51
|
Anisimov VN, Bartke A. The key role of growth hormone-insulin-IGF-1 signaling in aging and cancer. Crit Rev Oncol Hematol 2013; 87:201-23. [PMID: 23434537 PMCID: PMC4095988 DOI: 10.1016/j.critrevonc.2013.01.005] [Citation(s) in RCA: 138] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 12/22/2012] [Accepted: 01/18/2013] [Indexed: 12/14/2022] Open
Abstract
Studies in mammals have led to the suggestion that hyperglycemia and hyperinsulinemia are important factors in aging. GH/Insulin/insulin-like growth factor-1 (IGF-1) signaling molecules that have been linked to longevity include daf-2 and InR and their homologues in mammals, and inactivation of the corresponding genes increases lifespan in nematodes, fruit flies and mice. The life-prolonging effects of caloric restriction are likely related to decreasing IGF-1 levels. Evidence has emerged that antidiabetic drugs are promising candidates for both lifespan extension and prevention of cancer. Thus, antidiabetic drugs postpone spontaneous carcinogenesis in mice and rats, as well as chemical and radiation carcinogenesis in mice, rats and hamsters. Furthermore, metformin seems to decrease the risk for cancer in diabetic patients.
Collapse
Affiliation(s)
- Vladimir N Anisimov
- Department of Carcinogenesis and Oncogerontology, N.N. Petrov Research Institute of Oncology, St. Petersburg, Russia.
| | | |
Collapse
|
52
|
Maruta H. Herbal therapeutics that block the oncogenic kinase PAK1: a practical approach towards PAK1-dependent diseases and longevity. Phytother Res 2013; 28:656-72. [PMID: 23943274 DOI: 10.1002/ptr.5054] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Accepted: 07/12/2013] [Indexed: 12/11/2022]
Abstract
Over 35 years research on PAKs, RAC/CDC42(p21)-activated kinases, comes of age, and in particular PAK1 has been well known to be responsible for a variety of diseases such as cancer (mainly solid tumors), Alzheimer's disease, acquired immune deficiency syndrome and other viral/bacterial infections, inflammatory diseases (asthma and arthritis), diabetes (type 2), neurofibromatosis, tuberous sclerosis, epilepsy, depression, schizophrenia, learning disability, autism, etc. Although several distinct synthetic PAK1-blockers have been recently developed, no FDA-approved PAK1 blockers are available on the market as yet. Thus, patients suffering from these PAK1-dependent diseases have to rely on solely a variety of herbal therapeutics such as propolis and curcumin that block PAK1 without affecting normal cell growth. Furthermore, several recent studies revealed that some of these herbal therapeutics significantly extend the lifespan of nematodes (C. elegans) and fruit flies (Drosophila), and PAK1-deficient worm lives longer than the wild type. Here, I outline mainly pathological phenotypes of hyper-activated PAK1 and a list of herbal therapeutics that block PAK1, but cause no side (harmful) effect on healthy people or animals.
Collapse
|
53
|
Bowers J, Terrien J, Clerget-Froidevaux MS, Gothié JD, Rozing MP, Westendorp RGJ, van Heemst D, Demeneix BA. Thyroid hormone signaling and homeostasis during aging. Endocr Rev 2013; 34:556-89. [PMID: 23696256 DOI: 10.1210/er.2012-1056] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Studies in humans and in animal models show negative correlations between thyroid hormone (TH) levels and longevity. TH signaling is implicated in maintaining and integrating metabolic homeostasis at multiple levels, notably centrally in the hypothalamus but also in peripheral tissues. The question is thus raised of how TH signaling is modulated during aging in different tissues. Classically, TH actions on mitochondria and heat production are obvious candidates to link negative effects of TH to aging. Mitochondrial effects of excess TH include reactive oxygen species and DNA damage, 2 factors often considered as aging accelerators. Inversely, caloric restriction, which can retard aging from nematodes to primates, causes a rapid reduction of circulating TH, reducing metabolism in birds and mammals. However, many other factors could link TH to aging, and it is these potentially subtler and less explored areas that are highlighted here. For example, effects of TH on membrane composition, inflammatory responses, stem cell renewal and synchronization of physiological responses to light could each contribute to TH regulation of maintenance of homeostasis during aging. We propose the hypothesis that constraints on TH signaling at certain life stages, notably during maturity, are advantageous for optimal aging.
Collapse
Affiliation(s)
- J Bowers
- Muséum national d'Histoire Naturelle, Laboratoire de Physiologie Générale et Comparée, Unité Mixte de Recherche, Centre National de la Recherche Scientifique 7221, 75231 Paris cedex 5, France
| | | | | | | | | | | | | | | |
Collapse
|
54
|
de Lange P, Cioffi F, Silvestri E, Moreno M, Goglia F, Lanni A. (Healthy) ageing: focus on iodothyronines. Int J Mol Sci 2013; 14:13873-92. [PMID: 23880847 PMCID: PMC3742223 DOI: 10.3390/ijms140713873] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Revised: 06/13/2013] [Accepted: 06/19/2013] [Indexed: 12/29/2022] Open
Abstract
The activity of the thyroid gland diminishes during ageing, but a certain tissue reserve of T3 and its metabolites is maintained. This reserve is thought to play a regulatory role in energy homeostasis during ageing. This review critically assesses this notion. T3 was thought to act predominantly through pathways that require transcriptional regulation by thyroid hormone receptors (TRs). However, in recent years, it has emerged that T3 and its metabolites can also act through non-genomic mechanisms, including cytosolic signaling. Interestingly, differences may exist in the non-genomic pathways utilized by thyroid hormone metabolites and T3. For instance, one particular thyroid hormone metabolite, namely 3,5-diiodo-l-thyronine (T2), increases the activity of the redox-sensitive protein deacetylase SIRT1, which has been associated with improvements in healthy ageing, whereas evidence exists that T3 may have the opposite effect. Findings suggesting that T3, T2, and their signaling pathways, such as those involving SIRT1 and AMP-activated protein kinase (AMPK), are associated with improvements in diet-induced obesity and insulin resistance emphasize the potential importance of the thyroid during ageing and in ageing-associated metabolic diseases.
Collapse
Affiliation(s)
- Pieter de Lange
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Seconda Università degli Studi di Napoli, Via Vivaldi 43, Caserta 81100, Italy; E-Mail:
| | - Federica Cioffi
- Dipartimento di Scienze e Tecnologie, Università degli Studi del Sannio, Via Port’Arsa 11, Benevento 82100, Italy; E-Mails: (F.C.); (E.S.); (M.M.); (F.G.)
| | - Elena Silvestri
- Dipartimento di Scienze e Tecnologie, Università degli Studi del Sannio, Via Port’Arsa 11, Benevento 82100, Italy; E-Mails: (F.C.); (E.S.); (M.M.); (F.G.)
| | - Maria Moreno
- Dipartimento di Scienze e Tecnologie, Università degli Studi del Sannio, Via Port’Arsa 11, Benevento 82100, Italy; E-Mails: (F.C.); (E.S.); (M.M.); (F.G.)
| | - Fernando Goglia
- Dipartimento di Scienze e Tecnologie, Università degli Studi del Sannio, Via Port’Arsa 11, Benevento 82100, Italy; E-Mails: (F.C.); (E.S.); (M.M.); (F.G.)
| | - Antonia Lanni
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Seconda Università degli Studi di Napoli, Via Vivaldi 43, Caserta 81100, Italy; E-Mail:
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +39-082-327-4580; Fax: +39-082-327-4571
| |
Collapse
|
55
|
Seol MA, Jung U, Eom HS, Kim SH, Park HR, Jo SK. Prolonged expression of senescence markers in mice exposed to gamma-irradiation. J Vet Sci 2013; 13:331-8. [PMID: 23271173 PMCID: PMC3539117 DOI: 10.4142/jvs.2012.13.4.331] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Although ionizing radiation is known to induce cellular senescence in vitro and in vivo, its long-term in vivo effects are not well defined. In this study, we examined the prolonged expression of senescence markers in mice irradiated with single or fractionated doses. C57BL/6 female mice were exposed to 5 Gy of γ-rays in single or 5, 10, 25 fractions. At 2, 4, and 6 months after irradiation, senescence markers including mitochondrial DNA (mtDNA) common deletion, p21, and senescence-associated β-galactosidase (SA β-gal) were monitored in the lung, liver, and kidney. Increases of mtDNA deletion were detected in the lung, liver, and kidney of irradiated groups. p21 expression and SA β-gal staining were also increased in the irradiated groups compared to the non-irradiated control group. Increases of senescence markers persisted up to 6 months after irradiation. Additionally, the extent of mtDNA deletion and the numbers of SA β-gal positive cells were greater as the number of radiation fractions increased. In conclusion, our results showed that ionizing radiation, especially that delivered in fractions, can cause the persistent upregulation of senescence marker expression in vivo. This should be considered when dealing with chronic normal tissue injuries caused by radiation therapy or radiation accidents.
Collapse
Affiliation(s)
- Min-A Seol
- Radiation Biotechnology Research Division, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup 580-185, Korea
| | | | | | | | | | | |
Collapse
|
56
|
Abstract
Secretion of growth hormone (GH), and consequently that of insulin-like growth factor 1 (IGF-1), declines over time until only low levels can be detected in individuals aged ≥60 years. This phenomenon, which is known as the 'somatopause', has led to recombinant human GH being widely promoted and abused as an antiageing drug, despite lack of evidence of efficacy. By contrast, several mutations that decrease the tone of the GH/IGF-1 axis are associated with extended longevity in mice. In humans, corresponding or similar mutations have been identified, but whether these mutations alter longevity has yet to be established. The powerful effect of reduced GH activity on lifespan extension in mice has generated the hypothesis that pharmaceutically inhibiting, rather than increasing, GH action might delay ageing. Moreover, mice as well as humans with reduced activity of the GH/IGF-1 axis are protected from cancer and diabetes mellitus, two major ageing-related morbidities. Here, we review data on mouse strains with alterations in the GH/IGF-1 axis and their effects on lifespan. The outcome of corresponding or similar mutations in humans is described, as well as the potential mechanisms underlying increased longevity and the therapeutic benefits and risks of medical disruption of the GH/IGF-1 axis in humans.
Collapse
Affiliation(s)
- Riia K Junnila
- Edison Biotechnology Institute, Ohio University, 1 Water Tower Drive, The Ridges (R. K. Junnila, E. O. List, D. E. Berryman, J. J. Kopchick), Department of Radiology, O'Bleness Hospital, 55 Hospital Drive, (J. W. Murrey), Athens, OH 45701, USA
| | - Edward O List
- Edison Biotechnology Institute, Ohio University, 1 Water Tower Drive, The Ridges (R. K. Junnila, E. O. List, D. E. Berryman, J. J. Kopchick), Department of Radiology, O'Bleness Hospital, 55 Hospital Drive, (J. W. Murrey), Athens, OH 45701, USA
| | - Darlene E Berryman
- Edison Biotechnology Institute, Ohio University, 1 Water Tower Drive, The Ridges (R. K. Junnila, E. O. List, D. E. Berryman, J. J. Kopchick), Department of Radiology, O'Bleness Hospital, 55 Hospital Drive, (J. W. Murrey), Athens, OH 45701, USA
| | - John W Murrey
- Edison Biotechnology Institute, Ohio University, 1 Water Tower Drive, The Ridges (R. K. Junnila, E. O. List, D. E. Berryman, J. J. Kopchick), Department of Radiology, O'Bleness Hospital, 55 Hospital Drive, (J. W. Murrey), Athens, OH 45701, USA
| | - John J Kopchick
- Edison Biotechnology Institute, Ohio University, 1 Water Tower Drive, The Ridges (R. K. Junnila, E. O. List, D. E. Berryman, J. J. Kopchick), Department of Radiology, O'Bleness Hospital, 55 Hospital Drive, (J. W. Murrey), Athens, OH 45701, USA
| |
Collapse
|
57
|
Abstract
It has been known for millennia that large animals live longer, inspiring numerous theories of aging. For example, elephants and humans live longer than mice, which in turn live longer than worms and flies. The correlation is not perfect, with many explainable exceptions, but it is still obvious. In contrast, within each species (e.g., mice and some other mammals) small body size is associated with longevity and slow aging. The concept that aging (and age-related diseases) is an aimless continuation of developmental growth, a hyperfunction driven by the same nutrient-sensing and growth-promoting pathways such as MTOR, may explain this longstanding paradox.
Collapse
Affiliation(s)
- Mikhail V Blagosklonny
- Department of Cell Stress Biology, Roswell Park Cancer Institute, BLSC, L3-312, Elm and Carlton Streets, Buffalo, NY 14263, USA.
| |
Collapse
|
58
|
Bartke A, Sun LY, Longo V. Somatotropic signaling: trade-offs between growth, reproductive development, and longevity. Physiol Rev 2013; 93:571-98. [PMID: 23589828 PMCID: PMC3768106 DOI: 10.1152/physrev.00006.2012] [Citation(s) in RCA: 214] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Growth hormone (GH) is a key determinant of postnatal growth and plays an important role in the control of metabolism and body composition. Surprisingly, deficiency in GH signaling delays aging and remarkably extends longevity in laboratory mice. In GH-deficient and GH-resistant animals, the "healthspan" is also extended with delays in cognitive decline and in the onset of age-related disease. The role of hormones homologous to insulin-like growth factor (IGF, an important mediator of GH actions) in the control of aging and lifespan is evolutionarily conserved from worms to mammals with some homologies extending to unicellular yeast. The combination of reduced GH, IGF-I, and insulin signaling likely contributes to extended longevity in GH or GH receptor-deficient organisms. Diminutive body size and reduced fecundity of GH-deficient and GH-resistant mice can be viewed as trade-offs for extended longevity. Mechanisms responsible for delayed aging of GH-related mutants include enhanced stress resistance and xenobiotic metabolism, reduced inflammation, improved insulin signaling, and various metabolic adjustments. Pathological excess of GH reduces life expectancy in men as well as in mice, and GH resistance or deficiency provides protection from major age-related diseases, including diabetes and cancer, in both species. However, there is yet no evidence of increased longevity in GH-resistant or GH-deficient humans, possibly due to non-age-related deaths. Results obtained in GH-related mutant mice provide striking examples of mutations of a single gene delaying aging, reducing age-related disease, and extending lifespan in a mammal and providing novel experimental systems for the study of mechanisms of aging.
Collapse
Affiliation(s)
- Andrzej Bartke
- Southern Illinois University School of Medicine, Department of Internal Medicine, Geriatric Research, Springfield, Illinois 62703, USA.
| | | | | |
Collapse
|
59
|
Bartke A, Westbrook R, Sun L, Ratajczak M. Links between growth hormone and aging. ENDOKRYNOLOGIA POLSKA 2013; 64:46-52. [PMID: 23450447 PMCID: PMC3647466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Studies in mutant, gene knock-out and transgenic mice have demonstrated that growth hormone (GH) signalling has a major impact on ageing and longevity. Growth hormone-resistant and GH-deficient animals live much longer than their normal siblings, while transgenic mice overexpressing GH are short lived. Actions of GH in juvenile animals appear to be particularly important for life extension and responsible for various phenotypic characteristics of long-lived hypopituitary mutants. Available evidence indicates that reduced GH signalling is linked to extended longevity by multiple interacting mechanisms including increased stress resistance, reduced growth, altered profiles of cytokines produced by the adipose tissue, and various metabolic adjustments such as enhanced insulin sensitivity, increased oxygen consumption (VO2/g) and reduced respiratory quotient. The effects of removing visceral fat indicate that increased levels of adiponectin and reduced levels of pro-inflammatory cytokines in GH-resistant mice are responsible for their increased insulin sensitivity. Increased VO2 apparently represents increased energy expenditure for thermogenesis, because VO2 of mutant and normal mice does not differ at thermoneutral temperature. Recent studies identified GH- and IGF-1-dependent maintenance of bone marrow populations of very small embryonic-like stem cells (VSELs) as another likely mechanism of delayed ageing and increased longevity of GH-deficient and GH-resistant animals. Many of the physiological characteristics of long-lived, GH-related mouse mutants are shared by exceptionally long-lived people and by individuals genetically predisposed to longevity.
Collapse
Affiliation(s)
- Andrzej Bartke
- Department of Internal Medicine, Southern Illinois University School of Medicine, Springfield, IL 62794, United States.
| | | | | | | |
Collapse
|
60
|
Abstract
Adapted from a whitepaper written for the Healthspan Campaign, sponsored by the Alliance for Aging Research.
Collapse
Affiliation(s)
- David Stipp
- Aging/Impact Journals LLC; Arlington, MA USA
| |
Collapse
|
61
|
Steinbaugh MJ, Sun LY, Bartke A, Miller RA. Activation of genes involved in xenobiotic metabolism is a shared signature of mouse models with extended lifespan. Am J Physiol Endocrinol Metab 2012; 303:E488-95. [PMID: 22693205 PMCID: PMC3423099 DOI: 10.1152/ajpendo.00110.2012] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Xenobiotic metabolism has been proposed to play a role in modulating the rate of aging. Xenobiotic metabolizing enzymes (XME) are expressed at higher levels in calorically restricted mice (CR) and in GH/IGF-I-deficient, long-lived mutant mice. In this study, we show that many phase I XME genes are similarly upregulated in additional long-lived mouse models, including "crowded litter" (CL) mice, whose lifespan has been increased by food restriction limited to the first 3 wk of life, and in mice treated with rapamycin. Induction in the CL mice lasts at least through 22 mo of age, but induction by rapamycin is transient for many of the mRNAs. Cytochrome P-450s, flavin monooxygenases, hydroxyacid oxidase, and metallothioneins were found to be significantly elevated in similar proportions in each of the models of delayed aging tested, whether these were based on mutation, diet, drug treatment, or transient early intervention. The same pattern of mRNA elevation could be induced by 2 wk of treatment with tert-butylhydroquinone, an oxidative toxin known to activate Nrf2-dependent target genes. These results suggest that elevation of phase I XMEs is a hallmark of long-lived mice and may facilitate screens for agents worth testing in intervention-based lifespan studies.
Collapse
Affiliation(s)
- Michael J Steinbaugh
- Cellular and Molecular Biology Graduate Program, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | | | |
Collapse
|
62
|
Wilkinson JE, Burmeister L, Brooks SV, Chan CC, Friedline S, Harrison DE, Hejtmancik JF, Nadon N, Strong R, Wood LK, Woodward MA, Miller RA. Rapamycin slows aging in mice. Aging Cell 2012; 11:675-82. [PMID: 22587563 PMCID: PMC3434687 DOI: 10.1111/j.1474-9726.2012.00832.x] [Citation(s) in RCA: 483] [Impact Index Per Article: 40.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Rapamycin increases lifespan in mice, but whether this represents merely inhibition of lethal neoplastic diseases, or an overall slowing in multiple aspects of aging is currently unclear. We report here that many forms of age-dependent change, including alterations in heart, liver, adrenal glands, endometrium, and tendon, as well as age-dependent decline in spontaneous activity, occur more slowly in rapamycin-treated mice, suggesting strongly that rapamycin retards multiple aspects of aging in mice, in addition to any beneficial effects it may have on neoplastic disease. We also note, however, that mice treated with rapamycin starting at 9 months of age have significantly higher incidence of testicular degeneration and cataracts; harmful effects of this kind will guide further studies on timing, dosage, and tissue-specific actions of rapamycin relevant to the development of clinically useful inhibitors of TOR action.
Collapse
Affiliation(s)
- John E. Wilkinson
- Unit for Laboratory Animal Medicine and Department of Pathology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Lisa Burmeister
- Department of Pathology and Geriatrics Center, University of Michigan, Ann Arbor, MI 48109-2200, USA
| | - Susan V. Brooks
- Department of Molecular and Integrative Physiology and Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109-2200, USA
| | - Chi-Chao Chan
- Histology Core, National Eye Institute, NIH, Bethesda, MD 20892-2510, USA
| | - Sabrina Friedline
- Department of Pathology and Geriatrics Center, University of Michigan, Ann Arbor, MI 48109-2200, USA
| | | | - James F. Hejtmancik
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, NIH, Bethesda, MD 20892-2510, USA
| | - Nancy Nadon
- Division of Aging Biology, National Institute on Aging, Bethesda, MD 20892, USA
| | - Randy Strong
- Geriatric Research, Education and Clinical Center and Research Service, South Texas Veterans Health Care System, Department of Pharmacology, and Barshop Institute for Longevity and Aging Studies at The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA
| | - Lauren K. Wood
- Department of Molecular and Integrative Physiology and Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109-2200, USA
| | - Maria A. Woodward
- Department of Ophthalmology, W. K. Kellogg Eye Center, Ann Arbor, MI 48105, USA
| | - Richard A. Miller
- Department of Pathology and Geriatrics Center, University of Michigan, Ann Arbor, MI 48109-2200, USA
| |
Collapse
|
63
|
Brown-Borg HM, Bartke A. GH and IGF1: roles in energy metabolism of long-living GH mutant mice. J Gerontol A Biol Sci Med Sci 2012; 67:652-60. [PMID: 22466316 PMCID: PMC3348496 DOI: 10.1093/gerona/gls086] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Of the multiple theories to explain exceptional longevity, the most robust of these has centered on the reduction of three anabolic protein hormones, growth hormone (GH), insulin-like growth factor, and insulin. GH mutant mice live 50% longer and exhibit significant differences in several aspects of energy metabolism as compared with wild-type mice. Mitochondrial metabolism is upregulated in the absence of GH, whereas in GH transgenic mice and dwarf mice treated with GH, multiple aspects of these pathways are suppressed. Core body temperature is markedly lower in dwarf mice, yet whole-body metabolism, as measured by indirect calorimetry, is surprisingly higher in Ames dwarf and Ghr-/- mice compared with normal controls. Elevated adiponectin, a key antiinflammatory cytokine, is also very likely to contribute to longevity in these mice. Thus, several important components related to energy metabolism are altered in GH mutant mice, and these differences are likely critical in aging processes and life-span extension.
Collapse
Affiliation(s)
- Holly M Brown-Borg
- Department of Pharmacology, Physiology & Therapeutics, School of Medicine & Health Sciences, University of North Dakota, 501 North Columbia Road, Grand Forks, ND 58202-9037, USA.
| | | |
Collapse
|
64
|
Abstract
Individual mutations in mice can slow aging: They extend life span by retarding a wide range of harmful, age-dependent changes in multiple cells and tissues. Evolutionary changes-by definition, changes in DNA sequence-can lead to even more dramatic postponement of age-dependent deterioration. Genetic variation within a species, for example among breeds of dogs, can also lead to major changes in aging rate, although there is not yet any strong evidence for similar genetic variation that modulates aging in rodents or humans. This essay compares different strategies for using genetic information to clarify questions in biogerontology, suggesting an emphasis on genes that can retard multiple forms of age-dependent dysfunction in parallel.
Collapse
Affiliation(s)
- Richard A Miller
- Department of Pathology and Geriatrics Center, University of Michigan, Ann Arbor, MI 48109-2200, USA.
| |
Collapse
|
65
|
Mason EJ, Grell JA, Wan J, Cohen P, Conover CA. Insulin-like growth factor (IGF)-I and IGF-II contribute differentially to the phenotype of pregnancy associated plasma protein-A knock-out mice. Growth Horm IGF Res 2011; 21:243-247. [PMID: 21802327 PMCID: PMC3171618 DOI: 10.1016/j.ghir.2011.06.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2011] [Revised: 06/29/2011] [Accepted: 06/30/2011] [Indexed: 11/28/2022]
Abstract
CONTEXT Insulin-like growth factor (IGF) signaling is essential for achieving optimal body size during fetal development, peak bone mass during puberty, and maximal fecundity in the reproductive period. IGF-II is considered the main fetal IGF, whereas IGF-I is more important postnatally. Pregnancy-associated plasma protein-A (PAPP-A) enhances local IGF signaling through cleavage of inhibitory IGF binding proteins. Conversely, inhibition of PAPP-A results in reduced local IGF action. Thus, PAPP-A knock-out (KO) mice are born as proportional dwarfs due to the dysregulation of IGF-II signaling during early embryogenesis that impacts body size. Relaxation of IgfII imprinting through mutation of a reciprocally imprinted downstream gene, H19, which allowed transcription of IGF-II from the normally silent maternal allele, rescued the dwarf phenotype of PAPP-A KO mice. OBJECTIVE To determine the effect of increased IGF-II expression on postnatal phenotypes of PAPP-A KO mice. DESIGN Young adult wild-type (WT), PAPP-A KO, H19 mutant (ΔH19/WT) and ΔH19/PAPP-A KO mice were characterized for skeletal phenotype (peripheral quantitative computed tomography at the midshaft and distal metaphysis of the femur) and reproductive phenotype (time to first litter, time between litters, pups per litter). RESULTS Serum IGF-II levels were significantly increased in ΔH19/WT and ΔH19/PAPP-A KO mice compared to WT and PAPP-A KO mice; serum IGF-I levels were not affected by H19 mutation. PAPP-A KO mice had reductions in cortical thickness and in cortical and trabecular area, bone mineral content and bone mineral density compared to WT mice. There were no significant differences between PAPP-A KO and ΔH19/PAPP-A KO mice in any of the bone parameters. PAPP-A KO crossed with (×) PAPP-A KO had a longer time until first litter, normal time between subsequent litters, and significantly reduced number of pups per litter compared to WT×WT. ΔH19/PAPP-A KO×ΔH19/PAPP-A KO had an even longer time to first litter, but also longer time between litters. This phenotype was associated with female ΔH19/PAPP-A KO mice. Furthermore, these ΔH19/PAPP-A KO mouse mothers failed to care for their pups. CONCLUSIONS An increase in IGF-II expression did not rescue the skeletal and reproductive deficiencies associated with reduced local IGF-I signaling in PAPP-A KO mice. In addition, the data suggest a potential new role for genomic imprinting at the IgfII/H19 locus affecting maternal behavior.
Collapse
Affiliation(s)
- Emily J. Mason
- The Division of Endocrinology, Metabolism, and Nutrition, Endocrine Research Unit, Mayo Clinic College of Medicine, Rochester, MN 55905
| | - Jacquelyn A. Grell
- The Division of Endocrinology, Metabolism, and Nutrition, Endocrine Research Unit, Mayo Clinic College of Medicine, Rochester, MN 55905
| | - Junxiang Wan
- Division of Endocrinology, Department of Pediatrics, Mattell Children’s Hospital at UCLA, Los Angeles, CA 90095-1742
| | - Pinchas Cohen
- Division of Endocrinology, Department of Pediatrics, Mattell Children’s Hospital at UCLA, Los Angeles, CA 90095-1742
| | - Cheryl A. Conover
- The Division of Endocrinology, Metabolism, and Nutrition, Endocrine Research Unit, Mayo Clinic College of Medicine, Rochester, MN 55905
| |
Collapse
|
66
|
Omodei D, Fontana L. Calorie restriction and prevention of age-associated chronic disease. FEBS Lett 2011; 585:1537-42. [PMID: 21402069 PMCID: PMC3439843 DOI: 10.1016/j.febslet.2011.03.015] [Citation(s) in RCA: 190] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Revised: 03/04/2011] [Accepted: 03/07/2011] [Indexed: 12/23/2022]
Abstract
Life expectancy in the world has increased dramatically during the last century; the number of older adults is expected to rise while the number of youths will decline in the near future. This demographic shift has considerable public health and economic implications since aging is associated with the development of serious chronic diseases. Calorie restriction (CR) is the most effective nutritional intervention for slowing aging and preventing chronic disease in rodents. In non-human and human primates, CR with adequate nutrition protects against abdominal obesity, diabetes, hypertension and cardiovascular diseases. Cancer morbidity and mortality are also diminished in CR monkeys, and data obtained from individuals practicing long-term CR show a reduction of metabolic and hormonal factors associated with increased cancer risk.
Collapse
Affiliation(s)
- Daniela Omodei
- Division of Geriatrics and Nutritional Science and Center for Human Nutrition, Washington University School of Medicine, St. Louis, Missouri, USA
- CEINGE Biotecnologie Avanzate, Napoli, Italy
| | - Luigi Fontana
- Division of Geriatrics and Nutritional Science and Center for Human Nutrition, Washington University School of Medicine, St. Louis, Missouri, USA
- Division of Nutrition and Aging, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
67
|
Miller RA, Kreider J, Galecki A, Goldstein SA. Preservation of femoral bone thickness in middle age predicts survival in genetically heterogeneous mice. Aging Cell 2011; 10:383-91. [PMID: 21276183 DOI: 10.1111/j.1474-9726.2011.00671.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
To see whether age-related changes in bone could predict subsequent lifespan, we measured multiple aspects of femur size and shape at 4, 15, and 24 months of age in genetically heterogeneous mice. Mice whose cortical bone became thicker from 4 to 15 months, associated with preservation of the endosteal perimeter, survived longer than mice whose endosteal cavity expanded, at the expense of cortical bone, over this age range. Femur size at age 4 months was also associated with a difference in life expectancy: mice with larger bones (measured by length, cortical thickness, or periosteal perimeter) had shorter lifespans. Femur length, midlife change in cortical bone thickness, and midlife values of CD8 T memory cells each added significant power for longevity prediction. Mice in the upper half of the population for each of these three endpoints lived, on average, 103 days (12%) longer than mice with the opposite characteristics. Thus, measures of young adult bone dimensions, changes as a result of bone remodeling in middle age, and immunological maturation provide partially independent indices of aging processes that together help to determine lifespan in genetically heterogeneous mice.
Collapse
Affiliation(s)
- Richard A Miller
- Department of Pathology and Geriatrics Center, University of Michigan, Ann Arbor, USA.
| | | | | | | |
Collapse
|
68
|
Selman C, Withers DJ. Mammalian models of extended healthy lifespan. Philos Trans R Soc Lond B Biol Sci 2011; 366:99-107. [PMID: 21115536 PMCID: PMC3001304 DOI: 10.1098/rstb.2010.0243] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Over the last two centuries, there has been a significant increase in average lifespan expectancy in the developed world. One unambiguous clinical implication of getting older is the risk of experiencing age-related diseases including various cancers, dementia, type-2 diabetes, cataracts and osteoporosis. Historically, the ageing process and its consequences were thought to be intractable. However, over the last two decades or so, a wealth of empirical data has been generated which demonstrates that longevity in model organisms can be extended through the manipulation of individual genes. In particular, many pathological conditions associated with the ageing process in model organisms, and importantly conserved from nematodes to humans, are attenuated in long-lived genetic mutants. For example, several long-lived genetic mouse models show attenuation in age-related cognitive decline, adiposity, cancer and glucose intolerance. Therefore, these long-lived mice enjoy a longer period without suffering the various sequelae of ageing. The greatest challenge in the biology of ageing is to now identify the mechanisms underlying increased healthy lifespan in these model organisms. Given that the elderly are making up an increasingly greater proportion of society, this focused approach in model organisms should help identify tractable interventions that can ultimately be translated to humans.
Collapse
Affiliation(s)
- Colin Selman
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen AB24 2TZ, UK
| | | |
Collapse
|
69
|
Bartke A. Single-gene mutations and healthy ageing in mammals. Philos Trans R Soc Lond B Biol Sci 2011; 366:28-34. [PMID: 21115527 DOI: 10.1098/rstb.2010.0281] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Studies of the effects of single-gene mutations on longevity in Caenorhabditis elegans, Drosophila melanogaster and Mus musculus identified homologous, highly conserved signalling pathways that influence ageing. In each of these very distantly related species, single mutations which lead-directly or indirectly-to reduced insulin, insulin-like growth factor (IGF) or insulin/IGF-like signalling (IIS) can produce significant increases in both average and maximal lifespan. In mice, most of the life-extending mutations described to date reduce somatotropic (growth hormone (GH) and IGF-1) signalling. The reported extensions of longevity are most robust in GH-deficient and GH-resistant mice, while suppression of somatotropic signalling 'downstream' of the GH receptor produces effects that are generally smaller and often limited to female animals. This could be due to GH influencing ageing by both IGF-1-mediated and IGF-1-independent mechanisms. In mutants that have been examined in some detail, increased longevity is associated with various indices of delayed ageing and extended 'healthspan'. The mechanisms that probably underlie the extension of both lifespan and healthspan of these animals include increased stress resistance, improved antioxidant defences, alterations in insulin signalling (e.g. hypoinsulinaemia combined with improved insulin sensitivity in some mutants and insulin resistance in others), a shift from pro- to anti-inflammatory profile of circulating adipokines, reduced mammalian target of rapamycin-mediated translation and altered mitochondrial function including greater utilization of lipids when compared with carbohydrates.
Collapse
Affiliation(s)
- Andrzej Bartke
- Department of Physiology, Southern Illinois University School of Medicine, 801 North Rutledge Street, Room 4389, Springfield, IL 62794-9628, USA.
| |
Collapse
|
70
|
Replication of extended lifespan phenotype in mice with deletion of insulin receptor substrate 1. PLoS One 2011; 6:e16144. [PMID: 21283571 PMCID: PMC3026792 DOI: 10.1371/journal.pone.0016144] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Accepted: 12/14/2010] [Indexed: 01/01/2023] Open
Abstract
We previously reported that global deletion of insulin receptor substrate protein 1 (Irs1) extends lifespan and increases resistance to several age-related pathologies in female mice. However, no effect on lifespan was observed in male Irs1 null mice. We suggested at the time that the lack of any effect in males might have been due to a sample size issue. While such lifespan studies are essential to our understanding of the aging process, they are generally based on survival curves derived from single experiments, primarily due to time and economic constraints. Consequently, the robustness of such findings as a basis for further investigation has been questioned. We have therefore measured lifespan in a second, separate cohort of Irs1 null female mice, and show that, consistent with our previous finding, global deletion of Irs1 significantly extends lifespan in female mice. In addition, an augmented and completed study demonstrates lifespan extension in male Irs1 null mice. Therefore, we show that reduced IRS1-dependent signalling is a robust mechanism through which mammalian lifespan can be modulated.
Collapse
|
71
|
Kamrava M, Gius D, Casagrande G, Kohn E. Will targeting insulin growth factor help us or hurt us?: An oncologist's perspective. Ageing Res Rev 2011; 10:62-70. [PMID: 19896561 PMCID: PMC2888889 DOI: 10.1016/j.arr.2009.10.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2009] [Revised: 10/22/2009] [Accepted: 10/28/2009] [Indexed: 12/17/2022]
Abstract
The insulin/insulin growth factor (IGF) pathway is a critical mediator of longevity and aging. Efforts to extend longevity by altering the insulin/IGF pathway may have varying effects on other physiological processes. Reduced insulin/IGF levels may decrease the incidence of certain cancers as well as the risk of developing metastatic disease. However, it may also increase the risk of developing cardiovascular disease as well as cardiovascular related mortality. Pursuing the right insulin/IGF pathway targets will require striking a balance between inhibiting cancer cell development and progression and avoiding damage to tissues under normal insulin/IGF-mediated control. This review will discuss the roles of the insulin/IGF pathway in aging and longevity and the development of cancer cell metastasis and considerations in taking insulin/IGF directed targets to the oncology clinic.
Collapse
Affiliation(s)
- Mitchell Kamrava
- Molecular Radiation Oncology Section, Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute
| | - David Gius
- Molecular Radiation Oncology Section, Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute
| | - Giovanna Casagrande
- Medical Oncology Branch, Center for Cancer Research, National Cancer Institute
| | - Elise Kohn
- Medical Oncology Branch, Center for Cancer Research, National Cancer Institute
| |
Collapse
|
72
|
Abstract
The two paradigms to study aging in Saccharomyces cerevisiae are the chronological life span (CLS) and the replicative life span (RLS). The chronological life span is a measure of the mean and maximum survival time of non-dividing yeast populations while the replicative life span is based on the mean and maximum number of daughter cells generated by an individual mother cell before cell division stops irreversibly. Here we review the principal discoveries associated with yeast chronological aging and how they are contributing to the understanding of the aging process and of the molecular mechanisms that may lead to healthy aging in mammals. We will focus on the mechanisms of life span regulation by the Tor/Sch9 and the Ras/adenylate Ras/adenylate cyclase/PKA pathways with particular emphasis on those implicating age-dependent oxidative oxidative stress stress and DNA damage/repair.
Collapse
Affiliation(s)
- Valter D Longo
- Department of Biological Sciences, Andrus Gerontology Center, University of Southern California, Los Angeles, CA, 90089-0191, USA,
| | | |
Collapse
|
73
|
Allard JB, Duan C. Comparative endocrinology of aging and longevity regulation. Front Endocrinol (Lausanne) 2011; 2:75. [PMID: 22654825 PMCID: PMC3356063 DOI: 10.3389/fendo.2011.00075] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Accepted: 10/28/2011] [Indexed: 01/06/2023] Open
Abstract
Hormones regulate growth, development, metabolism, and other complex processes in multicellular animals. For many years it has been suggested that hormones may also influence the rate of the aging process. Aging is a multifactorial process that causes biological systems to break down and cease to function in adult organisms as time passes, eventually leading to death. The exact underlying causes of the aging process remain a topic for debate, and clues that may shed light on these causes are eagerly sought after. In the last two decades, gene mutations that result in delayed aging and extended longevity have been discovered, and many of the affected genes have been components of endocrine signaling pathways. In this review we summarize the current knowledge on the roles of endocrine signaling in the regulation of aging and longevity in various animals. We begin by discussing the notion that conserved systems, including endocrine signaling pathways, "regulate" the aging process. Findings from the major model organisms: worms, flies, and rodents, are then outlined. Unique lessons from studies of non-traditional models: bees, salmon, and naked mole rats, are also discussed. Finally, we summarize the endocrinology of aging in humans, including changes in hormone levels with age, and the involvement of hormones in aging-related diseases. The most well studied and widely conserved endocrine pathway that affects aging is the insulin/insulin-like growth factor system. Mutations in genes of this pathway increase the lifespan of worms, flies, and mice. Population genetic evidence also suggests this pathway's involvement in human aging. Other hormones including steroids have been linked to aging only in a subset of the models studied. Because of the value of comparative studies, it is suggested that the aging field could benefit from adoption of additional model organisms.
Collapse
Affiliation(s)
- John B. Allard
- Department of Molecular, Cellular, and Developmental Biology, University of MichiganAnn Arbor, MI, USA
| | - Cunming Duan
- Department of Molecular, Cellular, and Developmental Biology, University of MichiganAnn Arbor, MI, USA
- *Correspondence: Cunming Duan, Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Natural Science Building, Ann Arbor, MI 48109, USA. e-mail:
| |
Collapse
|
74
|
Rae MJ, Butler RN, Campisi J, de Grey ADNJ, Finch CE, Gough M, Martin GM, Vijg J, Perrott KM, Logan BJ. The demographic and biomedical case for late-life interventions in aging. Sci Transl Med 2010; 2:40cm21. [PMID: 20630854 DOI: 10.1126/scitranslmed.3000822] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The social and medical costs of the biological aging process are high and will rise rapidly in coming decades, creating an enormous challenge to societies worldwide. In recent decades, researchers have expanded their understanding of the underlying deleterious structural and physiological changes (aging damage) that underlie the progressive functional impairments, declining health, and rising mortality of aging humans and other organisms and have been able to intervene in the process in model organisms, even late in life. To preempt a global aging crisis, we advocate an ambitious global initiative to translate these findings into interventions for aging humans, using three complementary approaches to retard, arrest, and even reverse aging damage, extending and even restoring the period of youthful health and functionality of older people.
Collapse
Affiliation(s)
- Michael J Rae
- Strategies for Engineered Negligible Senescence (SENS) Foundation, Sunnyvale, CA 94089, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Robertson HT, Smith DL, Pajewski NM, Weindruch RH, Garland T, Argyropoulos G, Bokov A, Allison DB. Can rodent longevity studies be both short and powerful? J Gerontol A Biol Sci Med Sci 2010; 66:279-86. [PMID: 21051569 DOI: 10.1093/gerona/glq190] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Many rodent experiments have assessed effects of diets, drugs, genes, and other factors on life span. A challenge with such experiments is their long duration, typically over 3.5 years given rodent life spans, thus requiring significant time costs until answers are obtained. We collected longevity data from 15 rodent studies and artificially truncated them at 2 years to assess the extent to which one will obtain the same answer regarding mortality effects. When truncated, the point estimates were not significantly different in any study, implying that in most cases, truncated studies yield similar estimates. The median ratio of variances of coefficients for truncated to full-length studies was 3.4, implying that truncated studies with roughly 3.4 times as many rodents will often have equivalent or greater power. Cost calculations suggest that shorter studies will be more expensive but perhaps not so much to not be worth the reduced time.
Collapse
Affiliation(s)
- Henry T Robertson
- Section on Statistical Genetics, Department of Biostatistics, University of Alabama at Birmingham, Birmingham, AL 35294-0022, USA
| | | | | | | | | | | | | | | |
Collapse
|
76
|
Panici JA, Harper JM, Miller RA, Bartke A, Spong A, Masternak MM. Early life growth hormone treatment shortens longevity and decreases cellular stress resistance in long-lived mutant mice. FASEB J 2010; 24:5073-9. [PMID: 20720157 DOI: 10.1096/fj.10-163253] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Hypopituitary Ames dwarf mice were injected either with growth hormone (GH) or thyroxine for a 6-wk period to see whether this intervention would reverse their long life span or the resistance of their cells to lethal stresses. Ames dwarf mice survived 987 ± 24 d (median), longer than nonmutant control mice (664 ± 48), but GH-injected dwarf mice did not differ from controls (707 ± 9). Fibroblast cells from Ames dwarf mice were more resistant to cadmium than cells from nonmutant controls (LD(50) values of 9.98 ± 1.7 and 3.9 ± 0.8, respectively), but GH injections into Ames dwarf mice restored the normal level of cadmium resistance (LD(50)=5.8 ± 0.9). Similar restoration of normal resistance was observed for fibroblasts exposed to paraquat, methyl methanesulfonate, and rotenone (P<0.05 in each case for contrast of GH-treated vs. untreated dwarf mice; P<0.05 for dwarf vs. nonmutant control mice.) T4 injections into Ames dwarf mice, in contrast, did not restore normal life span. We conclude that the remarkable life-span extension of Ames dwarf mice, and the stress resistance of cells from these mice, depends on low levels of GH exposure in juvenile and very young adult mice.
Collapse
Affiliation(s)
- Jacob A Panici
- Department of Internal Medicine, Geriatrics Research, Southern Illinois University School of Medicine, Springfield, Illinois, USA
| | | | | | | | | | | |
Collapse
|
77
|
Panici JA, Harper JM, Miller RA, Bartke A, Spong A, Masternak MM. Early life growth hormone treatment shortens longevity and decreases cellular stress resistance in long‐lived mutant mice. FASEB J 2010. [DOI: 10.1096/fj.10.163253] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jacob A. Panici
- Department of Internal MedicineGeriatrics Research, Southern Illinois University School of Medicine Springfield Illinois USA
| | - James M. Harper
- Department of Pathology and Geriatrics CenterUniversity of Michigan Ann Arbor Michigan USA
| | - Richard A. Miller
- Department of Pathology and Geriatrics CenterUniversity of Michigan Ann Arbor Michigan USA
- Ann Arbor Veterans Affairs Medical Center Geriatrics Research Education and Clinical Center Ann Arbor Michigan USA
| | - Andrzej Bartke
- Department of Internal MedicineGeriatrics Research, Southern Illinois University School of Medicine Springfield Illinois USA
| | - Adam Spong
- Department of Internal MedicineGeriatrics Research, Southern Illinois University School of Medicine Springfield Illinois USA
| | - Michal M. Masternak
- Department of Internal MedicineGeriatrics Research, Southern Illinois University School of Medicine Springfield Illinois USA
- Polish Academy of SciencesInstitute of Human Genetics Poznan Poland
| |
Collapse
|
78
|
Conover CA, Bale LK, Mader JR, Mason MA, Keenan KP, Marler RJ. Longevity and age-related pathology of mice deficient in pregnancy-associated plasma protein-A. J Gerontol A Biol Sci Med Sci 2010; 65:590-9. [PMID: 20351075 DOI: 10.1093/gerona/glq032] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The pregnancy-associated plasma protein-A knockout (PAPP-A KO) mouse is a model of reduced local insulin-like growth factor (IGF)-I activity with normal circulating IGF-I levels. In this study, PAPP-A KO mice had significantly increased mean (27%), median (27%), and maximum (35%) life span compared with wild-type (WT) littermates. End-of-life pathology indicated that the incidence of neoplastic disease was not significantly different in the two groups of mice; however, it occurred in older aged PAPP-A KO compared with WT mice. Furthermore, PAPP-A KO mice were less likely to show degenerative changes of age. Scheduled pathologies at 78, 104, and 130 weeks of age indicated that WT mice, in general, had more degenerative changes and tumors earlier than PAPP-A KO mice. This was particularly true for abnormalities in heart, testes, brain, kidney, spleen, and thymus. In summary, the major contributors to the extended life span of PAPP-A KO mice are delayed occurrence of fatal neoplasias and decreased incidence of age-related degenerative changes.
Collapse
Affiliation(s)
- Cheryl A Conover
- The Division of Endocrinology and Metabolism, Department of Medicine, Mayo Clinic, 200 First Street SW, 5-194 Joseph, Rochester, MN 55905, USA.
| | | | | | | | | | | |
Collapse
|
79
|
Louis A, Bartke A, Masternak MM. Effects of growth hormone and thyroxine replacement therapy on insulin signaling in Ames dwarf mice. J Gerontol A Biol Sci Med Sci 2010; 65:344-52. [PMID: 20200088 DOI: 10.1093/gerona/glq018] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Ames dwarf (Prop1(df), df/df) mice lack growth hormone (GH), prolactin, and thyrotropin and live remarkably longer than their normal siblings. Significance of reduced activity of the somatotropic and thyroid axes during development and adulthood on longevity are unknown. Because enhanced insulin sensitivity and reduced insulin levels are among likely mechanisms responsible for increased longevity in these mutants, we compared the effects of GH and thyroxine (T4) replacement on various parameters related to insulin signaling in young and old male df/df mice. The results suggest that altered plasma adiponectin and insulin-like growth factor-1 (IGF-1) and hepatic IGF-1, insulin receptor (IR), IR substrate-1, peroxisome proliferator-activated receptor (PPAR) gamma, and PPARgamma coactivator-1 alpha may contribute to increased insulin sensitivity in Ames dwarfs. The stimulatory effect of GH and T4 treatment on plasma insulin and inhibitory effect on expression of hepatic glucose transporter-2 were greater in old than in young dwarfs. These results indicate that GH and T4 treatment has differential impact on insulin signaling during development and adulthood.
Collapse
Affiliation(s)
- Audreen Louis
- Department of Internal Medicine, Division of Geriatric Research, School of Medicine, Southern Illinois University, 801 N. Rutledge, Room 4389, PO Box 19628, Springfield, IL 62794-9628, USA
| | | | | |
Collapse
|
80
|
Salmon AB, Richardson A, Pérez VI. Update on the oxidative stress theory of aging: does oxidative stress play a role in aging or healthy aging? Free Radic Biol Med 2010; 48:642-55. [PMID: 20036736 PMCID: PMC2819595 DOI: 10.1016/j.freeradbiomed.2009.12.015] [Citation(s) in RCA: 302] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2009] [Revised: 12/14/2009] [Accepted: 12/18/2009] [Indexed: 12/22/2022]
Abstract
The oxidative stress theory of aging predicts that manipulations that alter oxidative stress/damage will alter aging. The gold standard for determining whether aging is altered is life span, i.e., does altering oxidative stress/damage change life span? Mice with genetic manipulations in their antioxidant defense system designed to directly address this prediction have, with few exceptions, shown no change in life span. However, when these transgenic/knockout mice are tested using models that develop various types of age-related pathology, they show alterations in progression and/or severity of pathology as predicted by the oxidative stress theory: increased oxidative stress accelerates pathology and reduced oxidative stress retards pathology. These contradictory observations might mean that (a) oxidative stress plays a very limited, if any, role in aging but a major role in health span and/or (b) the role that oxidative stress plays in aging depends on environment. In environments with minimal stress, as expected under optimal husbandry, oxidative damage plays little role in aging. However, under chronic stress, including pathological phenotypes that diminish optimal health, oxidative stress/damage plays a major role in aging. Under these conditions, enhanced antioxidant defenses exert an "antiaging" action, leading to changes in life span, age-related pathology, and physiological function as predicted by the oxidative stress theory of aging.
Collapse
Affiliation(s)
- Adam B Salmon
- The Sam and Ann Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229, USA.
| | | | | |
Collapse
|
81
|
Longo VD, Fontana L. Calorie restriction and cancer prevention: metabolic and molecular mechanisms. Trends Pharmacol Sci 2010; 31:89-98. [PMID: 20097433 DOI: 10.1016/j.tips.2009.11.004] [Citation(s) in RCA: 261] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2009] [Revised: 11/18/2009] [Accepted: 11/18/2009] [Indexed: 12/16/2022]
Abstract
An important discovery of recent years has been that lifestyle and environmental factors affect cancer initiation, promotion and progression, suggesting that many malignancies are preventable. Epidemiological studies strongly suggest that excessive adiposity, decreased physical activity, and unhealthy diets are key players in the pathogenesis and prognosis of many common cancers. In addition, calorie restriction (CR), without malnutrition, has been shown to be broadly effective in cancer prevention in laboratory strains of rodents. Adult-onset moderate CR also reduces cancer incidence by 50% in monkeys. Whether the antitumorigenic effects of CR will apply to humans is unknown, but CR results in a consistent reduction in circulating levels of growth factors, anabolic hormones, inflammatory cytokines and oxidative stress markers associated with various malignancies. Here, we discuss the link between nutritional interventions and cancer prevention with focus on the mechanisms that might be responsible for these effects in simple systems and mammals with a view to developing chemoprevention agents.
Collapse
Affiliation(s)
- Valter D Longo
- The Andrus Gerontology Center, University of Southern California, Los Angeles, CA, USA.
| | | |
Collapse
|
82
|
Olshansky SJ, Goldman DP, Zheng Y, Rowe JW. Aging in America in the twenty-first century: demographic forecasts from the MacArthur Foundation Research Network on an Aging Society. Milbank Q 2010; 87:842-62. [PMID: 20021588 DOI: 10.1111/j.1468-0009.2009.00581.x] [Citation(s) in RCA: 101] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
CONTEXT The aging of the baby boom generation, the extension of life, and progressive increases in disability-free life expectancy have generated a dramatic demographic transition in the United States. Official government forecasts may, however, have inadvertently underestimated life expectancy, which would have major policy implications, since small differences in forecasts of life expectancy produce very large differences in the number of people surviving to an older age. This article presents a new set of population and life expectancy forecasts for the United States, focusing on transitions that will take place by midcentury. METHODS Forecasts were made with a cohort-components methodology, based on the premise that the risk of death will be influenced in the coming decades by accelerated advances in biomedical technology that either delay the onset and age progression of major fatal diseases or that slow the aging process itself. FINDINGS Results indicate that the current forecasts of the U.S. Social Security Administration and U.S. Census Bureau may underestimate the rise in life expectancy at birth for men and women combined, by 2050, from 3.1 to 7.9 years. CONCLUSIONS The cumulative outlays for Medicare and Social Security could be higher by $3.2 to $8.3 trillion relative to current government forecasts. This article discusses the implications of these results regarding the benefits and costs of an aging society and the prospect that health disparities could attenuate some of these changes.
Collapse
|
83
|
Rozing MP, Westendorp RGJ, de Craen AJM, Frölich M, Heijmans BT, Beekman M, Wijsman C, Mooijaart SP, Blauw GJ, Slagboom PE, van Heemst D. Low serum free triiodothyronine levels mark familial longevity: the Leiden Longevity Study. J Gerontol A Biol Sci Med Sci 2009; 65:365-8. [PMID: 20018826 DOI: 10.1093/gerona/glp200] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND The hypothalamo-pituitary-thyroid axis has been widely implicated in modulating the aging process. Life extension effects associated with low thyroid hormone levels have been reported in multiple animal models. In human populations, an association was observed between low thyroid function and longevity at old age, but the beneficial effects of low thyroid hormone metabolism at middle age remain elusive. METHODS We have compared serum thyroid hormone function parameters in a group of middle-aged offspring of long-living nonagenarian siblings and a control group of their partners, all participants of the Leiden Longevity Study. RESULTS When compared with their partners, the group of offspring of nonagenarian siblings showed a trend toward higher serum thyrotropin levels (1.65 vs157 mU/L, p = .11) in conjunction with lower free thyroxine levels (15.0 vs 15.2 pmol/L, p = .045) and lower free triiodothyronine levels (4.08 vs 4.14 pmol/L, p = .024). CONCLUSIONS Compared with their partners, the group of offspring of nonagenarian siblings show a lower thyroidal sensitivity to thyrotropin. These findings suggest that the favorable role of low thyroid hormone metabolism on health and longevity in model organism is applicable to humans as well.
Collapse
Affiliation(s)
- Maarten P Rozing
- Department of Gerontology and Geriatrics, Leiden University Medical Center, PO Box 9600, 2300 RC, Leiden, The Netherlands
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Masternak MM, Panici JA, Wang F, Wang Z, Spong A. The effects of growth hormone (GH) treatment on GH and insulin/IGF-1 signaling in long-lived Ames dwarf mice. J Gerontol A Biol Sci Med Sci 2009; 65:24-30. [PMID: 19906822 DOI: 10.1093/gerona/glp172] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The disruption of the growth hormone (GH) axis in mice promotes insulin sensitivity and is strongly correlated with extended longevity. Ames dwarf (Prop1(df), df/df) mice are GH, prolactin (PRL), and thyrotropin (TSH) deficient and live approximately 50% longer than their normal siblings. To investigate the effects of GH on insulin and GH signaling pathways, we subjected these dwarf mice to twice-daily GH injections (6 microg/g/d) starting at the age of 2 weeks and continuing for 6 weeks. This produced the expected activation of the GH signaling pathway and stimulated somatic growth of the Ames dwarf mice. However, concomitantly with increased growth and increased production of insulinlike growth factor-1, the GH treatment strongly inhibited the insulin signaling pathway by decreasing insulin sensitivity of the dwarf mice. This suggests that improving growth of these animals may negatively affect both their healthspan and longevity by causing insulin resistance.
Collapse
Affiliation(s)
- Michal M Masternak
- Department of Internal Medicine, Geriatrics Research, Southern Illinois University School of Medicine, 801 N. Rutledge, Springfield, IL 62794-9628, USA.
| | | | | | | | | |
Collapse
|
85
|
Fontana L. Modulating human aging and age-associated diseases. BIOCHIMICA ET BIOPHYSICA ACTA 2009; 1790:1133-8. [PMID: 19364477 PMCID: PMC2829866 DOI: 10.1016/j.bbagen.2009.02.002] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2008] [Revised: 02/02/2009] [Accepted: 02/03/2009] [Indexed: 12/23/2022]
Abstract
Population aging is progressing rapidly in many industrialized countries. The United States population aged 65 and over is expected to double in size within the next 25 years. In sedentary people eating Western diets aging is associated with the development of serious chronic diseases, including type 2 diabetes mellitus, cancer and cardiovascular diseases. About 80% of adults over 65 years of age have at least one chronic disease, and 50% have at least two chronic diseases. These chronic diseases are the most important cause of illness and mortality burden, and they have become the leading driver of healthcare costs, constituting an important burden for our society. Data from epidemiological studies and clinical trials indicate that many age-associated chronic diseases can be prevented, and even reversed, with the implementation of healthy lifestyle interventions. Several recent studies suggest that more drastic interventions (i.e. calorie restriction without malnutrition and moderate protein restriction with adequate nutrition) may have additional beneficial effects on several metabolic and hormonal factors that are implicated in the biology of aging itself. Additional studies are needed to understand the complex interactions of factors that regulate aging and age-associated chronic disease.
Collapse
Affiliation(s)
- Luigi Fontana
- Division of Geriatrics and Nutritional Science and Center for Human Nutrition, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
86
|
Madia F, Wei M, Yuan V, Hu J, Gattazzo C, Pham P, Goodman MF, Longo VD. Oncogene homologue Sch9 promotes age-dependent mutations by a superoxide and Rev1/Polzeta-dependent mechanism. ACTA ACUST UNITED AC 2009; 186:509-23. [PMID: 19687253 PMCID: PMC2733759 DOI: 10.1083/jcb.200906011] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Oncogenes contribute to tumorigenesis by promoting growth and inhibiting apoptosis. Here we examine the function of Sch9, the Saccharomyces cerevisiae homologue of the mammalian Akt and S6 kinase, in DNA damage and genomic instability during aging in nondividing cells. Attenuation of age-dependent increases in base substitutions, small DNA insertions/deletions, and gross chromosomal rearrangements (GCRs) in sch9Δ mutants is associated with increased mitochondrial superoxide dismutase (MnSOD) expression, decreased DNA oxidation, reduced REV1 expression and translesion synthesis, and elevated resistance to oxidative stress-induced mutagenesis. Deletion of REV1, the lack of components of the error-prone Polζ, or the overexpression of SOD1 or SOD2 is sufficient to reduce age-dependent point mutations in SCH9 overexpressors, but REV1 deficiency causes a major increase in GCRs. These results suggest that the proto-oncogene homologue Sch9 promotes the accumulation of superoxide-dependent DNA damage in nondividing cells, which induces error-prone DNA repair that generates point mutations to avoid GCRs and cell death during the first round of replication.
Collapse
Affiliation(s)
- Federica Madia
- Andrus Gerontology Center and Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
| | | | | | | | | | | | | | | |
Collapse
|
87
|
Ladiges W, Van Remmen H, Strong R, Ikeno Y, Treuting P, Rabinovitch P, Richardson A. Lifespan extension in genetically modified mice. Aging Cell 2009; 8:346-52. [PMID: 19485964 DOI: 10.1111/j.1474-9726.2009.00491.x] [Citation(s) in RCA: 86] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Major advances in aging research have been made by studying the effect of genetic modifications on the lifespan of organisms, such as yeast, invertebrates (worms and flies) and mice. Data from yeast and invertebrates have been the most plentiful because of the ease in which genetic manipulations can be made and the rapidity by which lifespan experiments can be performed. With the ultimate focus on advancing human health, testing genetic interventions in mammals is crucial, and the mouse has proven to be the mammal most amenable to this task. Lifespan studies in mice are resource intensive, requiring up to 4 years to complete. Therefore, it is critical that a set of scientifically-based criteria be followed to assure reliable results and establish statistically significant findings so other laboratories can replicate and build on the data. Only then will it be possible to confidently determine that the genetic modification extends lifespan and alters aging.
Collapse
Affiliation(s)
- Warren Ladiges
- Department of Comparative Medicine, University of Washington, Seattle, 98195, USA.
| | | | | | | | | | | | | |
Collapse
|
88
|
The somatotropic axis and aging: mechanisms and persistent questions about practical implications. Exp Gerontol 2009; 44:372-4. [PMID: 19371777 DOI: 10.1016/j.exger.2009.04.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2009] [Accepted: 04/08/2009] [Indexed: 12/27/2022]
Abstract
Reduced somatotropic (GH/IGF-1) signaling delays aging and extends longevity in laboratory mice. However, it is unclear whether the physiological decrease of GH and IGF-1 levels with age represents a symptom of declining neuroendocrine function, a cause of age-related alterations in body composition and functionality or a protective mechanism against age-associated disease. Although available clinical evidence does not support the use of recombinant GH as an anti-aging therapy, many studies suggest the potential utility of GH and GH secretagogues in the treatment of sarcopenia and frailty.
Collapse
|
89
|
Endocrine regulation of heat shock protein mRNA levels in long-lived dwarf mice. Mech Ageing Dev 2009; 130:393-400. [PMID: 19428459 DOI: 10.1016/j.mad.2009.03.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Revised: 03/12/2009] [Accepted: 03/28/2009] [Indexed: 11/22/2022]
Abstract
Heat shock proteins (HSPs) maintain proteostasis and may protect against age-associated pathology caused by protein malfolding. In Caenorhabditis elegans, the lifespan extension and thermotolerance in mutants with impaired insulin/IGF signals depend partly on HSP elevation. Less is known about the role of HSPs in the increased lifespan of mice with defects in GH/IGF-I pathways. We measured HSP mRNAs in liver, kidney, heart, lung, muscle and cerebral cortex from long-lived Pit1(dw/dw) Snell dwarf mice. We found many significant differences in HSP mRNA levels between dwarf and control mice, but these effects were complex and organ-specific. We noted 15 instances where HSP mRNAs were lower in Pit1(dw/dw) liver, kidney, or heart tissues, and 14/15 of these were also seen in Ghr(-/-) mice, which lack GH receptor. In contrast, of 12 examples where HSP mRNAs were higher in Snell liver, kidney, or heart, none were altered in Ghr(-/-) mice. Four liver mRNAs were depressed in both Pit1(dw/dw) and Ghr(-/-) mice, and each of these was elevated by GH injection in Ames (Prop1(df/df)) dwarf mice, consistent with the hypothesis that these declines depended on GH and/or IGF-I. Contributions of chaperones to longevity in mice may be more complex than those inferred from C. elegans.
Collapse
|
90
|
Masternak MM, Panici JA, Bonkowski MS, Hughes LF, Bartke A. Insulin sensitivity as a key mediator of growth hormone actions on longevity. J Gerontol A Biol Sci Med Sci 2009; 64:516-21. [PMID: 19304940 DOI: 10.1093/gerona/glp024] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Reduced insulin sensitivity and glucose intolerance have been long suspected of having important involvement in aging. Here we report that in studies of calorie restriction (CR) effects in mutant (Prop1(df) and growth hormone receptor knockout [GHRKO]) and normal mice, insulin sensitivity was strongly associated with longevity. Of particular interest was enhancement of the already increased insulin sensitivity in CR df/df mice in which longevity was also further extended and the lack of changes in insulin sensitivity in calorically restricted GHRKO mice in which there was no further increase in average life span. We suggest that enhanced insulin sensitivity, in conjunction with reduced insulin levels, may represent an important (although almost certainly not exclusive) mechanism of increased longevity in hypopituitary, growth hormone (GH)-resistant, and calorie-restricted animals. We also report that the effects of GH treatment on insulin sensitivity may be limited to the period of GH administration.
Collapse
Affiliation(s)
- Michal M Masternak
- Department of Internal Medicine, Southern Illinois University School of Medicine, Springfield, IL 62794, USA.
| | | | | | | | | |
Collapse
|
91
|
Abstract
PURPOSE OF THE REVIEW The present review discusses the current state of knowledge regarding the effects of calorie restriction in modulating metabolism and aging. RECENT FINDINGS There are currently no interventions or gene manipulations that can prevent, stop or reverse the aging process. However, there are a number of interventions that can slow down aging and prolong maximal lifespan up to 60% in experimental animals. Long-term calorie restriction without malnutrition and reduced function mutations in the insulin/IGF-1 signaling pathway are the most robust interventions known to increase maximal lifespan and healthspan in rodents. Although it is currently not known if long-term calorie restriction with adequate nutrition extends maximal lifespan in humans, we do know that long-term calorie restriction without malnutrition results in some of the same metabolic and hormonal adaptations related to longevity in calorie restriction rodents. Moreover, calorie restriction with adequate nutrition protects against obesity, type 2 diabetes, hypertension and atherosclerosis, which are leading causes of morbidity, disability and mortality. SUMMARY More studies are needed to elucidate the molecular mechanisms underlying the beneficial effects of calorie restriction in humans and to characterize new markers of aging/longevity that can assist clinicians in predicting mortality and morbidity of the general population.
Collapse
|
92
|
Ikeno Y, Hubbard GB, Lee S, Cortez LA, Lew CM, Webb CR, Berryman DE, List EO, Kopchick JJ, Bartke A. Reduced incidence and delayed occurrence of fatal neoplastic diseases in growth hormone receptor/binding protein knockout mice. J Gerontol A Biol Sci Med Sci 2009; 64:522-9. [PMID: 19228785 DOI: 10.1093/gerona/glp017] [Citation(s) in RCA: 181] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Although studies of Ames and Snell dwarf mice have suggested possible important roles of the growth hormone (GH)/insulin-like growth factor-1 (IGF-1) axis in aging and age-related diseases, the results cannot rule out the possibility of other hormonal changes playing an important role in the life extension exhibited by these dwarf mice. Therefore, growth hormone receptor/binding protein (GHR/BP) knockout (KO) mice would be valuable animals to directly assess the roles of somatotropic axis in aging and age-related diseases because the primary hormonal change is due to GH/IGF-1 deficiency. Our pathological findings showed GHR/BP KO mice to have a lower incidence and delayed occurrence of fatal neoplastic lesions compared with their wild-type littermates. These changes of fatal neoplasms are similar to the effects observed with calorie restriction and therefore could possibly be a major contributing factor to the extended life span observed in the GHR/BP KO mice.
Collapse
Affiliation(s)
- Yuji Ikeno
- Barshop Institute for Longevity and Aging Studies, San Antonio, TX 78245-3207, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
93
|
Miller RA. "Dividends" from research on aging--can biogerontologists, at long last, find something useful to do? J Gerontol A Biol Sci Med Sci 2009; 64:157-60. [PMID: 19225032 DOI: 10.1093/gerona/gln062] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Biogerontologists and demographers have argued that the fastest, most cost-effective strategies for prevention of the medical problems that afflict those older than 60 years are likely to emerge from a deeper understanding of what factors time the aging process and how aging leads, in rough synchrony, to the many diseases and disabilities of aging. Biologists can support and refine this discussion by studies of slow-aging mice, of mice with disease-promoting mutations, of mice in which specific cellular responses have been abrogated by genetic or pharmaceutical interventions, of slow-aging dog and horse breeds, and of the factors, genetic and physiological, that coordinate lethal and nonlethal consequences of aging in people. More work is also needed to learn how timing of antiaging interventions can be used to optimize the balance between beneficial and undesirable effects.
Collapse
Affiliation(s)
- Richard A Miller
- Department of Pathology and Geriatrics Center, Ann Arbor VA Medical Center, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI 48109-2200, USA.
| |
Collapse
|
94
|
Buffenstein R, Pinto M. Endocrine function in naturally long-living small mammals. Mol Cell Endocrinol 2009; 299:101-11. [PMID: 18674586 PMCID: PMC4399555 DOI: 10.1016/j.mce.2008.04.021] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2008] [Accepted: 04/11/2008] [Indexed: 12/19/2022]
Abstract
The complex, highly integrative endocrine system regulates all aspects of somatic maintenance and reproduction and has been widely implicated as an important determinant of longevity in short-lived traditional model organisms of aging research. Genetic or experimental manipulation of hormone profiles in mice has been proven to definitively alter longevity. These hormonally induced lifespan extension mechanisms may not necessarily be relevant to humans and other long-lived organisms that naturally show successful slow aging. Long-lived species may have evolved novel anti-aging defenses germane to naturally retarding the aging process. Here, we examine the available endocrine data associated with the vitamin D, insulin, glucocorticoid and thyroid endocrine systems of naturally long-living small mammals. Generally, long-living rodents and bats maintain tightly regulated lower basal levels of these key pleiotropic hormones than shorter lived rodents. Similarities with genetically manipulated long-lived rodent models of aging suggest that evolutionary well-conserved hormonal mechanisms are integrally involved in lifespan determination.
Collapse
Affiliation(s)
- Rochelle Buffenstein
- The Sam and Ann Barshop Institute for Longevity and Aging Studies & Department of Physiology, University of Texas Health Science Center at San Antonio, TX 78245, United States.
| | | |
Collapse
|
95
|
Brown-Borg HM. Hormonal control of aging in rodents: the somatotropic axis. Mol Cell Endocrinol 2009; 299:64-71. [PMID: 18674587 PMCID: PMC4390024 DOI: 10.1016/j.mce.2008.07.001] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2008] [Revised: 04/20/2008] [Accepted: 07/03/2008] [Indexed: 01/08/2023]
Abstract
There is a growing body of literature focusing on the somatotropic axis and regulation of aging and longevity. Many of these reports derive data from multiple endocrine mutants, those that exhibit both elevated growth hormone (GH) and insulin-like growth factor I (IGF-1) or deficiencies in one or both of these hormones. In general, both spontaneous and genetically engineered GH and IGF-1 deficiencies have lead to small body size, delayed development of sexual maturation and age-related pathology, and life span extension. In contrast, characteristics of high circulating GH included larger body sizes, early puberty and reproductive senescence, increased cancer incidence and reduced life span when compared to wild-type animals with normal plasma hormone concentrations. This information, along with that found in multiple other species, implicates this anabolic pathway as the major regulator of longevity in animals.
Collapse
Affiliation(s)
- Holly M Brown-Borg
- Department of Pharmacology, Physiology & Therapeutics, University of North Dakota School of Medicine & Health Sciences, 501 North Columbia Road, Grand Forks, ND 58203, United States.
| |
Collapse
|
96
|
Abstract
Recent studies in diverse organisms implicate proto-oncogenic pathways, including insulin-like growth factor-I (IGF-I), Ras and AKT/protein kinase B in the ageing process. Although IGF-I is thought to contribute to cancer by promoting growth and preventing apoptosis, evidence from model organisms suggests that proto-oncogene homologues might contribute to the DNA mutations and chromosomal damage that are observed in tumour cells by increasing DNA damage, in both dividing and non-dividing cells, and involving error-prone systems in DNA repair. This raises the possibility that cancer can be reduced by chronic downregulation of pro-ageing pathways.
Collapse
Affiliation(s)
- Valter D Longo
- Andrus Gerontology Center, Molecular and Computational Biology Department, University of Southern California, 3715 McClintock Avenue, Los Angeles, California 90089-0191, USA.
| | | | | |
Collapse
|
97
|
Swindell WR. Accelerated failure time models provide a useful statistical framework for aging research. Exp Gerontol 2008; 44:190-200. [PMID: 19007875 DOI: 10.1016/j.exger.2008.10.005] [Citation(s) in RCA: 85] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2008] [Revised: 09/21/2008] [Accepted: 10/17/2008] [Indexed: 12/21/2022]
Abstract
Survivorship experiments play a central role in aging research and are performed to evaluate whether interventions alter the rate of aging and increase lifespan. The accelerated failure time (AFT) model is seldom used to analyze survivorship data, but offers a potentially useful statistical approach that is based upon the survival curve rather than the hazard function. In this study, AFT models were used to analyze data from 16 survivorship experiments that evaluated the effects of one or more genetic manipulations on mouse lifespan. Most genetic manipulations were found to have a multiplicative effect on survivorship that is independent of age and well-characterized by the AFT model "deceleration factor". AFT model deceleration factors also provided a more intuitive measure of treatment effect than the hazard ratio, and were robust to departures from modeling assumptions. Age-dependent treatment effects, when present, were investigated using quantile regression modeling. These results provide an informative and quantitative summary of survivorship data associated with currently known long-lived mouse models. In addition, from the standpoint of aging research, these statistical approaches have appealing properties and provide valuable tools for the analysis of survivorship data.
Collapse
Affiliation(s)
- William R Swindell
- Departments of Pathology and Geriatrics, University of Michigan, Ann Arbor, MI 48109-2200, USA.
| |
Collapse
|
98
|
Salmon AB, Sadighi Akha AA, Buffenstein R, Miller RA. Fibroblasts from naked mole-rats are resistant to multiple forms of cell injury, but sensitive to peroxide, ultraviolet light, and endoplasmic reticulum stress. J Gerontol A Biol Sci Med Sci 2008; 63:232-41. [PMID: 18375872 DOI: 10.1093/gerona/63.3.232] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Fibroblasts from long-lived mutant mice are resistant to many forms of lethal injury as well as to the metabolic effects of rotenone and low-glucose medium. Here we evaluated fibroblasts from young adult naked mole-rats (NMR; Heterocephalus glaber), a rodent species in which maximal longevity exceeds 28 years. Compared to mouse cells, NMR cells were resistant to cadmium, methyl methanesulfonate, paraquat, heat, and low-glucose medium, consistent with the idea that cellular resistance to stress may contribute to disease resistance and longevity. Surprisingly, NMR cells were more sensitive than mouse cells to H(2)O(2), ultraviolet (UV) light, and rotenone. NMR cells, like cells from Snell dwarf mice, were more sensitive to tunicamycin and thapsigargin, which interfere with the function of the endoplasmic reticulum (ER stress). The sensitivity of both Snell dwarf and NMR cells to ER stress suggests that alterations in the unfolded protein response might modulate cell survival and aging rate.
Collapse
Affiliation(s)
- Adam B Salmon
- Cellular and Molecular Biology Graduate Program, University of Michigan, Ann Arbor, MI, USA
| | | | | | | |
Collapse
|
99
|
Salmon AB, Ljungman M, Miller RA. Cells from long-lived mutant mice exhibit enhanced repair of ultraviolet lesions. J Gerontol A Biol Sci Med Sci 2008; 63:219-31. [PMID: 18375871 DOI: 10.1093/gerona/63.3.219] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Fibroblasts isolated from long-lived hypopituitary dwarf mice are resistant to many cell stresses, including ultraviolet (UV) light and methyl methane sulfonate (MMS), which induce cell death by producing DNA damage. Here we report that cells from Snell dwarf mice recover more rapidly than controls from the inhibition of RNA synthesis induced by UV damage. Recovery of messenger RNA (mRNA) synthesis in particular is more rapid in dwarf cells, suggesting enhanced repair of the actively transcribing genes in dwarf-derived cells. At early time points, there was no difference in the repair of cyclobutane pyrimidine dimers (CPD) or 6-4 photoproducts (6-4PP) in the whole genome, nor was there any significant difference in the repair of UV lesions in specific genes. However, at later time points we found that more lesions had been removed from the genome of dwarf-derived cells. We have also found that cells from dwarf mice express higher levels of the nucleotide excision repair proteins XPC and CSA, suggesting a causal link to enhanced DNA repair. Overall, these data suggest a mechanism for the UV resistance of Snell dwarf-derived fibroblasts that could contribute to the delay of aging and neoplasia in these mice.
Collapse
Affiliation(s)
- Adam B Salmon
- Cellular and Molecular Biology Graduate Program, University of Michigan Comprehensive Cancer Center, University of Michigan Medical School, Ann Arbor, MI, USA
| | | | | |
Collapse
|
100
|
Martin-Gronert MS, Tarry-Adkins JL, Cripps RL, Chen JH, Ozanne SE. Maternal protein restriction leads to early life alterations in the expression of key molecules involved in the aging process in rat offspring. Am J Physiol Regul Integr Comp Physiol 2007; 294:R494-500. [PMID: 18094069 DOI: 10.1152/ajpregu.00530.2007] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recent findings demonstrate that nutrition during the fetal and neonatal periods can affect the life span of an organism. Our previous studies in rodents using a maternal low protein diet have shown that limiting protein and growth during lactation [postnatal low protein (PLP group)] increases longevity, while in utero growth restriction (IUGR) followed by "catch up growth" (recuperated group) shortens life span. The aim of this study was to investigate mechanisms in early postnatal life that could underlie these substantial differences in longevity. At weaning, PLP animals had improved insulin sensitivity as suggested by lower concentrations of insulin required to maintain concentrations of glucose similar to those of the control group and significant upregulation of insulin receptor-beta, IGF-1 receptor, Akt1, Akt2, and Akt phosphorylated at Ser 473 in the kidney. These animals also had significantly increased SIRT1 (mammalian sirtuin) expression. Expression of the antioxidant enzymes catalase, CuZnSOD, and glutathione peroxidase-1 was elevated in these animals. In contrast, recuperated animals had a significantly increased fasting glucose concentration, while insulin levels remained comparable to those of the control group suggesting relative insulin resistance. MnSOD expression was increased in these animals. These data suggest that early nutrition can lead to alterations in insulin sensitivity and antioxidant capacity very early in life, which may influence life span.
Collapse
Affiliation(s)
- Malgorzata S Martin-Gronert
- Department of Clinical Biochemistry, Metabolic Research Laboratories, Institute of Metabolic Science, University of Cambridge, Addenbrooke's Hospital, Cambridge, UK.
| | | | | | | | | |
Collapse
|