51
|
Vellanki S, Garcia AE, Lee SC. Interactions of FK506 and Rapamycin With FK506 Binding Protein 12 in Opportunistic Human Fungal Pathogens. Front Mol Biosci 2020; 7:588913. [PMID: 33195437 PMCID: PMC7596385 DOI: 10.3389/fmolb.2020.588913] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 09/22/2020] [Indexed: 12/19/2022] Open
Abstract
Over the past few decades advances in modern medicine have resulted in a global increase in the prevalence of fungal infections. Particularly people undergoing organ transplants or cancer treatments with a compromised immune system are at an elevated risk for lethal fungal infections such as invasive candidiasis, aspergillosis, cryptococcosis, etc. The emergence of drug resistance in fungal pathogens poses a serious threat to mankind and it is critical to identify new targets for the development of antifungals. Calcineurin and TOR proteins are conserved across eukaryotes including pathogenic fungi. Two small molecules FK506 and rapamycin bind to FKBP12 immunophilin and the resulting complexes (FK506-FKBP12 and rapamycin-FKBP12) target calcineurin and TOR, respectively in both humans and fungi. However, due to their immunosuppressive nature these drugs in the current form cannot be used as an antifungal. To overcome this, it is important to identify key differences between human and fungal FKBP12, calcineurin, and TOR proteins which will facilitate the development of new small molecules with higher affinity toward fungal components. The current review highlights FK506/rapamycin-FKBP12 interactions with calcineurin/TOR kinase in human and fungi, and development of non-immunosuppressive analogs of FK506, rapamycin, and novel small molecules in inhibition of fungal calcineurin and TOR kinase.
Collapse
Affiliation(s)
- Sandeep Vellanki
- South Texas Center for Emerging Infectious Diseases, Department of Biology, The University of Texas at San Antonio, San Antonio, TX, United States
| | - Alexis E Garcia
- South Texas Center for Emerging Infectious Diseases, Department of Biology, The University of Texas at San Antonio, San Antonio, TX, United States
| | - Soo Chan Lee
- South Texas Center for Emerging Infectious Diseases, Department of Biology, The University of Texas at San Antonio, San Antonio, TX, United States
| |
Collapse
|
52
|
Zhu H, Zhu N, Peng L, Zhang B, Yu Q, Li M. The inositol polyphosphate kinase Ipk1 transcriptionally regulates mitochondrial functions in Candida albicans. FEMS Yeast Res 2020; 20:5896454. [DOI: 10.1093/femsyr/foaa050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 08/21/2020] [Indexed: 12/22/2022] Open
Abstract
ABSTRACT
Inositol polyphosphates (IPs) is an important family of signaling molecules that regulate multiple cellular processes, such as chromatin remodeling, transcription and mRNA export. Inositol polyphosphate kinases, as the critical enzymes for production and transformation of IPs, directly determine the intracellular levels of IPs and therefore are involved in many cellular processes. However, its roles in Candida albicans, the leading fungal pathogen in human beings, remain to be investigated. In this study, we identified the inositol polyphosphate kinase Ipk1 in C. albicans and found that it localizes in the nucleus. Moreover, in the ipk1Δ/Δ mutant, the activity of mitochondrial respiratory chain complexes and the mitochondrial function was severely impaired, which were associated with down-regulation of mitochondrial function-related genes revealed by transcription profiling analysis. The ipk1Δ/Δ mutant also displayed hypersensitivity to a series of environmental stresses, such as antifungal drugs, oxidants, cell wall perturbing agents and macrophage attacks, followed by attenuation of virulence in a mouse systematic infection model. These findings firstly reported the importance of inositol polyphosphate kinase Ipk1 in C. albicans, especially its role in mitochondrial function maintenance and pathogenicity.
Collapse
Affiliation(s)
- Hangqi Zhu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Science, Nankai University, No. 94, Weijin Road, Tianjin 300071, P. R. China
| | - Nali Zhu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Science, Nankai University, No. 94, Weijin Road, Tianjin 300071, P. R. China
| | - Liping Peng
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Science, Nankai University, No. 94, Weijin Road, Tianjin 300071, P. R. China
| | - Bing Zhang
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Science, Nankai University, No. 94, Weijin Road, Tianjin 300071, P. R. China
| | - Qilin Yu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Science, Nankai University, No. 94, Weijin Road, Tianjin 300071, P. R. China
| | - Mingchun Li
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Department of Microbiology, College of Life Science, Nankai University, No. 94, Weijin Road, Tianjin 300071, P. R. China
| |
Collapse
|
53
|
Gutierrez D, Weinstock A, Antharam VC, Gu H, Jasbi P, Shi X, Dirks B, Krajmalnik-Brown R, Maldonado J, Guinan J, Thangamani S. Antibiotic-induced gut metabolome and microbiome alterations increase the susceptibility to Candida albicans colonization in the gastrointestinal tract. FEMS Microbiol Ecol 2020; 96:5643884. [PMID: 31769789 PMCID: PMC6934136 DOI: 10.1093/femsec/fiz187] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 11/25/2019] [Indexed: 02/06/2023] Open
Abstract
Antibiotic-induced alterations in the gut ecosystem increases the susceptibility to Candida albicans, yet the mechanisms involved remains poorly understood. Here we show that mice treated with the broad-spectrum antibiotic cefoperazone promoted the growth, morphogenesis and gastrointestinal (GI) colonization of C. albicans. Using metabolomics, we revealed that the cecal metabolic environment of the mice treated with cefoperazone showed a significant alteration in intestinal metabolites. Levels of carbohydrates, sugar alcohols and primary bile acids increased, whereas carboxylic acids and secondary bile acids decreased in antibiotic treated mice susceptible to C. albicans. Furthermore, using in-vitro assays, we confirmed that carbohydrates, sugar alcohols and primary bile acids promote, whereas carboxylic acids and secondary bile acids inhibit the growth and morphogenesis of C. albicans. In addition, in this study we report changes in the levels of gut metabolites correlated with shifts in the gut microbiota. Taken together, our in-vivo and in-vitro results indicate that cefoperazone-induced metabolome and microbiome alterations favor the growth and morphogenesis of C. albicans, and potentially play an important role in the GI colonization of C. albicans.
Collapse
Affiliation(s)
- Daniel Gutierrez
- College of Veterinary Medicine, Midwestern University, 19555 N. 59th Ave. Glendale, AZ 85308, USA
| | - Anthony Weinstock
- Arizona College of Osteopathic Medicine, Midwestern University, 19555 N. 59th Ave. Glendale, AZ 85308, USA
| | - Vijay C Antharam
- Department of Chemistry, School of Science and Human Development, Methodist University, 5400 Ramsey St, Fayetteville, NC 28311, USA
| | - Haiwei Gu
- Arizona Metabolomics Laboratory, College of Health Solutions, Arizona State University, Phoenix, AZ 85259, USA
| | - Paniz Jasbi
- Arizona Metabolomics Laboratory, College of Health Solutions, Arizona State University, Phoenix, AZ 85259, USA
| | - Xiaojian Shi
- Arizona Metabolomics Laboratory, College of Health Solutions, Arizona State University, Phoenix, AZ 85259, USA
| | - Blake Dirks
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ 85280, USA
| | - Rosa Krajmalnik-Brown
- Biodesign Swette Center for Environmental Biotechnology, Arizona State University, Tempe, AZ 85280, USA.,School of Sustainable Engineering and the Built Environment, Arizona State University, Tempe, AZ 85287, USA.,Biodesign Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Juan Maldonado
- Biodesign Center for Fundamental and Applied Microbiomics, Biodesign Institute, Arizona State University, Tempe, AZ 85287, USA
| | - Jack Guinan
- College of Veterinary Medicine, Midwestern University, 19555 N. 59th Ave. Glendale, AZ 85308, USA
| | - Shankar Thangamani
- Department of Pathology and Population Medicine, College of Veterinary Medicine, Midwestern University, 19555 N. 59th Ave. Glendale, AZ 85308, USA
| |
Collapse
|
54
|
Kumamoto CA, Gresnigt MS, Hube B. The gut, the bad and the harmless: Candida albicans as a commensal and opportunistic pathogen in the intestine. Curr Opin Microbiol 2020; 56:7-15. [PMID: 32604030 PMCID: PMC7744392 DOI: 10.1016/j.mib.2020.05.006] [Citation(s) in RCA: 94] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/04/2020] [Accepted: 05/11/2020] [Indexed: 12/26/2022]
Abstract
Candida albicans is a regular member of the intestinal microbiota in the majority of the human population. This underscores C. albicans' adaptation to life in the intestine without inducing competitive interactions with other microbes, or immune responses detrimental to its survival. However, specific conditions such as a dysbalanced microbiome, a suppression of the immune system, and an impaired intestinal barrier can predispose for invasive, mostly nosocomial, C. albicans infections. Colonization of the intestine and translocation through the intestinal barrier are fundamental aspects of the processes preceding life-threatening systemic candidiasis. Insights into C. albicans' commensal lifestyle and translocation can thus help us to understand how patients develop candidiasis, and may provide leads for therapeutic strategies aimed at preventing infection. In this review, we discuss the commensal lifestyle of C. albicans in the intestine, the role of morphology for commensalism, the influence of diet, and the interactions with bacteria of the microbiota.
Collapse
Affiliation(s)
- Carol A Kumamoto
- Department of Molecular Biology and Microbiology, Tufts University, Boston, MA 02111, USA
| | - Mark S Gresnigt
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knoell-Institute, Beutenbergstraße 11a, 07745 Jena, Germany; Junior Research Group Adaptive Pathogenicity Strategies, Leibniz Institute for Natural Product Research and Infection Biology - Hans Knöll Institute, Beutenbergstraße 11a 07745, Jena, Germany
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology - Hans-Knoell-Institute, Beutenbergstraße 11a, 07745 Jena, Germany; Institute of Microbiology, Faculty of Biological Sciences, Friedrich Schiller University, 07743 Jena, Germany.
| |
Collapse
|
55
|
Madrigal JL, Bhar S, Hackett S, Engelken H, Joseph R, Keyhani NO, Jones MK. Attach Me If You Can: Murine Norovirus Binds to Commensal Bacteria and Fungi. Viruses 2020; 12:v12070759. [PMID: 32674489 PMCID: PMC7412252 DOI: 10.3390/v12070759] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 02/07/2023] Open
Abstract
The presence of commensal bacteria enhances both acute and persistent infection of murine noroviruses. For several enteric viral pathogens, mechanisms by which these bacteria enhance infection involve direct interactions between the virus and bacteria. While it has been demonstrated that human noroviruses bind to a variety of commensal bacteria, it is not known if this is also true for murine noroviruses. The goal of this study was to characterize interactions between murine noroviruses and commensal bacteria and determine the impact of bacterial growth conditions, incubation temperature and time, on murine norovirus attachment to microbes that comprise the mammalian microbiome. We show that murine noroviruses bind directly to commensal bacteria and show similar patterns of attachment as human norovirus VLPs examined under the same conditions. Furthermore, while binding levels are not impacted by the growth phase of the bacteria, they do change with time and incubation temperature. We also found that murine norovirus can bind to a commensal fungal species, Candidaalbicans.
Collapse
|
56
|
Siriyappagouder P, Galindo-Villegas J, Dhanasiri AKS, Zhang Q, Mulero V, Kiron V, Fernandes JMO. Pseudozyma Priming Influences Expression of Genes Involved in Metabolic Pathways and Immunity in Zebrafish Larvae. Front Immunol 2020; 11:978. [PMID: 32528473 PMCID: PMC7256946 DOI: 10.3389/fimmu.2020.00978] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 04/24/2020] [Indexed: 12/14/2022] Open
Abstract
Fungi, particularly yeasts, are known essential components of the host microbiota but their functional relevance in development of immunity and physiological processes of fish remains to be elucidated. In this study, we used a transcriptomic approach and a germ-free (GF) fish model to determine the response of newly hatched zebrafish larvae after 24 h exposure to Pseudozyma sp. when compared to conventionally-raised (CR) larvae. We observed 59 differentially expressed genes in Pseudozyma-exposed GF zebrafish larvae compared to their naïve control siblings. Surprisingly, in CR larvae, there was not a clear transcriptome difference between Pseudozyma-exposed and control larvae. Differentially expressed genes in GF larvae were involved in host metabolic pathways, mainly peroxisome proliferator-activated receptors, steroid hormone biosynthesis, drug metabolism and bile acid biosynthesis. We also observed a significant change in the transcript levels of immune-related genes, namely complement component 3a, galectin 2b, ubiquitin specific peptidase 21, and aquaporins. Nevertheless, we did not observe any significant response at the cellular level, since there were no differences between neutrophil migration or proliferation between control and yeast-exposed GF larvae. Our findings reveal that exposure to Pseudozyma sp. may affect metabolic pathways and immune-related processes in germ-free zebrafish, suggesting that commensal yeast likely play a significant part in the early development of fish larvae.
Collapse
Affiliation(s)
| | - Jorge Galindo-Villegas
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
- Department of Cell Biology and Histology, Faculty of Biology, Institute of Biomedical Research of Murcia-Arrixaca, Campus Universitario de Espinardo, University of Murcia, Murcia, Spain
| | | | - Qirui Zhang
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | - Victoriano Mulero
- Department of Cell Biology and Histology, Faculty of Biology, Institute of Biomedical Research of Murcia-Arrixaca, Campus Universitario de Espinardo, University of Murcia, Murcia, Spain
| | - Viswanath Kiron
- Faculty of Biosciences and Aquaculture, Nord University, Bodø, Norway
| | | |
Collapse
|
57
|
Human Antimicrobial Peptide Hepcidin 25-Induced Apoptosis in Candida albicans. Microorganisms 2020; 8:microorganisms8040585. [PMID: 32316661 PMCID: PMC7232333 DOI: 10.3390/microorganisms8040585] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/13/2020] [Accepted: 04/15/2020] [Indexed: 12/28/2022] Open
Abstract
Hepcidin 25 (hep 25) is a cysteine-rich 25-amino acid antimicrobial peptide containing the amino-terminal Cu(II)/Ni(II)-binding (ATCUN) motif. Upon metal binding, the ATCUN motif is known to be involved in the generation of reactive oxygen species (ROS), especially hydrogen peroxide and hydroxyl radicals, which act against different bacterial species. However, the antifungal activity and its correlation to the Cu(II)-ATCUN complex of Hep 25 are still poorly understood. Here, we found that ROS accumulation plays an important role in the fungicidal activity of hep 25 against Candida albicans. In addition, Annexin V-FITC staining and TUNEL assay results provide clues about the apoptosis induced by hep 25. Moreover, hep 25 also increases the generation of ROS, possibly because of copper binding to the ATCUN motif, which is relevant to its activity against C. albicans. Finally, the C. albicans killing action of hep 25 is an energy- and temperature-dependent process that does not involve targeting the membrane. Taken together, our results provide new insights into the mechanisms of hep 25 against C. albicans cells and the potential use of hep 25 and its derivatives as novel antifungal agents.
Collapse
|
58
|
Galloway-Peña JR, Kontoyiannis DP. The gut mycobiome: The overlooked constituent of clinical outcomes and treatment complications in patients with cancer and other immunosuppressive conditions. PLoS Pathog 2020; 16:e1008353. [PMID: 32240277 PMCID: PMC7117661 DOI: 10.1371/journal.ppat.1008353] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Affiliation(s)
- Jessica R. Galloway-Peña
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- Department of Infectious Diseases, Infection Control, and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- * E-mail: (JRG-P); (DPK)
| | - Dimitrios P. Kontoyiannis
- Department of Infectious Diseases, Infection Control, and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- * E-mail: (JRG-P); (DPK)
| |
Collapse
|
59
|
Merkhofer RM, Klein BS. Advances in Understanding Human Genetic Variations That Influence Innate Immunity to Fungi. Front Cell Infect Microbiol 2020; 10:69. [PMID: 32185141 PMCID: PMC7058545 DOI: 10.3389/fcimb.2020.00069] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 02/12/2020] [Indexed: 12/30/2022] Open
Abstract
Fungi are ubiquitous. Yet, despite our frequent exposure to commensal fungi of the normal mammalian microbiota and environmental fungi, serious, systemic fungal infections are rare in the general population. Few, if any, fungi are obligate pathogens that rely on infection of mammalian hosts to complete their lifecycle; however, many fungal species are able to cause disease under select conditions. The distinction between fungal saprophyte, commensal, and pathogen is artificial and heavily determined by the ability of an individual host's immune system to limit infection. Dramatic examples of commensal fungi acting as opportunistic pathogens are seen in hosts that are immune compromised due to congenital or acquired immune deficiency. Genetic variants that lead to immunological susceptibility to fungi have long been sought and recognized. Decreased myeloperoxidase activity in neutrophils was first reported as a mechanism for susceptibility to Candida infection in 1969. The ability to detect genetic variants and mutations that lead to rare or subtle susceptibilities has improved with techniques such as single nucleotide polymorphism (SNP) microarrays, whole exome sequencing (WES), and whole genome sequencing (WGS). Still, these approaches have been limited by logistical considerations and cost, and they have been applied primarily to Mendelian impairments in anti-fungal responses. For example, loss-of-function mutations in CARD9 were discovered by studying an extended family with a history of fungal infection. While discovery of such mutations furthers the understanding of human antifungal immunity, major Mendelian susceptibility loci are unlikely to explain genetic disparities in the rate or severity of fungal infection on the population level. Recent work using unbiased techniques has revealed, for example, polygenic mechanisms contributing to candidiasis. Understanding the genetic underpinnings of susceptibility to fungal infections will be a powerful tool in the age of personalized medicine. Future application of this knowledge may enable targeted health interventions for susceptible individuals, and guide clinical decision making based on a patient's individual susceptibility profile.
Collapse
Affiliation(s)
- Richard M Merkhofer
- School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
| | - Bruce S Klein
- School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States.,Department of Pediatrics, University of Wisconsin-Madison, Madison, WI, United States.,Department of Medicine, University of Wisconsin-Madison, Madison, WI, United States.,Department of Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
60
|
Morio F. Dear medical mycologists, it is time to look outside the box. FEMS Yeast Res 2020; 20:5628327. [PMID: 31738413 DOI: 10.1093/femsyr/foz080] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 11/16/2019] [Indexed: 12/22/2022] Open
Abstract
Opulente et al. (Opulente DA, Langdon QK, Buh KV et al. Pathogenic budding yeasts isolated outside of clinical settings. FEMS Yeast Res 2019;19:foz032) published early this year a study aiming to investigate the diversity of wild yeast species, by collecting 1000 environmental samples coming from different substrates across the United States of America. The main finding of this work is the recovery of 54 strains of budding yeasts of which several are having a pathogenic potential in the clinical setting, such as Candida albicans, C. parapsilosis, C. tropicalis, Nakaseomyces glabrata and Pichia kudriavzevii. These findings, discussed here in light of other recent studies highlighting the role of fungicides in the rise of antifungal resistance in the clinical setting or the emergence of Candida auris, demonstrate that our environment can represent an alternative niche for several opportunistic fungal pathogens that can be a concern for human health.
Collapse
Affiliation(s)
- Florent Morio
- Laboratoire de Parasitologie-Mycologie, Institut de Biologie, 9 Quai Moncousu, CHU Nantes, 44093 Nantes, France
- Département de Parasitologie et Mycologie Médicale, EA1155 - IICiMed, Institut de Recherche en Santé 2, Nantes Université, 22 Boulevard Bénoni-Goullin, 44200 Nantes, France
| |
Collapse
|
61
|
Romo JA, Kumamoto CA. On Commensalism of Candida. J Fungi (Basel) 2020; 6:E16. [PMID: 31963458 PMCID: PMC7151168 DOI: 10.3390/jof6010016] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 01/13/2020] [Accepted: 01/15/2020] [Indexed: 01/09/2023] Open
Abstract
Candida species are both opportunistic fungal pathogens and common members of the human mycobiome. Over the years, the main focus of the fungal field has been on understanding the pathogenic potential and disease manifestation of these organisms. Therefore, understanding of their commensal lifestyle, interactions with host epithelial barriers, and initial transition into pathogenesis is less developed. In this review, we will describe the current knowledge on the commensal lifestyle of these fungi, how they are able to adhere to and colonize host epithelial surfaces, compete with other members of the microbiota, and interact with the host immune response, as well as their transition into opportunistic pathogens by invading the gastrointestinal epithelium.
Collapse
Affiliation(s)
| | - Carol A. Kumamoto
- Department of Molecular Biology and Microbiology, Tufts University, Boston, MA 02111, USA;
| |
Collapse
|
62
|
Brown AJP, Larcombe DE, Pradhan A. Thoughts on the evolution of Core Environmental Responses in yeasts. Fungal Biol 2020; 124:475-481. [PMID: 32389310 PMCID: PMC7232023 DOI: 10.1016/j.funbio.2020.01.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 01/07/2020] [Accepted: 01/09/2020] [Indexed: 12/18/2022]
Abstract
The model yeasts, Saccharomyces cerevisiae and Schizosaccharomyces pombe, display Core Environmental Responses (CERs) that include the induction of a core set of stress genes in response to diverse environmental stresses. CERs underlie the phenomenon of stress cross-protection, whereby exposure to one type of stress can provide protection against subsequent exposure to a second type of stress. CERs have probably arisen through the accumulation, over evolutionary time, of protective anticipatory responses (“adaptive prediction”). CERs have been observed in other evolutionarily divergent fungi but, interestingly, not in the pathogenic yeast, Candida albicans. We argue that this is because we have not looked in the right place. In response to specific host inputs, C. albicans does activate anticipatory responses that protect it against impending attack from the immune system. Therefore, we suggest that C. albicans has evolved a CER that reflects the environmental challenges it faces in host niches. We review Core Environmental Responses (CERs) in domesticated and pathogenic yeasts. CERs probably evolved through the accumulation of protective anticipatory responses. Evolutionarily diverse yeasts display CERs, but the pathogen, Candida albicans, does not. C. albicans has evolved an alternative CER that protects against immune clearance. This has implications for the investigation of CERs in other fungi.
Collapse
Affiliation(s)
- Alistair J P Brown
- MRC Centre for Medical Mycology, University of Exeter, Department of Biosciences, Geoffrey Pope Building, Stocker Road, Exeter, EX4 4QD, UK.
| | - Daniel E Larcombe
- MRC Centre for Medical Mycology, University of Exeter, Department of Biosciences, Geoffrey Pope Building, Stocker Road, Exeter, EX4 4QD, UK
| | - Arnab Pradhan
- MRC Centre for Medical Mycology, University of Exeter, Department of Biosciences, Geoffrey Pope Building, Stocker Road, Exeter, EX4 4QD, UK
| |
Collapse
|
63
|
Genome-wide screening and in silico gene knockout to predict potential candidates for drug designing against Candida albicans. INFECTION GENETICS AND EVOLUTION 2020; 80:104196. [PMID: 31954918 DOI: 10.1016/j.meegid.2020.104196] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 01/13/2020] [Accepted: 01/15/2020] [Indexed: 12/16/2022]
Abstract
C. albicans infections are increasingly becoming a threat to public health with emergence of drug resistant strains. It emphasizes the need to look for alternate drug targets through genome-wide screening. In the present study, whole proteome of C. albicans SC5314 was analyzed in single click target mining workflow of TiDv2. A protein-protein interaction network (PPI) for the resulting putative targets was generated based on String database. Ninety four proteins with higher connectivity (degree ≥ 10) in the network are noted as hub genes. Among them, 24 are observed to be known targets while 70 are novel ones. Further, chokepoint analysis revealed FAS2, FOL1 and ERG5 as chokepoint enzymes in their respective pathways. Subsequently, the chokepoints were selected as prior interest for in silico gene knockout via MATLAB and COBRA Toolbox. In silico gene knockout pointed that FAS2 inhibition reduced the growth rate of pathogen from 0.2879 mmol.gDW-1.h-1 to zero. Furthermore, enzyme inhibition assay of FAS2 with cerulenin strengthen the computational outcome with MIC 1.25 μg/mL. Hence, the study establishes FAS2 as a promising target to design therapeutics against C. albicans.
Collapse
|
64
|
Garcia A, Fan YY, Vellanki S, Huh EY, Vanegas D, Wang SH, Lee SC. Nanoemulsion as an Effective Treatment against Human-Pathogenic Fungi. mSphere 2019; 4:e00729-19. [PMID: 31852807 PMCID: PMC6920514 DOI: 10.1128/msphere.00729-19] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 11/30/2019] [Indexed: 11/30/2022] Open
Abstract
Infections triggered by pathogenic fungi cause a serious threat to the public health care system. In particular, an increase of antifungal drug-resistant fungi has resulted in difficulty in treatment. A limited variety of antifungal drugs available to treat patients has left us in a situation where we need to develop new therapeutic approaches that are less prone to development of resistance by pathogenic fungi. In this study, we demonstrate the efficacy of the nanoemulsion NB-201, which utilizes the surfactant benzalkonium chloride, against human-pathogenic fungi. We found that NB-201 exhibited in vitro activity against Candidaalbicans, including both planktonic growth and biofilms. Furthermore, treatments with NB-201 significantly reduced the fungal burden at the infection site and presented an enhanced healing process after subcutaneous infections by multidrug-resistant C. albicans in a murine host system. NB-201 also exhibited in vitro growth inhibition activity against other fungal pathogens, including Cryptococcus spp., Aspergillus fumigatus, and Mucorales Due to the nature of the activity of this nanoemulsion, there is a minimized chance of drug resistance developing, presenting a novel treatment to control fungal wound or skin infections.IMPORTANCE Advances in medicine have resulted in the discovery and implementation of treatments for human disease. While these recent advances have been beneficial, procedures such as solid-organ transplants and cancer treatments have left many patients in an immunocompromised state. Furthermore, the emergence of immunocompromising diseases such as HIV/AIDS or other immunosuppressive medical conditions have opened an opportunity for fungal infections to afflict patients globally. The development of drug resistance in human-pathogenic fungi and the limited array of antifungal drugs has left us in a scenario where we need to develop new therapeutic approaches to treat fungal infections that are less prone to the development of resistance by pathogenic fungi. The significance of our work lies in utilizing a novel nanoemulsion formulation to treat topical fungal infections while minimizing risks of drug resistance development.
Collapse
Affiliation(s)
- Alexis Garcia
- South Texas Center for Emerging Infectious Diseases (STCEID), Department of Biology, University of Texas at San Antonio, San Antonio, Texas, USA
| | - Yong Yi Fan
- Michigan Nanotechnology Institute for Medicine & Biological Sciences, University of Michigan, Ann Arbor, Michigan, USA
| | - Sandeep Vellanki
- South Texas Center for Emerging Infectious Diseases (STCEID), Department of Biology, University of Texas at San Antonio, San Antonio, Texas, USA
| | - Eun Young Huh
- South Texas Center for Emerging Infectious Diseases (STCEID), Department of Biology, University of Texas at San Antonio, San Antonio, Texas, USA
| | - DiFernando Vanegas
- South Texas Center for Emerging Infectious Diseases (STCEID), Department of Biology, University of Texas at San Antonio, San Antonio, Texas, USA
| | - Su He Wang
- Michigan Nanotechnology Institute for Medicine & Biological Sciences, University of Michigan, Ann Arbor, Michigan, USA
- Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Soo Chan Lee
- South Texas Center for Emerging Infectious Diseases (STCEID), Department of Biology, University of Texas at San Antonio, San Antonio, Texas, USA
| |
Collapse
|
65
|
Felice MR, Giuffrè L, El Aamri L, Hafidi M, Criseo G, Romeo O, Scordino F. Looking for New Antifungal Drugs from Flavonoids: Impact of the Genetic Diversity of Candida albicans on the in-vitro Response. Curr Med Chem 2019; 26:5108-5123. [PMID: 29278204 DOI: 10.2174/0929867325666171226102700] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 09/15/2017] [Accepted: 11/06/2017] [Indexed: 01/11/2023]
Abstract
BACKGROUND In an era in which antimicrobial resistance is increasing at an alarming pace, it is very important to find new antimicrobial agents effective against pathogenic microrganisms resistant to traditional treatments. Among the notable breakthroughs in the past years of research in natural-drug discovery, there is the identification and testing of flavonoids, a group of plant-derived substances capable of promoting many beneficial effects on humans. These compounds show different biological activities such as inhibition of neuroinflammation and tumor growth as well as antimicrobial activity against many microbial pathogens. METHODS We undertook a review of protocols and standard strains used in studies reporting the inhibitory effects of flavonoids against Candida albicans by focusing our attention on genetic characterization of the strains examined. Moreover, using the C. albicans MLST-database, we performed a phylogenetic analysis showing the genetic variation occurring in this species. RESULTS Today, we have enough information to estimate genetic diversity within microbial species and recent data revealed that most of fungal pathogens show complex population structures in which not a single isolate can be designated as representative of the entire taxon. This is especially true for the highly divergent fungal pathogen C. albicans, in which the assumption that one or few "standard strains" can represent the whole species is overly unrealistic and should be laid to rest. CONCLUSION The goal of this article is to shed light on the extent of genetic variation in C. albicans and how this phenomenon can largely influence the activity of flavonoids against this species.
Collapse
Affiliation(s)
- Maria Rosa Felice
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Letterio Giuffrè
- Department of Veterinary Sciences, Division of Animal Production, University of Messina, Messina, Italy
| | - Lamya El Aamri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy.,Department of Biology, Moulay Ismail University, Faculty of Sciences, Zitoune Meknes, Morocco
| | - Majida Hafidi
- Department of Biology, Moulay Ismail University, Faculty of Sciences, Zitoune Meknes, Morocco
| | - Giuseppe Criseo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Orazio Romeo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy.,Scientific Institute for Research, Hospitalization and Health Care (IRCCS) - Centro Neurolesi "Bonino-Pulejo", Messina, Italy
| | - Fabio Scordino
- Scientific Institute for Research, Hospitalization and Health Care (IRCCS) - Centro Neurolesi "Bonino-Pulejo", Messina, Italy
| |
Collapse
|
66
|
Poupet C, Saraoui T, Veisseire P, Bonnet M, Dausset C, Gachinat M, Camarès O, Chassard C, Nivoliez A, Bornes S. Lactobacillus rhamnosus Lcr35 as an effective treatment for preventing Candida albicans infection in the invertebrate model Caenorhabditis elegans: First mechanistic insights. PLoS One 2019; 14:e0216184. [PMID: 31693670 PMCID: PMC6834333 DOI: 10.1371/journal.pone.0216184] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 10/22/2019] [Indexed: 12/26/2022] Open
Abstract
The increased recurrence of Candida albicans infections is associated with greater resistance to antifungal drugs. This involves the establishment of alternative therapeutic protocols, such as probiotic microorganisms whose antifungal potential has already been demonstrated using preclinical models (cell cultures, laboratory animals). Understanding the mechanisms of action of probiotic microorganisms has become a strategic need for the development of new therapeutics for humans. In this study, we investigated the prophylactic anti-C. albicans properties of Lactobacillus rhamnosus Lcr35® using the in vitro Caco-2 cell model and the in vivo Caenorhabditis elegans model. In Caco-2 cells, we showed that the strain Lcr35® significantly inhibited the growth (~2 log CFU.mL-1) and adhesion (150 to 6,300 times less) of the pathogen. Moreover, in addition to having a pro-longevity activity in the nematode (+42.9%, p = 3.56.10-6), Lcr35® protects the animal from the fungal infection (+267% of survival, p < 2.10-16) even if the yeast is still detectable in its intestine. At the mechanistic level, we noticed the repression of genes of the p38 MAPK signalling pathway and genes involved in the antifungal response induced by Lcr35®, suggesting that the pathogen no longer appears to be detected by the worm immune system. However, the DAF-16/FOXO transcription factor, implicated in the longevity and antipathogenic response of C. elegans, is activated by Lcr35®. These results suggest that the probiotic strain acts by stimulating its host via DAF-16 but also by suppressing the virulence of the pathogen.
Collapse
Affiliation(s)
- Cyril Poupet
- Université Clermont Auvergne, INRA, VetAgro Sup, Aurillac, France
| | - Taous Saraoui
- Université Clermont Auvergne, INRA, VetAgro Sup, Aurillac, France
| | | | - Muriel Bonnet
- Université Clermont Auvergne, INRA, VetAgro Sup, Aurillac, France
| | | | | | - Olivier Camarès
- Université Clermont Auvergne, INRA, VetAgro Sup, Aurillac, France
| | | | | | - Stéphanie Bornes
- Université Clermont Auvergne, INRA, VetAgro Sup, Aurillac, France
| |
Collapse
|
67
|
Gabaldón T. Recent trends in molecular diagnostics of yeast infections: from PCR to NGS. FEMS Microbiol Rev 2019; 43:517-547. [PMID: 31158289 PMCID: PMC8038933 DOI: 10.1093/femsre/fuz015] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 05/31/2019] [Indexed: 12/29/2022] Open
Abstract
The incidence of opportunistic yeast infections in humans has been increasing over recent years. These infections are difficult to treat and diagnose, in part due to the large number and broad diversity of species that can underlie the infection. In addition, resistance to one or several antifungal drugs in infecting strains is increasingly being reported, severely limiting therapeutic options and showcasing the need for rapid detection of the infecting agent and its drug susceptibility profile. Current methods for species and resistance identification lack satisfactory sensitivity and specificity, and often require prior culturing of the infecting agent, which delays diagnosis. Recently developed high-throughput technologies such as next generation sequencing or proteomics are opening completely new avenues for more sensitive, accurate and fast diagnosis of yeast pathogens. These approaches are the focus of intensive research, but translation into the clinics requires overcoming important challenges. In this review, we provide an overview of existing and recently emerged approaches that can be used in the identification of yeast pathogens and their drug resistance profiles. Throughout the text we highlight the advantages and disadvantages of each methodology and discuss the most promising developments in their path from bench to bedside.
Collapse
Affiliation(s)
- Toni Gabaldón
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr Aiguader 88, Barcelona 08003, Spain
- Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
- ICREA, Pg Lluís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
68
|
Willis KA, Purvis JH, Myers ED, Aziz MM, Karabayir I, Gomes CK, Peters BM, Akbilgic O, Talati AJ, Pierre JF. Fungi form interkingdom microbial communities in the primordial human gut that develop with gestational age. FASEB J 2019; 33:12825-12837. [PMID: 31480903 DOI: 10.1096/fj.201901436rr] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Fungal and bacterial commensal organisms play a complex role in the health of the human host. Expansion of commensal ecology after birth is a critical period in human immune development. However, the initial fungal colonization of the primordial gut remains undescribed. To investigate primordial fungal ecology, we performed amplicon sequencing and culture-based techniques of first-pass meconium, which forms in the intestine prior to birth, from a prospective observational cohort of term and preterm newborns. Here, we describe fungal ecologies in the primordial gut that develop complexity with advancing gestational age at birth. Our findings suggest homeostasis of fungal commensals may represent an important aspect of human biology present even before birth. Unlike bacterial communities that gradually develop complexity, the domination of the fungal communities of some preterm infants by Saccromycetes, specifically Candida, may suggest a pathologic association with preterm birth.-Willis, K. A., Purvis, J. H., Myers, E. D., Aziz, M. M., Karabayir, I., Gomes, C. K., Peters, B. M., Akbilgic, O., Talati, A. J., Pierre, J. F. Fungi form interkingdom microbial communities in the primordial human gut that develop with gestational age.
Collapse
Affiliation(s)
- Kent A Willis
- Division of Neonatology, Department of Pediatrics, The University of Tennessee Health Science Center (UTHSC), Memphis, Tennessee, USA.,College of Medicine, The University of Tennessee Health Science Center (UTHSC), Memphis, Tennessee, USA
| | - John H Purvis
- Division of Neonatology, Department of Pediatrics, The University of Tennessee Health Science Center (UTHSC), Memphis, Tennessee, USA.,College of Medicine, The University of Tennessee Health Science Center (UTHSC), Memphis, Tennessee, USA
| | - Erin D Myers
- College of Medicine, The University of Tennessee Health Science Center (UTHSC), Memphis, Tennessee, USA
| | - Michael M Aziz
- Department of Obstetrics and Gynecology, The University of Tennessee Health Science Center (UTHSC), Memphis, Tennessee, USA
| | - Ibrahim Karabayir
- Department of Health Informatics and Data Science, Stritch School of Medicine, Loyola University Chicago, Chicago, Illinois, USA.,Faculty of Economics and Administrative Sciences, Department of Econometrics, Kirklareli University, Kirklareli, Turkey
| | - Charles K Gomes
- Department of Pediatrics, Obesity, The University of Tennessee Health Science Center (UTHSC), Memphis, Tennessee, USA
| | - Brian M Peters
- Department of Clinical Pharmacy and Translational Science, College of Pharmacy, The University of Tennessee Health Science Center (UTHSC), Memphis, Tennessee, USA
| | - Oguz Akbilgic
- Department of Health Informatics and Data Science, Stritch School of Medicine, Loyola University Chicago, Chicago, Illinois, USA.,Center for Health Outcome and Informatics Research, Loyola University Chicago, Chicago, Illinois, USA; and
| | - Ajay J Talati
- Division of Neonatology, Department of Pediatrics, The University of Tennessee Health Science Center (UTHSC), Memphis, Tennessee, USA.,College of Medicine, The University of Tennessee Health Science Center (UTHSC), Memphis, Tennessee, USA.,Department of Obstetrics and Gynecology, The University of Tennessee Health Science Center (UTHSC), Memphis, Tennessee, USA
| | - Joseph F Pierre
- Department of Pediatrics, Obesity, The University of Tennessee Health Science Center (UTHSC), Memphis, Tennessee, USA.,Department of Microbiology, Immunology and Biochemistry, The University of Tennessee Health Science Center (UTHSC), Memphis, Tennessee, USA
| |
Collapse
|
69
|
Denham ST, Wambaugh MA, Brown JCS. How Environmental Fungi Cause a Range of Clinical Outcomes in Susceptible Hosts. J Mol Biol 2019; 431:2982-3009. [PMID: 31078554 PMCID: PMC6646061 DOI: 10.1016/j.jmb.2019.05.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/18/2019] [Accepted: 05/01/2019] [Indexed: 12/11/2022]
Abstract
Environmental fungi are globally ubiquitous and human exposure is near universal. However, relatively few fungal species are capable of infecting humans, and among fungi, few exposure events lead to severe systemic infections. Systemic infections have mortality rates of up to 90%, cost the US healthcare system $7.2 billion annually, and are typically associated with immunocompromised patients. Despite this reputation, exposure to environmental fungi results in a range of outcomes, from asymptomatic latent infections to severe systemic infection. Here we discuss different exposure outcomes for five major fungal pathogens: Aspergillus, Blastomyces, Coccidioides, Cryptococcus, and Histoplasma species. These fungi include a mold, a budding yeast, and thermal dimorphic fungi. All of these species must adapt to dramatically changing environments over the course of disease. These dynamic environments include the human lung, which is the first exposure site for these organisms. Fungi must defend themselves against host immune cells while germinating and growing, which risks further exposing microbe-associated molecular patterns to the host. We discuss immune evasion strategies during early infection, from disruption of host immune cells to major changes in fungal cell morphology.
Collapse
Affiliation(s)
- Steven T Denham
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | - Morgan A Wambaugh
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | - Jessica C S Brown
- Division of Microbiology and Immunology, Pathology Department, University of Utah School of Medicine, Salt Lake City, UT 84132, USA.
| |
Collapse
|
70
|
Chien CT, Chen YC, Liu YC, Liang SH, Lin HH, Lin CH. The antimicrobial photodynamic inactivation resistance of Candida albicans is modulated by the Hog1 pathway and the Cap1 transcription factor. Med Mycol 2019; 57:618-627. [PMID: 30289464 DOI: 10.1093/mmy/myy079] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 08/02/2018] [Accepted: 09/23/2018] [Indexed: 12/22/2022] Open
Abstract
Candida albicans is the most important fungal pathogen afflicting humans, particularly immunocompromised patients. However, currently available antifungal drugs are limited and ineffective against drug-resistant strains. The development of new drugs or alternative therapeutic approaches to control fungal infections is urgent and necessary. Photodynamic inactivation (PDI) is a new promising therapy for eradicating microorganism infections through combining visible light, photosensitizers, and oxygen to generate reactive oxygen species (ROS). Although cytoprotective responses induced by photodynamic therapy (PDT) have been well studied in cancer cells, the mechanisms by which C. albicans responds to PDI are largely unknown. In this study, we first demonstrated that PDI induces C. albicans Hog1p activation. Deletion of any of the SSK2, PBS2, and HOG1 genes significantly decreased the survival rate after photochemical reactions, indicating that the Hog1 SAPK pathway is required for tolerance to PDI. Furthermore, the basic leucine zipper transcription factor Cap1 that regulates several downstream antioxidant genes was highly expressed during the response to PDI, and loss of CAP1 also resulted in decreased C. albicans survival rates. This study demonstrates the importance of the Hog1 SAPK and the Cap1 transcription factor, which regulates in resistance to PDI-mediated oxidative stress in C. albicans. Understanding the mechanisms by which C. albicans responds to PDI and consequently scavenges ROS will be very useful for the further development of therapeutics to control fungal infectious diseases, particularly those of the skin and mucosal infections.
Collapse
Affiliation(s)
- Chih-Ting Chien
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Yu-Chia Chen
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Yun-Chun Liu
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, Taiwan
| | | | - Hsien-Hen Lin
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, Taiwan
| | - Ching-Hsuan Lin
- Department of Biochemical Science and Technology, College of Life Science, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
71
|
Guinan J, Wang S, Hazbun TR, Yadav H, Thangamani S. Antibiotic-induced decreases in the levels of microbial-derived short-chain fatty acids correlate with increased gastrointestinal colonization of Candida albicans. Sci Rep 2019; 9:8872. [PMID: 31222159 PMCID: PMC6586901 DOI: 10.1038/s41598-019-45467-7] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 06/05/2019] [Indexed: 02/07/2023] Open
Abstract
Candida albicans is the fourth most common cause of systemic nosocomial infections, posing a significant risk in immunocompromised individuals. As the majority of systemic C. albicans infections stem from endogenous gastrointestinal (GI) colonization, understanding the mechanisms associated with GI colonization is essential in the development of novel methods to prevent C. albicans-related mortality. In this study, we investigated the role of microbial-derived short-chain fatty acids (SCFAs) including acetate, butyrate, and propionate on growth, morphogenesis, and GI colonization of C. albicans. Our results indicate that cefoperazone-treated mice susceptible to C. albicans infection had significantly decreased levels of SCFAs in the cecal contents that correlate with a higher fungal load in the feces. Further, using in vivo concentration of SCFAs, we demonstrated that SCFAs inhibit the growth, germ tube, hyphae and biofilm development of C. albicans in vitro. Collectively, results from this study suggest that antibiotic-induced decreases in the levels of SCFAs in the cecum enhances the growth and GI colonization of C. albicans.
Collapse
Affiliation(s)
- Jack Guinan
- College of Veterinary Medicine, Midwestern University, 19555N. 59th Ave, Glendale, AZ, 85308, USA
| | - Shaohua Wang
- Department of Internal Medicine-Molecular Medicine, Wake Forest School of Medicine, 575 North Patterson Ave, Winston-Salem, NC, 27101, USA
| | - Tony R Hazbun
- Bindley Bioscience Center, Purdue University, West Lafayette, IN, 47906, USA.,Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN, 47906, USA
| | - Hariom Yadav
- Department of Internal Medicine-Molecular Medicine, Wake Forest School of Medicine, 575 North Patterson Ave, Winston-Salem, NC, 27101, USA
| | - Shankar Thangamani
- Department of Pathology and Population Medicine, College of Veterinary Medicine, Midwestern University, 19555N. 59th Ave, Glendale, AZ, 85308, USA.
| |
Collapse
|
72
|
Basmaciyan L, Bon F, Paradis T, Lapaquette P, Dalle F. " Candida Albicans Interactions With The Host: Crossing The Intestinal Epithelial Barrier". Tissue Barriers 2019; 7:1612661. [PMID: 31189436 PMCID: PMC6619947 DOI: 10.1080/21688370.2019.1612661] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 04/24/2019] [Accepted: 04/24/2019] [Indexed: 02/08/2023] Open
Abstract
Formerly a commensal organism of the mucosal surfaces of most healthy individuals, Candida albicans is an opportunistic pathogen that causes infections ranging from superficial to the more life-threatening disseminated infections, especially in the ever-growing population of vulnerable patients in the hospital setting. In these situations, the fungus takes advantage of its host following a disturbance in the host defense system and/or the mucosal microbiota. Overwhelming evidence suggests that the gastrointestinal tract is the main source of disseminated C. albicans infections. Major risk factors for disseminated candidiasis include damage to the mucosal intestinal barrier, immune dysfunction, and dysbiosis of the resident microbiota. A better understanding of C. albicans' interaction with the intestinal epithelial barrier will be useful for designing future therapies to avoid systemic candidiasis. In this review, we provide an overview of the current knowledge regarding the mechanisms of pathogenicity that allow the fungus to reach and translocate the gut barrier.
Collapse
Affiliation(s)
- Louise Basmaciyan
- Laboratoire de Parasitologie-Mycologie, Plateforme de Biologie Hospitalo-Universitaire Gérard Mack, Dijon France
- UMR PAM Univ Bourgogne Franche-Comté - AgroSup Dijon - Equipe Vin, Aliment, Microbiologie, Stress, Dijon, France
| | - Fabienne Bon
- UMR PAM Univ Bourgogne Franche-Comté - AgroSup Dijon - Equipe Vin, Aliment, Microbiologie, Stress, Dijon, France
| | - Tracy Paradis
- UMR PAM Univ Bourgogne Franche-Comté - AgroSup Dijon - Equipe Vin, Aliment, Microbiologie, Stress, Dijon, France
| | - Pierre Lapaquette
- UMR PAM Univ Bourgogne Franche-Comté - AgroSup Dijon - Equipe Vin, Aliment, Microbiologie, Stress, Dijon, France
| | - Frédéric Dalle
- Laboratoire de Parasitologie-Mycologie, Plateforme de Biologie Hospitalo-Universitaire Gérard Mack, Dijon France
- UMR PAM Univ Bourgogne Franche-Comté - AgroSup Dijon - Equipe Vin, Aliment, Microbiologie, Stress, Dijon, France
| |
Collapse
|
73
|
|
74
|
Abstract
Morphological changes are critical for the virulence of a range of plant and human fungal pathogens.
Candida albicans is a major human fungal pathogen whose ability to switch between different morphological states is associated with its adaptability and pathogenicity. In particular,
C. albicans can switch from an oval yeast form to a filamentous hyphal form, which is characteristic of filamentous fungi. What mechanisms underlie hyphal growth and how are they affected by environmental stimuli from the host or resident microbiota? These questions are the focus of intensive research, as understanding
C. albicans hyphal growth has broad implications for cell biological and medical research.
Collapse
Affiliation(s)
- Robert A Arkowitz
- Université Côte d'Azur, CNRS, Inserm, Institute of Biology Valrose, Parc Valrose, Nice, France
| | - Martine Bassilana
- Université Côte d'Azur, CNRS, Inserm, Institute of Biology Valrose, Parc Valrose, Nice, France
| |
Collapse
|
75
|
Li J, Jiang H, Li L, Zhang X, Chen J. The Effect of Disease and Season to Hepatopancreas and Intestinal Mycobiota of Litopenaeus vannamei. Front Microbiol 2019; 10:889. [PMID: 31105676 PMCID: PMC6491898 DOI: 10.3389/fmicb.2019.00889] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Accepted: 04/08/2019] [Indexed: 01/08/2023] Open
Abstract
Increasing evidence has manifested that the gut bacterial microbiota of shrimps is closely related to the environmental factors, host developmental stage and health status like that of humans and animals does. These studies have provided an important guidance for improving shrimp culture benefits. In practice, aside from bacteria, eukaryotic microorganisms dominated by fungal microbiota (mycobiota), also play a key role in host growth, metabolism and homeostasis. However, little so far is known about the mycobiota in the digestive tract of shrimp. In this study, we used high-throughput sequencing of internal transcribed spacer 1 region to characterize the hepatopancreas and intestinal mycobiota of Pacific white shrimp and their connections with disease incidence and seasonal variation. The results showed that the hepatopancreas and intestinal mycobiota of Litopenaeus vannamei are dominated by the phyla Ascomycota and Basidiomycota, and the genera Alternaria, Tuber, Hortaea, Sarocladium, and Stagonospora. The fungal microbiota significantly varies under the influence of disease and seasonal variation. Sick shrimps had a higher level of potential pathogenic fungus, Candida in the intestine. Healthy shrimps had a higher abundance of the genera Didymella and Filobasidium in the gut, and Pyrenochaetopsis in the hepatopancreas. Of note, most of the fungi carried by Pacific white shrimps were pathogens to humans. This study has revealed the intestinal and hepatopancreas mycobiota of L. vannamei and the effects of diseases and seasonal variation to the mycobiota. Our study provides important guidance for Pacific white shrimp farming and sheds further insight on the fungal microbiota.
Collapse
Affiliation(s)
- Juan Li
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou, China
| | - Haiying Jiang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou, China
| | - Linmiao Li
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou, China
| | - Xiujuan Zhang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou, China
| | - Jinping Chen
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou, China
| |
Collapse
|
76
|
Fourie R, Pohl CH. Beyond Antagonism: The Interaction Between Candida Species and Pseudomonas aeruginosa. J Fungi (Basel) 2019; 5:jof5020034. [PMID: 31010211 PMCID: PMC6617365 DOI: 10.3390/jof5020034] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 04/18/2019] [Accepted: 04/18/2019] [Indexed: 12/11/2022] Open
Abstract
There are many examples of the interaction between prokaryotes and eukaryotes. One such example is the polymicrobial colonization/infection by the various opportunistic pathogenic yeasts belonging to the genus Candida and the ubiquitous bacterium, Pseudomonas aeruginosa. Although this interaction has simplistically been characterized as antagonistic to the yeast, this review highlights the complexity of the interaction with various factors influencing both microbes. The first section deals with the interactions in vitro, looking specifically at the role of cell wall components, quorum sensing molecules, phenazines, fatty acid metabolites and competition for iron in the interaction. The second part of this review places all these interactions in the context of various infection or colonization sites, i.e., lungs, wounds, and the gastrointestinal tract. Here we see that the role of the host, as well as the methodology used to establish co-infection, are important factors, influencing the outcome of the disease. Suggested future perspectives for the study of this interaction include determining the influence of newly identified participants of the QS network of P. aeruginosa, oxylipin production by both species, as well as the genetic and phenotypic plasticity of these microbes, on the interaction and outcome of co-infection.
Collapse
Affiliation(s)
- Ruan Fourie
- Department of Microbial, Biochemical and Food Biotechnology, University of the Free State, Bloemfontein 9301, South Africa.
| | - Carolina H Pohl
- Department of Microbial, Biochemical and Food Biotechnology, University of the Free State, Bloemfontein 9301, South Africa.
| |
Collapse
|
77
|
Stewart D, Romo JA, Lamendella R, Kumamoto CA. The role of fungi in C. difficile infection: An underappreciated transkingdom interaction. Fungal Genet Biol 2019; 129:1-6. [PMID: 30978391 DOI: 10.1016/j.fgb.2019.04.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 03/27/2019] [Accepted: 04/09/2019] [Indexed: 02/07/2023]
Abstract
Novel culture independent technologies have further elucidated the composition of the human mycobiome, though the role of fungi in human health and disease remains largely unknown. Recent studies have suggested conflicting roles for fungi in the gastrointestinal tract, underscoring the complexity of the interactions between the mycobiome, its bacterial counterpart, and the host. One key example is the observation that fungal taxa are overrepresented in patients with Clostridioides difficile infection (CDI), suggesting a role for fungi in this disease. Recent studies in murine models have demonstrated the ability of the commensal fungus Candida albicans to alter the course of CDI, supporting the notion that fungi play a role in this infection. This review summarizes current data on fungi and CDI, and shows that views of the dysbiotic state that is central to the pathogenesis of CDI are incomplete without consideration of the mycobiome.
Collapse
Affiliation(s)
- David Stewart
- Department of Surgery, University of Arizona, Tucson, AZ 85724, USA.
| | - Jesus A Romo
- Department of Molecular Biology and Microbiology, Tufts University, Boston, MA 02111, USA.
| | | | - Carol A Kumamoto
- Department of Molecular Biology and Microbiology, Tufts University, Boston, MA 02111, USA.
| |
Collapse
|
78
|
Makanjuola O, Bongomin F, Fayemiwo SA. An Update on the Roles of Non- albicans Candida Species in Vulvovaginitis. J Fungi (Basel) 2018; 4:E121. [PMID: 30384449 PMCID: PMC6309050 DOI: 10.3390/jof4040121] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 10/16/2018] [Accepted: 10/16/2018] [Indexed: 02/08/2023] Open
Abstract
Candida species are one of the commonest causes of vaginitis in healthy women of reproductive age. Vulvovaginal candidiasis (VVC) is characterized by vulvovaginal itching, redness and discharge. Candida albicans, which is a common genito-urinary tract commensal, has been the prominent species and remains the most common fungal agent isolated from clinical samples of patients diagnosed with VVC. In recent times, however, there has been a notable shift in the etiology of candidiasis with non-albicans Candida (NAC) species gaining prominence. The NAC species now account for approximately 10% to as high as 45% of VVC cases in some studies. This is associated with treatment challenges and a slightly different clinical picture. NAC species vaginitis is milder in presentation, often occur in patients with underlying chronic medical conditions and symptoms tend to be more recurrent or chronic compared with C. albicans vaginitis. C. glabrata is the most common cause of NAC-VVC. C. tropicalis, C. krusei, C. parapsilosis, and C. guilliermondii are the other commonly implicated species. Treatment failure is common in NAC-VVC, since some of these species are intrinsically resistant or show low susceptibilities to commonly used antifungal agents. This article reviews the etiology, pathogenesis, clinical features, diagnosis, and management of NAC vulvovaginitis.
Collapse
Affiliation(s)
- Olufunmilola Makanjuola
- Department of Medical Microbiology and Parasitology, University of Ibadan, Ibadan 200284, Nigeria.
| | - Felix Bongomin
- Department of Medical Microbiology and Immunology, Gulu University, Gulu P.O. Box 166, Uganda.
| | - Samuel A Fayemiwo
- Department of Medical Microbiology and Parasitology, University of Ibadan, Ibadan 200284, Nigeria.
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK.
| |
Collapse
|
79
|
Deng FS, Lin CH. Identification and characterization of ORF19.1725, a novel gene contributing to the white cell pheromone response and virulence-associated functions in Candida albicans. Virulence 2018; 9:866-878. [PMID: 29726301 PMCID: PMC5955465 DOI: 10.1080/21505594.2018.1456228] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
An epigenetic transition between white cells and opaque cells influences several properties of Candida albicans biology, including cellular morphology, biofilm formation, virulence, and sexual mating. In particular, these two cell types exhibit marked differences in their ability to undergo sex. A previous study identified the transcriptional regulator of pheromone response in both the white and opaque states as Cph1 because deletion of this gene abolished both pheromone-induced cell adhesion in white cells and sexual mating in opaque cells. To further explore how these cell types exhibit distinct biological outputs upon pheromone stimulation, we selected five Cph1-regulated genes with significant expression during the pheromone response in the white state but not the opaque state. These phase-specific pheromone-induced genes are ORF19.1539, ORF19.1725, ORF19.2430, ORF19.2691 and ORF19.5557. Deletion of each gene revealed that orf19.1539Δ, orf19.1725Δ, orf19.2430Δ and orf19.5557Δ showed significant decreases in pheromone-stimulated cell adhesion in the white state but retained normal mating competency in the opaque state, indicating that a particular role in white cell pheromone response is mediated by these four genes. Interestingly, the defects of orf19.1725Δ in pheromone-stimulated cell adhesion also abolished conventional biofilms and hyphal growth. Zebrafish egg infection assays further demonstrated that ORF19.1725 is involved in cell adhesion, penetration and virulence. Overall, four Cph1-regulated downstream targets were identified in the regulation of white cell pheromone response. We also clarified the roles of C. albicans ORF19.1725 in cell adhesion, hyphal growth, biofilm formation and virulence.
Collapse
Affiliation(s)
- Fu-Sheng Deng
- a Department of Biochemical Science and Technology , College of Life Science, National Taiwan University , Taipei , Taiwan
| | - Ching-Hsuan Lin
- a Department of Biochemical Science and Technology , College of Life Science, National Taiwan University , Taipei , Taiwan
| |
Collapse
|
80
|
Jacobsen MD, Beynon RJ, Gethings LA, Claydon AJ, Langridge JI, Vissers JPC, Brown AJP, Hammond DE. Specificity of the osmotic stress response in Candida albicans highlighted by quantitative proteomics. Sci Rep 2018; 8:14492. [PMID: 30262823 PMCID: PMC6160413 DOI: 10.1038/s41598-018-32792-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 09/13/2018] [Indexed: 11/18/2022] Open
Abstract
Stress adaptation is critical for the survival of microbes in dynamic environments, and in particular, for fungal pathogens to survive in and colonise host niches. Proteomic analyses have the potential to significantly enhance our understanding of these adaptive responses by providing insight into post-transcriptional regulatory mechanisms that contribute to the outputs, as well as testing presumptions about the regulation of protein levels based on transcript profiling. Here, we used label-free, quantitative mass spectrometry to re-examine the response of the major fungal pathogen of humans, Candida albicans, to osmotic stress. Of the 1,262 proteins that were identified, 84 were down-regulated in response to 1M NaCl, reflecting the decrease in ribosome biogenesis and translation that often accompanies stress. The 64 up-regulated proteins included central metabolic enzymes required for glycerol synthesis, a key osmolyte for this yeast, as well as proteins with functions during stress. These data reinforce the view that adaptation to salt stress involves a transient reduction in ribosome biogenesis and translation together with the accumulation of the osmolyte, glycerol. The specificity of the response to salt stress is highlighted by the small proportion of quantified C. albicans proteins (5%) whose relative elevated abundances were statistically significant.
Collapse
Affiliation(s)
- Mette D Jacobsen
- Medical Research Council Centre for Medical Mycology at the University of Aberdeen, Aberdeen Fungal Group, Institute of Medical Sciences, Foresterhill, Aberdeen, AB25 2ZD, United Kingdom
| | - Robert J Beynon
- Centre for Proteome Research, Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool, L697ZB, United Kingdom
| | - Lee A Gethings
- Waters Corporation, Stamford Avenue, Altrincham Road, Wilmslow, SK9 4AX, United Kingdom
| | - Amy J Claydon
- Centre for Proteome Research, Institute of Integrative Biology, University of Liverpool, Crown Street, Liverpool, L697ZB, United Kingdom
| | - James I Langridge
- Waters Corporation, Stamford Avenue, Altrincham Road, Wilmslow, SK9 4AX, United Kingdom
| | - Johannes P C Vissers
- Waters Corporation, Stamford Avenue, Altrincham Road, Wilmslow, SK9 4AX, United Kingdom
| | - Alistair J P Brown
- Medical Research Council Centre for Medical Mycology at the University of Aberdeen, Aberdeen Fungal Group, Institute of Medical Sciences, Foresterhill, Aberdeen, AB25 2ZD, United Kingdom.
| | - Dean E Hammond
- Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Liverpool, L69 3BX, United Kingdom.
| |
Collapse
|
81
|
Tipping the Balance: C. albicans Adaptation in Polymicrobial Environments. J Fungi (Basel) 2018; 4:jof4030112. [PMID: 30231476 PMCID: PMC6162738 DOI: 10.3390/jof4030112] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 09/14/2018] [Accepted: 09/15/2018] [Indexed: 11/18/2022] Open
Abstract
Candida albicans is a pleiomorphic fungus which co-exists with commensal bacteria in mucosal and skin sites of mammalian hosts. It is also a major co-isolated organism from polymicrobial systemic infections, with high potential for morbidity or mortality in immunocompromised patients. Traditionally, resident mucosal bacteria have been thought to antagonize C. albicans in its ability to colonize or cause infection. However, recent investigations have revealed synergistic relationships with certain bacterial species that colonize the same mucosal sites with C. albicans. Such relationships broaden the research landscape in pathogenesis but also contribute to clinical challenges in the prevention or treatment of mucosal candidiasis. This review sheds light on interactions of C. albicans and mucosal bacteria, with special emphasis on the effects of the resident bacterial microbiota on C. albicans physiology as they relate to its adaptation in mucosal sites as a commensal colonizer or as a pathogenic organism.
Collapse
|
82
|
In Vitro Ecological Response of the Human Gut Microbiome to Bioactive Extracts from Edible Wild Mushrooms. Molecules 2018; 23:molecules23092128. [PMID: 30142972 PMCID: PMC6225291 DOI: 10.3390/molecules23092128] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 08/17/2018] [Accepted: 08/22/2018] [Indexed: 01/29/2023] Open
Abstract
This study presents the effect of two new products based on atomized extracts from edible wild mushrooms (RoBioMush1, RoBioMush2) on the microbiota of three target groups: clinically healthy (NG) individuals, individuals with nutritional disorders (ND), and individuals with cardiovascular diseases (CVD). The microbiota fingerprints were determined by quantitative polymerase chain reaction (qPCR). Modulations in the simulated microbiome were established and correlated with the presence of phenolic compounds released in the in vitro environment (a three-stage culture system GIS2 simulator, www.gissystems.ro). The high metabolizing capacity of NG and CVD correlated positively with the rest of the biological activities expressed in vitro. ND microbiota consumed a wide spectrum of monosaccharides from the products. Xylose was present in large quantities in the descending segment (minimum: 175 μg/mL for ND). The primary conclusion was that the microbiological ecosystem was modulated, as proven by the presence of specific biomarkers (e.g., ammonium levels and fingerprints of short-chain fatty acids–SCFAs), which stimulate the organism’s health status and were correlated with the restoration of a normal microbiota fingerprint.
Collapse
|
83
|
Román E, Huertas B, Prieto D, Díez-Orejas R, Pla J. TUP1-mediated filamentation in Candida albicans leads to inability to colonize the mouse gut. Future Microbiol 2018; 13:857-867. [PMID: 29877100 DOI: 10.2217/fmb-2018-0012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
AIM To investigate the role of Candida albicans TUP1-mediated filamentation in the colonization of the mice gut. MATERIALS & METHODS We used molecular genetics to generate a strain where filamentation is regulated by altering the expression of the TUP1 gene with tetracyclines. RESULTS The colonization rates reached with the TUP1REP-RFPREP strain were lower compared with wild-type strain and completely absent after induction of filamentation. No differences in the susceptibility to bile salts nor in the adhesion to the mouse intestine epithelium were observed. CONCLUSION Blockage of C. albicans in a filamentous form impedes gut cell colonization in the mouse.
Collapse
Affiliation(s)
- Elvira Román
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, E-28040 Madrid, Spain
| | - Blanca Huertas
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, E-28040 Madrid, Spain
| | - Daniel Prieto
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, E-28040 Madrid, Spain
| | - Rosalía Díez-Orejas
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, E-28040 Madrid, Spain
| | - Jesús Pla
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón y Cajal s/n, E-28040 Madrid, Spain
| |
Collapse
|
84
|
Allert S, Förster TM, Svensson CM, Richardson JP, Pawlik T, Hebecker B, Rudolphi S, Juraschitz M, Schaller M, Blagojevic M, Morschhäuser J, Figge MT, Jacobsen ID, Naglik JR, Kasper L, Mogavero S, Hube B. Candida albicans-Induced Epithelial Damage Mediates Translocation through Intestinal Barriers. mBio 2018; 9:e00915-18. [PMID: 29871918 PMCID: PMC5989070 DOI: 10.1128/mbio.00915-18] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Accepted: 05/03/2018] [Indexed: 01/31/2023] Open
Abstract
Life-threatening systemic infections often occur due to the translocation of pathogens across the gut barrier and into the bloodstream. While the microbial and host mechanisms permitting bacterial gut translocation are well characterized, these mechanisms are still unclear for fungal pathogens such as Candida albicans, a leading cause of nosocomial fungal bloodstream infections. In this study, we dissected the cellular mechanisms of translocation of C. albicans across intestinal epithelia in vitro and identified fungal genes associated with this process. We show that fungal translocation is a dynamic process initiated by invasion and followed by cellular damage and loss of epithelial integrity. A screen of >2,000 C. albicans deletion mutants identified genes required for cellular damage of and translocation across enterocytes. Correlation analysis suggests that hypha formation, barrier damage above a minimum threshold level, and a decreased epithelial integrity are required for efficient fungal translocation. Translocation occurs predominantly via a transcellular route, which is associated with fungus-induced necrotic epithelial damage, but not apoptotic cell death. The cytolytic peptide toxin of C. albicans, candidalysin, was found to be essential for damage of enterocytes and was a key factor in subsequent fungal translocation, suggesting that transcellular translocation of C. albicans through intestinal layers is mediated by candidalysin. However, fungal invasion and low-level translocation can also occur via non-transcellular routes in a candidalysin-independent manner. This is the first study showing translocation of a human-pathogenic fungus across the intestinal barrier being mediated by a peptide toxin.IMPORTANCECandida albicans, usually a harmless fungus colonizing human mucosae, can cause lethal bloodstream infections when it manages to translocate across the intestinal epithelium. This can result from antibiotic treatment, immune dysfunction, or intestinal damage (e.g., during surgery). However, fungal processes may also contribute. In this study, we investigated the translocation process of C. albicans using in vitro cell culture models. Translocation occurs as a stepwise process starting with invasion, followed by epithelial damage and loss of epithelial integrity. The ability to secrete candidalysin, a peptide toxin deriving from the hyphal protein Ece1, is key: C. albicans hyphae, secreting candidalysin, take advantage of a necrotic weakened epithelium to translocate through the intestinal layer.
Collapse
Affiliation(s)
- Stefanie Allert
- Department of Microbial Pathogenicity Mechanisms, Hans-Knöll-Institute, Jena, Germany
| | - Toni M Förster
- Department of Microbial Pathogenicity Mechanisms, Hans-Knöll-Institute, Jena, Germany
| | | | - Jonathan P Richardson
- Mucosal & Salivary Biology Division, Dental Institute, King's College London, London, United Kingdom
| | - Tony Pawlik
- Research Group Microbial Immunology, Hans-Knöll-Institute, Jena, Germany
| | - Betty Hebecker
- Department of Microbial Pathogenicity Mechanisms, Hans-Knöll-Institute, Jena, Germany
- Research Group Microbial Immunology, Hans-Knöll-Institute, Jena, Germany
- Aberdeen Fungal Group, MRC Centre for Medical Mycology, University of Aberdeen, Aberdeen, United Kingdom
| | - Sven Rudolphi
- Research Group Microbial Immunology, Hans-Knöll-Institute, Jena, Germany
| | - Marc Juraschitz
- Department of Microbial Pathogenicity Mechanisms, Hans-Knöll-Institute, Jena, Germany
| | - Martin Schaller
- Department of Dermatology, University Hospital Tübingen, Tübingen, Germany
| | - Mariana Blagojevic
- Mucosal & Salivary Biology Division, Dental Institute, King's College London, London, United Kingdom
| | - Joachim Morschhäuser
- Institute for Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Marc Thilo Figge
- Research Group Applied Systems Biology, Hans-Knöll-Institute, Jena, Germany
- Faculty of Biological Sciences, Friedrich-Schiller-University Jena, Jena, Germany
| | - Ilse D Jacobsen
- Research Group Microbial Immunology, Hans-Knöll-Institute, Jena, Germany
- Institute of Microbiology, Friedrich-Schiller-University Jena, Jena, Germany
| | - Julian R Naglik
- Mucosal & Salivary Biology Division, Dental Institute, King's College London, London, United Kingdom
| | - Lydia Kasper
- Department of Microbial Pathogenicity Mechanisms, Hans-Knöll-Institute, Jena, Germany
| | - Selene Mogavero
- Department of Microbial Pathogenicity Mechanisms, Hans-Knöll-Institute, Jena, Germany
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Hans-Knöll-Institute, Jena, Germany
- Institute of Microbiology, Friedrich-Schiller-University Jena, Jena, Germany
| |
Collapse
|
85
|
Strati F, Calabrò A, Donati C, De Felice C, Hayek J, Jousson O, Leoncini S, Renzi D, Rizzetto L, De Filippo C, Cavalieri D. Intestinal Candida parapsilosis isolates from Rett syndrome subjects bear potential virulent traits and capacity to persist within the host. BMC Gastroenterol 2018; 18:57. [PMID: 29720131 PMCID: PMC5930502 DOI: 10.1186/s12876-018-0785-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 04/24/2018] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Rett syndrome (RTT) is a neurological disorder mainly caused by mutations in MeCP2 gene. It has been shown that MeCP2 impairments can lead to cytokine dysregulation due to MeCP2 regulatory role in T-helper and T-reg mediated responses, thus contributing to the pro-inflammatory status associated with RTT. Furthermore, RTT subjects suffer from an intestinal dysbiosis characterized by an abnormal expansion of the Candida population, a known factor responsible for the hyper-activation of pro-inflammatory immune responses. Therefore, we asked whether the intestinal fungal population of RTT subjects might contribute the sub-inflammatory status triggered by MeCP2 deficiency. METHODS We evaluated the cultivable gut mycobiota from a cohort of 50 RTT patients and 29 healthy controls characterizing the faecal fungal isolates for their virulence-related traits, antifungal resistance and immune reactivity in order to elucidate the role of fungi in RTT's intestinal dysbiosis and gastrointestinal physiology. RESULTS Candida parapsilosis, the most abundant yeast species in RTT subjects, showed distinct genotypic profiles if compared to healthy controls' isolates as measured by hierarchical clustering analysis from RAPD genotyping. Their phenotypical analysis revealed that RTT's isolates produced more biofilm and were significantly more resistant to azole antifungals compared to the isolates from the healthy controls. In addition, the high levels of IL-1β and IL-10 produced by peripheral blood mononuclear cells and the mixed Th1/Th17 cells population induced by RTT C. parapsilosis isolates suggest the capacity of these intestinal fungi to persist within the host, being potentially involved in chronic, pro-inflammatory responses. CONCLUSIONS Here we demonstrated that intestinal C. parapsilosis isolates from RTT subjects hold phenotypic traits that might favour the previously observed low-grade intestinal inflammatory status associated with RTT. Therefore, the presence of putative virulent, pro-inflammatory C. parapsilosis strains in RTT could represent an additional factor in RTT's gastrointestinal pathophysiology, whose mechanisms are not yet clearly understood.
Collapse
Affiliation(s)
- Francesco Strati
- Computational Biology Research Unit, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010, San Michele all'Adige, Italy.,Centre for Integrative Biology, University of Trento, Via Sommarive 9, 38123, Trento, Italy.,Present address: T Cell Development Lab, Institute for Research in Biomedicine, Università della Svizzera Italiana, Via Vincenzo Vela 6, CH-6500, Bellinzona, Switzerland
| | - Antonio Calabrò
- Department of Experimental and Clinical Biomedical Sciences, Gastroenterology Unit, University of Florence, Viale Morgagni 40, 50139, Florence, Italy
| | - Claudio Donati
- Computational Biology Research Unit, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010, San Michele all'Adige, Italy
| | - Claudio De Felice
- Neonatal Intensive Care Unit, University Hospital AOUS, Viale Bracci 16, 53100, Siena, Italy
| | - Joussef Hayek
- Child Neuropsychiatry Unit, University Hospital AOUS, Viale Bracci 16, 53100, Siena, Italy
| | - Olivier Jousson
- Centre for Integrative Biology, University of Trento, Via Sommarive 9, 38123, Trento, Italy
| | - Silvia Leoncini
- Child Neuropsychiatry Unit, University Hospital AOUS, Viale Bracci 16, 53100, Siena, Italy
| | - Daniela Renzi
- Department of Experimental and Clinical Biomedical Sciences, Gastroenterology Unit, University of Florence, Viale Morgagni 40, 50139, Florence, Italy
| | - Lisa Rizzetto
- Nutrition and Nutrigenomics Unit, Research and Innovation Centre, Fondazione Edmund Mach, Via E. Mach 1, 38010, San Michele all'Adige, Italy
| | - Carlotta De Filippo
- Institute of Agriculture Biology and Biotechnology (IBBA), National Research Council (CNR), Via Moruzzi 1, 56124, Pisa, Italy
| | - Duccio Cavalieri
- Department of Biology, University of Florence, Via Madonna del Piano 6, 50019, Sesto Fiorentino, Florence, Italy.
| |
Collapse
|
86
|
Neville BA, Forster SC, Lawley TD. Commensal Koch's postulates: establishing causation in human microbiota research. Curr Opin Microbiol 2018; 42:47-52. [DOI: 10.1016/j.mib.2017.10.001] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 10/07/2017] [Accepted: 10/09/2017] [Indexed: 12/16/2022]
|
87
|
Candida albicans - Biology, molecular characterization, pathogenicity, and advances in diagnosis and control – An update. Microb Pathog 2018; 117:128-138. [DOI: 10.1016/j.micpath.2018.02.028] [Citation(s) in RCA: 141] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 02/04/2018] [Accepted: 02/13/2018] [Indexed: 12/16/2022]
|
88
|
Infectious Agents as Stimuli of Trained Innate Immunity. Int J Mol Sci 2018; 19:ijms19020456. [PMID: 29401667 PMCID: PMC5855678 DOI: 10.3390/ijms19020456] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 01/26/2018] [Accepted: 02/02/2018] [Indexed: 12/13/2022] Open
Abstract
The discoveries made over the past few years have modified the current immunological paradigm. It turns out that innate immunity cells can mount some kind of immunological memory, similar to that observed in the acquired immunity and corresponding to the defense mechanisms of lower organisms, which increases their resistance to reinfection. This phenomenon is termed trained innate immunity. It is based on epigenetic changes in innate immune cells (monocytes/macrophages, NK cells) after their stimulation with various infectious or non-infectious agents. Many infectious stimuli, including bacterial or fungal cells and their components (LPS, β-glucan, chitin) as well as viruses or even parasites are considered potent inducers of innate immune memory. Epigenetic cell reprogramming occurring at the heart of the phenomenon may provide a useful basis for designing novel prophylactic and therapeutic strategies to prevent and protect against multiple diseases. In this article, we present the current state of art on trained innate immunity occurring as a result of infectious agent induction. Additionally, we discuss the mechanisms of cell reprogramming and the implications for immune response stimulation/manipulation.
Collapse
|
89
|
Giosa D, Felice MR, Lawrence TJ, Gulati M, Scordino F, Giuffrè L, Lo Passo C, D'Alessandro E, Criseo G, Ardell DH, Hernday AD, Nobile CJ, Romeo O. Whole RNA-Sequencing and Transcriptome Assembly of Candida albicans and Candida africana under Chlamydospore-Inducing Conditions. Genome Biol Evol 2017; 9:1971-1977. [PMID: 28810711 PMCID: PMC5553385 DOI: 10.1093/gbe/evx143] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/25/2017] [Indexed: 12/27/2022] Open
Abstract
Candida albicans is the most common cause of life-threatening fungal infections in humans, especially in immunocompromised individuals. Crucial to its success as an opportunistic pathogen is the considerable dynamism of its genome, which readily undergoes genetic changes generating new phenotypes and shaping the evolution of new strains. Candida africana is an intriguing C. albicans biovariant strain that exhibits remarkable genetic and phenotypic differences when compared with standard C. albicans isolates. Candida africana is well-known for its low degree of virulence compared with C. albicans and for its inability to produce chlamydospores that C. albicans, characteristically, produces under certain environmental conditions. Chlamydospores are large, spherical structures, whose biological function is still unknown. For this reason, we have sequenced, assembled, and annotated the whole transcriptomes obtained from an efficient C. albicans chlamydospore-producing clinical strain (GE1), compared with the natural chlamydospore-negative C. africana clinical strain (CBS 11016). The transcriptomes of both C. albicans (GE1) and C. africana (CBS 11016) clinical strains, grown under chlamydospore-inducing conditions, were sequenced and assembled into 7,442 (GE1 strain) and 8,370 (CBS 11016 strain) high quality transcripts, respectively. The release of the first assembly of the C. africana transcriptome will allow future comparative studies to better understand the biology and evolution of this important human fungal pathogen.
Collapse
Affiliation(s)
| | - Maria Rosa Felice
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, Italy
| | - Travis J Lawrence
- Department of Molecular and Cell Biology, University of California, Merced, CA.,Quantitative and System Biology Graduate Program, University of California, Merced, CA
| | - Megha Gulati
- Department of Molecular and Cell Biology, University of California, Merced, CA
| | | | - Letterio Giuffrè
- Department of Veterinary Sciences, Division of Animal Production, University of Messina, Italy
| | - Carla Lo Passo
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, Italy
| | - Enrico D'Alessandro
- Department of Veterinary Sciences, Division of Animal Production, University of Messina, Italy
| | - Giuseppe Criseo
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, Italy
| | - David H Ardell
- Department of Molecular and Cell Biology, University of California, Merced, CA
| | - Aaron D Hernday
- Department of Molecular and Cell Biology, University of California, Merced, CA
| | - Clarissa J Nobile
- Department of Molecular and Cell Biology, University of California, Merced, CA
| | - Orazio Romeo
- IRCCS Centro Neurolesi "Bonino-Pulejo," Messina, Italy.,Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina, Italy
| |
Collapse
|
90
|
Abstract
Fungi must meet four criteria to infect humans: growth at human body temperatures, circumvention or penetration of surface barriers, lysis and absorption of tissue, and resistance to immune defenses, including elevated body temperatures. Morphogenesis between small round, detachable cells and long, connected cells is the mechanism by which fungi solve problems of locomotion around or through host barriers. Secretion of lytic enzymes, and uptake systems for the released nutrients, are necessary if a fungus is to nutritionally utilize human tissue. Last, the potent human immune system evolved in the interaction with potential fungal pathogens, so few fungi meet all four conditions for a healthy human host. Paradoxically, the advances of modern medicine have made millions of people newly susceptible to fungal infections by disrupting immune defenses. This article explores how different members of four fungal phyla use different strategies to fulfill the four criteria to infect humans: the Entomophthorales, the Mucorales, the Ascomycota, and the Basidiomycota. Unique traits confer human pathogenic potential on various important members of these phyla: pathogenic Onygenales comprising thermal dimorphs such as Histoplasma and Coccidioides; the Cryptococcus spp. that infect immunocompromised as well as healthy humans; and important pathogens of immunocompromised patients-Candida, Pneumocystis, and Aspergillus spp. Also discussed are agents of neglected tropical diseases important in global health such as mycetoma and paracoccidiomycosis and common pathogens rarely implicated in serious illness such as dermatophytes. Commensalism is considered, as well as parasitism, in shaping genomes and physiological systems of hosts and fungi during evolution.
Collapse
|
91
|
Pitarch A, Gil C, Blanco G. Oral mycoses in avian scavengers exposed to antibiotics from livestock farming. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 605-606:139-146. [PMID: 28662427 DOI: 10.1016/j.scitotenv.2017.06.144] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 06/04/2017] [Accepted: 06/18/2017] [Indexed: 06/07/2023]
Abstract
The exposure to antimicrobial pharmaceuticals as environmental contaminants can exert direct and indirect detrimental effects on health of wildlife. Fungal infections pose a major threat to domestic, captive-housed wild and free-ranging wild animals worldwide. However, little is known about their role in disease in birds in the wild. Here, we evaluated the incidence of thrush-like lesions in the oral cavity of wild nestling cinereous vultures (Aegypius monachus), griffon vultures (Gyps fulvus), Egyptian vultures (Neophron percnopterus) and golden eagles (Aquila chrysaetos) exposed to veterinary antibiotics via the consumption of medicated livestock carcasses. Lesions, which varied in number, size and location, were more frequent in the cinereous (77.8%, n=9) and griffon vultures (66.7%, n=48) than in the Egyptian vultures (28.6%, n=21) and golden eagles (28.6%, n=7). In all individuals (100%, n=24) of a subsample of the affected nestlings, yeast species were isolated from thrush-like oral lesions and identified using a well-established system based on their carbohydrate assimilation profiles and other complementary tests. Fourteen yeast species from seven genera (Candida, Meyerozyma, Pichia, Yarrowia, Cryptococcus, Rhodotorula and Trichosporon) were isolated from the lesions of the four host species. We found differential infections and effects depending on host age-related exposure or susceptibility to different yeast species across the development of nestling griffon vultures. This unprecedented outbreak of oral mycoses is alarming because of the delicate conservation status of several of the affected species. The role of livestock antibiotics in the transition of yeast species from commensal to opportunistic pathogens should be evaluated in an attempt to avoid the detrimental effects of contamination and disease on host health, as well as on the transmission of fungal emerging pathogens among wildlife populations and species, and their dissemination across livestock and human populations.
Collapse
Affiliation(s)
- Aida Pitarch
- Department of Microbiology II, Faculty of Pharmacy, Complutense University of Madrid (UCM) and Ramón y Cajal Institute of Health Research (IRYCIS), Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Concha Gil
- Department of Microbiology II, Faculty of Pharmacy, Complutense University of Madrid (UCM) and Ramón y Cajal Institute of Health Research (IRYCIS), Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
| | - Guillermo Blanco
- Department of Evolutionary Ecology, Museo Nacional de Ciencias Naturales (CSIC), José Gutiérrez Abascal 2, 28006 Madrid, Spain.
| |
Collapse
|
92
|
Ezeonu IM, Ntun NW, Ugwu KO. Intestinal candidiasis and antibiotic usage in children: case study of Nsukka, South Eastern Nigeria. Afr Health Sci 2017; 17:1178-1184. [PMID: 29937890 PMCID: PMC5870271 DOI: 10.4314/ahs.v17i4.27] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Overgrowth of candida results from factors that disrupt the intestinal microbial balance, such as the use of antibiotics. Unregulated antibiotic use and rampant practice of self-medication in Nigeria, is a cause for concern. METHODS A total of 314 stool specimens were collected from children <1 to 12 years of age in Nsukka, South Eastern Nigeria and screened for candida species using standard methods. Questionnaires were used to collect relevant information on the participants. RESULTS Out of the 314 participants, 31.2% had candidiasis, indicated by growth of ≥105 CFU/ml. Four different species of candida were identified. Candida albicans had the highest prevalence (59.0%), while Candida krusei had the least prevalence (6.0%). Of the 314 participants, 46.5% had diarrhoea, out of which 58.9% had intestinal candidiasis while only 14.3% of the non-diarrhoeic children had candidiasis. Of 208 participants who had taken antibiotics within three weeks of the study, 42.3% had candidiasis compared to 20.8% of those with no recent history of antibiotic use. CONCLUSION The results of this study showed a high prevalence of intestinal candidiasis among children in Nsukka. Strong associations were observed between the presence of intestinal candidiasis and diarrhoea, age and use of antibiotics (p<0.001).
Collapse
|
93
|
Prieto D, Román E, Alonso-Monge R, Pla J. Overexpression of the Transcriptional Regulator WOR1 Increases Susceptibility to Bile Salts and Adhesion to the Mouse Gut Mucosa in Candida albicans. Front Cell Infect Microbiol 2017; 7:389. [PMID: 28955659 PMCID: PMC5600957 DOI: 10.3389/fcimb.2017.00389] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 08/21/2017] [Indexed: 12/12/2022] Open
Abstract
The transcriptional regulator Wor1 has been shown to induce the GUT transition, an environmentally triggered process that increases the fitness of Candida albicans in the mouse gastrointestinal tract. We have developed strains where the expression of this gene is driven from the strong and tightly regulated tetracycline promoter. These cells retain the main characteristics reported for GUT cells albeit they show defects in the initial stages of colonization. They also show a differential colonization along the gastrointestinal tract compared to isogenic strains, which is probably caused by their susceptibility to bile salts. We also show that WOR1 overexpressing cells have an altered metabolic activity, as revealed by a different susceptibility to inhibitors of respiration, and an enhanced adhesion to the mouse mucosa. We propose that this may contribute to their long-term favored ability to colonize the gastrointestinal tract.
Collapse
Affiliation(s)
- Daniel Prieto
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de MadridMadrid, Spain
| | - Elvira Román
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de MadridMadrid, Spain
| | - Rebeca Alonso-Monge
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de MadridMadrid, Spain
| | - Jesús Pla
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de MadridMadrid, Spain
| |
Collapse
|
94
|
Choo KH, Lee HJ, Knight NJ, Holmes AR, Cannon RD. Multilocus sequence typing (MLST) analysis of Candida albicans isolates colonizing acrylic dentures before and after denture replacement. Med Mycol 2017; 55:673-679. [PMID: 27915298 DOI: 10.1093/mmy/myw128] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Accepted: 10/30/2016] [Indexed: 12/28/2022] Open
Abstract
Yeast, in particular Candida albicans, are the principal fungal cause of denture stomatitis, and can also be present as a commensal in many individuals. Few studies, however, have examined oral retention of yeast strains over time. We analyzed the yeast present in saliva samples and from the dentures of 10 individuals colonized with yeast but with no signs of stomatitis, before new complete maxillary dentures were fitted and also at 1, 3, and 6 months after denture replacement. Yeast species were presumptively identified on selective agar plates and were present in nine individuals before denture replacement and in six at the 6-month time point. C. albicans was detected in seven individuals pre-replacement, and in three by 6 months post-replacement. Sixty-two isolates (up to five from each C. albicans-positive sample) were analyzed by multilocus sequence typing (MLST) (33 from saliva and 29 from dentures). Six MLST allele profiles were identified that were common to several individuals. These profiles included three previously reported diploid sequence types (DSTs) and three novel DSTs. Two of the novel DSTs were closely related variants of a previously reported DST, and both showed loss of heterozygosity polymorphisms within one of the seven MLST gene sequences. For three individuals, at least one DST that was present before denture replacement was still detected in either saliva or on dentures at subsequent sampling times. Our results indicate that denture replacement reduces but does not remove, colonising yeast and confirm previous observations of C. albicans strain microevolution.
Collapse
Affiliation(s)
| | | | | | | | - Richard D Cannon
- To whom correspondence should be addressed. Professor R D Cannon, Sir John Walsh Research Institute, University of Otago Faculty of Dentistry, PO Box 56, Dunedin 9054, New Zealand, Tel: +64 3 479 7081; Fax: +64 3 479 5661; E-mail:
| |
Collapse
|
95
|
da Silva Dantas A, Lee KK, Raziunaite I, Schaefer K, Wagener J, Yadav B, Gow NA. Cell biology of Candida albicans-host interactions. Curr Opin Microbiol 2016; 34:111-118. [PMID: 27689902 PMCID: PMC5660506 DOI: 10.1016/j.mib.2016.08.006] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 08/24/2016] [Accepted: 08/24/2016] [Indexed: 01/07/2023]
Abstract
The cell biology of Candida albicans is adapted both for life as a commensal and as a pathogen. C. albicans can either downregulate or upregulate virulence properties in the human host. This fungus modulates the activity of phagocytes to enable its own survival. Candida is metabolically flexible enabling it to survive in multiple niches in the host.
Candida albicans is a commensal coloniser of most people and a pathogen of the immunocompromised or patients in which barriers that prevent dissemination have been disrupted. Both the commensal and pathogenic states involve regulation and adaptation to the host microenvironment. The pathogenic potential can be downregulated to sustain commensalism or upregulated to damage host tissue and avoid and subvert immune surveillance. In either case it seems as though the cell biology of this fungus has evolved to enable the establishment of different types of relationships with the human host. Here we summarise latest advances in the analysis of mechanisms that enable C. albicans to occupy different body sites whilst avoiding being eliminated by the sentinel activities of the human immune system.
Collapse
Affiliation(s)
- Alessandra da Silva Dantas
- The Aberdeen Fungal Group, School of Medicine, Medical Science and Nutrition, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB252ZD, UK
| | - Kathy K Lee
- The Aberdeen Fungal Group, School of Medicine, Medical Science and Nutrition, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB252ZD, UK
| | - Ingrida Raziunaite
- The Aberdeen Fungal Group, School of Medicine, Medical Science and Nutrition, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB252ZD, UK
| | - Katja Schaefer
- The Aberdeen Fungal Group, School of Medicine, Medical Science and Nutrition, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB252ZD, UK
| | - Jeanette Wagener
- The Aberdeen Fungal Group, School of Medicine, Medical Science and Nutrition, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB252ZD, UK
| | - Bhawna Yadav
- The Aberdeen Fungal Group, School of Medicine, Medical Science and Nutrition, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB252ZD, UK
| | - Neil Ar Gow
- The Aberdeen Fungal Group, School of Medicine, Medical Science and Nutrition, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB252ZD, UK.
| |
Collapse
|
96
|
Förster TM, Mogavero S, Dräger A, Graf K, Polke M, Jacobsen ID, Hube B. Enemies and brothers in arms: Candida albicans and gram-positive bacteria. Cell Microbiol 2016; 18:1709-1715. [PMID: 27552083 DOI: 10.1111/cmi.12657] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 07/20/2016] [Accepted: 08/18/2016] [Indexed: 12/12/2022]
Abstract
Candida albicans is an important human opportunistic fungal pathogen which is frequently found as part of the normal human microbiota. It is well accepted that the fungus interacts with other components of the resident microbiota and that this impacts the commensal or pathogenic outcome of C. albicans colonization. Different types of interactions, including synergism or antagonism, contribute to a complex balance between the multitude of different species. Mixed biofilms of C. albicans and streptococci are a well-studied example of a mutualistic interaction often potentiating the virulence of the individual members. In contrast, other bacteria like lactobacilli are known to antagonize C. albicans, and research has just started elucidating the mechanisms behind these interactions. This scenario is even more complicated by a third player, the host. This review focuses on interactions between C. albicans and gram-positive bacteria whose investigation will without doubt ultimately help understanding C. albicans infections.
Collapse
Affiliation(s)
- Toni M Förster
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knoell Institute, Jena, Germany
| | - Selene Mogavero
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knoell Institute, Jena, Germany
| | - Antonia Dräger
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knoell Institute, Jena, Germany.,Center for Sepsis Control and Care (CSCC), Jena, Germany
| | - Katja Graf
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knoell Institute, Jena, Germany
| | - Melanie Polke
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knoell Institute, Jena, Germany.,Research Group Microbial Immunology, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knoell Institute, Jena, Germany
| | - Ilse D Jacobsen
- Research Group Microbial Immunology, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knoell Institute, Jena, Germany.,Friedrich Schiller University, Jena, Germany.,Center for Sepsis Control and Care (CSCC), Jena, Germany
| | - Bernhard Hube
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knoell Institute, Jena, Germany.,Friedrich Schiller University, Jena, Germany.,Center for Sepsis Control and Care (CSCC), Jena, Germany
| |
Collapse
|
97
|
Prieto D, Correia I, Pla J, Román E. Adaptation of Candida albicans to commensalism in the gut. Future Microbiol 2016; 11:567-83. [PMID: 27070839 DOI: 10.2217/fmb.16.1] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Candida albicans is a common resident of the oral cavity, GI tract and vagina in healthy humans where it establishes a commensal relationship with the host. Colonization of the gut, which is an important niche for the microbe, may lead to systemic dissemination and disease upon alteration of host defences. Understanding the mechanisms responsible for the adaptation of C. albicans to the gut is therefore important for the design of new ways of combating fungal diseases. In this review we discuss the available models to study commensalism of this yeast, the main mechanisms controlling the establishment of the fungus, such as microbiota, mucus layer and antimicrobial peptides, and the gene regulatory circuits that ensure its survival in this niche.
Collapse
Affiliation(s)
- Daniel Prieto
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Inês Correia
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Jesús Pla
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Elvira Román
- Departamento de Microbiología II, Facultad de Farmacia, Universidad Complutense de Madrid, 28040 Madrid, Spain
| |
Collapse
|
98
|
Munro C. Editorial: The dark side of yeast biology. FEMS Yeast Res 2016; 16:fow026. [PMID: 26994104 DOI: 10.1093/femsyr/fow026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|