51
|
Molecular Cloning and Polymorphism Analysis of PmFGF18 from Pinctada fucata martensii. JOURNAL OF MARINE SCIENCE AND ENGINEERING 2020. [DOI: 10.3390/jmse8110896] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Fibroblast growth factor 18 (FGF18) plays an important functional role in skeletal growth and development. The FGF18 gene was characterized in pearl oyster Pinctada fucata martensii (PmFGF18) with the full-length sequence containing an open reading frame of 714 bp encoding 237 amino acids. The domain analysis of PmFGF18 showed a distinctive FGF domain, with a high similarity to FGF18 protein sequences from Crassostrea gigas (43.35%) and C. virginica (37.43%). PmFGF18 expression was revealed in all analyzed tissues with a significantly higher expression level in the fast-growing group than the slow-growing group. The analysis of PmFGF18 polymorphism demonstrated 33 SNPs (single nucleotide polymorphisms) in the CDS and promoter region of PmFGF18 sequence. Association analysis revealed 19 SNPs (2 SNPs from CDS and 17 SNPs from the promoter region) associating significantly with growth traits. Among the associated SNPs, one SNP g.50918198 A > C was verified in the other breeding line. Therefore, PmFGF18 can be utilized as a candidate gene for growth, and its related SNPs could be used in selective breeding of P. f. martensii for the improvement of growth traits.
Collapse
|
52
|
Gerdol M, Moreira R, Cruz F, Gómez-Garrido J, Vlasova A, Rosani U, Venier P, Naranjo-Ortiz MA, Murgarella M, Greco S, Balseiro P, Corvelo A, Frias L, Gut M, Gabaldón T, Pallavicini A, Canchaya C, Novoa B, Alioto TS, Posada D, Figueras A. Massive gene presence-absence variation shapes an open pan-genome in the Mediterranean mussel. Genome Biol 2020; 21:275. [PMID: 33168033 PMCID: PMC7653742 DOI: 10.1186/s13059-020-02180-3] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 10/15/2020] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND The Mediterranean mussel Mytilus galloprovincialis is an ecologically and economically relevant edible marine bivalve, highly invasive and resilient to biotic and abiotic stressors causing recurrent massive mortalities in other bivalves. Although these traits have been recently linked with the maintenance of a high genetic variation within natural populations, the factors underlying the evolutionary success of this species remain unclear. RESULTS Here, after the assembly of a 1.28-Gb reference genome and the resequencing of 14 individuals from two independent populations, we reveal a complex pan-genomic architecture in M. galloprovincialis, with a core set of 45,000 genes plus a strikingly high number of dispensable genes (20,000) subject to presence-absence variation, which may be entirely missing in several individuals. We show that dispensable genes are associated with hemizygous genomic regions affected by structural variants, which overall account for nearly 580 Mb of DNA sequence not included in the reference genome assembly. As such, this is the first study to report the widespread occurrence of gene presence-absence variation at a whole-genome scale in the animal kingdom. CONCLUSIONS Dispensable genes usually belong to young and recently expanded gene families enriched in survival functions, which might be the key to explain the resilience and invasiveness of this species. This unique pan-genome architecture is characterized by dispensable genes in accessory genomic regions that exceed by orders of magnitude those observed in other metazoans, including humans, and closely mirror the open pan-genomes found in prokaryotes and in a few non-metazoan eukaryotes.
Collapse
Affiliation(s)
- Marco Gerdol
- Department of Life Sciences, Università degli Studi di Trieste, Via Licio Giorgieri 5, 34127 Trieste, Italy
| | - Rebeca Moreira
- Instituto de Investigaciones Marinas (IIM - CSIC), Eduardo Cabello, 6, 36208 Vigo, Spain
| | - Fernando Cruz
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, 08028 Barcelona, Spain
| | - Jessica Gómez-Garrido
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, 08028 Barcelona, Spain
| | - Anna Vlasova
- CRG - Centre for Genomic Regulation, Doctor Aiguader, 88, 08003 Barcelona, Spain
| | - Umberto Rosani
- Department of Biology, Università degli Studi di Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy
| | - Paola Venier
- Department of Biology, Università degli Studi di Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy
| | - Miguel A. Naranjo-Ortiz
- CRG - Centre for Genomic Regulation, Doctor Aiguader, 88, 08003 Barcelona, Spain
- Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - Maria Murgarella
- Department of Biochemistry, Genetics and Immunology, University of Vigo, 36310 Vigo, Spain
| | - Samuele Greco
- Department of Life Sciences, Università degli Studi di Trieste, Via Licio Giorgieri 5, 34127 Trieste, Italy
| | - Pablo Balseiro
- Instituto de Investigaciones Marinas (IIM - CSIC), Eduardo Cabello, 6, 36208 Vigo, Spain
- Norce Norwegian Research Centre AS, Bergen, Norway
| | - André Corvelo
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, 08028 Barcelona, Spain
- New York Genome Center, New York, NY 10013 USA
| | - Leonor Frias
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, 08028 Barcelona, Spain
| | - Marta Gut
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, 08028 Barcelona, Spain
| | - Toni Gabaldón
- CRG - Centre for Genomic Regulation, Doctor Aiguader, 88, 08003 Barcelona, Spain
- Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
- ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain
- Current address: Barelona Supercomputing Centre (BSC-CNS) and Institute for Research in Biomedicine (IRB), 08034 Barcelona, Spain
| | - Alberto Pallavicini
- Department of Life Sciences, Università degli Studi di Trieste, Via Licio Giorgieri 5, 34127 Trieste, Italy
- Anton Dohrn Zoological Station, 80121 Villa Comunale, Naples, Italy
| | - Carlos Canchaya
- Department of Biochemistry, Genetics and Immunology, University of Vigo, 36310 Vigo, Spain
- Biomedical Research Center (CINBIO), University of Vigo, 36310 Vigo, Spain
- Galicia Sur Health Research Institute, 36310 Vigo, Spain
| | - Beatriz Novoa
- Instituto de Investigaciones Marinas (IIM - CSIC), Eduardo Cabello, 6, 36208 Vigo, Spain
| | - Tyler S. Alioto
- CNAG-CRG, Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Baldiri i Reixac 4, 08028 Barcelona, Spain
- Universitat Pompeu Fabra (UPF), 08003 Barcelona, Spain
| | - David Posada
- Department of Biochemistry, Genetics and Immunology, University of Vigo, 36310 Vigo, Spain
- Biomedical Research Center (CINBIO), University of Vigo, 36310 Vigo, Spain
- Galicia Sur Health Research Institute, 36310 Vigo, Spain
| | - Antonio Figueras
- Instituto de Investigaciones Marinas (IIM - CSIC), Eduardo Cabello, 6, 36208 Vigo, Spain
| |
Collapse
|
53
|
Whitelaw BL, Cooke IR, Finn J, da Fonseca RR, Ritschard EA, Gilbert MTP, Simakov O, Strugnell JM. Adaptive venom evolution and toxicity in octopods is driven by extensive novel gene formation, expansion, and loss. Gigascience 2020; 9:giaa120. [PMID: 33175168 PMCID: PMC7656900 DOI: 10.1093/gigascience/giaa120] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 08/10/2020] [Accepted: 10/06/2020] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Cephalopods represent a rich system for investigating the genetic basis underlying organismal novelties. This diverse group of specialized predators has evolved many adaptations including proteinaceous venom. Of particular interest is the blue-ringed octopus genus (Hapalochlaena), which are the only octopods known to store large quantities of the potent neurotoxin, tetrodotoxin, within their tissues and venom gland. FINDINGS To reveal genomic correlates of organismal novelties, we conducted a comparative study of 3 octopod genomes, including the Southern blue-ringed octopus (Hapalochlaena maculosa). We present the genome of this species and reveal highly dynamic evolutionary patterns at both non-coding and coding organizational levels. Gene family expansions previously reported in Octopus bimaculoides (e.g., zinc finger and cadherins, both associated with neural functions), as well as formation of novel gene families, dominate the genomic landscape in all octopods. Examination of tissue-specific genes in the posterior salivary gland revealed that expression was dominated by serine proteases in non-tetrodotoxin-bearing octopods, while this family was a minor component in H. maculosa. Moreover, voltage-gated sodium channels in H. maculosa contain a resistance mutation found in pufferfish and garter snakes, which is exclusive to the genus. Analysis of the posterior salivary gland microbiome revealed a diverse array of bacterial species, including genera that can produce tetrodotoxin, suggestive of a possible production source. CONCLUSIONS We present the first tetrodotoxin-bearing octopod genome H. maculosa, which displays lineage-specific adaptations to tetrodotoxin acquisition. This genome, along with other recently published cephalopod genomes, represents a valuable resource from which future work could advance our understanding of the evolution of genomic novelty in this family.
Collapse
Affiliation(s)
- Brooke L Whitelaw
- Centre for Sustainable Tropical Fisheries and Aquaculture, James Cook University, 1 James Cook Dr, Douglas QLD 4811 , Australia
- Sciences, Museum Victoria, 11 Nicholson St, Carlton, Victoria 3053, Australia
| | - Ira R Cooke
- College of Public Health, Medical and Vet Sciences, James Cook University,1 James Cook Dr, Douglas QLD 4811 , Australia
- La Trobe Institute of Molecular Science, La Trobe University, Plenty Rd &, Kingsbury Dr, Bundoora, Melbourne, Victoria 3086, Australia
| | - Julian Finn
- Sciences, Museum Victoria, 11 Nicholson St, Carlton, Victoria 3053, Australia
| | - Rute R da Fonseca
- Center for Macroecology, Evolution and Climate (CMEC), GLOBE Institute, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - Elena A Ritschard
- Department of Neurosciences and Developmental Biology, University of Vienna,Universitätsring 1, 1010 Wien, Vienna, Austria
- Department of Biology and Evolution of Marine Organisms, Stazione Zoologica Anton Dohrn, Naples, Italy
| | - M T P Gilbert
- Center for Evolutionary Hologenomics, GLOBE Institute, University of Copenhagen, Øster Voldgade 5–7, 1350 Copenhagen, Denmark
| | - Oleg Simakov
- Department of Neurosciences and Developmental Biology, University of Vienna,Universitätsring 1, 1010 Wien, Vienna, Austria
| | - Jan M Strugnell
- Centre for Sustainable Tropical Fisheries and Aquaculture, James Cook University, 1 James Cook Dr, Douglas QLD 4811 , Australia
- Department of Ecology, Environment and Evolution, La Trobe University, Plenty Rd &, Kingsbury Dr, Bundoora, Melbourne, Victoria 3086, Australia
| |
Collapse
|
54
|
Xie B, He Q, Hao R, Zheng Z, Du X. Molecular and functional analysis of PmC1qDC in nacre formation of Pinctada fucata martensii. FISH & SHELLFISH IMMUNOLOGY 2020; 106:621-627. [PMID: 32827655 DOI: 10.1016/j.fsi.2020.08.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 08/05/2020] [Accepted: 08/17/2020] [Indexed: 06/11/2023]
Abstract
The C1q-domain-containing (C1qDC) proteins are a family of proteins characterized by a globular C1q (gC1q) domain in their C-terminus which hold the potential function in the shell formation as shell matrix proteins. In this study, a C1qDC protein was identified and characterized in pearl oyster (Pinctada fucata martensii) (PmC1qDC) to explore its function in nacre formation. The PmC1qDC-deduced protein sequence carried a typical globular C1q (gC1q) domain that possessed the typical 10-stranded β-sandwich fold with a jelly-roll topology common to all C1qDC family members and shared high homology with other gC1q domains. Homologous analysis of PmC1qDC presented it contained conserved secondary structure and Phe135, Phe155, Tyr166, Phe173, Tyr181, Phe183, and Phe256 amino acid residues. Expression pattern analysis showed that PmC1qDC expressed in all the detected tissues and exhibited a significantly higher expression level in nacre formation-associated tissues. After the shell notching, the expression level of PmC1qDC showed significantly up-regulation after 12 h in the central zone of mantle (MC). PmC1qDC expression significantly decreased in the MC after RNA interference (RNAi). Furthermore, disordered crystals with evident rough surface and irregular crystal tablets were observed in the nacre after RNAi. Results suggested that PmC1qDC affects the shell nacre formation, which is significant to improve the pearl production of pearl oyster.
Collapse
Affiliation(s)
- Bingyi Xie
- Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Qi He
- Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Ruijuan Hao
- Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Zhe Zheng
- Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China.
| | - Xiaodong Du
- Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China; Guangdong Science and Innovation Center for Pearl Culture, Zhanjiang, 524088, China.
| |
Collapse
|
55
|
Kintsu H, Nishimura R, Negishi L, Kuriyama I, Tsuchihashi Y, Zhu L, Nagata K, Suzuki M. Identification of methionine -rich insoluble proteins in the shell of the pearl oyster, Pinctada fucata. Sci Rep 2020; 10:18335. [PMID: 33110152 PMCID: PMC7591529 DOI: 10.1038/s41598-020-75444-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 10/12/2020] [Indexed: 11/30/2022] Open
Abstract
The molluscan shell is a biomineral that comprises calcium carbonate and organic matrices controlling the crystal growth of calcium carbonate. The main components of organic matrices are insoluble chitin and proteins. Various kinds of proteins have been identified by solubilizing them with reagents, such as acid or detergent. However, insoluble proteins remained due to the formation of a solid complex with chitin. Herein, we identified these proteins from the nacreous layer, prismatic layer, and hinge ligament of Pinctada fucata using mercaptoethanol and trypsin. Most identified proteins contained a methionine-rich region in common. We focused on one of these proteins, NU-5, to examine the function in shell formation. Gene expression analysis of NU-5 showed that NU-5 was highly expressed in the mantle, and a knockdown of NU-5 prevented the formation of aragonite tablets in the nacre, which suggested that NU-5 was required for nacre formation. Dynamic light scattering and circular dichroism revealed that recombinant NU-5 had aggregation activity and changed its secondary structure in the presence of calcium ions. These findings suggest that insoluble proteins containing methionine-rich regions may be important for scaffold formation, which is an initial stage of biomineral formation.
Collapse
Affiliation(s)
- Hiroyuki Kintsu
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.,Center for Health and Environmental Risk Research, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba-city, Ibaraki, 305-8506, Japan
| | - Ryo Nishimura
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Lumi Negishi
- Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Isao Kuriyama
- Mie Prefecture Fisheries Research Institute, 3564-3 Hamajima, Hamajima-cho, Shima-city, Mie, 517-0404, Japan
| | - Yasushi Tsuchihashi
- Mie Prefecture Fisheries Research Institute, 3564-3 Hamajima, Hamajima-cho, Shima-city, Mie, 517-0404, Japan
| | - Lingxiao Zhu
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Koji Nagata
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Michio Suzuki
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan.
| |
Collapse
|
56
|
Liu C, Ren Y, Li Z, Hu Q, Yin L, Wang H, Qiao X, Zhang Y, Xing L, Xi Y, Jiang F, Wang S, Huang C, Liu B, Liu H, Wan F, Qian W, Fan W. Giant African snail genomes provide insights into molluscan whole-genome duplication and aquatic-terrestrial transition. Mol Ecol Resour 2020; 21:478-494. [PMID: 33000522 DOI: 10.1111/1755-0998.13261] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 09/03/2020] [Accepted: 09/07/2020] [Indexed: 12/15/2022]
Abstract
Whole-genome duplication (WGD), contributing to evolutionary diversity and environmental adaptability, has been observed across a wide variety of eukaryotic groups, but not in molluscs. Molluscs are the second largest animal phylum in terms of species numbers, and among the organisms that have successfully adapted to the nonmarine realm through aquatic-terrestrial (A-T) transition. We assembled a chromosome-level reference genome for Achatina immaculata, a globally invasive species, and compared the genomes of two giant African snails (A. immaculata and Achatina fulica) to other available mollusc genomes. Macrosynteny, colinearity blocks, Ks peak and Hox gene clusters collectively suggested a WGD event in the two snails. The estimated WGD timing (~70 million years ago) was close to the speciation age of the Sigmurethra-Orthurethra (within Stylommatophora) lineage and the Cretaceous-Tertiary (K-T) mass extinction, indicating that the WGD may have been a common event shared by all Sigmurethra-Orthurethra species and conferred ecological adaptability allowing survival after the K-T extinction event. Furthermore, the adaptive mechanism of WGD in terrestrial ecosystems was confirmed by the presence of gene families related to the respiration, aestivation and immune defence. Several mucus-related gene families expanded early in the Stylommatophora lineage, and the haemocyanin and phosphoenolpyruvate carboxykinase families doubled during WGD, and zinc metalloproteinase genes were highly tandemly duplicated after WGD. This evidence suggests that although WGD may not have been the direct driver of the A-T transition, it played an important part in the terrestrial adaptation of giant African snails.
Collapse
Affiliation(s)
- Conghui Liu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Yuwei Ren
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Zaiyuan Li
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Qi Hu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Lijuan Yin
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Hengchao Wang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Xi Qiao
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Yan Zhang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Longsheng Xing
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Yu Xi
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Fan Jiang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Sen Wang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Cong Huang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Bo Liu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Hangwei Liu
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Fanghao Wan
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Wanqiang Qian
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Wei Fan
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| |
Collapse
|
57
|
Li Y, Nong W, Baril T, Yip HY, Swale T, Hayward A, Ferrier DEK, Hui JHL. Reconstruction of ancient homeobox gene linkages inferred from a new high-quality assembly of the Hong Kong oyster (Magallana hongkongensis) genome. BMC Genomics 2020; 21:713. [PMID: 33059600 PMCID: PMC7566022 DOI: 10.1186/s12864-020-07027-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 08/25/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Homeobox-containing genes encode crucial transcription factors involved in animal, plant and fungal development, and changes to homeobox genes have been linked to the evolution of novel body plans and morphologies. In animals, some homeobox genes are clustered together in the genome, either as remnants from ancestral genomic arrangements, or due to coordinated gene regulation. Consequently, analyses of homeobox gene organization across animal phylogeny provide important insights into the evolution of genome organization and developmental gene control, and their interaction. However, homeobox gene organization remains to be fully elucidated in several key animal ancestors, including those of molluscs, lophotrochozoans and bilaterians. RESULTS Here, we present a high-quality chromosome-level genome assembly of the Hong Kong oyster, Magallana hongkongensis (2n = 20), for which 93.2% of the genomic sequences are contained on 10 pseudomolecules (~ 758 Mb, scaffold N50 = 72.3 Mb). Our genome assembly was scaffolded using Hi-C reads, facilitating a larger scaffold size compared to the recently published M. hongkongensis genome of Peng et al. (Mol Ecol Resources, 2020), which was scaffolded using the Crassostrea gigas assembly. A total of 46,963 predicted gene models (45,308 protein coding genes) were incorporated in our genome, and genome completeness estimated by BUSCO was 94.6%. Homeobox gene linkages were analysed in detail relative to available data for other mollusc lineages. CONCLUSIONS The analyses performed in this study and the accompanying genome sequence provide important genetic resources for this economically and culturally valuable oyster species, and offer a platform to improve understanding of animal biology and evolution more generally. Transposable element content is comparable to that found in other mollusc species, contrary to the conclusion of another recent analysis. Also, our chromosome-level assembly allows the inference of ancient gene linkages (synteny) for the homeobox-containing genes, even though a number of the homeobox gene clusters, like the Hox/ParaHox clusters, are undergoing dispersal in molluscs such as this oyster.
Collapse
Affiliation(s)
- Yiqian Li
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Wenyan Nong
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Tobias Baril
- Department of Conservation and Ecology, Penryn Campus, University of Exeter, Exeter, UK
| | - Ho Yin Yip
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong
| | | | - Alexander Hayward
- Department of Conservation and Ecology, Penryn Campus, University of Exeter, Exeter, UK.
| | - David E K Ferrier
- The Scottish Oceans Institute, Gatty Martine Laboratory, University of St. Andrews, St Andrews, UK.
| | - Jerome H L Hui
- School of Life Sciences, Simon F.S. Li Marine Science Laboratory, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong.
| |
Collapse
|
58
|
He J, Shen C, Liang H, Fang X, Lu J. Antimicrobial properties and immune-related gene expression of a C-type lectin isolated from Pinctada fucata martensii. FISH & SHELLFISH IMMUNOLOGY 2020; 105:330-340. [PMID: 32712228 DOI: 10.1016/j.fsi.2020.07.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 07/01/2020] [Accepted: 07/09/2020] [Indexed: 06/11/2023]
Abstract
C-type lectins are carbohydrate-binding proteins that play important roles in the innate immune response to pathogen infections. Here, multi-step high performance liquid chromatography (HPLC), combined with mass spectrometry (MS), was used to isolate and identify proteins with antibacterial activity from the serum of Pinctada fucata martensii. Using this method, we obtained a novel isoform of C-type lectin (PmCTL-1). PmCTL-1 strongly inhibited gram-positive bacteria. The complete cDNA sequence of PmCTL-1 was 636 bp in length, and encoded a protein 149 amino acids long, containing a typical carbohydrate recognition domain (CRD). A phylogenetic analysis based on a multiple sequence alignment indicated that PmCTL-1 was highly similar to C-type lectins from other mollusks. Fluorescent quantitative real-time PCR analysis showed that PmCTL-1 mRNA was strongly upregulated in the mantle of healthy P.f. martensii, but was expressed only at low levels in the gill, gonad, hepatopancreas, adductor muscle, and hemocytes. PmCTL-1 expression levels in the mantle and hemocytes increased significantly in response to bacterial stimulation. This study provides a valuable framework for further explorations of innate immunity and the immune response in mollusks.
Collapse
Affiliation(s)
- Junjun He
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, Guangdong, PR China; Fisheries College of Guangdong Ocean University, Zhanjiang, Guangdong, PR China
| | - Chenghao Shen
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, Guangdong, PR China; Fisheries College of Guangdong Ocean University, Zhanjiang, Guangdong, PR China
| | - Haiying Liang
- Shenzhen Institute of Guangdong Ocean University, Shenzhen, Guangdong, PR China; Fisheries College of Guangdong Ocean University, Zhanjiang, Guangdong, PR China; Guangdong Provincial Key Laboratory of Pathogenic Biology and Epidemiology for Aquatic Economic Animals, Zhanjiang, Guangdong, PR China; Guangdong Provincial Engineering Research Center for Aquatic Animal Health Assessment, Shenzhen, Guangdong, PR China.
| | - Xiaochen Fang
- Fisheries College of Guangdong Ocean University, Zhanjiang, Guangdong, PR China
| | - Jinzhao Lu
- Fisheries College of Guangdong Ocean University, Zhanjiang, Guangdong, PR China
| |
Collapse
|
59
|
Zhang Y, Jiao Y, Li Y, Tian Q, Du X, Deng Y. Comprehensive analysis of microRNAs in the mantle central and mantle edge provide insights into shell formation in pearl oyster Pinctada fucata martensii. Comp Biochem Physiol B Biochem Mol Biol 2020; 252:110508. [PMID: 32992005 DOI: 10.1016/j.cbpb.2020.110508] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 08/12/2020] [Accepted: 09/23/2020] [Indexed: 01/15/2023]
Abstract
MicroRNAs (miRNAs) are a class of non-coding RNA molecules with post-transcriptional regulatory activity in various biological processes. Pearl oyster Pinctada fucata martensii is one of the main species cultured for marine pearl production in China and Japan. In this study, we constructed two small RNA libraries of mantle central (MC) and mantle edge (ME) from P. f. martensii and obtained 24,175,537 and 21,593,898 clean reads, respectively. A total of 258 miRNAs of P. f. martensii (Pm-miRNA) were identified, and 93 differentially expressed miRNAs (DEMs) including 49 known Pm-miRNAs and 44 novel Pm-miRNAs were obtained from the MC and ME. The target transcripts of these DEMs were obviously enriched in neuroactive ligand-receptor interaction pathway, and others. After over-expression of Pm-miR-124 and Pm-miR-9a-5p in the MC by mimic injection into the muscle of P. f. martensii, nacre exhibited a disorderly growth as detected by scanning electron microscopy. Pm-nicotinic acetylcholine receptor alpha subunit, Pm-neuropeptide Y and Pm-chitin synthase were investigated as the targets of Pm-miR-124; and Pm-tumor necrosis factor receptor associated factor 2 and Pm-chitin synthase were investigated as the targets of Pm-miR-9a-5p. These predicted target transcripts were down-regulated after the over-expression of Pm-miR-124 and Pm-miR-9a-5p in MC. This study comprehensively analyzed the miRNAs in mantle tissues to enhance our understanding of the regulatory mechanism underlying shell formation.
Collapse
Affiliation(s)
- Yuting Zhang
- Fishery College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yu Jiao
- Fishery College, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Science and Innovation Center for Pearl Culture, Zhanjiang 524088, China
| | - Yiping Li
- Fishery College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Qunli Tian
- Fishery College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Xiaodong Du
- Fishery College, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Science and Innovation Center for Pearl Culture, Zhanjiang 524088, China
| | - Yuewen Deng
- Fishery College, Guangdong Ocean University, Zhanjiang 524088, China; Guangdong Science and Innovation Center for Pearl Culture, Zhanjiang 524088, China.
| |
Collapse
|
60
|
Proteome of larval metamorphosis induced by epinephrine in the Fujian oyster Crassostrea angulata. BMC Genomics 2020; 21:675. [PMID: 32993483 PMCID: PMC7525975 DOI: 10.1186/s12864-020-07066-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 09/10/2020] [Indexed: 01/10/2023] Open
Abstract
Background The Fujian oyster Crassostrea angulata is an economically important species that has typical settlement and metamorphosis stages. The development of the oyster involves complex morphological and physiological changes, the molecular mechanisms of which are as yet unclear. Results In this study, changes in proteins were investigated during larval settlement and metamorphosis of Crassostrea angulata using epinephrine induction. Protein abundance and identity were characterized using label-free quantitative proteomics, tandem mass spectrometry (MS/ MS), and Mascot methods. The results showed that more than 50% (764 out of 1471) of the quantified proteins were characterized as differentially expressed. Notably, more than two-thirds of the differentially expressed proteins were down-regulated in epinephrine-induced larvae. The results showed that “metabolic process” was closely related to the development of settlement and metamorphosis; 5 × 10− 4 M epinephrine induced direct metamorphosis of larvae and was non-toxic. Calmodulin and MAPK pathways were involved in the regulation of settlement of the oyster. Expression levels of immune-related proteins increased during metamorphosis. Hepatic lectin-like proteins, cadherins, calmodulin, calreticulin, and cytoskeletal proteins were involved in metamorphosis. The nervous system may be remodeled in larval metamorphosis induced by epinephrine. Expression levels of proteins that were enriched in the epinephrine signaling pathway may reflect the developmental stage of the larvae, that may reflect whether or not larvae were directly involved in metamorphosis when the larvae were treated with epinephrine. Conclusion The study provides insight into proteins that function in energy metabolism, immune responses, settlement and metamorphosis, and shell formation in C. angulata. The results contribute valuable information for further research on larval settlement and metamorphosis. Graphical abstract ![]()
Collapse
|
61
|
Quinn EA, Malkin SH, Rowley AF, Coates CJ. Laccase and catecholoxidase activities contribute to innate immunity in slipper limpets, Crepidula fornicata. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 110:103724. [PMID: 32360226 DOI: 10.1016/j.dci.2020.103724] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 04/26/2020] [Accepted: 04/27/2020] [Indexed: 06/11/2023]
Abstract
The slipper limpet Crepidula fornicata is an invasive, non-native, marine species found throughout the coastal waters of southern England and Wales, UK. These limpets are considered to blight commercial shellfish banks, notably oysters, yet little is known about their disease-carrying capacity or their immunobiology. To address the latter, we isolated haemolymph (blood) from limpets and tested for the presence of the immune-enzyme phenoloxidase. Invertebrate phenoloxidases produce melanic polymers from simple phenolic substrates, which are deployed in the presence of pathogens because of their potent microbicidal and microbiostatic properties. We used a series of established substrates (e.g., tyrosine, hydroquinone) and inhibitors (e.g., 4-hexylresorcinol, benzoic acid) to target three distinct enzymes: laccase (para-diphenoloxidase), catecholoxidase (ortho-diphenoloxidase) and tyrosinase (monophenoloxidase). We confirmed laccase and catecholoxidase activities and characterised their kinetic properties across temperature and pH gradients (5-70 °C and 5-10, respectively). Crucially, we demonstrated that products derived from such laccase and catecholoxidase activities reduced significantly the numbers of colony-forming units of both Gram-positive and Gram-negative bacteria in vitro. We further screened limpet tissues for signs of melanin using wax histology, and found cells replete with eumelanin-like pigments and lipofuscin in the digestive gland, connective tissues, barrier epithelia and gills. Our data represent the first account of enzyme-based antibacterial defences, notably laccase, in C. fornicata.
Collapse
Affiliation(s)
- Emma A Quinn
- Department of Biosciences, College of Science, Swansea University, Swansea, SA2 8PP, Wales, UK
| | - Sophie H Malkin
- Department of Biosciences, College of Science, Swansea University, Swansea, SA2 8PP, Wales, UK
| | - Andrew F Rowley
- Department of Biosciences, College of Science, Swansea University, Swansea, SA2 8PP, Wales, UK
| | - Christopher J Coates
- Department of Biosciences, College of Science, Swansea University, Swansea, SA2 8PP, Wales, UK.
| |
Collapse
|
62
|
Zheng Z, Xie B, Cai W, Yang C, Du X. Identification of a long non-coding RNA (LncMSEN2) from pearl oyster and its potential roles in exoskeleton formation and LPS stimulation. FISH & SHELLFISH IMMUNOLOGY 2020; 103:403-408. [PMID: 32446968 DOI: 10.1016/j.fsi.2020.05.040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Revised: 05/07/2020] [Accepted: 05/14/2020] [Indexed: 06/11/2023]
Abstract
Long non-coding RNAs (lncRNAs) play regulatory roles in various biological processes, including exoskeleton formation and immune response. The exoskeleton-based mantle-shell defense system is an important defense mechanism in shellfish. In this study, we found a novel lncRNA, herein formally named, LncMSEN2, from the pearl oyster Pinctada fucuta martensii, and its sequence was validated via polymerase chain reaction (PCR). LncMSEN2 was highly expressed in mantle tissues, especially in the central region (P < 0.05), and was also expressed in the pearl sac as detected by quantitative real-time PCR. In situ hybridization experiments revealed that LncMSEN2 had a strong positive signal in the inner and outer epidermal cells of the mantle pallial and central regions. RNA interference experiments showed that interference of LncMSEN2 expression with dsRNA in mantle tissues led to an abnormal crystal structure of the nacre. In addition, LncMSEN2 expression significantly increased 6 h after lipopolysaccharide stimulation in mantle tissues (P < 0.05). These results indicated that LncMSEN2 may be a novel regulator of the mantle-shell defense system of pearl oyster.
Collapse
Affiliation(s)
- Zhe Zheng
- Fishery College, Guangdong Ocean University, Zhanjiang, 524025, China
| | - Bingyi Xie
- Fishery College, Guangdong Ocean University, Zhanjiang, 524025, China
| | - Weiyu Cai
- Fishery College, Guangdong Ocean University, Zhanjiang, 524025, China
| | - Chuangye Yang
- Fishery College, Guangdong Ocean University, Zhanjiang, 524025, China.
| | - Xiaodong Du
- Fishery College, Guangdong Ocean University, Zhanjiang, 524025, China.
| |
Collapse
|
63
|
Zhang H, Xu H, Liu H, Pan X, Xu M, Zhang G, He M. PacBio single molecule long-read sequencing provides insight into the complexity and diversity of the Pinctada fucata martensii transcriptome. BMC Genomics 2020; 21:481. [PMID: 32660426 PMCID: PMC7359550 DOI: 10.1186/s12864-020-06894-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 07/07/2020] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND The pearl oyster Pinctada fucata martensii is an economically valuable shellfish for seawater pearl production, and production of pearls depends on its growth. To date, the molecular mechanisms of the growth of this species remain poorly understood. The transcriptome sequencing has been considered to understanding of the complexity of mechanisms of the growth of P. f. martensii. The recently released genome sequences of P. f. martensii, as well as emerging Pacific Bioscience (PacBio) single-molecular sequencing technologies, provide an opportunity to thoroughly investigate these molecular mechanisms. RESULTS Herein, the full-length transcriptome was analysed by combining PacBio single-molecule long-read sequencing (PacBio sequencing) and Illumina sequencing. A total of 20.65 Gb of clean data were generated, including 574,561 circular consensus reads, among which 443,944 full-length non-chimeric (FLNC) sequences were identified. Through transcript clustering analysis of FLNC reads, 32,755 consensus isoforms were identified, including 32,095 high-quality consensus sequences. After removing redundant reads, 16,388 transcripts were obtained, and 641 fusion transcripts were derived by performing fusion transcript prediction of consensus sequences. Alternative splicing analysis of the 16,388 transcripts was performed after accounting for redundancy, and 9097 gene loci were detected, including 1607 new gene loci and 14,946 newly discovered transcripts. The original boundary of 11,235 genes on the chromosomes was corrected, 12,025 complete open reading frame sequences and 635 long non-coding RNAs (LncRNAs) were predicted, and functional annotation of 13,482 new transcripts was achieved. Two thousand three hundred eighteen alternative splicing events were detected. A total of 228 differentially expressed transcripts (DETs) were identified between the largest (L) and smallest (S) pearl oysters. Compared with the S, the L showed 99 and 129 significantly up-and down-regulated DETs, respectively. Six of these DETs were further confirmed by quantitative real-time RT-PCR (RT-qPCR) in independent experiment. CONCLUSIONS Our results significantly improve existing gene models and genome annotations, optimise the genome structure, and in-depth understanding of the complexity and diversity of the differential growth patterns of P. f. martensii.
Collapse
Affiliation(s)
- Hua Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China
| | - Hanzhi Xu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huiru Liu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaolan Pan
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Meng Xu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Gege Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Maoxian He
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou, 510301, China.
| |
Collapse
|
64
|
Ocampo Daza D, Haitina T. Reconstruction of the Carbohydrate 6-O Sulfotransferase Gene Family Evolution in Vertebrates Reveals Novel Member, CHST16, Lost in Amniotes. Genome Biol Evol 2020; 12:993-1012. [PMID: 32652010 PMCID: PMC7353957 DOI: 10.1093/gbe/evz274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/10/2019] [Indexed: 12/24/2022] Open
Abstract
Glycosaminoglycans are sulfated polysaccharide molecules, essential for many biological processes. The 6-O sulfation of glycosaminoglycans is carried out by carbohydrate 6-O sulfotransferases (C6OSTs), previously named Gal/GalNAc/GlcNAc 6-O sulfotransferases. Here, for the first time, we present a detailed phylogenetic reconstruction, analysis of gene synteny conservation and propose an evolutionary scenario for the C6OST family in major vertebrate groups, including mammals, birds, nonavian reptiles, amphibians, lobe-finned fishes, ray-finned fishes, cartilaginous fishes, and jawless vertebrates. The C6OST gene expansion likely started early in the chordate lineage, giving rise to four ancestral genes after the divergence of tunicates and before the emergence of extant vertebrates. The two rounds of whole-genome duplication in early vertebrate evolution (1R/2R) only contributed two additional C6OST subtype genes, increasing the vertebrate repertoire from four genes to six, divided into two branches. The first branch includes CHST1 and CHST3 as well as a previously unrecognized subtype, CHST16 that was lost in amniotes. The second branch includes CHST2, CHST7, and CHST5. Subsequently, local duplications of CHST5 gave rise to CHST4 in the ancestor of tetrapods, and to CHST6 in the ancestor of primates. The teleost-specific gene duplicates were identified for CHST1, CHST2, and CHST3 and are result of whole-genome duplication (3R) in the teleost lineage. We could also detect multiple, more recent lineage-specific duplicates. Thus, the vertebrate repertoire of C6OST genes has been shaped by gene duplications and gene losses at several stages of vertebrate evolution, with implications for the evolution of skeleton, nervous system, and cell-cell interactions.
Collapse
Affiliation(s)
- Daniel Ocampo Daza
- Department of Organismal Biology, Uppsala University, Sweden
- School of Natural Sciences, University of California Merced
| | - Tatjana Haitina
- Department of Organismal Biology, Uppsala University, Sweden
| |
Collapse
|
65
|
Zhang J, Luo S, Gu Z, Deng Y, Jiao Y. Genome-wide DNA Methylation Analysis of Mantle Edge and Mantle Central from Pearl Oyster Pinctada fucata martensii. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2020; 22:380-390. [PMID: 32140888 DOI: 10.1007/s10126-020-09957-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 02/17/2020] [Indexed: 06/10/2023]
Abstract
DNA methylation is a type of epigenetic modification that alters gene expression without changing the DNA sequence and mediates some cases of phenotypic plasticity. In this study, we identified six DNA methyltransferase (DNMT) genes and two methyl-CpG binding domain protein2 (MBD2) gene from Pinctada fucata martensii. We also analyzed the genome-wide DNA methylation levels of mantle edge (ME) and mantle central (MC) from P. f. martensii via methylated immunoprecipitation sequencing (MeDIP-Seq). Results revealed that both ME and MC had 122 million reads, and had 58,702 and 55,721 peaks, respectively. The obtained methylation patterns of gene elements and repeats showed that the methylation of the protein-coding genes, particularly intron and coding exons (CDSs), was more frequent than that of other genomic elements in the pearl oyster genome. We combined the methylation data with the RNA-seq data of the ME and MC of P. f. martensii and found that promoter, CDS, and intron methylation levels were positively correlated with gene expression levels except the highest gene expression level. We also identified 313 differential methylation genes (DMGs) and annotated 212 of them. These DMGs were significantly enriched in 30 pathways, such as amino acid and protein metabolism, energy metabolism, terpenoid synthesis, and immune-related pathways. This study comprehensively analyzed the methylomes of biomineralization-related tissues and helped enhance our understanding of the regulatory mechanism underlying shell formation.
Collapse
Affiliation(s)
- Jiabin Zhang
- Fisheries College of Guangdong Ocean University, Zhanjiang, 524088, China
| | - Shaojie Luo
- Fisheries College of Guangdong Ocean University, Zhanjiang, 524088, China
| | - Zefeng Gu
- Fisheries College of Guangdong Ocean University, Zhanjiang, 524088, China
| | - Yuewen Deng
- Fisheries College of Guangdong Ocean University, Zhanjiang, 524088, China
- Pearl Breeding and Processing Engineering Technology Research Center of Guangdong Province, Zhanjiang, 524088, China
| | - Yu Jiao
- Fisheries College of Guangdong Ocean University, Zhanjiang, 524088, China.
- Pearl Breeding and Processing Engineering Technology Research Center of Guangdong Province, Zhanjiang, 524088, China.
| |
Collapse
|
66
|
Adzigbli L, Zhao Z, Wang Z, Yang C, Hao R, Deng Y. Characterization of cyclin dependent kinase-7 and its differential response to grafting challenge in the black shell colored selected line of pearl oyster Pinctada fucata martensii. FISH & SHELLFISH IMMUNOLOGY 2020; 101:277-283. [PMID: 32276036 DOI: 10.1016/j.fsi.2020.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 04/01/2020] [Accepted: 04/03/2020] [Indexed: 06/11/2023]
Abstract
Cyclin dependent kinase-7 (Cdk-7) is a protein kinase associated with regulating the cell cycle, cell differentiation and proliferation, apoptosis and inflammatory response. This study characterized the full cDNA sequence of Cdk-7 in Pinctada fucata martensii (PmCdk-7). A full length sequence of 1473bp with an open reading frame (ORF) of 915bp and encodes a 304aa, 5'-UTR of 58bp and a 3'-UTR of 500bp was obtained. The construed amino acid sequence of PmCdk-7 comprised of a Serine/Threonine protein kinases, catalytic (S_TKc) domain with a protein kinases ATP-binding region signature (14-38aa) and the serine/Threonine protein kinases active-site signature (129-141aa) within the domain. Tissue distribution analysis revealed a high relative mRNA expression of PmCdk-7 within haemocytes. Following the insertion operation (grafting), the relative expression levels of PmCdk-7 in the haemocyte was expressed differentially among the studied groups; the black shell colored selected line (BS) and the control group (CG). High expression was recorded between 12 h and 5d with a peak at 3d suggesting a heightened level of DNA replication and inflammatory response during the pearl-sac formation and this expression was higher in BS than CS showcasing, the heightened immune capacity of BS to grafting operation. Immune stimulation experiment with bacterial endotoxin and a viral mimic revealed PmCdk-7 response to pathogenic stress. The results from our study showed that PmCdk-7 performs a vital function during the cell cycle by aiding DNA replication and also aid response to inflammations generated due to the incision from the grafting operation and long exposure to immune-stimulants (pathogens).
Collapse
Affiliation(s)
- Linda Adzigbli
- Fishery College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Zihan Zhao
- Fishery College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Ziman Wang
- Fishery College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Chuangye Yang
- Fishery College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Ruijuan Hao
- Fishery College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Yuewen Deng
- Fishery College, Guangdong Ocean University, Zhanjiang, 524088, China; Pearl Breeding and Processing Engineering Technology Research Center of Guangdong Province, Zhanjiang, 524088, China.
| |
Collapse
|
67
|
Murdock DJE. The ‘biomineralization toolkit’ and the origin of animal skeletons. Biol Rev Camb Philos Soc 2020; 95:1372-1392. [DOI: 10.1111/brv.12614] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 04/28/2020] [Accepted: 04/30/2020] [Indexed: 12/29/2022]
|
68
|
Klein AH, Ballard KR, Storey KB, Motti CA, Zhao M, Cummins SF. Multi-omics investigations within the Phylum Mollusca, Class Gastropoda: from ecological application to breakthrough phylogenomic studies. Brief Funct Genomics 2020; 18:377-394. [PMID: 31609407 DOI: 10.1093/bfgp/elz017] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Revised: 07/06/2019] [Accepted: 07/15/2019] [Indexed: 12/22/2022] Open
Abstract
Gastropods are the largest and most diverse class of mollusc and include species that are well studied within the areas of taxonomy, aquaculture, biomineralization, ecology, microbiome and health. Gastropod research has been expanding since the mid-2000s, largely due to large-scale data integration from next-generation sequencing and mass spectrometry in which transcripts, proteins and metabolites can be readily explored systematically. Correspondingly, the huge data added a great deal of complexity for data organization, visualization and interpretation. Here, we reviewed the recent advances involving gastropod omics ('gastropodomics') research from hundreds of publications and online genomics databases. By summarizing the current publicly available data, we present an insight for the design of useful data integrating tools and strategies for comparative omics studies in the future. Additionally, we discuss the future of omics applications in aquaculture, natural pharmaceutical biodiscovery and pest management, as well as to monitor the impact of environmental stressors.
Collapse
Affiliation(s)
- Anne H Klein
- Genecology Research Centre, University of the Sunshine Coast, Maroochydore DC, Queensland 4558, Australia
| | - Kaylene R Ballard
- Genecology Research Centre, University of the Sunshine Coast, Maroochydore DC, Queensland 4558, Australia
| | - Kenneth B Storey
- Institute of Biochemistry & Department of Biology, Carleton University, Ottawa, ON, Canada K1S 5B6
| | - Cherie A Motti
- Australian Institute of Marine Science (AIMS), Cape Ferguson, Townsville Queensland 4810, Australia
| | - Min Zhao
- Genecology Research Centre, University of the Sunshine Coast, Maroochydore DC, Queensland 4558, Australia
| | - Scott F Cummins
- Genecology Research Centre, University of the Sunshine Coast, Maroochydore DC, Queensland 4558, Australia
| |
Collapse
|
69
|
Adzigbli L, Zheng Z, Liao Y, Deng Y, Du X, Yang C. Characterization of thioredoxin-like PROTEIN-5 (TRXLP-5) and its differential response to grafting challenge in the black coloured selected line and control stocks of Pinctada fucata martensii. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 106:103635. [PMID: 32014470 DOI: 10.1016/j.dci.2020.103635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 01/28/2020] [Accepted: 01/28/2020] [Indexed: 06/10/2023]
Abstract
Thioredoxin-like protein 5 (Trxlp-5) is a thioredoxin isoform associated with cellular redox homeostasis through the activity of thiol-disulfide reductase. In our study, Trxlp-5 was identified and characterized in Pinctada fucata martensii. The expression of PmTrxlp-5 was detected in response to polyinosinic: polycytidylic acid (poly I:C) and lipopolysaccharides (LPS) stimulation. The differences in PmTrxlp-5 expression were evaluated between the black coloured selected line and the control stock after grafting operation. The open reading frame (ORF) consisted of 1167bp encoding a 388 amino acid, 5'-UTR of 41bp and a 3'-UTR of 846bp. PmTrxlp-5 exhibited a conserved WCXXC functional motif similar to thioredoxins from other species. Tissue analysis showcased the highest relative mRNA expressions of PmTrxlp-5 in the haemocytes. Interestingly, after the grafting operation, mRNA expression of PmTrxlp-5 in the haemocytes was differentially expressed post grafting with a peak 6 h after grafting suggesting the high involvement of the gene in immune response in the early stage after grafting. The black coloured selected line group (BS) had significantly higher expression than the control group (CG) at 24 h, 6 d and 30 d after grafting operation. PmTrxlp-5 also showed a wave-like pattern in mRNA expression after bacterial endotoxin LPS and viral mimic poly I:C. These results suggested that PmTrxlp-5 plays a vital function in cellular redox homeostasis and immune response against grafting operation and pathogenic infections and can be used as a gene marker for selective breeding programs.
Collapse
Affiliation(s)
- Linda Adzigbli
- Fishery College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Zhe Zheng
- Fishery College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Yongshan Liao
- Fishery College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Yuewen Deng
- Fishery College, Guangdong Ocean University, Zhanjiang, 524088, China; Guangdong Science and Innovation Center for Pearl Culture, Zhanjiang, 524088, China
| | - Xiaodong Du
- Fishery College, Guangdong Ocean University, Zhanjiang, 524088, China; Guangdong Science and Innovation Center for Pearl Culture, Zhanjiang, 524088, China
| | - Chuangye Yang
- Fishery College, Guangdong Ocean University, Zhanjiang, 524088, China.
| |
Collapse
|
70
|
Sun Q, Jiang Y, Fan M, Zhang X, Xu H, Liao Z. Characterization of a novel shell matrix protein with vWA domain from Mytilus coruscus. Biosci Biotechnol Biochem 2020; 84:1629-1644. [PMID: 32314940 DOI: 10.1080/09168451.2020.1756735] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Mollusk shell is a product of biomineralization with excellent mechanical properties, and the shell matrix proteins (SMPs) have important functions in shell formation. A vWA domain-containing protein (VDCP) was identified from the shell of Mytilus coruscus as a novel shell matrix protein. The VDCP gene is expressed at a high level in specific locations in the mantle and adductor muscle. Recombinant VDCP (rVDCP) showed abilities to alter the morphology of both calcite and aragonite, induce the polymorph change of calcite, bind calcite, and decrease the crystallization rate of calcite. In addition, immunohistochemistry analyses revealed the specific location of VDCP in the mantle, the adductor muscle, and the myostracum layer of the shell. Furthermore, a pull-down analysis revealed eight protein interaction partners of VDCP in shell matrices and provided a possible protein-protein interaction network of VDCP in the shell.
Collapse
Affiliation(s)
- Qi Sun
- Laboratory of Marine Biology Protein Engineering, Marine Science and Technical College, Zhejiang Ocean University , Zhoushan City, Zhejiang, China
| | - Yuting Jiang
- Laboratory of Marine Biology Protein Engineering, Marine Science and Technical College, Zhejiang Ocean University , Zhoushan City, Zhejiang, China
| | - Meihua Fan
- Laboratory of Marine Biology Protein Engineering, Marine Science and Technical College, Zhejiang Ocean University , Zhoushan City, Zhejiang, China
| | - Xiaolin Zhang
- Laboratory of Marine Biology Protein Engineering, Marine Science and Technical College, Zhejiang Ocean University , Zhoushan City, Zhejiang, China
| | - Huanzhi Xu
- Laboratory of Marine Biology Protein Engineering, Marine Science and Technical College, Zhejiang Ocean University , Zhoushan City, Zhejiang, China
| | - Zhi Liao
- Laboratory of Marine Biology Protein Engineering, Marine Science and Technical College, Zhejiang Ocean University , Zhoushan City, Zhejiang, China
| |
Collapse
|
71
|
Peng J, Li Q, Xu L, Wei P, He P, Zhang X, Zhang L, Guan J, Zhang X, Lin Y, Gui J, Chen X. Chromosome-level analysis of the Crassostrea hongkongensis genome reveals extensive duplication of immune-related genes in bivalves. Mol Ecol Resour 2020; 20:980-994. [PMID: 32198971 DOI: 10.1111/1755-0998.13157] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 03/09/2020] [Accepted: 03/16/2020] [Indexed: 12/30/2022]
Abstract
Crassostrea hongkongensis is a popular and important native oyster species that is cultured mainly along the coast of the South China Sea. However, the absence of a reference genome has restricted genetic studies and the development of molecular breeding schemes for this species. Here, we combined PacBio and 10 × Genomics technologies to create a C. hongkongensis genome assembly, which has a size of 610 Mb, and is close to that estimated by flow cytometry (~650 Mb). Contig and scaffold N50 are 2.57 and 4.99 Mb, respectively, and BUSCO analysis indicates that 95.8% of metazoan conserved genes are completely represented. Using a high-density linkage map of its closest related species, C. gigas, a total of 521 Mb (85.4%) was anchored to 10 haploid chromosomes. Comparative genomic analyses with other molluscs reveal that several immune- or stress response-related genes extensively expanded in bivalves by tandem duplication, including C1q, Toll-like receptors and Hsp70, which are associated with their adaptation to filter-feeding and sessile lifestyles in shallow sea and/or deep-sea ecosystems. Through transcriptome sequencing, potential genes and pathways related to sex determination and gonad development were identified. The genome and transcriptome of C. hongkongensis provide valuable resources for future molecular studies, genetic improvement and genome-assisted breeding of oysters.
Collapse
Affiliation(s)
- Jinxia Peng
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fisheries Sciences, Nanning, China
| | - Qiongzhen Li
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fisheries Sciences, Nanning, China
| | - Lian Xu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Pinyuan Wei
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fisheries Sciences, Nanning, China
| | - Pingping He
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fisheries Sciences, Nanning, China
| | - Xingzhi Zhang
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fisheries Sciences, Nanning, China
| | - Li Zhang
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fisheries Sciences, Nanning, China
| | - Junliang Guan
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fisheries Sciences, Nanning, China
| | - Xiaojuan Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology and Innovation Academy for Seed Design, CAS, Wuhan, China
| | - Yong Lin
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fisheries Sciences, Nanning, China
| | - Jianfang Gui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology and Innovation Academy for Seed Design, CAS, Wuhan, China
| | - Xiaohan Chen
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fisheries Sciences, Nanning, China
| |
Collapse
|
72
|
Yang Z, Zhang L, Hu J, Wang J, Bao Z, Wang S. The evo-devo of molluscs: Insights from a genomic perspective. Evol Dev 2020; 22:409-424. [PMID: 32291964 DOI: 10.1111/ede.12336] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Molluscs represent one of ancient and evolutionarily most successful groups of marine invertebrates, with a tremendous diversity of morphology, behavior, and lifestyle. Molluscs are excellent subjects for evo-devo studies; however, understanding of the evo-devo of molluscs has been largely hampered by incomplete fossil records and limited molecular data. Recent advancement of genomics and other technologies has greatly fueled the molluscan "evo-devo" field, and decoding of several molluscan genomes provides unprecedented insights into molluscan biology and evolution. Here, we review the recent progress of molluscan genome sequencing as well as novel insights gained from their genomes, by emphasizing how molluscan genomics enhances our understanding of the evo-devo of molluscs.
Collapse
Affiliation(s)
- Zhihui Yang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Pilot Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Lingling Zhang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Pilot Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Jingjie Hu
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China
| | - Jing Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Pilot Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Zhenmin Bao
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China.,Laboratory for Marine Fisheries Science and Food Production Processes, Pilot Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Shi Wang
- MOE Key Laboratory of Marine Genetics and Breeding, College of Marine Life Sciences, Ocean University of China, Qingdao, China.,Laboratory for Marine Biology and Biotechnology, Pilot Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.,The Sars-Fang Centre, Ocean University of China, Qingdao, China
| |
Collapse
|
73
|
Jiao Y, Gu Z, Luo S, Deng Y. Evolutionary and functional analysis of MyD88 genes in pearl oyster Pinctada fucata martensii. FISH & SHELLFISH IMMUNOLOGY 2020; 99:322-330. [PMID: 32060010 DOI: 10.1016/j.fsi.2020.02.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 02/05/2020] [Accepted: 02/10/2020] [Indexed: 06/10/2023]
Abstract
Myeloid differentiation factor 88 (MyD88) is an adapter protein that links toll-like receptor and interleukin 1 receptor-mediated signal transduction. In this study, we identified 20 MyD88 genes from eight mollusk genomes and found that MyD88 was expanded in bivalves. This expansion tends to be tandem duplication. Phylogenetic analysis suggested that the tandem duplication of MyD88 was formed before bivalve differentiation. All of the identified MyD88 contained both of death domain (DD) and toll/interleukin-1 receptor (TIR) domain, and 13 mollusks MyD88 have low complexity regions (LCRs), which were not found in the MyD88 from humans and zebrafish. The genomic structure showed that most of the mollusk MyD88 (14 of 19) contained five conserved introns, four of which were found in humans and zebrafish. Furthermore, the cDNA full length of PfmMyD88-2 (one of the two identified MyD88 in Pincatada fucata martensii) was obtained with 1591 bp, including 260 bp of 5'UTR, 257 bp of 3'UTR, and 1077 bp of open reading frame encoding 358 amino acids. Quantitative real-time PCR analysis demonstrated that PfmMyD88-2 mRNA was widely expressed in all detected tissues. The highest expression level was in the gills and followed by hepatopancreas and feet. After lipopolysaccharide stimulation, PfmMyD88-2 expression level increased and reached the highest level at 12 h and then gradually declined to the normal level. Over-expression of PfmMyD88-2 in HEK293T increased the luciferase activity of the pNF-κB-Luc reporter. We also identified that PfmmiR-4047 could regulate the expression of PfmMyD88-2. These results help us elucidate the mechanism underlying mollusk immune response.
Collapse
Affiliation(s)
- Yu Jiao
- Fishery College, Guangdong Ocean University, Zhanjiang, 524025, China; Guangdong Technology Research Center for pearl aquaculture and process, Zhanjiang, 524025, China
| | - Zefeng Gu
- Fishery College, Guangdong Ocean University, Zhanjiang, 524025, China
| | - Shaojie Luo
- Fishery College, Guangdong Ocean University, Zhanjiang, 524025, China
| | - Yuewen Deng
- Fishery College, Guangdong Ocean University, Zhanjiang, 524025, China; Guangdong Technology Research Center for pearl aquaculture and process, Zhanjiang, 524025, China.
| |
Collapse
|
74
|
Oliveira F, Diez-Quijada L, Turkina MV, Morais J, Felpeto AB, Azevedo J, Jos A, Camean AM, Vasconcelos V, Martins JC, Campos A. Physiological and Metabolic Responses of Marine Mussels Exposed to Toxic Cyanobacteria Microcystis aeruginosa and Chrysosporum ovalisporum. Toxins (Basel) 2020; 12:E196. [PMID: 32245045 PMCID: PMC7150937 DOI: 10.3390/toxins12030196] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/14/2020] [Accepted: 03/18/2020] [Indexed: 01/12/2023] Open
Abstract
Toxic cyanobacterial blooms are a major contaminant in inland aquatic ecosystems. Furthermore, toxic blooms are carried downstream by rivers and waterways to estuarine and coastal ecosystems. Concerning marine and estuarine animal species, very little is known about how these species are affected by the exposure to freshwater cyanobacteria and cyanotoxins. So far, most of the knowledge has been gathered from freshwater bivalve molluscs. This work aimed to infer the sensitivity of the marine mussel Mytilus galloprovincialis to single as well as mixed toxic cyanobacterial cultures and the underlying molecular responses mediated by toxic cyanobacteria. For this purpose, a mussel exposure experiment was outlined with two toxic cyanobacteria species, Microcystis aeruginosa and Chrysosporum ovalisporum at 1 × 105 cells/mL, resembling a natural cyanobacteria bloom. The estimated amount of toxins produced by M. aeruginosa and C. ovalisporum were respectively 0.023 pg/cell of microcystin-LR (MC-LR) and 7.854 pg/cell of cylindrospermopsin (CYN). After 15 days of exposure to single and mixed cyanobacteria, a depuration phase followed, during which mussels were fed only non-toxic microalga Parachlorella kessleri. The results showed that the marine mussel is able to filter toxic cyanobacteria at a rate equal or higher than the non-toxic microalga P. kessleri. Filtration rates observed after 15 days of feeding toxic microalgae were 1773.04 mL/ind.h (for M. aeruginosa), 2151.83 mL/ind.h (for C. ovalisporum), 1673.29 mL/ind.h (for the mixture of the 2 cyanobacteria) and 2539.25 mL/ind.h (for the non-toxic P. kessleri). Filtering toxic microalgae in combination resulted in the accumulation of 14.17 ng/g dw MC-LR and 92.08 ng/g dw CYN. Other physiological and biochemical endpoints (dry weight, byssus production, total protein and glycogen) measured in this work did not change significantly in the groups exposed to toxic cyanobacteria with regard to control group, suggesting that mussels were not affected with the toxic microalgae. Nevertheless, proteomics revealed changes in metabolism of mussels related to diet, specially evident in those fed on combined cyanobacteria. Changes in metabolic pathways related with protein folding and stabilization, cytoskeleton structure, and gene transcription/translation were observed after exposure and feeding toxic cyanobacteria. These changes occur in vital metabolic processes and may contribute to protect mussels from toxic effects of the toxins MC-LR and CYN.
Collapse
Affiliation(s)
- Flavio Oliveira
- CIIMAR- Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450–208 Porto, Portugal; (F.O.); (J.M.); (A.B.F.); (J.A.); (V.V.); (J.C.M.)
| | - Leticia Diez-Quijada
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, Profesor García González n2, 41012 Seville, Spain; (L.D.-Q.); (A.J.); (A.M.C.)
| | - Maria V. Turkina
- Department of Biomedical and Clinical Sciences, Faculty of Medicine and Clinical Sciences, Linköping University, 581 83 Linköping, Sweden;
| | - João Morais
- CIIMAR- Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450–208 Porto, Portugal; (F.O.); (J.M.); (A.B.F.); (J.A.); (V.V.); (J.C.M.)
| | - Aldo Barreiro Felpeto
- CIIMAR- Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450–208 Porto, Portugal; (F.O.); (J.M.); (A.B.F.); (J.A.); (V.V.); (J.C.M.)
| | - Joana Azevedo
- CIIMAR- Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450–208 Porto, Portugal; (F.O.); (J.M.); (A.B.F.); (J.A.); (V.V.); (J.C.M.)
| | - Angeles Jos
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, Profesor García González n2, 41012 Seville, Spain; (L.D.-Q.); (A.J.); (A.M.C.)
| | - Ana M. Camean
- Area of Toxicology, Faculty of Pharmacy, Universidad de Sevilla, Profesor García González n2, 41012 Seville, Spain; (L.D.-Q.); (A.J.); (A.M.C.)
| | - Vitor Vasconcelos
- CIIMAR- Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450–208 Porto, Portugal; (F.O.); (J.M.); (A.B.F.); (J.A.); (V.V.); (J.C.M.)
- Biology Department, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, 4169–007 Porto, Portugal
| | - José Carlos Martins
- CIIMAR- Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450–208 Porto, Portugal; (F.O.); (J.M.); (A.B.F.); (J.A.); (V.V.); (J.C.M.)
| | - Alexandre Campos
- CIIMAR- Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450–208 Porto, Portugal; (F.O.); (J.M.); (A.B.F.); (J.A.); (V.V.); (J.C.M.)
| |
Collapse
|
75
|
Adzigbli L, Wang Z, Li J, Deng Y. Survival, retention rate and immunity of the black shell colored stocks of pearl oyster Pinctada fucata martensii after grafting operation. FISH & SHELLFISH IMMUNOLOGY 2020; 98:691-698. [PMID: 31693946 DOI: 10.1016/j.fsi.2019.11.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 10/25/2019] [Accepted: 11/01/2019] [Indexed: 06/10/2023]
Abstract
We have developed a black shell colored selected line observed to have higher survival ability. In this study, to understand its immune capacity, total carotenoid content (TCC) of the black shell colored line (BG) and the control group (CG) were compared. Survival and retention rates, immunity and antioxidant capacity of BG were compared relative to CG at different times after grafting operation. The results showed that BG had significantly larger TCC than CG (P < 0.05). BG had significantly higher survival and retention rates than CG on days 7, 30 and 360 after grafting (P < 0.05). On days 360, BG had significantly larger pearl thickness than CG (P < 0.05). BG exhibited increased ACP, AKP, SOD, CAT, TAOC and LZ activity than the CG on 0 h, 12 h, 1 d, 3 d, 5 d, 7 d and 30 d after grafting. BG had higher expression levels of Fascin, SOD, CDK-7, CDAP-1, IRAK-1, α2m, GST-1, TRAF-3 and Caspase-2 than CG. The results suggested that BG had higher immune competence and pearl production performances, which is promising to improve pearl quality and production.
Collapse
Affiliation(s)
- Linda Adzigbli
- Fishery College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Ziman Wang
- Fishery College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Junhui Li
- Fishery College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Yuewen Deng
- Fishery College, Guangdong Ocean University, Zhanjiang, 524088, China; Pearl Breeding and Processing Engineering Technology Research Center of Guangdong Province, Zhanjiang, 524088, China.
| |
Collapse
|
76
|
He C, Hao R, Deng Y, Yang C, Du X. Response of pearl oyster Pinctada fucata martensii to allograft-induced stress from lipid metabolism. FISH & SHELLFISH IMMUNOLOGY 2020; 98:1001-1007. [PMID: 31734283 DOI: 10.1016/j.fsi.2019.11.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 11/09/2019] [Accepted: 11/13/2019] [Indexed: 06/10/2023]
Abstract
The pearl oyster, Pinctada fucata martensii, produces high-quality pearls. During pearl production, excess immune and inflammatory response after transplantation will lead to nucleus rejection, pearl sac formation failure, and death of the host pearl oyster. The hemocyte transcriptome and fatty acid (FA) contents in the adductor muscle before and after transplantation were analyzed to investigate the response of pearl oyster P. f. martensii to allograft-induced stress from lipid metabolism. The hemocyte transcriptome analysis detected 193 lipid metabolism-related genes, such as the elongation of very long-chain FA protein 5, acyl-CoA 6-desaturase, cytochrome P450, phospholipase A2, glycerol-3-phosphate O-acyltransferase, and prostaglandin-H2 d-isomerase. Pathway enrichment analyses revealed that these genes were mainly involved in the "biosynthesis of unsaturated FAs," "FA biosynthesis," "ARA metabolism," and "glycerolipid metabolism." An analysis of FA contents in the adductor muscle indicated no significant difference in the contents of lauric acid, myristic acid, pentadecanoic acid, palmitic acid, palmitoleic acid, heptadecanoic acid, stearic acid, oleic acid, vaccenic acid, linoleic acid, arachidic acid, α-linolenic acid, eicosadienoic acid, docosadienoic acid, and 11,14,17-eicosatrienoic acid. However, ARA, DHA, and EPA in the adductor muscle after transplantation were significantly greater than those processed without grafting surgery. These results suggest that pearl oysters require more polyunsaturated FAs (PUFAs) to regulate their inflammatory and immune response after transplantation. However, their ability to biosynthesize unsaturated FAs is limited. Given these results, the addition of PUFA-containing diets or selection of a line with strong ability to biosynthesize unsaturated FAs may be valuable for pearl oyster recovery after transplantation.
Collapse
Affiliation(s)
- Chengzhang He
- Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Ruijuan Hao
- Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Yuewen Deng
- Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China; Pearl Breeding and Processing Engineering Technology Research Centre of Guangdong Province, Zhanjiang, 524088, China
| | - Chuangye Yang
- Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China; Pearl Breeding and Processing Engineering Technology Research Centre of Guangdong Province, Zhanjiang, 524088, China.
| | - Xiaodong Du
- Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China; Pearl Breeding and Processing Engineering Technology Research Centre of Guangdong Province, Zhanjiang, 524088, China
| |
Collapse
|
77
|
Ren G, Chen C, Jin Y, Zhang G, Hu Y, Shen W. A Novel Tyrosinase Gene Plays a Potential Role in Modification the Shell Organic Matrix of the Triangle Mussel Hyriopsis cumingii. Front Physiol 2020; 11:100. [PMID: 32153421 PMCID: PMC7045039 DOI: 10.3389/fphys.2020.00100] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 01/27/2020] [Indexed: 12/17/2022] Open
Abstract
Although tyrosinases have been speculated to participate in the shell formation of mollusks, there is still a lack of experimental evidence to support this assumption. In this study, a novel tyrosinase designated HcTyr2 was isolated and characterized from the freshwater mussel Hyriopsis cumingii. The change in HcTyr2 mRNA expression during the process of embryonic development was detected by real-time quantitative PCR. The result showed that the expression of HcTyr2 mRNA was significantly upregulated at the stages of gastrulae and unmatured glochidia (P < 0.05), suggesting that this gene might fundamentally participate in the biogenesis and growth of the initial shell. Meanwhile, the upregulation of HcTyr2 mRNA at the stages of shell regeneration 24 h and 9 days after shell notching in the mantle edge (P < 0.05) implied that it might play an important role in shell periostracum and nacre formation by mediating the cross-linking of quinoproteins to promote the maturity of organic matrix. Additionally, the knockdown of HcTyr2 mRNA by RNA interference resulted in not only the suppression of periostracum growth but also structural disorder of nacre aragonite tablets, as detected by scanning electron microscopy. These results suggested that HcTyr2 might regulate the growth of shell by its oxidative ability to transform soluble matrix proteins into insoluble matrix proteins, then promoting the maturity of the shell organic framework in H. cumingii. In general, our results suggested the importance of HcTyr2 in the shell formation and regeneration of H. cumingii.
Collapse
Affiliation(s)
- Gang Ren
- School of Life Sciences, Shaoxing University, Shaoxing, China.,College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Chao Chen
- School of Life Sciences, Shaoxing University, Shaoxing, China
| | - Yefei Jin
- School of Life Sciences, Shaoxing University, Shaoxing, China
| | - Genfang Zhang
- College of Agriculture and Bioengineering, Jinhua Polytechnic, Jinhua, China
| | - Yiwei Hu
- School of Life Sciences, Shaoxing University, Shaoxing, China
| | - Wenying Shen
- School of Life Sciences, Shaoxing University, Shaoxing, China
| |
Collapse
|
78
|
Wysokowski M, Machałowski T, Petrenko I, Schimpf C, Rafaja D, Galli R, Ziętek J, Pantović S, Voronkina A, Kovalchuk V, Ivanenko VN, Hoeksema BW, Diaz C, Khrunyk Y, Stelling AL, Giovine M, Jesionowski T, Ehrlich H. 3D Chitin Scaffolds of Marine Demosponge Origin for Biomimetic Mollusk Hemolymph-Associated Biomineralization Ex-Vivo. Mar Drugs 2020; 18:E123. [PMID: 32092907 PMCID: PMC7074400 DOI: 10.3390/md18020123] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/11/2020] [Accepted: 02/14/2020] [Indexed: 12/14/2022] Open
Abstract
Structure-based tissue engineering requires large-scale 3D cell/tissue manufacture technologies, to produce biologically active scaffolds. Special attention is currently paid to naturally pre-designed scaffolds found in skeletons of marine sponges, which represent a renewable resource of biomaterials. Here, an innovative approach to the production of mineralized scaffolds of natural origin is proposed. For the first time, a method to obtain calcium carbonate deposition ex vivo, using living mollusks hemolymph and a marine-sponge-derived template, is specifically described. For this purpose, the marine sponge Aplysin aarcheri and the terrestrial snail Cornu aspersum were selected as appropriate 3D chitinous scaffold and as hemolymph donor, respectively. The formation of calcium-based phase on the surface of chitinous matrix after its immersion into hemolymph was confirmed by Alizarin Red staining. A direct role of mollusks hemocytes is proposed in the creation of fine-tuned microenvironment necessary for calcification ex vivo. The X-ray diffraction pattern of the sample showed a high CaCO3 amorphous content. Raman spectroscopy evidenced also a crystalline component, with spectra corresponding to biogenic calcite. This study resulted in the development of a new biomimetic product based on ex vivo synthetized ACC and calcite tightly bound to the surface of 3D sponge chitin structure.
Collapse
Affiliation(s)
- Marcin Wysokowski
- Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60965 Poznan, Poland; (T.M.); (T.J.)
- Institute of Electronics and Sensor Materials, TU Bergakademie Freiberg, Gustav-Zeuner str. 3, 09599 Freiberg, Germany;
| | - Tomasz Machałowski
- Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60965 Poznan, Poland; (T.M.); (T.J.)
- Institute of Electronics and Sensor Materials, TU Bergakademie Freiberg, Gustav-Zeuner str. 3, 09599 Freiberg, Germany;
| | - Iaroslav Petrenko
- Institute of Electronics and Sensor Materials, TU Bergakademie Freiberg, Gustav-Zeuner str. 3, 09599 Freiberg, Germany;
| | - Christian Schimpf
- Institute of Materials Science, TU Bergakademie Freiberg, 09599 Freiberg, Germany; (C.S.); (D.R.)
| | - David Rafaja
- Institute of Materials Science, TU Bergakademie Freiberg, 09599 Freiberg, Germany; (C.S.); (D.R.)
| | - Roberta Galli
- Clinical Sensoring and Monitoring, Department of Anesthesiology and Intensive Care Medicine, Faculty of Medicine, TU Dresden, 01307 Dresden, Germany;
| | - Jerzy Ziętek
- Faculty of Veterinary Medicine, Department of Epizootiology and Clinic of Infectious Diseases, University of Life Sciences, Głęboka 30, 20612 Lublin, Poland;
| | - Snežana Pantović
- Faculty of Medicine, University of Montenegro, Kruševac bb, 81000 Podgorica, Montenegro;
| | - Alona Voronkina
- Department of Pharmacy, National Pirogov Memorial Medical University, 21018 Vinnitsa, Ukraine;
| | - Valentine Kovalchuk
- Department of Microbiology, National Pirogov Memorial Medical University, 21018 Vinnitsa, Ukraine;
| | - Viatcheslav N. Ivanenko
- Department of Invertebrate Zoology, Biological Faculty, Lomonosov Moscow State University, 119992 Moscow, Russia;
| | - Bert W. Hoeksema
- Taxonomy and Systematics Group, Naturalis Biodiversity Center, 2333CR Leiden, The Netherlands;
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, 9747AG Groningen, The Netherlands
| | - Cristina Diaz
- Harbor Branch Oceanographic Institute, Florida Atlantic University, 5600 Old Dixie Hwy, Fort Pierce, FL 34946, USA;
| | - Yuliya Khrunyk
- Department of Heat Treatment and Physics of Metal, Ural Federal University, Mira Str. 19, 620002 Ekaterinburg, Russia;
- The Institute of High Temperature Electrochemistry of the Ural Branch of the Russian Academy of Sciences, Akademicheskaya Str. 20, 620990 Ekaterinburg, Russia
| | - Allison L. Stelling
- Department of Biochemistry, Duke University Medical School, Durham, NC 27708, USA;
| | - Marco Giovine
- Department of Sciences of Earth, Environment and Life, University of Genoa, Corso Europa 26, 16132 Genova, Italy;
| | - Teofil Jesionowski
- Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60965 Poznan, Poland; (T.M.); (T.J.)
| | - Hermann Ehrlich
- Institute of Electronics and Sensor Materials, TU Bergakademie Freiberg, Gustav-Zeuner str. 3, 09599 Freiberg, Germany;
- Center for Advanced Technology, Adam Mickiewicz University, 61614 Poznan, Poland
| |
Collapse
|
79
|
Li Y, Zhang X, Meng J, Chen J, You X, Shi Q, Wang WX. Molecular responses of an estuarine oyster to multiple metal contamination in Southern China revealed by RNA-seq. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 701:134648. [PMID: 31704403 DOI: 10.1016/j.scitotenv.2019.134648] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 09/05/2019] [Accepted: 09/23/2019] [Indexed: 06/10/2023]
Abstract
The estuarine oysters Crassostrea hongkongensis hyper-accumulate many metals and survive under high levels of metal exposure. In the present study, three natural populations of oysters with various levels of accumulated metals (mainly Cu and Zn) were collected from Southern China. The morphological characteristics and metal concentrations revealed their phenotypic differentiation. Further transcripts sequences acquired from their gill tissues were analyzed and 44,801 genes (with effective reads) were obtained via de novo assembly. The principal component analysis (PCA) revealed that the gene expression patterns also displayed differentiation among the three populations. A total of 3,199 differentially expressed genes (DEGs) was identified in the contaminated oysters as compared to the 'clean' oysters, which were used to explain the molecular mechanisms of metal accumulation and toxicity. GO and KEGG enrichment analysis revealed that energy production and cytoskeleton metabolism-related genes were particularly enriched in the contaminated sites during chronic metal exposure. Besides, increasing expressions of Zn/Cu transporters and metallothionein may explain their high accumulation in contaminated populations. We showed that oysters with less metal accumulation tended to cope with metal stress actively, but severe contamination destroyed part of the normal function. Our study analyzed the gene expression patterns of C. hongkongensis in Southern China and demonstrated the phenotypic differentiation of oysters under chronical metal exposure in the field.
Collapse
Affiliation(s)
- Yunlong Li
- Department of Ocean Science and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong, China
| | - Xinhui Zhang
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China
| | - Jie Meng
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, Shandong, China
| | - Jieming Chen
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China
| | - Xinxin You
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China
| | - Qiong Shi
- Shenzhen Key Lab of Marine Genomics, Guangdong Provincial Key Lab of Molecular Breeding in Marine Economic Animals, BGI Academy of Marine Sciences, BGI Marine, BGI, Shenzhen 518083, China
| | - Wen-Xiong Wang
- Department of Ocean Science and Hong Kong Branch of the Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong, China.
| |
Collapse
|
80
|
Zheng Z, Li W, Xu J, Xie B, Yang M, Huang H, Li H, Wang Q. LncMSEN1, a mantle-specific LncRNA participating in nacre formation and response to polyI:C stimulation in pearl oyster Pinctada fucata martensii. FISH & SHELLFISH IMMUNOLOGY 2020; 96:330-335. [PMID: 31830566 DOI: 10.1016/j.fsi.2019.12.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 12/02/2019] [Accepted: 12/08/2019] [Indexed: 06/10/2023]
Abstract
Long noncoding RNA (LncRNA) regulates various life processes, including biomineralization and innate immune response through complex mechanisms. In this research, we identified a LncRNA named LncMSEN1 from pearl oyster Pinctada fucata martensii. LncMSEN1 sequence was validated by PCR, and its expression was high in mantle tissues according to qRT-PCR. LncMSEN1 was co-located with the nacre matrix protein N-U8 and fibrinogen domain-containing protein. And LncMSEN1 and N-U8 expression levels in the mantle were positively correlated. RNA interference was used to detect its effect on nacre formation in shells. Results showed that the decreased LncMSEN1 expression in mantle can cause the disordered growth of crystals on the inner surface of nacre in the shells, as well as the decrease expression of N-U8. In addition, the LncMSEN1 expression level significantly increased at 24 h after polyI:C stimulation in the mantle (P < 0.05). These findings suggested the involvement of LncMSEN1 in the formation of nacre in shells and related to innate immune response in pearl oyster, which provided additional insights into the roles of LncRNAs in pearl oysters.
Collapse
Affiliation(s)
- Zhe Zheng
- Fishery College, Guangdong Ocean University, Zhanjiang, 524025, China
| | - Wenhui Li
- Fishery College, Guangdong Ocean University, Zhanjiang, 524025, China
| | - Jiehua Xu
- Fishery College, Guangdong Ocean University, Zhanjiang, 524025, China
| | - Bingyi Xie
- Fishery College, Guangdong Ocean University, Zhanjiang, 524025, China
| | - Modong Yang
- Fishery College, Guangdong Ocean University, Zhanjiang, 524025, China
| | - Huajie Huang
- Fishery College, Guangdong Ocean University, Zhanjiang, 524025, China
| | - Huishan Li
- Fishery College, Guangdong Ocean University, Zhanjiang, 524025, China
| | - Qingheng Wang
- Fishery College, Guangdong Ocean University, Zhanjiang, 524025, China.
| |
Collapse
|
81
|
PfmPif97-like regulated by Pfm-miR-9b-5p participates in shell formation in Pinctada fucata martensii. PLoS One 2019; 14:e0226367. [PMID: 31830109 PMCID: PMC6907788 DOI: 10.1371/journal.pone.0226367] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Accepted: 11/25/2019] [Indexed: 01/07/2023] Open
Abstract
Mollusk shell matrix proteins are important for the formation of organic frameworks, crystal nucleation, and crystal growth in Pinctada fucata martensii (P. f. martensii). MicroRNAs (miRNAs) are endogenous small non-coding RNAs that play important roles in many biological processes, including shell formation. In this study, we obtained the full-length sequence of Pif97-like gene in P. f. martensii (PfmPif97-like). PfmPif97-like was mainly distributed in mantle pallial and mantle edge. Correlation analysis indicated that the average shell thickness and weight showed a positive correlation with PfmPif97-like expression (P < 0.05). The inner surface of the nacreous layer and prismatic layer showed atypical growth when we knocked down the expression of PfmPif97-like by RNA interference (RNAi). We used a luciferase reporter assay to identify that miR-9b-5p of P. f. martensii (Pfm-miR-9b-5p) downregulated the expression of PfmPif97-like by interacting with the 3′-untranslated region (UTR) while we obtained the same result by injecting the Pfm-miR-9b-5p mimics in vivo. After injecting the mimics, we also observed abnormal growth in nacre layer and prismatic layer which is consistent with the result of RNAi. We proposed that PfmPif97-like regulated by Pfm-miR-9b-5p participates in shell formation of P. f. martensii. These findings provide important clues about the molecular mechanisms that regulate biomineralization in P. f. martensii.
Collapse
|
82
|
Bean TP, Khatir Z, Lyons BP, van Aerle R, Minardi D, Bignell JP, Smyth D, Giraldes BW, Leitão A. De novo transcriptome assembly of the Qatari pearl oyster Pinctada imbricata radiata. Mar Genomics 2019; 51:100734. [PMID: 31818705 DOI: 10.1016/j.margen.2019.100734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 11/26/2019] [Accepted: 11/26/2019] [Indexed: 11/28/2022]
Abstract
The pearl oyster Pinctada imbricata radiata is an iconic species in Qatar, representing an integral part of the nation's cultural heritage and one of the main economic foundations upon which the nation developed. During the early part of the 20th century, nearly half the Qatar population was involved in the pearl oyster industry. However, the fishery has undergone steady decline since the 1930s, and the species is now under threat due to multiple confounding pressures. This manuscript presents the first de novo transcriptome of the Qatari pearl oyster assembled into 30,739 non-redundant coding sequences and with a BUSCO completeness score of 98.4%. Analysis of the transcriptome reveals the close evolutionary distance to the conspecific animal Pinctada imbricata fucata but also highlights differences in immune genes and the presence of distinctive transposon families, suggesting recent adaptive divergence. This data is made available for all to utilise in future studies on the species.
Collapse
Affiliation(s)
- Tim P Bean
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian EH25 9RG, UK.
| | - Zenaba Khatir
- Environmental Science Center (ESC), Qatar University, P. O. Box: 2713, Doha, Qatar
| | | | | | | | | | - David Smyth
- Environmental Science Center (ESC), Qatar University, P. O. Box: 2713, Doha, Qatar; School of Ocean Science, Bangor University, Wales LL59 5AB, UK
| | | | - Alexandra Leitão
- Environmental Science Center (ESC), Qatar University, P. O. Box: 2713, Doha, Qatar
| |
Collapse
|
83
|
Jiao Y, Cao Y, Zheng Z, Liu M, Guo X. Massive expansion and diversity of nicotinic acetylcholine receptors in lophotrochozoans. BMC Genomics 2019; 20:937. [PMID: 31805848 PMCID: PMC6896357 DOI: 10.1186/s12864-019-6278-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 11/13/2019] [Indexed: 02/07/2023] Open
Abstract
Background Nicotinic acetylcholine receptors (nAChRs) are among the oldest and most conserved transmembrane receptors involved in signal transduction. Despite the prevalence and significance of cholinergic signaling, the diversity and evolution of nAChRs are not fully understood. Result By comparative genomic analysis, we found massive expansions of nAChR genes in molluscs and some other lophotrochozoans. The expansion is particularly pronounced in stationary bivalve molluscs with simple nervous systems, with the number of nAChR genes ranging from 99 to 217 in five bivalves, compared with 10 to 29 in five ecdysozoans and vertebrates. The expanded molluscan nAChR genes tend to be intronless and in tandem arrays due to retroposition followed by tandem duplication. Phylogenetic analysis revealed diverse nAChR families in the common ancestor of bilaterians, which subsequently experienced lineage-specific expansions or contractions. The expanded molluscan nAChR genes are highly diverse in sequence, domain structure, temporal and spatial expression profiles, implying diversified functions. Some molluscan nAChR genes are expressed in early development before the development of the nervous system, while others are involved in immune and stress responses. Conclusion The massive expansion and diversification of nAChR genes in bivalve molluscs may be a compensation for reduced nervous systems as part of adaptation to stationary life under dynamic environments, while in vertebrates a subset of specialized nAChRs are retained to work with advanced nervous systems. The unprecedented diversity identified in molluscs broadens our view on the evolution and function of nAChRs that are critical to animal physiology and human health.
Collapse
Affiliation(s)
- Yu Jiao
- Fishery College, Guangdong Ocean University, Zhanjiang, 524025, Guangdong, China.,Haskin Shellfish Research Laboratory, Department of Marine and Coastal Sciences, Rutgers University, 6959 Miller Avenue, Port Norris, NJ, 08349, USA
| | - Yanfei Cao
- Fishery College, Guangdong Ocean University, Zhanjiang, 524025, Guangdong, China
| | - Zhe Zheng
- Fishery College, Guangdong Ocean University, Zhanjiang, 524025, Guangdong, China
| | - Ming Liu
- Haskin Shellfish Research Laboratory, Department of Marine and Coastal Sciences, Rutgers University, 6959 Miller Avenue, Port Norris, NJ, 08349, USA
| | - Ximing Guo
- Haskin Shellfish Research Laboratory, Department of Marine and Coastal Sciences, Rutgers University, 6959 Miller Avenue, Port Norris, NJ, 08349, USA.
| |
Collapse
|
84
|
Wang X, Xu W, Wei L, Zhu C, He C, Song H, Cai Z, Yu W, Jiang Q, Li L, Wang K, Feng C. Nanopore Sequencing and De Novo Assembly of a Black-Shelled Pacific Oyster ( Crassostrea gigas) Genome. Front Genet 2019; 10:1211. [PMID: 31824581 PMCID: PMC6884003 DOI: 10.3389/fgene.2019.01211] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2019] [Accepted: 11/04/2019] [Indexed: 12/21/2022] Open
Abstract
The Pacific oyster, Crassostrea gigas, belongs to one of the most species-rich phyla and provides important ecological and economical services. Here we present a genome assembly for a variety of this species, black-shelled Pacific oyster, using a combination of 61.8 Gb Nanopore long reads and 105.6 Gb raw BGI-seq short reads. The genome assembly comprised 3,676 contigs, with a total length of 587 Mb and a contig N50 of 581 kb. Annotation of the genome assembly identified 283 Mb (48.32%) of repetitive sequences and a total of 26,811 protein-coding genes. A long-term transposable element active, accompanied by recent expansion (1 million years ago), was detected in this genome. The divergence between black-shelled and the previous published Pacific oysters was estimated at about 2.2 million years ago, which implies that species C. gigas had great intraspecific genetic variations. Moreover, we identified 148/188 specifically expanded/contracted gene families in this genome. We believe this genome assembly will be a valuable resource for understanding the genetic breeding, conservation, and evolution of oysters and bivalves.
Collapse
Affiliation(s)
- Xiaotong Wang
- School of Agriculture, Ludong University, Yantai, China
| | - Wenjie Xu
- Center for Ecological and Environmental Sciences, Northwestern Polytechnical University, Xi’an, China
| | - Lei Wei
- School of Agriculture, Ludong University, Yantai, China
| | - Chenglong Zhu
- Center for Ecological and Environmental Sciences, Northwestern Polytechnical University, Xi’an, China
| | - Cheng He
- School of Agriculture, Ludong University, Yantai, China
| | - Hongce Song
- School of Agriculture, Ludong University, Yantai, China
| | - Zhongqiang Cai
- Changdao Enhancement and Experiment Station, Chinese Academy of Fishery Sciences, Changdao, China
| | - Wenchao Yu
- School of Agriculture, Ludong University, Yantai, China
| | - Qiuyun Jiang
- School of Agriculture, Ludong University, Yantai, China
| | - Lingling Li
- School of Agriculture, Ludong University, Yantai, China
| | - Kun Wang
- Center for Ecological and Environmental Sciences, Northwestern Polytechnical University, Xi’an, China
| | - Chenguang Feng
- Center for Ecological and Environmental Sciences, Northwestern Polytechnical University, Xi’an, China
| |
Collapse
|
85
|
Thai BT, Lee YP, Gan HM, Austin CM, Croft LJ, Trieu TA, Tan MH. Whole Genome Assembly of the Snout Otter Clam, Lutraria rhynchaena, Using Nanopore and Illumina Data, Benchmarked Against Bivalve Genome Assemblies. Front Genet 2019; 10:1158. [PMID: 31824566 PMCID: PMC6880199 DOI: 10.3389/fgene.2019.01158] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 10/22/2019] [Indexed: 12/31/2022] Open
Affiliation(s)
| | - Yin Peng Lee
- Centre of Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, VIC, Australia.,Deakin Genomics Centre, Deakin University, Geelong, VIC, Australia
| | - Han Ming Gan
- Centre of Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, VIC, Australia.,Deakin Genomics Centre, Deakin University, Geelong, VIC, Australia
| | - Christopher M Austin
- Centre of Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, VIC, Australia.,Deakin Genomics Centre, Deakin University, Geelong, VIC, Australia
| | - Laurence J Croft
- Centre of Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, VIC, Australia.,Deakin Genomics Centre, Deakin University, Geelong, VIC, Australia
| | - Tuan Anh Trieu
- Faculty of Biology, Ha Noi National University of Education, Ha Noi, Vietnam.,Science and Technique Department, Hung Vuong University, Viet Tri, Vietnam
| | - Mun Hua Tan
- Centre of Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Geelong, VIC, Australia.,Deakin Genomics Centre, Deakin University, Geelong, VIC, Australia
| |
Collapse
|
86
|
Fan S, Zheng Z, Hao R, Du X, Jiao Y, Huang R. PmCBP, a novel poly (chitin-binding domain) gene, participates in nacreous layer formation of Pinctada fucata martensii. Comp Biochem Physiol B Biochem Mol Biol 2019; 240:110374. [PMID: 31733296 DOI: 10.1016/j.cbpb.2019.110374] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 09/22/2019] [Accepted: 10/25/2019] [Indexed: 11/29/2022]
Abstract
Chitin participates in shell formation as the main component of an organic framework. Chitin-binding protein contains domains that can bind to chitin specifically. In this study, a novel chitin-binding protein from Pinctada fucata martensii (PmCBP) with poly (chitin-binding domain) was cloned, which contains a 5'-untranslated region (UTR) of 114 bp and 3'UTR of 116 bp, and encodes a putative protein of 2044 amino acids. The predicted PmCBP protein was structurally typical of the CBP family with 20 ChtBD2 domains. Phylogenetic and linear relation analyses showed that the ChtBD2 domain has a highly conserved structure among the three species of P. f. martensii, Crassostrea gigas, and Mizuhopecten yessoensis. qRT-PCR and in-situ hybridization analysis revealed that PmCBP was most abundant in the mantle pallium whose expression level was significantly correlated with the growth traits. After RNAi, PmCBP expression was significantly inhibited in the mantle pallium (P < 0.05) and the microstructure of nacreous layers showed a disordered growth in the experiment group. These results indicated that PmCBP may be involved in nacreous layer formation through participation in the process of binding chitin in pearl oyster P. f. martensii.
Collapse
Affiliation(s)
- Shanshan Fan
- Fishery College, Guangdong Ocean University, Zhanjiang, China
| | - Zhe Zheng
- Fishery College, Guangdong Ocean University, Zhanjiang, China; Guangdong Technology Research Center for Pearl Aquaculture and Process, Guangdong Ocean University, Zhanjiang, China.
| | - Ruijuan Hao
- Fishery College, Guangdong Ocean University, Zhanjiang, China
| | - Xiaodong Du
- Fishery College, Guangdong Ocean University, Zhanjiang, China; Guangdong Technology Research Center for Pearl Aquaculture and Process, Guangdong Ocean University, Zhanjiang, China.
| | - Yu Jiao
- Fishery College, Guangdong Ocean University, Zhanjiang, China; Guangdong Technology Research Center for Pearl Aquaculture and Process, Guangdong Ocean University, Zhanjiang, China
| | - Ronglian Huang
- Fishery College, Guangdong Ocean University, Zhanjiang, China; Guangdong Technology Research Center for Pearl Aquaculture and Process, Guangdong Ocean University, Zhanjiang, China
| |
Collapse
|
87
|
Wang Q, Wei W, Liu Y, Zheng Z, Du X, Jiao Y. HSP40 gene family in pearl oyster Pinctada fucata martensii: Genome-Wide identification and function analysis. FISH & SHELLFISH IMMUNOLOGY 2019; 93:904-910. [PMID: 31415902 DOI: 10.1016/j.fsi.2019.08.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 08/09/2019] [Accepted: 08/11/2019] [Indexed: 06/10/2023]
Abstract
HSP40, also called DnaJ, functions as a molecular chaperone by binding to Hsp70 and plays critical roles in the growth, development, and response to heat stress. However, this gene family is rarely reported in pearl oyster. In this study, 31 putative HSP40 genes from Pinctada fucata martensii (PmHSP40) were identified through bioinformatics methods and classified into three groups according to the presence of the complete three domains (J, G/F zinc finger domain, and cysteine rich domain). Further analysis showed that the PmHSP40 genes are highly diverse in sequence, domain structure, and tissue and development expression profile, implying diversified functions. In addition, one highly induced PmHSP40 in low-temperature (PmHSP40LT) was cloned, and its function in temperature response was explored. PmHSP40LT has a full length of 1741 bp, containing 1059 bp ORF, 152 bp 5'UTR, and a 507 bp 3'UTR, and encodes 352 amino acids. PmHSP40LT expression was significantly induced at low (17 °C) and high temperature (32 °C) at 6 h, 1 d, and 3 d relative to the control group. Thus, PmHSP40LT possibly participates in response to high and low temperatures in pearl oyster. In conclusion, all these results provide a comprehensive basis for the further analysis of PmHSP40 function in pearl oysters.
Collapse
Affiliation(s)
- Qingheng Wang
- Fishery College, Guangdong Ocean University, Zhanjiang, 524025, China; Pearl Breeding and Processing Engineering Technology Research Centre of Guangdong Province, Zhanjiang, 524088, China
| | - Wenlu Wei
- Fishery College, Guangdong Ocean University, Zhanjiang, 524025, China
| | - Ya Liu
- Fishery College, Guangdong Ocean University, Zhanjiang, 524025, China
| | - Zhe Zheng
- Fishery College, Guangdong Ocean University, Zhanjiang, 524025, China; Pearl Breeding and Processing Engineering Technology Research Centre of Guangdong Province, Zhanjiang, 524088, China
| | - Xiaodong Du
- Fishery College, Guangdong Ocean University, Zhanjiang, 524025, China; Pearl Breeding and Processing Engineering Technology Research Centre of Guangdong Province, Zhanjiang, 524088, China
| | - Yu Jiao
- Fishery College, Guangdong Ocean University, Zhanjiang, 524025, China; Pearl Breeding and Processing Engineering Technology Research Centre of Guangdong Province, Zhanjiang, 524088, China.
| |
Collapse
|
88
|
Guo Y, Zhang Y, Liu Q, Huang Y, Mao G, Yue Z, Abe EM, Li J, Wu Z, Li S, Zhou X, Hu W, Xiao N. A chromosomal-level genome assembly for the giant African snail Achatina fulica. Gigascience 2019; 8:giz124. [PMID: 31634388 PMCID: PMC6802634 DOI: 10.1093/gigascience/giz124] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 05/09/2019] [Accepted: 09/27/2019] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Achatina fulica, the giant African snail, is the largest terrestrial mollusk species. Owing to its voracious appetite, wide environmental adaptability, high growth rate, and reproductive capacity, it has become an invasive species across the world, mainly in Southeast Asia, Japan, the western Pacific islands, and China. This pest can damage agricultural crops and is an intermediate host of many parasites that can threaten human health. However, genomic information of A. fulica remains limited, hindering genetic and genomic studies for invasion control and management of the species. FINDINGS Using a k-mer-based method, we estimated the A. fulica genome size to be 2.12 Gb, with a high repeat content up to 71%. Roughly 101.6 Gb genomic long-read data of A. fulica were generated from the Pacific Biosciences sequencing platform and assembled to produce a first A. fulica genome of 1.85 Gb with a contig N50 length of 726 kb. Using contact information from the Hi-C sequencing data, we successfully anchored 99.32% contig sequences into 31 chromosomes, leading to the final contig and scaffold N50 length of 721 kb and 59.6 Mb, respectively. The continuity, completeness, and accuracy were evaluated by genome comparison with other mollusk genomes, BUSCO assessment, and genomic read mapping. A total of 23,726 protein-coding genes were predicted from the assembled genome, among which 96.34% of the genes were functionally annotated. The phylogenetic analysis using whole-genome protein-coding genes revealed that A. fulica separated from a common ancestor with Biomphalaria glabrata ∼182 million years ago. CONCLUSION To our knowledge, the A. fulica genome is the first terrestrial mollusk genome published to date. The chromosome sequence of A. fulica will provide the research community with a valuable resource for population genetics and environmental adaptation studies for the species, as well as investigations of the chromosome-level of evolution within mollusks.
Collapse
Affiliation(s)
- Yunhai Guo
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention; Key Laboratory of Parasite and Vector Biology, Ministry of Health; WHO Collaborating Centre for Tropical Diseases; Chinese Centre for Tropical Diseases Research, Shanghai 200025, P. R. China
| | - Yi Zhang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention; Key Laboratory of Parasite and Vector Biology, Ministry of Health; WHO Collaborating Centre for Tropical Diseases; Chinese Centre for Tropical Diseases Research, Shanghai 200025, P. R. China
| | - Qin Liu
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention; Key Laboratory of Parasite and Vector Biology, Ministry of Health; WHO Collaborating Centre for Tropical Diseases; Chinese Centre for Tropical Diseases Research, Shanghai 200025, P. R. China
| | - Yun Huang
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention; Key Laboratory of Parasite and Vector Biology, Ministry of Health; WHO Collaborating Centre for Tropical Diseases; Chinese Centre for Tropical Diseases Research, Shanghai 200025, P. R. China
| | - Guangyao Mao
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention; Key Laboratory of Parasite and Vector Biology, Ministry of Health; WHO Collaborating Centre for Tropical Diseases; Chinese Centre for Tropical Diseases Research, Shanghai 200025, P. R. China
| | - Zhiyuan Yue
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention; Key Laboratory of Parasite and Vector Biology, Ministry of Health; WHO Collaborating Centre for Tropical Diseases; Chinese Centre for Tropical Diseases Research, Shanghai 200025, P. R. China
| | - Eniola M Abe
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention; Key Laboratory of Parasite and Vector Biology, Ministry of Health; WHO Collaborating Centre for Tropical Diseases; Chinese Centre for Tropical Diseases Research, Shanghai 200025, P. R. China
| | - Jian Li
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Science, Fudan University, Shanghai 200438, China
| | - Zhongdao Wu
- Department of Parasitology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou 510080, China
| | - Shizhu Li
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention; Key Laboratory of Parasite and Vector Biology, Ministry of Health; WHO Collaborating Centre for Tropical Diseases; Chinese Centre for Tropical Diseases Research, Shanghai 200025, P. R. China
| | - Xiaonong Zhou
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention; Key Laboratory of Parasite and Vector Biology, Ministry of Health; WHO Collaborating Centre for Tropical Diseases; Chinese Centre for Tropical Diseases Research, Shanghai 200025, P. R. China
| | - Wei Hu
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention; Key Laboratory of Parasite and Vector Biology, Ministry of Health; WHO Collaborating Centre for Tropical Diseases; Chinese Centre for Tropical Diseases Research, Shanghai 200025, P. R. China
- State Key Laboratory of Genetic Engineering, Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Science, Fudan University, Shanghai 200438, China
| | - Ning Xiao
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention; Key Laboratory of Parasite and Vector Biology, Ministry of Health; WHO Collaborating Centre for Tropical Diseases; Chinese Centre for Tropical Diseases Research, Shanghai 200025, P. R. China
| |
Collapse
|
89
|
Rosani U, Domeneghetti S, Gerdol M, Pallavicini A, Venier P. Expansion and loss events characterized the occurrence of MIF-like genes in bivalves. FISH & SHELLFISH IMMUNOLOGY 2019; 93:39-49. [PMID: 31306763 DOI: 10.1016/j.fsi.2019.07.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 06/14/2019] [Accepted: 07/10/2019] [Indexed: 06/10/2023]
Abstract
Macrophage migration inhibitory factor (MIF) dynamically connects innate and adaptive immune systems in vertebrate animals, allowing highly orchestrated systemic responses to various insults. The occurrence of MIF-like genes in non-vertebrate organisms suggests its origin from an ancestral metazoan gene, whose function is still a matter of debate. In the present work, by analyzing available genomic and transcriptomic data from bivalve mollusks, we identified 137 MIF-like sequences, which were classified into three types, based on phylogeny and conservation of key residues: MIF, D-DT, and the lineage-specific type MDL. Comparative genomics revealed syntenic conservation of homologous genes at the family level, the loss of D-DT in the Ostreidae family as well as the expansion of MIF-like genes in the Mytilidae family, possibly underpinning the neofunctionalization of duplicated gene copies. In M. galloprovincialis, MIF and one D-DT were mostly expressed in haemocytes and mantle rim of untreated animals, while D-DT paralogs often showed very limited expression, suggesting an accessory role or their persistence as relict genes.
Collapse
Affiliation(s)
- Umberto Rosani
- Department of Biology, University of Padova, via U. Bassi 58/b, 35121, Padova, Italy; AWI Alfred Wegener Institute, Coastal Ecology, Hafenstraße 43, 25992, List auf Sylt, Germany.
| | - Stefania Domeneghetti
- Department of Biology, University of Padova, via U. Bassi 58/b, 35121, Padova, Italy
| | - Marco Gerdol
- Department of Life Sciences, University of Trieste, via L. Giorgeri 5, 34127, Trieste, Italy
| | - Alberto Pallavicini
- Department of Life Sciences, University of Trieste, via L. Giorgeri 5, 34127, Trieste, Italy
| | - Paola Venier
- Department of Biology, University of Padova, via U. Bassi 58/b, 35121, Padova, Italy.
| |
Collapse
|
90
|
Guerin MN, Weinstein DJ, Bracht JR. Stress Adapted Mollusca and Nematoda Exhibit Convergently Expanded Hsp70 and AIG1 Gene Families. J Mol Evol 2019; 87:289-297. [PMID: 31486870 DOI: 10.1007/s00239-019-09900-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 07/01/2019] [Indexed: 12/16/2022]
Abstract
We recently sequenced the genome of the first subterrestrial metazoan, the nematode Halicephalobus mephisto. A central finding was a dramatic expansion of genes encoding avrRpt2 induced gene (AIG1), and 70 kDa heat shock (Hsp70) domains. While the role of Hsp70 in thermotolerance is well established, the contribution of AIG1 is much more poorly characterized, though in plants some members of this family are heat-induced. Hypothesizing that this dual domain expansion may constitute a general biosignature of thermal stress adaptation, here we examine a number of genomes, finding that expansion of both AIG1 and Hsp70 is common in bivalves. Phylogenetic analysis reveals that the bivalve-specific Hsp70 protein expansion groups with H. mephisto sequences. Our identification of the same gene expansions in bivalves and a nematode implies that this biosignature may be a general stress adaptation strategy for protostomes, particularly those organisms that cannot escape their stressful environments. We hypothesize that the two families play largely complementary mechanistic roles, with Hsp70 directly refolding heat-denatured proteins while AIG1 promotes cellular and organismal survival by inhibiting apoptosis.
Collapse
Affiliation(s)
- Megan N Guerin
- Department of Biology, American University, Washington, DC, 20016, USA
| | | | - John R Bracht
- Department of Biology, American University, Washington, DC, 20016, USA.
| |
Collapse
|
91
|
Jiao Y, Yang S, Min G, Zhang Y, Du X, Wang Q. Comprehensive transcriptome analysis reveal key molecular events in the pearl oyster after pre-grafting conditioning. FISH & SHELLFISH IMMUNOLOGY 2019; 92:241-248. [PMID: 31195116 DOI: 10.1016/j.fsi.2019.06.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 06/03/2019] [Accepted: 06/09/2019] [Indexed: 06/09/2023]
Abstract
Pre-grafting conditioning is a crucial procedure before transplant surgery during pearl production. To investigate the molecular response of the pearl oyster Pinctada fucata martensii to conditioning, we constructed two hemocyte transcriptomes from pearl oysters with and without conditioning. A total of 134,222,686 raw reads were generated and assembled using the reference genome of the pearl oyster. Transcriptome analysis revealed 3,074 differentially expressed genes (DEGs). Gene ontology and pathway enrichment analyses revealed that these DEGs were mainly associated with "microtubule-based process", "regulation of actin cytoskeleton", and "cell cycle". All related genes were over-expressed in pearl oysters after conditioning. Some nucleotide-binding oligomerization domain-like receptors (NLR), toll-like receptor, myd88, proinflammatory cytokine interleukin-17 (IL-17), and apoptosis-related genes were highly expressed in pearl oysters after conditioning, indicating that conditioning induced the immune response of pearl oysters. "Fatty acid biosynthesis" (FA biosynthesis) was included in the enriched terms, and all eight FA synthase genes in this pathway were highly induced after conditioning. Four tandemly duplicated arginine kinase genes (PmAK) were found in the genome of P. f. martensii, gene structure and sequence analysis indicated PmAK genes were more diverse compared with that from human and zebra fish. The four tandemly duplicated PmAKs were highly up-regulated after conditioning. These findings will help to elucidate the responding molecular events after conditioning and explain the high pearl oyster survival rate with conditioning after transplantation, thereby providing useful information in perfecting the conditioning method to improve pearl oyster survival rate after transplantation.
Collapse
Affiliation(s)
- Yu Jiao
- Fishery College, Guangdong Ocean University, Zhanjiang, 524025, China; Pearl Breeding and Processing Engineering Technology Research Centre of Guangdong Province, Zhanjiang, 524088, China
| | - Shuai Yang
- Fishery College, Guangdong Ocean University, Zhanjiang, 524025, China
| | - Guanjie Min
- Fishery College, Guangdong Ocean University, Zhanjiang, 524025, China
| | - Yuting Zhang
- Fishery College, Guangdong Ocean University, Zhanjiang, 524025, China
| | - Xiaodong Du
- Fishery College, Guangdong Ocean University, Zhanjiang, 524025, China; Pearl Breeding and Processing Engineering Technology Research Centre of Guangdong Province, Zhanjiang, 524088, China
| | - Qingheng Wang
- Fishery College, Guangdong Ocean University, Zhanjiang, 524025, China; Pearl Breeding and Processing Engineering Technology Research Centre of Guangdong Province, Zhanjiang, 524088, China.
| |
Collapse
|
92
|
Hao R, Zheng Z, Du X, Jiao Y, Deng Y. Cloning and characterization of O-xylosyltransferase gene fromPinctada fucata martensii. JOURNAL OF APPLIED ANIMAL RESEARCH 2019. [DOI: 10.1080/09712119.2019.1650051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Ruijuan Hao
- Fisheries College, Guangdong Ocean University, Zhanjiang, People’s Republic of China
| | - Zhe Zheng
- Fisheries College, Guangdong Ocean University, Zhanjiang, People’s Republic of China
| | - Xiaodong Du
- Fisheries College, Guangdong Ocean University, Zhanjiang, People’s Republic of China
- Pearl Breeding and Processing Engineering Technology Research Centre of Guangdong Province, Zhanjiang, People’s Republic of China
| | - Yu Jiao
- Fisheries College, Guangdong Ocean University, Zhanjiang, People’s Republic of China
| | - Yuewen Deng
- Fisheries College, Guangdong Ocean University, Zhanjiang, People’s Republic of China
- Pearl Breeding and Processing Engineering Technology Research Centre of Guangdong Province, Zhanjiang, People’s Republic of China
| |
Collapse
|
93
|
Feng D, Li Q, Yu H. RNA Interference by Ingested dsRNA-Expressing Bacteria to Study Shell Biosynthesis and Pigmentation in Crassostrea gigas. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2019; 21:526-536. [PMID: 31093810 DOI: 10.1007/s10126-019-09900-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 04/16/2019] [Indexed: 06/09/2023]
Abstract
RNA interference (RNAi) is an important molecular tool for analysis of gene function in vivo. Although the Pacific oyster Crassostrea gigas is an economically important species with fully sequenced genome, very few mechanistic studies have been carried out due to the lack of molecular techniques to alter gene expression without inducing stress. In this present study, we used unicellular alga Platymonas subcordiformis and Nitzschia closterium f. minutissima as a vector to feed oysters with Escherichia coli strain HT115 engineered to express double-stranded RNAs (dsRNAs) targeting specific genes involved in shell pigmentation. A C. gigas strain with black shell was used to target tyrosinase or peroxidase gene expression by RNAi using the above-mentioned approach. The results showed that feeding oyster with dsRNA of tyrosinase could knock down the expression of corresponding tyrosinase and hinder the developed shell growth. Feeding oyster with dsRNA of peroxidase could knock down the expression of the corresponding peroxidase and result in reduced black pigmentation in the newly developed shell. This non-invasive RNAi study demonstrated that tyrosinase played a vital role in the assembly and maturation of shell matrices and peroxidase was essential for black pigmentation in the shell. Moreover, the RNA interference by ingested dsRNA-expressing bacteria is a relatively simple and effective method for knockdown of a gene expression in adult oysters, thus further advances the use of C. gigas as model organism in functional genomic studies.
Collapse
Affiliation(s)
- Dandan Feng
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Qi Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China.
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| | - Hong Yu
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| |
Collapse
|
94
|
Zheng Z, Xiong X, Zhang J, Lv S, Jiao Y, Deng Y. The global effects of PmRunt co-located and co-expressed with a lincRNA lncRunt in pearl oyster Pinctada fucata martensii. FISH & SHELLFISH IMMUNOLOGY 2019; 91:209-215. [PMID: 31112790 DOI: 10.1016/j.fsi.2019.05.037] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 05/13/2019] [Accepted: 05/17/2019] [Indexed: 06/09/2023]
Abstract
Runt related transcription factors as trans-acting elements play critical roles in the developmental control of cell fate, hematopoiesis, bone formation and cancers. In previous study, the homologue of runt related transcription factor PmRunt has been identified from pearl oyster Pinctada fucata martensii and considered to play an important role in nacre formation. In this study, we used the same samples to perform RNA-seq to detect the global effects after the decrease of PmRunt expression. The transcription levels of several nacre shell matrix protein (NSMP) genes were significantly changed and the potential compensatory effect could happen internal gene families. Downregulation of PmRunt could also influence the biosynthesis of NSMPs through affecting amino acid metabolism, translation, protein processing and export. The inhibition of PmRunt also possibly affected the expression of caspases, IAPs and C1qs that related to apoptosis and immune. In addition, PmRunt highly expressed at 12 h and 12 d after transplantation in hemolymph, which was corresponded to transplantation immunity immune response and the morphology of pearl sac, suggested the cross-talk of biomineralization-immune regulation in hemocytes. Furthermore, a lincRNA (LncRunt) that co-located with PmRunt was identified and showed a significantly relative expression with PmRunt, which suggested the potential regulation. Therefore, these findings provided new idea to find the regulation targets of runt-related transcription factors and offers evidence of lncRNAs in potential biomineralization-immune regulation.
Collapse
Affiliation(s)
- Zhe Zheng
- Fishery College, Guangdong Ocean University, Zhanjiang, 524025, China; Guangdong Technology Research Center for Pearl Aquaculture and Process, Guangdong Ocean University, Zhanjiang, 524025, China
| | - Xinwei Xiong
- Fishery College, Guangdong Ocean University, Zhanjiang, 524025, China; Guangdong Technology Research Center for Pearl Aquaculture and Process, Guangdong Ocean University, Zhanjiang, 524025, China
| | - Jinghong Zhang
- Fishery College, Guangdong Ocean University, Zhanjiang, 524025, China
| | - Shijin Lv
- Fishery College, Guangdong Ocean University, Zhanjiang, 524025, China
| | - Yu Jiao
- Fishery College, Guangdong Ocean University, Zhanjiang, 524025, China; Guangdong Technology Research Center for Pearl Aquaculture and Process, Guangdong Ocean University, Zhanjiang, 524025, China.
| | - Yuewen Deng
- Fishery College, Guangdong Ocean University, Zhanjiang, 524025, China; Guangdong Technology Research Center for Pearl Aquaculture and Process, Guangdong Ocean University, Zhanjiang, 524025, China.
| |
Collapse
|
95
|
Rosani U, Bai CM, Maso L, Shapiro M, Abbadi M, Domeneghetti S, Wang CM, Cendron L, MacCarthy T, Venier P. A-to-I editing of Malacoherpesviridae RNAs supports the antiviral role of ADAR1 in mollusks. BMC Evol Biol 2019; 19:149. [PMID: 31337330 PMCID: PMC6651903 DOI: 10.1186/s12862-019-1472-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 07/04/2019] [Indexed: 02/06/2023] Open
Abstract
Background Adenosine deaminase enzymes of the ADAR family are conserved in metazoans. They convert adenine into inosine in dsRNAs and thus alter both structural properties and the coding potential of their substrates. Acting on exogenous dsRNAs, ADAR1 exerts a pro- or anti-viral role in vertebrates and Drosophila. Results We traced 4 ADAR homologs in 14 lophotrochozoan genomes and we classified them into ADAD, ADAR1 or ADAR2, based on phylogenetic and structural analyses of the enzymatic domain. Using RNA-seq and quantitative real time PCR we demonstrated the upregulation of one ADAR1 homolog in the bivalve Crassostrea gigas and in the gastropod Haliotis diversicolor supertexta during Ostreid herpesvirus-1 or Haliotid herpesvirus-1 infection. Accordingly, we demonstrated an extensive ADAR-mediated editing of viral RNAs. Single nucleotide variation (SNV) profiles obtained by pairing RNA- and DNA-seq data from the viral infected individuals resulted to be mostly compatible with ADAR-mediated A-to-I editing (up to 97%). SNVs occurred at low frequency in genomic hotspots, denoted by the overlapping of viral genes encoded on opposite DNA strands. The SNV sites and their upstream neighbor nucleotide indicated the targeting of selected adenosines. The analysis of viral sequences suggested that, under the pressure of the ADAR editing, the two Malacoherpesviridae genomes have evolved to reduce the number of deamination targets. Conclusions We report, for the first time, evidence of an extensive editing of Malacoherpesviridae RNAs attributable to host ADAR1 enzymes. The analysis of base neighbor preferences, structural features and expression profiles of molluscan ADAR1 supports the conservation of the enzyme function among metazoans and further suggested that ADAR1 exerts an antiviral role in mollusks. Electronic supplementary material The online version of this article (10.1186/s12862-019-1472-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Umberto Rosani
- Department of Biology, University of Padova, 32121, Padova, Italy. .,Helmholtz Centre for Polar and Marine Research, Alfred Wegener Institute (AWI), Wadden Sea Station, 25992, List auf Sylt, Germany.
| | - Chang-Ming Bai
- Chinese Academy of Fishery Sciences, Yellow Sea Fisheries Research Institute, Qingdao, China
| | - Lorenzo Maso
- Department of Biology, University of Padova, 32121, Padova, Italy
| | - Maxwell Shapiro
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY, USA
| | - Miriam Abbadi
- Istituto Zooprofilattico Sperimentale delle Venezie, 35020, Legnaro, Italy
| | | | - Chong-Ming Wang
- Chinese Academy of Fishery Sciences, Yellow Sea Fisheries Research Institute, Qingdao, China
| | - Laura Cendron
- Department of Biology, University of Padova, 32121, Padova, Italy
| | - Thomas MacCarthy
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY, USA
| | - Paola Venier
- Department of Biology, University of Padova, 32121, Padova, Italy.
| |
Collapse
|
96
|
Liao Z, Jiang YT, Sun Q, Fan MH, Wang JX, Liang HY. Microstructure and in-depth proteomic analysis of Perna viridis shell. PLoS One 2019; 14:e0219699. [PMID: 31323046 PMCID: PMC6641155 DOI: 10.1371/journal.pone.0219699] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 06/28/2019] [Indexed: 12/20/2022] Open
Abstract
For understanding the structural characteristics and the proteome of Perna shell, the microstructure, polymorph, and protein composition of the adult Perna viridis shell were investigated. The P. viridis shell have two distinct mineral layers, myostracum and nacre, with the same calcium carbonate polymorph of aragonite, determined by scanning electron microscope, Fourier transform infrared spectroscopy, and x-ray crystalline diffraction. Using Illumina sequencing, the mantle transcriptome of P. viridis was investigated and a total of 69,859 unigenes was generated. Using a combined proteomic/transcriptomic approach, a total of 378 shell proteins from P. viridis shell were identified, in which, 132 shell proteins identified with more than two matched unique peptides. Of the 132 shell proteins, 69 are exclusive to the nacre, 12 to the myostracum, and 51 are shared by both. The Myosin-tail domain containing proteins, Filament-like proteins, and Chitin-binding domain containing proteins represent the most abundant molecules. In addition, the shell matrix proteins (SMPs) containing biomineralization-related domains, such as Kunitz, A2M, WAP, EF-hand, PDZ, VWA, Collagen domain, and low complexity regions with abundant certain amino acids, were also identified from P. viridis shell. Collagenase and chitinase degradation can significantly change the morphology of the shell, indicating the important roles of collagen and chitin in the shell formation and the muscle-shell attachment. Our results present for the first time the proteome of P. viridis shell and increase the knowledge of SMPs in this genus.
Collapse
Affiliation(s)
- Zhi Liao
- Laboratory of Marine Biological Source and Molecular Engineering, College of Marine Science, Zhejiang Ocean University, Zhoushan, Zhejiang, P.R. China
| | - Yu-ting Jiang
- Laboratory of Marine Biological Source and Molecular Engineering, College of Marine Science, Zhejiang Ocean University, Zhoushan, Zhejiang, P.R. China
| | - Qi Sun
- Laboratory of Marine Biological Source and Molecular Engineering, College of Marine Science, Zhejiang Ocean University, Zhoushan, Zhejiang, P.R. China
| | - Mei-hua Fan
- Laboratory of Marine Biological Source and Molecular Engineering, College of Marine Science, Zhejiang Ocean University, Zhoushan, Zhejiang, P.R. China
| | - Jian-xin Wang
- Laboratory of Marine Biological Source and Molecular Engineering, College of Marine Science, Zhejiang Ocean University, Zhoushan, Zhejiang, P.R. China
| | - Hai-ying Liang
- Fisheries College, Guangdong Ocean University, Zhanjiang, Guangdong, P.R. China
- * E-mail:
| |
Collapse
|
97
|
Jiao Y, Yang S, Cao Y, Zheng Z, Deng Y, Wang Q, Huang R, Du X. Genome and transcriptome analyses providing insight into the immune response of pearl oysters after allograft and xenograft transplantations. FISH & SHELLFISH IMMUNOLOGY 2019; 90:109-117. [PMID: 31051240 DOI: 10.1016/j.fsi.2019.04.061] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/19/2019] [Accepted: 04/24/2019] [Indexed: 06/09/2023]
Abstract
The immune response after allograft or xenograft transplantation in the pearl oyster is a major factor that cause its nucleus rejection and death. To determine the mechanism underlying the immune response after allograft and xenograft transplantations in the pearl oyster Pinctada fucata martensii, we constructed two sets of transcriptomes of hemocytes at different times (6 and 12 h; 1, 3, 6, 12, and 30 d) after allograft and xenograft transplantations, in which the xenografted mantle tissue was from Pinctada maxima. The transcriptomic analysis reveals many genes are involved in the immune response to transplantation, such as transient receptor potential cation channel (TRP), calmodulin (CaM), DNA replication-related genes, and sugar and lipid metabolism-related genes. The expression of these identified genes was higher in the host pearl oyster transplanted with xenograft than that by allograft. The histological analysis of the pearl sac also confirmed that many hemocytes were still gathered around the transplanted nucleus, and no pearl sac was formed in the host pearl oysters at 30 d after xenograft transplantation. The genomic analysis indicated that pearl oysters evolved many copies of genes, such as TRP, CaM, and GST, to sense and cope with the immune response after transplantation. "Ribosome" and "Cytosolic DNA-sensing pathway" were specifically induced in the xenograft group, whereas "Notch signaling pathway" specifically responded to the allograft transplantation. These results can improve our understanding of the mechanism underlying the immune response of pearl oysters after allograft and xenograft transplantations.
Collapse
Affiliation(s)
- Yu Jiao
- Fishery College, Guangdong Ocean University, Zhanjiang, 524025, China
| | - Shuai Yang
- Fishery College, Guangdong Ocean University, Zhanjiang, 524025, China
| | - Yanfei Cao
- Fishery College, Guangdong Ocean University, Zhanjiang, 524025, China
| | - Zhe Zheng
- Fishery College, Guangdong Ocean University, Zhanjiang, 524025, China
| | - Yuewen Deng
- Fishery College, Guangdong Ocean University, Zhanjiang, 524025, China
| | - Qingheng Wang
- Fishery College, Guangdong Ocean University, Zhanjiang, 524025, China
| | - Ronglian Huang
- Fishery College, Guangdong Ocean University, Zhanjiang, 524025, China
| | - Xiaodong Du
- Fishery College, Guangdong Ocean University, Zhanjiang, 524025, China.
| |
Collapse
|
98
|
An Evolutionary Perspective of Dopachrome Tautomerase Enzymes in Metazoans. Genes (Basel) 2019; 10:genes10070495. [PMID: 31261784 PMCID: PMC6678240 DOI: 10.3390/genes10070495] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 06/19/2019] [Accepted: 06/24/2019] [Indexed: 12/19/2022] Open
Abstract
Melanin plays a pivotal role in the cellular processes of several metazoans. The final step of the enzymically-regulated melanin biogenesis is the conversion of dopachrome into dihydroxyindoles, a reaction catalyzed by a class of enzymes called dopachrome tautomerases. We traced dopachrome tautomerase (DCT) and dopachrome converting enzyme (DCE) genes throughout metazoans and we could show that only one class is present in most of the phyla. While DCTs are typically found in deuterostomes, DCEs are present in several protostome phyla, including arthropods and mollusks. The respective DCEs belong to the yellow gene family, previously reported to be taxonomically restricted to insects, bacteria and fungi. Mining genomic and transcriptomic data of metazoans, we updated the distribution of DCE/yellow genes, demonstrating their presence and active expression in most of the lophotrochozoan phyla as well as in copepods (Crustacea). We have traced one intronless DCE/yellow gene through most of the analyzed lophotrochozoan genomes and we could show that it was subjected to genomic diversification in some species, while it is conserved in other species. DCE/yellow was expressed in most phyla, although it showed tissue specific expression patterns. In the parasitic copepod Mytilicola intestinalis DCE/yellow even belonged to the 100 most expressed genes. Both tissue specificity and high expression suggests that diverse functions of this gene family also evolved in other phyla apart from insects.
Collapse
|
99
|
Huang S, Ichikawa Y, Yoshitake K, Kinoshita S, Igarashi Y, Omori F, Maeyama K, Nagai K, Watabe S, Asakawa S. Identification and Characterization of microRNAs and Their Predicted Functions in Biomineralization in the Pearl Oyster ( Pinctada fucata). BIOLOGY 2019; 8:biology8020047. [PMID: 31212990 PMCID: PMC6627748 DOI: 10.3390/biology8020047] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 06/12/2019] [Accepted: 06/13/2019] [Indexed: 11/16/2022]
Abstract
The biological process of pearl formation is an ongoing research topic, and a number of genes associated with this process have been identified. However, the involvement of microRNAs (miRNAs) in biomineralization in the pearl oyster, Pinctada fucata, is not well understood. In order to investigate the divergence and function of miRNAs in P. fucata, we performed a transcriptome analysis of small RNA libraries prepared from adductor muscle, gill, ovary, and mantle tissues. We identified 186 known and 42 novel miRNAs in these tissues. Clustering analysis showed that the expression patterns of miRNAs were similar among the somatic tissues, but they differed significantly between the somatic and ovary tissues. To validate the existence of the identified miRNAs, nine known and three novel miRNAs were verified by stem-loop qRT-PCR using U6 snRNA as an internal reference. The expression abundance and target prediction between miRNAs and biomineralization-related genes indicated that miR-1990c-3p, miR-876, miR-9a-3p, and novel-3 may be key factors in the regulatory network that act by controlling the formation of matrix proteins or the differentiation of mineralogenic cells during shell formation in mantle tissue. Our findings serve to further clarify the processes underlying biomineralization in P. fucata.
Collapse
Affiliation(s)
- Songqian Huang
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan.
| | - Yuki Ichikawa
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan.
| | - Kazutoshi Yoshitake
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan.
| | - Shigeharu Kinoshita
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan.
| | - Yoji Igarashi
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan.
| | - Fumito Omori
- Mikimoto Pharmaceutical CO., LTD., Kurose 1425, Ise, Mie 516-8581, Japan.
| | - Kaoru Maeyama
- Mikimoto Pharmaceutical CO., LTD., Kurose 1425, Ise, Mie 516-8581, Japan.
| | - Kiyohito Nagai
- Pearl Research Laboratory, K. MIKIMOTO & CO., LTD., Osaki Hazako 923, Hamajima, Shima, Mie 517-0403, Japan.
| | - Shugo Watabe
- School of Marine Biosciences, Kitasato University, Minami-ku, Sagamihara, Kanagawa 252-0313, Japan.
| | - Shuichi Asakawa
- Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8657, Japan.
| |
Collapse
|
100
|
Hao R, Du X, Yang C, Deng Y, Zheng Z, Wang Q. Integrated application of transcriptomics and metabolomics provides insights into unsynchronized growth in pearl oyster Pinctada fucata martensii. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 666:46-56. [PMID: 30784822 DOI: 10.1016/j.scitotenv.2019.02.221] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 02/13/2019] [Accepted: 02/14/2019] [Indexed: 06/09/2023]
Abstract
Similar to other marine bivalves, Pinctada fucata martensii presents unsynchronized growth, which is one of the problems farmers currently face. However, the underlying mechanisms have not been studied. In the present study, pearl oyster P. f. martensii from cultured stocks were selected to produce a progeny stock. At 180 days, the stock was sorted by size, and fast- and slow-growing individuals were separately sampled. Then, metabolomic and transcriptomic approaches were applied to assess the metabolic and transcript changes between the fast- and slow-growing P. f. martensii groups and understand the mechanism underlying their unsynchronized growth. In the metabolomics assay, 30 metabolites were considered significantly different metabolites (SDMs) between the fast- and slow-growing groups and pathway analysis indicated that these SDMs were involved in 20 pathways, including glutathione metabolism; sulfur metabolism; valine, leucine, and isoleucine biosynthesis; and tryptophan metabolism. The transcriptome analysis of different growth groups showed 168 differentially expressed genes (DEGs) and pathway enrichment analysis indicated that DEGs were involved in extracellular matrix-receptor interaction, pentose phosphate pathway, aromatic compound degradation. Integrated transcriptome and metabolome analyses showed that fast-growing individuals exhibited higher biomineralization activity than the slow-growing group, which consumed more energy than the fast-growing group in response to environmental stress. Fast-growing group also exhibited higher digestion, anabolic ability, and osmotic regulation ability than the slow-growing group. This study is the first work involving the integrated metabolomic and transcriptomic analyses to identify the key pathways to understand the molecular and metabolic mechanisms underlying unsynchronized bivalve growth.
Collapse
Affiliation(s)
- Ruijuan Hao
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Xiaodong Du
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; Pearl Breeding and Processing Engineering Technology Research Centre of Guangdong Province, Zhanjiang 524088, China
| | - Chuangye Yang
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China
| | - Yuewen Deng
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; Pearl Breeding and Processing Engineering Technology Research Centre of Guangdong Province, Zhanjiang 524088, China.
| | - Zhe Zheng
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China.
| | - Qingheng Wang
- Fisheries College, Guangdong Ocean University, Zhanjiang 524088, China; Pearl Breeding and Processing Engineering Technology Research Centre of Guangdong Province, Zhanjiang 524088, China
| |
Collapse
|