51
|
Picca A, Lozanoska-Ochser B, Calvani R, Coelho-Júnior HJ, Leewenburgh C, Marzetti E. Inflammatory, mitochondrial, and senescence-related markers: Underlying biological pathways of muscle aging and new therapeutic targets. Exp Gerontol 2023; 178:112204. [PMID: 37169101 DOI: 10.1016/j.exger.2023.112204] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/04/2023] [Accepted: 05/09/2023] [Indexed: 05/13/2023]
Abstract
The maintenance of functional health is pivotal for achieving independent life in older age. The aged muscle is characterized by ultrastructural changes, including loss of type I and type II myofibers and a greater proportion of cytochrome c oxidase deficient and succinate dehydrogenase positive fibers. Both intrinsic (e.g., altered proteostasis, DNA damage, and mitochondrial dysfunction) and extrinsic factors (e.g., denervation, altered metabolic regulation, declines in satellite cells, and inflammation) contribute to muscle aging. Being a hub for several cellular activities, mitochondria are key to myocyte viability and mitochondrial dysfunction has been implicated in age-associated physical decline. The maintenance of functional organelles via mitochondrial quality control (MQC) processes is, therefore, crucial to skeletal myofiber viability and organismal health. The autophagy-lysosome pathway has emerged as a critical step of MQC in muscle by disposing organelles and proteins via their tagging for autophagosome incorporation and delivery to the lysosome for clearance. This pathway was found to be altered in muscle of physically inactive older adults. A relationship between this pathway and muscle tissue composition of the lower extremities as well as physical performance was also identified. Therefore, integrating muscle structure and myocyte quality control measures in the evaluation of muscle health may be a promising strategy for devising interventions fostering muscle health.
Collapse
Affiliation(s)
- Anna Picca
- Department of Medicine and Surgery, LUM University, Casamassima, 70100 Bari, Italy; Fondazione Policlinico Universitario "Agostino Gemelli" IRCSS, 00168 Rome, Italy
| | - Biliana Lozanoska-Ochser
- Department of Medicine and Surgery, LUM University, Casamassima, 70100 Bari, Italy; DAHFMO Unit of Histology and Medical Embryology, Sapienza University of Rome, 00161 Rome, Italy
| | - Riccardo Calvani
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCSS, 00168 Rome, Italy; Department of Geriatrics and Orthopedics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy.
| | - Hélio José Coelho-Júnior
- Department of Geriatrics and Orthopedics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | | | - Emanuele Marzetti
- Fondazione Policlinico Universitario "Agostino Gemelli" IRCSS, 00168 Rome, Italy; Department of Geriatrics and Orthopedics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| |
Collapse
|
52
|
Panza F, Solfrizzi V, Sardone R, Dibello V, Castellana F, Zupo R, Stallone R, Lampignano L, Bortone I, Mollica A, Berardino G, Ruan Q, Altamura M, Bellomo A, Daniele A, Lozupone M. Depressive and Biopsychosocial Frailty Phenotypes: Impact on Late-life Cognitive Disorders. J Alzheimers Dis 2023:JAD230312. [PMID: 37355907 DOI: 10.3233/jad-230312] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2023]
Abstract
In older age, frailty is a detrimental transitional status of the aging process featuring an increased susceptibility to stressors defined by a clinical reduction of homoeostatic reserves. Multidimensional frailty phenotypes have been associated with all-cause dementia, mild cognitive impairment (MCI), Alzheimer's disease (AD), AD neuropathology, vascular dementia, and non-AD dementias. In the present article, we reviewed current evidence on the existing links among depressive and biopsychosocial frailty phenotypes and late-life cognitive disorders, also examining common pathways and mechanisms underlying these links. The depressive frailty phenotype suggested by the construct of late-life depression (LLD) plus physical frailty is poorly operationalized. The biopsychosocial frailty phenotype, with its coexistent biological/physical and psychosocial dimensions, defines a biological aging status and includes motivational, emotional, and socioeconomic domains. Shared biological pathways/substrates among depressive and biopsychosocial frailty phenotypes and late-life cognitive disorders are hypothesized to be inflammatory and cardiometabolic processes, together with multimorbidity, loneliness, mitochondrial dysfunction, dopaminergic neurotransmission, specific personality traits, lack of subjective/objective social support, and neuroendocrine dysregulation. The cognitive frailty phenotype, combining frailty and cognitive impairment, may be a risk factor for LLD and vice versa, and a construct of depressive frailty linking physical frailty and LLD may be a good dementia predictor. Frailty assessment may enable clinicians to better target the pharmacological and psychological treatment of LLD. Given the epidemiological links of biopsychosocial frailty with dementia and MCI, multidomain interventions might contribute to delay the onset of late-life cognitive disorders and other adverse health-related outcomes, such as institutionalization, more frequent hospitalization, disability, and mortality.
Collapse
Affiliation(s)
- Francesco Panza
- Unit of Research Methodology and Data Sciences for Population Health, National Institute of Gastroenterology "Saverio de Bellis", Research Hospital, Castellana Grotte, Bari, Italy
- "Cesare Frugoni" Internal and Geriatric Medicine and Memory Unit, University of Bari "Aldo Moro", Bari, Italy
| | - Vincenzo Solfrizzi
- "Cesare Frugoni" Internal and Geriatric Medicine and Memory Unit, University of Bari "Aldo Moro", Bari, Italy
| | - Rodolfo Sardone
- Unit of Research Methodology and Data Sciences for Population Health, National Institute of Gastroenterology "Saverio de Bellis", Research Hospital, Castellana Grotte, Bari, Italy
| | - Vittorio Dibello
- "Cesare Frugoni" Internal and Geriatric Medicine and Memory Unit, University of Bari "Aldo Moro", Bari, Italy
- Department of Orofacial Pain and Dysfunction, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Fabio Castellana
- Unit of Research Methodology and Data Sciences for Population Health, National Institute of Gastroenterology "Saverio de Bellis", Research Hospital, Castellana Grotte, Bari, Italy
| | - Roberta Zupo
- Unit of Research Methodology and Data Sciences for Population Health, National Institute of Gastroenterology "Saverio de Bellis", Research Hospital, Castellana Grotte, Bari, Italy
| | - Roberta Stallone
- Neuroscience and Education, Human Resources Excellence in Research, University of Foggia, Foggia, Italy
| | - Luisa Lampignano
- Unit of Research Methodology and Data Sciences for Population Health, National Institute of Gastroenterology "Saverio de Bellis", Research Hospital, Castellana Grotte, Bari, Italy
| | - Ilaria Bortone
- Unit of Research Methodology and Data Sciences for Population Health, National Institute of Gastroenterology "Saverio de Bellis", Research Hospital, Castellana Grotte, Bari, Italy
| | - Anita Mollica
- Psychiatric Unit, Department of Clinical & Experimental Medicine, University of Foggia, Foggia, Italy
| | - Giuseppe Berardino
- Psychiatric Unit, Department of Clinical & Experimental Medicine, University of Foggia, Foggia, Italy
| | - Qingwei Ruan
- Laboratory of Aging, Anti-aging & Cognitive Performance, Shanghai Institute of Geriatrics and Gerontology, Huadong Hospital, Fudan University, Shanghai, China
- Shanghai Key Laboratory of Clinical Geriatrics, Huadong Hospital, Shanghai Medical 14 College, Fudan University, Shanghai, China
| | - Mario Altamura
- Psychiatric Unit, Department of Clinical & Experimental Medicine, University of Foggia, Foggia, Italy
| | - Antonello Bellomo
- Psychiatric Unit, Department of Clinical & Experimental Medicine, University of Foggia, Foggia, Italy
| | - Antonio Daniele
- Department of Neuroscience, Catholic University of Sacred Heart, Rome, Italy
- Neurology Unit, IRCCS Fondazione Policlinico Universitario A. Gemelli, Rome, Italy
| | - Madia Lozupone
- Department of Translational Biomedicine and Neuroscience "DiBraiN", University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
53
|
Newman AB. The Epidemiology and Societal Impact of Aging-Related Functional Limitations: A Looming Public Health Crisis. J Gerontol A Biol Sci Med Sci 2023; 78:4-7. [PMID: 37325965 PMCID: PMC10272977 DOI: 10.1093/gerona/glad021] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Indexed: 06/17/2023] Open
Abstract
Functional impairment and disability become increasingly common with aging. As more people are reaching old age, the number of people needing care will rise, creating a crisis of need for care. Population studies and clinical trials have demonstrated the importance of the detection of early loss of strength and walking speed in predicting disability and in designing interventions to prevent functional decline. There is a large societal burden linked to age-related disorders. Physical activity is to date the only intervention that has prevented disability in a long-term clinical trial, but is difficult to sustain. Novel interventions are needed to maintain function in late life.
Collapse
Affiliation(s)
- Anne B Newman
- Department of Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania,USA
| |
Collapse
|
54
|
Dioh W, Narkar V, Singh A, Malik F, Ferrucci L, Tourette C, Mariani J, van Maanen R, Fielding RA. Novel Potential Targets for Function-Promoting Therapies: Orphan Nuclear Receptors, Anti-inflammatory Drugs, Troponin Activators, Mas Receptor Agonists, and Urolithin A. J Gerontol A Biol Sci Med Sci 2023; 78:44-52. [PMID: 37325960 PMCID: PMC10272986 DOI: 10.1093/gerona/glad072] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Indexed: 06/17/2023] Open
Abstract
In recent years, several new classes of therapies have been investigated with their potential for restoring or improving physical functioning in older adults. These have included Mas receptor agonists, regulators of mitophagy, skeletal muscle troponin activators, anti-inflammatory compounds, and targets of orphan nuclear receptors. The present article summarizes recent developments of the function-promoting effects of these exciting new compounds and shares relevant preclinical and clinical data related to their safety and efficacy. The development of novel compounds in this area is expanding and likely will need the advent of a new treatment paradigm for age-associated mobility loss and disability.
Collapse
Affiliation(s)
| | - Vihang Narkar
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, The University of Texas Health Science Center (UTHealth), Houston, Texas, USA
| | | | - Fady Malik
- Cytokinetics, Inc., San Francisco, California, USA
| | - Luigi Ferrucci
- National Institute on Aging, National Institutes of Health, U.S. Department of Health and Human Services, Baltimore, Maryland, USA
| | | | - Jean Mariani
- Biophytis, UMPC—BC9, Paris, France
- Sorbonne Université, CNRS—Institute de Biologie Paris Seine (UMR B2A), Paris, France
| | | | - Roger A Fielding
- Nutrition, Exercise Physiology, and Sarcopenia Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, Massachusetts, USA
| |
Collapse
|
55
|
Hinkley JM, Yu G, Standley RA, Distefano G, Tolstikov V, Narain NR, Greenwood BP, Karmacharya S, Kiebish MA, Carnero EA, Yi F, Vega RB, Goodpaster BH, Gardell SJ, Coen PM. Exercise and ageing impact the kynurenine/tryptophan pathway and acylcarnitine metabolite pools in skeletal muscle of older adults. J Physiol 2023; 601:2165-2188. [PMID: 36814134 PMCID: PMC10278663 DOI: 10.1113/jp284142] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 02/14/2023] [Indexed: 02/24/2023] Open
Abstract
Exercise-induced perturbation of skeletal muscle metabolites is a probable mediator of long-term health benefits in older adults. Although specific metabolites have been identified to be impacted by age, physical activity and exercise, the depth of coverage of the muscle metabolome is still limited. Here, we investigated resting and exercise-induced metabolite distribution in muscle from well-phenotyped older adults who were active or sedentary, and a group of active young adults. Percutaneous biopsies of the vastus lateralis were obtained before, immediately after and 3 h following a bout of endurance cycling. Metabolite profile in muscle biopsies was determined by tandem mass spectrometry. Mitochondrial energetics in permeabilized fibre bundles was assessed by high resolution respirometry and fibre type proportion was assessed by immunohistology. We found that metabolites of the kynurenine/tryptophan pathway were impacted by age and activity. Specifically, kynurenine was elevated in muscle from older adults, whereas downstream metabolites of kynurenine (kynurenic acid and NAD+ ) were elevated in muscle from active adults and associated with cardiorespiratory fitness and muscle oxidative capacity. Acylcarnitines, a potential marker of impaired metabolic health, were elevated in muscle from physically active participants. Surprisingly, despite baseline group difference, acute exercise-induced alterations in whole-body substrate utilization, as well as muscle acylcarnitines and ketone bodies, were remarkably similar between groups. Our data identified novel muscle metabolite signatures that associate with the healthy ageing phenotype provoked by physical activity and reveal that the metabolic responsiveness of muscle to acute endurance exercise is retained [NB]:AUTHOR: Please ensure that the appropriate material has been provide for Table S2, as well as for Figures S1 to S7, as also cited in the text with age regardless of activity levels. KEY POINTS: Kynurenine/tryptophan pathway metabolites were impacted by age and physical activity in human muscle, with kynurenine elevated in older muscle, whereas downstream products kynurenic acid and NAD+ were elevated in exercise-trained muscle regardless of age. Acylcarnitines, a marker of impaired metabolic health when heightened in circulation, were elevated in exercise-trained muscle of young and older adults, suggesting that muscle act as a metabolic sink to reduce the circulating acylcarnitines observed with unhealthy ageing. Despite the phenotypic differences, the exercise-induced response of various muscle metabolite pools, including acylcarnitine and ketone bodies, was similar amongst the groups, suggesting that older adults can achieve the metabolic benefits of exercise seen in young counterparts.
Collapse
Affiliation(s)
- J. Matthew Hinkley
- AdventHealth Translational Research Institute, AdventHealth Orlando, Orlando, FL, 32804, USA
| | - GongXin Yu
- AdventHealth Translational Research Institute, AdventHealth Orlando, Orlando, FL, 32804, USA
| | - Robert A. Standley
- AdventHealth Translational Research Institute, AdventHealth Orlando, Orlando, FL, 32804, USA
| | - Giovanna Distefano
- AdventHealth Translational Research Institute, AdventHealth Orlando, Orlando, FL, 32804, USA
| | | | | | | | | | | | - Elvis Alvarez Carnero
- AdventHealth Translational Research Institute, AdventHealth Orlando, Orlando, FL, 32804, USA
| | - Fanchao Yi
- AdventHealth Translational Research Institute, AdventHealth Orlando, Orlando, FL, 32804, USA
| | - Rick B. Vega
- AdventHealth Translational Research Institute, AdventHealth Orlando, Orlando, FL, 32804, USA
| | - Bret H. Goodpaster
- AdventHealth Translational Research Institute, AdventHealth Orlando, Orlando, FL, 32804, USA
| | - Stephen J. Gardell
- AdventHealth Translational Research Institute, AdventHealth Orlando, Orlando, FL, 32804, USA
| | - Paul M. Coen
- AdventHealth Translational Research Institute, AdventHealth Orlando, Orlando, FL, 32804, USA
| |
Collapse
|
56
|
Scandalis L, Kitzman DW, Nicklas BJ, Lyles M, Brubaker P, Nelson MB, Gordon M, Stone J, Bergstrom J, Neufer PD, Gnaiger E, Molina AJA. Skeletal Muscle Mitochondrial Respiration and Exercise Intolerance in Patients With Heart Failure With Preserved Ejection Fraction. JAMA Cardiol 2023; 8:575-584. [PMID: 37163294 PMCID: PMC10173105 DOI: 10.1001/jamacardio.2023.0957] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 02/17/2023] [Indexed: 05/11/2023]
Abstract
Importance The pathophysiology of exercise intolerance in patients with heart failure with preserved ejection fraction (HFpEF) remains incompletely understood. Multiple lines of evidence suggest that abnormal skeletal muscle metabolism is a key contributor, but the mechanisms underlying metabolic dysfunction remain unresolved. Objective To evaluate the associations of skeletal muscle mitochondrial function using respirometric analysis of biopsied muscle fiber bundles from patients with HFpEF with exercise performance. Design, Setting, and Participants In this cross-sectional study, muscle fiber bundles prepared from fresh vastus lateralis biopsies were analyzed by high-resolution respirometry to provide detailed analyses of mitochondrial oxidative phosphorylation, including maximal capacity and the individual contributions of complex I-linked and complex II-linked respiration. These bioenergetic data were compared between patients with stable chronic HFpEF older than 60 years and age-matched healthy control (HC) participants and analyzed for intergroup differences and associations with exercise performance. All participants were treated at a university referral center, were clinically stable, and were not undergoing regular exercise or diet programs. Data were collected from March 2016 to December 2017, and data were analyzed from November 2020 to May 2021. Main Outcomes and Measures Skeletal muscle mitochondrial function, including maximal capacity and respiration linked to complex I and complex II. Exercise performance was assessed by peak exercise oxygen consumption, 6-minute walk distance, and the Short Physical Performance Battery. Results Of 72 included patients, 50 (69%) were women, and the mean (SD) age was 69.6 (6.1) years. Skeletal muscle mitochondrial function measures were all markedly lower in skeletal muscle fibers obtained from patients with HFpEF compared with HCs, even when adjusting for age, sex, and body mass index. Maximal capacity was strongly and significantly correlated with peak exercise oxygen consumption (R = 0.69; P < .001), 6-minute walk distance (R = 0.70; P < .001), and Short Physical Performance Battery score (R = 0.46; P < .001). Conclusions and Relevance In this study, patients with HFpEF had marked abnormalities in skeletal muscle mitochondrial function. Severely reduced maximal capacity and complex I-linked and complex II-linked respiration were associated with exercise intolerance and represent promising therapeutic targets.
Collapse
Affiliation(s)
- Lina Scandalis
- Division of Geriatrics, Gerontology, and Palliative Care, UC San Diego School of Medicine, University of California, San Diego
| | - Dalane W. Kitzman
- Cardiovascular Medicine Section, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Barbara J. Nicklas
- Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Mary Lyles
- Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Peter Brubaker
- Department of Health and Exercise Science at Wake Forest University, Winston-Salem, North Carolina
| | - M. Benjamin Nelson
- Cardiovascular Medicine Section, Department of Internal Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Michelle Gordon
- Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - John Stone
- Section on Gerontology and Geriatric Medicine, Wake Forest School of Medicine, Winston-Salem, North Carolina
| | - Jaclyn Bergstrom
- Division of Geriatrics, Gerontology, and Palliative Care, UC San Diego School of Medicine, University of California, San Diego
| | - P. Darrell Neufer
- Department of Physiology, Brody School of Medicine, East Carolina University, Greenville, North Carolina
| | | | - Anthony J. A. Molina
- Division of Geriatrics, Gerontology, and Palliative Care, UC San Diego School of Medicine, University of California, San Diego
| |
Collapse
|
57
|
ATP and NAD + Deficiency in Parkinson's Disease. Nutrients 2023; 15:nu15040943. [PMID: 36839301 PMCID: PMC9961646 DOI: 10.3390/nu15040943] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
The goal of this study is to identify a signature of bioenergetic and functional markers in the muscles of individuals with Parkinson's disease (PD). Quantitative physiological properties of in vivo hand muscle (FDI, first dorsal interosseus) and leg muscle (TA, Tibialis Anterior) of older individuals with PD were compared to historical age/gender-matched controls (N = 30). Magnetic resonance spectroscopy and imaging (MRS) were used to assess in vivo mitochondrial and cell energetic dysfunction, including maximum mitochondrial ATP production (ATPmax), NAD concentrations linked to energy/stress pathways, and muscle size. Muscle function was measured via a single muscle fatigue test. TA ATPmax and NAD levels were significantly lower in the PD cohort compared to controls (ATPmax: 0.66 mM/s ± 0.03 vs. 0.76 ± 0.02; NAD: 0.75 mM ± 0.05 vs. 0.91 ± 0.04). Muscle endurance and specific force were also lower in both hand and leg muscles in the PD subjects. Exploratory analyses of mitochondrial markers and individual symptoms suggested that higher ATPmax was associated with a greater sense of motivation and engagement and less REM sleep behavior disorder (RBD). ATPmax was not associated with clinical severity or individual symptom(s), years since diagnosis, or quality of life. Results from this pilot study contribute to a growing body of evidence that PD is not a brain disease, but a systemic metabolic syndrome with disrupted cellular energetics and function in peripheral tissues. The significant impairment of both mitochondrial ATP production and resting metabolite levels in the TA muscles of the PD patients suggests that skeletal muscle mitochondrial function may be an important tool for mechanistic understanding and clinical application in PD patients. This study looked at individuals with mid-stage PD; future research should evaluate whether the observed metabolic perturbations in muscle dysfunction occur in the early stages of the disease and whether they have value as theragnostic biomarkers.
Collapse
|
58
|
Picca A, Triolo M, Wohlgemuth SE, Martenson MS, Mankowski RT, Anton SD, Marzetti E, Leeuwenburgh C, Hood DA. Relationship between Mitochondrial Quality Control Markers, Lower Extremity Tissue Composition, and Physical Performance in Physically Inactive Older Adults. Cells 2023; 12:183. [PMID: 36611976 PMCID: PMC9818256 DOI: 10.3390/cells12010183] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/29/2022] [Accepted: 12/30/2022] [Indexed: 01/03/2023] Open
Abstract
Altered mitochondrial quality and function in muscle may be involved in age-related physical function decline. The role played by the autophagy-lysosome system, a major component of mitochondrial quality control (MQC), is incompletely understood. This study was undertaken to obtain initial indications on the relationship between autophagy, mitophagy, and lysosomal markers in muscle and measures of physical performance and lower extremity tissue composition in young and older adults. Twenty-three participants were enrolled, nine young (mean age: 24.3 ± 4.3 years) and 14 older adults (mean age: 77.9 ± 6.3 years). Lower extremity tissue composition was quantified volumetrically by magnetic resonance imaging and a tissue composition index was calculated as the ratio between muscle and intermuscular adipose tissue volume. Physical performance in older participants was assessed via the Short Physical Performance Battery (SPPB). Protein levels of the autophagy marker p62, the mitophagy mediator BCL2/adenovirus E1B 19 kDa protein-interacting protein 3 (BNIP3), the lysosomal markers transcription factor EB, vacuolar-type ATPase, and lysosomal-associated membrane protein 1 were measured by Western immunoblotting in vastus lateralis muscle biopsies. Older adults had smaller muscle volume and lower tissue composition index than young participants. The protein content of p62 and BNIP3 was higher in older adults. A negative correlation was detected between p62 and BNIP3 and the tissue composition index. p62 and BNIP3 were also related to the performance on the 5-time sit-to-stand test of the SPPB. Our results suggest that an altered expression of markers of the autophagy/mitophagy-lysosomal system is related to deterioration of lower extremity tissue composition and muscle dysfunction. Additional studies are needed to clarify the role of defective MQC in human muscle aging and identify novel biological targets for drug development.
Collapse
Affiliation(s)
- Anna Picca
- Fondazione Policlinico Universitario “A. Gemelli”, IRCCS, 00168 Rome, Italy
- Department of Medicine and Surgery, LUM University, 70100 Casamassima, Italy
| | - Matthew Triolo
- Muscle Health Research Centre, York University, Toronto, ON M3J 1P3, Canada
- School of Kinesiology and Health Science, York University, Toronto, ON M3J 1P3, Canada
| | | | - Matthew S. Martenson
- Department of Physiology and Aging, University of Florida, Gainesville, FL 32610, USA
| | - Robert T. Mankowski
- Department of Physiology and Aging, University of Florida, Gainesville, FL 32610, USA
| | - Stephen D. Anton
- Department of Physiology and Aging, University of Florida, Gainesville, FL 32610, USA
| | - Emanuele Marzetti
- Fondazione Policlinico Universitario “A. Gemelli”, IRCCS, 00168 Rome, Italy
- Department of Geriatrics and Orthopedics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | | | - David A. Hood
- Muscle Health Research Centre, York University, Toronto, ON M3J 1P3, Canada
- School of Kinesiology and Health Science, York University, Toronto, ON M3J 1P3, Canada
| |
Collapse
|
59
|
Metcalfe NB, Olsson M. How telomere dynamics are influenced by the balance between mitochondrial efficiency, reactive oxygen species production and DNA damage. Mol Ecol 2022; 31:6040-6052. [PMID: 34435398 DOI: 10.1111/mec.16150] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 08/02/2021] [Accepted: 08/23/2021] [Indexed: 01/31/2023]
Abstract
It is well known that oxidative stress is a major cause of DNA damage and telomere attrition. Most endogenous reactive oxygen species (ROS) are produced in the mitochondria, producing a link between mitochondrial function, DNA integrity and telomere dynamics. In this review we will describe how ROS production, rates of damage to telomeric DNA and DNA repair are dynamic processes. The rate of ROS production depends on mitochondrial features such as the level of inner membrane uncoupling and the proportion of time that ATP is actively being produced. However, the efficiency of ATP production (the ATP/O ratio) is positively related to the rate of ROS production, so leading to a trade-off between the body's energy requirements and its need to prevent oxidative stress. Telomeric DNA is especially vulnerable to oxidative damage due to features such as its high guanine content; while repair to damaged telomere regions is possible through a range of mechanisms, these can result in more rapid telomere shortening. There is increasing evidence that mitochondrial efficiency varies over time and with environmental context, as do rates of DNA repair. We argue that telomere dynamics can only be understood by appreciating that the optimal solution to the trade-off between energetic efficiency and telomere protection will differ between individuals and will change over time, depending on resource availability, energetic demands and life history strategy.
Collapse
Affiliation(s)
- Neil B Metcalfe
- Institute of Biodiversity, Animal Health & Comparative Medicine, University of Glasgow, Glasgow, UK
| | - Mats Olsson
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
60
|
van Diemen MPJ, Ziagkos D, Kruizinga MD, Bénard MR, Lambrechtse P, Jansen JAJ, Snoeker BAM, Gademan MGJ, Cohen AF, Nelissen RGHH, Groeneveld GJ. Mitochondrial function, grip strength, and activity are related to recovery of mobility after a total knee arthroplasty. Clin Transl Sci 2022; 16:224-235. [PMID: 36401590 PMCID: PMC9926084 DOI: 10.1111/cts.13441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/09/2022] [Accepted: 10/14/2022] [Indexed: 11/21/2022] Open
Abstract
Low muscle quality and a sedentary lifestyle are indicators for a slow recovery after a total knee arthroplasty (TKA). Mitochondrial function is an important part of muscle quality and a key driver of sarcopenia. However, it is not known whether it relates to recovery. In this pilot study, we monitored activity after TKA using a wrist mounted activity tracker and assessed the relation of mitochondrial function on the rate of recovery after TKA. Additionally, we compared the increase in activity as a way to measure recovery to traditional outcome measures. Patients were studied 2 weeks before TKA and up to 6 months after. Activity was monitored continuously. Baseline mitochondrial function (citrate synthase and complex [CP] 1-5 abundance of the electron transport chain) was determined on muscle tissue taken during TKA. Traditional outcome measures (Knee Injury and Osteoarthritis Outcome Score [KOOS], timed up-and-go [TUG] completion time, grip, and quadriceps strength) were performed 2 weeks before, 6 weeks after, and 6 months after TKA. Using a multivariate regression model with various clinical baseline parameters, the following were significantly related to recovery: CP5 abundance, grip strength, and activity (regression weights 0.13, 0.02, and 2.89, respectively). During recovery, activity correlated to the KOOS-activities of daily living (ADL) score (r = 0.55, p = 0.009) and TUG completion time (r = -0.61, p = 0.001). Mitochondrial function seems to be related to recovery, but so are activity and grip strength, all indicators of sarcopenia. Using activity trackers before and after TKA might give the surgeon valuable information on the expected recovery and the opportunity to intervene if recovery is low.
Collapse
Affiliation(s)
- Marcus P. J. van Diemen
- Centre for Human Drug ResearchLeidenThe Netherlands,Department of OrthopedicsLeiden University Medical CenterLeidenThe Netherlands
| | | | | | - Menno R. Bénard
- Department of OrthopedicsAlrijne HospitalLeidenThe Netherlands
| | | | | | | | - Maaike G. J. Gademan
- Department of OrthopedicsLeiden University Medical CenterLeidenThe Netherlands,Department of Clinical EpidemiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Adam F. Cohen
- Centre for Human Drug ResearchLeidenThe Netherlands,Department of NephrologyLeiden University Medical CenterLeidenThe Netherlands
| | | | - Geert Jan Groeneveld
- Centre for Human Drug ResearchLeidenThe Netherlands,Department of AnesthesiologyLeiden University Medical CenterLeidenThe Netherlands
| |
Collapse
|
61
|
Factors of Muscle Quality and Determinants of Muscle Strength: A Systematic Literature Review. Healthcare (Basel) 2022; 10:healthcare10101937. [PMID: 36292384 PMCID: PMC9601777 DOI: 10.3390/healthcare10101937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/14/2022] [Accepted: 09/26/2022] [Indexed: 11/04/2022] Open
Abstract
Muscle quality defined as the ratio of muscle strength to muscle mass disregards underlying factors which influence muscle strength. The aim of this review was to investigate the relationship of phase angle (PhA), echo intensity (EI), muscular adipose tissue (MAT), muscle fiber type, fascicle pennation angle (θf), fascicle length (lf), muscle oxidative capacity, insulin sensitivity (IS), neuromuscular activation, and motor unit to muscle strength. PubMed search was performed in 2021. The inclusion criteria were: (i) original research, (ii) human participants, (iii) adults (≥18 years). Exclusion criteria were: (i) no full-text, (ii) non-English or -German language, (iii) pathologies. Forty-one studies were identified. Nine studies found a weak−moderate negative (range r: [−0.26]−[−0.656], p < 0.05) correlation between muscle strength and EI. Four studies found a weak−moderate positive correlation (range r: 0.177−0.696, p < 0.05) between muscle strength and PhA. Two studies found a moderate-strong negative correlation (range r: [−0.446]−[−0.87], p < 0.05) between muscle strength and MAT. Two studies found a weak-strong positive correlation (range r: 0.28−0.907, p < 0.05) between θf and muscle strength. Muscle oxidative capacity was found to be a predictor of muscle strength. This review highlights that the current definition of muscle quality should be expanded upon as to encompass all possible factors of muscle quality.
Collapse
|
62
|
Torcinaro A, Cappetta D, De Santa F, Telesca M, Leigheb M, Berrino L, Urbanek K, De Angelis A, Ferraro E. Ranolazine Counteracts Strength Impairment and Oxidative Stress in Aged Sarcopenic Mice. Metabolites 2022; 12:663. [PMID: 35888787 PMCID: PMC9316887 DOI: 10.3390/metabo12070663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/04/2022] [Accepted: 07/11/2022] [Indexed: 12/02/2022] Open
Abstract
Sarcopenia is defined as the loss of muscle mass associated with reduced strength leading to poor quality of life in elderly people. The decline of skeletal muscle performance is characterized by bioenergetic impairment and severe oxidative stress, and does not always strictly correlate with muscle mass loss. We chose to investigate the ability of the metabolic modulator Ranolazine to counteract skeletal muscle dysfunctions that occur with aging. For this purpose, we treated aged C57BL/6 mice with Ranolazine/vehicle for 14 days and collected the tibialis anterior and gastrocnemius muscles for histological and gene expression analyses, respectively. We found that Ranolazine treatment significantly increased the muscle strength of aged mice. At the histological level, we found an increase in centrally nucleated fibers associated with an up-regulation of genes encoding MyoD, Periostin and Osteopontin, thus suggesting a remodeling of the muscle even in the absence of physical exercise. Notably, these beneficial effects of Ranolazine were also accompanied by an up-regulation of antioxidant and mitochondrial genes as well as of NADH-dehydrogenase activity, together with a more efficient protection from oxidative damage in the skeletal muscle. These data indicate that the protection of muscle from oxidative stress by Ranolazine might represent a valuable approach to increase skeletal muscle strength in elderly populations.
Collapse
Affiliation(s)
- Alessio Torcinaro
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council of Italy (CNR), Via Ercole Ramarini, 32, Monterotondo, 00015 Rome, Italy; (A.T.); (F.D.S.)
- Istituto Dermopatico dell’Immacolata (IDI), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS), Experimental Immunology Laboratory, Via Monti di Creta, 104, 00167 Rome, Italy
| | - Donato Cappetta
- Department of Experimental Medicine, Division of Pharmacology, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (D.C.); (M.T.); (L.B.); (A.D.A.)
| | - Francesca De Santa
- Institute of Biochemistry and Cell Biology (IBBC), National Research Council of Italy (CNR), Via Ercole Ramarini, 32, Monterotondo, 00015 Rome, Italy; (A.T.); (F.D.S.)
| | - Marialucia Telesca
- Department of Experimental Medicine, Division of Pharmacology, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (D.C.); (M.T.); (L.B.); (A.D.A.)
| | - Massimiliano Leigheb
- Orthopaedics and Traumatology Unit, “Maggiore della Carità” Hospital, Department of Health Sciences, University of Piemonte Orientale (UPO), 28100 Novara, Italy;
| | - Liberato Berrino
- Department of Experimental Medicine, Division of Pharmacology, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (D.C.); (M.T.); (L.B.); (A.D.A.)
| | - Konrad Urbanek
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, 80138 Naples, Italy;
- CEINGE-Advanced Biotechnologies, 80138 Naples, Italy
| | - Antonella De Angelis
- Department of Experimental Medicine, Division of Pharmacology, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy; (D.C.); (M.T.); (L.B.); (A.D.A.)
| | | |
Collapse
|
63
|
Exercise and Interorgan Communication: Short-Term Exercise Training Blunts Differences in Consecutive Daily Urine 1H-NMR Metabolomic Signatures between Physically Active and Inactive Individuals. Metabolites 2022; 12:metabo12060473. [PMID: 35736406 PMCID: PMC9229485 DOI: 10.3390/metabo12060473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/20/2022] [Accepted: 05/20/2022] [Indexed: 02/01/2023] Open
Abstract
Physical inactivity is a worldwide health problem, an important risk for global mortality and is associated with chronic noncommunicable diseases. The aim of this study was to explore the differences in systemic urine 1H-NMR metabolomes between physically active and inactive healthy young males enrolled in the X-Adapt project in response to controlled exercise (before and after the 3-day exercise testing and 10-day training protocol) in normoxic (21% O2), normobaric (~1000 hPa) and normal-temperature (23 °C) conditions at 1 h of 50% maximal pedaling power output (Wpeak) per day. Interrogation of the exercise database established from past X-Adapt results showed that significant multivariate differences existed in physiological traits between trained and untrained groups before and after training sessions and were mirrored in significant differences in urine pH, salinity, total dissolved solids and conductivity. Cholate, tartrate, cadaverine, lysine and N6-acetyllisine were the most important metabolites distinguishing trained and untrained groups. The relatively little effort of 1 h 50% Wpeak per day invested by the untrained effectively modified their resting urine metabolome into one indistinguishable from the trained group, which hence provides a good basis for the planning of future recommendations for health maintenance in adults, irrespective of the starting fitness value. Finally, the 3-day sessions of morning urine samples represent a good candidate biological matrix for future delineations of active and inactive lifestyles detecting differences unobservable by single-day sampling due to day-to-day variability.
Collapse
|
64
|
Singh A, D'Amico D, Andreux PA, Fouassier AM, Blanco-Bose W, Evans M, Aebischer P, Auwerx J, Rinsch C. Urolithin A improves muscle strength, exercise performance, and biomarkers of mitochondrial health in a randomized trial in middle-aged adults. Cell Rep Med 2022; 3:100633. [PMID: 35584623 PMCID: PMC9133463 DOI: 10.1016/j.xcrm.2022.100633] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 02/24/2022] [Accepted: 04/21/2022] [Indexed: 12/14/2022]
Abstract
Targeting mitophagy to activate the recycling of faulty mitochondria during aging is a strategy to mitigate muscle decline. We present results from a randomized, placebo-controlled trial in middle-aged adults where we administer a postbiotic compound Urolithin A (Mitopure), a known mitophagy activator, at two doses for 4 months (NCT03464500). The data show significant improvements in muscle strength (∼12%) with intake of Urolithin A. We observe clinically meaningful improvements with Urolithin A on aerobic endurance (peak oxygen oxygen consumption [VO2]) and physical performance (6 min walk test) but do not notice a significant improvement on peak power output (primary endpoint). Levels of plasma acylcarnitines and C-reactive proteins are significantly lower with Urolithin A, indicating higher mitochondrial efficiency and reduced inflammation. We also examine expression of proteins linked to mitophagy and mitochondrial metabolism in skeletal muscle and find a significant increase with Urolithin A administration. This study highlights the benefit of Urolithin A to improve muscle performance. Oral supplementation with Urolithin A increases muscle strength High dose of Urolithin A positively impacts exercise-performance measures An increase in mitophagy proteins in human skeletal muscle observed in parallel Supplementation is safe and increases circulating levels of Urolithin A
Collapse
Affiliation(s)
- Anurag Singh
- Amazentis SA, EPFL Innovation Park, Bâtiment C, 1015 Lausanne, Switzerland.
| | - Davide D'Amico
- Amazentis SA, EPFL Innovation Park, Bâtiment C, 1015 Lausanne, Switzerland
| | - Pénélope A Andreux
- Amazentis SA, EPFL Innovation Park, Bâtiment C, 1015 Lausanne, Switzerland
| | | | | | - Mal Evans
- KGK Science, 255 Queens Avenue #1440, London, ON N6A 5R8, Canada
| | - Patrick Aebischer
- Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Johan Auwerx
- Laboratory of Integrative Systems Physiology, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Chris Rinsch
- Amazentis SA, EPFL Innovation Park, Bâtiment C, 1015 Lausanne, Switzerland
| |
Collapse
|
65
|
Brown PJ, Ciarleglio A, Roose SP, Montes Garcia C, Chung S, Fernandes S, Rutherford BR. Frailty and Depression in Late Life: A High-Risk Comorbidity With Distinctive Clinical Presentation and Poor Antidepressant Response. J Gerontol A Biol Sci Med Sci 2022; 77:1055-1062. [PMID: 34758065 PMCID: PMC9071391 DOI: 10.1093/gerona/glab338] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Indexed: 11/12/2022] Open
Abstract
BACKGROUND To investigate the longitudinal relationship between physical frailty, the clinical representation of accelerated biological aging, and antidepressant medication response in older adults with depressive illness. METHODS An 8-week randomized placebo-controlled trial (escitalopram or duloxetine) followed by 10 months of open antidepressant medication treatment (augmentation, switch strategies) was conducted in an outpatient research clinic. 121 adults aged 60 years or older with major depressive disorder (MDD) or persistent depressive disorder and a 24-item Hamilton Rating Scale for Depression (HRSD) ≥16 were enrolled. Primary measures assessed serially over 12 months include response (50% reduction from baseline HRSD score), remission (HRSD score <10), and frailty (non/intermediate frail [0-2 deficits] vs frail [≥3 deficits]); latent class analysis was used to classify longitudinal frailty trajectories. RESULTS A 2-class model best fit the data, identifying a consistently low frailty risk (63% of the sample) and consistently high frailty risk (37% of the sample) trajectory. Response and remission rates (ps ≤ .002) for adults in the high-risk frailty class were at least 21 percentage points worse than those in the low-risk class over 12 months. Furthermore, subsequent frailty was associated with previous frailty (ps ≤ .01) but not previous response or remission (ps ≥ .10). CONCLUSIONS Antidepressant medication is poorly effective for MDD occurring in the context of frailty in older adults. Furthermore, even when an antidepressant response is achieved, this response does little to improve their frailty. These data suggest that standard psychiatric assessment of depressed older adults should include frailty measures and that novel therapeutic strategies to address comorbid frailty and depression are needed.
Collapse
Affiliation(s)
- Patrick J Brown
- Columbia University College of Physicians and Surgeons, New York State Psychiatric Institute, New York, New York, USA
| | - Adam Ciarleglio
- Department of Biostatistics and Bioinformatics, Milken Institute School of Public Health, George Washington University, Washington, District of Columbia, USA
| | - Steven P Roose
- Columbia University College of Physicians and Surgeons, New York State Psychiatric Institute, New York, New York, USA
| | - Carolina Montes Garcia
- Columbia University College of Physicians and Surgeons, New York State Psychiatric Institute, New York, New York, USA
| | - Sarah Chung
- Albert Einstein College of Medicine, New York, New York, USA
| | - Sara Fernandes
- Columbia University College of Physicians and Surgeons, New York State Psychiatric Institute, New York, New York, USA
| | - Bret R Rutherford
- Columbia University College of Physicians and Surgeons, New York State Psychiatric Institute, New York, New York, USA
| |
Collapse
|
66
|
Metabolites Associated with Memory and Gait: A Systematic Review. Metabolites 2022; 12:metabo12040356. [PMID: 35448544 PMCID: PMC9024701 DOI: 10.3390/metabo12040356] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/08/2022] [Accepted: 04/13/2022] [Indexed: 01/19/2023] Open
Abstract
We recently found that dual decline in memory and gait speed was consistently associated with an increased risk of dementia compared to decline in memory or gait only or no decline across six aging cohorts. The mechanisms underlying this relationship are unknown. We hypothesize that individuals who experience dual decline may have specific pathophysiological pathways to dementia which can be indicated by specific metabolomic signatures. Here, we summarize blood-based metabolites that are associated with memory and gait from existing literature and discuss their relevant pathways. A total of 39 eligible studies were included in this systematic review. Metabolites that were associated with memory and gait belonged to five shared classes: sphingolipids, fatty acids, phosphatidylcholines, amino acids, and biogenic amines. The sphingolipid metabolism pathway was found to be enriched in both memory and gait impairments. Existing data may suggest that metabolites from sphingolipids and the sphingolipid metabolism pathway are important for both memory and gait impairments. Future studies using empirical data across multiple cohorts are warranted to identify metabolomic signatures of dual decline in memory and gait and to further understand its relationship with future dementia risk.
Collapse
|
67
|
Longitudinal associations between blood lysophosphatidylcholines and skeletal muscle mitochondrial function. GeroScience 2022; 44:2213-2221. [PMID: 35389191 PMCID: PMC9616971 DOI: 10.1007/s11357-022-00548-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 03/16/2022] [Indexed: 12/11/2022] Open
Abstract
Lysophosphatidylcholines (LPCs) are phospholipids critical in the synthesis of cardiolipin, an essential component of mitochondrial membranes. Lower plasma LPCs have been cross-sectionally associated with lower skeletal muscle mitochondrial function, but whether lower LPCs and their decline over time are longitudinally associated with an accelerated decline of mitochondria function is unknown. We analyzed data from 184 participants in the Baltimore Longitudinal Study of Aging (mean age: 74.5 years, 57% women, 25% black) who had repeated measures of plasma LPCs (16:0, 16:1, 17:0, 18:0, 18:1, 18:2, 20:3, 20:4, 24:0, and 28:1) by liquid chromatography-tandem mass spectrometry and repeated measures of skeletal muscle oxidative capacity (kPCr) assessed by 31P magnetic resonance spectroscopy over an average of 2.4 years. Rates of change in kPCr and each LPC were first estimated using simple linear regression. In multivariable linear regression models adjusted for baseline demographics and PCr % depletion, lower baseline LPC 16:1 and faster rates of decline in LPC 16:1 and 18:1 were significantly associated with a faster rate of decline in kPCr (B = - 0.169, 95% CI: - 0.328, - 0.010, p = 0.038; B = 0.209, 95% CI: 0.065, 0.352, p = 0.005; B = 0.156, 95% CI: 0.011, 0.301, p = 0.035, respectively). Rates of change in other LPCs were not significantly associated with change in kPCr (all p > 0.05). Lower baseline concentrations and faster decline in selected plasma lysophosphatidylcholines over time are associated with faster decline in skeletal muscle mitochondrial function. Strategies to prevent the decline of plasma LPCs at an early stage may slow down mitochondrial function decline and impairment during aging.
Collapse
|
68
|
Linoleic Acid Intake and Physical Function: Pilot Results from the Health ABC Energy Expenditure Sub-Study. ADVANCES IN GERIATRIC MEDICINE AND RESEARCH 2022; 4. [PMID: 35368862 PMCID: PMC8975246 DOI: 10.20900/agmr20220001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Background: Dietary fat quality is important for health and physical functioning in older adults. Linoleic acid is a dietary polyunsaturated fatty acid that is necessary for optimal inner-mitochondrial membrane function. However, limited evidence exists for examining the role of linoleic acid intake on indices of mobility and physical function. In this pilot study, we sought to examine the associations between linoleic acid intake and physical functioning in older adults. Methods: This secondary analysis of data from the Health, Aging, and Body Composition energy expenditure sub-study was conducted for our investigation. Ability to complete physical tasks such as climbing a flight of stairs, walking a quarter mile, and lifting 10 lbs. was self-reported. Daily linoleic acid intake was estimated from a food frequency questionnaire. Persons with daily linoleic acid intake below approximately 85% of Adequate Intake were considered as having low linoleic acid intake. Covariate-adjusted logistic models were used for the analyses. Results: The final analytical sample included 317 participants aged 74.4 ± 2.8 years who consumed 18.9 ± 11.4 g/day of linoleic acid, with 78 (24.6%) participants having low daily linoleic acid intake. Persons with low daily linoleic acid intake had 2.58 (95% confidence interval: 1.27–5.24) greater odds for a limitation in climbing stairs. Conclusions: Our pilot investigation found that low daily linoleic acid intake could be associated with physical function in older adults. Dietitians working with older patients may want to consider the importance of daily linoleic acid intake for health and certain physical function tasks.
Collapse
|
69
|
Gancheva S, Kahl S, Pesta D, Mastrototaro L, Dewidar B, Strassburger K, Sabah E, Esposito I, Weiß J, Sarabhai T, Wolkersdorfer M, Fleming T, Nawroth P, Zimmermann M, Reichert AS, Schlensak M, Roden M. Impaired Hepatic Mitochondrial Capacity in Nonalcoholic Steatohepatitis Associated With Type 2 Diabetes. Diabetes Care 2022; 45:928-937. [PMID: 35113139 DOI: 10.2337/dc21-1758] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 01/13/2022] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Individuals with type 2 diabetes are at higher risk of progression of nonalcoholic fatty liver (steatosis) to steatohepatitis (NASH), fibrosis, and cirrhosis. The hepatic metabolism of obese individuals adapts by upregulation of mitochondrial capacity, which may be lost during the progression of steatosis. However, the role of type 2 diabetes with regard to hepatic mitochondrial function in NASH remains unclear. RESEARCH DESIGN AND METHODS We therefore examined obese individuals with histologically proven NASH without (OBE) (n = 30; BMI 52 ± 9 kg/m2) or with type 2 diabetes (T2D) (n = 15; 51 ± 7 kg/m2) as well as healthy individuals without liver disease (CON) (n = 14; 25 ± 2 kg/m2). Insulin sensitivity was measured by hyperinsulinemic-euglycemic clamps with d-[6,6-2H2]glucose. Liver biopsies were used for assessing mitochondrial capacity by high-resolution respirometry and protein expression. RESULTS T2D and OBE had comparable hepatic fat content, lobular inflammation, and fibrosis. Oxidative capacity in liver tissue normalized for citrate synthase activity was 59% greater in OBE than in CON, whereas T2D presented with 33% lower complex II-linked oxidative capacity than OBE and higher H2O2 production than CON. Interestingly, those with NASH and hepatic fibrosis score ≥1 had lower oxidative capacity and antioxidant defense than those without fibrosis. CONCLUSIONS Loss of hepatic mitochondrial adaptation characterizes NASH and type 2 diabetes or hepatic fibrosis and may thereby favor accelerated disease progression.
Collapse
Affiliation(s)
- Sofiya Gancheva
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital, Heinrich Heine University, Düsseldorf, Germany.,Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University, Düsseldorf, Germany.,German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
| | - Sabine Kahl
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital, Heinrich Heine University, Düsseldorf, Germany.,Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University, Düsseldorf, Germany.,German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
| | - Dominik Pesta
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University, Düsseldorf, Germany.,German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
| | - Lucia Mastrototaro
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University, Düsseldorf, Germany.,German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
| | - Bedair Dewidar
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University, Düsseldorf, Germany.,German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany.,Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Klaus Strassburger
- German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany.,Institute for Biometrics and Epidemiology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University, Düsseldorf, Germany
| | - Ehsan Sabah
- Obesity and Reflux Center, Neuwerk Hospital, Mönchengladbach, Germany
| | - Irene Esposito
- Institute of Pathology, Heinrich Heine University, Düsseldorf, Germany
| | - Jürgen Weiß
- German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany.,Institute for Clinical Biochemistry and Pathobiochemistry, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University, Düsseldorf, Germany
| | - Theresia Sarabhai
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital, Heinrich Heine University, Düsseldorf, Germany.,Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University, Düsseldorf, Germany.,German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
| | | | - Thomas Fleming
- Department of Internal Medicine I, University Hospital Heidelberg, Heidelberg, Germany
| | - Peter Nawroth
- Department of Internal Medicine I, University Hospital Heidelberg, Heidelberg, Germany
| | - Marcel Zimmermann
- Institute of Biochemistry and Molecular Biology I, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | - Andreas S Reichert
- Institute of Biochemistry and Molecular Biology I, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University, Düsseldorf, Germany
| | | | - Michael Roden
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital, Heinrich Heine University, Düsseldorf, Germany.,Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research, Heinrich Heine University, Düsseldorf, Germany.,German Center for Diabetes Research, Partner Düsseldorf, München-Neuherberg, Germany
| |
Collapse
|
70
|
Oberdier MT, AlGhatrif M, Adelnia F, Zampino M, Morrell CH, Simonsick E, Fishbein K, Lakatta EG, McDermott MM, Ferrucci L. Ankle-Brachial Index and Energy Production in People Without Peripheral Artery Disease: The BLSA. J Am Heart Assoc 2022; 11:e019014. [PMID: 35253449 PMCID: PMC9075330 DOI: 10.1161/jaha.120.019014] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 10/04/2021] [Indexed: 11/16/2022]
Abstract
Background Lower ankle-brachial index (ABI) values within the 0.90 to 1.40 range are associated with poorer mitochondrial oxidative capacity of thigh muscles in cross-sectional analyses. Whether ABI decline is associated with greater declines in thigh muscle oxidative capacity with aging is unknown. Method and Results We analyzed data from 228 participants (100 men) of the BLSA (Baltimore Longitudinal Study of Aging), aged 39 to 97 years, with an ABI between 0.9 and 1.40 at baseline and at follow-up (mean follow-up period of 2.8 years). We examined mitochondrial oxidative capacity of the left thigh muscle, by measuring the postexercise phosphocreatine recovery rate constant (kPCr) from phosphorus-31 magnetic resonance spectroscopy. Greater kPCr indicated higher mitochondrial oxidative capacity. Although kPCr was available on the left leg only, ABI was measured in both legs. Longitudinal rates of change (Change) of left and right ABI and kPCr of the left thigh muscle were estimated using linear mixed effects models, and their association was analyzed by standardized multiple linear regressions. In multivariate analysis including sex, age, baseline kPCr, both left and right baseline ABI, and ABI change in both legs, (kPCr)Change was directly associated with ipsilateral (left) (ABI)Change (standardized [STD]-β=0.14; P=0.0168) but not with contralateral (right) (ABI)Change (P=0.22). Adjusting for traditional cardiovascular risk factors, this association remained significant (STD-β=0.18; P=0.0051). (kPCr)Change was steeper in White race participants (STD-β=0.16; P=0.0122) and body mass index (STD-β=0.13; P=0.0479). There was no significant association with current smoking status (P=0.63), fasting glucose (P=0.28), heart rate (P=0.67), mean blood pressure (P=0.78), and low-density lipoprotein (P=0.75), high-density lipoprotein (P=0.82), or triglycerides (P=0.15). Conclusions In people without peripheral arterial disease, greater decline in ABI over time, but not baseline ABI, was associated with faster decline in thigh mitochondrial oxidative capacity in the ipsilateral leg. Further studies are needed to examine whether early interventions that improve lower extremity muscle perfusion can improve and prevent the decline of muscle energetics.
Collapse
Affiliation(s)
- Matt T. Oberdier
- Laboratory of Cardiovascular ScienceNational Institute on AgingBaltimoreMD
- Longitudinal Studies SectionNational Institute on AgingBaltimoreMD
| | - Majd AlGhatrif
- Laboratory of Cardiovascular ScienceNational Institute on AgingBaltimoreMD
- Longitudinal Studies SectionNational Institute on AgingBaltimoreMD
- Department of MedicineJohns Hopkins School of MedicineBaltimoreMD
| | - Fatemeh Adelnia
- Longitudinal Studies SectionNational Institute on AgingBaltimoreMD
| | - Marta Zampino
- Longitudinal Studies SectionNational Institute on AgingBaltimoreMD
| | - Christopher H. Morrell
- Laboratory of Cardiovascular ScienceNational Institute on AgingBaltimoreMD
- Loyola University MarylandBaltimoreMD
| | | | - Kenneth Fishbein
- Laboratory of Clinical InvestigationNational Institute on AgingBaltimoreMD
| | - Edward G. Lakatta
- Laboratory of Cardiovascular ScienceNational Institute on AgingBaltimoreMD
| | - Mary M. McDermott
- Department of MedicineNorthwestern University Feinberg School of MedicineChicagoIL
| | - Luigi Ferrucci
- Longitudinal Studies SectionNational Institute on AgingBaltimoreMD
| |
Collapse
|
71
|
Rubenstein AB, Hinkley JM, Nair VD, Nudelman G, Standley RA, Yi F, Yu G, Trappe TA, Bamman MM, Trappe SW, Sparks LM, Goodpaster BH, Vega RB, Sealfon SC, Zaslavsky E, Coen PM. Skeletal muscle transcriptome response to a bout of endurance exercise in physically active and sedentary older adults. Am J Physiol Endocrinol Metab 2022; 322:E260-E277. [PMID: 35068187 PMCID: PMC8897039 DOI: 10.1152/ajpendo.00378.2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Age-related declines in cardiorespiratory fitness and physical function are mitigated by regular endurance exercise in older adults. This may be due, in part, to changes in the transcriptional program of skeletal muscle following repeated bouts of exercise. However, the impact of chronic exercise training on the transcriptional response to an acute bout of endurance exercise has not been clearly determined. Here, we characterized baseline differences in muscle transcriptome and exercise-induced response in older adults who were active/endurance trained or sedentary. RNA-sequencing was performed on vastus lateralis biopsy specimens obtained before, immediately after, and 3 h following a bout of endurance exercise (40 min of cycling at 60%-70% of heart rate reserve). Using a recently developed bioinformatics approach, we found that transcript signatures related to type I myofibers, mitochondria, and endothelial cells were higher in active/endurance-trained adults and were associated with key phenotypic features including V̇o2peak, ATPmax, and muscle fiber proportion. Immune cell signatures were elevated in the sedentary group and linked to visceral and intermuscular adipose tissue mass. Following acute exercise, we observed distinct temporal transcriptional signatures that were largely similar among groups. Enrichment analysis revealed catabolic processes were uniquely enriched in the sedentary group at the 3-h postexercise timepoint. In summary, this study revealed key transcriptional signatures that distinguished active and sedentary adults, which were associated with difference in oxidative capacity and depot-specific adiposity. The acute response signatures were consistent with beneficial effects of endurance exercise to improve muscle health in older adults irrespective of exercise history and adiposity.NEW & NOTEWORTHY Muscle transcript signatures associated with oxidative capacity and immune cells underlie important phenotypic and clinical characteristics of older adults who are endurance trained or sedentary. Despite divergent phenotypes, the temporal transcriptional signatures in response to an acute bout of endurance exercise were largely similar among groups. These data provide new insight into the transcriptional programs of aging muscle and the beneficial effects of endurance exercise to promote healthy aging in older adults.
Collapse
Affiliation(s)
- Aliza B Rubenstein
- Department of Neurology, Center for Advanced Research on Diagnostic Assays (CARDA), Icahn School of Medicine at Mount Sinai, New York, New York
| | | | - Venugopalan D Nair
- Department of Neurology, Center for Advanced Research on Diagnostic Assays (CARDA), Icahn School of Medicine at Mount Sinai, New York, New York
| | - German Nudelman
- Department of Neurology, Center for Advanced Research on Diagnostic Assays (CARDA), Icahn School of Medicine at Mount Sinai, New York, New York
| | | | - Fanchao Yi
- AdventHealth Translational Research Institute, Orlando, Florida
| | - GongXin Yu
- AdventHealth Translational Research Institute, Orlando, Florida
| | - Todd A Trappe
- Human Performance Laboratory, Ball State University, Indianapolis, Indiana
| | - Marcas M Bamman
- Department of Cell, Developmental, and Integrative Biology, UAB Center for Exercise Medicine, University of Alabama at Birmingham, Birmingham, Alabama
| | - Scott W Trappe
- Human Performance Laboratory, Ball State University, Indianapolis, Indiana
| | - Lauren M Sparks
- AdventHealth Translational Research Institute, Orlando, Florida
| | | | - Rick B Vega
- AdventHealth Translational Research Institute, Orlando, Florida
| | - Stuart C Sealfon
- Department of Neurology, Center for Advanced Research on Diagnostic Assays (CARDA), Icahn School of Medicine at Mount Sinai, New York, New York
| | - Elena Zaslavsky
- Department of Neurology, Center for Advanced Research on Diagnostic Assays (CARDA), Icahn School of Medicine at Mount Sinai, New York, New York
| | - Paul M Coen
- AdventHealth Translational Research Institute, Orlando, Florida
| |
Collapse
|
72
|
Brown PJ. Evidence for a Geroscience Approach to Late Life Depression: Bioenergetics and the Frail-Depressed. Am J Geriatr Psychiatry 2022; 30:338-341. [PMID: 34879973 DOI: 10.1016/j.jagp.2021.11.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 11/03/2021] [Indexed: 11/16/2022]
Affiliation(s)
- Patrick J Brown
- New York State Psychiatric Institute (PJB), Columbia University College of Physicians and Surgeons, New York, NY.
| |
Collapse
|
73
|
Nielsen JL, Bakula D, Scheibye-Knudsen M. Clinical Trials Targeting Aging. FRONTIERS IN AGING 2022; 3:820215. [PMID: 35821843 PMCID: PMC9261384 DOI: 10.3389/fragi.2022.820215] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/18/2022] [Indexed: 01/07/2023]
Abstract
The risk of morbidity and mortality increases exponentially with age. Chronic inflammation, accumulation of DNA damage, dysfunctional mitochondria, and increased senescent cell load are factors contributing to this. Mechanistic investigations have revealed specific pathways and processes which, proposedly, cause age-related phenotypes such as frailty, reduced physical resilience, and multi-morbidity. Among promising treatments alleviating the consequences of aging are caloric restriction and pharmacologically targeting longevity pathways such as the mechanistic target of rapamycin (mTOR), sirtuins, and anti-apoptotic pathways in senescent cells. Regulation of these pathways and processes has revealed significant health- and lifespan extending results in animal models. Nevertheless, it remains unclear if similar results translate to humans. A requirement of translation are the development of age- and morbidity associated biomarkers as longitudinal trials are difficult and not feasible, practical, nor ethical when human life span is the endpoint. Current biomarkers and the results of anti-aging intervention studies in humans will be covered within this paper. The future of clinical trials targeting aging may be phase 2 and 3 studies with larger populations if safety and tolerability of investigated medication continues not to be a hurdle for further investigations.
Collapse
Affiliation(s)
| | | | - Morten Scheibye-Knudsen
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
74
|
Kunz HE, Port JD, Kaufman KR, Jatoi A, Hart CR, Gries KJ, Lanza IR, Kumar R. Skeletal muscle mitochondrial dysfunction and muscle and whole body functional deficits in cancer patients with weight loss. J Appl Physiol (1985) 2022; 132:388-401. [PMID: 34941442 PMCID: PMC8791841 DOI: 10.1152/japplphysiol.00746.2021] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Reductions in skeletal muscle mass and function are often reported in patients with cancer-associated weight loss and are associated with reduced quality of life, impaired treatment tolerance, and increased mortality. Although cellular changes, including altered mitochondrial function, have been reported in animals, such changes have been incompletely characterized in humans with cancer. Whole body and skeletal muscle physical function, skeletal muscle mitochondrial function, and whole body protein turnover were assessed in eight patients with cancer-associated weight loss (10.1 ± 4.2% body weight over 6-12 mo) and 19 age-, sex-, and body mass index (BMI)-matched healthy controls to characterize skeletal muscle changes at the whole body, muscle, and cellular level. Potential pathways involved in cancer-induced alterations in metabolism and mitochondrial function were explored by interrogating skeletal muscle and plasma metabolomes. Despite similar lean mass compared with control participants, patients with cancer exhibited reduced habitual physical activity (57% fewer daily steps), cardiorespiratory fitness [22% lower V̇o2peak (mL/kg/min)] and leg strength (35% lower isokinetic knee extensor strength), and greater leg neuromuscular fatigue (36% greater decline in knee extensor torque). Concomitant with these functional declines, patients with cancer had lower mitochondrial oxidative capacity [25% lower State 3 O2 flux (pmol/s/mg tissue)] and ATP production [23% lower State 3 ATP production (pmol/s/mg tissue)] and alterations in phospholipid metabolite profiles indicative of mitochondrial abnormalities. Whole body protein turnover was unchanged. These findings demonstrate mitochondrial abnormalities concomitant with whole body and skeletal muscle functional derangements associated with human cancer, supporting future work studying the role of mitochondria in the muscle deficits associated with cancer.NEW & NOTEWORTHY To our knowledge, this is the first study to suggest that skeletal muscle mitochondrial deficits are associated with cancer-associated weight loss in humans. Mitochondrial deficits were concurrent with reductions in whole body and skeletal muscle functional capacity. Whether mitochondrial deficits are causal or secondary to cancer-associated weight loss and functional deficits remains to be determined, but this study supports further exploration of mitochondria as a driver of cancer-associated losses in muscle mass and function.
Collapse
Affiliation(s)
- Hawley E. Kunz
- 1Endocrine Research Unit, Division of Endocrinology, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota
| | - John D. Port
- 2Division of Neuroradiology, Department of Radiology, Mayo Clinic, Rochester, Minnesota
| | - Kenton R. Kaufman
- 3Motion Analysis Laboratory, Department of Orthopedic Surgery, Mayo Clinic, Rochester, Minnesota
| | - Aminah Jatoi
- 4Department of Oncology, Mayo Clinic, Rochester, Minnesota
| | - Corey R. Hart
- 1Endocrine Research Unit, Division of Endocrinology, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota
| | - Kevin J. Gries
- 1Endocrine Research Unit, Division of Endocrinology, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota
| | - Ian R. Lanza
- 1Endocrine Research Unit, Division of Endocrinology, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota
| | - Rajiv Kumar
- 5Nephrology and Hypertension Research Unit, Division of Nephrology and Hypertension, Department of Internal Medicine, Mayo Clinic, Rochester, Minnesota,6Department of Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
75
|
Scalzo RL, Schauer IE, Rafferty D, Knaub LA, Kvaratskhelia N, Johnson TK, Pott GB, Abushamat LA, Whipple MO, Huebschmann AG, Cree-Green M, Reusch JEB, Regensteiner JG. Single-leg exercise training augments in vivo skeletal muscle oxidative flux and vascular content and function in adults with type 2 diabetes. J Physiol 2022; 600:963-978. [PMID: 33569797 PMCID: PMC9006339 DOI: 10.1113/jp280603] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 01/28/2021] [Indexed: 12/14/2022] Open
Abstract
KEY POINTS People with type 2 diabetes (T2D) have impaired skeletal muscle oxidative flux due to limited oxygen delivery. In the current study, this impairment in oxidative flux in people with T2D was abrogated with a single-leg exercise training protocol. Additionally, single-leg exercise training increased skeletal muscle CD31 content, calf blood flow and state 4 mitochondrial respiration in all participants. ABSTRACT Cardiorespiratory fitness is impaired in type 2 diabetes (T2D), conferring significant cardiovascular risk in this population; interventions are needed. Previously, we reported that a T2D-associated decrement in skeletal muscle oxidative flux is ameliorated with acute use of supplemental oxygen, suggesting that skeletal muscle oxygenation is rate-limiting to in vivo mitochondrial oxidative flux during exercise in T2D. We hypothesized that single-leg exercise training (SLET) would improve the T2D-specific impairment in in vivo mitochondrial oxidative flux during exercise. Adults with (n = 19) and without T2D (n = 22) with similar body mass indexes and levels of physical activity participated in two weeks of SLET. Following SLET, in vivo oxidative flux measured by 31 P-MRS increased in participants with T2D, but not people without T2D, measured by the increase in initial phosphocreatine synthesis (P = 0.0455 for the group × exercise interaction) and maximum rate of oxidative ATP synthesis (P = 0.0286 for the interaction). Additionally, oxidative phosphorylation increased in all participants with SLET (P = 0.0209). After SLET, there was no effect of supplemental oxygen on any of the in vivo oxidative flux measurements in either group (P > 0.02), consistent with resolution of the T2D-associated oxygen limitation previously observed at baseline in subjects with T2D. State 4 mitochondrial respiration also improved in muscle fibres ex vivo. Skeletal muscle vasculature content and calf blood flow increased in all participants with SLET (P < 0.0040); oxygen extraction in the calf increased only in T2D (P = 0.0461). SLET resolves the T2D-associated impairment of skeletal muscle in vivo mitochondrial oxidative flux potentially through improved effective blood flow/oxygen delivery.
Collapse
Affiliation(s)
- Rebecca L Scalzo
- Division of Endocrinology, University of Colorado School of Medicine, Aurora, Colorado, USA
- Division of Center for Women's Health Research, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA
- Rocky Mountain Regional Veterans Administration Medical Center, Aurora, Colorado, USA
| | - Irene E Schauer
- Division of Endocrinology, University of Colorado School of Medicine, Aurora, Colorado, USA
- Rocky Mountain Regional Veterans Administration Medical Center, Aurora, Colorado, USA
| | - Deirdre Rafferty
- Division of General Internal Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Leslie A Knaub
- Division of Endocrinology, University of Colorado School of Medicine, Aurora, Colorado, USA
- Rocky Mountain Regional Veterans Administration Medical Center, Aurora, Colorado, USA
| | - Nina Kvaratskhelia
- Division of Endocrinology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Taro Kaelix Johnson
- Division of Endocrinology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Gregory B Pott
- Division of Endocrinology, University of Colorado School of Medicine, Aurora, Colorado, USA
- Rocky Mountain Regional Veterans Administration Medical Center, Aurora, Colorado, USA
| | - Layla A Abushamat
- Division of Endocrinology, University of Colorado School of Medicine, Aurora, Colorado, USA
- Rocky Mountain Regional Veterans Administration Medical Center, Aurora, Colorado, USA
| | - Mary O Whipple
- Division of General Internal Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Amy G Huebschmann
- Division of General Internal Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA
- Division of Center for Women's Health Research, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Melanie Cree-Green
- Division of Center for Women's Health Research, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA
- Division of Pediatric Endocrinology, University of Colorado School of Medicine, Aurora, Colorado, USA
| | - Jane E B Reusch
- Division of Endocrinology, University of Colorado School of Medicine, Aurora, Colorado, USA
- Division of General Internal Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA
- Division of Center for Women's Health Research, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA
- Rocky Mountain Regional Veterans Administration Medical Center, Aurora, Colorado, USA
| | - Judith G Regensteiner
- Division of General Internal Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA
- Division of Center for Women's Health Research, Department of Medicine, University of Colorado School of Medicine, Aurora, Colorado, USA
| |
Collapse
|
76
|
Tian Q, Mitchell BA, Zampino M, Fishbein KW, Spencer RG, Ferrucci L. Muscle mitochondrial energetics predicts mobility decline in well-functioning older adults: The baltimore longitudinal study of aging. Aging Cell 2022; 21:e13552. [PMID: 35048491 PMCID: PMC8844110 DOI: 10.1111/acel.13552] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 11/18/2021] [Accepted: 01/05/2022] [Indexed: 12/31/2022] Open
Abstract
Background Muscle mitochondrial dysfunction is associated with poor mobility in aging. Whether mitochondrial dysfunction predicts subsequent mobility decline is unknown. Methods We examined 380 cognitively normal participants aged 60 and older (53%women, 22%Black) who were well‐functioning (gait speed ≥ 1.0 m/s) and free of Parkinson's disease and stroke at baseline and had data on baseline skeletal muscle oxidative capacity and one or more mobility assessments during an average 2.5 years. Muscle oxidative capacity was measured by phosphorus magnetic resonance spectroscopy as the post‐exercise recovery rate of phosphocreatine (kPCr). Mobility was measured by four walking tests. Associations of baseline kPCr with mobility changes were examined using linear mixed‐effects models, adjusted for covariates. In a subset, we examined whether changes in muscle strength and mass affected these associations by adjusting for longitudinal muscle strength, lean mass, and fat mass. Results Lower baseline kPCr was associated with greater decline in all four mobility measures (β, p‐value: (0.036, 0.020) 6‐m usual gait speed; (0.029, 0.038) 2.5‐min usual gait speed; (0.034, 0.011) 6‐m rapid gait speed; (−0.042, <0.001) 400‐m time). In the subset, further adjustment for longitudinal muscle strength, lean mass, and fat mass attenuated longitudinal associations with changes in mobility (Δβ reduced 26–63%). Conclusion Among initially well‐functioning older adults, worse muscle mitochondrial function predicts mobility decline, and part of this longitudinal association is explained by decline in muscle strength and mass. Our findings suggest that worse mitochondrial function contributes to mobility decline with aging. These findings need to be verified in studies correlating longitudinal changes in mitochondrial function, muscle, and mobility performance.
Collapse
Affiliation(s)
- Qu Tian
- Translational Gerontology Branch National Institute on Aging National Institutes of Health Baltimore Maryland USA
| | - Brendan A. Mitchell
- Translational Gerontology Branch National Institute on Aging National Institutes of Health Baltimore Maryland USA
| | - Marta Zampino
- Translational Gerontology Branch National Institute on Aging National Institutes of Health Baltimore Maryland USA
| | - Kenneth W. Fishbein
- Laboratory of Clinical Investigation National Institute on Aging National Institutes of Health Baltimore Maryland USA
| | - Richard G. Spencer
- Laboratory of Clinical Investigation National Institute on Aging National Institutes of Health Baltimore Maryland USA
| | - Luigi Ferrucci
- Translational Gerontology Branch National Institute on Aging National Institutes of Health Baltimore Maryland USA
| |
Collapse
|
77
|
Liu S, D’Amico D, Shankland E, Bhayana S, Garcia JM, Aebischer P, Rinsch C, Singh A, Marcinek DJ. Effect of Urolithin A Supplementation on Muscle Endurance and Mitochondrial Health in Older Adults: A Randomized Clinical Trial. JAMA Netw Open 2022; 5:e2144279. [PMID: 35050355 PMCID: PMC8777576 DOI: 10.1001/jamanetworkopen.2021.44279] [Citation(s) in RCA: 74] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
IMPORTANCE Aging is associated with a decline in mitochondrial function and reduced exercise capacity. Urolithin A is a natural gut microbiome-derived food metabolite that has been shown to stimulate mitophagy and improve muscle function in older animals and to induce mitochondrial gene expression in older humans. OBJECTIVE To investigate whether oral administration of urolithin A improved the 6-minute walk distance, muscle endurance in hand and leg muscles, and biomarkers associated with mitochondrial and cellular health. DESIGN, SETTING, AND PARTICIPANTS This double-blind, placebo-controlled randomized clinical trial in adults aged 65 to 90 years was conducted at a medical center and a cancer research center in Seattle, Washington, from March 1, 2018, to July 30, 2020. Muscle fatigue tests and plasma analysis of biomarkers were assessed at baseline, 2 months, and 4 months. Six-minute walk distance and maximal ATP production were assessed using magnetic resonance spectroscopy at baseline and at the end of study at 4 months. The analysis used an intention-to-treat approach. INTERVENTIONS Participants were randomized to receive daily oral supplementation with either 1000 mg urolithin A or placebo for 4 months. MAIN OUTCOMES AND MEASURES The primary end point was change from baseline in the 6-minute walk distance and change from baseline to 4 months in maximal ATP production in the hand skeletal muscle. The secondary end points were change in muscle endurance of 2 skeletal muscles (tibialis anterior [TA] in the leg and first dorsal interosseus [FDI] in the hand). Cellular health biomarkers were investigated via plasma metabolomics. Adverse events were recorded and compared between the 2 groups during the intervention period. RESULTS A total of 66 participants were randomized to either the urolithin A (n = 33) or the placebo (n = 33) intervention group. These participants had a mean (SD) age of 71.7 (4.94) years, were predominantly women (50 [75.8%]), and were all White individuals. Urolithin A, compared with placebo, significantly improved muscle endurance (ie, increase in the number of muscle contractions until fatigue from baseline) in the FDI and TA at 2 months (urolithin A: FDI, 95.3 [115.5] and TA, 41.4 [65.5]; placebo: FDI, 11.6 [147.4] and TA, 5.7 [127.1]). Plasma levels of several acylcarnitines, ceramides, and C-reactive protein were decreased by urolithin A, compared with placebo, at 4 months (baseline vs 4 mo: urolithin A, 2.14 [2.15] vs 2.07 [1.46]; placebo, 2.17 [2.52] vs 2.65 [1.86]). The mean (SD) increase from baseline in the 6-minute walk distance was 60.8 (67.2) m in the urolithin A group and 42.5 (73.3) m in the placebo group. The mean (SD) change from baseline to 4 months in maximal ATP production in the FDI was 0.07 (0.23) mM/s in the urolithin A group and 0.06 (0.20) mM/s in the placebo group; for the TA, it was -0.03 (0.10) mM/s in the urolithin A group and 0.03 (0.10) mM/s in the placebo group. These results showed no significant improvement with urolithin A supplementation compared with placebo. No statistical differences in adverse events were observed between the 2 groups. CONCLUSIONS AND RELEVANCE This randomized clinical trial found that urolithin A supplementation was safe and well tolerated in the assessed population. Although the improvements in the 6-minute walk distance and maximal ATP production in the hand muscle were not significant in the urolithin A group vs the placebo group, long-term urolithin A supplementation was beneficial for muscle endurance and plasma biomarkers, suggesting that urolithin A may counteract age-associated muscle decline; however, future work is needed to confirm this finding. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT03283462.
Collapse
Affiliation(s)
- Sophia Liu
- Department of Radiology, University of Washington Medical Center, Seattle
| | - Davide D’Amico
- Amazentis SA, EPFL Innovation Park, Ecublens, Switzerland
| | - Eric Shankland
- Department of Radiology, University of Washington Medical Center, Seattle
| | - Saakshi Bhayana
- Department of Radiology, University of Washington Medical Center, Seattle
| | - Jose M. Garcia
- Geriatric Research, Education, and Clinical Center, Puget Sound Veterans Affairs, Seattle, Washington
- Division of Geriatrics, Department of Medicine, University of Washington Medical Center, Seattle
| | | | - Chris Rinsch
- Amazentis SA, EPFL Innovation Park, Ecublens, Switzerland
| | - Anurag Singh
- Amazentis SA, EPFL Innovation Park, Ecublens, Switzerland
| | - David J. Marcinek
- Department of Radiology, University of Washington Medical Center, Seattle
| |
Collapse
|
78
|
Metabolomics as an Important Tool for Determining the Mechanisms of Human Skeletal Muscle Deconditioning. Int J Mol Sci 2021; 22:ijms222413575. [PMID: 34948370 PMCID: PMC8706620 DOI: 10.3390/ijms222413575] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 12/28/2022] Open
Abstract
Muscle deconditioning impairs both locomotor function and metabolic health, and is associated with reduced quality life and increased mortality rates. Despite an appreciation of the existence of phenomena such as muscle anabolic resistance, mitophagy, and insulin resistance with age and disease in humans, little is known about the mechanisms responsible for these negative traits. With the complexities surrounding these unknowns and the lack of progress to date in development of effective interventions, there is a need for alternative approaches. Metabolomics is the study of the full array of metabolites within cells or tissues, which collectively constitute the metabolome. As metabolomics allows for the assessment of the cellular metabolic state in response to physiological stimuli, any chronic change in the metabolome is likely to reflect adaptation in the physiological phenotype of an organism. This, therefore, provides a holistic and unbiased approach that could be applied to potentially uncover important novel facets in the pathophysiology of muscle decline in ageing and disease, as well as identifying prognostic markers of those at risk of decline. This review will aim to highlight the current knowledge and potential impact of metabolomics in the study of muscle mass loss and deconditioning in humans and will highlight key areas for future research.
Collapse
|
79
|
Kumari S, Bubak MT, Schoenberg HM, Davidyan A, Elliehausen CJ, Kuhn KG, VanWagoner TM, Karaman R, Scofield RH, Miller BF, Konopka AR. Antecedent Metabolic Health and Metformin (ANTHEM) Aging Study: Rationale and Study Design for a Randomized Controlled Trial. J Gerontol A Biol Sci Med Sci 2021; 77:2373-2377. [PMID: 34865016 PMCID: PMC9799202 DOI: 10.1093/gerona/glab358] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Indexed: 01/21/2023] Open
Abstract
The antidiabetic medication metformin has been proposed to be the first drug tested to target aging and extend healthspan in humans. While there is extensive epidemiological support for the health benefits of metformin in patient populations, it is not clear if these protective effects apply to those free of age-related disease. Our previous data in older adults without diabetes suggest a dichotomous change in insulin sensitivity and skeletal muscle mitochondrial adaptations after metformin treatment when co-prescribed with exercise. Those who entered the study as insulin-sensitive had no change to detrimental effects while those who were insulin-resistant had positive changes. The objective of this clinical trial is to determine if (a) antecedent metabolic health and (b) skeletal muscle mitochondrial remodeling and function mediate the positive or detrimental effects of metformin monotherapy, independent of exercise, on the metabolism and biology of aging. In a randomized, double-blind clinical trial, adults free of chronic disease (n = 148, 40-75 years old) are stratified as either insulin-sensitive or resistant based on homeostatic model assessment of insulin resistance (≤2.2 or ≥2.5) and take 1 500 mg/day of metformin or placebo for 12 weeks. Hyperinsulinemic-euglycemic clamps and skeletal muscle biopsies are performed before and after 12 weeks to assess primary outcomes of peripheral insulin sensitivity and mitochondrial remodeling and function. Findings from this trial will identify clinical characteristics and cellular mechanisms involved in modulating the effectiveness of metformin treatment to target aging that could inform larger Phase 3 clinical trials aimed at testing aging as a treatment indication for metformin. Clinical Trials Registration Number: NCT04264897.
Collapse
Affiliation(s)
| | - Matthew T Bubak
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Hayden M Schoenberg
- Division of Geriatrics and Gerontology, Department of Medicine, University of Wisconsin–Madison, Madison, Wisconsin, USA,Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin, USA
| | - Arik Davidyan
- Aging and Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA
| | - Christian J Elliehausen
- Division of Geriatrics and Gerontology, Department of Medicine, University of Wisconsin–Madison, Madison, Wisconsin, USA,Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin, USA
| | - Katrin G Kuhn
- Hudson College of Public Health, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Timothy M VanWagoner
- Oklahoma Shared Clinical and Translational Resources, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Rowan Karaman
- Division of Endocrinology, Diabetes, and Metabolism, Department of Medicine, University of Wisconsin–Madison, Madison, Wisconsin, USA,Division of Endocrinology, William S. Middleton Memorial Veterans Hospital, Madison, Wisconsin, USA
| | - Robert Hal Scofield
- Department of Veterans Affairs Medical Center, Oklahoma City, Oklahoma, USA,Arthritis & Clinical Immunology Program, Oklahoma Medical Research Foundation, Oklahoma City, Oklahoma, USA,Endocrinology, Diabetes and Metabolism Section, Department of Medicine, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA,Harold Hamm Diabetes Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | | | - Adam R Konopka
- Address correspondence to: Adam R. Konopka, PhD, Division of Geriatrics and Gerontology, Department of Medicine, University of Wisconsin–Madison and Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veterans Hospital, Madison, WI 53705, USA. E-mail:
| |
Collapse
|
80
|
Gait speed reference values in community-dwelling older adults - Cross-sectional analysis from the Rotterdam Study. Exp Gerontol 2021; 158:111646. [PMID: 34861357 DOI: 10.1016/j.exger.2021.111646] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/24/2021] [Accepted: 11/25/2021] [Indexed: 11/20/2022]
Abstract
BACKGROUND Gait speed is a simple, inexpensive and clinically useful marker of physical function in older adults. We aimed to establish gait speed reference values for community-dwelling older adults. To this end, we further explored the association of age, sex and height with gait speed. METHODS This study included community-dwelling participants aged 50 years and over enrolled in the Rotterdam Study. Participants completed the gait protocol between 2009 and 2016. The mean gait speed was calculated for age and height groups, stratified by sex. Reference values for gait speed were calculated using a quantile regression model adjusted for sex, the non-linear effects of age and height, as well as the interaction between age and sex plus the interaction between age and height. RESULTS The study population included 4656 Dutch participants with a mean (standard deviation) age of 67.7 (9.5) years, comprising 2569 (55.2%) women. The mean height of the participants was 1.69 (0.10) meters and the mean gait speed was 1.20 (0.20) m/s. Gait speed was lower with older age and greater with taller stature, but the effect of height disappeared above the age of 80 years. Sex did not affect gait speed after accounting for age and height. Age-, sex-, and height-specific reference values for gait speed are available for use at https://emcbiostatistics.shinyapps.io/GaitSpeedReferenceValues/. CONCLUSIONS We found that height explains the commonly noted difference in usual gait speed between sexes and that neither height nor sex impacts gait speed in the very oldest adults. We developed reference values for usual gait speed in Western European community-dwelling older adults.
Collapse
|
81
|
Tian Q, Moore AZ, Oppong R, Ding J, Zampino M, Fishbein KW, Spencer RG, Ferrucci L. Mitochondrial DNA copy number and heteroplasmy load correlate with skeletal muscle oxidative capacity by P31 MR spectroscopy. Aging Cell 2021; 20:e13487. [PMID: 34612579 PMCID: PMC8590093 DOI: 10.1111/acel.13487] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/24/2021] [Accepted: 09/12/2021] [Indexed: 12/31/2022] Open
Abstract
The association between blood‐based estimates of mitochondrial DNA parameters, mitochondrial DNA copy number (mtDNA‐CN) and heteroplasmy load, with skeletal muscle bioenergetic capacity was evaluated in 230 participants of the Baltimore Longitudinal Study of Aging (mean age:74.7 years, 53% women). Participants in the study sample had concurrent data on muscle oxidative capacity (τPCr) assessed by 31P magnetic resonance spectroscopy, and mitochondrial DNA parameters estimated from whole‐genome sequencing data. In multivariable linear regression models, adjusted for age, sex, extent of phosphocreatine (PCr) depletion, autosomal sequencing coverage, white blood cell total, and differential count, as well as platelet count, mtDNA‐CN and heteroplasmy load were not significantly associated with τPCr (both p > 0.05). However, in models evaluating whether the association between mtDNA‐CN and τPCr varied by heteroplasmy load, there was a significant interaction between mtDNA‐CN and heteroplasmy load (p = 0.037). In stratified analysis, higher mtDNA‐CN was significantly associated with lower τPCr among participants with high heteroplasmy load (n = 84, β (SE) = −0.236 (0.115), p‐value = 0.044), but not in those with low heteroplasmy load (n = 146, β (SE) = 0.046 (0.119), p‐value = 0.702). Taken together, mtDNA‐CN and heteroplasmy load provide information on muscle bioenergetics. Thus, mitochondrial DNA parameters may be considered proxy measures of mitochondrial function that can be used in large epidemiological studies, especially when comparing subgroups.
Collapse
Affiliation(s)
- Qu Tian
- Translational Gerontology Branch National Institute on Aging Baltimore Maryland USA
| | - Ann Zenobia Moore
- Translational Gerontology Branch National Institute on Aging Baltimore Maryland USA
| | - Richard Oppong
- Translational Gerontology Branch National Institute on Aging Baltimore Maryland USA
| | - Jun Ding
- Translational Gerontology Branch National Institute on Aging Baltimore Maryland USA
| | - Marta Zampino
- Translational Gerontology Branch National Institute on Aging Baltimore Maryland USA
| | - Kenneth W. Fishbein
- Laboratory of Clinical Investigation National Institute on Aging Baltimore Maryland USA
| | - Richard G. Spencer
- Laboratory of Clinical Investigation National Institute on Aging Baltimore Maryland USA
| | - Luigi Ferrucci
- Translational Gerontology Branch National Institute on Aging Baltimore Maryland USA
| |
Collapse
|
82
|
Skeletal muscle mitochondrial respiration in a model of age-related osteoarthritis is impaired after dietary rapamycin. Exp Gerontol 2021; 155:111579. [PMID: 34601078 DOI: 10.1016/j.exger.2021.111579] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 09/21/2021] [Accepted: 09/26/2021] [Indexed: 12/24/2022]
Abstract
A decline in skeletal muscle mitochondrial function is associated with the loss of skeletal muscle size and function during knee osteoarthritis (OA). We have recently reported that 12-weeks of dietary rapamycin (Rap, 14 ppm), with or without metformin (Met, 1000 ppm), increased plasma glucose and OA severity in male Dunkin Hartley (DH) guinea pigs, a model of naturally occurring, age-related OA. The purpose of the current study was to determine if increased OA severity after dietary Rap and Rap+Met was accompanied by impaired skeletal muscle mitochondrial function. Mitochondrial respiration and hydrogen peroxide (H2O2) emissions were evaluated in permeabilized muscle fibers via high-resolution respirometry and fluorometry using either a saturating bolus or titration of ADP. Rap and Rap+Met decreased complex I (CI)-linked respiration and tended to increase ADP sensitivity, consistent with previous findings in patients with end-stage OA. The decrease in CI-linked respiration was accompanied with lower CI protein abundance. Rap and Rap+Met did not change mitochondrial H2O2 emissions. There were no differences between mitochondrial function in Rap versus Rap+Met suggesting that Rap was likely driving the change in mitochondrial function. This is the first inquiry into how lifespan extending treatments Rap and Rap+Met can influence skeletal muscle mitochondria in a model of age-related OA. Collectively, our data suggest that Rap with or without Met inhibits CI-linked capacity and increases ADP sensitivity in DH guinea pigs that have greater OA severity.
Collapse
|
83
|
Degens H, Swaminathan A, Tallis J. A High-Fat Diet Aggravates the Age-Related Decline in Skeletal Muscle Structure and Function. Exerc Sport Sci Rev 2021; 49:253-259. [PMID: 33927161 DOI: 10.1249/jes.0000000000000261] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The age-related decline in muscle function is aggravated by a high-fat diet (HFD)-induced increase in fat mass. The hypothesis is that an HFD leads to a faster accumulation of intramyocellular lipids (IMCL) and an earlier onset of muscle dysfunction in old than in young-adult individuals. The IMCL accumulation is attenuated in young-adult organisms by an elevated oxidative capacity. Methionine restriction enhances mitochondrial biogenesis and is promising to combat obesity across the ages.
Collapse
Affiliation(s)
| | - Anandini Swaminathan
- Institute of Sport Science and Innovations, Lithuanian Sports University, Kaunas, Lithuania
| | - Jason Tallis
- Center for Sport, Exercise and Life Sciences, Alison Gingell Building, Coventry University, Coventry, UK
| |
Collapse
|
84
|
Deep learning analysis and age prediction from shoeprints. Forensic Sci Int 2021; 327:110987. [PMID: 34555663 DOI: 10.1016/j.forsciint.2021.110987] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 11/22/2022]
Abstract
Human gaits are the patterns of limb movements which involve both the upper and lower body parts. These patterns in terms of step rate, gait speed, stance widening, stride, and bipedal forces are influenced by different factors including environmental (such as social, cultural, and behavioral traits) and physical changes (such as age and health status). These factors are reflected on the imprinted shoeprints generated with body forces, which in turn can be used to predict age, a problem not systematically addressed using any computational approach. We collected 100,000 shoeprints of subjects ranging from 7 to 80 years old and used the data to develop a deep learning end-to-end model ShoeNet to analyze age-related patterns and predict age. The model integrates various convolutional neural network models together using a skip mechanism to extract age-related features, especially in pressure and abrasion regions from pair-wise shoeprints. The results show that 40.23% of the subjects had prediction errors within 5-years of age and the prediction accuracy for gender/sex classification reached 86.07%. Interestingly, the age-related features mostly reside in the asymmetric differences between left and right shoeprints. The analysis also reveals interesting age-related and gender-related patterns in the pressure distributions on shoeprints; in particular, the pressure forces spread from the middle of the toe toward outside regions over age with gender-specific variations of forces on heel regions. Such statistics provide insight into new methods for forensic investigations, medical studies of gait pattern disorders, biometrics, and sport studies.
Collapse
|
85
|
Abstract
AbstractThe received wisdom on how activity affects energy expenditure is that the more activity is undertaken, the more calories will have been burned by the end of the day. Yet traditional hunter-gatherers, who lead physically hard lives, burn no more calories each day than Western populations living in labor-saving environments. Indeed, there is now a wealth of data, both for humans and other animals, demonstrating that long-term lifestyle changes involving increases in exercise or other physical activities do not result in commensurate increases in daily energy expenditure (DEE). This is because humans and other animals exhibit a degree of energy compensation at the organismal level, ameliorating some of the increases in DEE that would occur from the increased activity by decreasing the energy expended on other biological processes. And energy compensation can be sizable, reaching many hundreds of calories in humans. But the processes that are downregulated in the long-term to achieve energy compensation are far from clear, particularly in humans-we do not know how energy compensation is achieved. My review here of the literature on relevant exercise intervention studies, for both humans and other species, indicates conflict regarding the role, if any, of basal metabolic rate (BMR) or low-level activity such as fidgeting play, particularly once changes in body composition are factored out. In situations where BMR and low-level activity are not major components of energy compensation, what then drives it? I discuss how changes in mitochondrial efficiency and changes in circadian fluctuations in BMR may contribute to our understanding of energy management. Currently unexplored, these mechanisms and others may provide important insights into the mystery of how energy compensation is achieved.
Collapse
|
86
|
Morris JK, McCoin CS, Fuller KN, John CS, Wilkins HM, Green ZD, Wang X, Sharma P, Burns JM, Vidoni ED, Mahnken JD, Shankar K, Swerdlow RH, Thyfault JP. Mild Cognitive Impairment and Donepezil Impact Mitochondrial Respiratory Capacity in Skeletal Muscle. FUNCTION (OXFORD, ENGLAND) 2021; 2:zqab045. [PMID: 34661111 PMCID: PMC8515006 DOI: 10.1093/function/zqab045] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/18/2021] [Accepted: 08/31/2021] [Indexed: 01/07/2023]
Abstract
Alzheimer's Disease (ad) associates with insulin resistance and low aerobic capacity, suggestive of impaired skeletal muscle mitochondrial function. However, this has not been directly measured in AD. This study ( n = 50) compared muscle mitochondrial respiratory function and gene expression profiling in cognitively healthy older adults (CH; n = 24) to 26 individuals in the earliest phase of ad-related cognitive decline, mild cognitive impairment (MCI; n = 11) or MCI taking the ad medication donepezil (MCI + med; n = 15). Mitochondrial respiratory kinetics were measured in permeabilized muscle fibers from muscle biopsies of the vastus lateralis. Untreated MCI exhibited lower lipid-stimulated skeletal muscle mitochondrial respiration (State 3, ADP-stimulated) than both CH ( P = .043) and MCI + med (P = .007) groups. MCI also exhibited poorer mitochondrial coupling control compared to CH (P = .014). RNA sequencing of skeletal muscle revealed unique differences in mitochondrial function and metabolism genes based on both MCI status (CH vs MCI) and medication treatment (MCI vs MCI + med). MCI + med modified over 600 skeletal muscle genes compared to MCI suggesting donepezil powerfully impacts the transcriptional profile of muscle. Overall, skeletal muscle mitochondrial respiration is altered in untreated MCI but normalized in donepezil-treated MCI participants while leak control is impaired regardless of medication status. These results provide evidence that mitochondrial changes occur in the early stages of AD, but are influenced by a common ad medicine. Further study of mitochondrial bioenergetics and the influence of transcriptional regulation in early ad is warranted.
Collapse
Affiliation(s)
| | - Colin S McCoin
- Department of Molecular and Integrative Physiology and Internal Medicine-Division of Endocrinology and Metabolism, University of Kansas Medical Center, Kansas City, KS, USA
| | - Kelly N Fuller
- Department of Molecular and Integrative Physiology and Internal Medicine-Division of Endocrinology and Metabolism, University of Kansas Medical Center, Kansas City, KS, USA
| | - Casey S John
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, USA
- University of Kansas Alzheimer's Disease Center, Kansas City, KS, USA
| | - Heather M Wilkins
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, USA
- University of Kansas Alzheimer's Disease Center, Kansas City, KS, USA
| | - Zachary D Green
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, USA
- University of Kansas Alzheimer's Disease Center, Kansas City, KS, USA
| | - Xiaowan Wang
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, USA
- University of Kansas Alzheimer's Disease Center, Kansas City, KS, USA
| | - Palash Sharma
- Department of Biostatistics, University of Kansas Medical Center, Kansas City, KS, USA
| | - Jeffrey M Burns
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, USA
- University of Kansas Alzheimer's Disease Center, Kansas City, KS, USA
| | - Eric D Vidoni
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, USA
- University of Kansas Alzheimer's Disease Center, Kansas City, KS, USA
| | - Jonathan D Mahnken
- Department of Biostatistics, University of Kansas Medical Center, Kansas City, KS, USA
- University of Kansas Alzheimer's Disease Center, Kansas City, KS, USA
| | - Kartik Shankar
- Pediatrics, Section of Nutrition, The University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Russell H Swerdlow
- University of Kansas Alzheimer's Disease Center, Kansas City, KS, USA
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS, USA
| | | |
Collapse
|
87
|
Brown PJ, Ciarleglio A, Roose SP, Garcia CM, Chung S, Alvarez J, Stein A, Gomez S, Rutherford BR. Frailty Worsens Antidepressant Treatment Outcomes in Late Life Depression. Am J Geriatr Psychiatry 2021; 29:944-955. [PMID: 33388223 PMCID: PMC8225710 DOI: 10.1016/j.jagp.2020.12.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/08/2020] [Accepted: 12/21/2020] [Indexed: 01/06/2023]
Abstract
OBJECTIVE To investigate the relationship between frailty and treatment response to antidepressant medications in adults with late life depression (LLD). METHODS Data were evaluated from 100 individuals over age 60 years (34 men, 66 women) with a depressive diagnosis, who were assessed for frailty at baseline (characteristics include gait speed, grip strength, activity levels, fatigue, and weight loss) and enrolled in an 8-week trial of antidepressant medication followed by 10 months of open-treatment. RESULTS Frail individuals (n = 49 with ≥3 deficits in frailty characteristics) did not differ at baseline from the non/intermediate frail (n = 51 with 0-2 deficits) on demographic, medical comorbidity, cognitive, or depression variables. On average, frail individuals experienced 2.82 fewer Hamilton Rating Scale for Depression (HRSD) points of improvement (t = 2.12, df 89, p = 0.037) than the non/intermediate frail over acute treatment, with this difference persisting over 10 months of open-treatment. Weak grip strength and low physical activity levels were each associated with decreased HRSD improvement, and lower response and remission rates over the course of the study. Despite their poorer outcomes, frail individuals received more antidepressant medication trials than the non/intermediate frail. CONCLUSION Adults with LLD and frailty have an attenuated response to antidepressant medication and a greater degree of disability compared to non/intermediate frail individuals. This disability and attenuated response remain even after receiving a greater number of antidepressant medication trials. Future research must focus on understanding the specific pathophysiology associated with the frail-depressed phenotype to permit the design and implementation of precision medicine interventions for this high-risk population.
Collapse
Affiliation(s)
- Patrick J. Brown
- New York State Psychiatric Institute, Columbia University College of Physicians and Surgeons, New York, NY USA
| | - Adam Ciarleglio
- Department of Biostatistics and Bioinformatics, Milken Institute School of Public Health, George Washington University, Washington D.C
| | - Steven P. Roose
- New York State Psychiatric Institute, Columbia University College of Physicians and Surgeons, New York, NY USA
| | - Carolina Montes Garcia
- New York State Psychiatric Institute, Columbia University College of Physicians and Surgeons, New York, NY USA
| | - Sarah Chung
- Albert Einstein College of Medicine, New York, NY USA
| | - Johana Alvarez
- New York State Psychiatric Institute, Columbia University College of Physicians and Surgeons, New York, NY USA
| | - Alexandra Stein
- New York State Psychiatric Institute, Columbia University College of Physicians and Surgeons, New York, NY USA
| | - Stephanie Gomez
- New York State Psychiatric Institute, Columbia University College of Physicians and Surgeons, New York, NY USA
| | - Bret R. Rutherford
- New York State Psychiatric Institute, Columbia University College of Physicians and Surgeons, New York, NY USA
| |
Collapse
|
88
|
Grevendonk L, Connell NJ, McCrum C, Fealy CE, Bilet L, Bruls YMH, Mevenkamp J, Schrauwen-Hinderling VB, Jörgensen JA, Moonen-Kornips E, Schaart G, Havekes B, de Vogel-van den Bosch J, Bragt MCE, Meijer K, Schrauwen P, Hoeks J. Impact of aging and exercise on skeletal muscle mitochondrial capacity, energy metabolism, and physical function. Nat Commun 2021; 12:4773. [PMID: 34362885 PMCID: PMC8346468 DOI: 10.1038/s41467-021-24956-2] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 07/08/2021] [Indexed: 12/13/2022] Open
Abstract
The relationship between the age-associated decline in mitochondrial function and its effect on skeletal muscle physiology and function remain unclear. In the current study, we examined to what extent physical activity contributes to the decline in mitochondrial function and muscle health during aging and compared mitochondrial function in young and older adults, with similar habitual physical activity levels. We also studied exercise-trained older adults and physically impaired older adults. Aging was associated with a decline in mitochondrial capacity, exercise capacity and efficiency, gait stability, muscle function, and insulin sensitivity, even when maintaining an adequate daily physical activity level. Our data also suggest that a further increase in physical activity level, achieved through regular exercise training, can largely negate the effects of aging. Finally, mitochondrial capacity correlated with exercise efficiency and insulin sensitivity. Together, our data support a link between mitochondrial function and age-associated deterioration of skeletal muscle. Aging is associated with a progressive loss of muscle function. Here the authors characterize mitochondrial capacity and muscle function in young and older adults with similar habitual physical activity and also compared to older adults with exercise training or with physical impairment.
Collapse
Affiliation(s)
- L Grevendonk
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands.,TI Food and Nutrition, Wageningen, The Netherlands
| | - N J Connell
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands.,TI Food and Nutrition, Wageningen, The Netherlands
| | - C McCrum
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - C E Fealy
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands.,TI Food and Nutrition, Wageningen, The Netherlands
| | - L Bilet
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands.,TI Food and Nutrition, Wageningen, The Netherlands
| | - Y M H Bruls
- Department of Radiology and Nuclear Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - J Mevenkamp
- Department of Radiology and Nuclear Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - V B Schrauwen-Hinderling
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands.,Department of Radiology and Nuclear Medicine, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - J A Jörgensen
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - E Moonen-Kornips
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - G Schaart
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - B Havekes
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands.,Department of Internal Medicine, Division of Endocrinology, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Center+, Maastricht, The Netherlands
| | | | - M C E Bragt
- Friesland-Campina, Amersfoort, The Netherlands
| | - K Meijer
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands
| | - P Schrauwen
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands.,TI Food and Nutrition, Wageningen, The Netherlands
| | - J Hoeks
- Department of Nutrition and Movement Sciences, NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University, Maastricht, The Netherlands. .,TI Food and Nutrition, Wageningen, The Netherlands.
| |
Collapse
|
89
|
Roshanravan B, Liu SZ, Ali AS, Shankland EG, Goss C, Amory JK, Robertson HT, Marcinek DJ, Conley KE. In vivo mitochondrial ATP production is improved in older adult skeletal muscle after a single dose of elamipretide in a randomized trial. PLoS One 2021; 16:e0253849. [PMID: 34264994 PMCID: PMC8282018 DOI: 10.1371/journal.pone.0253849] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 03/03/2021] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Loss of mitochondrial function contributes to fatigue, exercise intolerance and muscle weakness, and is a key factor in the disability that develops with age and a wide variety of chronic disorders. Here, we describe the impact of a first-in-class cardiolipin-binding compound that is targeted to mitochondria and improves oxidative phosphorylation capacity (Elamipretide, ELAM) in a randomized, double-blind, placebo-controlled clinical trial. METHODS Non-invasive magnetic resonance and optical spectroscopy provided measures of mitochondrial capacity (ATPmax) with exercise and mitochondrial coupling (ATP supply per O2 uptake; P/O) at rest. The first dorsal interosseous (FDI) muscle was studied in 39 healthy older adult subjects (60 to 85 yrs of age; 46% female) who were enrolled based on the presence of poorly functioning mitochondria. We measured volitional fatigue resistance by force-time integral over repetitive muscle contractions. RESULTS A single ELAM dose elevated mitochondrial energetic capacity in vivo relative to placebo (ΔATPmax; P = 0.055, %ΔATPmax; P = 0.045) immediately after a 2-hour infusion. No difference was found on day 7 after treatment, which is consistent with the half-life of ELAM in human blood. No significant changes were found in resting muscle mitochondrial coupling. Despite the increase in ATPmax there was no significant effect of treatment on fatigue resistance in the FDI. CONCLUSIONS These results highlight that ELAM rapidly and reversibly elevates mitochondrial capacity after a single dose. This response represents the first demonstration of a pharmacological intervention that can reverse mitochondrial dysfunction in vivo immediately after treatment in aging human muscle.
Collapse
Affiliation(s)
- Baback Roshanravan
- Department of Medicine, Division of Nephrology, University of California Davis, Sacramento, California, United States of America
| | - Sophia Z. Liu
- Department of Radiology, University of Washington, Seattle, Washington, United States of America
| | - Amir S. Ali
- Department of Radiology, University of Washington, Seattle, Washington, United States of America
| | - Eric G. Shankland
- Department of Radiology, University of Washington, Seattle, Washington, United States of America
| | - Chessa Goss
- Institute of Translational Health Sciences, University of Washington, Seattle, Washington, United States of America
| | - John K. Amory
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - H. Thomas Robertson
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
| | - David J. Marcinek
- Department of Radiology, University of Washington, Seattle, Washington, United States of America
- Department of Bioengineering, University of Washington, Seattle, Washington, United States of America
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, United States of America
| | - Kevin E. Conley
- Department of Radiology, University of Washington, Seattle, Washington, United States of America
- Department of Bioengineering, University of Washington, Seattle, Washington, United States of America
- Department of Physiology & Biophysics, University of Washington, Seattle, Washington, United States of America
| |
Collapse
|
90
|
Zhang X, Kunz HE, Gries K, Hart CR, Polley EC, Lanza IR. Preserved skeletal muscle oxidative capacity in older adults despite decreased cardiorespiratory fitness with ageing. J Physiol 2021; 599:3581-3592. [PMID: 34032280 DOI: 10.1113/jp281691] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 05/20/2021] [Indexed: 12/24/2022] Open
Abstract
KEY POINTS Healthy older adults exhibit lower cardiorespiratory fitness ( V ̇ O 2 peak ) than young in the absence of any age-related difference in skeletal muscle mitochondrial capacity, suggesting central haemodynamics plays a larger role in age-related declines in V ̇ O 2 peak . Total physical activity did not differ by age, but moderate-to-vigorous physical activity was lower in older compared to young adults. Moderate-to-vigorous physical activity is associated with V ̇ O 2 peak and muscle oxidative capacity, but physical inactivity cannot entirely explain the age-related reduction in V ̇ O 2 peak . ABSTRACT Declining fitness ( V ̇ O 2 peak ) is a hallmark of ageing and believed to arise from decreased oxygen delivery and reduced muscle oxidative capacity. Physical activity is a modifiable lifestyle factor that is critical when evaluating the effects of age on parameters of fitness and energy metabolism. The objective was to evaluate the effects of age and sex on V ̇ O 2 peak , muscle mitochondrial physiology, and physical activity in young and older adults. An additional objective was to assess the contribution of skeletal muscle oxidative capacity to age-related reductions in V ̇ O 2 peak and determine if age-related variation in V ̇ O 2 peak and muscle oxidative capacity could be explained on the basis of physical activity levels. In 23 young and 52 older men and women measurements were made of V ̇ O 2 peak , mitochondrial physiology in permeabilized muscle fibres, and free-living physical activity by accelerometry. Regression analyses were used to evaluate associations between age and V ̇ O 2 peak , mitochondrial function, and physical activity. Significant age-related reductions were observed for V ̇ O 2 peak (P < 0.001), but not muscle mitochondrial capacity. Total daily step counts did not decrease with age, but older adults showed lower moderate-to-vigorous physical activity, which was associated with V ̇ O 2 peak (R2 = 0.323, P < 0.001) and muscle oxidative capacity (R2 = 0.086, P = 0.011). After adjusting for sex and physical activity, age was negatively associated with V ̇ O 2 peak but not muscle oxidative capacity. Healthy older adults exhibit lower V ̇ O 2 peak but preserved mitochondrial capacity compared to young. Physical activity, particularly moderate-to-vigorous, is a key factor in observed age-related changes in fitness and muscle oxidative capacity, but cannot entirely explain the age-related reduction in V ̇ O 2 peak .
Collapse
Affiliation(s)
- Xiaoyan Zhang
- Endocrine Research Unit, Division of Endocrinology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA.,Department of Geriatrics, Shanghai Jiaotong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Hawley E Kunz
- Endocrine Research Unit, Division of Endocrinology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Kevin Gries
- Endocrine Research Unit, Division of Endocrinology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA.,Exercise and Sports Science, College of Health Professions, Marian University, Indianapolis, IN, USA
| | - Corey R Hart
- Endocrine Research Unit, Division of Endocrinology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Eric C Polley
- Department of Biomedical Statistics and Informatics, Mayo Clinic, Rochester, MN, USA
| | - Ian R Lanza
- Endocrine Research Unit, Division of Endocrinology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
91
|
McDermott MM, Dayanidhi S, Kosmac K, Saini S, Slysz J, Leeuwenburgh C, Hartnell L, Sufit R, Ferrucci L. Walking Exercise Therapy Effects on Lower Extremity Skeletal Muscle in Peripheral Artery Disease. Circ Res 2021; 128:1851-1867. [PMID: 34110902 DOI: 10.1161/circresaha.121.318242] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Walking exercise is the most effective noninvasive therapy that improves walking ability in peripheral artery disease (PAD). Biologic mechanisms by which exercise improves walking in PAD are unclear. This review summarizes evidence regarding effects of walking exercise on lower extremity skeletal muscle in PAD. In older people without PAD, aerobic exercise improves mitochondrial activity, muscle mass, capillary density, and insulin sensitivity in skeletal muscle. However, walking exercise increases lower extremity ischemia in people with PAD, and therefore, mechanisms by which this exercise improves walking may differ between people with and without PAD. Compared with people without PAD, gastrocnemius muscle in people with PAD has greater mitochondrial impairment, increased reactive oxygen species, and increased fibrosis. In multiple small trials, walking exercise therapy did not consistently improve mitochondrial activity in people with PAD. In one 12-week randomized trial of people with PAD randomized to supervised exercise or control, supervised treadmill exercise increased treadmill walking time from 9.3 to 15.1 minutes, but simultaneously increased the proportion of angular muscle fibers, consistent with muscle denervation (from 7.6% to 15.6%), while angular myofibers did not change in the control group (from 9.1% to 9.1%). These findings suggest an adaptive response to exercise in PAD that includes denervation and reinnervation, an adaptive process observed in skeletal muscle of people without PAD during aging. Small studies have not shown significant effects of exercise on increased capillary density in lower extremity skeletal muscle of participants with PAD, and there are no data showing that exercise improves microcirculatory delivery of oxygen and nutrients in patients with PAD. However, the effects of supervised exercise on increased plasma nitrite abundance after a treadmill walking test in people with PAD may be associated with improved lower extremity skeletal muscle perfusion and may contribute to improved walking performance in response to exercise in people with PAD. Randomized trials with serial, comprehensive measures of muscle biology, and physiology are needed to clarify mechanisms by which walking exercise interventions improve mobility in PAD.
Collapse
Affiliation(s)
- Mary M McDermott
- Department of Medicine and Preventive Medicine (M.M.M., J.S.), Northwestern University Feinberg School of Medicine
| | - Sudarshan Dayanidhi
- Shirley Ryan Ability Laboratory (S.D.), Northwestern University Feinberg School of Medicine
| | - Kate Kosmac
- Center for Muscle Biology, University of Kentucky (K.K.)
| | - Sunil Saini
- Jawaharlal Nehru University, School of Biotechnology, New Delhi, India (S.S.)
| | - Joshua Slysz
- Department of Medicine and Preventive Medicine (M.M.M., J.S.), Northwestern University Feinberg School of Medicine
| | | | - Lisa Hartnell
- Division of Intramural Research, National Institute on Aging (L.H., L.F.)
| | - Robert Sufit
- Department of Neurology (R.S.), Northwestern University Feinberg School of Medicine
| | - Luigi Ferrucci
- Division of Intramural Research, National Institute on Aging (L.H., L.F.)
| |
Collapse
|
92
|
Chungath RR, Witham MD, Clarke CL, Hutcheon A, Gandy S, Gingles C, Priba L, Nicholas SR, Cavin I, Sumukadas D, Struthers AD, George J. Association between mitochondrial function measured by 31P magnetic resonance spectroscopy and physical performance in older people with functional impairment. JCSM CLINICAL REPORTS 2021. [DOI: 10.1002/crt2.33] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Affiliation(s)
- Rebecca R. Chungath
- AGE Research Group, NIHR Newcastle Biomedical Research Centre Newcastle University and Newcastle upon Tyne Hospitals NHS Foundation Trust Newcastle upon Tyne UK
| | - Miles D. Witham
- AGE Research Group, NIHR Newcastle Biomedical Research Centre Newcastle University and Newcastle upon Tyne Hospitals NHS Foundation Trust Newcastle upon Tyne UK
- Division of Molecular and Clinical Medicine University of Dundee, Ninewells Hospital and Medical School Dundee UK
| | - Clare L. Clarke
- Division of Molecular and Clinical Medicine University of Dundee, Ninewells Hospital and Medical School Dundee UK
| | - Anita Hutcheon
- Division of Molecular and Clinical Medicine University of Dundee, Ninewells Hospital and Medical School Dundee UK
| | - Stephen Gandy
- Department of Medical Physics Ninewells Hospital, NHS Tayside Dundee UK
| | - Christopher Gingles
- Division of Molecular and Clinical Medicine University of Dundee, Ninewells Hospital and Medical School Dundee UK
| | - Lukasz Priba
- Department of Medical Physics Ninewells Hospital, NHS Tayside Dundee UK
| | | | - Ian Cavin
- Department of Medical Physics NHS Lothian Edinburgh UK
| | - Deepa Sumukadas
- Department of Medicine for the Elderly Ninewells Hospital, NHS Tayside Dundee UK
| | - Allan D. Struthers
- Division of Molecular and Clinical Medicine University of Dundee, Ninewells Hospital and Medical School Dundee UK
| | - Jacob George
- Division of Molecular and Clinical Medicine University of Dundee, Ninewells Hospital and Medical School Dundee UK
| |
Collapse
|
93
|
Bittel DC, Bittel AJ, Varadhachary AS, Pietka T, Sinacore DR. Deficits in the Skeletal Muscle Transcriptome and Mitochondrial Coupling in Progressive Diabetes-Induced CKD Relate to Functional Decline. Diabetes 2021; 70:1130-1144. [PMID: 33526590 PMCID: PMC8173802 DOI: 10.2337/db20-0688] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 01/25/2021] [Indexed: 12/14/2022]
Abstract
Two-thirds of people with type 2 diabetes mellitus (T2DM) have or will develop chronic kidney disease (CKD), which is characterized by rapid renal decline that, together with superimposed T2DM-related metabolic sequelae, synergistically promotes early frailty and mobility deficits that increase the risk of mortality. Distinguishing the mechanisms linking renal decline to mobility deficits in CKD progression and/or increasing severity in T2DM is instrumental both in identifying those at high risk for functional decline and in formulating effective treatment strategies to prevent renal failure. While evidence suggests that skeletal muscle energetics may relate to the development of these comorbidities in advanced CKD, this has never been assessed across the spectrum of CKD progression, especially in T2DM-induced CKD. Here, using next-generation sequencing, we first report significant downregulation in transcriptional networks governing oxidative phosphorylation, coupled electron transport, electron transport chain (ETC) complex assembly, and mitochondrial organization in both middle- and late-stage CKD in T2DM. Furthermore, muscle mitochondrial coupling is impaired as early as stage 3 CKD, with additional deficits in ETC respiration, enzymatic activity, and increased redox leak. Moreover, mitochondrial ETC function and coupling strongly relate to muscle performance and physical function. Our results indicate that T2DM-induced CKD progression impairs physical function, with implications for altered metabolic transcriptional networks and mitochondrial functional deficits as primary mechanistic factors early in CKD progression in T2DM.
Collapse
Affiliation(s)
- Daniel C Bittel
- Program in Physical Therapy, Washington University School of Medicine, St. Louis, MO
| | - Adam J Bittel
- Program in Physical Therapy, Washington University School of Medicine, St. Louis, MO
| | - Arun S Varadhachary
- Department of Neurology, Washington University School of Medicine, St. Louis, MO
| | - Terri Pietka
- Center for Human Nutrition, Washington University School of Medicine, St. Louis, MO
| | - David R Sinacore
- Program in Physical Therapy, Washington University School of Medicine, St. Louis, MO
- Department of Physical Therapy, Congdon School of Health Sciences, High Point University, High Point, NC
| |
Collapse
|
94
|
Ichihara Y, Masuki S, Uchida K, Takahashi K, Nakajima M, Nose H. Effects of 5-aminolevulinic acid with iron supplementation on respiratory responses to graded cycling and interval walking training achievement in older women over 75 yrs. Exp Gerontol 2021; 150:111356. [PMID: 33864830 DOI: 10.1016/j.exger.2021.111356] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 03/18/2021] [Accepted: 04/05/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND Exercise training above a given intensity is necessary to prevent age-associated physical disability and diseases; however, the physical and psychological barriers posed by deteriorated physical fitness due to aging may hinder older people from performing daily exercise training. Because 5-aminolevulinic acid (ALA), a precursor of heme, reportedly improves mitochondrial function, we examined whether ALA, combined with sodium ferrous citrate (SFC) for enhancement, improved aerobic capacity and voluntary exercise training achievement in older women aged over 75 yrs. METHODS The study was conducted using a placebo-controlled, double-blind crossover design. Fifteen women aged ~78 yrs. with no exercise habits underwent two trials for 7 days each where they performed interval walking training (IWT), repeating fast and slow speeds of walking for 3 min each, at >70% and at ~40% of peak aerobic capacity for walking, respectively, with ALA+SFC (100 and 115 mg/day, respectively) or placebo supplement intake (CNT), with a 12-day washout period. Before and after each trial, subjects underwent a graded cycling test while having their oxygen consumption rate (V·O2), carbon dioxide production rate (V·CO2), and plasma lactate concentration ([Lac-]p) measured. Furthermore, during the supplement intake period, exercise intensity for IWT was measured by accelerometry. RESULTS In ALA+SFC, the increases in V·O2 and V·CO2 during the graded cycling test were attenuated (both, P < 0.01) with a 13% reduction in [Lac-]p (P = 0.012) while none of these attenuated responses occurred in CNT (all, P > 0.46). Furthermore, energy expenditure and time during fast walking for IWT were 25% (P = 0.032) and 21% (P = 0.022) higher in ALA+SFC than in CNT. CONCLUSION Thus, ALA+SFC supplementation improved aerobic capacity and thus increased fast-walking training achievement in older women.
Collapse
Affiliation(s)
- Yasuko Ichihara
- Departments of Sports Medical Sciences, Shinshu University Graduate School of Medicine, Matsumoto 390-8621, Japan; Fujimikougen Hospital, Fujimi 399-0214, Japan
| | - Shizue Masuki
- Departments of Sports Medical Sciences, Shinshu University Graduate School of Medicine, Matsumoto 390-8621, Japan; Institute for Biomedical Sciences, Shinshu University, Matsumoto 390-8621, Japan.
| | - Koji Uchida
- Departments of Sports Medical Sciences, Shinshu University Graduate School of Medicine, Matsumoto 390-8621, Japan; Departments of e-Health Sciences, Shinshu University Graduate School of Medicine, Matsumoto 390-8621, Japan
| | | | - Motowo Nakajima
- Department of R&D, SBI Pharma Co., Ltd., Tokyo 106-6020, Japan
| | - Hiroshi Nose
- Departments of Sports Medical Sciences, Shinshu University Graduate School of Medicine, Matsumoto 390-8621, Japan; Departments of e-Health Sciences, Shinshu University Graduate School of Medicine, Matsumoto 390-8621, Japan
| |
Collapse
|
95
|
Zhao J, Huang Y, Yu X. A Narrative Review of Gut-Muscle Axis and Sarcopenia: The Potential Role of Gut Microbiota. Int J Gen Med 2021; 14:1263-1273. [PMID: 33880058 PMCID: PMC8053521 DOI: 10.2147/ijgm.s301141] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 03/23/2021] [Indexed: 12/13/2022] Open
Abstract
Sarcopenia is a multifactorial disease related to aging, chronic inflammation, insufficient nutrition, and physical inactivity. Previous studies have suggested that there is a relationship between sarcopenia and gut microbiota,namely, the gut-muscle axis. The present review highlights that the gut microbiota can affect muscle mass and muscle function from inflammation and immunity,substance and energy metabolism, endocrine and insulin sensitivity, etc., directly or indirectly establishing a connection with sarcopenia, thereby realizing the “gut-muscle axis”.
Collapse
Affiliation(s)
- Jiaxi Zhao
- Huadong Hospital Affiliated to Fudan University, Shanghai, People's Republic of China
| | - Yiqin Huang
- Huadong Hospital Affiliated to Fudan University, Shanghai, People's Republic of China
| | - Xiaofeng Yu
- Huadong Hospital Affiliated to Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
96
|
Liu X, Wang C, Qiao X, Si H, Jin Y. Sleep quality, depression and frailty among Chinese community-dwelling older adults. Geriatr Nurs 2021; 42:714-720. [PMID: 33836251 DOI: 10.1016/j.gerinurse.2021.02.020] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 02/26/2021] [Accepted: 02/26/2021] [Indexed: 01/22/2023]
Abstract
We aimed to explore the relationship between sleep quality and frailty, and depression as a mediator and its interaction with sleep quality on frailty. This was a cross-sectional study among 936 Chinese community-dwelling adults aged≥60 years. Sleep quality, frailty and depression were measured by the Pittsburgh Sleep Quality Index (PSQI), the Frailty Phenotype and the 5-item Geriatric Depression Scale (GDS-5), respectively. We found that depression mediated the association between poor sleep quality and physical frailty, attenuating the association between poor sleep and physical frailty by 51.9%. Older adults with both poor sleep quality and depression had higher risk of frailty than those with poor sleep quality or depression alone. These results implicate multidisciplinary care for frail older adults with poor sleep quality.
Collapse
Affiliation(s)
- Xinyi Liu
- School of Nursing, Shandong University, 250012 Jinan, China
| | - Cuili Wang
- School of Nursing, Peking University, 100191 Beijing, China.
| | - Xiaoxia Qiao
- School of Nursing, Peking University, 100191 Beijing, China
| | - Huaxin Si
- School of Nursing, Peking University, 100191 Beijing, China
| | - Yaru Jin
- School of Nursing, Peking University, 100191 Beijing, China
| |
Collapse
|
97
|
Grootswagers P, Smeets E, Oteng AB, Groot LD. A novel oral nutritional supplement improves gait speed and mitochondrial functioning compared to standard care in older adults with (or at risk of) undernutrition: results from a randomized controlled trial. Aging (Albany NY) 2021; 13:9398-9418. [PMID: 33799307 PMCID: PMC8064187 DOI: 10.18632/aging.202912] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 03/23/2021] [Indexed: 01/02/2023]
Abstract
Undernutrition in older adults is mainly addressed by oral nutritional supplements, which do not affect physical functioning. In this study, we tested a novel oral nutritional supplement that included whey and casein protein, ursolic acid, free branch-chained amino acids and vitamin D against a standard supplement. We included older adults (>65y) with (or at risk of) undernutrition (n=82) and randomized them to 12 weeks of novel or standard supplement. Both groups showed significant increases in body mass. No within or between-group differences in lean body mass were observed. Fat mass increased significantly more in the standard than the novel supplement group (time*treatment effect P=0.045). The novel supplement group showed a larger improvement in walking performance on distances of 4m (treatment x time interaction P=0.048) and 400m (treatment x time interaction P=0.038) than the standard treatment group. Gene sets related to mitochondrial functioning and oxidative phosphorylation were upregulated in the novel supplement group and downregulated in the standard supplement group. We conclude that a 12-week intervention with the novel supplement improved walking performance both during short and long distance as compared to a standard supplement, which can largely be explained by increased mitochondrial functioning in the group receiving the novel supplement.
Collapse
Affiliation(s)
- Pol Grootswagers
- Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands
| | - Ellen Smeets
- Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands
| | - Antwi-Boasiako Oteng
- Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands
| | - Lisette de Groot
- Division of Human Nutrition and Health, Wageningen University, Wageningen, The Netherlands
| |
Collapse
|
98
|
Herbst A, Prior SJ, Lee CC, Aiken JM, McKenzie D, Hoang A, Liu N, Chen X, Xun P, Allison DB, Wanagat J. Skeletal muscle mitochondrial DNA copy number and mitochondrial DNA deletion mutation frequency as predictors of physical performance in older men and women. GeroScience 2021; 43:1253-1264. [PMID: 33740224 DOI: 10.1007/s11357-021-00351-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 03/04/2021] [Indexed: 12/31/2022] Open
Abstract
Mitochondrial DNA (mtDNA) quality and quantity relate to two hallmarks of aging-genomic instability and mitochondrial dysfunction. Physical performance relies on mitochondrial integrity and declines with age, yet the interactions between mtDNA quantity, quality, and physical performance are unclear. Using a validated digital PCR assay specific for mtDNA deletions, we tested the hypothesis that skeletal muscle mtDNA deletion mutation frequency (i.e., a measure of mtDNA quality) or mtDNA copy number predicts physical performance in older adults. Total DNA was isolated from vastus lateralis muscle biopsies and used to quantitate mtDNA copy number and mtDNA deletion frequency by digital PCR. The biopsies were obtained from a cross-sectional cohort of 53 adults aged 50 to 86 years. Before the biopsy procedure, physical performance measurements were collected, including VO2max, modified physical performance test score, 6-min walk distance, gait speed, grip strength, and total lean and leg mass. Linear regression models were used to evaluate the relationships between age, sex, and the outcomes. We found that mtDNA deletion mutation frequency increased exponentially with advancing age. On average from ages 50 to 86, deletion frequency increased from 0.008 to 0.15%, an 18-fold increase. Females may have lower deletion frequencies than males at older ages. We also measured declines in VO2max and mtDNA copy number with age in both sexes. The mtDNA deletion frequency measured from single skeletal muscle biopsies predicted 13.3% of the variation in VO2max. Copy number explained 22.6% of the variation in mtDNA deletion frequency and 10.4% of the lean mass variation. We found predictive relationships between age, mtDNA deletion mutation frequency, mtDNA copy number, and physical performance. These data are consistent with a role for mitochondrial function and genome integrity in maintaining physical performance with age. Analyses of mtDNA quality and quantity in larger cohorts and longitudinal studies could extend our understanding of the importance of mitochondrial DNA in human aging and longevity.
Collapse
Affiliation(s)
- Allen Herbst
- Department of Agricultural, Food and Nutritional Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Steven J Prior
- Department of Kinesiology, University of Maryland School of Public Health, College Park, MD, USA.,Baltimore Veterans Affairs Medical Center Geriatric Research, Education and Clinical Center, Baltimore, MD, USA
| | - Cathy C Lee
- Veterans Administration Greater Los Angeles Healthcare System, Los Angeles, CA, USA.,Division of Geriatrics, Department of Medicine, University of California, Los Angeles, 650 Charles E. Young Drive South, Rm 34-115, Los Angeles, CA, 90095, USA
| | - Judd M Aiken
- Department of Agricultural, Food and Nutritional Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Debbie McKenzie
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Austin Hoang
- Division of Geriatrics, Department of Medicine, University of California, Los Angeles, 650 Charles E. Young Drive South, Rm 34-115, Los Angeles, CA, 90095, USA
| | - Nianjun Liu
- Department of Epidemiology and Biostatistics, Indiana University Bloomington, Bloomington, IN, USA
| | - Xiwei Chen
- Department of Epidemiology and Biostatistics, Indiana University Bloomington, Bloomington, IN, USA
| | - Pengcheng Xun
- Department of Epidemiology and Biostatistics, Indiana University Bloomington, Bloomington, IN, USA
| | - David B Allison
- Department of Epidemiology and Biostatistics, Indiana University Bloomington, Bloomington, IN, USA
| | - Jonathan Wanagat
- Veterans Administration Greater Los Angeles Healthcare System, Los Angeles, CA, USA. .,Division of Geriatrics, Department of Medicine, University of California, Los Angeles, 650 Charles E. Young Drive South, Rm 34-115, Los Angeles, CA, 90095, USA.
| |
Collapse
|
99
|
Takao N, Iwasaka J, Kurose S, Miyauchi T, Tamanoi A, Tsuyuguchi R, Fujii A, Tsutsumi H, Kimura Y. Evaluation of oxygen uptake adjusted by skeletal muscle mass in cardiovascular disease patients with type 2 diabetes. J Phys Ther Sci 2021; 33:94-99. [PMID: 33642681 PMCID: PMC7897529 DOI: 10.1589/jpts.33.94] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 11/02/2020] [Indexed: 01/08/2023] Open
Abstract
[Purpose] We aimed to evaluate oxygen uptake adjusted by total skeletal muscle mass in
patients with cardiovascular disease with or without type 2 diabetes mellitus.
[Participants and Methods] The participants included 54 males ≥50 years of age without
heart failure who underwent cardiopulmonary exercise testing during cardiac
rehabilitation. We divided the participants into two groups: patients with type 2 diabetes
mellitus (DM group) and patients without type 2 diabetes mellitus (NDM group). [Results]
We found no significant differences in age, weight, fat mass, or skeletal muscle mass
between the groups. There were also no differences in cardiac function, body composition,
and heart rate response. The DM group showed significantly lower peak oxygen uptake values
adjusted by skeletal muscle mass, despite the absence of significant differences in
skeletal muscle mass. A significant positive correlation was found between peak oxygen
uptake and age, weight, and skeletal muscle mass. Stepwise regression analysis revealed
that age, skeletal muscle mass, and medical history of diabetes were independent
predictors of absolute peak oxygen uptake. [Conclusion] Peak oxygen uptake adjusted by
skeletal muscle mass in patients with cardiovascular disease and type 2 diabetes mellitus
is lower than that in those without type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Nana Takao
- Department of Health Science, Graduate School of Medicine, Kansai Medical University: 2-5-1 Shinmachi, Hirakata 573-1010, Japan.,Health Science Center, Kansai Medical University Hospital, Japan
| | - Junji Iwasaka
- Department of Medicine II, Kansai Medical University, Japan
| | - Satoshi Kurose
- Department of Health Science, Kansai Medical University, Japan
| | - Takumi Miyauchi
- Department of Health Science, Graduate School of Medicine, Kansai Medical University: 2-5-1 Shinmachi, Hirakata 573-1010, Japan.,Health Science Center, Kansai Medical University Hospital, Japan
| | - Astuko Tamanoi
- Health Science Center, Kansai Medical University Hospital, Japan
| | - Ryota Tsuyuguchi
- Department of Health Science, Graduate School of Medicine, Kansai Medical University: 2-5-1 Shinmachi, Hirakata 573-1010, Japan
| | - Aya Fujii
- Department of Health Science, Graduate School of Medicine, Kansai Medical University: 2-5-1 Shinmachi, Hirakata 573-1010, Japan.,Health Science Center, Kansai Medical University Hospital, Japan
| | - Hiromi Tsutsumi
- Department of Health Science, Kansai Medical University, Japan
| | - Yutaka Kimura
- Health Science Center, Kansai Medical University Hospital, Japan.,Department of Health Science, Kansai Medical University, Japan
| |
Collapse
|
100
|
Liu F, Wanigatunga AA, Zampino M, Knuth ND, Simonsick EM, Schrack JA, Ferrucci L. Association of Mitochondrial Function, Substrate Utilization, and Anaerobic Metabolism With Age-Related Perceived Fatigability. J Gerontol A Biol Sci Med Sci 2021; 76:426-433. [PMID: 32803242 DOI: 10.1093/gerona/glaa201] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Indexed: 11/13/2022] Open
Abstract
Previous work has shown that poorer mitochondrial function is associated with age-related perceived fatigability. However, whether glucose oxidation and anaerobic metabolism are intermediate factors underlying this association remains unclear. We examined the total cross-sectional association between mitochondrial function and perceived fatigability in 554 adults aged 22-99 years. Mitochondrial function was assessed by skeletal muscle oxidative capacity (kPCr) using 31P magnetic resonance spectroscopy. Perceived fatigability was measured by rating of perceived exertion after a 5-minute (0.67 m/s) treadmill walk. The intermediate role of glucose oxidation (measured by the rate of change of respiratory exchange ratio [RER change rate] during the 5-minute treadmill walk) and anaerobic metabolism (measured by ventilatory threshold [VeT] during a maximal treadmill test) was evaluated by examining their cross-sectional associations with kPCr and perceived exertion. For each 0.01/s lower kPCr, perceived fatigability was 0.47 points higher (p = .002). A 0.01/s lower kPCr was also associated with 8.3 L/min lower VeT (p < .001). Lower VeT was associated with higher fatigability at lower levels of kPCr but not at higher kPCr levels (β for interaction = 0.017, p = .002). kPCr and RER change rate were not significantly associated (p = .341), but a 0.01/min higher RER change rate was associated with 0.12-point higher fatigability (p = .001). Poorer mitochondrial function potentially contributes to higher perceived fatigability through higher glucose oxidation and higher anaerobic metabolism. Future studies to further explore the longitudinal mechanisms between these metabolic changes and fatigability are warranted.
Collapse
Affiliation(s)
- Fangyu Liu
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland.,Center on Aging and Health, Johns Hopkins University, Baltimore, Maryland
| | - Amal A Wanigatunga
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland.,Center on Aging and Health, Johns Hopkins University, Baltimore, Maryland
| | - Marta Zampino
- National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | | | - Eleanor M Simonsick
- National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| | - Jennifer A Schrack
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland.,Center on Aging and Health, Johns Hopkins University, Baltimore, Maryland
| | - Luigi Ferrucci
- National Institute on Aging, National Institutes of Health, Baltimore, Maryland
| |
Collapse
|