department of Neurology, Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, Jiangsu, 211100, People’s Republic of China
| | - Yuan Chen
- Department of Neurology, Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, Jiangsu, 211100, People’s Republic of China
| | - Tingting Yang
- Department of Neurology, Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, Jiangsu, 211100, People’s Republic of China
| | - Shenghua Li
- Department of Neurology, Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, Jiangsu, 211100, People’s Republic of China
| | - Junrong Li
- Department of Neurology, Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, Jiangsu, 211100, People’s Republic of China
| | - Xuemei Chen
- Department of Neurology, Affiliated Jiangning Hospital with Nanjing Medical University, Nanjing, Jiangsu, 211100, People’s Republic of China
| |
Collapse
|
54
|
Ali DG, Bahrani AA, El Khouli RH, Gold BT, Jiang Y, Zachariou V, Wilcock DM, Jicha GA. White matter hyperintensities influence distal cortical β-amyloid accumulation in default mode network pathways. Brain Behav 2023; 13:e3209. [PMID: 37534614 PMCID: PMC10570488 DOI: 10.1002/brb3.3209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 07/19/2023] [Accepted: 07/22/2023] [Indexed: 08/04/2023] Open
Abstract
BACKGROUND AND PURPOSE Cerebral small vessel disease (SVD) has been suggested to contribute to the pathogenesis of Alzheimer's disease (AD). Yet, the role of SVD in potentially contributing to AD pathology is unclear. The main objective of this study was to test the hypothesis that WMHs influence amyloid β (Aβ) levels within connected default mode network (DMN) tracts and cortical regions in cognitively unimpaired older adults. METHODS Regional standard uptake value ratios (SUVr) from Aβ-PET and white matter hyperintensity (WMH) volumes from three-dimensional magnetic resonance imaging FLAIR images were analyzed across a sample of 72 clinically unimpaired (mini-mental state examination ≥26), older adults (mean age 74.96 and standard deviation 8.13) from the Alzheimer's Disease Neuroimaging Initiative (ADNI3). The association of WMH volumes in major fiber tracts projecting from cortical DMN regions and Aβ-PET SUVr in the connected cortical DMN regions was analyzed using linear regression models adjusted for age, sex, ApoE, and total brain volumes. RESULTS The regression analyses demonstrate that increased WMH volumes in the superior longitudinal fasciculus were associated with increased regional SUVr in the inferior parietal lobule (p = .011). CONCLUSION The findings suggest that the relation between Aβ in parietal cortex is associated with SVD in downstream white matter (WM) pathways in preclinical AD. The biological relationships and interplay between Aβ and WM microstructure alterations that precede overt WMH development across the continuum of AD progression warrant further study.
Collapse
Affiliation(s)
- Doaa G. Ali
- Sanders‐Brown Center on Aging, College of MedicineUniversity of KentuckyLexingtonKentuckyUSA
- Department of Behavioral Science, College of MedicineUniversity of KentuckyLexingtonKentuckyUSA
| | - Ahmed A. Bahrani
- Sanders‐Brown Center on Aging, College of MedicineUniversity of KentuckyLexingtonKentuckyUSA
- Department of Neurology, College of MedicineUniversity of KentuckyLexingtonKentuckyUSA
| | - Riham H. El Khouli
- Department of Radiology, College of MedicineUniversity of KentuckyLexingtonKentuckyUSA
| | - Brian T. Gold
- Sanders‐Brown Center on Aging, College of MedicineUniversity of KentuckyLexingtonKentuckyUSA
- Department of Neuroscience, College of MedicineUniversity of KentuckyLexingtonKentuckyUSA
| | - Yang Jiang
- Sanders‐Brown Center on Aging, College of MedicineUniversity of KentuckyLexingtonKentuckyUSA
- Department of Behavioral Science, College of MedicineUniversity of KentuckyLexingtonKentuckyUSA
| | - Valentinos Zachariou
- Department of Neuroscience, College of MedicineUniversity of KentuckyLexingtonKentuckyUSA
| | - Donna M. Wilcock
- Sanders‐Brown Center on Aging, College of MedicineUniversity of KentuckyLexingtonKentuckyUSA
- Department of Physiology, College of MedicineUniversity of KentuckyLexingtonKentuckyUSA
| | - Gregory A. Jicha
- Sanders‐Brown Center on Aging, College of MedicineUniversity of KentuckyLexingtonKentuckyUSA
- Department of Behavioral Science, College of MedicineUniversity of KentuckyLexingtonKentuckyUSA
- Department of Neurology, College of MedicineUniversity of KentuckyLexingtonKentuckyUSA
| |
Collapse
|
55
|
Dougherty RJ, Wanigatunga AA, An Y, Tian Q, Simonsick EM, Albert MS, Resnick SM, Schrack JA. Walking energetics and white matter hyperintensities in mid-to-late adulthood. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2023; 15:e12501. [PMID: 38026756 PMCID: PMC10646278 DOI: 10.1002/dad2.12501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/11/2023] [Accepted: 10/22/2023] [Indexed: 12/01/2023]
Abstract
INTRODUCTION White matter hyperintensities (WMHs) increase with age and contribute to cognitive and motor function decline. Energy costs for mobility worsen with age, as the energetic cost of walking increases and energetic capacity declines. We examined the cross-sectional associations of multiple measures of walking energetics with WMHs in mid- to late-aged adults. METHODS A total of 601 cognitively unimpaired adults (mean age 66.9 ± 15.3 years, 54% women) underwent brain magnetic resonance imaging scans and completed standardized slow- and peak-paced walking assessments with metabolic measurement (V̇O2). T1-weighted scans and fluid-attenuated inversion recovery images were used to quantify WMHs. Separate multivariable linear regression models examined associations adjusted for covariates. RESULTS Lower slow-paced V̇O2 (B = 0.07; P = 0.030), higher peak-paced V̇O2 (B = -0.10; P = 0.007), and lower cost-to-capacity ratio (B = .12; P < 0.0001) were all associated with lower WMH volumes. DISCUSSION The cost-to-capacity ratio, which describes the percentage of capacity required for ambulation, was the walking energetic measure most strongly associated with WMHs.
Collapse
Affiliation(s)
- Ryan J. Dougherty
- Department of NeurologyJohns Hopkins School of MedicineBaltimoreMarylandUSA
- Center on Aging and HealthJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Amal A. Wanigatunga
- Center on Aging and HealthJohns Hopkins UniversityBaltimoreMarylandUSA
- Department of EpidemiologyJohns Hopkins Bloomberg School of Public HealthBaltimoreMarylandUSA
| | - Yang An
- Intramural Research ProgramNational Institute on AgingBaltimoreMarylandUSA
| | - Qu Tian
- Intramural Research ProgramNational Institute on AgingBaltimoreMarylandUSA
| | | | - Marilyn S. Albert
- Department of NeurologyJohns Hopkins School of MedicineBaltimoreMarylandUSA
| | - Susan M. Resnick
- Intramural Research ProgramNational Institute on AgingBaltimoreMarylandUSA
| | - Jennifer A. Schrack
- Center on Aging and HealthJohns Hopkins UniversityBaltimoreMarylandUSA
- Department of EpidemiologyJohns Hopkins Bloomberg School of Public HealthBaltimoreMarylandUSA
| |
Collapse
|
56
|
Whitman ET, Ryan CP, Abraham WC, Addae A, Corcoran DL, Elliott ML, Hogan S, Ireland D, Keenan R, Knodt AR, Melzer TR, Poulton R, Ramrakha S, Sugden K, Williams BS, Zhou J, Hariri AR, Belsky DW, Moffitt TE, Caspi A. A blood biomarker of accelerated aging in the body associates with worse structural integrity in the brain: replication across three cohorts. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.09.06.23295140. [PMID: 37732266 PMCID: PMC10508789 DOI: 10.1101/2023.09.06.23295140] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Biological aging is the correlated decline of multi-organ system integrity central to the etiology of many age-related diseases. A novel epigenetic measure of biological aging, DunedinPACE, is associated with cognitive dysfunction, incident dementia, and mortality. Here, we tested for associations between DunedinPACE and structural MRI phenotypes in three datasets spanning midlife to advanced age: the Dunedin Study (age=45 years), the Framingham Heart Study Offspring Cohort (mean age=63 years), and the Alzheimer's Disease Neuroimaging Initiative (mean age=75 years). We also tested four additional epigenetic measures of aging: the Horvath clock, the Hannum clock, PhenoAge, and GrimAge. Across all datasets (total N observations=3,380; total N individuals=2,322), faster DunedinPACE was associated with lower total brain volume, lower hippocampal volume, and thinner cortex. In two datasets, faster DunedinPACE was associated with greater burden of white matter hyperintensities. Across all measures, DunedinPACE and GrimAge had the strongest and most consistent associations with brain phenotypes. Our findings suggest that single timepoint measures of multi-organ decline such as DunedinPACE could be useful for gauging nervous system health.
Collapse
Affiliation(s)
- Ethan T Whitman
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
| | - Calen P Ryan
- Butler Columbia Aging Center, Columbia University Mailman School of Public Health, New York, USA
| | | | - Angela Addae
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
| | - David L Corcoran
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Maxwell L Elliott
- Department of Psychology, Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Sean Hogan
- Dunedin Multidisciplinary Health and Development Research Unit, Department of Psychology, University of Otago, Dunedin, New Zealand
| | - David Ireland
- Dunedin Multidisciplinary Health and Development Research Unit, Department of Psychology, University of Otago, Dunedin, New Zealand
| | - Ross Keenan
- Brain Research New Zealand-Rangahau Roro Aotearoa, Centre of Research Excellence, Universities of Auckland and Otago, New Zealand
- Christchurch Radiology Group, Christchurch, New Zealand
| | - Annchen R Knodt
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
| | - Tracy R Melzer
- Brain Research New Zealand-Rangahau Roro Aotearoa, Centre of Research Excellence, Universities of Auckland and Otago, New Zealand
- Department of Medicine, University of Otago, Christchurch, New Zealand
| | - Richie Poulton
- Dunedin Multidisciplinary Health and Development Research Unit, Department of Psychology, University of Otago, Dunedin, New Zealand
| | - Sandhya Ramrakha
- Dunedin Multidisciplinary Health and Development Research Unit, Department of Psychology, University of Otago, Dunedin, New Zealand
| | - Karen Sugden
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
| | | | - Jiayi Zhou
- Butler Columbia Aging Center, Columbia University Mailman School of Public Health, New York, USA
| | - Ahmad R Hariri
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
| | - Daniel W Belsky
- Butler Columbia Aging Center, Columbia University Mailman School of Public Health, New York, USA
- Department of Epidemiology, Columbia University Mailman School of Public Health, New York, USA
| | - Terrie E Moffitt
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
- Center for Genomic and Computational Biology, Duke University, Durham, NC, USA
- King's College London, Social, Genetic, and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology, & Neuroscience, London, UK
- PROMENTA, Department of Psychology, University of Oslo, Norway
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
| | - Avshalom Caspi
- Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
- Center for Genomic and Computational Biology, Duke University, Durham, NC, USA
- King's College London, Social, Genetic, and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology, & Neuroscience, London, UK
- PROMENTA, Department of Psychology, University of Oslo, Norway
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
| |
Collapse
|
57
|
Hammond TC, Green SJ, Jacobs Y, Chlipala GE, Xing X, Heil S, Chen A, Aware C, Flemister A, Stromberg A, Balchandani P, Lin AL. Gut microbiome association with brain imaging markers, APOE genotype, calcium and vegetable intakes, and obesity in healthy aging adults. Front Aging Neurosci 2023; 15:1227203. [PMID: 37736325 PMCID: PMC10510313 DOI: 10.3389/fnagi.2023.1227203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 08/17/2023] [Indexed: 09/23/2023] Open
Abstract
Introduction Advanced age is a significant factor in changes to brain physiology and cognitive functions. Recent research has highlighted the critical role of the gut microbiome in modulating brain functions during aging, which can be influenced by various factors such as apolipoprotein E (APOE) genetic variance, body mass index (BMI), diabetes, and dietary intake. However, the associations between the gut microbiome and these factors, as well as brain structural, vascular, and metabolic imaging markers, have not been well explored. Methods We recruited 30 community dwelling older adults between age 55-85 in Kentucky. We collected the medical history from the electronic health record as well as the Dietary Screener Questionnaire. We performed APOE genotyping with an oral swab, gut microbiome analysis using metagenomics sequencing, and brain structural, vascular, and metabolic imaging using MRI. Results Individuals with APOE e2 and APOE e4 genotypes had distinct microbiota composition, and higher level of pro-inflammatory microbiota were associated higher BMI and diabetes. In contrast, calcium- and vegetable-rich diets were associated with microbiota that produced short chain fatty acids leading to an anti-inflammatory state. We also found that important gut microbial butyrate producers were correlated with the volume of the thalamus and corpus callosum, which are regions of the brain responsible for relaying and processing information. Additionally, putative proinflammatory species were negatively correlated with GABA production, an inhibitory neurotransmitter. Furthermore, we observed that the relative abundance of bacteria from the family Eggerthellaceae, equol producers, was correlated with white matter integrity in tracts connecting the brain regions related to language, memory, and learning. Discussion These findings highlight the importance of gut microbiome association with brain health in aging population and could have important implications aimed at optimizing healthy brain aging through precision prebiotic, probiotic or dietary interventions.
Collapse
Affiliation(s)
- Tyler C. Hammond
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, United States
- Department of Neuroscience, University of Kentucky, Lexington, KY, United States
| | - Stefan J. Green
- Genomics and Microbiome Core Facility, Rush University, Chicago, IL, United States
| | - Yael Jacobs
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - George E. Chlipala
- Research Informatics Core, University of Illinois Chicago, Chicago, IL, United States
| | - Xin Xing
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, United States
- Department of Computer Science, University of Kentucky, Lexington, KY, United States
- Roy Blunt NextGen Precision Health, University of Missouri, Columbia, MO, United States
- Department of Radiology, University of Missouri, Columbia, MO, United States
| | - Sally Heil
- School of Medicine, University of Missouri, Columbia, MO, United States
| | - Anna Chen
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, United States
| | - Chetan Aware
- Roy Blunt NextGen Precision Health, University of Missouri, Columbia, MO, United States
- Department of Radiology, University of Missouri, Columbia, MO, United States
| | - Abeoseh Flemister
- Roy Blunt NextGen Precision Health, University of Missouri, Columbia, MO, United States
- Department of Radiology, University of Missouri, Columbia, MO, United States
| | - Arnold Stromberg
- Dr. Bing Zhang Department of Statistics, University of Kentucky, Lexington, KY, United States
| | - Priti Balchandani
- BioMedical Engineering and Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Ai-Ling Lin
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, United States
- Roy Blunt NextGen Precision Health, University of Missouri, Columbia, MO, United States
- Department of Radiology, University of Missouri, Columbia, MO, United States
- Institute for Data Science and Informatics, University of Missouri, Columbia, MO, United States
- Division of Biological Sciences, University of Missouri, Columbia, MO, United States
| |
Collapse
|
58
|
Badji A, Youwakim J, Cooper A, Westman E, Marseglia A. Vascular cognitive impairment - Past, present, and future challenges. Ageing Res Rev 2023; 90:102042. [PMID: 37634888 DOI: 10.1016/j.arr.2023.102042] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 08/22/2023] [Accepted: 08/23/2023] [Indexed: 08/29/2023]
Abstract
Vascular cognitive impairment (VCI) is a lifelong process encompassing a broad spectrum of cognitive disorders, ranging from subtle or mild deficits to prodromal and fully developed dementia, originating from cerebrovascular lesions such as large and small vessel disease. Genetic predisposition and environmental exposure to risk factors such as unhealthy lifestyles, hypertension, cardiovascular disease, and metabolic disorders will synergistically interact, yielding biochemical and structural brain changes, ultimately culminating in VCI. However, little is known about the pathological processes underlying VCI and the temporal dynamics between risk factors and disease mechanisms (biochemical and structural brain changes). This narrative review aims to provide an evidence-based summary of the link between individual vascular risk/disorders and cognitive dysfunction and the potential structural and biochemical pathophysiological processes. We also discuss some key challenges for future research on VCI. There is a need to shift from individual risk factors/disorders to comorbid vascular burden, identifying and integrating imaging and fluid biomarkers, implementing a life-course approach, considering possible neuroprotective influences of positive life exposures, and addressing biological sex at birth and gender differences. Finally, this review highlights the need for future researchers to leverage and integrate multidimensional data to advance our understanding of the mechanisms and pathophysiology of VCI.
Collapse
Affiliation(s)
- Atef Badji
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden; Theme Inflammation and Aging, Karolinska University Hospital, Stockholm, Sweden
| | - Jessica Youwakim
- Department of Pharmacology and Physiology, Université de Montréal, Montreal, QC, Canada; Centre interdisciplinaire de recherche sur le cerveau et l'apprentissage (CIRCA), Montreal, QC, Canada; Groupe de Recherche sur la Signalisation Neuronal et la Circuiterie (SNC), Montreal, QC, Canada
| | - Alexandra Cooper
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden; Unit of Integrative Epidemiology, Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Eric Westman
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden; Department of Neuroimaging, Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology, and Neuroscience, King's College London, London, UK
| | - Anna Marseglia
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
59
|
Hoost SS, Brickman AM, Manly JJ, Honig LS, Gu Y, Sanchez D, Reyes-Dumeyer D, Lantigua RA, Kang MS, Dage JL, Mayeux R. Effects of Vascular Risk Factors on the Association of Blood-Based Biomarkers with Alzheimer's Disease. MEDICAL RESEARCH ARCHIVES 2023; 11:10.18103/mra.v11i9.4468. [PMID: 38037598 PMCID: PMC10688358 DOI: 10.18103/mra.v11i9.4468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Background Comorbidities may influence the levels of blood-based biomarkers for Alzheimer's disease (AD). We investigated whether differences in risk factors or comorbid conditions might explain the discordance between clinical diagnosis and biomarker classifications in a multi-ethnic cohort of elderly individuals. Aims To evaluate the relationship of medical conditions and other characteristics, including body mass index (BMI), vascular risk factors, and head injury, with cognitive impairment and blood-based biomarkers of AD, phosphorylated tau (P-tau 181, P-tau 217), in a multi-ethnic cohort. Methods Three-hundred individuals, aged 65 and older, were selected from a prospective community-based cohort for equal representation among three racial/ethnic groups: non-Hispanic White, Hispanic/Latino and African American/Black. Participants were classified into four groups based on absence (Asym) or presence (Sym) of cognitive impairment and low (NEG) or high (POS) P-tau 217 or P-tau 181 levels, determined previously in the same cohort: (Asym/NEG, Asym/POS, Sym/NEG, Sym/POS). We examined differences in individual characteristics across the four groups. We performed post-hoc analysis examining the differences across biomarker and cognitive status. Results P-tau 217 or P-tau 181 positive individuals had lower BMI than P-tau negative participants, regardless of symptom status. Symptomatic and asymptomatic participants did not differ in terms of BMI. BMI was not a mediator of the effect of P-tau 217 or P-tau 181 on dementia. Frequencies of other risk factors did not differ between the four groups of individuals. Conclusions Participants with higher levels of P-tau 217 or P-tau 181 consistent with AD had lower BMI regardless of whether the individual was symptomatic. These findings suggest that weight loss may change with AD biomarker levels before onset of cognitive decline. They do not support BMI as a confounding variable. Further longitudinal studies could explore the relationship of risk factors with clinical diagnoses and biomarkers.
Collapse
Affiliation(s)
- SS Hoost
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, and the New York Presbyterian Hospital, New York, NY
| | - AM Brickman
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY
- G.H. Sergievsky Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, and the New York Presbyterian Hospital, New York, NY
| | - JJ Manly
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY
- G.H. Sergievsky Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, and the New York Presbyterian Hospital, New York, NY
| | - LS Honig
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY
- G.H. Sergievsky Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, and the New York Presbyterian Hospital, New York, NY
| | - Y Gu
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY
- G.H. Sergievsky Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, and the New York Presbyterian Hospital, New York, NY
| | - D Sanchez
- G.H. Sergievsky Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, and the New York Presbyterian Hospital, New York, NY
| | - D Reyes-Dumeyer
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY
- G.H. Sergievsky Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, and the New York Presbyterian Hospital, New York, NY
| | - RA Lantigua
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY
- G.H. Sergievsky Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY
- Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, and the New York Presbyterian Hospital, New York, NY
| | - MS Kang
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY
| | - JL Dage
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN
- Indiana Alzheimer’s Disease Research Center, Indiana University School of Medicine Indianapolis IN
| | - R Mayeux
- Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY
- G.H. Sergievsky Center, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY
- Department of Neurology, Vagelos College of Physicians and Surgeons, Columbia University, and the New York Presbyterian Hospital, New York, NY
| |
Collapse
|
60
|
McKay NS, Gordon BA, Hornbeck RC, Dincer A, Flores S, Keefe SJ, Joseph-Mathurin N, Jack CR, Koeppe R, Millar PR, Ances BM, Chen CD, Daniels A, Hobbs DA, Jackson K, Koudelis D, Massoumzadeh P, McCullough A, Nickels ML, Rahmani F, Swisher L, Wang Q, Allegri RF, Berman SB, Brickman AM, Brooks WS, Cash DM, Chhatwal JP, Day GS, Farlow MR, la Fougère C, Fox NC, Fulham M, Ghetti B, Graff-Radford N, Ikeuchi T, Klunk W, Lee JH, Levin J, Martins R, Masters CL, McConathy J, Mori H, Noble JM, Reischl G, Rowe C, Salloway S, Sanchez-Valle R, Schofield PR, Shimada H, Shoji M, Su Y, Suzuki K, Vöglein J, Yakushev I, Cruchaga C, Hassenstab J, Karch C, McDade E, Perrin RJ, Xiong C, Morris JC, Bateman RJ, Benzinger TLS. Positron emission tomography and magnetic resonance imaging methods and datasets within the Dominantly Inherited Alzheimer Network (DIAN). Nat Neurosci 2023; 26:1449-1460. [PMID: 37429916 PMCID: PMC10400428 DOI: 10.1038/s41593-023-01359-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/15/2023] [Indexed: 07/12/2023]
Abstract
The Dominantly Inherited Alzheimer Network (DIAN) is an international collaboration studying autosomal dominant Alzheimer disease (ADAD). ADAD arises from mutations occurring in three genes. Offspring from ADAD families have a 50% chance of inheriting their familial mutation, so non-carrier siblings can be recruited for comparisons in case-control studies. The age of onset in ADAD is highly predictable within families, allowing researchers to estimate an individual's point in the disease trajectory. These characteristics allow candidate AD biomarker measurements to be reliably mapped during the preclinical phase. Although ADAD represents a small proportion of AD cases, understanding neuroimaging-based changes that occur during the preclinical period may provide insight into early disease stages of 'sporadic' AD also. Additionally, this study provides rich data for research in healthy aging through inclusion of the non-carrier controls. Here we introduce the neuroimaging dataset collected and describe how this resource can be used by a range of researchers.
Collapse
Affiliation(s)
| | | | | | - Aylin Dincer
- Washington University in St. Louis, St. Louis, MO, USA
| | - Shaney Flores
- Washington University in St. Louis, St. Louis, MO, USA
| | - Sarah J Keefe
- Washington University in St. Louis, St. Louis, MO, USA
| | | | | | | | | | - Beau M Ances
- Washington University in St. Louis, St. Louis, MO, USA
| | | | | | - Diana A Hobbs
- Washington University in St. Louis, St. Louis, MO, USA
| | | | | | | | | | | | | | - Laura Swisher
- Washington University in St. Louis, St. Louis, MO, USA
| | - Qing Wang
- Washington University in St. Louis, St. Louis, MO, USA
| | | | | | - Adam M Brickman
- Columbia University Irving Medical Center, New York, NY, USA
| | - William S Brooks
- Neuroscience Research Australia, Sydney, New South Wales, Australia
| | - David M Cash
- UK Dementia Research Institute at University College London, London, UK
- University College London, London, UK
| | - Jasmeer P Chhatwal
- Massachusetts General and Brigham & Women's Hospitals, Harvard Medical School, Boston, MA, USA
| | | | | | - Christian la Fougère
- Department of Radiology, University of Tübingen, Tübingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | - Nick C Fox
- UK Dementia Research Institute at University College London, London, UK
- University College London, London, UK
| | - Michael Fulham
- Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | | | | | | | | | | | - Johannes Levin
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| | - Ralph Martins
- Edith Cowan University, Joondalup, Western Australia, Australia
| | | | | | | | - James M Noble
- Columbia University Irving Medical Center, New York, NY, USA
| | - Gerald Reischl
- Department of Radiology, University of Tübingen, Tübingen, Germany
| | | | | | - Raquel Sanchez-Valle
- Alzheimer's Disease and Other Cognitive Disorders Unit, Neurology Service, Hospital Clínic de Barcelona, IDIBAPS, University of Barcelona, Barcelona, Spain
| | - Peter R Schofield
- Neuroscience Research Australia, Sydney, New South Wales, Australia
- School of Biomedical Sciences, University of New South Wales, Sydney, New South Wales, Australia
| | | | | | - Yi Su
- Banner Alzheimer's Institute, Phoenix, AZ, USA
| | | | - Jonathan Vöglein
- German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
- Department of Neurology, Ludwig-Maximilians-Universität München, München, Germany
| | - Igor Yakushev
- School of Medicine, Technical University of Munich, Munich, Germany
| | | | | | - Celeste Karch
- Washington University in St. Louis, St. Louis, MO, USA
| | - Eric McDade
- Washington University in St. Louis, St. Louis, MO, USA
| | | | | | - John C Morris
- Washington University in St. Louis, St. Louis, MO, USA
| | | | | |
Collapse
|
61
|
Garnier-Crussard A, Cotton F, Krolak-Salmon P, Chételat G. White matter hyperintensities in Alzheimer's disease: Beyond vascular contribution. Alzheimers Dement 2023; 19:3738-3748. [PMID: 37027506 DOI: 10.1002/alz.13057] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/15/2023] [Accepted: 03/03/2023] [Indexed: 04/09/2023]
Abstract
White matter hyperintensities (WMH), frequently seen in older adults, are usually considered vascular lesions, and participate in the vascular contribution to cognitive impairment and dementia. However, emerging evidence highlights the heterogeneity of WMH pathophysiology, suggesting that non-vascular mechanisms could also be involved, notably in Alzheimer's disease (AD). This led to the alternative hypothesis that in AD, part of WMH may be secondary to AD-related processes. The current perspective brings together the arguments from different fields of research, including neuropathology, neuroimaging and fluid biomarkers, and genetics, in favor of this alternative hypothesis. Possible underlying mechanisms leading to AD-related WMH, such as AD-related neurodegeneration or neuroinflammation, are discussed, as well as implications for diagnostic criteria and management of AD. We finally discuss ways to test this hypothesis and remaining challenges. Acknowledging the heterogeneity of WMH and the existence of AD-related WMH may improve personalized diagnosis and care of patients.
Collapse
Affiliation(s)
- Antoine Garnier-Crussard
- Normandie Univ, UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders," Neuropresage Team, Cyceron, Caen, France
- Clinical and Research Memory Center of Lyon, Lyon Institute For Aging, Hospices Civils de Lyon, Villeurbanne, France
- Eduwell team, Lyon Neuroscience Research Center (CRNL), INSERM U1028, CNRS UMR5292, UCBL1, Lyon, France
| | - François Cotton
- Radiology Department, Centre Hospitalier Lyon-Sud, Hospices Civils de Lyon, Pierre-Bénite, France
- CREATIS, INSERM U1044, CNRS UMR 5220, UCBL1, Villeurbanne, France
| | - Pierre Krolak-Salmon
- Clinical and Research Memory Center of Lyon, Lyon Institute For Aging, Hospices Civils de Lyon, Villeurbanne, France
- Eduwell team, Lyon Neuroscience Research Center (CRNL), INSERM U1028, CNRS UMR5292, UCBL1, Lyon, France
| | - Gaël Chételat
- Normandie Univ, UNICAEN, INSERM, U1237, PhIND "Physiopathology and Imaging of Neurological Disorders," Neuropresage Team, Cyceron, Caen, France
| |
Collapse
|
62
|
Wang L, Kolobaric A, Aizenstein H, Lopresti B, Tudorascu D, Snitz B, Klunk W, Wu M. Identifying sex-specific risk architectures for predicting amyloid deposition using neural networks. Neuroimage 2023; 275:120147. [PMID: 37156449 PMCID: PMC10905666 DOI: 10.1016/j.neuroimage.2023.120147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 04/08/2023] [Accepted: 04/28/2023] [Indexed: 05/10/2023] Open
Abstract
In older adults without dementia, White Matter Hyperintensities (WMH) in MRI have been shown to be highly associated with cerebral amyloid deposition, measured by the Pittsburgh compound B (PiB) PET. However, the relation to age, sex, and education in explaining this association is not well understood. We use the voxel counts of regional WMH, age, one-hot encoded sex, and education to predict the regional PiB using a multilayer perceptron with only rectilinear activations using mean squared error. We then develop a novel, robust metric to understand the relevance of each input variable for prediction. Our observations indicate that sex is the most relevant predictor of PiB and that WMH is not relevant for prediction. These results indicate that there is a sex-specific risk architecture for Aβ deposition.
Collapse
Affiliation(s)
- Linghai Wang
- University of Pittsburgh, Pittsburgh, Pennsylvania, United States.
| | | | - Howard Aizenstein
- University of Pittsburgh, Pittsburgh, Pennsylvania, United States; Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania, United States; School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Brian Lopresti
- University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Dana Tudorascu
- Department of Biostatistics, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Beth Snitz
- University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - William Klunk
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania, United States; School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| | - Minjie Wu
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania, United States
| |
Collapse
|
63
|
Høilund-Carlsen PF, Revheim ME, Costa T, Kepp KP, Castellani RJ, Perry G, Alavi A, Barrio JR. FDG-PET versus Amyloid-PET Imaging for Diagnosis and Response Evaluation in Alzheimer's Disease: Benefits and Pitfalls. Diagnostics (Basel) 2023; 13:2254. [PMID: 37443645 DOI: 10.3390/diagnostics13132254] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 06/29/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023] Open
Abstract
In June 2021, the US Federal Drug and Food Administration (FDA) granted accelerated approval for the antibody aducanumab and, in January 2023, also for the antibody lecanemab, based on a perceived drug-induced removal of cerebral amyloid-beta as assessed by amyloid-PET and, in the case of lecanemab, also a presumption of limited clinical efficacy. Approval of the antibody donanemab is awaiting further data. However, published trial data indicate few, small and uncertain clinical benefits, below what is considered "clinically meaningful" and similar to the effect of conventional medication. Furthermore, a therapy-related decrease in the amyloid-PET signal may also reflect increased cell damage rather than simply "amyloid removal". This interpretation is more consistent with increased rates of amyloid-related imaging abnormalities and brain volume loss in treated patients, relative to placebo. We also challenge the current diagnostic criteria for AD based on amyloid-PET imaging biomarkers and recommend that future anti-AD therapy trials apply: (1) diagnosis of AD based on the co-occurrence of cognitive decline and decreased cerebral metabolism assessed by FDA-approved FDG-PET, (2) therapy efficacy determined by favorable effect on cognitive ability, cerebral metabolism by FDG-PET, and brain volumes by MRI, and (3) neuropathologic examination of all deaths occurring in these trials.
Collapse
Affiliation(s)
- Poul F Høilund-Carlsen
- Department of Nuclear Medicine, Odense University Hospital, 5000 Odense C, Denmark
- Research Unit of Clinical Physiology and Nuclear Medicine, Department of Clinical Research, University of Southern Denmark, 5230 Odense M, Denmark
| | - Mona-Elisabeth Revheim
- The Intervention Centre, Division of Technology and Innovation, Oslo University Hospital, 0372 Oslo, Norway
- Institute of Clinical Medicine, University of Oslo, 0313 Oslo, Norway
| | - Tommaso Costa
- GDS, Department of Psychology, Koelliker Hospital, University of Turin, 10124 Turin, Italy
- FOCUS Lab, Department of Psychology, University of Turin, 10124 Turin, Italy
| | - Kasper P Kepp
- Section of Biophysical and Biomedicinal Chemistry, DTU Chemistry, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - Rudolph J Castellani
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - George Perry
- Department of Neuroscience, Developmental and Regenerative Biology and Genetics of Neurodegeneration, Departments of Psychiatry and Neuroscience, University of Texas at San Antonio, San Antonio, TX 78249, USA
| | - Abass Alavi
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jorge R Barrio
- Department of Molecular and Medical Pharmacology, David Geffen UCLA School of Medicine, Los Angeles, CA 90095, USA
| |
Collapse
|
64
|
Wood PL. Failure of current Alzheimer's disease hypotheses. Aging (Albany NY) 2023; 15:5959-5960. [PMID: 37393106 PMCID: PMC10373964 DOI: 10.18632/aging.204880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/29/2023] [Indexed: 07/03/2023]
Affiliation(s)
- Paul L Wood
- Metabolomics Unit, College of Veterinary Medicine, Lincoln Memorial University, Harrogate, TN 37752, USA
| |
Collapse
|
65
|
Twait EL, Min B, Beran M, Vonk JMJ, Geerlings MI. The cross-sectional association between amyloid burden and white matter hyperintensities in older adults without cognitive impairment: A systematic review and meta-analysis. Ageing Res Rev 2023; 88:101952. [PMID: 37178806 DOI: 10.1016/j.arr.2023.101952] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 05/08/2023] [Accepted: 05/09/2023] [Indexed: 05/15/2023]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia, characterized by the aggregation of amyloid-beta (Aβ) proteins into plaques. Individuals with AD frequently show mixed pathologies, often caused by cerebral small vessel disease (CSVD), resulting in lesions such as white matter hyperintensities (WMH). The current systematic review and meta-analysis investigated the cross-sectional relationship between amyloid burden and WMH in older adults without objective cognitive impairment. A systematic search performed in PubMed, Embase, and PsycINFO yielded 13 eligible studies. Aβ was assessed using PET, CSF, or plasma measurements. Two meta-analyses were performed: one on Cohen's d metrics and one on correlation coefficients. The meta-analyses revealed an overall weighted small-to-medium Cohen's d of 0.55 (95% CI: 0.31-0.78) in CSF, an overall correlation of 0.31 (0.09-0.50) in CSF, and a large Cohen's d of 0.96 (95% CI: 0.66-1.27) in PET. Only two studies assessed this relationship in plasma, with an effect size of - 0.20 (95% CI: -0.75 to 0.34). These findings indicate a relationship between both amyloid and vascular pathologies in cognitively normal adults in PET and CSF. Future studies should assess the possible relationship of blood amyloid-beta and WMH for broader identification of at risk individuals showing mixed pathology in preclinical stages.
Collapse
Affiliation(s)
- Emma L Twait
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands; Amsterdam UMC, Location Vrije Universiteit, Department of General Practice, Amsterdam, The Netherlands; Research Institute Amsterdam Public Health, Research Programme Aging & Later life, and Research Programme Personalized Medicine, Amsterdam, The Netherlands
| | - Britt Min
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands; Bachelor Program Biomedical Sciences, Faculty of Medicine, Utrecht University, Utrecht, The Netherlands
| | - Magdalena Beran
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands; School for Cardiovascular Disease (CARIM), Department of Internal Medicine, Maastricht University, Maastricht, The Netherlands
| | - Jet M J Vonk
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands; Department of Neurology, Memory and Aging Center, University of California San Francisco (UCSF), San Francisco, CA, USA
| | - Mirjam I Geerlings
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands; Research Institute Amsterdam Public Health, Research Programme Aging & Later life, and Research Programme Personalized Medicine, Amsterdam, The Netherlands; Research Institute Amsterdam Neuroscience, Research Programme Neurodegeneration, and Research Programme Mood, Anxiety, Psychosis, Stress, and Sleep, Amsterdam, The Netherlands; Amsterdam UMC, location University of Amsterdam, Department of General Practice, Amsterdam, The Netherlands.
| |
Collapse
|
66
|
Cogswell PM, Lundt ES, Therneau TM, Mester CT, Wiste HJ, Graff-Radford J, Schwarz CG, Senjem ML, Gunter JL, Reid RI, Przybelski SA, Knopman DS, Vemuri P, Petersen RC, Jack CR. Evidence against a temporal association between cerebrovascular disease and Alzheimer's disease imaging biomarkers. Nat Commun 2023; 14:3097. [PMID: 37248223 PMCID: PMC10226977 DOI: 10.1038/s41467-023-38878-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 05/15/2023] [Indexed: 05/31/2023] Open
Abstract
Whether a relationship exists between cerebrovascular disease and Alzheimer's disease has been a source of controversy. Evaluation of the temporal progression of imaging biomarkers of these disease processes may inform mechanistic associations. We investigate the relationship of disease trajectories of cerebrovascular disease (white matter hyperintensity, WMH, and fractional anisotropy, FA) and Alzheimer's disease (amyloid and tau PET) biomarkers in 2406 Mayo Clinic Study of Aging and Mayo Alzheimer's Disease Research Center participants using accelerated failure time models. The model assumes a common pattern of progression for each biomarker that is shifted earlier or later in time for each individual and represented by a per participant age adjustment. An individual's amyloid and tau PET adjustments show very weak temporal association with WMH and FA adjustments (R = -0.07 to 0.07); early/late amyloid or tau timing explains <1% of the variation in WMH and FA adjustment. Earlier onset of amyloid is associated with earlier onset of tau (R = 0.57, R2 = 32%). These findings support a strong mechanistic relationship between amyloid and tau aggregation, but not between WMH or FA and amyloid or tau PET.
Collapse
Affiliation(s)
- Petrice M Cogswell
- Department of Radiology, Mayo Clinic, 200 First St SW, Rochester, MN, 55905, USA.
| | - Emily S Lundt
- Department of Quantitative Health Sciences, Mayo Clinic, 200 First St SW, Rochester, MN, 55905, USA
| | - Terry M Therneau
- Department of Quantitative Health Sciences, Mayo Clinic, 200 First St SW, Rochester, MN, 55905, USA
| | - Carly T Mester
- Department of Quantitative Health Sciences, Mayo Clinic, 200 First St SW, Rochester, MN, 55905, USA
| | - Heather J Wiste
- Department of Quantitative Health Sciences, Mayo Clinic, 200 First St SW, Rochester, MN, 55905, USA
| | | | | | - Matthew L Senjem
- Department of Radiology, Mayo Clinic, 200 First St SW, Rochester, MN, 55905, USA
- Department of Information Technology, Mayo Clinic, 200 First St SW, Rochester, MN, 55905, USA
| | - Jeffrey L Gunter
- Department of Radiology, Mayo Clinic, 200 First St SW, Rochester, MN, 55905, USA
| | - Robert I Reid
- Department of Information Technology, Mayo Clinic, 200 First St SW, Rochester, MN, 55905, USA
| | - Scott A Przybelski
- Department of Quantitative Health Sciences, Mayo Clinic, 200 First St SW, Rochester, MN, 55905, USA
| | - David S Knopman
- Department of Neurology, Mayo Clinic, 200 First St SW, Rochester, MN, 55905, USA
| | - Prashanthi Vemuri
- Department of Radiology, Mayo Clinic, 200 First St SW, Rochester, MN, 55905, USA
| | - Ronald C Petersen
- Department of Quantitative Health Sciences, Mayo Clinic, 200 First St SW, Rochester, MN, 55905, USA
- Department of Neurology, Mayo Clinic, 200 First St SW, Rochester, MN, 55905, USA
| | - Clifford R Jack
- Department of Radiology, Mayo Clinic, 200 First St SW, Rochester, MN, 55905, USA
| |
Collapse
|
67
|
Nagaraja N, DeKosky S, Duara R, Kong L, Wang WE, Vaillancourt D, Albayram M. Imaging features of small vessel disease in cerebral amyloid angiopathy among patients with Alzheimer's disease. Neuroimage Clin 2023; 38:103437. [PMID: 37245492 PMCID: PMC10236212 DOI: 10.1016/j.nicl.2023.103437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 05/07/2023] [Accepted: 05/14/2023] [Indexed: 05/30/2023]
Abstract
BACKGROUND AND PURPOSE Cerebral small vessel disease biomarkers including white matter hyperintensities (WMH), lacunes, and enlarged perivascular spaces (ePVS) are under investigation to identify those specific to cerebral amyloid angiopathy (CAA). In subjects with Alzheimer's disease (AD), we assessed characteristic features and amounts of WMH, lacunes, and ePVS in four CAA categories (no, mild, moderate and severe CAA) and correlated these with Clinical Dementia Rating sum of boxes (CDRsb) score, ApoE genotype, and neuropathological changes at autopsy. METHODS The study included patients with a clinical diagnosis of dementia due to AD and neuropathological confirmation of AD and CAA in the National Alzheimer's Coordinating Center (NACC) database. The WMH, lacunes, and ePVS were evaluated using semi-quantitative scales. Statistical analyses compared the WMH, lacunes, and ePVS values in the four CAA groups with vascular risk factors and AD severity treated as covariates, and to correlate the imaging features with CDRsb score, ApoE genotype, and neuropathological findings. RESULTS The study consisted of 232 patients, of which 222 patients had FLAIR data available and 105 patients had T2-MRI. Occipital predominant WMH were significantly associated with the presence of CAA (p = 0.007). Among the CAA groups, occipital predominant WMH was associated with severe CAA (β = 1.22, p = 0.0001) compared with no CAA. Occipital predominant WMH were not associated with the CDRsb score performed at baseline (p = 0.68) or at follow-up 2-4 years after the MRI (p = 0.92). There was no significant difference in high grade ePVS in the basal ganglia (p = 0.63) and centrum semiovale (p = 0.95) among the four CAA groups. The WMH and ePVS on imaging did not correlate with the number of ApoE ε4 alleles but the WMH (periventricular and deep) correlated with the presence of infarcts, lacunes and microinfarcts on neuropathology. CONCLUSION Among patients with AD, occipital predominant WMH is more likely to be found in patients with severe CAA than in those without CAA. The high-grade ePVS in centrum semiovale were common in all AD patients regardless of CAA severity.
Collapse
Affiliation(s)
- Nandakumar Nagaraja
- Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, USA.
| | - Steven DeKosky
- Department of Neurology, College of Medicine, University of Florida, Gainesville, FL, USA; McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Ranjan Duara
- Department of Neurology, Mount Sinai Medical Center, Miami Beach, FL, USA
| | - Lan Kong
- Department of Public Health Sciences, Penn State University College of Medicine, Hershey, PA, USA
| | - Wei-En Wang
- Laboratory for Rehabilitation Neuroscience, Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA
| | - David Vaillancourt
- Laboratory for Rehabilitation Neuroscience, Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, USA; Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| | - Mehmet Albayram
- Department of Radiology, College of Medicine, University of Florida, Gainesville, FL, USA
| |
Collapse
|
68
|
Botz J, Lohner V, Schirmer MD. Spatial patterns of white matter hyperintensities: a systematic review. Front Aging Neurosci 2023; 15:1165324. [PMID: 37251801 PMCID: PMC10214839 DOI: 10.3389/fnagi.2023.1165324] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 04/24/2023] [Indexed: 05/31/2023] Open
Abstract
Background White matter hyperintensities are an important marker of cerebral small vessel disease. This disease burden is commonly described as hyperintense areas in the cerebral white matter, as seen on T2-weighted fluid attenuated inversion recovery magnetic resonance imaging data. Studies have demonstrated associations with various cognitive impairments, neurological diseases, and neuropathologies, as well as clinical and risk factors, such as age, sex, and hypertension. Due to their heterogeneous appearance in location and size, studies have started to investigate spatial distributions and patterns, beyond summarizing this cerebrovascular disease burden in a single metric-its volume. Here, we review the evidence of association of white matter hyperintensity spatial patterns with its risk factors and clinical diagnoses. Design/methods We performed a systematic review in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) Statement. We used the standards for reporting vascular changes on neuroimaging criteria to construct a search string for literature search on PubMed. Studies written in English from the earliest records available until January 31st, 2023, were eligible for inclusion if they reported on spatial patterns of white matter hyperintensities of presumed vascular origin. Results A total of 380 studies were identified by the initial literature search, of which 41 studies satisfied the inclusion criteria. These studies included cohorts based on mild cognitive impairment (15/41), Alzheimer's disease (14/41), Dementia (5/41), Parkinson's disease (3/41), and subjective cognitive decline (2/41). Additionally, 6 of 41 studies investigated cognitively normal, older cohorts, two of which were population-based, or other clinical findings such as acute ischemic stroke or reduced cardiac output. Cohorts ranged from 32 to 882 patients/participants [median cohort size 191.5 and 51.6% female (range: 17.9-81.3%)]. The studies included in this review have identified spatial heterogeneity of WMHs with various impairments, diseases, and pathologies as well as with sex and (cerebro)vascular risk factors. Conclusion The results show that studying white matter hyperintensities on a more granular level might give a deeper understanding of the underlying neuropathology and their effects. This motivates further studies examining the spatial patterns of white matter hyperintensities.
Collapse
Affiliation(s)
- Jonas Botz
- Computational Neuroradiology, Department of Neuroradiology, University Hospital Bonn, Bonn, Germany
- Department of Bioinformatics, Fraunhofer Institute for Algorithms and Scientific Computing (SCAI), Sankt Augustin, Germany
| | - Valerie Lohner
- Cardiovascular Epidemiology of Aging, Department of Cardiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Markus D. Schirmer
- Computational Neuroradiology, Department of Neuroradiology, University Hospital Bonn, Bonn, Germany
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| |
Collapse
|
69
|
Yan Y, Wu Y, Xiao G, Wang L, Zhou S, Wei L, Tian Y, Wu X, Hu P, Wang K. White Matter Changes as an Independent Predictor of Alzheimer's Disease. J Alzheimers Dis 2023:JAD221037. [PMID: 37182867 DOI: 10.3233/jad-221037] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
BACKGROUND Abnormalities in white matter (WM) may be a crucial physiologic feature of Alzheimer's disease (AD). However, neuroimaging's ability to visualize the underlying functional degradation of the WM region in AD is unclear. OBJECTIVE This study aimed to explore the differences in amplitude of low-frequency fluctuation (ALFF) and fractional ALFF (fALFF) in the WM region of patients with AD and healthy controls (HC) and to investigate further whether these values can provide supplementary information for diagnosing AD. METHODS Forty-eight patients with AD and 46 age-matched HC were enrolled and underwent resting-state functional magnetic resonance imaging and a neuropsychological battery assessment. We analyzed the differences in WM activity between the two groups and further explored the correlation between WM activity in the different regions and cognitive function in the AD group. Finally, a machine learning algorithm was adopted to construct a classifier in detecting the clinical classification ability of the values of ALFF/ALFF in the WM. RESULTS Compared with HCs, patients with AD had lower WM activity in the right anterior thalamic radiation, left frontal aslant tract, and left forceps minor, which are all positively related to global cognitive function, memory, and attention function (all p < 0.05). Based on the combined WM ALFF and fALFF characteristics in the different regions, individuals not previously assessed were classified with moderate accuracy (75%), sensitivity (71%), specificity (79%), and area under the receiver operating characteristic curve (85%). CONCLUSION Our results suggest that WM activity is reduced in AD and can be used for disease classification.
Collapse
Affiliation(s)
- Yibing Yan
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, the School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China
| | - Yue Wu
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, the School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China
| | - Guixian Xiao
- Department of Sleep Psychology, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
| | - Lu Wang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, the School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China
| | - Shanshan Zhou
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, the School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China
- Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, China
| | - Ling Wei
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, the School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China
- Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, China
| | - Yanghua Tian
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, the School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China
- Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, China
- Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, China
- Department of Sleep Psychology, The Second Hospital of Anhui Medical University, Anhui Medical University, Hefei, China
| | - Xingqi Wu
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, the School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China
| | - Panpan Hu
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, the School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, China
- Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, China
- Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, China
| | - Kai Wang
- Department of Neurology, The First Affiliated Hospital of Anhui Medical University, the School of Mental Health and Psychological Sciences, Anhui Medical University, Hefei, China
- Anhui Province Key Laboratory of Cognition and Neuropsychiatric Disorders, Hefei, China
- Institute of Artificial Intelligence, Hefei Comprehensive National Science Center, Hefei, China
- Collaborative Innovation Center of Neuropsychiatric Disorders and Mental Health, Hefei, China
- Anhui Provincial Institute of Translational Medicine, Anhui Medical University, Hefei, China
| |
Collapse
|
70
|
Alban SL, Lynch KM, Ringman JM, Toga AW, Chui HC, Sepehrband F, Choupan J. The association between white matter hyperintensities and amyloid and tau deposition. Neuroimage Clin 2023; 38:103383. [PMID: 36965457 PMCID: PMC10060905 DOI: 10.1016/j.nicl.2023.103383] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 02/09/2023] [Accepted: 03/16/2023] [Indexed: 03/22/2023]
Abstract
White matter hyperintensities (WMHs) frequently occur in Alzheimer's Disease (AD) and have a contribution from ischemia, though their relationship with β-amyloid and cardiovascular risk factors (CVRFs) is not completely understood. We used AT classification to categorize individuals based on their β-amyloid and tau pathologies, then assessed the effects of β-amyloid and tau on WMH volume and number. We then determined regions in which β-amyloid and WMH accumulation were related. Last, we analyzed the effects of various CVRFs on WMHs. As secondary analyses, we observed effects of age and sex differences, atrophy, cognitive scores, and APOE genotype. PET, MRI, FLAIR, demographic, and cardiovascular health data was collected from the Alzheimer's Disease Neuroimaging Initiative (ADNI-3) (N = 287, 48 % male). Participants were categorized as A + and T + if their Florbetapir SUVR and Flortaucipir SUVR were above 0.79 and 1.25, respectively. WMHs were mapped on MRI using a deep convolutional neural network (Sepehrband et al., 2020). CVRF scores were based on history of hypertension, systolic and diastolic blood pressure, pulse rate, respiration rate, BMI, and a cumulative score with 6 being the maximum score. Regression models and Pearson correlations were used to test associations and correlations between variables, respectively, with age, sex, years of education, and scanner manufacturer as covariates of no interest. WMH volume percent was significantly associated with global β-amyloid (r = 0.28, p < 0.001), but not tau (r = 0.05, p = 0.25). WMH volume percent was higher in individuals with either A + or T + pathology compared to controls, particularly within in the A+/T + group (p = 0.007, Cohen's d = 0.4, t = -2.5). Individual CVRFs nor cumulative CVRF scores were associated with increased WMH volume. Finally, the regions where β-amyloid and WMH count were most positively associated were the middle temporal region in the right hemisphere (r = 0.18, p = 0.002) and the fusiform region in the left hemisphere (r = 0.017, p = 0.005). β-amyloid and WMH have a clear association, though the mechanism facilitating this association is still not fully understood. The associations found between β-amyloid and WMH burden emphasizes the relationship between β-amyloid and vascular lesion formation while factors like CVRFs, age, and sex affect AD development through various mechanisms. These findings highlight potential causes and mechanisms of AD as targets for future preventions and treatments. Going forward, a larger emphasis may be placed on β-amyloid's vascular effects and the implications of impaired brain clearance in AD.
Collapse
Affiliation(s)
- Sierra L Alban
- Laboratory of NeuroImaging, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Kirsten M Lynch
- Laboratory of NeuroImaging, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - John M Ringman
- Alzheimer's Disease Research Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Arthur W Toga
- Laboratory of NeuroImaging, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Alzheimer's Disease Research Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Helena C Chui
- Alzheimer's Disease Research Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Farshid Sepehrband
- Laboratory of NeuroImaging, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Jeiran Choupan
- Laboratory of NeuroImaging, USC Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA; NeuroScope Inc., Scarsdale, NY, USA
| |
Collapse
|
71
|
White Matter Hyperintensities in Young Patients from a Neurological Outpatient Clinic: Prevalence, Risk Factors, and Correlation with Enlarged Perivascular Spaces. J Pers Med 2023; 13:jpm13030525. [PMID: 36983707 PMCID: PMC10054337 DOI: 10.3390/jpm13030525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 03/07/2023] [Accepted: 03/12/2023] [Indexed: 03/17/2023] Open
Abstract
(1) Background: to investigate the prevalence of white matter hyperintensities (WMH), risk factors, and correlation with enlarged perivascular spaces (ePVS) among young patients (age, 16–45 years) in a neurological outpatient clinic. (2) Methods: a total of 887 young patients who underwent a head magnetic resonance imaging (MRI)examination between 1 June 2021, and 30 November 2021, were included in this study. Paraventricular WMH (PWMH), deep WMH (DWMH), ePVS in the centrum semiovale (CSO-ePVS), and basal ganglia (BG-ePVS) were rated. Logistic regression analysis was used to identify the best predictors for the presence of WMH and, for the association of the severity of ePVS with the presence of WMH. Goodman–Kruskal gamma test was used to assess the correlation between the severity of ePVS and WMH. (3) Results: the prevalence of WMH was 37.0%, with low severity. Age, hypertension (p < 0.001), headache (p = 0.031), syncope (p = 0.012), and sleep disturbance (p = 0.003) were associated with the presence of DWMH. Age, sex (p = 0.032), hypertension (p = 0.004) and sleep disturbance (p < 0.001) were associated with the presence of PWMH. The severity of CSO-ePVS was associated with the presence and the severities of DWMH. The severity of BG-ePVS was associated with the presence and severities of DWMH and PWMH. (4) Conclusions: the prevalence of WMH was 37% and mild in young patients without specific causes. Older age, female, hypertension, headache, syncope, and sleep disturbance were associated with WMH. The severity of ePVS had an impact on the presence and severity of WMH in the corresponding brain regions.
Collapse
|
72
|
Cai Y, Du J, Li A, Zhu Y, Xu L, Sun K, Ma S, Guo T. Initial levels of β-amyloid and tau deposition have distinct effects on longitudinal tau accumulation in Alzheimer's disease. Alzheimers Res Ther 2023; 15:30. [PMID: 36750884 PMCID: PMC9903587 DOI: 10.1186/s13195-023-01178-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 01/30/2023] [Indexed: 02/09/2023]
Abstract
BACKGROUND To better assist with the design of future clinical trials for Alzheimer's disease (AD) and aid in our understanding of the disease's symptomatology, it is essential to clarify what roles β-amyloid (Aβ) plaques and tau tangles play in longitudinal tau accumulation inside and outside the medial temporal lobe (MTL) as well as how age, sex, apolipoprotein E (APOE) ε4 (APOE-ε4), and Klotho-VS heterozygosity (KL-VShet) modulate these relationships. METHODS We divided the 325 Aβ PET-positive (A+) participants into two groups, A+/T- (N = 143) and A+/T+ (N = 182), based on the threshold (1.25) of the temporal meta-ROI 18F-flortaucipir (FTP) standardized uptake value ratio (SUVR). We then compared the baseline and slopes of A+/T- and A+/T+ individuals' Aβ plaques and temporal meta-ROI tau tangles with those of A-/T- cognitively unimpaired individuals (N = 162) without neurodegeneration. In addition, we looked into how baseline Aβ and tau may predict longitudinal tau increases and how age, sex, APOE-ε4, and KL-VShet affect these associations. RESULTS In entorhinal, amygdala, and parahippocampal (early tau-deposited regions of temporal meta-ROI), we found that baseline Aβ and tau deposition were positively linked to more rapid tau increases in A+/T- participants. However, in A+/T+ individuals, the longitudinal tau accumulation in fusiform, inferior temporal, and middle temporal cortices (late tau-deposited regions of temporal meta-ROI) was primarily predicted by the level of tau tangles. Furthermore, compared to older participants (age ≥ 65), younger individuals (age < 65) exhibited faster Aβ-dependent but slower tau-related tau accumulations. Additionally, compared to the KL-VShet- group, KL-VShet+ individuals showed a significantly lower rate of tau accumulation associated with baseline entorhinal tau in fusiform and inferior temporal regions. CONCLUSION These findings offer novel perspectives to the design of AD clinical trials and aid in understanding the tau accumulation inside and outside MTL in AD. In particular, decreasing Aβ plaques might be adequate for A+/T- persons but may not be sufficient for A+/T+ individuals in preventing tau propagation and subsequent downstream pathological changes associated with tau.
Collapse
Affiliation(s)
- Yue Cai
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, No.5 Kelian Road, Shenzhen, 518132, China
- Tsinghua Shenzhen International Graduate School (SIGS), Tsinghua University, Shenzhen, 518055, China
| | - Jing Du
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, No.5 Kelian Road, Shenzhen, 518132, China
| | - Anqi Li
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, No.5 Kelian Road, Shenzhen, 518132, China
| | - Yalin Zhu
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, No.5 Kelian Road, Shenzhen, 518132, China
| | - Linsen Xu
- Department of Medical Imaging, University of Chinese Academy of Sciences-Shenzhen Hospital, Shenzhen, 518106, China
| | - Kun Sun
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, 518132, China
| | - Shaohua Ma
- Tsinghua Shenzhen International Graduate School (SIGS), Tsinghua University, Shenzhen, 518055, China
| | - Tengfei Guo
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, No.5 Kelian Road, Shenzhen, 518132, China.
- Institute of Biomedical Engineering, Peking University Shenzhen Graduate School, Shenzhen, 518055, China.
| |
Collapse
|
73
|
Buciuc M, Koga S, Pham NTT, Duffy JR, Knopman DS, Ali F, Boeve BF, Graff-Radford J, Botha H, Lowe VJ, Nguyen A, Reichard RR, Dickson DW, Petersen RC, Whitwell JL, Josephs KA. The many faces of globular glial tauopathy: A clinical and imaging study. Eur J Neurol 2023; 30:321-333. [PMID: 36256511 PMCID: PMC10141553 DOI: 10.1111/ene.15603] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 10/04/2022] [Accepted: 10/07/2022] [Indexed: 01/07/2023]
Abstract
BACKGROUND Globular glial tauopathy (GGT) has been associated with frontotemporal dementia syndromes; little is known about the clinical and imaging characteristics of GGT and how they differ from other non-globular glial 4-repeat tauopathies (N4GT) such as progressive supranuclear palsy (PSP) or corticobasal degeneration (CBD). METHODS For this case-control study the Mayo Clinic brain banks were queried for all cases with an autopsy-confirmed diagnosis of GGT between 1 January 2011 and 31 October 2021. Fifty patients with N4GT (30 PSP, 20 CBD) were prospectively recruited and followed by the Neurodegenerative Research Group at Mayo Clinic, Minnesota. Magnetic resonance imaging was used to characterize patterns of gray/white matter atrophy, MR-parkinsonism index, midbrain volume, and white matter hyperintensities.18 F-Fluorodeoxyglucose-, 11 C Pittsburg compound-, and 18 F-flortaucipir-positron emission tomography scans were reviewed. RESULTS Twelve patients with GGT were identified: 83% were women compared to 42% in NG4T (p = 0.02) with median age at death 76.5 years (range: 55-87). The most frequent clinical features were eye movement abnormalities, parkinsonism, behavioral changes followed by pyramidal tract signs and motor speech abnormalities. Lower motor neuron involvement was present in 17% and distinguished GGT from NG4T (p = 0.035). Primary progressive apraxia of speech was the most frequent initial diagnosis (25%); 50% had a Parkinson-plus syndrome before death. Most GGT patients had asymmetric frontotemporal atrophy with matching hypometabolism. GGT patients had more gray matter atrophy in temporal lobes, normal MR-parkinsonism index, and larger midbrain volumes. CONCLUSIONS Female sex, lower motor neuron involvement in the context of a frontotemporal dementia syndrome, and asymmetric brain atrophy with preserved midbrain might be suggestive of underlying GGT.
Collapse
Affiliation(s)
- Marina Buciuc
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
- Department of Neurology, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Shunsuke Koga
- Department of Neurosciences, Mayo Clinic, Jacksonville, Florida, USA
| | | | - Joseph R Duffy
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | - David S Knopman
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | - Farwa Ali
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | - Bradley F Boeve
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Hugo Botha
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | - Val J Lowe
- Department of Radiology, Mayo Clinic, Rochester, Minnesota, USA
| | - Aivi Nguyen
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Ross R Reichard
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota, USA
| | - Dennis W Dickson
- Department of Neurosciences, Mayo Clinic, Jacksonville, Florida, USA
| | | | | | - Keith A Josephs
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
74
|
Lee LH, Wu SC, Ho CF, Liang WL, Liu YC, Chou CJ. White matter hyperintensities in cholinergic pathways may predict poorer responsiveness to acetylcholinesterase inhibitor treatment for Alzheimer's disease. PLoS One 2023; 18:e0283790. [PMID: 37000849 PMCID: PMC10065432 DOI: 10.1371/journal.pone.0283790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 03/19/2023] [Indexed: 04/03/2023] Open
Abstract
BACKGROUND Acetylcholinesterase inhibitor (AChEI) drug regimens are the mainstay treatment options for patients with Alzheimer's disease (AD). Herein, We examined the association between clinical response to AChEI and white matter hyperintensities on magnetic resonance imaging (MRI) scan at baseline. METHODS Between 2020 and 2021, we recruited 101 individuals with a clinical diagnosis of probable AD. Each participant underwent complete neuropsychological testing and 3T (Telsa) brain magnetic resonance imaging. Responsiveness to AChEI, as assessed after 12 months, was designated as less than two points of regression in Mini-Mental State Examination scores (MMSE) and stable clinical dementia rating scale. We also evaluated MRI images by examining scores on the Cholinergic Pathways Hyperintensities Scale (CHIPS), Fazekas scale, and medial temporal atrophy (MTA) scale. RESULTS In our cohort, 52 patients (51.4%) were classified as responders. We observed significantly higher CHIPS scores in the nonresponder group (21.1 ± 12.9 vs. 14.9 ± 9.2, P = 0.007). Age at baseline, education level, sex, Clinical Dementia Rating sum of boxes scores, and three neuroimaging parameters were tested in regression models. Only CHIPS scores predicted clinical response to AChEI treatment. CONCLUSION WMHs in the cholinergic pathways, not diffuse white matter lesions or hippocampal atrophy, correlated with poorer responsiveness to AChEI treatment. Therefore, further investigation into the role of the cholinergic pathway in AD is warranted.
Collapse
Affiliation(s)
- Li-Hua Lee
- Department of Neurology, Cardinal Tien Hospital, New Taipei City, Taipei, Taiwan
| | - Shu-Ching Wu
- Department of Neurology, Cardinal Tien Hospital, New Taipei City, Taipei, Taiwan
| | - Cheng-Feng Ho
- Department of Radiology, Cardinal Tien Hospital, New Taipei City, Taipei, Taiwan
| | - Wan-Lin Liang
- Department of Medical Research, Far Eastern Hospital, New Taipei City, Taipei, Taiwan
| | - Yi-Chien Liu
- Department of Neurology, Cardinal Tien Hospital, New Taipei City, Taipei, Taiwan
- Department of Education and Research, Medical school of Fu-Jen University, New Taipei City, Taipei, Taiwan
- Geriatric Behavioral Neurology Project, Tohoku University New Industry Hatchery Center (NICHe), Sendai, Japan
- * E-mail:
| | - Chia-Ju Chou
- Department of Neurology, Cardinal Tien Hospital, New Taipei City, Taipei, Taiwan
| |
Collapse
|
75
|
Shir D, Mielke MM, Hofrenning EI, Lesnick TG, Knopman DS, Petersen RC, Jack CR, Algeciras-Schimnich A, Vemuri P, Graff-Radford J. Associations of Neurodegeneration Biomarkers in Cerebrospinal Fluid with Markers of Alzheimer's Disease and Vascular Pathology. J Alzheimers Dis 2023; 92:887-898. [PMID: 36806507 PMCID: PMC10193844 DOI: 10.3233/jad-221015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
BACKGROUND The National Institute on Aging-Alzheimer's Association Research Framework proposes defining Alzheimer's disease by grouping imaging and fluid biomarkers by their respective pathologic processes. The AT(N) structure proposes several neurodegenerative fluid biomarkers (N) including total tau (t-tau), neurogranin (Ng), and neurofilament light chain (NfL). However, pathologic drivers influencing each biomarker remain unclear. OBJECTIVE To determine whether cerebrospinal fluid (CSF)-neurodegenerative biomarkers (N) map differentially to Alzheimer's disease pathology measured by Aβ42 (an indicator of amyloidosis, [A]), p-tau (an indicator of tau deposition, [T]), and MRI vascular pathology indicators (measured by white-matter integrity, infarcts, and microbleeds [V]). METHODS Participants were from Mayo Clinic Study of Aging (MCSA) with CSF measures of NfL, Ng, t-tau, Aβ42, and p-tau and available MRI brain imaging. Linear models assessed associations between CSF neurodegeneration (N) markers, amyloid markers (A), tau (T), and vascular pathology (V). RESULTS Participants (n = 408) had a mean age of 69.2±10.7; male, 217 (53.2%); cognitively unimpaired, 359 (88%). All three neurodegeneration biomarkers correlated with age (p < 0.001 for NfL and t-tau, p = 0.018 for Ng). Men had higher CSF-NfL levels; women had higher Ng (p < 0.001). NfL and t-tau levels correlated with infarcts (p = 0.009, p = 0.034 respectively); no biomarkers correlated with white-matter integrity. N biomarkers correlated with p-tau levels (T, p < 0.001). Higher Aβ42 levels associated with higher N-biomarker levels but only among cognitively unimpaired (A, p < 0.001). CONCLUSION The influence of vascular pathology in the general population on CSF (N) biomarkers is modest, with greater influence of infarcts than white-matter disruption. Neurodegeneration markers more closely correlated with tau than amyloid markers.
Collapse
Affiliation(s)
- Dror Shir
- Department of Neurology, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Michelle M. Mielke
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota 55905, USA
- Department of Epidemiology and Prevention, Wake Forest University School of Medicine, Winston-Salem, North Carolina, 27101
| | | | - Timothy G. Lesnick
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - David S. Knopman
- Department of Neurology, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Ronald C. Petersen
- Department of Neurology, Mayo Clinic, Rochester, Minnesota 55905, USA
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, Minnesota 55905, USA
| | - Clifford R. Jack
- Department of Radiology, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | | - Prashanthi Vemuri
- Department of Radiology, Mayo Clinic, Rochester, Minnesota 55905, USA
| | | |
Collapse
|
76
|
Wang H, Xia H, Wang D, Guo Y, Wang X, Yu Y, Zhang C, Liu, Z. Serum lipoprotein phospholipase A2 level has diagnostic value for cognitive impairment in type II diabetes patients with white matter hyperintensity. ALL LIFE 2022. [DOI: 10.1080/26895293.2022.2101550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Affiliation(s)
- Haipeng Wang
- Department of Neurology, the First Affiliated Hospital of Qiqihar Medical University, 26 Xiangyang Street, Qiqihar 161041, People’s Republic of China
| | - Haimiao Xia
- Department of Neurology, the First Affiliated Hospital of Qiqihar Medical University, 26 Xiangyang Street, Qiqihar 161041, People’s Republic of China
| | - Dongxia Wang
- Department of Neurology, the First Affiliated Hospital of Qiqihar Medical University, 26 Xiangyang Street, Qiqihar 161041, People’s Republic of China
| | - Yu Guo
- Department of Neurology, the First Affiliated Hospital of Qiqihar Medical University, 26 Xiangyang Street, Qiqihar 161041, People’s Republic of China
| | - Xiaoyu Wang
- Department of Neurology, the First Affiliated Hospital of Qiqihar Medical University, 26 Xiangyang Street, Qiqihar 161041, People’s Republic of China
| | - Yue Yu
- Department of Neurology, the First Affiliated Hospital of Qiqihar Medical University, 26 Xiangyang Street, Qiqihar 161041, People’s Republic of China
| | - Chengshi Zhang
- Department of Neurology, the First Affiliated Hospital of Qiqihar Medical University, 26 Xiangyang Street, Qiqihar 161041, People’s Republic of China
| | - Zhongjin Liu,
- Department of Neurology, the First Affiliated Hospital of Qiqihar Medical University, 26 Xiangyang Street, Qiqihar 161041, People’s Republic of China
| |
Collapse
|
77
|
Schoemaker D, Zanon Zotin MC, Chen K, Igwe KC, Vila-Castelar C, Martinez J, Baena A, Fox-Fuller JT, Lopera F, Reiman EM, Brickman AM, Quiroz YT. White matter hyperintensities are a prominent feature of autosomal dominant Alzheimer’s disease that emerge prior to dementia. Alzheimers Res Ther 2022; 14:89. [PMID: 35768838 PMCID: PMC9245224 DOI: 10.1186/s13195-022-01030-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/06/2022] [Indexed: 11/10/2022]
Abstract
Abstract
Background
To promote the development of effective therapies, there is an important need to characterize the full spectrum of neuropathological changes associated with Alzheimer’s disease. In line with this need, this study examined white matter abnormalities in individuals with early-onset autosomal dominant Alzheimer’s disease, in relation to age and symptom severity.
Methods
This is a cross-sectional analysis of data collected in members of a large kindred with a PSEN1 E280A mutation. Participants were recruited between September 2011 and July 2012 from the Colombian Alzheimer’s Prevention Initiative registry. The studied cohort comprised 50 participants aged between 20 and 55 years, including 20 cognitively unimpaired mutation carriers, 9 cognitively impaired mutation carriers, and 21 non-carriers. Participants completed an MRI, a lumbar puncture for cerebrospinal fluid collection, a florbetapir PET scan, and neurological and neuropsychological examinations. The volume of white matter hyperintensities (WMH) was compared between cognitively unimpaired carriers, cognitively impaired carriers, and non-carriers. Relationships between WMH, age, and cognitive performance were further examined in mutation carriers.
Results
The mean (SD) age of participants was 35.8 (9.6) years and 64% were women. Cardiovascular risk factors were uncommon and did not differ across groups. Cognitively impaired carriers [median, 6.37; interquartile range (IQR), 9.15] had an increased volume of WMH compared to both cognitively unimpaired carriers [median, 0.85; IQR, 0.79] and non-carriers [median, 1.07; IQR, 0.71]. In mutation carriers, the volume of WMH strongly correlated with cognition and age, with evidence for an accelerated rate of changes after the age of 43 years, 1 year earlier than the estimated median age of symptom onset. In multivariable regression models including cortical amyloid retention, superior parietal lobe cortical thickness, and cerebrospinal fluid phospho-tau, the volume of WMH was the only biomarker independently and significantly contributing to the total explained variance in cognitive performance.
Conclusions
The volume of WMH is increased among individuals with symptomatic autosomal-dominant Alzheimer’s disease, begins to increase prior to clinical symptom onset, and is an independent determinant of cognitive performance in this group. These findings suggest that WMH are a key component of autosomal-dominant Alzheimer’s disease that is closely related to the progression of clinical symptoms.
Collapse
|
78
|
Ravichandran S, Sukumar S, Chandrasekaran B, Kadavigere R, N SK, Palaniswamy HP, Uppoor R, Ravichandran K, Almeshari M, Alzamil Y, Abanomy A. Influence of Sedentary Behaviour Interventions on Vascular Functions and Cognitive Functions in Hypertensive Adults-A Scoping Review on Potential Mechanisms and Recommendations. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:15120. [PMID: 36429835 PMCID: PMC9690278 DOI: 10.3390/ijerph192215120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/05/2022] [Accepted: 11/13/2022] [Indexed: 06/05/2023]
Abstract
Since the workplace has become desk-based and leisure time has become dominated by digital relaxation modes, the world is moving at a pace where physical activity has become a time-bound routine. The negative effects of extended sitting are a global concern since the workforce is becoming more desk based. There is a dearth of reviews that may link the knowledge on the effects of sedentary behaviour on hypertension and its accompanying damage to the brain and blood vessels and provide a future scope for the investigations connected to the relationship between sedentary behaviour and hypertension. Methods: Based on the database search and extensive research we did, we found studies that concentrated on the adverse effects of sedentary behaviour in association with blood pressure, cognitive decline and brain damage on adults. Results: We extracted 12 articles out of 20,625. We identified the potential adverse effects of sedentary behaviour, methods to reduce sedentary behaviour and the positive changes on health due to the interventions introduced. Sedentary lifestyle has shown a decline in human health. However, the visible symptoms presented later in life makes it very important to know the areas of decline and look for ways to curb the decline or procrastinate it.
Collapse
Affiliation(s)
- Sneha Ravichandran
- Department of Medical Imaging Technology, MCHP, MAHE, Manipal 576104, India
| | - Suresh Sukumar
- Department of Medical Imaging Technology, MCHP, MAHE, Manipal 576104, India
| | | | | | | | | | - Raghuraj Uppoor
- Department of Radiodiagnosis and Imaging, K S Hegde Medical Academy, NITTE Deemed to Be University, Deralakatte, Mangaluru, Karnataka 575018, India
| | - Kayalvizhi Ravichandran
- Department of Medical Imaging Technology, K S Hegde Medical Academy, NITTE Deemed to Be University, Derelakatte, Mangaluru, Karnataka 575018, India
| | - Meshari Almeshari
- Department of Diagnostic Radiology, College of Applied Medical Science, University of Hail, Ha’il 81442, Saudi Arabia
| | - Yasser Alzamil
- Department of Diagnostic Radiology, College of Applied Medical Science, University of Hail, Ha’il 81442, Saudi Arabia
| | - Ahmad Abanomy
- Department of Radiological Sciences, Department of Diagnostic Radiology, College of Applied Medical Science, King Saud University, P.O. Box 10219, Riyadh 11451, Saudi Arabia
| |
Collapse
|
79
|
Thu NT, Graff-Radford J, Machulda MM, Spychalla AJ, Schwarz CG, Senjem ML, Lowe VJ, Vemuri P, Kantarci K, Knopman DS, Petersen RC, Jack CR, Josephs KA, Whitwell JL. Regional white matter hyperintensities in posterior cortical atrophy and logopenic progressive aphasia. Neurobiol Aging 2022; 119:46-55. [PMID: 35970009 PMCID: PMC9886198 DOI: 10.1016/j.neurobiolaging.2022.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 07/13/2022] [Accepted: 07/23/2022] [Indexed: 02/01/2023]
Abstract
White matter hyperintensities (WMH) are markers of cerebral small vessel disease and are associated with higher risk of typical amnestic Alzheimer's disease (tAD). Little is known about the frequency and distribution of WMH in atypical variants of AD, including logopenic progressive aphasia (LPA) and posterior cortical atrophy (PCA). We investigated WMHs in 75 LPA, 39 PCA, and 50 tAD patients and associations with age, beta-amyloid PET burden, and cognition. PCA had greater subcortical WMHs in right occipital, parietal, and temporal lobes compared to LPA, and greater parieto-occipital subcortical and occipital periventricular WMHs than tAD. LPA had greater subcortical WMHs in left parietal lobe and deep white matter WMHs than PCA, and greater fronto-occipital subcortical and occipital periventricular WMHs than tAD. Total WMH increased with increasing age but was not related to beta-amyloid burden. Greater WMH was associated with visuoperceptual performance in LPA and PCA after correcting for atrophy. WMH topography differs across AD variants. Further work is needed to determine whether they reflect cerebrovascular disease or regionally specific neurodegenerative changes.
Collapse
Affiliation(s)
- Nha Trang Thu
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | | | - Mary M. Machulda
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | | | | | | | - Val J. Lowe
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | | | - Kejal Kantarci
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | | | | | | | | | | |
Collapse
|
80
|
Juttukonda MR, Stephens KA, Yen YF, Howard CM, Polimeni JR, Rosen BR, Salat DH. Oxygen extraction efficiency and white matter lesion burden in older adults exhibiting radiological evidence of capillary shunting. J Cereb Blood Flow Metab 2022; 42:1933-1943. [PMID: 35673981 PMCID: PMC9536117 DOI: 10.1177/0271678x221105986] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 04/19/2022] [Accepted: 05/14/2022] [Indexed: 01/18/2023]
Abstract
White matter lesions (WML) have been linked to cognitive decline in aging as well as in Alzheimer's disease. While hypoperfusion is frequently considered a cause of WMLs due to the resulting reduction in oxygen availability to brain tissue, such reductions could also be caused by impaired oxygen exchange. Here, we tested the hypothesis that venous hyperintense signal (VHS) in arterial spin labeling (ASL) magnetic resonance imaging (MRI) may represent a marker of impaired oxygen extraction in aging older adults. In participants aged 60-80 years (n = 30), we measured cerebral blood flow and VHS with arterial spin labeling, maximum oxygen extraction fraction (OEFmax) with dynamic susceptibility contrast, and WML volume with T1-weighted MRI. We found a significant interaction between OEFmax and VHS presence on WML volume (p = 0.02), where lower OEFmax was associated with higher WML volume in participants with VHS, and higher OEFmax was associated with higher WML volume in participants without VHS. These results indicate that VHS in perfusion-weighted ASL data may represent a distinct cerebrovascular aging pattern involving oxygen extraction inefficiency as well as hypoperfusion.
Collapse
Affiliation(s)
- Meher R Juttukonda
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - Kimberly A Stephens
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Yi-Fen Yen
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - Casey M Howard
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
| | - Jonathan R Polimeni
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Radiology, Harvard Medical School, Boston, MA, USA
- Division of Health Sciences and Technology, Harvard-Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Bruce R Rosen
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Radiology, Harvard Medical School, Boston, MA, USA
- Division of Health Sciences and Technology, Harvard-Massachusetts Institute of Technology, Cambridge, MA, USA
| | - David H Salat
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Charlestown, MA, USA
- Department of Radiology, Harvard Medical School, Boston, MA, USA
- Neuroimaging Research for Veterans Center, VA Boston Healthcare System, Boston, MA, USA
| |
Collapse
|
81
|
White matter hyperintensity distribution differences in aging and neurodegenerative disease cohorts. Neuroimage Clin 2022; 36:103204. [PMID: 36155321 PMCID: PMC9668605 DOI: 10.1016/j.nicl.2022.103204] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 09/12/2022] [Accepted: 09/16/2022] [Indexed: 01/18/2023]
Abstract
INTRODUCTION White matter hyperintensities (WMHs) are common magnetic resonance imaging (MRI) findings in the aging population in general, as well as in patients with neurodegenerative diseases. They are known to exacerbate the cognitive deficits and worsen the clinical outcomes in the patients. However, it is not well-understood whether there are disease-specific differences in prevalence and distribution of WMHs in different neurodegenerative disorders. METHODS Data included 976 participants with cross-sectional T1-weighted and fluid attenuated inversion recovery (FLAIR) MRIs from the Comprehensive Assessment of Neurodegeneration and Dementia (COMPASS-ND) cohort of the Canadian Consortium on Neurodegeneration in Aging (CCNA) with eleven distinct diagnostic groups: cognitively intact elderly (CIE), subjective cognitive impairment (SCI), mild cognitive impairment (MCI), vascular MCI (V-MCI), Alzheimer's dementia (AD), vascular AD (V-AD), frontotemporal dementia (FTD), Lewy body dementia (LBD), cognitively intact elderly with Parkinson's disease (PD-CIE), cognitively impaired Parkinson's disease (PD-CI), and mixed dementias. WMHs were segmented using a previously validated automated technique. WMH volumes in each lobe and hemisphere were compared against matched CIE individuals, as well as each other, and between men and women. RESULTS All cognitively impaired diagnostic groups had significantly greater overall WMH volumes than the CIE group. Vascular groups (i.e. V-MCI, V-AD, and mixed dementia) had significantly greater WMH volumes than all other groups, except for FTD, which also had significantly greater WMH volumes than all non-vascular groups. Women tended to have lower WMH burden than men in most groups and regions, controlling for age. The left frontal lobe tended to have a lower WMH burden than the right in all groups. In contrast, the right occipital lobe tended to have greater WMH volumes than the left. CONCLUSIONS There were distinct differences in WMH prevalence and distribution across diagnostic groups, sexes, and in terms of asymmetry. WMH burden was significantly greater in all neurodegenerative dementia groups, likely encompassing areas exclusively impacted by neurodegeneration as well as areas related to cerebrovascular disease pathology.
Collapse
|
82
|
Andrews EJ, Martini AC, Head E. Exploring the role of sex differences in Alzheimer's disease pathogenesis in Down syndrome. Front Neurosci 2022; 16:954999. [PMID: 36033603 PMCID: PMC9411995 DOI: 10.3389/fnins.2022.954999] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/25/2022] [Indexed: 11/14/2022] Open
Abstract
Women are disproportionately affected by Alzheimer's disease (AD), yet little is known about sex-specific effects on the development of AD in the Down syndrome (DS) population. DS is caused by a full or partial triplication of chromosome 21, which harbors the amyloid precursor protein (APP) gene, among others. The majority of people with DS in their early- to mid-40s will accumulate sufficient amyloid-beta (Aβ) in their brains along with neurofibrillary tangles (NFT) for a neuropathological diagnosis of AD, and the triplication of the APP gene is regarded as the main cause. Studies addressing sex differences with age and impact on dementia in people with DS are inconsistent. However, women with DS experience earlier age of onset of menopause, marked by a drop in estrogen, than women without DS. This review focuses on key sex differences observed with age and AD in people with DS and a discussion of possible underlying mechanisms that could be driving or protecting from AD development in DS. Understanding how biological sex influences the brain will lead to development of dedicated therapeutics and interventions to improve the quality of life for people with DS and AD.
Collapse
Affiliation(s)
- Elizabeth J. Andrews
- Department of Pathology and Laboratory Medicine, University of California, Irvine, Irvine, CA, United States
| | - Alessandra C. Martini
- Department of Pathology and Laboratory Medicine, University of California, Irvine, Irvine, CA, United States
| | - Elizabeth Head
- Department of Pathology and Laboratory Medicine, University of California, Irvine, Irvine, CA, United States
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
83
|
Cai J, Sun J, Chen H, Chen Y, Zhou Y, Lou M, Yu R. Different mechanisms in periventricular and deep white matter hyperintensities in old subjects. Front Aging Neurosci 2022; 14:940538. [PMID: 36034143 PMCID: PMC9399809 DOI: 10.3389/fnagi.2022.940538] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/11/2022] [Indexed: 11/13/2022] Open
Abstract
ObjectiveAlthough multiple pieces of evidence have suggested that there are different mechanisms in periventricular white matter hyperintensities (PWMHs) and deep white matter hyperintensities (DWMHs), the exact mechanism remains uncertain.MethodsWe reviewed clinical and imaging data of old participants from a local She Ethnic group. We assessed the cerebral blood flow of white matter (WM-CBF) on arterial spin-labeling, deep medullary veins (DMVs) visual score on susceptibility-weighted imaging, and index for diffusion tensor image analysis along the perivascular space (ALPS index), indicating glymphatic function on diffusion tensor imaging. Furthermore, we investigated their relationships with volumes of PWMHs and DWMHs.ResultsA total of 152 subjects were included, with an average age of 63 ± 8 years old. We found that higher age and history of hypertension were independently related to higher volumes of both PWMHs and DWMHs (all p < 0.05). Lower ALPS index was independently associated with higher PWMHs volumes (β = 0.305, p < 0.001), and this relationship was accounted for by the indirect pathway via DMVs score (β = 0.176, p = 0.017). Both lower ALPS index and WM-CBF were independent risk factors for higher DWMHs volumes (β = −0.146, p = 0.041; β = −0.147, p = 0.036).ConclusionsOur study indicated that there were different mechanisms in PWMHs and DWMHs. PWMHs were mainly attributed to the damage of veins due to the dysfunction of the glymphatic pathway, while DWMHs could be affected by both ischemia-hypoperfusion and dysfunction of the glymphatic pathway.Advances in knowledgeThe relationship between glymphatic dysfunction and PWMHs might be accounted for by the indirect pathway via venous abnormalities, a glymphatic dysfunction, and lower CBF in white matter were independent risk factors for DWMHs.
Collapse
Affiliation(s)
- Jinsong Cai
- Department of Radiology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jianzhong Sun
- Department of Radiology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Haiyan Chen
- Department of Radiology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ying Chen
- Department of Radiology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ying Zhou
- Department of Neurology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Min Lou
- Department of Neurology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Risheng Yu
- Department of Radiology, Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Risheng Yu
| |
Collapse
|
84
|
Gu L, Wang Y, Shu H. Association between migraine and cognitive impairment. J Headache Pain 2022; 23:88. [PMID: 35883043 PMCID: PMC9317452 DOI: 10.1186/s10194-022-01462-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 07/16/2022] [Indexed: 11/20/2022] Open
Abstract
Background Previous studies revealed inconsistent results regarding association between migraine and cognitive impairment. In addition, previous studies found inconsistent results regarding the association between migraine and risk of dementia. Thus, the study aimed to make a meta-analysis exploring comparison result in different types of cognitive function between migraine patients and non-migraine subjects. In addition, meta-analysis was made to explore the association between migraine and risk of dementia. Methods Articles published before June 2022 were searched in the following databases: PubMed, Web of Science, SCOPUS, EMBASE, EBSCO, PROQUEST, ScienceDirect and Cochrane Database of Systematic Reviews. Results were computed using STATA 12.0 software. Results Meta-analysis showed lower general cognitive function and language function in migraine group, compared to no migraine group (general cognitive function: standard mean difference (SMD) = − 0.40, 95% CI = − 0.66 to − 0.15; language: SMD = − 0.14, 95% confidence interval (CI) = − 0.27 to − 0.00), whereas the study showed no significant difference in visuospatial function, attention, executive function and memory between migraine group and no migraine group (visuospatial function: SMD = − 0.23, 95% CI = − 0.53 to 0.08; attention: SMD = − 0.01, 95% CI = − 0.10 to 0.08; executive function: SMD = − 0.05, 95% CI = − 0.16 to 0.05; memory: SMD = − 0.14, 95% CI = − 0.30 to 0.03). In addition, the meta-analysis showed a significant association between migraine and risk of dementia (odds ratio (OR)/relative risk (RR) = 1.30, 95% CI = 1.11 to 1.52). Conclusions In conclusion, the meta-analysis demonstrated lower general cognitive function and language function in migraine. In addition, migraine is associated with an increased risk of all-cause dementia, VaD and AD. These results suggest a significant association between migraine and cognitive impairment. Because of the association between migraine and cognitive impairment, neurological physician should be vigilant and effectively intervene in migraineurs with high risk factors of cognitive impairment to prevent the development of cognitive impairment. Supplementary Information The online version contains supplementary material available at 10.1186/s10194-022-01462-4.
Collapse
Affiliation(s)
- Lihua Gu
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, No. 87 Dingjiaqiao Road, Nanjing, 210009, Jiangsu, China. .,Department of Neurology, Tianjin Huanhu Hospital, Tianjin, China.
| | - Yanjuan Wang
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, No. 87 Dingjiaqiao Road, Nanjing, 210009, Jiangsu, China
| | - Hao Shu
- Department of Neurology, Affiliated ZhongDa Hospital, School of Medicine, Southeast University, No. 87 Dingjiaqiao Road, Nanjing, 210009, Jiangsu, China
| |
Collapse
|
85
|
Chen TF, Lee SH, Zheng WR, Hsu CC, Cho KH, Kuo LW, Chou CCK, Chiu MJ, Tee BL, Cheng TJ. White matter pathology in alzheimer's transgenic mice with chronic exposure to low-level ambient fine particulate matter. Part Fibre Toxicol 2022; 19:44. [PMID: 35768852 PMCID: PMC9245233 DOI: 10.1186/s12989-022-00485-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 04/29/2022] [Indexed: 03/13/2023] Open
Abstract
BACKGROUND Air pollution, especially fine particulate matter (PM), can cause brain damage, cognitive decline, and an increased risk of neurodegenerative disease, especially alzheimer's disease (AD). Typical pathological findings of amyloid and tau protein accumulation have been detected in the brain after exposure in animal studies. However, these observations were based on high levels of PM exposure, which were far from the WHO guidelines and those present in our environment. In addition, white matter involvement by air pollution has been less reported. Thus, this experiment was designed to simulate the true human world and to discuss the possible white matter pathology caused by air pollution. RESULTS 6 month-old female 3xTg-AD mice were divided into exposure and control groups and housed in the Taipei Air Pollutant Exposure System (TAPES) for 5 months. The mice were subjected to the Morris water maze test after exposure and were then sacrificed with brain dissection for further analyses. The mean mass concentration of PM2.5 during the exposure period was 13.85 μg/m3. After exposure, there was no difference in spatial learning function between the two groups, but there was significant decay of memory in the exposure group. Significantly decreased total brain volume and more neuronal death in the cerebral and entorhinal cortex and demyelination of the corpus callosum were noted by histopathological staining after exposure. However, there was no difference in the accumulation of amyloid or tau on immunohistochemistry staining. For the protein analysis, amyloid was detected at significantly higher levels in the cerebral cortex, with lower expression of myelin basic protein in the white matter. A diffuse tensor image study also revealed insults in multiple white matter tracts, including the optic tract. CONCLUSIONS In conclusion, this pilot study showed that even chronic exposure to low PM2.5 concentrations still caused brain damage, such as gross brain atrophy, cortical neuron damage, and multiple white matter tract damage. Typical amyloid cascade pathology did not appear prominently in the vulnerable brain region after exposure. These findings imply that multiple pathogenic pathways induce brain injury by air pollution, and the optic nerve may be another direct invasion route in addition to olfactory nerve.
Collapse
Affiliation(s)
- Ta-Fu Chen
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Sheng-Han Lee
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Room 720, No. 17, Xuzhou Rd, Taipei, 100, Taiwan
| | - Wan-Ru Zheng
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Room 720, No. 17, Xuzhou Rd, Taipei, 100, Taiwan
| | - Ching-Chou Hsu
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Room 720, No. 17, Xuzhou Rd, Taipei, 100, Taiwan
| | - Kuan-Hung Cho
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli, Taiwan
| | - Li-Wei Kuo
- Institute of Biomedical Engineering and Nanomedicine, National Health Research Institutes, Miaoli, Taiwan
- Institute of Medical Device and Imaging, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Charles C-K Chou
- Research Center for Environmental Changes, Academia Sinica, Taipei, Taiwan
| | - Ming-Jang Chiu
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| | - Boon Lead Tee
- Department of Neurology, Memory and Aging Center, University of California at San Francisco, San Francisco, CA, USA
| | - Tsun-Jen Cheng
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Room 720, No. 17, Xuzhou Rd, Taipei, 100, Taiwan.
- Department of Public Health, College of Public Health, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
86
|
Morrison C, Dadar M, Villeneuve S, Collins DL. White matter lesions may be an early marker for age-related cognitive decline. Neuroimage Clin 2022; 35:103096. [PMID: 35764028 PMCID: PMC9241138 DOI: 10.1016/j.nicl.2022.103096] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 05/16/2022] [Accepted: 06/19/2022] [Indexed: 11/15/2022]
Abstract
BACKGROUND Research suggests that cerebral small vessel disease (CSVD), amyloid, and pTau contribute to age-related cognitive decline. It remains unknown how these factors relate to one another and how they jointly contribute to cognitive decline in normal aging. This project examines the association between these factors and their relationship to cognitive decline in cognitively unimpaired older adults without subjective cognitive decline. METHODS A total of 230 subjects with cerebrospinal fluid (CSF) Aß42, CSF pTau181, white matter lesions (WMLs) used as a proxy of CSVD, and cognitive scores from the Alzheimer's Disease Neuroimaging Initiative were included. Associations between each factor and cognitive score were investigated using regression models. Furthermore, relationships between the three pathologies were also examined using regression models. RESULTS At baseline, there was an inverse association between WML load and Aß42 (t = -4.20, p <.001). There was no association between WML load and pTau (t = 0.32, p = 0.75), nor with Aß42 and pTau (t = 0.51, p =.61). Correcting for age, sex and education, baseline WML load was associated with baseline ADAS-13 scores (t = 2.59, p =.01) and lower follow-up executive functioning (t = -2.84, p =.005). Baseline Aß42 was associated with executive function at baseline (t = 3.58, p<.004) but not at follow-up (t = 1.05, p = 0.30), nor with ADAS-13 at baseline (t = -0.24, p = 0.81) or follow-up (t = 0.09, p = 0.93). Finally, baseline pTau was not associated with any cognitive measure at baseline or follow-up. CONCLUSION Both baseline Aß42 and WML load are associated with some baseline cognition scores, but only baseline WML load is associated with follow-up executive functioning. This finding suggests that WMLs may be one of the earliest clinical manifestations that contributes to future cognitive decline in cognitively healthy older adults. Given that healthy older adults with WMLs exhibit declines in cognitive functioning, they may be less resilient to future pathology increasing their risk for cognitive impairment due to dementia than those without WMLs.
Collapse
Affiliation(s)
- Cassandra Morrison
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada; Department of Neurology and Neurosurgery, McGill University, H3A 2B4 Montreal, Quebec, Canada.
| | - Mahsa Dadar
- Department of Psychiatry, McGill University, H3A 1A1 Montreal, Quebec, Canada; Douglas Mental Health University Institute, Studies on Prevention of Alzheimer's Disease (StoP-AD) Centre, H4H 1R3 Montreal, Quebec, Canada
| | - Sylvia Villeneuve
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada; Department of Neurology and Neurosurgery, McGill University, H3A 2B4 Montreal, Quebec, Canada; Department of Psychiatry, McGill University, H3A 1A1 Montreal, Quebec, Canada; Douglas Mental Health University Institute, Studies on Prevention of Alzheimer's Disease (StoP-AD) Centre, H4H 1R3 Montreal, Quebec, Canada
| | - D Louis Collins
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada; Department of Neurology and Neurosurgery, McGill University, H3A 2B4 Montreal, Quebec, Canada
| |
Collapse
|
87
|
Shen X, Raghavan S, Przybelski SA, Lesnick TG, Ma S, Reid RI, Graff-Radford J, Mielke MM, Knopman DS, Petersen RC, Jack CR, Simon GJ, Vemuri P. Causal structure discovery identifies risk factors and early brain markers related to evolution of white matter hyperintensities. Neuroimage Clin 2022; 35:103077. [PMID: 35696810 PMCID: PMC9194644 DOI: 10.1016/j.nicl.2022.103077] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/25/2022] [Accepted: 06/03/2022] [Indexed: 11/25/2022]
Abstract
Our goal was to understand the complex relationship between age, sex, midlife risk factors, and early white matter changes measured by diffusion tensor imaging (DTI) and their role in the evolution of longitudinal white matter hyperintensities (WMH). We identified 1564 participants (1396 cognitively unimpaired, 151 mild cognitive impairment and 17 dementia participants) with age ranges of 30-90 years from the population-based sample of Mayo Clinic Study of Aging. We used computational causal structure discovery and regression analyses to evaluate the predictors of WMH and DTI, and to ascertain the mediating effect of DTI on WMH. We further derived causal graphs to understand the complex interrelationships between midlife protective factors, vascular risk factors, diffusion changes, and WMH. Older age, female sex, and hypertension were associated with higher baseline and progression of WMH as well as DTI measures (P ≤ 0.003). The effects of hypertension and sex on WMH were partially mediated by microstructural changes measured on DTI. Higher midlife physical activity was predictive of lower WMH through a direct impact on better white matter tract integrity as well as an indirect effect through reducing the risk of hypertension by lowering BMI. This study identified key risks factors, early brain changes, and pathways that may lead to the evolution of WMH.
Collapse
Affiliation(s)
- Xinpeng Shen
- Institute for Health Informatics, University of Minnesota, Minneapolis, MN, USA; Departments of Radiology, Mayo Clinic, Rochester, MN, USA
| | | | | | | | - Sisi Ma
- Institute for Health Informatics, University of Minnesota, Minneapolis, MN, USA
| | - Robert I Reid
- Information Technology, Mayo Clinic, Rochester, MN, USA
| | | | - Michelle M Mielke
- Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA; Departments of Neurology, Mayo Clinic, Rochester, MN, USA
| | | | | | | | - György J Simon
- Institute for Health Informatics, University of Minnesota, Minneapolis, MN, USA
| | | |
Collapse
|
88
|
Abstract
High blood pressure (BP) is detrimental to brain health. High BP contributes to cognitive impairment and dementia through pathways independent of clinical stroke. Emerging evidence shows that the deleterious effect of high BP on cognition occurs across the life span, increasing the risk for early-onset and late-life dementia. The term vascular cognitive impairment includes cognitive disorders associated with cerebrovascular disease, regardless of the pathogenesis. This focused report is a narrative review that aims to summarize the epidemiology of BP and vascular cognitive impairment, including differences by sex, race, and ethnicity, as well as the management and reversibility of BP and vascular cognitive impairment. It also discusses knowledge gaps and future directions.
Collapse
Affiliation(s)
- Deborah A. Levine
- Department of Internal Medicine and Cognitive Health Services Research Program, University of Michigan (U-M), Ann Arbor, MI
- Department of Neurology and Stroke Program, U-M, Ann Arbor, MI
- Institute for Healthcare Policy and Innovation, U-M, Ann Arbor, MI
| | - Mellanie V. Springer
- Department of Neurology and Stroke Program, U-M, Ann Arbor, MI
- Institute for Healthcare Policy and Innovation, U-M, Ann Arbor, MI
| | - Amy Brodtmann
- The Florey Institute of Neuroscience and Mental Health, Royal Melbourne Hospital, University of Melbourne, Australia
| |
Collapse
|
89
|
Jiang L, Qin Y, Zhao YW, Zeng Q, Pan HX, Liu ZH, Sun QY, Xu Q, Tan JQ, Yan XX, Li JC, Tang BS, Guo JF. PSEN1 G417S mutation in a Chinese pedigree causing early-onset parkinsonism with cognitive impairment. Neurobiol Aging 2022; 115:70-76. [DOI: 10.1016/j.neurobiolaging.2022.03.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 10/03/2021] [Accepted: 03/28/2022] [Indexed: 11/29/2022]
|
90
|
Brown SS, Mak E, Clare I, Grigorova M, Beresford-Webb J, Walpert M, Jones E, Hong YT, Fryer TD, Coles JP, Aigbirhio FI, Tudorascu D, Cohen A, Christian BT, Handen BL, Klunk WE, Menon DK, Nestor PJ, Holland AJ, Zaman SH. Support vector machine learning and diffusion-derived structural networks predict amyloid quantity and cognition in adults with Down's syndrome. Neurobiol Aging 2022; 115:112-121. [PMID: 35418341 DOI: 10.1016/j.neurobiolaging.2022.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 02/23/2022] [Accepted: 02/24/2022] [Indexed: 10/18/2022]
Abstract
Down's syndrome results from trisomy of chromosome 21, a genetic change which also confers a probable 100% risk for the development of Alzheimer's disease neuropathology (amyloid plaque and neurofibrillary tangle formation) in later life. We aimed to assess the effectiveness of diffusion-weighted imaging and connectomic modelling for predicting brain amyloid plaque burden, baseline cognition and longitudinal cognitive change using support vector regression. Ninety-five participants with Down's syndrome successfully completed a full Pittsburgh Compound B (PiB) PET-MR protocol and memory assessment at two timepoints. Our findings indicate that graph theory metrics of node degree and strength based on the structural connectome are effective predictors of global amyloid deposition. We also show that connection density of the structural network at baseline is a promising predictor of current cognitive performance. Directionality of effects were mainly significant reductions in the white matter connectivity in relation to both PiB+ status and greater rate of cognitive decline. Taken together, these results demonstrate the integral role of the white matter during neuropathological progression and the utility of machine learning methodology for non-invasively evaluating Alzheimer's disease prognosis.
Collapse
|
91
|
Shir D, Graff‐Radford J, Hofrenning EI, Lesnick TG, Przybelski SA, Lowe VJ, Knopman DS, Petersen RC, Jack CR, Vemuri P, Algeciras‐Schimnich A, Campbell MR, Stricker NH, Mielke MM. Association of plasma glial fibrillary acidic protein (GFAP) with neuroimaging of Alzheimer's disease and vascular pathology. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2022; 14:e12291. [PMID: 35252538 PMCID: PMC8883441 DOI: 10.1002/dad2.12291] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/18/2021] [Accepted: 01/16/2022] [Indexed: 11/28/2022]
Abstract
Introduction: Plasma glial fibrillary acidic protein (GFAP) may be associated with amyloid burden, neurodegeneration, and stroke but its specificity for Alzheimer's disease (AD) in the general population is unclear. We examined associations of plasma GFAP with amyloid and tau positron emission tomography (PET), cortical thickness, white matter hyperintensities (WMH), and cerebral microbleeds (CMBs). Methods: The study included 200 individuals from the Mayo Clinic Study of Aging who underwent amyloid and tau PET and magnetic resonance imaging and had plasma GFAP concurrently assayed; multiple linear regression and hurdle model analyses were used to investigate associations controlling for age and sex. Results: GFAP was associated with amyloid and tau PET in multivariable models. After adjusting for amyloid, the association with tau PET was no longer significant. GFAP was associated with cortical thickness, WMH, and lobar CMBs only among those who were amyloid-positive. Discussion: This cross-sectional analysis demonstrates the utility of GFAP as a plasma biomarker for AD-related pathologies.
Collapse
Affiliation(s)
- Dror Shir
- Department of NeurologyMayo ClinicRochesterMinnesotaUSA
| | | | | | - Timothy G. Lesnick
- Department of Quantitative Health SciencesMayo ClinicRochesterMinnesotaUSA
| | | | - Val J. Lowe
- Department of RadiologyMayo ClinicRochesterMinnesotaUSA
| | | | - Ronald C. Petersen
- Department of NeurologyMayo ClinicRochesterMinnesotaUSA
- Department of Quantitative Health SciencesMayo ClinicRochesterMinnesotaUSA
| | | | | | | | | | - Nikki H. Stricker
- Department of Psychiatry and PsychologyMayo ClinicRochesterMinnesotaUSA
| | - Michelle M. Mielke
- Department of NeurologyMayo ClinicRochesterMinnesotaUSA
- Department of Quantitative Health SciencesMayo ClinicRochesterMinnesotaUSA
| |
Collapse
|
92
|
Pietroboni AM, Colombi A, Carandini T, Sacchi L, Fenoglio C, Marotta G, Arighi A, De Riz MA, Fumagalli GG, Castellani M, Bozzali M, Scarpini E, Galimberti D. Amyloid PET imaging and dementias: potential applications in detecting and quantifying early white matter damage. Alzheimers Res Ther 2022; 14:33. [PMID: 35151361 PMCID: PMC8841045 DOI: 10.1186/s13195-021-00933-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 11/04/2021] [Indexed: 11/11/2022]
Abstract
Purpose Positron emission tomography (PET) with amyloid tracers (amy-PET) allows the quantification of pathological amyloid deposition in the brain tissues, including the white matter (WM). Here, we evaluate amy-PET uptake in WM lesions (WML) and in the normal-appearing WM (NAWM) of patients with Alzheimer’s disease (AD) and non-AD type of dementia. Methods Thirty-three cognitively impaired subjects underwent brain magnetic resonance imaging (MRI), Aβ1-42 (Aβ) determination in the cerebrospinal fluid (CSF) and amy-PET. Twenty-three patients exhibiting concordant results in both CSF analysis and amy-PET for cortical amyloid deposition were recruited and divided into two groups, amyloid positive (A+) and negative (A−). WML quantification and brain volumes’ segmentation were performed. Standardized uptake values ratios (SUVR) were calculated in the grey matter (GM), NAWM and WML on amy-PET coregistered to MRI images. Results A+ compared to A− showed a higher WML load (p = 0.049) alongside higher SUVR in all brain tissues (p < 0.01). No correlations between CSF Aβ levels and WML and NAWM SUVR were found in A+, while, in A−, CSF Aβ levels were directly correlated to NAWM SUVR (p = 0.04). CSF Aβ concentration was the only predictor of NAWM SUVR (adj R2 = 0.91; p = 0.04) in A−. In A+ but not in A− direct correlations were identified between WM and GM SUVR (p < 0.01). Conclusions Our data provide evidence on the role of amy-PET in the assessment of microstructural WM injury in non-AD dementia, whereas amy-PET seems less suitable to assess WM damage in AD patients due to a plausible amyloid accrual therein.
Collapse
Affiliation(s)
- Anna M Pietroboni
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via F. Sforza 35, 20122, Milan, Italy. .,University of Milan, Milan, Italy. .,Dino Ferrari Center, Milan, Italy.
| | - Annalisa Colombi
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via F. Sforza 35, 20122, Milan, Italy.,University of Milan, Milan, Italy.,Dino Ferrari Center, Milan, Italy
| | - Tiziana Carandini
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via F. Sforza 35, 20122, Milan, Italy.,University of Milan, Milan, Italy.,Dino Ferrari Center, Milan, Italy
| | - Luca Sacchi
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via F. Sforza 35, 20122, Milan, Italy.,University of Milan, Milan, Italy.,Dino Ferrari Center, Milan, Italy
| | | | - Giorgio Marotta
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via F. Sforza 35, 20122, Milan, Italy
| | - Andrea Arighi
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via F. Sforza 35, 20122, Milan, Italy.,University of Milan, Milan, Italy.,Dino Ferrari Center, Milan, Italy
| | - Milena A De Riz
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via F. Sforza 35, 20122, Milan, Italy.,University of Milan, Milan, Italy.,Dino Ferrari Center, Milan, Italy
| | - Giorgio G Fumagalli
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via F. Sforza 35, 20122, Milan, Italy.,University of Milan, Milan, Italy.,Dino Ferrari Center, Milan, Italy
| | - Massimo Castellani
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via F. Sforza 35, 20122, Milan, Italy
| | - Marco Bozzali
- 'Rita Levi Montalcini' Department of Neuroscience, University of Torino, Turin, Italy.,Department of Neuroscience, Brighton and Sussex Medical School, University of Sussex, Brighton, UK
| | - Elio Scarpini
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via F. Sforza 35, 20122, Milan, Italy.,University of Milan, Milan, Italy.,Dino Ferrari Center, Milan, Italy
| | - Daniela Galimberti
- Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Via F. Sforza 35, 20122, Milan, Italy.,University of Milan, Milan, Italy.,Dino Ferrari Center, Milan, Italy
| |
Collapse
|
93
|
Vemuri P, Decarli CS, Duering M. Imaging Markers of Vascular Brain Health: Quantification, Clinical Implications, and Future Directions. Stroke 2022; 53:416-426. [PMID: 35000423 PMCID: PMC8830603 DOI: 10.1161/strokeaha.120.032611] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Cerebrovascular disease (CVD) manifests through a broad spectrum of mechanisms that negatively impact brain and cognitive health. Oftentimes, CVD changes (excluding acute stroke) are insufficiently considered in aging and dementia studies which can lead to an incomplete picture of the etiologies contributing to the burden of cognitive impairment. Our goal with this focused review is 3-fold. First, we provide a research update on the current magnetic resonance imaging methods that can measure CVD lesions as well as early CVD-related brain injury specifically related to small vessel disease. Second, we discuss the clinical implications and relevance of these CVD imaging markers for cognitive decline, incident dementia, and disease progression in Alzheimer disease, and Alzheimer-related dementias. Finally, we present our perspective on the outlook and challenges that remain in the field. With the increased research interest in this area, we believe that reliable CVD imaging biomarkers for aging and dementia studies are on the horizon.
Collapse
Affiliation(s)
| | - Charles S. Decarli
- Departments of Neurology and Center for Neuroscience, University of California at Davis, Sacramento, California, USA
| | - Marco Duering
- Institute for Stroke and Dementia Research (ISD), University Hospital, LMU Munich, Germany
- Medical Image Analysis Center (MIAC AG) and qbig, Department of Biomedical Engineering, University of Basel, Switzerland
| |
Collapse
|
94
|
Jiang C, Wang Q, Xie S, Chen Z, Fu L, Peng Q, Liang Y, Guo H, Guo T. OUP accepted manuscript. Brain Commun 2022; 4:fcac084. [PMID: 35441134 PMCID: PMC9014538 DOI: 10.1093/braincomms/fcac084] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 12/21/2021] [Accepted: 03/29/2022] [Indexed: 11/14/2022] Open
Affiliation(s)
- Chenyang Jiang
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Qingyong Wang
- Department of Neurology, University of Chinese Academy of Sciences-Shenzhen Hospital, Shenzhen 518107, China
| | - Siwei Xie
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Zhicheng Chen
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Liping Fu
- Department of Nuclear Medicine, China-Japan Friendship Hospital, 2 Yinghuayuan Dongjie, Beijing 100029, China
| | - Qiyu Peng
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen 518132, China
| | - Ying Liang
- Department of Nuclear Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen 518116, China
| | - Hongbo Guo
- Department of Neurosurgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Tengfei Guo
- Institute of Biomedical Engineering, Shenzhen Bay Laboratory, Shenzhen 518132, China
- Institute of Biomedical Engineering, Peking University Shenzhen Graduate School, Shenzhen 518055, China
- Correspondence to: Tengfei Guo, PhD Institute of Biomedical Engineering Shenzhen Bay Laboratory, No.5 Kelian Road Shenzhen 518132, China E-mail:
| | | |
Collapse
|
95
|
Lee KH, Kang KM. Association between Cerebral Small Vessel and Alzheimer’s Disease. JOURNAL OF THE KOREAN SOCIETY OF RADIOLOGY 2022; 83:486-507. [PMID: 36238505 PMCID: PMC9514514 DOI: 10.3348/jksr.2022.0041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/15/2022] [Accepted: 05/16/2022] [Indexed: 11/15/2022]
Abstract
뇌소혈관질환은 뇌 자기공명영상에서 흔히 관찰되는 혈관성 변화로 뇌백질 고신호강도, 뇌미세출혈, 열공성 경색, 혈관주위공간 등을 포함한다. 이러한 혈관성 변화가 알츠하이머병(Alzheimer’s disease; 이하 AD)의 발병 및 진행과 관련되어 있고, 대표 병리인 베타 아밀로이드 및 타우 단백의 침착과도 연관되어 있다는 증거들이 축적되고 있다. 혈관성 변화는 생활 습관 개선이나 약물 치료를 통해 예방과 개선이 가능하기 때문에 뇌소혈관질환과 AD 및 AD 생체지표의 관련성을 연구하는 것이 중요하다. 본 종설에서는 AD와 AD 생체지표에 대해 간략히 소개하고, AD와 혈관성 변화의 관련성에 대해 축적된 증거들을 제시한 다음, 뇌소혈관질환의 병태 생리와 MR 영상 소견을 설명하고자 한다. 또 뇌소혈관질환과 AD 진단의 위험도 및 AD 생체지표와의 관련성에 대한 기존 연구 결과들을 정리하고자 한다.
Collapse
Affiliation(s)
- Kyung Hoon Lee
- Department of Radiology, Seoul National University Hospital, Seoul, Korea
| | - Koung Mi Kang
- Department of Radiology, Seoul National University Hospital, Seoul, Korea
- Department of Radiology, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
96
|
Rundek T, Tolea M, Ariko T, Fagerli EA, Camargo CJ. Vascular Cognitive Impairment (VCI). Neurotherapeutics 2022; 19:68-88. [PMID: 34939171 PMCID: PMC9130444 DOI: 10.1007/s13311-021-01170-y] [Citation(s) in RCA: 111] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/06/2021] [Indexed: 01/03/2023] Open
Abstract
Vascular cognitive impairment (VCI) is predominately caused by vascular risk factors and cerebrovascular disease. VCI includes a broad spectrum of cognitive disorders, from mild cognitive impairment to vascular dementia caused by ischemic or hemorrhagic stroke, and vascular factors alone or in a combination with neurodegeneration including Alzheimer's disease (AD) and AD-related dementia. VCI accounts for at least 20-40% of all dementia diagnosis. Growing evidence indicates that cerebrovascular pathology is the most important contributor to dementia, with additive or synergistic interactions with neurodegenerative pathology. The most common underlying mechanism of VCI is chronic age-related dysregulation of CBF, although other factors such as inflammation and cardiovascular dysfunction play a role. Vascular risk factors are prevalent in VCI and if measured in midlife they predict cognitive impairment and dementia in later life. Particularly, hypertension, high cholesterol, diabetes, and smoking at midlife are each associated with a 20 to 40% increased risk of dementia. Control of these risk factors including multimodality strategies with an inclusion of lifestyle modification is the most promising strategy for treatment and prevention of VCI. In this review, we present recent developments in age-related VCI, its mechanisms, diagnostic criteria, neuroimaging correlates, vascular risk determinants, and current intervention strategies for prevention and treatment of VCI. We have also summarized the most recent and relevant literature in the field of VCI.
Collapse
Affiliation(s)
- Tatjana Rundek
- Department of Neurology and Evelyn F. McKnight Brain Institute, University of Miami Miller School of Medicine, Miami, FL, USA.
| | - Magdalena Tolea
- Department of Neurology and Evelyn F. McKnight Brain Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Taylor Ariko
- Department of Neurology and Evelyn F. McKnight Brain Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Eric A Fagerli
- Department of Neurology and Evelyn F. McKnight Brain Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Christian J Camargo
- Department of Neurology and Evelyn F. McKnight Brain Institute, University of Miami Miller School of Medicine, Miami, FL, USA
| |
Collapse
|
97
|
Rivera‐Rivera LA, Eisenmenger L, Cody KA, Reher T, Betthauser T, Cadman RV, Rowley HA, Carlsson CM, Chin NA, Johnson SC, Johnson KM. Cerebrovascular stiffness and flow dynamics in the presence of amyloid and tau biomarkers. ALZHEIMER'S & DEMENTIA (AMSTERDAM, NETHERLANDS) 2021; 13:e12253. [PMID: 35005194 PMCID: PMC8719432 DOI: 10.1002/dad2.12253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 09/30/2021] [Indexed: 06/14/2023]
Abstract
INTRODUCTION This work investigated the relationship between cerebrovascular disease (CVD) markers and Alzheimer's disease (AD) biomarkers of amyloid beta deposition, and neurofibrillary tau tangles in subjects spanning the AD clinical spectrum. METHODS A total of 136 subjects participated in this study. Four groups were established based on AD biomarker positivity from positron emission tomography (amyloid [A] and tau [T]) and clinical diagnosis (cognitively normal [CN] and impaired [IM]). CVD markers were derived from structural and quantitative magnetic resonance imaging data. RESULTS Transcapillary pulse wave delay was significantly longer in controls compared to AT biomarker-confirmed groups (A+/T-/CN P < .001, A+/T+/CN P < .001, A+/T+/IM P = .003). Intracranial low-frequency oscillations were diminished in AT biomarker-confirmed groups both CN and impaired (A+/T-/CN P = .039, A+/T+/CN P = .007, A+/T+/IM P = .011). A significantly higher presence of microhemorrhages was measured in A+/T+/CN compared to controls (P = .006). DISCUSSION Cerebrovascular markers indicate increased vessel stiffness and reduced vasomotion in AT biomarker-positive subjects during preclinical AD.
Collapse
Affiliation(s)
- Leonardo A. Rivera‐Rivera
- Wisconsin Alzheimer's Disease Research CenterUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
- Department of MedicineUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
- Department of Medical PhysicsUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| | - Laura Eisenmenger
- Department of RadiologyUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| | - Karly A. Cody
- Wisconsin Alzheimer's Disease Research CenterUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| | - Thomas Reher
- Department of RadiologyUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| | - Tobey Betthauser
- Wisconsin Alzheimer's Disease Research CenterUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
- Department of MedicineUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| | - Robert V. Cadman
- Wisconsin Alzheimer's Disease Research CenterUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
- Department of MedicineUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| | - Howard A. Rowley
- Wisconsin Alzheimer's Disease Research CenterUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
- Department of RadiologyUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| | - Cynthia M. Carlsson
- Wisconsin Alzheimer's Disease Research CenterUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
- Geriatric Research Education and Clinical CenterWilliam S. Middleton Memorial Veterans HospitalMadisonWisconsinUSA
| | - Nathaniel A. Chin
- Wisconsin Alzheimer's Disease Research CenterUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
- Department of MedicineUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| | - Sterling C. Johnson
- Wisconsin Alzheimer's Disease Research CenterUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
- Department of MedicineUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
- Geriatric Research Education and Clinical CenterWilliam S. Middleton Memorial Veterans HospitalMadisonWisconsinUSA
| | - Kevin M. Johnson
- Department of Medical PhysicsUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
- Department of RadiologyUniversity of Wisconsin School of Medicine and Public HealthMadisonWisconsinUSA
| |
Collapse
|
98
|
Marks JD, Syrjanen JA, Graff-Radford J, Petersen RC, Machulda MM, Campbell MR, Algeciras-Schimnich A, Lowe V, Knopman DS, Jack CR, Vemuri P, Mielke MM. Comparison of plasma neurofilament light and total tau as neurodegeneration markers: associations with cognitive and neuroimaging outcomes. Alzheimers Res Ther 2021; 13:199. [PMID: 34906229 PMCID: PMC8672619 DOI: 10.1186/s13195-021-00944-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/06/2021] [Indexed: 01/08/2023]
Abstract
BACKGROUND Total tau protein (T-Tau) and neurofilament light chain (NfL) have emerged as candidate plasma biomarkers of neurodegeneration, but studies have not compared how these biomarkers cross-sectionally or longitudinally associate with cognitive and neuroimaging measures. We therefore compared plasma T-Tau and NfL as cross-sectional and longitudinal markers of (1) global and domain-specific cognitive decline and (2) neuroimaging markers of cortical thickness, hippocampal volume, white matter integrity, and white matter hyperintensity volume. METHODS We included 995 participants without dementia who were enrolled in the Mayo Clinic Study of Aging cohort. All had concurrent plasma NfL and T-tau, cognitive status, and neuroimaging data. Follow-up was repeated approximately every 15 months for a median of 6.2 years. Plasma NfL and T-tau were measured on the Simoa-HD1 Platform. Linear mixed effects models adjusted for age, sex, and education examined associations between baseline z-scored plasma NfL or T-tau and cognitive or neuroimaging outcomes. Analyses were replicated in Alzheimer's Disease Neuroimaging Initiative (ADNI) among 387 participants without dementia followed for a median of 3.0 years. RESULTS At baseline, plasma NfL was more strongly associated with all cognitive and neuroimaging outcomes. The combination of having both elevated NfL and T-tau at baseline, compared to elevated levels of either alone, was more strongly associated at cross-section with worse global cognition and memory, and with neuroimaging measures including temporal cortex thickness and increased number of infarcts. In longitudinal analyses, baseline plasma T-tau did not add to the prognostic value of baseline plasma NfL. Results using ADNI data were similar. CONCLUSIONS Our results indicate plasma NfL had better utility as a prognostic marker of cognitive decline and neuroimaging changes. Plasma T-tau added cross-sectional value to NfL in specific contexts. TRIAL REGISTRATION Not applicable.
Collapse
Affiliation(s)
- Jordan D Marks
- Medical Scientist Training Program, Mayo Clinic Alix School of Medicine, Rochester, MN, USA
| | - Jeremy A Syrjanen
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
| | | | - Ronald C Petersen
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | - Mary M Machulda
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - Michelle R Campbell
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | | | - Val Lowe
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | | | | | | | - Michelle M Mielke
- Department of Quantitative Health Sciences, Mayo Clinic, Rochester, MN, USA.
- Department of Neurology, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
99
|
McAleese KE, Miah M, Graham S, Hadfield GM, Walker L, Johnson M, Colloby SJ, Thomas AJ, DeCarli C, Koss D, Attems J. Frontal white matter lesions in Alzheimer's disease are associated with both small vessel disease and AD-associated cortical pathology. Acta Neuropathol 2021; 142:937-950. [PMID: 34608542 PMCID: PMC8568857 DOI: 10.1007/s00401-021-02376-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 09/26/2021] [Accepted: 09/27/2021] [Indexed: 12/22/2022]
Abstract
Cerebral white matter lesions (WML) encompass axonal loss and demyelination and are assumed to be associated with small vessel disease (SVD)-related ischaemia. However, our previous study in the parietal lobe white matter revealed that WML in Alzheimer's disease (AD) are linked with degenerative axonal loss secondary to the deposition of cortical AD pathology. Furthermore, neuroimaging data suggest that pathomechanisms for the development of WML differ between anterior and posterior lobes with AD-associated degenerative mechanism driving posterior white matter disruption, and both AD-associated degenerative and vascular mechanisms contributed to anterior matter disruption. In this pilot study, we used human post-mortem brain tissue to investigate the composition and aetiology of frontal WML from AD and non-demented controls to determine if frontal WML are SVD-associated and to reveal any regional differences in the pathogenesis of WML. Frontal WML tissue sections from 40 human post-mortem brains (AD, n = 19; controls, n = 21) were quantitatively assessed for demyelination, axonal loss, cortical hyperphosphorylated tau (HPτ) and amyloid-beta (Aβ) burden, and arteriolosclerosis as a measure of SVD. Biochemical assessment included Wallerian degeneration-associated protease calpain and the myelin-associated glycoprotein to proteolipid protein ratio as a measure of ante-mortem ischaemia. Arteriolosclerosis severity was found to be associated with and a significant predictor of frontal WML severity in both AD and non-demented controls. Interesting, frontal axonal loss was also associated with HPτ and calpain levels were associated with increasing Aβ burden in the AD group, suggestive of an additional degenerative influence. To conclude, this pilot data suggest that frontal WML in AD may result from both increased arteriolosclerosis and AD-associated degenerative changes. These preliminary findings in combination with previously published data tentatively indicate regional differences in the aetiology of WML in AD, which should be considered in the clinical diagnosis of dementia subtypes: posterior WML maybe associated with degenerative mechanisms secondary to AD pathology, while anterior WML could be associated with both SVD-associated and degenerative mechanisms.
Collapse
Affiliation(s)
- Kirsty E McAleese
- Translation and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, NE4 5PL, UK.
| | - Mohi Miah
- Translation and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, NE4 5PL, UK
| | - Sophie Graham
- Translation and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, NE4 5PL, UK
| | - Georgina M Hadfield
- Translation and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, NE4 5PL, UK
| | - Lauren Walker
- Translation and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, NE4 5PL, UK
| | - Mary Johnson
- Translation and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, NE4 5PL, UK
| | - Sean J Colloby
- Translation and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, NE4 5PL, UK
| | - Alan J Thomas
- Translation and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, NE4 5PL, UK
| | - Charles DeCarli
- Department of Neurology, University of California, Davis, CA, USA
| | - David Koss
- Translation and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, NE4 5PL, UK
| | - Johannes Attems
- Translation and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, NE4 5PL, UK
| |
Collapse
|
100
|
Haußmann R, Homeyer P, Donix M, Linn J. [Current findings on the coincidence of cerebral amyloid angiopathy and Alzheimer's disease]. DER NERVENARZT 2021; 93:605-611. [PMID: 34652483 PMCID: PMC9200677 DOI: 10.1007/s00115-021-01213-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 09/09/2021] [Indexed: 11/27/2022]
Abstract
Die zerebrale Amyloidangiopathie (CAA) tritt trotz verschiedener Pathomechanismen häufig koinzident zur Alzheimer-Demenz auf. Sie moduliert kognitive Defizite im Rahmen der Alzheimer-Erkrankung (AD) annehmbar durch additive Effekte, auch wenn die diesbezüglichen Zusammenhänge komplex sind. Die pathophysiologische Gemeinsamkeit beider Erkrankungen besteht in einem gestörten Amyloidmetabolismus, distinkt ist jedoch die pathologische Prozessierung von Amyloidvorläuferproteinen. Die CAA mit ihren verschiedenen Subtypen ist eine pathomechanistisch heterogene Gefäßerkrankung des Gehirns. Vaskuläre und parenchymatöse Amyloidablagerungen kommen gemeinsam, aber auch isoliert und unabhängig voneinander vor. Um den spezifischen Beitrag der CAA zu kognitiven Defiziten im Rahmen der AD zu untersuchen, bedarf es daher geeigneter diagnostischer Methoden, die der Komplexität der histopathologischen bzw. bildmorphologischen Charakteristika der CAA gerecht werden, sowie differenzierender testpsychometrischer Verfahren, anhand derer der Beitrag der CAA zu kognitiven Defiziten deskriptiv erfasst und damit ätiologisch besser zuordenbar wird.
Collapse
Affiliation(s)
- R Haußmann
- Universitäts DemenzCentrum (UDC), Klinik und Poliklinik für Psychiatrie und Psychotherapie, Universitätsklinikum Carl Gustav Carus an der Technischen Universität Dresden, Dresden, Deutschland.
| | - P Homeyer
- Universitäts DemenzCentrum (UDC), Klinik und Poliklinik für Psychiatrie und Psychotherapie, Universitätsklinikum Carl Gustav Carus an der Technischen Universität Dresden, Dresden, Deutschland
| | - M Donix
- Universitäts DemenzCentrum (UDC), Klinik und Poliklinik für Psychiatrie und Psychotherapie, Universitätsklinikum Carl Gustav Carus an der Technischen Universität Dresden, Dresden, Deutschland.,DZNE, Deutsches Zentrum für Neurodegenerative Erkrankungen, Dresden, Deutschland
| | - J Linn
- Institut und Poliklinik für diagnostische und interventionelle Neuroradiologie, Universitätsklinikum Carl Gustav Carus an der Technischen Universität Dresden, Dresden, Deutschland
| |
Collapse
|