51
|
Bohnen NI, Roytman S, Kanel P, Müller MLTM, Scott PJH, Frey KA, Albin RL, Koeppe RA. Progression of regional cortical cholinergic denervation in Parkinson's disease. Brain Commun 2022; 4:fcac320. [PMID: 36569603 PMCID: PMC9772878 DOI: 10.1093/braincomms/fcac320] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 09/13/2022] [Accepted: 12/01/2022] [Indexed: 12/03/2022] Open
Abstract
Cortical cholinergic deficits contribute to cognitive decline and other deficits in Parkinson's disease. Cross-sectional imaging studies suggest a stereotyped pattern of posterior-to-anterior cortical cholinergic denervation accompanying disease progression in Parkinson's disease. We used serial acetylcholinesterase PET ligand imaging to characterize the trajectory of regional cholinergic synapse deficits in Parkinson's disease, testing the hypothesis of posterior-to-anterior progression of cortical cholinergic deficits. The 16 Parkinson's disease subjects (4 females/12 males; mean age: 64.4 ± 6.7 years; disease duration: 5.5 ± 4.2 years; Hoehn & Yahr stage: 2.3 ± 0.6 at entry) completed serial 11C-methyl-4-piperidinyl propionate acetylcholinesterase PET scans over a 4-8 year period (median 5 years). Three-dimensional stereotactic cortical surface projections and volume-of-interest analyses were performed. Cholinergic synapse integrity was assessed by the magnitude, k 3, of acetylcholinesterase hydrolysis of 11C-methyl-4-piperidinyl propionate. Based on normative data, we generated Z-score maps for both the k 3 and the k 1 parameters, the latter as a proxy for regional cerebral blood flow. Compared with control subjects, baseline scans showed predominantly posterior cortical k 3 deficits in Parkinson's disease subjects. Interval change analyses showed evidence of posterior-to-anterior progression of cholinergic cortical deficits in the posterior cortices. In frontal cortices, an opposite gradient of anterior-to-posterior progression of cholinergic deficits was found. The topography of k 3 changes exhibited regionally specific disconnection from k 1 changes. Interval-change analysis based on k 3/k 1 ratio images (k 3 adjustment for regional cerebral blood flow changes) showed interval reductions (up to 20%) in ventral frontal, anterior cingulate and Brodmann area 6 cortices. In contrast, interval k 3 reductions in the posterior cortices, especially Brodmann areas 17-19, were largely proportional to k 1 changes. Our results partially support the hypothesis of progressive posterior-to-cortical cholinergic denervation in Parkinson's disease. This pattern appears characteristic of posterior cortices. In frontal cortices, an opposite pattern of anterior-to-posterior progression of cholinergic deficits was found. The progressive decline of posterior cortical acetylcholinesterase activity was largely proportional to declining regional cerebral blood flow, suggesting that posterior cortical cholinergic synapse deficits are part of a generalized loss of synapses. The disproportionate decline in regional frontal cortical acetylcholinesterase activity relative to regional cerebral blood flow suggests preferential loss or dysregulation of cholinergic synapses in these regions. Our observations suggest that cortical cholinergic synapse vulnerability in Parkinson's disease is mediated by both diffuse processes affecting cortical synapses and processes specific to subpopulations of cortical cholinergic afferents.
Collapse
Affiliation(s)
- Nicolaas I Bohnen
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- Neurology Service and GRECC, VA Ann Arbor Healthcare System, Ann Arbor, MI 48105, USA
- Morris K. Udall Center of Excellence for Parkinson’s Disease Research, University of Michigan, Ann Arbor, MI 48109, USA
- Parkinson’s Foundation Research Center of Excellence, University of Michigan, Ann Arbor, MI 48109, USA
| | - Stiven Roytman
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Prabesh Kanel
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA
- Morris K. Udall Center of Excellence for Parkinson’s Disease Research, University of Michigan, Ann Arbor, MI 48109, USA
- Parkinson’s Foundation Research Center of Excellence, University of Michigan, Ann Arbor, MI 48109, USA
| | - Martijn L T M Müller
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA
- Parkinson Consortium, Critical Path Institute, Tucson, AZ 85718, USA
| | - Peter J H Scott
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Kirk A Frey
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA
- Morris K. Udall Center of Excellence for Parkinson’s Disease Research, University of Michigan, Ann Arbor, MI 48109, USA
| | - Roger L Albin
- Department of Neurology, University of Michigan, Ann Arbor, MI 48109, USA
- Neurology Service and GRECC, VA Ann Arbor Healthcare System, Ann Arbor, MI 48105, USA
- Morris K. Udall Center of Excellence for Parkinson’s Disease Research, University of Michigan, Ann Arbor, MI 48109, USA
- Parkinson’s Foundation Research Center of Excellence, University of Michigan, Ann Arbor, MI 48109, USA
| | - Robert A Koeppe
- Department of Radiology, University of Michigan, Ann Arbor, MI 48109, USA
- Morris K. Udall Center of Excellence for Parkinson’s Disease Research, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
52
|
Lohani S, Moberly AH, Benisty H, Landa B, Jing M, Li Y, Higley MJ, Cardin JA. Spatiotemporally heterogeneous coordination of cholinergic and neocortical activity. Nat Neurosci 2022; 25:1706-1713. [PMID: 36443609 PMCID: PMC10661869 DOI: 10.1038/s41593-022-01202-6] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 10/12/2022] [Indexed: 11/30/2022]
Abstract
Variation in an animal's behavioral state is linked to fluctuations in brain activity and cognitive ability. In the neocortex, state-dependent circuit dynamics may reflect neuromodulatory influences such as that of acetylcholine (ACh). Although early literature suggested that ACh exerts broad, homogeneous control over cortical function, recent evidence indicates potential anatomical and functional segregation of cholinergic signaling. In addition, it is unclear whether states as defined by different behavioral markers reflect heterogeneous cholinergic and cortical network activity. Here, we perform simultaneous, dual-color mesoscopic imaging of both ACh and calcium across the neocortex of awake mice to investigate their relationships with behavioral variables. We find that higher arousal, categorized by different motor behaviors, is associated with spatiotemporally dynamic patterns of cholinergic modulation and enhanced large-scale network correlations. Overall, our findings demonstrate that ACh provides a highly dynamic and spatially heterogeneous signal that links fluctuations in behavior to functional reorganization of cortical networks.
Collapse
Affiliation(s)
- Sweyta Lohani
- Department of Neuroscience, Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Andrew H Moberly
- Department of Neuroscience, Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Hadas Benisty
- Department of Neuroscience, Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Boris Landa
- Program in Applied Mathematics, Yale University, New Haven, CT, USA
| | - Miao Jing
- Chinese Institute for Brain Research, Beijing, China
| | - Yulong Li
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, PKU-IDG/McGovern Institute for Brain Research, Peking-Tsinghua Center for Life Sciences, Beijing, China
| | - Michael J Higley
- Department of Neuroscience, Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT, USA.
| | - Jessica A Cardin
- Department of Neuroscience, Kavli Institute for Neuroscience, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
53
|
Li L, Zhang B, Tang X, Yu Q, He A, Lu Y, Li X. A selective degeneration of cholinergic neurons mediated by NRADD in an Alzheimer's disease mouse model. CELL INSIGHT 2022; 1:100060. [PMID: 37193353 PMCID: PMC10120297 DOI: 10.1016/j.cellin.2022.100060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/03/2022] [Accepted: 10/03/2022] [Indexed: 05/18/2023]
Abstract
Cholinergic neurons in the basal forebrain constitute a major source of cholinergic inputs to the forebrain, modulate diverse functions including sensory processing, memory and attention, and are vulnerable to Alzheimer's disease (AD). Recently, we classified cholinergic neurons into two distinct subpopulations; calbindin D28K-expressing (D28K+) versus D28K-lacking (D28K-) neurons. Yet, which of these two cholinergic subpopulations are selectively degenerated in AD and the molecular mechanisms underlying this selective degeneration remain unknown. Here, we reported a discovery that D28K+ neurons are selectively degenerated and this degeneration induces anxiety-like behaviors in the early stage of AD. Neuronal type specific deletion of NRADD effectively rescues D28K+ neuronal degeneration, whereas genetic introduction of exogenous NRADD causes D28K- neuronal loss. This gain- and loss-of-function study reveals a subtype specific degeneration of cholinergic neurons in the disease progression of AD and hence warrants a novel molecular target for AD therapy.
Collapse
Affiliation(s)
- Lanfang Li
- Institute for Brain Research, Wuhan Center of Brain Science, Huazhong University of Science and Technology, Wuhan, 430030, China
- Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Bing Zhang
- Institute for Brain Research, Wuhan Center of Brain Science, Huazhong University of Science and Technology, Wuhan, 430030, China
- Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiaomei Tang
- Institute for Brain Research, Wuhan Center of Brain Science, Huazhong University of Science and Technology, Wuhan, 430030, China
- Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Quntao Yu
- Institute for Brain Research, Wuhan Center of Brain Science, Huazhong University of Science and Technology, Wuhan, 430030, China
- Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Aodi He
- Institute for Brain Research, Wuhan Center of Brain Science, Huazhong University of Science and Technology, Wuhan, 430030, China
- Department of Anatomy, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Youming Lu
- Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 4030030, China
- Institute for Brain Research, Wuhan Center of Brain Science, Huazhong University of Science and Technology, Wuhan, 430030, China
- Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xinyan Li
- Institute for Brain Research, Wuhan Center of Brain Science, Huazhong University of Science and Technology, Wuhan, 430030, China
- Department of Anatomy, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| |
Collapse
|
54
|
Li X, Yu H, Zhang B, Li L, Chen W, Yu Q, Huang X, Ke X, Wang Y, Jing W, Du H, Li H, Zhang T, Liu L, Zhu LQ, Lu Y. Molecularly defined and functionally distinct cholinergic subnetworks. Neuron 2022; 110:3774-3788.e7. [PMID: 36130594 DOI: 10.1016/j.neuron.2022.08.025] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/27/2022] [Accepted: 08/23/2022] [Indexed: 12/15/2022]
Abstract
Cholinergic neurons in the medial septum (MS) constitute a major source of cholinergic input to the forebrain and modulate diverse functions, including sensory processing, memory, and attention. Most studies to date have treated cholinergic neurons as a single population; as such, the organizational principles underling their functional diversity remain unknown. Here, we identified two subsets (D28K+ versus D28K-) of cholinergic neurons that are topographically segregated in mice, Macaca fascicularis, and humans. These cholinergic subpopulations possess unique electrophysiological signatures, express mutually exclusive marker genes (kcnh1 and aifm3 versus cacna1h and gga3), and make differential connections with physiologically distinct neuronal classes in the hippocampus to form two structurally defined and functionally distinct circuits. Gain- and loss-of-function studies on these circuits revealed their differential roles in modulation of anxiety-like behavior and spatial memory. These results provide a molecular and circuitry-based theory for how cholinergic neurons contribute to their diverse behavioral functions.
Collapse
Affiliation(s)
- Xinyan Li
- Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan 4030030, China; Institute for Brain Research, Wuhan Center of Brain Science, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hongyan Yu
- Institute for Brain Research, Wuhan Center of Brain Science, Huazhong University of Science and Technology, Wuhan 430030, China; Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Bing Zhang
- Institute for Brain Research, Wuhan Center of Brain Science, Huazhong University of Science and Technology, Wuhan 430030, China; Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Lanfang Li
- Institute for Brain Research, Wuhan Center of Brain Science, Huazhong University of Science and Technology, Wuhan 430030, China; Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Wenting Chen
- Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan 4030030, China; Institute for Brain Research, Wuhan Center of Brain Science, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Quntao Yu
- Institute for Brain Research, Wuhan Center of Brain Science, Huazhong University of Science and Technology, Wuhan 430030, China; Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xian Huang
- Institute for Brain Research, Wuhan Center of Brain Science, Huazhong University of Science and Technology, Wuhan 430030, China; Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiao Ke
- Institute for Brain Research, Wuhan Center of Brain Science, Huazhong University of Science and Technology, Wuhan 430030, China; Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yunyun Wang
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Wei Jing
- Institute for Brain Research, Wuhan Center of Brain Science, Huazhong University of Science and Technology, Wuhan 430030, China; Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Huiyun Du
- Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan 4030030, China; Institute for Brain Research, Wuhan Center of Brain Science, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Hao Li
- Institute for Brain Research, Wuhan Center of Brain Science, Huazhong University of Science and Technology, Wuhan 430030, China; Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Tongmei Zhang
- Institute for Brain Research, Wuhan Center of Brain Science, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Liang Liu
- Department of Forensic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ling-Qiang Zhu
- Institute for Brain Research, Wuhan Center of Brain Science, Huazhong University of Science and Technology, Wuhan 430030, China; Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Youming Lu
- Department of Physiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan 4030030, China; Institute for Brain Research, Wuhan Center of Brain Science, Huazhong University of Science and Technology, Wuhan 430030, China; Department of Pathophysiology, School of Basic Medicine and Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
55
|
Sizer SE, Price ME, Parrish BC, Barth SH, Heaney CF, Raab-Graham KF, McCool BA. Chronic Intermittent Ethanol Exposure Dysregulates Nucleus Basalis Magnocellularis Afferents in the Basolateral Amygdala. eNeuro 2022; 9:ENEURO.0164-22.2022. [PMID: 36280288 PMCID: PMC9668348 DOI: 10.1523/eneuro.0164-22.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 07/22/2022] [Accepted: 08/25/2022] [Indexed: 12/24/2022] Open
Abstract
Nucleus basalis magnocellularis (NBM) cholinergic projections to the basolateral amygdala (BLA) regulate the acquisition and consolidation of fear-like and anxiety-like behaviors. However, it is unclear whether the alterations in the NBM-BLA circuit promote negative affect during ethanol withdrawal (WD). Therefore, we performed ex vivo whole-cell patch-clamp electrophysiology in both the NBM and the BLA of male Sprague Dawley rats following 10 d of chronic intermittent ethanol (CIE) exposure and 24 h of WD. We found that CIE exposure and withdrawal enhanced the neuronal excitability of NBM putative "cholinergic" neurons. We subsequently used optogenetics to directly manipulate NBM terminal activity within the BLA and measure cholinergic modulation of glutamatergic afferents and BLA pyramidal neurons. Our findings indicate that CIE and withdrawal upregulate NBM cholinergic facilitation of glutamate release via activation of presynaptic nicotinic acetylcholine receptors (AChRs). Ethanol withdrawal-induced increases in NBM terminal activity also enhance BLA pyramidal neuron firing. Collectively, our results provide a novel characterization of the NBM-BLA circuit and suggest that CIE-dependent modifications to NBM afferents enhance BLA pyramidal neuron activity during ethanol withdrawal.
Collapse
Affiliation(s)
- Sarah E Sizer
- Department of Physiology and Pharmacology, Piedmont Triad Community Research Center (PTCRC), Wake Forest University School of Medicine, Winston-Salem, NC 27101
| | - Michaela E Price
- Department of Physiology and Pharmacology, Piedmont Triad Community Research Center (PTCRC), Wake Forest University School of Medicine, Winston-Salem, NC 27101
| | - Brian C Parrish
- Department of Physiology and Pharmacology, Piedmont Triad Community Research Center (PTCRC), Wake Forest University School of Medicine, Winston-Salem, NC 27101
| | - Samuel H Barth
- Department of Physiology and Pharmacology, Piedmont Triad Community Research Center (PTCRC), Wake Forest University School of Medicine, Winston-Salem, NC 27101
| | - Chelcie F Heaney
- Department of Physiology and Pharmacology, Piedmont Triad Community Research Center (PTCRC), Wake Forest University School of Medicine, Winston-Salem, NC 27101
| | - Kimberly F Raab-Graham
- Department of Physiology and Pharmacology, Piedmont Triad Community Research Center (PTCRC), Wake Forest University School of Medicine, Winston-Salem, NC 27101
| | - Brian A McCool
- Department of Physiology and Pharmacology, Piedmont Triad Community Research Center (PTCRC), Wake Forest University School of Medicine, Winston-Salem, NC 27101
| |
Collapse
|
56
|
Maness EB, Burk JA, McKenna JT, Schiffino FL, Strecker RE, McCoy JG. Role of the locus coeruleus and basal forebrain in arousal and attention. Brain Res Bull 2022; 188:47-58. [PMID: 35878679 PMCID: PMC9514025 DOI: 10.1016/j.brainresbull.2022.07.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 07/11/2022] [Accepted: 07/20/2022] [Indexed: 12/11/2022]
Abstract
Experimental evidence has implicated multiple neurotransmitter systems in either the direct or indirect modulation of cortical arousal and attention circuitry. In this review, we selectively focus on three such systems: 1) norepinephrine (NE)-containing neurons of the locus coeruleus (LC), 2) acetylcholine (ACh)-containing neurons of the basal forebrain (BF), and 3) parvalbumin (PV)-containing gamma-aminobutyric acid neurons of the BF. Whereas BF-PV neurons serve as a rapid and transient arousal system, LC-NE and BF-ACh neuromodulation are typically activated on slower but longer-lasting timescales. Recent findings suggest that the BF-PV system serves to rapidly respond to even subtle sensory stimuli with a microarousal. We posit that salient sensory stimuli, such as those that are threatening or predict the need for a response, will quickly activate the BF-PV system and subsequently activate both the BF-ACh and LC-NE systems if the circumstances require longer periods of arousal and vigilance. We suggest that NE and ACh have overlapping psychological functions with the main difference being the precise internal/environmental sensory situations/contexts that recruit each neurotransmitter system - a goal for future research to determine. Implications of dysfunction of each of these three attentional systems for our understanding of neuropsychiatric conditions are considered. Finally, the contemporary availability of research tools to selectively manipulate and measure the activity of these distinctive neuronal populations promises to answer longstanding questions, such as how various arousal systems influence downstream decision-making and motor responding.
Collapse
Affiliation(s)
- Eden B Maness
- VA Boston Healthcare System and Department of Psychiatry, Harvard Medical School, West Roxbury, MA 02132, USA.
| | - Joshua A Burk
- Department of Psychological Sciences, College of William and Mary, Williamsburg, VA 23187, USA
| | - James T McKenna
- VA Boston Healthcare System and Department of Psychiatry, Harvard Medical School, West Roxbury, MA 02132, USA
| | - Felipe L Schiffino
- VA Boston Healthcare System and Department of Psychiatry, Harvard Medical School, West Roxbury, MA 02132, USA; Genetics and Aging Research Unit, McCance Center for Brain Health, Mass General Institute for Neurodegenerative Disease, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Robert E Strecker
- VA Boston Healthcare System and Department of Psychiatry, Harvard Medical School, West Roxbury, MA 02132, USA.
| | - John G McCoy
- Department of Psychology, Stonehill College, Easton, MA 02357, USA.
| |
Collapse
|
57
|
Zheng Y, Tao S, Liu Y, Liu J, Sun L, Zheng Y, Tian Y, Su P, Zhu X, Xu F. Basal Forebrain-Dorsal Hippocampus Cholinergic Circuit Regulates Olfactory Associative Learning. Int J Mol Sci 2022; 23:ijms23158472. [PMID: 35955605 PMCID: PMC9368792 DOI: 10.3390/ijms23158472] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 11/30/2022] Open
Abstract
The basal forebrain, an anatomically heterogeneous brain area containing multiple distinct subregions and neuronal populations, innervates many brain regions including the hippocampus (HIP), a key brain region responsible for learning and memory. Although recent studies have revealed that basal forebrain cholinergic neurons (BFCNs) are involved in olfactory associative learning and memory, the potential neural circuit is not clearly dissected yet. Here, using an anterograde monosynaptic tracing strategy, we revealed that BFCNs in different subregions projected to many brain areas, but with significant differentiations. Our rabies virus retrograde tracing results found that the dorsal HIP (dHIP) received heavy projections from the cholinergic neurons in the nucleus of the horizontal limb of the diagonal band (HDB), magnocellular preoptic nucleus (MCPO), and substantia innominate (SI) brain regions, which are known as the HMS complex (HMSc). Functionally, fiber photometry showed that cholinergic neurons in the HMSc were significantly activated in odor-cued go/no-go discrimination tasks. Moreover, specific depletion of the HMSc cholinergic neurons innervating the dHIP significantly decreased the performance accuracies in odor-cued go/no-go discrimination tasks. Taken together, these studies provided detailed information about the projections of different BFCN subpopulations and revealed that the HMSc-dHIP cholinergic circuit plays a crucial role in regulating olfactory associative learning.
Collapse
Affiliation(s)
- Yingwei Zheng
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou 221004, China; (Y.Z.); (L.S.); (Y.Z.)
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China; (S.T.); (Y.L.); (Y.T.)
| | - Sijue Tao
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China; (S.T.); (Y.L.); (Y.T.)
| | - Yue Liu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China; (S.T.); (Y.L.); (Y.T.)
| | - Jingjing Liu
- Shenzhen Key Laboratory of Viral Vectors for Biomedicine, Key Laboratory of Quality Control Technology for Virus-Based Therapeutics, Guangdong Provincial Medical Products Administration, NMPA Key Laboratory for Research and Evaluation of Viral Vector Technology in Cell and Gene Therapy Medicinal Products, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China; (J.L.); (P.S.)
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Liping Sun
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou 221004, China; (Y.Z.); (L.S.); (Y.Z.)
| | - Yawen Zheng
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou 221004, China; (Y.Z.); (L.S.); (Y.Z.)
| | - Yu Tian
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China; (S.T.); (Y.L.); (Y.T.)
| | - Peng Su
- Shenzhen Key Laboratory of Viral Vectors for Biomedicine, Key Laboratory of Quality Control Technology for Virus-Based Therapeutics, Guangdong Provincial Medical Products Administration, NMPA Key Laboratory for Research and Evaluation of Viral Vector Technology in Cell and Gene Therapy Medicinal Products, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China; (J.L.); (P.S.)
| | - Xutao Zhu
- Shenzhen Key Laboratory of Viral Vectors for Biomedicine, Key Laboratory of Quality Control Technology for Virus-Based Therapeutics, Guangdong Provincial Medical Products Administration, NMPA Key Laboratory for Research and Evaluation of Viral Vector Technology in Cell and Gene Therapy Medicinal Products, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China; (J.L.); (P.S.)
- Correspondence: (X.Z.); (F.X.)
| | - Fuqiang Xu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China; (S.T.); (Y.L.); (Y.T.)
- Shenzhen Key Laboratory of Viral Vectors for Biomedicine, Key Laboratory of Quality Control Technology for Virus-Based Therapeutics, Guangdong Provincial Medical Products Administration, NMPA Key Laboratory for Research and Evaluation of Viral Vector Technology in Cell and Gene Therapy Medicinal Products, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen 518055, China; (J.L.); (P.S.)
- University of the Chinese Academy of Sciences, Beijing 100049, China
- Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
- Correspondence: (X.Z.); (F.X.)
| |
Collapse
|
58
|
Taylor NL, D'Souza A, Munn BR, Lv J, Zaborszky L, Müller EJ, Wainstein G, Calamante F, Shine JM. Structural connections between the noradrenergic and cholinergic system shape the dynamics of functional brain networks. Neuroimage 2022; 260:119455. [PMID: 35809888 PMCID: PMC10114918 DOI: 10.1016/j.neuroimage.2022.119455] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 07/03/2022] [Accepted: 07/05/2022] [Indexed: 10/17/2022] Open
Abstract
Complex cognitive abilities are thought to arise from the ability of the brain to adaptively reconfigure its internal network structure as a function of task demands. Recent work has suggested that this inherent flexibility may in part be conferred by the widespread projections of the ascending arousal systems. While the different components of the ascending arousal system are often studied in isolation, there are anatomical connections between neuromodulatory hubs that we hypothesise are crucial for mediating key features of adaptive network dynamics, such as the balance between integration and segregation. To test this hypothesis, we estimated the strength of structural connectivity between key hubs of the noradrenergic and cholinergic arousal systems (the locus coeruleus [LC] and nucleus basalis of Meynert [nbM], respectively). We then asked whether the strength of structural LC and nbM inter-connectivity was related to individual differences in the emergent, dynamical signatures of functional integration measured from resting state fMRI data, such as network and attractor topography. We observed a significant positive relationship between the strength of white-matter connections between the LC and nbM and the extent of network-level integration following BOLD signal peaks in LC relative to nbM activity. In addition, individuals with denser white-matter streamlines interconnecting neuromodulatory hubs also demonstrated a heightened ability to shift to novel brain states. These results suggest that individuals with stronger structural connectivity between the noradrenergic and cholinergic systems have a greater capacity to mediate the flexible network dynamics required to support complex, adaptive behaviour. Furthermore, our results highlight the underlying static features of the neuromodulatory hubs can impose some constraints on the dynamic features of the brain.
Collapse
Affiliation(s)
- N L Taylor
- Brain and Mind Centre, The University of Sydney, Sydney, Australia
| | - A D'Souza
- Brain and Mind Centre, The University of Sydney, Sydney, Australia; Sydney School of Medicine, Central Clinical School, The University of Sydney, Australia
| | - B R Munn
- Brain and Mind Centre, The University of Sydney, Sydney, Australia
| | - J Lv
- Brain and Mind Centre, The University of Sydney, Sydney, Australia; School of Biomedical Engineering, The University of Sydney, Sydney, Australia
| | - L Zaborszky
- School of Arts and Sciences, Rutgers University, New Jersey, USA
| | - E J Müller
- Brain and Mind Centre, The University of Sydney, Sydney, Australia
| | - G Wainstein
- Brain and Mind Centre, The University of Sydney, Sydney, Australia
| | - F Calamante
- Brain and Mind Centre, The University of Sydney, Sydney, Australia; School of Biomedical Engineering, The University of Sydney, Sydney, Australia; Sydney Imaging, The University of Sydney, Sydney, Australia
| | - J M Shine
- Brain and Mind Centre, The University of Sydney, Sydney, Australia.
| |
Collapse
|
59
|
Brito MA, Li D, Fields CW, Rybicki-Kler C, Dean JG, Liu T, Mashour GA, Pal D. Cortical Acetylcholine Levels Correlate With Neurophysiologic Complexity During Subanesthetic Ketamine and Nitrous Oxide Exposure in Rats. Anesth Analg 2022; 134:1126-1139. [PMID: 34928887 PMCID: PMC9093725 DOI: 10.1213/ane.0000000000005835] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2021] [Indexed: 11/30/2022]
Abstract
BACKGROUND Neurophysiologic complexity has been shown to decrease during states characterized by a depressed level of consciousness, such as sleep or anesthesia. Conversely, neurophysiologic complexity is increased during exposure to serotonergic psychedelics or subanesthetic doses of dissociative anesthetics. However, the neurochemical substrates underlying changes in neurophysiologic complexity are poorly characterized. Cortical acetylcholine appears to relate to cortical activation and changes in states of consciousness, but the relationship between cortical acetylcholine and complexity has not been formally studied. We addressed this gap by analyzing simultaneous changes in cortical acetylcholine (prefrontal and parietal) and neurophysiologic complexity before, during, and after subanesthetic ketamine (10 mg/kg/h) or 50% nitrous oxide. METHODS Under isoflurane anesthesia, adult Sprague Dawley rats (n = 24, 12 male and 12 female) were implanted with stainless-steel electrodes across the cortex to record monopolar electroencephalogram (0.5-175 Hz; 30 channels) and guide canulae in prefrontal and parietal cortices for local microdialysis quantification of acetylcholine levels. One subgroup of these rats was instrumented with a chronic catheter in jugular vein for ketamine infusion (n = 12, 6 male and 6 female). The electroencephalographic data were analyzed to determine subanesthetic ketamine or nitrous oxide-induced changes in Lempel-Ziv complexity and directed frontoparietal connectivity. Changes in complexity and connectivity were analyzed for correlation with concurrent changes in prefrontal and parietal acetylcholine. RESULTS Subanesthetic ketamine produced sustained increases in normalized Lempel-Ziv complexity (0.5-175 Hz; P < .001) and high gamma frontoparietal connectivity (125-175 Hz; P < .001). This was accompanied by progressive increases in prefrontal (104%; P < .001) and parietal (159%; P < .001) acetylcholine levels that peaked after 50 minutes of infusion. Nitrous oxide induction produced a transient increase in complexity (P < .05) and high gamma connectivity (P < .001), which was accompanied by increases (P < .001) in prefrontal (56%) and parietal (43%) acetylcholine levels. In contrast, the final 50 minutes of nitrous oxide administration were characterized by a decrease in prefrontal (38%; P < .001) and parietal (45%; P < .001) acetylcholine levels, reduced complexity (P < .001), and comparatively weaker frontoparietal high gamma connectivity (P < .001). Cortical acetylcholine and complexity were correlated with both subanesthetic ketamine (prefrontal: cluster-weighted marginal correlation [CW r] [144] = 0.42, P < .001; parietal: CW r[144] = 0.42, P < .001) and nitrous oxide (prefrontal: CW r[156] = 0.46, P < .001; parietal: CW r[156] = 0.56, P < .001) cohorts. CONCLUSIONS These data bridge changes in cortical acetylcholine with concurrent changes in neurophysiologic complexity, frontoparietal connectivity, and the level of consciousness.
Collapse
Affiliation(s)
- Michael A. Brito
- From the Department of Anesthesiology
- Neuroscience Graduate Program
- Center for Consciousness Science
| | - Duan Li
- From the Department of Anesthesiology
- Center for Consciousness Science
| | | | | | - Jon G. Dean
- From the Department of Anesthesiology
- Center for Consciousness Science
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| | | | - George A. Mashour
- From the Department of Anesthesiology
- Neuroscience Graduate Program
- Center for Consciousness Science
| | - Dinesh Pal
- From the Department of Anesthesiology
- Neuroscience Graduate Program
- Center for Consciousness Science
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan
| |
Collapse
|
60
|
Subcortical control of the default mode network: Role of the basal forebrain and implications for neuropsychiatric disorders. Brain Res Bull 2022; 185:129-139. [PMID: 35562013 PMCID: PMC9290753 DOI: 10.1016/j.brainresbull.2022.05.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/29/2022] [Accepted: 05/04/2022] [Indexed: 01/03/2023]
Abstract
The precise interplay between large-scale functional neural systems throughout the brain is essential for performance of cognitive processes. In this review we focus on the default mode network (DMN), one such functional network that is active during periods of quiet wakefulness and believed to be involved in introspection and planning. Abnormalities in DMN functional connectivity and activation appear across many neuropsychiatric disorders, including schizophrenia. Recent evidence suggests subcortical regions including the basal forebrain are functionally and structurally important for regulation of DMN activity. Within the basal forebrain, subregions like the ventral pallidum may influence DMN activity and the nucleus basalis of Meynert can inhibit switching between brain networks. Interactions between DMN and other functional networks including the medial frontoparietal network (default), lateral frontoparietal network (control), midcingulo-insular network (salience), and dorsal frontoparietal network (attention) are also discussed in the context of neuropsychiatric disorders. Several subtypes of basal forebrain neurons have been identified including basal forebrain parvalbumin-containing or somatostatin-containing neurons which can regulate cortical gamma band oscillations and DMN-like behaviors, and basal forebrain cholinergic neurons which might gate access to sensory information during reinforcement learning. In this review, we explore this evidence, discuss the clinical implications on neuropsychiatric disorders, and compare neuroanatomy in the human vs rodent DMN. Finally, we address technological advancements which could help provide a more complete understanding of modulation of DMN function and describe newly identified BF therapeutic targets that could potentially help restore DMN-associated functional deficits in patients with a variety of neuropsychiatric disorders.
Collapse
|
61
|
Zhong P, Cao Q, Yan Z. Selective impairment of circuits between prefrontal cortex glutamatergic neurons and basal forebrain cholinergic neurons in a tauopathy mouse model. Cereb Cortex 2022; 32:5569-5579. [PMID: 35235649 PMCID: PMC9753040 DOI: 10.1093/cercor/bhac036] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 01/25/2023] Open
Abstract
Alzheimer's disease (AD) is a prevalent neurodegenerative disorder linked to cognitive decline. To understand how specific neuronal circuits are impaired in AD, we have used optogenetic and electrophysiological approaches to reveal the functional changes between prefrontal cortex (PFC) and basal forebrain (BF), 2 key regions controlling cognitive processes, in a tauopathy mouse model. We found that the glutamatergic synaptic responses in BF cholinergic neurons from P301S Tau mice (6-8 months old) were markedly diminished. The attenuated long-range PFC to BF pathway in the AD model significantly increased the failure rate of action potential firing of BF cholinergic neurons triggered by optogenetic stimulations of glutamatergic terminals from PFC. In contrast, the projection from PFC to other regions, such as amygdala and striatum, was largely unaltered. On the other hand, optogenetic stimulation of cholinergic terminals from BF induced a persistent reduction of the excitability of PFC pyramidal neurons from Tau mice, instead of the transient reduction exhibited in wild-type mice. Taken together, these data have revealed a selective aberration of the pathway between PFC pyramidal neurons and BF cholinergic neurons in a tauopathy mouse model. This circuit deficit may underlie the loss of attention and executive function in AD.
Collapse
Affiliation(s)
- Ping Zhong
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14203, United States
| | - Qing Cao
- Department of Physiology and Biophysics, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, Buffalo, NY 14203, United States
| | - Zhen Yan
- Corresponding author: State University of New York at Buffalo, 955 Main St., Room 3102, Buffalo, NY 14203, United States.
| |
Collapse
|
62
|
De Saint Jan D. Target-specific control of olfactory bulb periglomerular cells by GABAergic and cholinergic basal forebrain inputs. eLife 2022; 11:71965. [PMID: 35225232 PMCID: PMC8901171 DOI: 10.7554/elife.71965] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 02/16/2022] [Indexed: 11/13/2022] Open
Abstract
The olfactory bulb (OB), the first relay for odor processing in the brain, receives dense GABAergic and cholinergic long-range projections from basal forebrain (BF) nuclei that provide information about the internal state and behavioral context of the animal. However, the targets, impact, and dynamic of these afferents are still unclear. How BF synaptic inputs modulate activity in diverse subtypes of periglomerular (PG) interneurons using optogenetic stimulation and loose cell-attached or whole-cell patch-clamp recording in OB slices from adult mice were studied in this article. GABAergic BF inputs potently blocked PG cells firing except in a minority of calretinin-expressing cells in which GABA release elicited spiking. Parallel cholinergic projections excited a previously overlooked PG cell subtype via synaptic activation of M1 muscarinic receptors. Low-frequency stimulation of the cholinergic axons drove persistent firing in these PG cells, thereby increasing tonic inhibition in principal neurons. Taken together, these findings suggest that modality-specific BF inputs can orchestrate synaptic inhibition in OB glomeruli using multiple, potentially independent, inhibitory or excitatory target-specific pathways.
Collapse
Affiliation(s)
- Didier De Saint Jan
- Institut des Neurosciences Cellulaires et Intégratives, Centre National de la Recherche Scientifique, Strasbourg, France
| |
Collapse
|
63
|
Qi G, Feldmeyer D. Cell-Type Specific Neuromodulation of Excitatory and Inhibitory Neurons via Muscarinic Acetylcholine Receptors in Layer 4 of Rat Barrel Cortex. Front Neural Circuits 2022; 16:843025. [PMID: 35250496 PMCID: PMC8894850 DOI: 10.3389/fncir.2022.843025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 01/27/2022] [Indexed: 11/25/2022] Open
Abstract
The neuromodulator acetylcholine (ACh) plays an important role in arousal, attention, vigilance, learning and memory. ACh is released during different behavioural states and affects the brain microcircuit by regulating neuronal and synaptic properties. Here, we investigated how a low concentration of ACh (30 μM) affects the intrinsic properties of electrophysiologically and morphologically identified excitatory and inhibitory neurons in layer 4 (L4) of rat barrel cortex. ACh altered the membrane potential of L4 neurons in a heterogeneous manner. Nearly all L4 regular spiking (RS) excitatory neurons responded to bath-application of ACh with a M4 muscarinic ACh receptor-mediated hyperpolarisation. In contrast, in the majority of L4 fast spiking (FS) and non-fast spiking (nFS) interneurons 30 μM ACh induced a depolarisation while the remainder showed a hyperpolarisation or no response. The ACh-induced depolarisation of L4 FS interneurons was much weaker than that in L4 nFS interneurons. There was no clear difference in the response to ACh for three morphological subtypes of L4 FS interneurons. However, in four morpho-electrophysiological subtypes of L4 nFS interneurons, VIP+-like interneurons showed the strongest ACh-induced depolarisation; occasionally, even action potential firing was elicited. The ACh-induced depolarisation in L4 FS interneurons was exclusively mediated by M1 muscarinic ACh receptors; in L4 nFS interneurons it was mainly mediated by M1 and/or M3/5 muscarinic ACh receptors. In a subset of L4 nFS interneurons, a co-operative activation of muscarinic and nicotinic ACh receptors was also observed. The present study demonstrates that low-concentrations of ACh affect different L4 neuron types in a cell-type specific way. These effects result from a specific expression of different muscarinic and/or nicotinic ACh receptors on the somatodendritic compartments of L4 neurons. This suggests that even at low concentrations ACh may tune the excitability of L4 excitatory and inhibitory neurons and their synaptic microcircuits differentially depending on the behavioural state during which ACh is released.
Collapse
Affiliation(s)
- Guanxiao Qi
- Institute of Neuroscience and Medicine, INM-10, Reseach Centre Jülich, Jülich, Germany
- *Correspondence: Guanxiao Qi,
| | - Dirk Feldmeyer
- Institute of Neuroscience and Medicine, INM-10, Reseach Centre Jülich, Jülich, Germany
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen University, Aachen, Germany
- Jülich-Aachen Research Alliance-Brain, Translational Brain Medicine, Aachen, Germany
- Dirk Feldmeyer,
| |
Collapse
|
64
|
Pfeffer T, Keitel C, Kluger DS, Keitel A, Russmann A, Thut G, Donner TH, Gross J. Coupling of pupil- and neuronal population dynamics reveals diverse influences of arousal on cortical processing. eLife 2022; 11:e71890. [PMID: 35133276 PMCID: PMC8853659 DOI: 10.7554/elife.71890] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 02/04/2022] [Indexed: 11/13/2022] Open
Abstract
Fluctuations in arousal, controlled by subcortical neuromodulatory systems, continuously shape cortical state, with profound consequences for information processing. Yet, how arousal signals influence cortical population activity in detail has so far only been characterized for a few selected brain regions. Traditional accounts conceptualize arousal as a homogeneous modulator of neural population activity across the cerebral cortex. Recent insights, however, point to a higher specificity of arousal effects on different components of neural activity and across cortical regions. Here, we provide a comprehensive account of the relationships between fluctuations in arousal and neuronal population activity across the human brain. Exploiting the established link between pupil size and central arousal systems, we performed concurrent magnetoencephalographic (MEG) and pupillographic recordings in a large number of participants, pooled across three laboratories. We found a cascade of effects relative to the peak timing of spontaneous pupil dilations: Decreases in low-frequency (2-8 Hz) activity in temporal and lateral frontal cortex, followed by increased high-frequency (>64 Hz) activity in mid-frontal regions, followed by monotonic and inverted U relationships with intermediate frequency-range activity (8-32 Hz) in occipito-parietal regions. Pupil-linked arousal also coincided with widespread changes in the structure of the aperiodic component of cortical population activity, indicative of changes in the excitation-inhibition balance in underlying microcircuits. Our results provide a novel basis for studying the arousal modulation of cognitive computations in cortical circuits.
Collapse
Affiliation(s)
- Thomas Pfeffer
- Universitat Pompeu Fabra, Center for Brain and Cognition, Computational Neuroscience GroupBarcelonaSpain
- University Medical Center Hamburg-Eppendorf, Department of Neurophysiology and PathophysiologyHamburgGermany
| | - Christian Keitel
- University of Stirling, PsychologyStirlingUnited Kingdom
- Centre for Cognitive Neuroimaging, Institute of Neuroscience and Psychology, University of GlasgowGlasgowUnited Kingdom
| | - Daniel S Kluger
- Institute for Biomagnetism and Biosignal Analysis, University of Münster, MalmedywegMuensterGermany
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of MünsterMuensterGermany
| | - Anne Keitel
- University of Dundee, PsychologyDundeeUnited Kingdom
| | - Alena Russmann
- University Medical Center Hamburg-Eppendorf, Department of Neurophysiology and PathophysiologyHamburgGermany
| | - Gregor Thut
- Centre for Cognitive Neuroimaging, Institute of Neuroscience and Psychology, University of GlasgowGlasgowUnited Kingdom
| | - Tobias H Donner
- University Medical Center Hamburg-Eppendorf, Department of Neurophysiology and PathophysiologyHamburgGermany
| | - Joachim Gross
- Centre for Cognitive Neuroimaging, Institute of Neuroscience and Psychology, University of GlasgowGlasgowUnited Kingdom
- Institute for Biomagnetism and Biosignal Analysis, University of Münster, MalmedywegMuensterGermany
- Otto Creutzfeldt Center for Cognitive and Behavioral Neuroscience, University of MünsterMuensterGermany
| |
Collapse
|
65
|
Cholinergic systems, attentional-motor integration, and cognitive control in Parkinson's disease. PROGRESS IN BRAIN RESEARCH 2022; 269:345-371. [PMID: 35248201 PMCID: PMC8957710 DOI: 10.1016/bs.pbr.2022.01.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Dysfunction and degeneration of CNS cholinergic systems is a significant component of multi-system pathology in Parkinson's disease (PD). We review the basic architecture of human CNS cholinergic systems and the tools available for studying changes in human cholinergic systems. Earlier post-mortem studies implicated abnormalities of basal forebrain corticopetal cholinergic (BFCC) and pedunculopontine-laterodorsal tegmental (PPN-LDT) cholinergic projections in cognitive deficits and gait-balance deficits, respectively. Recent application of imaging methods, particularly molecular imaging, allowed more sophisticated correlation of clinical features with regional cholinergic deficits. BFCC projection deficits correlate with general and domain specific cognitive deficits, particularly for attentional and executive functions. Detailed analyses suggest that cholinergic deficits within the salience and cingulo-opercular task control networks, including both neocortical, thalamic, and striatal nodes, are a significant component of cognitive deficits in non-demented PD subjects. Both BFCC and PPN-LDT cholinergic projection systems, and striatal cholinergic interneuron (SChI), abnormalities are implicated in PD gait-balance disorders. In the context of experimental studies, these results indicate that disrupted attentional functions of BFCC and PPN-LDT cholinergic systems underlie impaired gait-balance functions. SChI dysfunction likely impairs intra-striatal integration of attentional and motor information. Thalamic and entorhinal cortex cholinergic deficits may impair multi-sensory integration. Overt degeneration of CNS systems may be preceded by increased activity of cholinergic neurons compensating for nigrostriatal dopaminergic deficits. Subsequent dysfunction and degeneration of cholinergic systems unmasks and exacerbates functional deficits secondary to dopaminergic denervation. Research on CNS cholinergic systems dysfunctions in PD requires a systems-level approach to understanding PD pathophysiology.
Collapse
|
66
|
Sullivan AE, Tappan SJ, Angstman PJ, Rodriguez A, Thomas GC, Hoppes DM, Abdul-Karim MA, Heal ML, Glaser JR. A Comprehensive, FAIR File Format for Neuroanatomical Structure Modeling. Neuroinformatics 2022; 20:221-240. [PMID: 34601704 PMCID: PMC8975944 DOI: 10.1007/s12021-021-09530-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/01/2021] [Indexed: 01/09/2023]
Abstract
With advances in microscopy and computer science, the technique of digitally reconstructing, modeling, and quantifying microscopic anatomies has become central to many fields of biological research. MBF Bioscience has chosen to openly document their digital reconstruction file format, the Neuromorphological File Specification, available at www.mbfbioscience.com/filespecification (Angstman et al., 2020). The format, created and maintained by MBF Bioscience, is broadly utilized by the neuroscience community. The data format's structure and capabilities have evolved since its inception, with modifications made to keep pace with advancements in microscopy and the scientific questions raised by worldwide experts in the field. More recent modifications to the neuromorphological file format ensure it abides by the Findable, Accessible, Interoperable, and Reusable (FAIR) data principles promoted by the International Neuroinformatics Coordinating Facility (INCF; Wilkinson et al., Scientific Data, 3, 160018,, 2016). The incorporated metadata make it easy to identify and repurpose these data types for downstream applications and investigation. This publication describes key elements of the file format and details their relevant structural advantages in an effort to encourage the reuse of these rich data files for alternative analysis or reproduction of derived conclusions.
Collapse
|
67
|
Kanel P, van der Zee S, Sanchez-Catasus CA, Koeppe RA, Scott PJ, van Laar T, Albin RL, Bohnen NI. Cerebral topography of vesicular cholinergic transporter changes in neurologically intact adults: A [18F]FEOBV PET study. AGING BRAIN 2022; 2. [PMID: 35465252 PMCID: PMC9028526 DOI: 10.1016/j.nbas.2022.100039] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Acetylcholine plays a major role in brain cognitive and motor functions with regional cholinergic terminal loss common in several neurodegenerative disorders. We describe age-related declines of regional cholinergic neuron terminal density in vivo using the positron emission tomography (PET) ligand [18F](–)5-Fluoroethoxybenzovesamicol ([18F] FEOBV), a vesamicol analogue selectively binding to the vesicular acetylcholine transporter (VAChT). A total of 42 subjects without clinical evidence of neurologic disease (mean 50.55 [range 20–80] years, 24 Male/18 Female) underwent [18F]FEOBV brain PET imaging. We used SPM based voxel-wise statistical analysis to perform whole brain voxel-based parametric analysis (family-wise error corrected, FWE) and to also extract the most significant clusters of regions correlating with aging with gender as nuisance variable. Age-related VAChT binding reductions were found in primary sensorimotor cortex, visual cortex, caudate nucleus, anterior to mid-cingulum, bilateral insula, para-hippocampus, hippocampus, anterior temporal lobes/amygdala, dorsomedial thalamus, metathalamus, and cerebellum (gender and FWE-corrected, P < 0.05). These findings show a specific topographic pattern of regional vulnerability of cholinergic nerve terminals across multiple cholinergic systems accompanying aging.
Collapse
Affiliation(s)
- Prabesh Kanel
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA
- University of Michigan Morris K. Udall Center of Excellence for Parkinson’s Disease Research, Ann Arbor, MI, USA
- Corresponding author at: Functional Neuroimaging, Cognitive and Mobility Laboratory, Departments of Radiology and Neurology, University of Michigan, 24 Frank Lloyd Wright Drive, Box 362, Ann Arbor, MI 48105-9755, USA.
| | - Sygrid van der Zee
- Department of Neurology, University Medical Center Groningen, Groningen, the Netherlands
| | - Carlos A. Sanchez-Catasus
- Department of Neurology, Clinica Universidad de Navarra, 31008 Pamplona, Spain
- Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, the Netherlands
| | - Robert A. Koeppe
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | - Peter J.H. Scott
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | - Teus van Laar
- Department of Neurology, University Medical Center Groningen, Groningen, the Netherlands
| | - Roger L. Albin
- University of Michigan Morris K. Udall Center of Excellence for Parkinson’s Disease Research, Ann Arbor, MI, USA
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
- Neurology Service and GRECC, VAAAHS, Ann Arbor, MI, USA
| | - Nicolaas I. Bohnen
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA
- University of Michigan Morris K. Udall Center of Excellence for Parkinson’s Disease Research, Ann Arbor, MI, USA
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA
- Neurology Service and GRECC, VAAAHS, Ann Arbor, MI, USA
| |
Collapse
|
68
|
Trofimova I. Contingent Tunes of Neurochemical Ensembles in the Norm and Pathology: Can We See the Patterns? Neuropsychobiology 2021; 80:101-133. [PMID: 33721867 DOI: 10.1159/000513688] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 12/07/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND/AIMS Progress in the development of DSM/ICD taxonomies has revealed limitations of both label-based and dimensionality approaches. These approaches fail to address the contingent, nonlinear, context-dependent, and transient nature of those biomarkers linked to specific symptoms of psychopathology or to specific biobehavioural traits of healthy people (temperament). The present review aims to highlight the benefits of a functional constructivism approach in the analysis of neurochemical biomarkers underlying temperament and psychopathology. METHOD A review was performed. RESULTS Eight systems are identified, and 7 neurochemical ensembles are described in detail. None of these systems is represented by a single neurotransmitter; all of them work in ensembles with each other. The functionality and relationships of these systems are presented here in association with their roles in action construction, with brief examples of psychopathology. The review introduces formal symbols for these systems to facilitate their more compact analysis in the future. CONCLUSION This analysis demonstrates the possibility of constructivism-based unifying taxonomies of temperament (in the framework of the neurochemical model functional ensemble of temperament) and classifications of psychiatric disorders. Such taxonomies would present the biobehavioural individual differences as consistent behavioural patterns generated within a formally structured space of parameters related to the generation of behaviour.
Collapse
Affiliation(s)
- Irina Trofimova
- Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada,
| |
Collapse
|
69
|
Trofimova I. Functional Constructivism Approach to Multilevel Nature of Bio-Behavioral Diversity. Front Psychiatry 2021; 12:641286. [PMID: 34777031 PMCID: PMC8578849 DOI: 10.3389/fpsyt.2021.641286] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 09/07/2021] [Indexed: 12/20/2022] Open
Abstract
Attempts to revise the existing classifications of psychiatric disorders (DSM and ICD) continue and highlight a crucial need for the identification of biomarkers underlying symptoms of psychopathology. The present review highlights the benefits of using a Functional Constructivism approach in the analysis of the functionality of the main neurotransmitters. This approach explores the idea that behavior is neither reactive nor pro-active, but constructive and generative, being a transient selection of multiple degrees of freedom in perception and actions. This review briefly describes main consensus points in neuroscience related to the functionality of eight neurochemical ensembles, summarized as a part of the neurochemical model Functional Ensemble of Temperament (FET). None of the FET components is represented by a single neurotransmitter; all neurochemical teams have specific functionality in selection of behavioral degrees of freedom and stages of action construction. The review demonstrates the possibility of unifying taxonomies of temperament and classifications of psychiatric disorders and presenting these taxonomies formally and systematically. The paper also highlights the multi-level nature of regulation of consistent bio-behavioral individual differences, in line with the concepts of diagonal evolution (proposed earlier) and Specialized Extended Phenotype.
Collapse
Affiliation(s)
- Irina Trofimova
- Laboratory of Collective Intelligence, Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
70
|
The ascending arousal system shapes neural dynamics to mediate awareness of cognitive states. Nat Commun 2021; 12:6016. [PMID: 34650039 PMCID: PMC8516926 DOI: 10.1038/s41467-021-26268-x] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 09/16/2021] [Indexed: 12/22/2022] Open
Abstract
Models of cognitive function typically focus on the cerebral cortex and hence overlook functional links to subcortical structures. This view does not consider the role of the highly-conserved ascending arousal system's role and the computational capacities it provides the brain. We test the hypothesis that the ascending arousal system modulates cortical neural gain to alter the low-dimensional energy landscape of cortical dynamics. Here we use spontaneous functional magnetic resonance imaging data to study phasic bursts in both locus coeruleus and basal forebrain, demonstrating precise time-locked relationships between brainstem activity, low-dimensional energy landscapes, network topology, and spatiotemporal travelling waves. We extend our analysis to a cohort of experienced meditators and demonstrate locus coeruleus-mediated network dynamics were associated with internal shifts in conscious awareness. Together, these results present a view of brain organization that highlights the ascending arousal system's role in shaping both the dynamics of the cerebral cortex and conscious awareness.
Collapse
|
71
|
Kipp BT, Nunes PT, Galaj E, Hitchcock B, Nasra T, Poynor KR, Heide SK, Reitz NL, Savage LM. Adolescent Ethanol Exposure Alters Cholinergic Function and Apical Dendritic Branching Within the Orbital Frontal Cortex. Neuroscience 2021; 473:52-65. [PMID: 34450212 DOI: 10.1016/j.neuroscience.2021.08.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 08/13/2021] [Accepted: 08/17/2021] [Indexed: 10/20/2022]
Abstract
During adolescence, heavy binge-like ethanol consumption can lead to frontocortical structural and functional impairments. These impairments are likely driven by adolescence being a critical time point for maturation of brain regions associated with higher-order cognitive functioning. Rodent models of heavy binge-like ethanol exposure show consistent disruptions to the typical development of the prefrontal cortex (PFC). All deep cortical layers receive cholinergic projections that originate from the Nucleus basalis of Meynert (NbM) complex. These cholinergic projections are highly involved in learning, memory, and attention. Adolescent intermittent ethanol exposure (AIE) induces cholinergic dysfunction as a result of an epigenetic suppression of the genes that drive the cholinergic phenotype. The current study used a model of AIE to assess structural and functional changes to the frontal cortex and NbM following binge-like ethanol exposure in adolescence. Western blot analysis revealed long-term disruptions of the cholinergic circuit following AIE: choline acetyltransferase (ChAT) was suppressed in the NbM and vesicular acetylcholine transporter (VAChT) was suppressed in the orbitofrontal cortex (OFC). In vivo microdialysis for acetylcholine efflux during a spatial memory task determined changes in cholinergic modulation within the PFC following AIE. However, AIE spared performance on the spatial memory task and on an operant reversal task. In a second study, Golgi-Cox staining determined that AIE increased apical dendritic complexity in the OFC, with sex influencing whether the increase in branching occurred near or away from the soma. Spine density or maturity was not affected, likely compensating for a disruption in neurotransmitter function following AIE.
Collapse
Affiliation(s)
- B T Kipp
- Department of Psychology, Binghamton University of the State University of New York, New York, USA
| | - P T Nunes
- Department of Psychology, Binghamton University of the State University of New York, New York, USA
| | - E Galaj
- Department of Psychology, Binghamton University of the State University of New York, New York, USA
| | - B Hitchcock
- Department of Psychology, Binghamton University of the State University of New York, New York, USA
| | - T Nasra
- Department of Psychology, Binghamton University of the State University of New York, New York, USA
| | - K R Poynor
- Department of Psychology, Binghamton University of the State University of New York, New York, USA
| | - S K Heide
- Department of Psychology, Binghamton University of the State University of New York, New York, USA
| | - N L Reitz
- Department of Psychology, Binghamton University of the State University of New York, New York, USA
| | - L M Savage
- Department of Psychology, Binghamton University of the State University of New York, New York, USA.
| |
Collapse
|
72
|
Zegarra-Valdivia JA, Chaves-Coira I, Fernandez de Sevilla ME, Martinez-Rachadell L, Esparza J, Torres-Aleman I, Nuñez A. Reduced Insulin-Like Growth Factor-I Effects in the Basal Forebrain of Aging Mouse. Front Aging Neurosci 2021; 13:682388. [PMID: 34539376 PMCID: PMC8442768 DOI: 10.3389/fnagi.2021.682388] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 06/28/2021] [Indexed: 11/25/2022] Open
Abstract
It is known that aging is frequently accompanied by a decline in cognition. Furthermore, aging is associated with lower serum IGF-I levels that may contribute to this deterioration. We studied the effect of IGF-I in neurons of the horizontal diagonal band of Broca (HDB) of young (≤6 months old) and old (≥20-month-old) mice to determine if changes in the response of these neurons to IGF-I occur along with aging. Local injection of IGF-I in the HDB nucleus increased their neuronal activity and induced fast oscillatory activity in the electrocorticogram (ECoG). Furthermore, IGF-I facilitated tactile responses in the primary somatosensory cortex elicited by air-puffs delivered in the whiskers. These excitatory effects decreased in old mice. Immunohistochemistry showed that cholinergic HDB neurons express IGF-I receptors and that IGF-I injection increased the expression of c-fos in young, but not in old animals. IGF-I increased the activity of optogenetically-identified cholinergic neurons in young animals, suggesting that most of the IGF-I-induced excitatory effects were mediated by activation of these neurons. Effects of aging were partially ameliorated by chronic IGF-I treatment in old mice. The present findings suggest that reduced IGF-I activity in old animals participates in age-associated changes in cortical activity.
Collapse
Affiliation(s)
- Jonathan A Zegarra-Valdivia
- Cajal Institute (CSIC), Madrid, Spain.,CIBERNED, Madrid, Spain.,Universidad Nacional de San Agustín de Arequipa, Arequipa, Peru.,Achucarro Basque Center for Neuroscience, Leioa, Spain
| | - Irene Chaves-Coira
- Department of Anatomy, Histology and Neurosciences, Universidad Autónoma de Madrid, Madrid, Spain
| | | | | | | | - Ignacio Torres-Aleman
- Cajal Institute (CSIC), Madrid, Spain.,CIBERNED, Madrid, Spain.,Achucarro Basque Center for Neuroscience, Leioa, Spain
| | - Angel Nuñez
- Department of Anatomy, Histology and Neurosciences, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
73
|
Ventral pallidum regulates the default mode network, controlling transitions between internally and externally guided behavior. Proc Natl Acad Sci U S A 2021; 118:2103642118. [PMID: 34462351 DOI: 10.1073/pnas.2103642118] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Daily life requires transitions between performance of well-practiced, automatized behaviors reliant upon internalized representations and behaviors requiring external focus. Such transitions involve differential activation of the default mode network (DMN), a group of brain areas associated with inward focus. We asked how optogenetic modulation of the ventral pallidum (VP), a subcortical DMN node, impacts task switching between internally to externally guided lever-pressing behavior in the rat. Excitation of the VP dramatically compromised acquisition of an auditory discrimination task, trapping animals in a DMN state of automatized internally focused behavior and impairing their ability to direct attention to external sensory stimuli. VP inhibition, on the other hand, facilitated task acquisition, expediting escape from the DMN brain state, thereby allowing rats to incorporate the contingency changes associated with the auditory stimuli. We suggest that VP, instant by instant, regulates the DMN and plays a deterministic role in transitions between internally and externally guided behaviors.
Collapse
|
74
|
Cholinergic modulation of sensory processing in awake mouse cortex. Sci Rep 2021; 11:17525. [PMID: 34471145 PMCID: PMC8410938 DOI: 10.1038/s41598-021-96696-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/09/2021] [Indexed: 11/08/2022] Open
Abstract
Cholinergic modulation of brain activity is fundamental for awareness and conscious sensorimotor behaviours, but deciphering the timing and significance of acetylcholine actions for these behaviours is challenging. The widespread nature of cholinergic projections to the cortex means that new insights require access to specific neuronal populations, and on a time-scale that matches behaviourally relevant cholinergic actions. Here, we use fast, voltage imaging of L2/3 cortical pyramidal neurons exclusively expressing the genetically-encoded voltage indicator Butterfly 1.2, in awake, head-fixed mice, receiving sensory stimulation, whilst manipulating the cholinergic system. Altering muscarinic acetylcholine function re-shaped sensory-evoked fast depolarisation and subsequent slow hyperpolarisation of L2/3 pyramidal neurons. A consequence of this re-shaping was disrupted adaptation of the sensory-evoked responses, suggesting a critical role for acetylcholine during sensory discrimination behaviour. Our findings provide new insights into how the cortex processes sensory information and how loss of acetylcholine, for example in Alzheimer's Disease, disrupts sensory behaviours.
Collapse
|
75
|
The relationship between cholinergic system brain structure and function in healthy adults and patients with mild cognitive impairment. Sci Rep 2021; 11:16080. [PMID: 34373525 PMCID: PMC8352991 DOI: 10.1038/s41598-021-95573-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 07/21/2021] [Indexed: 11/08/2022] Open
Abstract
We assessed the structure-function relationship of the human cholinergic system and hypothesized that structural measures are associated with short-latency sensory afferent inhibition (SAI), an electrophysiological measure of central cholinergic signal transmission. Healthy volunteers (n = 36) and patients with mild cognitive impairment (MCI, n = 20) underwent median nerve SAI and 3T structural MRI to determine the volume of the basal forebrain and the thalamus. Patients with MCI had smaller basal forebrain (p < 0.001) or thalamus volumes (p < 0.001) than healthy volunteers. Healthy SAI responders (> 10% SAI) had more basal forebrain volume than non-responders (p = 0.004) or patients with MCI (p < 0.001). More basal forebrain volume was associated with stronger SAI in healthy volunteers (r = 0.33, p < 0.05) but not patients with MCI. There was no significant relationship between thalamus volumes and SAI. Basal forebrain volume is associated with cholinergic function (SAI) in healthy volunteers but not in MCI patients. The in-vivo investigation of the structure-function relationship could further our understanding of the human cholinergic system in patients with suspected or known cholinergic system degeneration.
Collapse
|
76
|
Martinez JL, Zammit MD, West NR, Christian BT, Bhattacharyya A. Basal Forebrain Cholinergic Neurons: Linking Down Syndrome and Alzheimer's Disease. Front Aging Neurosci 2021; 13:703876. [PMID: 34322015 PMCID: PMC8311593 DOI: 10.3389/fnagi.2021.703876] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/17/2021] [Indexed: 12/31/2022] Open
Abstract
Down syndrome (DS, trisomy 21) is characterized by intellectual impairment at birth and Alzheimer's disease (AD) pathology in middle age. As individuals with DS age, their cognitive functions decline as they develop AD pathology. The susceptibility to degeneration of a subset of neurons, known as basal forebrain cholinergic neurons (BFCNs), in DS and AD is a critical link between cognitive impairment and neurodegeneration in both disorders. BFCNs are the primary source of cholinergic innervation to the cerebral cortex and hippocampus, as well as the amygdala. They play a critical role in the processing of information related to cognitive function and are directly engaged in regulating circuits of attention and memory throughout the lifespan. Given the importance of BFCNs in attention and memory, it is not surprising that these neurons contribute to dysfunctional neuronal circuitry in DS and are vulnerable in adults with DS and AD, where their degeneration leads to memory loss and disturbance in language. BFCNs are thus a relevant cell target for therapeutics for both DS and AD but, despite some success, efforts in this area have waned. There are gaps in our knowledge of BFCN vulnerability that preclude our ability to effectively design interventions. Here, we review the role of BFCN function and degeneration in AD and DS and identify under-studied aspects of BFCN biology. The current gaps in BFCN relevant imaging studies, therapeutics, and human models limit our insight into the mechanistic vulnerability of BFCNs in individuals with DS and AD.
Collapse
Affiliation(s)
- Jose L. Martinez
- Cellular and Molecular Biology Graduate Program, University of Wisconsin, Madison, WI, United States
- Waisman Center, University of Wisconsin, Madison, WI, United States
| | - Matthew D. Zammit
- Waisman Center, University of Wisconsin, Madison, WI, United States
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin, Madison, WI, United States
| | - Nicole R. West
- Cellular and Molecular Biology Graduate Program, University of Wisconsin, Madison, WI, United States
- Waisman Center, University of Wisconsin, Madison, WI, United States
| | - Bradley T. Christian
- Waisman Center, University of Wisconsin, Madison, WI, United States
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin, Madison, WI, United States
- Department of Psychiatry, School of Medicine and Public Health, University of Wisconsin, Madison, WI, United States
| | - Anita Bhattacharyya
- Waisman Center, University of Wisconsin, Madison, WI, United States
- Department of Cellular and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin, Madison, WI, United States
| |
Collapse
|
77
|
Gombkoto P, Gielow M, Varsanyi P, Chavez C, Zaborszky L. Contribution of the basal forebrain to corticocortical network interactions. Brain Struct Funct 2021; 226:1803-1821. [PMID: 34021788 PMCID: PMC8203523 DOI: 10.1007/s00429-021-02290-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 05/05/2021] [Indexed: 12/04/2022]
Abstract
Basal forebrain (BF) cholinergic neurons provide the cerebral cortex with acetylcholine. Despite the long-established involvement of these cells in sensory processing, attention, and memory, the mechanisms by which cholinergic signaling regulates cognitive processes remain elusive. In this study, we recorded spiking and local field potential data simultaneously from several locations in the BF, and sites in the orbitofrontal and visual cortex in transgenic ChAT-Cre rats performing a visual discrimination task. We observed distinct differences in the fine spatial distributions of gamma coherence values between specific basalo-cortical and cortico-cortical sites that shifted across task phases. Additionally, cholinergic firing induced spatial changes in cortical gamma power, and optogenetic activation of BF increased coherence between specific cortico-cortical sites, suggesting that the cholinergic system contributes to selective modulation of cortico-cortical circuits. Furthermore, the results suggest that cells in specific BF locations are dynamically recruited across behavioral epochs to coordinate interregional cortical processes underlying cognition.
Collapse
Affiliation(s)
- Peter Gombkoto
- Center for Molecular and Behavioral Neuroscience, Rutgers University, 197 University Avenue, Newark, NJ, 07102, USA
- ETH Zurich Institute of Neuroinformatics, 8057, Zurich, Switzerland
| | - Matthew Gielow
- Center for Molecular and Behavioral Neuroscience, Rutgers University, 197 University Avenue, Newark, NJ, 07102, USA
| | - Peter Varsanyi
- Center for Molecular and Behavioral Neuroscience, Rutgers University, 197 University Avenue, Newark, NJ, 07102, USA
| | - Candice Chavez
- Center for Molecular and Behavioral Neuroscience, Rutgers University, 197 University Avenue, Newark, NJ, 07102, USA
| | - Laszlo Zaborszky
- Center for Molecular and Behavioral Neuroscience, Rutgers University, 197 University Avenue, Newark, NJ, 07102, USA.
| |
Collapse
|
78
|
Pettine WW, Louie K, Murray JD, Wang XJ. Excitatory-inhibitory tone shapes decision strategies in a hierarchical neural network model of multi-attribute choice. PLoS Comput Biol 2021; 17:e1008791. [PMID: 33705386 PMCID: PMC7987200 DOI: 10.1371/journal.pcbi.1008791] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 03/23/2021] [Accepted: 02/15/2021] [Indexed: 12/14/2022] Open
Abstract
We are constantly faced with decisions between alternatives defined by multiple attributes, necessitating an evaluation and integration of different information sources. Time-varying signals in multiple brain areas are implicated in decision-making; but we lack a rigorous biophysical description of how basic circuit properties, such as excitatory-inhibitory (E/I) tone and cascading nonlinearities, shape attribute processing and choice behavior. Furthermore, how such properties govern choice performance under varying levels of environmental uncertainty is unknown. We investigated two-attribute, two-alternative decision-making in a dynamical, cascading nonlinear neural network with three layers: an input layer encoding choice alternative attribute values; an intermediate layer of modules processing separate attributes; and a final layer producing the decision. Depending on intermediate layer E/I tone, the network displays distinct regimes characterized by linear (I), convex (II) or concave (III) choice indifference curves. In regimes I and II, each option's attribute information is additively integrated. In regime III, time-varying nonlinear operations amplify the separation between offer distributions by selectively attending to the attribute with the larger differences in input values. At low environmental uncertainty, a linear combination most consistently selects higher valued alternatives. However, at high environmental uncertainty, regime III is more likely than a linear operation to select alternatives with higher value. Furthermore, there are conditions where readout from the intermediate layer could be experimentally indistinguishable from the final layer. Finally, these principles are used to examine multi-attribute decisions in systems with reduced inhibitory tone, leading to predictions of different choice patterns and overall performance between those with restrictions on inhibitory tone and neurotypicals.
Collapse
Affiliation(s)
- Warren Woodrich Pettine
- Center for Neural Science, New York University, New York, United States of America
- Department of Psychiatry, Yale University School of Medicine, New Haven, United States of America
| | - Kenway Louie
- Center for Neural Science, New York University, New York, United States of America
| | - John D. Murray
- Department of Psychiatry, Yale University School of Medicine, New Haven, United States of America
| | - Xiao-Jing Wang
- Center for Neural Science, New York University, New York, United States of America
| |
Collapse
|
79
|
Li M, Dahmani L, Wang D, Ren J, Stocklein S, Lin Y, Luan G, Zhang Z, Lu G, Galiè F, Han Y, Pascual-Leone A, Wang M, Fox MD, Liu H. Co-activation patterns across multiple tasks reveal robust anti-correlated functional networks. Neuroimage 2021; 227:117680. [PMID: 33359345 PMCID: PMC8034806 DOI: 10.1016/j.neuroimage.2020.117680] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 12/11/2020] [Accepted: 12/12/2020] [Indexed: 12/18/2022] Open
Abstract
Whether antagonistic brain states constitute a fundamental principle of human brain organization has been debated over the past decade. Some argue that intrinsically anti-correlated brain networks in resting-state functional connectivity are an artifact of preprocessing. Others argue that anti-correlations are biologically meaningful predictors of how the brain will respond to different stimuli. Here, we investigated the co-activation patterns across the whole brain in various tasks and test whether brain regions demonstrate anti-correlated activity similar to those observed at rest. We examined brain activity in 47 task contrasts from the Human Connectome Project (N = 680) and found robust antagonistic interactions between networks. Regions of the default network exhibited the highest degree of cortex-wide negative connectivity. The negative co-activation patterns across tasks showed good correspondence to that derived from resting-state data processed with global signal regression (GSR). Interestingly, GSR-processed resting-state data was a significantly better predictor of task-induced modulation than data processed without GSR. Finally, in a cohort of 25 patients with depression, we found that task-based anti-correlations between the dorsolateral prefrontal cortex (DLPFC) and subgenual anterior cingulate cortex were associated with clinical efficacy of transcranial magnetic stimulation therapy targeting the DLPFC. Overall, our findings indicate that anti-correlations are a biologically meaningful phenomenon and may reflect an important principle of functional brain organization.
Collapse
Affiliation(s)
- Meiling Li
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Louisa Dahmani
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA; Department of Medical Imaging, Zhengzhou University People Hospital & Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Danhong Wang
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Jianxun Ren
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Sophia Stocklein
- Department of Radiology, Ludwig Maximilian University of Munich, Munich, Germany
| | - Yuanxiang Lin
- Department of Neurosurgery, First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Guoming Luan
- Department of Neurosurgery, Comprehensive Epilepsy Center, Sanbo Brain Hospital, Capital Medical University, Beijing, China
| | - Zhiqiang Zhang
- Department of Medical Imaging, Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing, China
| | - Guangming Lu
- Department of Medical Imaging, Jinling Hospital, Clinical School of Medical College, Nanjing University, Nanjing, China
| | - Fanziska Galiè
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA; Department of Radiology, Ludwig Maximilian University of Munich, Munich, Germany
| | - Ying Han
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, China
| | - Alvaro Pascual-Leone
- Marcus Institute for Aging Research, Hebrew SeniorLife, Harvard Medical School, Boston, MA, USA
| | - Meiyun Wang
- Department of Medical Imaging, Zhengzhou University People Hospital & Henan Provincial People's Hospital, Zhengzhou, Henan, China.
| | - Michael D Fox
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA; Center for Brain Circuit Therapeutics, Departments of Neurology, Psychiatry, and Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Hesheng Liu
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA; Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China; Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
80
|
Pelosin E, Cerulli C, Ogliastro C, Lagravinese G, Mori L, Bonassi G, Mirelman A, Hausdorff JM, Abbruzzese G, Marchese R, Avanzino L. A Multimodal Training Modulates Short Afferent Inhibition and Improves Complex Walking in a Cohort of Faller Older Adults With an Increased Prevalence of Parkinson's Disease. J Gerontol A Biol Sci Med Sci 2021; 75:722-728. [PMID: 30874799 DOI: 10.1093/gerona/glz072] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Falls are frequent in Parkinson's disease and aging. Impairments in the cholinergic-mediated attentional supervision of gait may contribute to increased fall risk, especially when obstacles challenge gait. Interventions combining motor-cognitive approaches have been shown to improve motor performance, cognitive skills, and falls number. Here, we hypothesized that an intervention simulating an attention-demanding walking condition could affect not only complex gait performance and fall risk but also short-latency afferent inhibition (SAI), as a marker of cholinergic activity. METHODS Thirty-nine participants at falls risk (24 Parkinson's disease participants and 15 older adults) were recruited in a randomized controlled trial. Participants were assigned to treadmill training or treadmill training with non-immersive virtual reality intervention and trained three times a week for 6 weeks. SAI, a transcranial magnetic stimulation paradigm, was used to assess cholinergic activity. Gait kinematics was measured during usual walking and while negotiating physical obstacles. Transcranial magnetic stimulation and gait assessments were performed pre, post, and 6 months post-intervention. RESULTS Treadmill training combined with non-immersive virtual reality induced an increase in inhibition of the SAI protocol on cortical excitability, improved obstacle negotiation performance, and induced a reduction of the number of falls compared with treadmill training. Furthermore, the more SAI increased after training, the more the obstacle negotiation performance improved and fall rate decreased. CONCLUSIONS We provide evidence that an innovative rehabilitation approach targeting cognitive components of complex motor actions can induce changes in cortical cholinergic activity, as indexed by SAI, thereby enabling functional gait improvements.
Collapse
Affiliation(s)
- Elisa Pelosin
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal Child Health, University of Genoa, Italy.,Ospedale Policlinico San Martino, IRCSS, Genova, Italy
| | - Cecilia Cerulli
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal Child Health, University of Genoa, Italy
| | - Carla Ogliastro
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal Child Health, University of Genoa, Italy.,Ospedale Policlinico San Martino, IRCSS, Genova, Italy
| | - Giovanna Lagravinese
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal Child Health, University of Genoa, Italy
| | - Laura Mori
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal Child Health, University of Genoa, Italy.,Ospedale Policlinico San Martino, IRCSS, Genova, Italy
| | - Gaia Bonassi
- Department of Experimental Medicine, Section of Human Physiology and Centro Polifunzionale di Scienze Motorie, University of Genoa, Italy
| | - Anat Mirelman
- Center for the Study of Movement, Cognition and Mobility, Department of Neurology, Tel Aviv Sourasky Medical Center, Israel.,Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Israel
| | - Jeffrey M Hausdorff
- Center for the Study of Movement, Cognition and Mobility, Department of Neurology, Tel Aviv Sourasky Medical Center, Israel.,Department of Physical Therapy, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Israel.,Rush Alzheimer's Disease Center and Department of Orthopaedic Surgery, Rush University Medical Center, Chicago, Illinois
| | - Giovanni Abbruzzese
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics and Maternal Child Health, University of Genoa, Italy.,Ospedale Policlinico San Martino, IRCSS, Genova, Italy
| | | | - Laura Avanzino
- Ospedale Policlinico San Martino, IRCSS, Genova, Italy.,Department of Experimental Medicine, Section of Human Physiology and Centro Polifunzionale di Scienze Motorie, University of Genoa, Italy
| |
Collapse
|
81
|
Brunert D, Rothermel M. Extrinsic neuromodulation in the rodent olfactory bulb. Cell Tissue Res 2021; 383:507-524. [PMID: 33355709 PMCID: PMC7873007 DOI: 10.1007/s00441-020-03365-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 11/24/2020] [Indexed: 12/16/2022]
Abstract
Evolutionarily, olfaction is one of the oldest senses and pivotal for an individual's health and survival. The olfactory bulb (OB), as the first olfactory relay station in the brain, is known to heavily process sensory information. To adapt to an animal's needs, OB activity can be influenced by many factors either from within (intrinsic neuromodulation) or outside (extrinsic neuromodulation) the OB which include neurotransmitters, neuromodulators, hormones, and neuropeptides. Extrinsic sources seem to be of special importance as the OB receives massive efferent input from numerous brain centers even outweighing the sensory input from the nose. Here, we review neuromodulatory processes in the rodent OB from such extrinsic sources. We will discuss extrinsic neuromodulation according to points of origin, receptors involved, affected circuits, and changes in behavior. In the end, we give a brief outlook on potential future directions in research on neuromodulation in the OB.
Collapse
Affiliation(s)
- Daniela Brunert
- Department of Chemosensation, AG Neuromodulation, Institute for Biology II, RWTH Aachen University, 52074, Aachen, Germany
| | - Markus Rothermel
- Department of Chemosensation, AG Neuromodulation, Institute for Biology II, RWTH Aachen University, 52074, Aachen, Germany.
| |
Collapse
|
82
|
Spatial topography of the basal forebrain cholinergic projections: Organization and vulnerability to degeneration. HANDBOOK OF CLINICAL NEUROLOGY 2021; 179:159-173. [PMID: 34225960 DOI: 10.1016/b978-0-12-819975-6.00008-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The basal forebrain (BF) cholinergic system constitutes a heterogeneous cluster of large projection neurons that innervate the entire cortical mantle and amygdala. Cholinergic neuromodulation plays a critical role in regulating cognition and behavior, as well as maintenance of cellular homeostasis. Decades of postmortem histology research have demonstrated that the BF cholinergic neurons are selectively vulnerable to aging and age-related neuropathology in degenerative diseases such as Alzheimer's and Parkinson's diseases. Emerging evidence from in vivo neuroimaging research, which permits longitudinal tracking of at-risk individuals, indicates that cholinergic neurodegeneration might play an earlier and more pivotal role in these diseases than was previously appreciated. Despite these advances, our understanding of the organization and functions of the BF cholinergic system mostly derives from nonhuman animal research. In this chapter, we begin with a review of the topographical organization of the BF cholinergic system in rodent and nonhuman primate models. We then discuss basic and clinical neuroscience research in humans, which has started to translate and extend the nonhuman animal research using novel noninvasive neuroimaging techniques. We focus on converging evidence indicating that the selective vulnerability of cholinergic neurons in Alzheimer's and Parkinson's diseases is expressed along a rostral-caudal topography in the BF. We close with a discussion of why this topography of vulnerability in the BF may occur and why it is relevant to the clinician.
Collapse
|
83
|
Galvin VC, Yang S, Lowet AS, Datta D, Duque A, Arnsten AFT, Wang M. M1 receptors interacting with NMDAR enhance delay-related neuronal firing and improve working memory performance. CURRENT RESEARCH IN NEUROBIOLOGY 2021; 2. [PMID: 35098156 PMCID: PMC8794314 DOI: 10.1016/j.crneur.2021.100016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The recurrent excitatory circuits in dlPFC underlying working memory are known to require activation of glutamatergic NMDA receptors (NMDAR). The neurons in these circuits also rely on acetylcholine to maintain persistent activity, with evidence for actions at both nicotinic α7 receptors and muscarinic M1 receptors (M1R). It is known that nicotinic α7 receptors interact with NMDAR in these circuits, but the interactions between M1R and NMDAR on dlPFC neuronal activity are unknown. Here, we investigated whether M1Rs contribute to the permissive effects of ACh in dlPFC circuitry underlying working memory via interactions with NMDA receptors. We tested interactions between M1Rs and NMDARs in vivo on single neuron activity in rhesus macaques performing a working memory task, as well as on working memory behavior in rodents following infusion of M1R and NMDAR compounds into mPFC. We report that M1R antagonists block the enhancing effects of NMDA application, consistent with M1R permissive actions. Conversely, M1R positive allosteric modulators prevented the detrimental effects of NMDAR blockade in single neurons in dlPFC and on working memory performance in rodents. These data support an interaction between M1R and NMDARs in working memory circuitry in both primates and rats, and suggest M1Rs contribute to the permissive actions of ACh in primate dlPFC. These results are consistent with recent data suggesting that M1R agonists may be helpful in the treatment of schizophrenia, a cognitive disorder associated with NMDAR dysfunction. Working memory-related persistent firing in primate prefrontal cortex relies on NMDAR. Unlike classic circuits, NMDAR transmission requires permissive acetylcholine actions. Muscarinic M1R blockade prevents the excitatory effects of NMDA on neuronal firing. M1R stimulation averts the harmful effects of NMDAR blockade on cell firing and memory.
Collapse
|
84
|
Allaway KC, Muñoz W, Tremblay R, Sherer M, Herron J, Rudy B, Machold R, Fishell G. Cellular birthdate predicts laminar and regional cholinergic projection topography in the forebrain. eLife 2020; 9:63249. [PMID: 33355093 PMCID: PMC7758062 DOI: 10.7554/elife.63249] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 12/13/2020] [Indexed: 12/25/2022] Open
Abstract
The basal forebrain cholinergic system projects broadly throughout the cortex and constitutes a critical source of neuromodulation for arousal and attention. Traditionally, this system was thought to function diffusely. However, recent studies have revealed a high degree of spatiotemporal specificity in cholinergic signaling. How the organization of cholinergic afferents confers this level of precision remains unknown. Here, using intersectional genetic fate mapping, we demonstrate that cholinergic fibers within the mouse cortex exhibit remarkable laminar and regional specificity and that this is organized in accordance with cellular birthdate. Strikingly, birthdated cholinergic projections within the cortex follow an inside-out pattern of innervation. While early born cholinergic populations target deep layers, late born ones innervate superficial laminae. We also find that birthdate predicts cholinergic innervation patterns within the amygdala, hippocampus, and prefrontal cortex. Our work reveals previously unappreciated specificity within the cholinergic system and the developmental logic by which these circuits are assembled.
Collapse
Affiliation(s)
- Kathryn C Allaway
- Neuroscience Institute, New York University, New York, United States.,Department of Neurobiology, Harvard Medical School, Boston, United States.,Stanley Center for Psychiatric Research, Broad Institute, Cambridge, United States
| | - William Muñoz
- Neuroscience Institute, New York University, New York, United States.,Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, United States
| | - Robin Tremblay
- Neuroscience Institute, New York University, New York, United States
| | - Mia Sherer
- Department of Neurobiology, Harvard Medical School, Boston, United States.,Stanley Center for Psychiatric Research, Broad Institute, Cambridge, United States.,Northeastern University, Boston, United States
| | - Jacob Herron
- Department of Neurobiology, Harvard Medical School, Boston, United States.,Stanley Center for Psychiatric Research, Broad Institute, Cambridge, United States.,Northeastern University, Boston, United States
| | - Bernardo Rudy
- Neuroscience Institute, New York University, New York, United States
| | - Robert Machold
- Neuroscience Institute, New York University, New York, United States
| | - Gordon Fishell
- Department of Neurobiology, Harvard Medical School, Boston, United States.,Stanley Center for Psychiatric Research, Broad Institute, Cambridge, United States
| |
Collapse
|
85
|
O'Callaghan C, Walpola IC, Shine JM. Neuromodulation of the mind-wandering brain state: the interaction between neuromodulatory tone, sharp wave-ripples and spontaneous thought. Philos Trans R Soc Lond B Biol Sci 2020; 376:20190699. [PMID: 33308063 DOI: 10.1098/rstb.2019.0699] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Mind-wandering has become a captivating topic for cognitive neuroscientists. By now, it is reasonably well described in terms of its phenomenology and the large-scale neural networks that support it. However, we know very little about what neurobiological mechanisms trigger a mind-wandering episode and sustain the mind-wandering brain state. Here, we focus on the role of ascending neuromodulatory systems (i.e. acetylcholine, noradrenaline, serotonin and dopamine) in shaping mind-wandering. We advance the hypothesis that the hippocampal sharp wave-ripple (SWR) is a compelling candidate for a brain state that can trigger mind-wandering episodes. This hippocampal rhythm, which occurs spontaneously in quiescent behavioural states, is capable of propagating widespread activity in the default network and is functionally associated with recollective, associative, imagination and simulation processes. The occurrence of the SWR is heavily dependent on hippocampal neuromodulatory tone. We describe how the interplay of neuromodulators may promote the hippocampal SWR and trigger mind-wandering episodes. We then identify the global neuromodulatory signatures that shape the evolution of the mind-wandering brain state. Under our proposed framework, mind-wandering emerges due to the interplay between neuromodulatory systems that influence the transitions between brain states, which either facilitate, or impede, a wandering mind. This article is part of the theme issue 'Offline perception: voluntary and spontaneous perceptual experiences without matching external stimulation'.
Collapse
Affiliation(s)
- Claire O'Callaghan
- Brain and Mind Centre and School of Medical Sciences, Faculty of Medicine, University of Sydney, Sydney, Australia.,Department of Psychiatry, University of Cambridge, Cambridge, UK
| | - Ishan C Walpola
- Brain and Mind Centre and School of Medical Sciences, Faculty of Medicine, University of Sydney, Sydney, Australia
| | - James M Shine
- Brain and Mind Centre and School of Medical Sciences, Faculty of Medicine, University of Sydney, Sydney, Australia
| |
Collapse
|
86
|
Kargl D, Kaczanowska J, Ulonska S, Groessl F, Piszczek L, Lazovic J, Buehler K, Haubensak W. The amygdala instructs insular feedback for affective learning. eLife 2020; 9:60336. [PMID: 33216712 PMCID: PMC7679142 DOI: 10.7554/elife.60336] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 11/04/2020] [Indexed: 12/21/2022] Open
Abstract
Affective responses depend on assigning value to environmental predictors of threat or reward. Neuroanatomically, this affective value is encoded at both cortical and subcortical levels. However, the purpose of this distributed representation across functional hierarchies remains unclear. Using fMRI in mice, we mapped a discrete cortico-limbic loop between insular cortex (IC), central amygdala (CE), and nucleus basalis of Meynert (NBM), which decomposes the affective value of a conditioned stimulus (CS) into its salience and valence components. In IC, learning integrated unconditioned stimulus (US)-evoked bodily states into CS valence. In turn, CS salience in the CE recruited these CS representations bottom-up via the cholinergic NBM. This way, the CE incorporated interoceptive feedback from IC to improve discrimination of CS valence. Consequently, opto-/chemogenetic uncoupling of hierarchical information flow disrupted affective learning and conditioned responding. Dysfunctional interactions in the IC↔CE/NBM network may underlie intolerance to uncertainty, observed in autism and related psychiatric conditions.
Collapse
Affiliation(s)
- Dominic Kargl
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| | - Joanna Kaczanowska
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| | - Sophia Ulonska
- VRVis Zentrum für Virtual Reality und Visualisierung Forschungs-GmbH (VRVis), Vienna, Austria
| | - Florian Groessl
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| | - Lukasz Piszczek
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| | - Jelena Lazovic
- Preclinical Imaging Facility (pcIMAG), Vienna Biocenter Core Facilities (VBCF), Vienna, Austria
| | - Katja Buehler
- VRVis Zentrum für Virtual Reality und Visualisierung Forschungs-GmbH (VRVis), Vienna, Austria
| | - Wulf Haubensak
- Research Institute of Molecular Pathology (IMP), Vienna Biocenter (VBC), Vienna, Austria
| |
Collapse
|
87
|
Pre-Brodmann pioneers of cortical cytoarchitectonics I: Theodor Meynert, Vladimir Betz and William Bevan-Lewis. Brain Struct Funct 2020; 226:49-67. [PMID: 33165657 DOI: 10.1007/s00429-020-02168-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 10/21/2020] [Indexed: 10/23/2022]
Abstract
This study and the sequel paper revisit landmark discoveries that paved the way to the definition of the renowned Brodmann areas in the human cerebral cortex, in an attempt to rectify certain undeserved historical neglects. A 'first period of discoveries,' from 1867 to 1882, is represented by the work of neuropsychiatrists Theodor Meynert (1833-1892) in Vienna, Vladimir Betz (1834-1894) in Kiev and William Bevan-Lewis (1847-1929) in Wakefield. Their classical findings are placed in a modern perspective.
Collapse
|
88
|
van der Zee S, Müller MLTM, Kanel P, van Laar T, Bohnen NI. Cholinergic Denervation Patterns Across Cognitive Domains in Parkinson's Disease. Mov Disord 2020; 36:642-650. [PMID: 33137238 DOI: 10.1002/mds.28360] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/17/2020] [Accepted: 10/05/2020] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND The cholinergic system plays a key role in cognitive impairment in Parkinson's disease (PD). Previous acetylcholinesterase positron emission tomography imaging studies found memory, attention, and executive function correlates of global cortical cholinergic losses. Vesicular acetylcholine transporter positron emission tomography allows for more accurate topographic assessment of not only cortical but also subcortical cholinergic changes. OBJECTIVE The objectiveof this study was to investigate the topographic relationship between cognitive functioning and regional cholinergic innervation in patients with PD. METHODS A total of 86 nondemented patients with PD (mean ± SD age 67.8 ± 7.6 years, motor disease duration 5.8 ± 4.6 years), and 12 healthy control participants (age 67.8 ± 7.8 years) underwent cholinergic [18 F]Fluoroethoxybenzovesamicol positron emission tomography imaging. Patients with PD underwent neuropsychological assessment. The z scores for each cognitive domain were determined using an age-matched, gender-matched, and educational level-matched control group. Correlations between domain-specific cognitive functioning and cholinergic innervation were examined, controlling for motor impairments and levodopa equivalent dose. Additional correlational analyses were performed using a mask limited to PD versus normal aging binding differences to assess for disease-specific versus normal aging effects. RESULTS Voxel-based whole-brain analysis demonstrated partial overlapping topography across cognitive domains, with most robust correlations in the domains of memory, attention, and executive functioning (P < 0.01, corrected for multiple comparisons). The shared pattern included the cingulate cortex, insula/operculum, and (visual) thalamus. CONCLUSION Our results confirm and expand on previous observations of cholinergic system involvement in cognitive functioning in PD. The topographic overlap across domains may reflect a partially shared cholinergic functionality underlying cognitive functioning, representing a combination of disease-specific and aging effects. © 2020 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Sygrid van der Zee
- Department of Radiology, University of Michigan, Ann Arbor, Michigan, USA.,Department of Neurology and Department of Neuropsychology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Martijn L T M Müller
- Department of Radiology, University of Michigan, Ann Arbor, Michigan, USA.,Morris K. Udall Center of Excellence for Parkinson's Disease Research, University of Michigan, Ann Arbor, Michigan, USA
| | - Prabesh Kanel
- Department of Radiology, University of Michigan, Ann Arbor, Michigan, USA.,Morris K. Udall Center of Excellence for Parkinson's Disease Research, University of Michigan, Ann Arbor, Michigan, USA
| | - Teus van Laar
- Department of Neurology and Department of Neuropsychology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Nicolaas I Bohnen
- Department of Radiology, University of Michigan, Ann Arbor, Michigan, USA.,Morris K. Udall Center of Excellence for Parkinson's Disease Research, University of Michigan, Ann Arbor, Michigan, USA.,Department of Neurology, University of Michigan, Ann Arbor, Michigan, USA.,Neurology Service and Geriatric Research Education and Clinical Center (GRECC), Veterans Administration Ann Arbor Healthcare System, Ann Arbor, Michigan, USA
| |
Collapse
|
89
|
Zhao S, Bury G, Milne A, Chait M. Pupillometry as an Objective Measure of Sustained Attention in Young and Older Listeners. Trends Hear 2020; 23:2331216519887815. [PMID: 31775578 PMCID: PMC6883360 DOI: 10.1177/2331216519887815] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
The ability to sustain attention on a task-relevant sound source while avoiding
distraction from concurrent sounds is fundamental to listening in crowded
environments. We aimed to (a) devise an experimental paradigm with which this
aspect of listening can be isolated and (b) evaluate the applicability of
pupillometry as an objective measure of sustained attention in young and older
populations. We designed a paradigm that continuously measured behavioral
responses and pupillometry during 25-s trials. Stimuli contained a number of
concurrent, spectrally distinct tone streams. On each trial, participants
detected gaps in one of the streams while resisting distraction from the others.
Behavior demonstrated increasing difficulty with time-on-task and with
number/proximity of distractor streams. In young listeners
(N = 20; aged 18 to 35 years), pupil diameter (on the group and
individual level) was dynamically modulated by instantaneous task difficulty:
Periods where behavioral performance revealed a strain on sustained attention
were accompanied by increased pupil diameter. Only trials on which participants
performed successfully were included in the pupillometry analysis so that the
observed effects reflect task demands as opposed to failure to attend. In line
with existing reports, we observed global changes to pupil dynamics in the older
group (N = 19; aged 63 to 79 years) including decreased pupil
diameter, limited dilation range, and reduced temporal variability. However,
despite these changes, older listeners showed similar effects of attentive
tracking to those observed in the young listeners. Overall, our results
demonstrate that pupillometry can be a reliable and time-sensitive measure of
attentive tracking over long durations in both young and (with caveats) older
listeners.
Collapse
Affiliation(s)
- Sijia Zhao
- Ear Institute, University College London, UK
| | | | - Alice Milne
- Ear Institute, University College London, UK
| | - Maria Chait
- Ear Institute, University College London, UK
| |
Collapse
|
90
|
Dezawa S, Nagasaka K, Watanabe Y, Takashima I. Lesions of the nucleus basalis magnocellularis (Meynert) induce enhanced somatosensory responses and tactile hypersensitivity in rats. Exp Neurol 2020; 335:113493. [PMID: 33011194 DOI: 10.1016/j.expneurol.2020.113493] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 09/20/2020] [Accepted: 09/28/2020] [Indexed: 11/30/2022]
Abstract
We used the immunotoxin 192 immunoglobulin G-saporin to produce a selective cholinergic lesion in the nucleus basalis of Meynert (NBM) of rats and investigated whether the NBM lesion led to tactile hypersensitivity in the forepaw. The paw mechanical threshold test showed that the lesioned rats had a decreased threshold compared to the control. Surprisingly, there was a significant positive correlation between mechanical threshold and survival rate of NBM cholinergic neurons. Furthermore, using local field potential (LFP) recordings and voltage-sensitive dye (VSD) imaging, we found that the forepaw-evoked response in the primary somatosensory cortex (S1) was significantly enhanced in both amplitude and spatial extent in the NBM-lesioned rats. The neurophysiological measures of S1 response, such as LFP amplitude and maximal activated cortical area depicted by VSD, were also correlated with withdrawal behavior. Additional pharmacological experiments demonstrated that forepaw-evoked responses were increased in naive rats by blocking S1 cholinergic receptors with mecamylamine and scopolamine, while the response decreased in NBM-lesioned rats with the cholinergic agonist carbachol. In addition, NBM burst stimulation, which facilitates acetylcholine release in the S1, suppressed subsequent sensory responses to forepaw stimulation. Taken together, these results suggest that neuronal loss in the NBM diminishes acetylcholine actions in the S1, thereby enhancing the cortical representation of sensory stimuli, which may in turn lead to behavioral hypersensitivity.
Collapse
Affiliation(s)
- Shinnosuke Dezawa
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8568, Japan; Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba 305-8577, Japan
| | - Kazuaki Nagasaka
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8568, Japan; Institute for Human Movement and Medical Sciences, Niigata University of Health and Welfare, Niigata 950-3198, Japan
| | - Yumiko Watanabe
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8568, Japan
| | - Ichiro Takashima
- Human Informatics and Interaction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba 305-8568, Japan; Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba 305-8577, Japan.
| |
Collapse
|
91
|
Yuan R, Biswal BB, Zaborszky L. Functional Subdivisions of Magnocellular Cell Groups in Human Basal Forebrain: Test-Retest Resting-State Study at Ultra-high Field, and Meta-analysis. Cereb Cortex 2020; 29:2844-2858. [PMID: 30137295 DOI: 10.1093/cercor/bhy150] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 05/11/2018] [Indexed: 12/23/2022] Open
Abstract
The heterogeneous neuronal subgroups of the basal forebrain corticopetal system (BFcs) have been shown to modulate cortical functions through their cholinergic, gamma-aminobutyric acid-ergic, and glutamatergic projections to the entire cortex. Although previous studies suggested that the basalo-cortical projection system influences various cognitive functions, particularly via its cholinergic component, these studies only focused on certain parts of the BFcs or nearby structures, leaving aside a more systematic picture of the functional connectivity of BFcs subcompartments. Moreover, these studies lacked the high-spatial resolution and the probability maps needed to identify specific subcompartments. Recent advances in the ultra-high field 7T functional magnetic resonance imaging (fMRI) provided potentially unprecedented spatial resolution of functional MRI images to study the subdivision of the BFcs. In this study, the BF space containing corticopetal cells was divided into 3 functionally distinct subdivisions based on functional connection to cortical regions derived from fMRI. The overall functional connection of each BFcs subdivision was examined with a test-retest study. Finally, a meta-analysis was used to study the related functional topics of each BF subdivision. Our results demonstrate distinct functional connectivity patterns of these subdivisions along the rostrocaudal axis of the BF. All three compartments have shown consistent segregation and overlap at specific target regions including the hippocampus, insula, thalamus, and the cingulate gyrus, suggesting functional integration and separation in BFcs.
Collapse
Affiliation(s)
- Rui Yuan
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - Bharat B Biswal
- Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA.,The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, University of Electronic Science and Technology of China, Chengdu, PR China
| | - Laszlo Zaborszky
- Center for Molecular and Behavioral Neuroscience, Rutgers, The State University of New Jersey, Newark, NJ, USA
| |
Collapse
|
92
|
Drew PJ, Mateo C, Turner KL, Yu X, Kleinfeld D. Ultra-slow Oscillations in fMRI and Resting-State Connectivity: Neuronal and Vascular Contributions and Technical Confounds. Neuron 2020; 107:782-804. [PMID: 32791040 PMCID: PMC7886622 DOI: 10.1016/j.neuron.2020.07.020] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 06/09/2020] [Accepted: 07/15/2020] [Indexed: 12/27/2022]
Abstract
Ultra-slow, ∼0.1-Hz variations in the oxygenation level of brain blood are widely used as an fMRI-based surrogate of "resting-state" neuronal activity. The temporal correlations among these fluctuations across the brain are interpreted as "functional connections" for maps and neurological diagnostics. Ultra-slow variations in oxygenation follow a cascade. First, they closely track changes in arteriole diameter. Second, interpretable functional connections arise when the ultra-slow changes in amplitude of γ-band neuronal oscillations, which are shared across even far-flung but synaptically connected brain regions, entrain the ∼0.1-Hz vasomotor oscillation in diameter of local arterioles. Significant confounds to estimates of functional connectivity arise from residual vasomotor activity as well as arteriole dynamics driven by self-generated movements and subcortical common modulatory inputs. Last, methodological limitations of fMRI can lead to spurious functional connections. The neuronal generator of ultra-slow variations in γ-band amplitude, including that associated with self-generated movements, remains an open issue.
Collapse
Affiliation(s)
- Patrick J Drew
- Department of Engineering Science and Mechanics, Pennsylvania State University, University Park, PA 16802, USA; Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA; Department of Neurosurgery, Pennsylvania State University, University Park, PA 16802, USA
| | - Celine Mateo
- Department of Physics, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kevin L Turner
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
| | - Xin Yu
- High-Field Magnetic Resonance Department, Max Planck Institute for Biological Cybernetics, 72076 Tübingen, Germany; MGH/MIT/HMS Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Harvard Medical School, Massachusetts General Hospital, Charlestown, MA 02114, USA
| | - David Kleinfeld
- Department of Physics, University of California, San Diego, La Jolla, CA 92093, USA; Section of Neurobiology, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
93
|
Staiger JF, Petersen CCH. Neuronal Circuits in Barrel Cortex for Whisker Sensory Perception. Physiol Rev 2020; 101:353-415. [PMID: 32816652 DOI: 10.1152/physrev.00019.2019] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The array of whiskers on the snout provides rodents with tactile sensory information relating to the size, shape and texture of objects in their immediate environment. Rodents can use their whiskers to detect stimuli, distinguish textures, locate objects and navigate. Important aspects of whisker sensation are thought to result from neuronal computations in the whisker somatosensory cortex (wS1). Each whisker is individually represented in the somatotopic map of wS1 by an anatomical unit named a 'barrel' (hence also called barrel cortex). This allows precise investigation of sensory processing in the context of a well-defined map. Here, we first review the signaling pathways from the whiskers to wS1, and then discuss current understanding of the various types of excitatory and inhibitory neurons present within wS1. Different classes of cells can be defined according to anatomical, electrophysiological and molecular features. The synaptic connectivity of neurons within local wS1 microcircuits, as well as their long-range interactions and the impact of neuromodulators, are beginning to be understood. Recent technological progress has allowed cell-type-specific connectivity to be related to cell-type-specific activity during whisker-related behaviors. An important goal for future research is to obtain a causal and mechanistic understanding of how selected aspects of tactile sensory information are processed by specific types of neurons in the synaptically connected neuronal networks of wS1 and signaled to downstream brain areas, thus contributing to sensory-guided decision-making.
Collapse
Affiliation(s)
- Jochen F Staiger
- University Medical Center Göttingen, Institute for Neuroanatomy, Göttingen, Germany; and Laboratory of Sensory Processing, Faculty of Life Sciences, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Carl C H Petersen
- University Medical Center Göttingen, Institute for Neuroanatomy, Göttingen, Germany; and Laboratory of Sensory Processing, Faculty of Life Sciences, Brain Mind Institute, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
94
|
Forebrain Cholinergic Signaling: Wired and Phasic, Not Tonic, and Causing Behavior. J Neurosci 2020; 40:712-719. [PMID: 31969489 DOI: 10.1523/jneurosci.1305-19.2019] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 10/29/2019] [Accepted: 11/04/2019] [Indexed: 01/21/2023] Open
Abstract
Conceptualizations of cholinergic signaling as primarily spatially diffuse and slow-acting are based largely on measures of extracellular brain ACh levels that require several minutes to generate a single data point. In addition, most such studies inhibited the highly potent catalytic enzyme for ACh, AChE, to facilitate measurement of ACh. Absent such inhibition, AChE limits the presence of ambient ACh and thus renders it unlikely that ACh influences target regions via slow changes in extracellular ACh concentrations. We describe an alternative view by which forebrain signaling in cortex driving cognition is largely phasic (milliseconds to perhaps seconds), and unlikely to be volume-transmitted. This alternative is supported by new evidence from real-time amperometric recordings of cholinergic signaling indicating a specific function of rapid, phasic, transient cholinergic signaling in attentional contexts. Previous neurochemical evidence may be reinterpreted in terms of integrated phasic cholinergic activity that mediates specific behavioral and cognitive operations; this reinterpretation fits well with recent computational models. Optogenetic studies support a causal relationship between cholinergic transients and behavior. This occurs in part via transient-evoked muscarinic receptor-mediated high-frequency oscillations in cortical regions. Such oscillations outlast cholinergic transients and thus link transient ACh signaling with more sustained postsynaptic activity patterns to support relatively persistent attentional biases. Reconceptualizing cholinergic function as spatially specific, phasic, and modulating specific cognitive operations is theoretically powerful and may lead to pharmacologic treatments more effective than those based on traditional views.Dual Perspectives Companion Paper: Diverse Spatiotemporal Scales of Cholinergic Signaling in the Neocortex, by Anita A. Disney and Michael J. Higley.
Collapse
|
95
|
Böhm E, Brunert D, Rothermel M. Input dependent modulation of olfactory bulb activity by HDB GABAergic projections. Sci Rep 2020; 10:10696. [PMID: 32612119 PMCID: PMC7329849 DOI: 10.1038/s41598-020-67276-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 05/27/2020] [Indexed: 12/16/2022] Open
Abstract
Basal forebrain modulation of central circuits is associated with active sensation, attention, and learning. While cholinergic modulations have been studied extensively the effect of non-cholinergic basal forebrain subpopulations on sensory processing remains largely unclear. Here, we directly compare optogenetic manipulation effects of two major basal forebrain subpopulations on principal neuron activity in an early sensory processing area, i.e. mitral/tufted cells (MTCs) in the olfactory bulb. In contrast to cholinergic projections, which consistently increased MTC firing, activation of GABAergic fibers from basal forebrain to the olfactory bulb leads to differential modulation effects: while spontaneous MTC activity is mainly inhibited, odor-evoked firing is predominantly enhanced. Moreover, sniff-triggered averages revealed an enhancement of maximal sniff evoked firing amplitude and an inhibition of firing rates outside the maximal sniff phase. These findings demonstrate that GABAergic neuromodulation affects MTC firing in a bimodal, sensory-input dependent way, suggesting that GABAergic basal forebrain modulation could be an important factor in attention mediated filtering of sensory information to the brain.
Collapse
Affiliation(s)
- Erik Böhm
- Department of Chemosensation, AG Neuromodulation, Institute for Biology II, RWTH Aachen University, Aachen, 52074, Germany
| | - Daniela Brunert
- Department of Chemosensation, AG Neuromodulation, Institute for Biology II, RWTH Aachen University, Aachen, 52074, Germany
| | - Markus Rothermel
- Department of Chemosensation, AG Neuromodulation, Institute for Biology II, RWTH Aachen University, Aachen, 52074, Germany.
| |
Collapse
|
96
|
Azimi H, Klaassen AL, Thomas K, Harvey MA, Rainer G. Role of the Thalamus in Basal Forebrain Regulation of Neural Activity in the Primary Auditory Cortex. Cereb Cortex 2020; 30:4481-4495. [PMID: 32244254 DOI: 10.1093/cercor/bhaa045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Many studies have implicated the basal forebrain (BF) as a potent regulator of sensory encoding even at the earliest stages of or cortical processing. The source of this regulation involves the well-documented corticopetal cholinergic projections from BF to primary cortical areas. However, the BF also projects to subcortical structures, including the thalamic reticular nucleus (TRN), which has abundant reciprocal connections with sensory thalamus. Here we present naturalistic auditory stimuli to the anesthetized rat while making simultaneous single-unit recordings from the ventral medial geniculate nucleus (MGN) and primary auditory cortex (A1) during electrical stimulation of the BF. Like primary visual cortex, we find that BF stimulation increases the trial-to-trial reliability of A1 neurons, and we relate these results to change in the response properties of MGN neurons. We discuss several lines of evidence that implicate the BF to thalamus pathway in the manifestation of BF-induced changes to cortical sensory processing and support our conclusions with supplementary TRN recordings, as well as studies in awake animals showing a strong relationship between endogenous BF activity and A1 reliability. Our findings suggest that the BF subcortical projections that modulate MGN play an important role in auditory processing.
Collapse
Affiliation(s)
- H Azimi
- Department of Medicine, University of Fribourg, Fribourg CH-1700, Switzerland
| | - A-L Klaassen
- Department of Medicine, University of Fribourg, Fribourg CH-1700, Switzerland.,Department of Psychology, University of Fribourg, Fribourg CH-1700, Switzerland
| | - K Thomas
- Department of Medicine, University of Fribourg, Fribourg CH-1700, Switzerland
| | - M A Harvey
- Department of Medicine, University of Fribourg, Fribourg CH-1700, Switzerland
| | - G Rainer
- Department of Medicine, University of Fribourg, Fribourg CH-1700, Switzerland
| |
Collapse
|
97
|
Vaucher E, Laliberté G, Higgins MC, Maheux M, Jolicoeur P, Chamoun M. Cholinergic potentiation of visual perception and vision restoration in rodents and humans. Restor Neurol Neurosci 2020; 37:553-569. [PMID: 31839615 DOI: 10.3233/rnn-190947] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND The cholinergic system is a potent neuromodulator system that plays a critical role in cortical plasticity, attention, and learning. Recently, it was found that boosting this system during perceptual learning robustly enhances sensory perception in rodents. In particular, pairing cholinergic activation with visual stimulation increases neuronal responses, cue detection ability, and long-term facilitation in the primary visual cortex. The mechanisms of cholinergic enhancement are closely linked to attentional processes, long-term potentiation, and modulation of the excitatory/inhibitory balance. Some studies currently examine this effect in humans. OBJECTIVE The present article reviews the research from our laboratory, examining whether potentiating the central cholinergic system could help visual perception and restoration. METHODS Electrophysiological or pharmacological enhancement of the cholinergic system are administered during a visual training. Electrophysiological responses and perceptual learning performance are investigated before and after the training in rats and humans. This approach's ability to restore visual capacities following a visual deficit induced by a partial optic nerve crush is also investigated in rats. RESULTS The coupling of visual training to cholinergic stimulation improved visual discrimination and visual acuity in rats, and improved residual vision after a deficit. These changes were due to muscarinic and nicotinic transmissions and were associated with a functional improvement of evoked potentials. In humans, potentiation of cholinergic transmission with 5 mg of donepezil showed improved learning and ocular dominance plasticity, although this treatment was ineffective in augmenting the perceptual threshold and electroencephalography. CONCLUSIONS Potential therapeutic outcomes ought to facilitate vision restoration using commercially available cholinergic agents combined with visual stimulation in order to prevent irreversible vision loss in patients. This approach has the potential to help a large population of visually impaired individuals.
Collapse
Affiliation(s)
- Elvire Vaucher
- Laboratoire de Neurobiologie de la Cognition Visuelle, École d'optométrie, Université de Montréal, Montréal, Québec, Canada.,Centre de recherche en neuropsychologie et cognition (CERNEC), Montréal, Québec, Canada
| | - Guillaume Laliberté
- Laboratoire de Neurobiologie de la Cognition Visuelle, École d'optométrie, Université de Montréal, Montréal, Québec, Canada
| | - Marie-Charlotte Higgins
- Laboratoire de Neurobiologie de la Cognition Visuelle, École d'optométrie, Université de Montréal, Montréal, Québec, Canada
| | - Manon Maheux
- Centre de recherche en neuropsychologie et cognition (CERNEC), Montréal, Québec, Canada.,Département de Psychologie, Université de Montréal, Montréal, Québec, Canada
| | - Pierre Jolicoeur
- Centre de recherche en neuropsychologie et cognition (CERNEC), Montréal, Québec, Canada.,Département de Psychologie, Université de Montréal, Montréal, Québec, Canada
| | - Mira Chamoun
- Laboratoire de Neurobiologie de la Cognition Visuelle, École d'optométrie, Université de Montréal, Montréal, Québec, Canada
| |
Collapse
|
98
|
Olefir I, Ghazaryan A, Yang H, Malekzadeh-Najafabadi J, Glasl S, Symvoulidis P, O'Leary VB, Sergiadis G, Ntziachristos V, Ovsepian SV. Spatial and Spectral Mapping and Decomposition of Neural Dynamics and Organization of the Mouse Brain with Multispectral Optoacoustic Tomography. Cell Rep 2020; 26:2833-2846.e3. [PMID: 30840901 PMCID: PMC6403416 DOI: 10.1016/j.celrep.2019.02.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 01/07/2019] [Accepted: 02/04/2019] [Indexed: 01/09/2023] Open
Abstract
In traditional optical imaging, limited light penetration constrains high-resolution interrogation to tissue surfaces. Optoacoustic imaging combines the superb contrast of optical imaging with deep penetration of ultrasound, enabling a range of new applications. We used multispectral optoacoustic tomography (MSOT) for functional and structural neuroimaging in mice at resolution, depth, and specificity unattainable by other neuroimaging modalities. Based on multispectral readouts, we computed hemoglobin gradient and oxygen saturation changes related to processing of somatosensory signals in different structures along the entire subcortical-cortical axis. Using temporal correlation analysis and seed-based maps, we reveal the connectivity between cortical, thalamic, and sub-thalamic formations. With the same modality, high-resolution structural tomography of intact mouse brain was achieved based on endogenous contrasts, demonstrating near-perfect matches with anatomical features revealed by histology. These results extend the limits of noninvasive observations beyond the reach of standard high-resolution neuroimaging, verifying the suitability of MSOT for small-animal studies.
Collapse
Affiliation(s)
- Ivan Olefir
- Institute of Biological and Medical Imaging (IBMI), Helmholtz Zentrum Munich, Ingolstadter Landstrasse 1, 85764 Neuherberg, Germany; Chair of Biological Imaging, Technical University Munich, 81675 Munich, Germany
| | - Ara Ghazaryan
- Institute of Biological and Medical Imaging (IBMI), Helmholtz Zentrum Munich, Ingolstadter Landstrasse 1, 85764 Neuherberg, Germany
| | - Hong Yang
- Institute of Biological and Medical Imaging (IBMI), Helmholtz Zentrum Munich, Ingolstadter Landstrasse 1, 85764 Neuherberg, Germany
| | - Jaber Malekzadeh-Najafabadi
- Institute of Biological and Medical Imaging (IBMI), Helmholtz Zentrum Munich, Ingolstadter Landstrasse 1, 85764 Neuherberg, Germany
| | - Sarah Glasl
- Institute of Biological and Medical Imaging (IBMI), Helmholtz Zentrum Munich, Ingolstadter Landstrasse 1, 85764 Neuherberg, Germany
| | - Panagiotis Symvoulidis
- Institute of Biological and Medical Imaging (IBMI), Helmholtz Zentrum Munich, Ingolstadter Landstrasse 1, 85764 Neuherberg, Germany; Chair of Biological Imaging, Technical University Munich, 81675 Munich, Germany
| | - Valerie B O'Leary
- Department of Medical Genetics, Third Faculty of Medicine of Charles University, 11636 Prague, Czech Republic
| | - George Sergiadis
- Department of Electrical and Computer Engineering, Aristotle University, 54124 Thessaloniki, Greece
| | - Vasilis Ntziachristos
- Institute of Biological and Medical Imaging (IBMI), Helmholtz Zentrum Munich, Ingolstadter Landstrasse 1, 85764 Neuherberg, Germany; Chair of Biological Imaging, Technical University Munich, 81675 Munich, Germany.
| | - Saak V Ovsepian
- Institute of Biological and Medical Imaging (IBMI), Helmholtz Zentrum Munich, Ingolstadter Landstrasse 1, 85764 Neuherberg, Germany; Chair of Biological Imaging, Technical University Munich, 81675 Munich, Germany; Department of Experimental Neurobiology, National Institute of Mental Health, Topolová 748, 25067 Klecany, Czech Republic; Department of Psychiatry and Medical Psychology, Third Faculty of Medicine of Charles University, 11636 Prague, Czech Republic.
| |
Collapse
|
99
|
Vardar B, Güçlü B. Effects of basal forebrain stimulation on the vibrotactile responses of neurons from the hindpaw representation in the rat SI cortex. Brain Struct Funct 2020; 225:1761-1776. [PMID: 32495132 DOI: 10.1007/s00429-020-02091-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 05/13/2020] [Indexed: 11/28/2022]
Abstract
Basal forebrain (BF) cholinergic system is important for attention and modulates sensory processing. We focused on the hindpaw representation in rat primary somatosensory cortex (S1), which receives inputs related to mechanoreceptors identical to those in human glabrous skin. Spike data were recorded from S1 tactile neurons (n = 87) with (ON condition: 0.5-ms bipolar current pulses at 100 Hz; amplitude 50 μA, duration 0.5 s at each trial) and without (OFF condition) electrical stimulation of BF in anesthetized rats. We expected that prior activation of BF would induce changes in the vibrotactile responses of neurons during sinusoidal (5, 40, and 250 Hz) mechanical stimulation of the glabrous skin. The experiment consisted of sequential OFF-ON conditions in two-time blocks separated by 30 min to test possible remaining effects. Average firing rates (AFRs) and vector strengths of spike phases (VS) were analyzed for different neuron types [regular spiking (RS) and fast spiking (FS)] in different cortical layers (III-VI). Immediate effect of BF activation was only significant by increasing synchronization to 5-Hz vibrotactile stimulus within the second block. Regardless of frequency, ON-OFF paired VS differences were significantly higher in the second block compared to the first, more prominent for RS neurons, and in general for neurons in layers III and VI. No such effects could be found on AFRs. The results suggest that cholinergic activation induces some changes in the hindpaw area, enabling relatively higher increases in synchronization to vibrotactile inputs with subsequent BF modulation. In addition, this modulation depends on neuron type and layer, which may be related to detailed projection pattern from BF.
Collapse
Affiliation(s)
- Bige Vardar
- Institute of Biomedical Engineering, Boğaziçi University, Kandilli Campus, Çengelköy, 34684, Istanbul, Turkey
| | - Burak Güçlü
- Institute of Biomedical Engineering, Boğaziçi University, Kandilli Campus, Çengelköy, 34684, Istanbul, Turkey.
| |
Collapse
|
100
|
Goshadrou F, Sadeghi B. Nucleus basalis of Meynert modulates signal processing in rat layer 5 somatosensory cortex but leads to memory impairment and tactile discrimination deficits following lesion. Behav Brain Res 2020; 386:112608. [DOI: 10.1016/j.bbr.2020.112608] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 02/27/2020] [Accepted: 03/12/2020] [Indexed: 11/25/2022]
|