51
|
Ahmed ZM, Jaworek TJ, Sarangdhar GN, Zheng L, Gul K, Khan SN, Friedman TB, Sisk RA, Bartles JR, Riazuddin S, Riazuddin S. Inframe deletion of human ESPN is associated with deafness, vestibulopathy and vision impairment. J Med Genet 2018; 55:479-488. [PMID: 29572253 PMCID: PMC6232856 DOI: 10.1136/jmedgenet-2017-105221] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 02/23/2018] [Accepted: 03/01/2018] [Indexed: 12/21/2022]
Abstract
BACKGROUND Usher syndrome (USH) is a neurosensory disorder characterised by deafness, variable vestibular areflexia and vision loss. The aim of the study was to identify the genetic defect in a Pakistani family (PKDF1051) segregating USH. METHODS Genome-wide linkage analysis was performed by using an Illumina linkage array followed by Sanger and exome sequencing. Heterologous cells and mouse organ of Corti explant-based transfection assays were used for functional evaluations. Detailed clinical evaluations were performed to characterise the USH phenotype. RESULTS Through homozygosity mapping, we genetically linked the USH phenotype segregating in family PKDF1051 to markers on chromosome 1p36.32-p36.22. The locus was designated USH1M. Using a combination of Sanger sequencing and exome sequencing, we identified a novel homozygous 18 base pair inframe deletion in ESPN. Variants of ESPN, encoding the actin-bundling protein espin, have been previously associated with deafness and vestibular areflexia in humans with no apparent visual deficits. Our functional studies in heterologous cells and in mouse organ of Corti explant cultures revealed that the six deleted residues in affected individuals of family PKDF1051 are essential for the actin bundling function of espin demonstrated by ultracentrifugation actin binding and bundling assays. Funduscopic examination of the affected individuals of family PKDF1051 revealed irregular retinal contour, temporal flecks and disc pallor in both eyes. ERG revealed diminished rod photoreceptor function among affected individuals. CONCLUSION Our study uncovers an additional USH gene, assigns the USH1 phenotype to a variant of ESPN and provides a 12th molecular component to the USH proteome.
Collapse
Affiliation(s)
- Zubair M Ahmed
- Department of Otorhinolaryngology Head and Neck Surgery, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| | - Thomas J Jaworek
- Department of Otorhinolaryngology Head and Neck Surgery, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| | - Gowri N Sarangdhar
- Abrahamson Pediatric Eye Institute, Cincinnati Children’s Hospital, Cincinnati, Ohio, USA
| | - Lili Zheng
- Department of Cell and Molecular Biology, School of Medicine, Northwestern University Feinberg, Chicago, Illinois, USA
| | - Khitab Gul
- Abrahamson Pediatric Eye Institute, Cincinnati Children’s Hospital, Cincinnati, Ohio, USA
| | - Shaheen N Khan
- Center for Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Thomas B Friedman
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorder, National Institutes of Health, Bethesda, Maryland, USA
| | - Robert A Sisk
- Abrahamson Pediatric Eye Institute, Cincinnati Children’s Hospital, Cincinnati, Ohio, USA
- Ophthalmology, Cincinnati Eye Institute, Cincinnati, Ohio, USA
| | - James R Bartles
- Department of Cell and Molecular Biology, School of Medicine, Northwestern University Feinberg, Chicago, Illinois, USA
| | - Sheikh Riazuddin
- Shaheed Zulfiqar Ali Bhutto Medical University, Islamabad, Pakistan
- University of Lahore and Allama Iqbal Medical Research Centre, Jinnah Hospital Complex, Lahore, Pakistan
| | - Saima Riazuddin
- Department of Otorhinolaryngology Head and Neck Surgery, School of Medicine, University of Maryland, Baltimore, Maryland, USA
- Shaheed Zulfiqar Ali Bhutto Medical University, Islamabad, Pakistan
| |
Collapse
|
52
|
Zhang N, Wang J, Liu S, Liu M, Jiang F. Identification of two novel compound heterozygous mutations of ADGRV1 in a Chinese family with Usher syndrome type IIC. Ophthalmic Genet 2018; 39:517-521. [PMID: 29883260 DOI: 10.1080/13816810.2018.1479430] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
BACKGROUND To describe the clinical and genetic findings in a Chinese family with three sibs diagnosed with Usher syndrome type IIC. MATERIALS AND METHODS Four members received ophthalmic and otologic tests to ascertain the clinical characteristics. According to the clinical phenotype, we focused attention on a total of 658 genes associated with them. We screened the possible pathogenic mutation sites, used Sanger to exclude the false positive and verified whether there were co-segregated among the family members. RESULTS Typical fundus features found in the proband supported the diagnosis of retinitis pigmentosa (RP). Audiometric test indicated moderate to severe sensorineural hearing impairment while the vestibular function was normal. Whole-exome sequencing identified the presence of two novel compound heterozygous mutations in ADGRV1, a known gene responsible for Usher syndrome type IIC. Mutationc.15008delG/p.Gly5003AlafsTer13 was inherited from the mother while c.18383_18386dupACAG/p.His6130GlnfsTer84 was inherited from the father, and they were co-segregated with the disease phenotype in the family. CONCLUSIONS The mutations found in our study not only broaden the mutation spectrum of ADGRV1, but also provide assistances for future genetic diagnosis and treatment for Usher syndrome patients.
Collapse
Affiliation(s)
- Nian Zhang
- a Department of Ophthalmology , Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , Hubei , P.R. China
| | - Juan Wang
- a Department of Ophthalmology , Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , Hubei , P.R. China
| | - Shuting Liu
- a Department of Ophthalmology , Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , Hubei , P.R. China
| | - Mugen Liu
- b Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology , Center of Human Genome Research, Huazhong University of Science and Technology , Wuhan , Hubei , P.R. China
| | - Fagang Jiang
- a Department of Ophthalmology , Union Hospital, Tongji Medical College, Huazhong University of Science and Technology , Wuhan , Hubei , P.R. China
| |
Collapse
|
53
|
Guiding Lights in Genome Editing for Inherited Retinal Disorders: Implications for Gene and Cell Therapy. Neural Plast 2018; 2018:5056279. [PMID: 29853845 PMCID: PMC5964415 DOI: 10.1155/2018/5056279] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 04/18/2018] [Indexed: 12/26/2022] Open
Abstract
Inherited retinal dystrophies (IRDs) are a leading cause of visual impairment in the developing world. These conditions present an irreversible dysfunction or loss of neural retinal cells, which significantly impacts quality of life. Due to the anatomical accessibility and immunoprivileged status of the eye, ophthalmological research has been at the forefront of innovative and advanced gene- and cell-based therapies, both of which represent great potential as therapeutic treatments for IRD patients. However, due to a genetic and clinical heterogeneity, certain IRDs are not candidates for these approaches. New advances in the field of genome editing using Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) and CRISPR-associated protein (Cas) have provided an accurate and efficient way to edit the human genome and represent an appealing alternative for treating IRDs. We provide a brief update on current gene augmentation therapies for retinal dystrophies. Furthermore, we discuss recent advances in the field of genome editing and stem cell technologies, which together enable precise and personalized therapies for patients. Lastly, we highlight current technological limitations and barriers that need to be overcome before this technology can become a viable treatment option for patients.
Collapse
|
54
|
CLINICAL PRESENTATION AND DISEASE COURSE OF USHER SYNDROME BECAUSE OF MUTATIONS IN MYO7A OR USH2A. Retina 2018; 37:1581-1590. [PMID: 27828912 DOI: 10.1097/iae.0000000000001389] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE To evaluate differences in the visual phenotype and natural history of Usher syndrome caused by mutations in MYO7A or USH2A, the most commonly affected genes of Usher syndrome Type I (USH1) and Type II (USH2), respectively. METHODS Eighty-eight patients with a clinical diagnosis of USH1 (26 patients) or USH2 (62 patients) were retrospectively evaluated. Of these, 48 patients had 2 disease-causing mutations in MYO7A (10 USH1 patients), USH2A (33 USH2 patients), and other USH (5 patients) genes. Clinical investigation included best-corrected visual acuity, Goldmann visual field, fundus photography, electroretinography, and audiologic and vestibular assessments. Longitudinal analysis was performed over a median follow-up time of 3.5 years. RESULTS Patients carrying mutations in MYO7A had a younger age of onset of hearing and visual impairments than those carrying mutations in USH2A, leading to an earlier diagnosis of the disease in the former patients. Longitudinal analysis showed that visual acuity and visual field decreased more rapidly in subjects carrying MYO7A mutations than in those carrying USH2A mutations (mean annual exponential rates of decline of 3.92 vs. 3.44% and of 8.52 vs. 4.97%, respectively), and the former patients reached legal blindness on average 15 years earlier than the latter. CONCLUSION The current study confirmed a more severe progression of the retinal disease in USH1 patients rather than in USH2 patients. Furthermore, most visual symptoms (i.e., night blindness, visual acuity worsening) occurred at an earlier age in USH1 patients carrying mutations in MYO7A.
Collapse
|
55
|
A homozygous founder missense variant in arylsulfatase G abolishes its enzymatic activity causing atypical Usher syndrome in humans. Genet Med 2018; 20:1004-1012. [PMID: 29300381 DOI: 10.1038/gim.2017.227] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 11/06/2017] [Indexed: 12/28/2022] Open
Abstract
PURPOSE We aimed to identify the cause of disease in patients suffering from a distinctive, atypical form of Usher syndrome. METHODS Whole-exome and genome sequencing were performed in five patients from three families of Yemenite Jewish origin, suffering from distinctive retinal degeneration phenotype and sensorineural hearing loss. Functional analysis of the wild-type and mutant proteins was performed in human fibrosarcoma cells. RESULTS We identified a homozygous founder missense variant, c.133G>T (p.D45Y) in arylsulfatase G (ARSG). All patients shared a distinctive retinal phenotype with ring-shaped atrophy along the arcades engirdling the fovea, resulting in ring scotoma. In addition, patients developed moderate to severe sensorineural hearing loss. Both vision and hearing loss appeared around the age of 40 years. The identified variant affected a fully conserved amino acid that is part of the catalytic site of the enzyme. Functional analysis of the wild-type and mutant proteins showed no basal activity of p.D45Y. CONCLUSION Homozygosity for ARSG-p.D45Y in humans leads to protein dysfunction, causing an atypical combination of late-onset Usher syndrome. Although there is no evidence for generalized clinical manifestations of lysosomal storage diseases in this set of patients, we cannot rule out the possibility that mild and late-onset symptoms may appear.
Collapse
|
56
|
Targeted next generation sequencing identified a novel mutation in MYO7A causing Usher syndrome type 1 in an Iranian consanguineous pedigree. Int J Pediatr Otorhinolaryngol 2018; 104:10-13. [PMID: 29287847 DOI: 10.1016/j.ijporl.2017.10.022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Revised: 10/13/2017] [Accepted: 10/13/2017] [Indexed: 12/29/2022]
Abstract
BACKGROUND Usher syndrome (USH) is characterized by congenital hearing loss and retinitis pigmentosa (RP) with a later onset. It is an autosomal recessive trait with clinical and genetic heterogeneity which makes the molecular diagnosis much difficult. In this study, we introduce a pedigree with two affected members with USH type 1 and represent a cost and time effective approach for genetic diagnosis of USH as a genetically heterogeneous disorder. METHODS Target region capture in the genes of interest, followed by next generation sequencing (NGS) was used to determine the causative mutations in one of the probands. Then segregation analysis in the pedigree was conducted using PCR-Sanger sequencing. RESULTS Targeted NGS detected a novel homozygous nonsense variant c.4513G > T (p.Glu1505Ter) in MYO7A. The variant is segregating in the pedigree with an autosomal recessive pattern. CONCLUSION In this study, a novel stop gained variant c.4513G > T (p.Glu1505Ter) in MYO7A was found in an Iranian pedigree with two affected members with USH type 1. Bioinformatic as well as pedigree segregation analyses were in line with pathogenic nature of this variant. Targeted NGS panel was showed to be an efficient method for mutation detection in hereditary disorders with locus heterogeneity.
Collapse
|
57
|
Geng R, Omar A, Gopal SR, Chen DHC, Stepanyan R, Basch ML, Dinculescu A, Furness DN, Saperstein D, Hauswirth W, Lustig LR, Alagramam KN. Modeling and Preventing Progressive Hearing Loss in Usher Syndrome III. Sci Rep 2017; 7:13480. [PMID: 29044151 PMCID: PMC5647385 DOI: 10.1038/s41598-017-13620-9] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Accepted: 09/29/2017] [Indexed: 02/07/2023] Open
Abstract
Usher syndrome type III (USH3) characterized by progressive loss of vision and hearing is caused by mutations in the clarin-1 gene (CLRN1). Clrn1 knockout (KO) mice develop hair cell defects by postnatal day 2 (P2) and are deaf by P21-P25. Early onset profound hearing loss in KO mice and lack of information about the cochlear cell type that requires Clrn1 expression pose challenges to therapeutic investigation. We generated KO mice harboring a transgene, TgAC1, consisting of Clrn1-UTR (Clrn1 cDNA including its 5' and 3' UTR) under the control of regulatory elements (Atoh1 3' enhancer/β-globin basal promoter) to direct expression of Clrn1 in hair cells during development and down regulate it postnatally. The KO-TgAC1 mice displayed delayed onset progressive hearing loss associated with deterioration of the hair bundle structure, leading to the hypothesis that hair cell expression of Clrn1 is essential for postnatal preservation of hair cell structure and hearing. Consistent with that hypothesis, perinatal transfection of hair cells in KO-TgAC1 mice with a single injection of AAV-Clrn1-UTR vector showed correlative preservation of the hair bundle structure and hearing through adult life. Further, the efficacy of AAV-Clrn1 vector was significantly attenuated, revealing the potential importance of UTR in gene therapy.
Collapse
Affiliation(s)
- Ruishuang Geng
- Department of Otolaryngology-Head and Neck Surgery, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, Ohio, 44016, USA
| | - Akil Omar
- Department of Otolaryngology-Head and Neck Surgery, University of California San Francisco, San Francisco, CA, 94143, USA
| | - Suhasini R Gopal
- Department of Otolaryngology-Head and Neck Surgery, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, Ohio, 44016, USA
| | - Daniel H-C Chen
- Department of Otolaryngology-Head and Neck Surgery, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, Ohio, 44016, USA
| | - Ruben Stepanyan
- Department of Otolaryngology-Head and Neck Surgery, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, Ohio, 44016, USA
| | - Martin L Basch
- Department of Otolaryngology-Head and Neck Surgery, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, Ohio, 44016, USA
| | - Astra Dinculescu
- Department of Ophthalmology, University of Florida, Gainesville, FL, 32610, USA
| | - David N Furness
- School of Life Sciences, Keele University, Keele, Staffordshire, ST5 5BG, UK
| | | | - William Hauswirth
- Department of Ophthalmology, University of Florida, Gainesville, FL, 32610, USA
| | - Lawrence R Lustig
- Department of Otolaryngology-Head and Neck Surgery, University of California San Francisco, San Francisco, CA, 94143, USA.
- Department of Otolaryngology-Head and Neck Surgery, Columbia University, New York, NY, 10032, USA.
| | - Kumar N Alagramam
- Department of Otolaryngology-Head and Neck Surgery, University Hospitals Cleveland Medical Center, Case Western Reserve University, Cleveland, Ohio, 44016, USA.
- Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio, 44016, USA.
- Neurosciences, Case Western Reserve University, Cleveland, Ohio, 44016, USA.
| |
Collapse
|
58
|
Bujakowska KM, Liu Q, Pierce EA. Photoreceptor Cilia and Retinal Ciliopathies. Cold Spring Harb Perspect Biol 2017; 9:cshperspect.a028274. [PMID: 28289063 DOI: 10.1101/cshperspect.a028274] [Citation(s) in RCA: 132] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Photoreceptors are sensory neurons designed to convert light stimuli into neurological responses. This process, called phototransduction, takes place in the outer segments (OS) of rod and cone photoreceptors. OS are specialized sensory cilia, with analogous structures to those present in other nonmotile cilia. Deficient morphogenesis and/or dysfunction of photoreceptor sensory cilia (PSC) caused by mutations in a variety of photoreceptor-specific and common cilia genes can lead to inherited retinal degenerations (IRDs). IRDs can manifest as isolated retinal diseases or syndromic diseases. In this review, we describe the structure and composition of PSC and different forms of ciliopathies with retinal involvement. We review the genetics of the IRDs, which are monogenic disorders but genetically diverse with regard to causality.
Collapse
Affiliation(s)
- Kinga M Bujakowska
- Ocular Genomics Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts 02114
| | - Qin Liu
- Ocular Genomics Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts 02114
| | - Eric A Pierce
- Ocular Genomics Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts 02114
| |
Collapse
|
59
|
Congenital deafness is associated with specific somatosensory deficits in adolescents. Sci Rep 2017; 7:4251. [PMID: 28652589 PMCID: PMC5484691 DOI: 10.1038/s41598-017-04074-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 05/09/2017] [Indexed: 12/25/2022] Open
Abstract
Hearing and touch represent two distinct sensory systems that both rely on the transformation of mechanical force into electrical signals. Here we used a battery of quantitative sensory tests to probe touch, thermal and pain sensitivity in a young control population (14–20 years old) compared to age-matched individuals with congenital hearing loss. Sensory testing was performed on the dominant hand of 111 individuals with normal hearing and 36 with congenital hearing loss. Subjects with congenital deafness were characterized by significantly higher vibration detection thresholds at 10 Hz (2-fold increase, P < 0.001) and 125 Hz (P < 0.05) compared to controls. These sensory changes were not accompanied by any major change in measures of pain perception. We also observed a highly significant reduction (30% compared to controls p < 0.001) in the ability of hearing impaired individual’s ability to detect cooling which was not accompanied by changes in warm detection. At least 60% of children with non-syndromic hearing loss showed very significant loss of vibration detection ability (at 10 Hz) compared to age-matched controls. We thus propose that many pathogenic mutations that cause childhood onset deafness may also play a role in the development or functional maintenance of somatic mechanoreceptors.
Collapse
|
60
|
Antisense Oligonucleotide-based Splice Correction for USH2A-associated Retinal Degeneration Caused by a Frequent Deep-intronic Mutation. MOLECULAR THERAPY. NUCLEIC ACIDS 2016; 5:e381. [PMID: 27802265 DOI: 10.1038/mtna.2016.89] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Accepted: 09/07/2016] [Indexed: 12/21/2022]
Abstract
Usher syndrome (USH) is the most common cause of combined deaf-blindness in man. The hearing loss can be partly compensated by providing patients with hearing aids or cochlear implants, but the loss of vision is currently untreatable. In general, mutations in the USH2A gene are the most frequent cause of USH explaining up to 50% of all patients worldwide. The first deep-intronic mutation in the USH2A gene (c.7595-2144A>G) was reported in 2012, leading to the insertion of a pseudoexon (PE40) into the mature USH2A transcript. When translated, this PE40-containing transcript is predicted to result in a truncated non-functional USH2A protein. In this study, we explored the potential of antisense oligonucleotides (AONs) to prevent aberrant splicing of USH2A pre-mRNA as a consequence of the c.7595-2144A>G mutation. Engineered 2'-O-methylphosphorothioate AONs targeting the PE40 splice acceptor site and/or exonic splice enhancer regions displayed significant splice correction potential in both patient derived fibroblasts and a minigene splice assay for USH2A c.7595-2144A>G, whereas a non-binding sense oligonucleotide had no effect on splicing. Altogether, AON-based splice correction could be a promising approach for the development of a future treatment for USH2A-associated retinitis pigmentosa caused by the deep-intronic c.7595-2144A>G mutation.
Collapse
|
61
|
Mateo Sánchez S, Freeman SD, Delacroix L, Malgrange B. The role of post-translational modifications in hearing and deafness. Cell Mol Life Sci 2016; 73:3521-33. [PMID: 27147466 PMCID: PMC11108544 DOI: 10.1007/s00018-016-2257-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 04/21/2016] [Accepted: 04/26/2016] [Indexed: 12/20/2022]
Abstract
Post-translational modifications (PTMs) are key molecular events that modify proteins after their synthesis and modulate their ultimate functional properties by affecting their stability, localisation, interaction potential or activity. These chemical changes expand the size of the proteome adding diversity to the molecular pathways governing the biological outcome of cells. PTMs are, thus, crucial in regulating a variety of cellular processes such as apoptosis, proliferation and differentiation and have been shown to be instrumental during embryonic development. In addition, alterations in protein PTMs have been implicated in the pathogenesis of many human diseases, including deafness. In this review, we summarize the recent progress made in understanding the roles of PTMs during cochlear development, with particular emphasis on the enzymes driving protein phosphorylation, acetylation, methylation, glycosylation, ubiquitination and SUMOylation. We also discuss how these enzymes may contribute to hearing impairment and deafness.
Collapse
Affiliation(s)
- Susana Mateo Sánchez
- Developmental Neurobiology Unit, GIGA-Neurosciences, University of Liège, Quartier Hôpital (CHU), Avenue Hippocrate 15, Tour 4, 1er étage, Bât. B36, 4000, Liège, Belgium
| | - Stephen D Freeman
- Developmental Neurobiology Unit, GIGA-Neurosciences, University of Liège, Quartier Hôpital (CHU), Avenue Hippocrate 15, Tour 4, 1er étage, Bât. B36, 4000, Liège, Belgium
| | - Laurence Delacroix
- Developmental Neurobiology Unit, GIGA-Neurosciences, University of Liège, Quartier Hôpital (CHU), Avenue Hippocrate 15, Tour 4, 1er étage, Bât. B36, 4000, Liège, Belgium
| | - Brigitte Malgrange
- Developmental Neurobiology Unit, GIGA-Neurosciences, University of Liège, Quartier Hôpital (CHU), Avenue Hippocrate 15, Tour 4, 1er étage, Bât. B36, 4000, Liège, Belgium.
| |
Collapse
|
62
|
Dad S, Rendtorff ND, Tranebjærg L, Grønskov K, Karstensen HG, Brox V, Nilssen Ø, Roux AF, Rosenberg T, Jensen H, Møller LB. Usher syndrome in Denmark: mutation spectrum and some clinical observations. Mol Genet Genomic Med 2016; 4:527-539. [PMID: 27957503 PMCID: PMC5023938 DOI: 10.1002/mgg3.228] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 05/11/2016] [Accepted: 05/12/2016] [Indexed: 12/22/2022] Open
Abstract
Background Usher syndrome (USH) is a genetically heterogeneous deafness‐blindness syndrome, divided into three clinical subtypes: USH1, USH2 and USH3. Methods Mutations in 21 out of 26 investigated Danish unrelated individuals with USH were identified, using a combination of molecular diagnostic methods. Results Before Next Generation Sequencing (NGS) became available mutations in nine individuals (1 USH1, 7 USH2, 1 USH3) were identified by Sanger sequencing of USH1C,USH2A or CLRN1 or by Arrayed Primer EXtension (APEX) method. Mutations in 12 individuals (7 USH1, 5 USH2) were found by targeted NGS of ten known USH genes. Five novel pathogenic variants were identified. We combined our data with previously published, and obtained an overview of the USH mutation spectrum in Denmark, including 100 unrelated individuals; 32 with USH1, 67 with USH2, and 1 with USH3. Macular edema was observed in 44 of 117 individuals. Olfactory function was tested in 12 individuals and found to be within normal range in all. Conclusion Mutations that lead to USH1 were predominantly identified in MYO7A (75%), whereas all mutations in USH2 cases were identified in USH2A. The MYO7A mutation c.93C>A, p.(Cys31*) accounted for 33% of all USH1 mutations and the USH2A c.2299delG, p.(Glu767Serfs*21) variant accounted for 45% of all USH2 mutations in the Danish cohort.
Collapse
Affiliation(s)
- Shzeena Dad
- Applied Human Genetics Kennedy Center Department of Clinical Genetics Copenhagen University Rigshospitalet Glostrup Denmark
| | - Nanna Dahl Rendtorff
- Applied Human GeneticsKennedy CenterDepartment of Clinical GeneticsCopenhagen UniversityRigshospitaletGlostrupDenmark; Department of Cellular and Molecular MedicineThe Faculty of Health SciencesUniversity of Copenhagen2200CopenhagenDenmark; Department of Otorhinolaryngology, Head & Neck Surgery and AudiologyBispebjerg Hospital/RigshospitaletCopenhagenDenmark
| | - Lisbeth Tranebjærg
- Applied Human GeneticsKennedy CenterDepartment of Clinical GeneticsCopenhagen UniversityRigshospitaletGlostrupDenmark; Department of Cellular and Molecular MedicineThe Faculty of Health SciencesUniversity of Copenhagen2200CopenhagenDenmark; Department of Otorhinolaryngology, Head & Neck Surgery and AudiologyBispebjerg Hospital/RigshospitaletCopenhagenDenmark
| | - Karen Grønskov
- Applied Human GeneticsKennedy CenterDepartment of Clinical GeneticsCopenhagen UniversityRigshospitaletGlostrupDenmark; Department of Cellular and Molecular MedicineThe Faculty of Health SciencesUniversity of Copenhagen2200CopenhagenDenmark
| | - Helena Gásdal Karstensen
- Department of Cellular and Molecular Medicine The Faculty of Health Sciences University of Copenhagen 2200 Copenhagen Denmark
| | - Vigdis Brox
- Department of Medical Genetics University Hospital of North-Norway N-9038 Tromsø Norway
| | - Øivind Nilssen
- Department of Medical GeneticsUniversity Hospital of North-NorwayN-9038TromsøNorway; Department of Clinical Medicine, Medical GeneticsUniversity of TromsøNO-9037TromsøNorway
| | - Anne-Françoise Roux
- Laboratoire de Génétique MoléculaireCHU MontpellierMontpellierF-34000France; U827InsermMontpellierF-34000France
| | - Thomas Rosenberg
- The National Eye ClinicThe Kennedy CenterDepartment of OphthalmologyCopenhagen University Hospital2600RigshospitaletGlostrupDenmark; Institute of Clinical MedicineThe Faculty of Health SciencesUniversity of Copenhagen2200Copenhagen NDenmark
| | - Hanne Jensen
- The National Eye Clinic The Kennedy Center Department of Ophthalmology Copenhagen University Hospital 2600 Rigshospitalet Glostrup Denmark
| | - Lisbeth Birk Møller
- Applied Human GeneticsKennedy CenterDepartment of Clinical GeneticsCopenhagen UniversityRigshospitaletGlostrupDenmark; Department of Cellular and Molecular MedicineThe Faculty of Health SciencesUniversity of Copenhagen2200CopenhagenDenmark; Department of Science Systems and Models (NSM)Roskilde UniversityDK 4000RoskildeDenmark
| |
Collapse
|
63
|
Yao L, Zhang L, Qi LS, Liu W, An J, Wang B, Xue JH, Zhang ZM. The Time Course of Deafness and Retinal Degeneration in a Kunming Mouse Model for Usher Syndrome. PLoS One 2016; 11:e0155619. [PMID: 27186975 PMCID: PMC4871471 DOI: 10.1371/journal.pone.0155619] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 05/02/2016] [Indexed: 01/13/2023] Open
Abstract
Usher syndrome is a group of autosomal recessive diseases characterized by congenital deafness and retinitis pigmentosa. In a mouse model for Usher syndrome, KMush/ush, discovered in our laboratory, we measured the phenotypes, characterized the architecture and morphology of the retina, and quantified the level of expression of pde6b and ush2a between postnatal (P) days 7, and 56. Electroretinograms and auditory brainstem response were used to measure visual and auditory phenotypes. Fundus photography and light microscopy were used to measure the architecture and morphology of the retina. Quantitative real-time PCR was used to measure the expression levels of mRNA. KMush/ush mice had low amplitudes and no obvious waveforms of Electroretinograms after P14 compared with controls. Thresholds of auditory brainstem response in our model were higher than those of controls after P14. By P21, the retinal vessels of KMush/ush mice were attenuated and their optic discs had a waxy pallor. The retinas of KMush/ush mice atrophied and the choroidal vessels were clearly visible. Notably, the architecture of each retinal layer was not different as compared with control mice at P7, while the outer nuclear layer (ONL) and other retinal layers of KMush/ush mice were attenuated significantly between P14 and P21. ONL cells were barely seen in KMush/ush mice at P56. As compared with control mice, the expression of pde6b and ush2a in KMush/ush mice declined significantly after P7. This study is a first step toward characterizing the progression of disease in our mouse model. Future studies using this model may provide insights about the etiology of the disease and the relationships between genotypes and phenotypes providing a valuable resource that could contribute to the foundation of knowledge necessary to develop therapies to prevent the retinal degeneration in patients with Usher Syndrome.
Collapse
Affiliation(s)
- Lu Yao
- Department of Clinical Aerospace Medicine, Fourth Military Medical University, 169 West Changle Road, Xi'an, China
| | - Lei Zhang
- Department of Clinical Aerospace Medicine, Fourth Military Medical University, 169 West Changle Road, Xi'an, China
| | - Lin-Song Qi
- Department of Physical Examination, Air Force General Hospital, 30 Fucheng Road, Beijing, China
| | - Wei Liu
- Medical Experiment Center, Shaanxi University of Chinese Medicine, Shiji Ave., Xi'an-Xianyang New Ecomic Zone, 712046, Xi'an, China
| | - Jing An
- Department of Clinical Aerospace Medicine, Fourth Military Medical University, 169 West Changle Road, Xi'an, China
| | - Bin Wang
- Department of Clinical Aerospace Medicine, Fourth Military Medical University, 169 West Changle Road, Xi'an, China
| | - Jun-Hui Xue
- Department of Clinical Aerospace Medicine, Fourth Military Medical University, 169 West Changle Road, Xi'an, China
- * E-mail: (JHX); (ZMZ)
| | - Zuo-Ming Zhang
- Department of Clinical Aerospace Medicine, Fourth Military Medical University, 169 West Changle Road, Xi'an, China
- * E-mail: (JHX); (ZMZ)
| |
Collapse
|
64
|
Singhvi A, Liu B, Friedman CJ, Fong J, Lu Y, Huang XY, Shaham S. A Glial K/Cl Transporter Controls Neuronal Receptive Ending Shape by Chloride Inhibition of an rGC. Cell 2016; 165:936-48. [PMID: 27062922 PMCID: PMC4860081 DOI: 10.1016/j.cell.2016.03.026] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 12/04/2015] [Accepted: 03/15/2016] [Indexed: 12/17/2022]
Abstract
Neurons receive input from the outside world or from other neurons through neuronal receptive endings (NREs). Glia envelop NREs to create specialized microenvironments; however, glial functions at these sites are poorly understood. Here, we report a molecular mechanism by which glia control NRE shape and associated animal behavior. The C. elegans AMsh glial cell ensheathes the NREs of 12 neurons, including the thermosensory neuron AFD. KCC-3, a K/Cl transporter, localizes specifically to a glial microdomain surrounding AFD receptive ending microvilli, where it regulates K(+) and Cl(-) levels. We find that Cl(-) ions function as direct inhibitors of an NRE-localized receptor-guanylyl-cyclase, GCY-8, which synthesizes cyclic guanosine monophosphate (cGMP). High cGMP mediates the effects of glial KCC-3 on AFD shape by antagonizing the actin regulator WSP-1/NWASP. Components of this pathway are broadly expressed throughout the nervous system, suggesting that ionic regulation of the NRE microenvironment may be a conserved mechanism by which glia control neuron shape and function.
Collapse
Affiliation(s)
- Aakanksha Singhvi
- Laboratory of Developmental Genetics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Bingqian Liu
- Department of Physiology, Weill Medical College, Cornell University, 1300 York Avenue, New York, NY 10065, USA
| | - Christine J Friedman
- Laboratory of Developmental Genetics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Jennifer Fong
- Laboratory of Developmental Genetics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Yun Lu
- Laboratory of Developmental Genetics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Xin-Yun Huang
- Department of Physiology, Weill Medical College, Cornell University, 1300 York Avenue, New York, NY 10065, USA
| | - Shai Shaham
- Laboratory of Developmental Genetics, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
65
|
Dinculescu A, Stupay RM, Deng WT, Dyka FM, Min SH, Boye SL, Chiodo VA, Abrahan CE, Zhu P, Li Q, Strettoi E, Novelli E, Nagel-Wolfrum K, Wolfrum U, Smith WC, Hauswirth WW. AAV-Mediated Clarin-1 Expression in the Mouse Retina: Implications for USH3A Gene Therapy. PLoS One 2016; 11:e0148874. [PMID: 26881841 PMCID: PMC4755610 DOI: 10.1371/journal.pone.0148874] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Accepted: 01/23/2016] [Indexed: 02/07/2023] Open
Abstract
Usher syndrome type III (USH3A) is an autosomal recessive disorder caused by mutations in clarin-1 (CLRN1) gene, leading to progressive retinal degeneration and sensorineural deafness. Efforts to develop therapies for preventing photoreceptor cell loss are hampered by the lack of a retinal phenotype in the existing USH3 mouse models and by conflicting reports regarding the endogenous retinal localization of clarin-1, a transmembrane protein of unknown function. In this study, we used an AAV-based approach to express CLRN1 in the mouse retina in order to determine the pattern of its subcellular localization in different cell types. We found that all major classes of retinal cells express AAV-delivered CLRN1 driven by the ubiquitous, constitutive small chicken β-actin promoter, which has important implications for the design of future USH3 gene therapy studies. Within photoreceptor cells, AAV-expressed CLRN1 is mainly localized at the inner segment region and outer plexiform layer, similar to the endogenous expression of other usher proteins. Subretinal delivery using a full strength viral titer led to significant loss of retinal function as evidenced by ERG analysis, suggesting that there is a critical limit for CLRN1 expression in photoreceptor cells. Taken together, these results suggest that CLRN1 expression is potentially supported by a variety of retinal cells, and the right combination of AAV vector dose, promoter, and delivery method needs to be selected to develop safe therapies for USH3 disorder.
Collapse
Affiliation(s)
- Astra Dinculescu
- Ophthalmology, University of Florida, Gainesville, FL, United States of America
- * E-mail:
| | - Rachel M. Stupay
- Ophthalmology, University of Florida, Gainesville, FL, United States of America
| | - Wen-Tao Deng
- Ophthalmology, University of Florida, Gainesville, FL, United States of America
| | - Frank M. Dyka
- Ophthalmology, University of Florida, Gainesville, FL, United States of America
| | - Seok-Hong Min
- Ophthalmology, University of Florida, Gainesville, FL, United States of America
| | - Sanford L. Boye
- Ophthalmology, University of Florida, Gainesville, FL, United States of America
| | - Vince A. Chiodo
- Ophthalmology, University of Florida, Gainesville, FL, United States of America
| | - Carolina E. Abrahan
- Ophthalmology, University of Florida, Gainesville, FL, United States of America
| | - Ping Zhu
- Ophthalmology, University of Florida, Gainesville, FL, United States of America
| | - Qiuhong Li
- Ophthalmology, University of Florida, Gainesville, FL, United States of America
| | | | | | - Kerstin Nagel-Wolfrum
- Cell and Matrix Biology, Institute of Zoology, Johannes Gutenberg-University of Mainz, Mainz, Germany
| | - Uwe Wolfrum
- Cell and Matrix Biology, Institute of Zoology, Johannes Gutenberg-University of Mainz, Mainz, Germany
| | - W. Clay Smith
- Ophthalmology, University of Florida, Gainesville, FL, United States of America
| | | |
Collapse
|
66
|
Abstract
Vertigo and dizziness of at least moderate severity occur in >5% of school-aged children and cause considerable restrictions in participation in school and leisure activity. More than 50% of dizzy children also have headache. Vestibular migraine and benign paroxysmal vertigo as a migraine precursor are the most common diagnoses in dizziness clinics for children and adolescents. They account for 30-60% of diagnoses. Other common causes are somatoform, orthostatic, or posttraumatic dizziness. All other disorders that are known to cause vertigo and dizziness in adults also occur in children, but incidence rates are usually lower. The vestibular and balance systems are largely developed after 1 year of age. Therefore, clinical and laboratory testing is reliable. Brain magnetic resonance imaging to exclude severe conditions, such as a brainstem tumor, is necessary only if clinical - in particular, ocular motor - testing is abnormal. Most conditions causing vertigo and dizziness in childhood and adolescence are treatable. Nonpharmacologic prophylaxis should always be recommended in vestibular migraine. Behavioral support is useful in somatization. Evidence for the effectiveness of drug therapy is largely based on experience in adult populations. High-quality controlled studies in childhood cohorts are sparse. It is important to make a correct diagnosis early on, as counseling and appropriate treatment may avoid chronic illness.
Collapse
Affiliation(s)
- K Jahn
- Schön Klinik Bad Aibling and German Center for Vertigo and Balance Disorders, Ludwig-Maximilians University of Munich, Munich, Germany.
| |
Collapse
|
67
|
Paracchini S, Diaz R, Stein J. Advances in Dyslexia Genetics—New Insights Into the Role of Brain Asymmetries. ADVANCES IN GENETICS 2016; 96:53-97. [DOI: 10.1016/bs.adgen.2016.08.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
68
|
Sliesoraityte I, Peto T, Mohand-Said S, Sahel JA. Novel grading system for quantification of cystic macular lesions in Usher syndrome. Orphanet J Rare Dis 2015; 10:157. [PMID: 26654877 PMCID: PMC4676164 DOI: 10.1186/s13023-015-0372-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 11/25/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND To evaluate novel grading system used to quantify optical coherence tomography (OCT) scans for cystic macular lesions (CML) in Usher syndrome (USH) patients, focusing on CML associated alterations in MOY7A and USH2A mutations. METHODS Two readers evaluated 76 patients' (mean age 42 ± 14 years) data prospectively uploaded on Eurush database. OCT was used to obtain high quality cross-sectional images through the fovea. The CML was graded as none, mild, moderate or severe, depending on the following features set: subretinal fluid without clearly detectable CML boundaries; central macular thickness; largest diameter of CML; calculated mean of all detectable CML; total number of detectable CML; retinal layers affected by CML. Intra-and inter-grader reproducibility was evaluated. RESULTS CML were observed in 37 % of USH eyes, while 45 % were observed in MYO7A and 29 % in USH2A cases. Of those with CML: 52 % had mild, 22 % had moderate and 26 % had severe changes, respectively. CML were found in following retinal layers: 50 % inner nuclear layer, 44 % outer nuclear layer, 6 % retinal ganglion cell layer. For the inter-grader repeatability analysis, agreements rates for CML were 97 % and kappa statistics was 0.91 (95 % CI 0.83-0.99). For the intra-grader analysis, agreement rates for CML were 98 %, while kappa statistics was 0.96 (95 % CI 0.92-0.99). CONCLUSIONS The novel grading system is a reproducible tool for grading OCT images in USH complicated by CML, and potentially could be used for objective tracking of macular pathology in clinical therapy trials.
Collapse
Affiliation(s)
- Ieva Sliesoraityte
- Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, DHU Sight Restore, INSERM-DHOS CIC 1243, 28 rue de Charenton, 75012, Paris, France.
| | - Tunde Peto
- NIHR Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of Ophthalmology, 162 City Road, ECV1 2PD, London, UK
| | - Saddek Mohand-Said
- Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, DHU Sight Restore, INSERM-DHOS CIC 1243, 28 rue de Charenton, 75012, Paris, France
| | - Jose Alain Sahel
- Centre Hospitalier National d'Ophtalmologie des Quinze-Vingts, DHU Sight Restore, INSERM-DHOS CIC 1243, 28 rue de Charenton, 75012, Paris, France.,INSERM, CNRS, Institut de la Vision, Sorbonne Universités, UPMC Univ Paris 06, 17 rue Moreau, 75012, Paris, France
| |
Collapse
|
69
|
Jansen F, Kalbe B, Scholz P, Mikosz M, Wunderlich KA, Kurtenbach S, Nagel-Wolfrum K, Wolfrum U, Hatt H, Osterloh S. Impact of the Usher syndrome on olfaction. Hum Mol Genet 2015; 25:524-33. [PMID: 26620972 DOI: 10.1093/hmg/ddv490] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 11/24/2015] [Indexed: 12/21/2022] Open
Abstract
Usher syndrome is a genetically and clinically heterogeneous disease in humans, characterized by sensorineural hearing loss, retinitis pigmentosa and vestibular dysfunction. This disease is caused by mutations in genes encoding proteins that form complex networks in different cellular compartments. Currently, it remains unclear whether the Usher proteins also form networks within the olfactory epithelium (OE). Here, we describe Usher gene expression at the mRNA and protein level in the OE of mice and showed interactions between these proteins and olfactory signaling proteins. Additionally, we analyzed the odor sensitivity of different Usher syndrome mouse models using electro-olfactogram recordings and monitored significant changes in the odor detection capabilities in mice expressing mutant Usher proteins. Furthermore, we observed changes in the expression of signaling proteins that might compensate for the Usher protein deficiency. In summary, this study provides novel insights into the presence and purpose of the Usher proteins in olfactory signal transduction.
Collapse
Affiliation(s)
- Fabian Jansen
- Cell Physiology, Faculty for Biology and Biotechnology, Ruhr-University Bochum, 44801 Bochum, Germany and
| | - Benjamin Kalbe
- Cell Physiology, Faculty for Biology and Biotechnology, Ruhr-University Bochum, 44801 Bochum, Germany and
| | - Paul Scholz
- Cell Physiology, Faculty for Biology and Biotechnology, Ruhr-University Bochum, 44801 Bochum, Germany and
| | - Marta Mikosz
- Cell and Matrix Biology, Institute of Zoology, Johannes Gutenberg-University, 55099 Mainz, Germany
| | - Kirsten A Wunderlich
- Cell and Matrix Biology, Institute of Zoology, Johannes Gutenberg-University, 55099 Mainz, Germany
| | - Stefan Kurtenbach
- Cell Physiology, Faculty for Biology and Biotechnology, Ruhr-University Bochum, 44801 Bochum, Germany and
| | - Kerstin Nagel-Wolfrum
- Cell and Matrix Biology, Institute of Zoology, Johannes Gutenberg-University, 55099 Mainz, Germany
| | - Uwe Wolfrum
- Cell and Matrix Biology, Institute of Zoology, Johannes Gutenberg-University, 55099 Mainz, Germany
| | - Hanns Hatt
- Cell Physiology, Faculty for Biology and Biotechnology, Ruhr-University Bochum, 44801 Bochum, Germany and
| | - Sabrina Osterloh
- Cell Physiology, Faculty for Biology and Biotechnology, Ruhr-University Bochum, 44801 Bochum, Germany and
| |
Collapse
|
70
|
Bales KL, Gross AK. Aberrant protein trafficking in retinal degenerations: The initial phase of retinal remodeling. Exp Eye Res 2015; 150:71-80. [PMID: 26632497 DOI: 10.1016/j.exer.2015.11.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 11/04/2015] [Accepted: 11/09/2015] [Indexed: 12/18/2022]
Abstract
Retinal trafficking proteins are involved in molecular assemblies that govern protein transport, orchestrate cellular events involved in cilia formation, regulate signal transduction, autophagy and endocytic trafficking, all of which if not properly controlled initiate retinal degeneration. Improper function and or trafficking of these proteins and molecular networks they are involved in cause a detrimental cascade of neural retinal remodeling due to cell death, resulting as devastating blinding diseases. A universal finding in retinal degenerative diseases is the profound detection of retinal remodeling, occurring as a phased modification of neural retinal function and structure, which begins at the molecular level. Retinal remodeling instigated by aberrant trafficking of proteins encompasses many forms of retinal degenerations, such as the diverse forms of retinitis pigmentosa (RP) and disorders that resemble RP through mutations in the rhodopsin gene, retinal ciliopathies, and some forms of glaucoma and age-related macular degeneration (AMD). As a large majority of genes associated with these different retinopathies are overlapping, it is imperative to understand their underlying molecular mechanisms. This review will discuss some of the most recent discoveries in vertebrate retinal remodeling and retinal degenerations caused by protein mistrafficking.
Collapse
Affiliation(s)
- Katie L Bales
- University of Alabama at Birmingham, Birmingham, AL, United States
| | - Alecia K Gross
- University of Alabama at Birmingham, Birmingham, AL, United States.
| |
Collapse
|
71
|
Dona M, Bachmann-Gagescu R, Texier Y, Toedt G, Hetterschijt L, Tonnaer EL, Peters TA, van Beersum SEC, Bergboer JGM, Horn N, de Vrieze E, Slijkerman RWN, van Reeuwijk J, Flik G, Keunen JE, Ueffing M, Gibson TJ, Roepman R, Boldt K, Kremer H, van Wijk E. NINL and DZANK1 Co-function in Vesicle Transport and Are Essential for Photoreceptor Development in Zebrafish. PLoS Genet 2015; 11:e1005574. [PMID: 26485514 PMCID: PMC4617706 DOI: 10.1371/journal.pgen.1005574] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 09/16/2015] [Indexed: 12/04/2022] Open
Abstract
Ciliopathies are Mendelian disorders caused by dysfunction of cilia, ubiquitous organelles involved in fluid propulsion (motile cilia) or signal transduction (primary cilia). Retinal dystrophy is a common phenotypic characteristic of ciliopathies since photoreceptor outer segments are specialized primary cilia. These ciliary structures heavily rely on intracellular minus-end directed transport of cargo, mediated at least in part by the cytoplasmic dynein 1 motor complex, for their formation, maintenance and function. Ninein-like protein (NINL) is known to associate with this motor complex and is an important interaction partner of the ciliopathy-associated proteins lebercilin, USH2A and CC2D2A. Here, we scrutinize the function of NINL with combined proteomic and zebrafish in vivo approaches. We identify Double Zinc Ribbon and Ankyrin Repeat domains 1 (DZANK1) as a novel interaction partner of NINL and show that loss of Ninl, Dzank1 or both synergistically leads to dysmorphic photoreceptor outer segments, accumulation of trans-Golgi-derived vesicles and mislocalization of Rhodopsin and Ush2a in zebrafish. In addition, retrograde melanosome transport is severely impaired in zebrafish lacking Ninl or Dzank1. We further demonstrate that NINL and DZANK1 are essential for intracellular dynein-based transport by associating with complementary subunits of the cytoplasmic dynein 1 motor complex, thus shedding light on the structure and stoichiometry of this important motor complex. Altogether, our results support a model in which the NINL-DZANK1 protein module is involved in the proper assembly and folding of the cytoplasmic dynein 1 motor complex in photoreceptor cells, a process essential for outer segment formation and function. The cytoplasmic dynein 1 motor complex is known to be essential for photoreceptor outer segment formation and function. NINL, an important interaction partner of three ciliopathy-associated proteins (lebercilin, USH2A and CC2D2A), was previously shown to associate with this motor complex. In this work, we scrutinize the role of NINL using a combination of affinity proteomics and zebrafish studies, in order to gain insight into the pathogenic mechanisms underlying these three associated hereditary disorders. We identify DZANK1 as an important interaction partner of NINL and show that loss of Ninl, Dzank1, or a combination of both synergistically results in impaired transport of trans Golgi-derived vesicles and, as a consequence, defective photoreceptor outer segment formation. Using affinity proteomics, we demonstrate that NINL and DZANK1 associate with complementary subunits of the cytoplasmic dynein 1 complex. Our results support a model in which the NINL-DZANK1 protein module is essential for the proper assembly and folding of the cytoplasmic dynein 1 motor complex, shedding light on the structure and stoichiometry of this important motor complex.
Collapse
Affiliation(s)
- Margo Dona
- Department of Otorhinolaryngology, Radboud University Medical Centre, Nijmegen, the Netherlands
- Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Ruxandra Bachmann-Gagescu
- Institute of Molecular Life Sciences, University of Zurich, Zürich, Switzerland
- Institute of Medical Genetics, University of Zurich, Zürich, Switzerland
| | - Yves Texier
- Division of Experimental Ophthalmology, and Medical Proteome Center, Centre for Ophthalmology, Eberhard Karls University Tuebingen, Tübingen, Germany
| | - Grischa Toedt
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Lisette Hetterschijt
- Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, Nijmegen, the Netherlands
- Department of Human Genetics, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Edith L. Tonnaer
- Department of Otorhinolaryngology, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Theo A. Peters
- Department of Otorhinolaryngology, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Sylvia E. C. van Beersum
- Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, Nijmegen, the Netherlands
- Department of Human Genetics, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Judith G. M. Bergboer
- Department of Human Genetics, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Nicola Horn
- Division of Experimental Ophthalmology, and Medical Proteome Center, Centre for Ophthalmology, Eberhard Karls University Tuebingen, Tübingen, Germany
| | - Erik de Vrieze
- Department of Otorhinolaryngology, Radboud University Medical Centre, Nijmegen, the Netherlands
- Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Ralph W. N. Slijkerman
- Department of Otorhinolaryngology, Radboud University Medical Centre, Nijmegen, the Netherlands
- Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Jeroen van Reeuwijk
- Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, Nijmegen, the Netherlands
- Department of Human Genetics, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Gert Flik
- Department of Organismal Animal Physiology, Institute for Water and Wetland Research, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Jan E. Keunen
- Department of Ophthalmology, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Marius Ueffing
- Division of Experimental Ophthalmology, and Medical Proteome Center, Centre for Ophthalmology, Eberhard Karls University Tuebingen, Tübingen, Germany
| | - Toby J. Gibson
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Heidelberg, Germany
| | - Ronald Roepman
- Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, Nijmegen, the Netherlands
- Department of Human Genetics, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Karsten Boldt
- Division of Experimental Ophthalmology, and Medical Proteome Center, Centre for Ophthalmology, Eberhard Karls University Tuebingen, Tübingen, Germany
| | - Hannie Kremer
- Department of Otorhinolaryngology, Radboud University Medical Centre, Nijmegen, the Netherlands
- Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, Nijmegen, the Netherlands
- Department of Human Genetics, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Erwin van Wijk
- Department of Otorhinolaryngology, Radboud University Medical Centre, Nijmegen, the Netherlands
- Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, Nijmegen, the Netherlands
- * E-mail:
| |
Collapse
|
72
|
Abstract
Hearing loss (HL) is one of the most common birth defects in developed countries and is a diverse pathologic condition with different classifications. One of these is based on the association with other clinical features, defined as syndromic hearing loss (SHL). Determining the cause of the HL in these patients is extremely beneficial as it enables a personalized approach to caring for the individual. Early screening can further aid in optimal rehabilitation for a child's development and growth. The advancement of high-throughput sequencing technology is facilitating rapid and low-cost diagnostics for patients with SHL.
Collapse
Affiliation(s)
- Tal Koffler
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Kathy Ushakov
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Karen B Avraham
- Department of Human Molecular Genetics and Biochemistry, Sackler Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 6997801, Israel.
| |
Collapse
|
73
|
Bachmann-Gagescu R, Dona M, Hetterschijt L, Tonnaer E, Peters T, de Vrieze E, Mans DA, van Beersum SEC, Phelps IG, Arts HH, Keunen JE, Ueffing M, Roepman R, Boldt K, Doherty D, Moens CB, Neuhauss SCF, Kremer H, van Wijk E. The Ciliopathy Protein CC2D2A Associates with NINL and Functions in RAB8-MICAL3-Regulated Vesicle Trafficking. PLoS Genet 2015; 11:e1005575. [PMID: 26485645 PMCID: PMC4617701 DOI: 10.1371/journal.pgen.1005575] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 09/16/2015] [Indexed: 12/16/2022] Open
Abstract
Ciliopathies are a group of human disorders caused by dysfunction of primary cilia, ubiquitous microtubule-based organelles involved in transduction of extra-cellular signals to the cell. This function requires the concentration of receptors and channels in the ciliary membrane, which is achieved by complex trafficking mechanisms, in part controlled by the small GTPase RAB8, and by sorting at the transition zone located at the entrance of the ciliary compartment. Mutations in the transition zone gene CC2D2A cause the related Joubert and Meckel syndromes, two typical ciliopathies characterized by central nervous system malformations, and result in loss of ciliary localization of multiple proteins in various models. The precise mechanisms by which CC2D2A and other transition zone proteins control protein entrance into the cilium and how they are linked to vesicular trafficking of incoming cargo remain largely unknown. In this work, we identify the centrosomal protein NINL as a physical interaction partner of CC2D2A. NINL partially co-localizes with CC2D2A at the base of cilia and ninl knockdown in zebrafish leads to photoreceptor outer segment loss, mislocalization of opsins and vesicle accumulation, similar to cc2d2a-/- phenotypes. Moreover, partial ninl knockdown in cc2d2a-/- embryos enhances the retinal phenotype of the mutants, indicating a genetic interaction in vivo, for which an illustration is found in patients from a Joubert Syndrome cohort. Similar to zebrafish cc2d2a mutants, ninl morphants display altered Rab8a localization. Further exploration of the NINL-associated interactome identifies MICAL3, a protein known to interact with Rab8 and to play an important role in vesicle docking and fusion. Together, these data support a model where CC2D2A associates with NINL to provide a docking point for cilia-directed cargo vesicles, suggesting a mechanism by which transition zone proteins can control the protein content of the ciliary compartment.
Collapse
Affiliation(s)
- Ruxandra Bachmann-Gagescu
- Institute for Molecular Life Sciences, University of Zurich, Zurich, Switzerland
- Institute of Medical Genetics, University of Zurich, Zurich, Switzerland
| | - Margo Dona
- Department of Otorhinolaryngology, Radboud University Medical Centre, Nijmegen, the Netherlands
- Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, the Netherlands
| | - Lisette Hetterschijt
- Department of Otorhinolaryngology, Radboud University Medical Centre, Nijmegen, the Netherlands
- Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, the Netherlands
| | - Edith Tonnaer
- Department of Otorhinolaryngology, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Theo Peters
- Department of Otorhinolaryngology, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Erik de Vrieze
- Department of Otorhinolaryngology, Radboud University Medical Centre, Nijmegen, the Netherlands
- Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, the Netherlands
| | - Dorus A. Mans
- Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, the Netherlands
- Department of Human Genetics, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Sylvia E. C. van Beersum
- Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, the Netherlands
- Department of Human Genetics, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Ian G. Phelps
- Department of Pediatrics, University of Washington, Seattle, Washington, United States of America
| | - Heleen H. Arts
- Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, the Netherlands
- Department of Human Genetics, Radboud University Medical Centre, Nijmegen, the Netherlands
- Department of Biochemistry, University of Western Ontario, London, Ontario, Canada
| | - Jan E. Keunen
- Department of Ophthalmology, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Marius Ueffing
- Division of Experimental Ophthalmology and Medical Proteome Center, Centre for Ophthalmology, Eberhard Karls University Tuebingen, Germany
| | - Ronald Roepman
- Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, the Netherlands
- Department of Human Genetics, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Karsten Boldt
- Division of Experimental Ophthalmology and Medical Proteome Center, Centre for Ophthalmology, Eberhard Karls University Tuebingen, Germany
| | - Dan Doherty
- Department of Pediatrics, University of Washington, Seattle, Washington, United States of America
| | - Cecilia B. Moens
- Fred Hutchinson Cancer Research Center, Seattle, Washington, United States of America
| | | | - Hannie Kremer
- Department of Otorhinolaryngology, Radboud University Medical Centre, Nijmegen, the Netherlands
- Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, the Netherlands
- Department of Human Genetics, Radboud University Medical Centre, Nijmegen, the Netherlands
| | - Erwin van Wijk
- Department of Otorhinolaryngology, Radboud University Medical Centre, Nijmegen, the Netherlands
- Radboud Institute for Molecular Life Sciences, Radboud University Nijmegen, the Netherlands
| |
Collapse
|
74
|
Falk N, Lösl M, Schröder N, Gießl A. Specialized Cilia in Mammalian Sensory Systems. Cells 2015; 4:500-19. [PMID: 26378583 PMCID: PMC4588048 DOI: 10.3390/cells4030500] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 08/04/2015] [Accepted: 09/09/2015] [Indexed: 02/01/2023] Open
Abstract
Cilia and flagella are highly conserved and important microtubule-based organelles that project from the surface of eukaryotic cells and act as antennae to sense extracellular signals. Moreover, cilia have emerged as key players in numerous physiological, developmental, and sensory processes such as hearing, olfaction, and photoreception. Genetic defects in ciliary proteins responsible for cilia formation, maintenance, or function underlie a wide array of human diseases like deafness, anosmia, and retinal degeneration in sensory systems. Impairment of more than one sensory organ results in numerous syndromic ciliary disorders like the autosomal recessive genetic diseases Bardet-Biedl and Usher syndrome. Here we describe the structure and distinct functional roles of cilia in sensory organs like the inner ear, the olfactory epithelium, and the retina of the mouse. The spectrum of ciliary function in fundamental cellular processes highlights the importance of elucidating ciliopathy-related proteins in order to find novel potential therapies.
Collapse
Affiliation(s)
- Nathalie Falk
- Department of Biology, Animal Physiology, University of Erlangen-Nuremberg, 91058 Erlangen, Germany.
| | - Marlene Lösl
- Department of Biology, Animal Physiology, University of Erlangen-Nuremberg, 91058 Erlangen, Germany.
| | - Nadja Schröder
- Department of Biology, Animal Physiology, University of Erlangen-Nuremberg, 91058 Erlangen, Germany.
| | - Andreas Gießl
- Department of Biology, Animal Physiology, University of Erlangen-Nuremberg, 91058 Erlangen, Germany.
| |
Collapse
|
75
|
Megaw RD, Soares DC, Wright AF. RPGR: Its role in photoreceptor physiology, human disease, and future therapies. Exp Eye Res 2015; 138:32-41. [PMID: 26093275 PMCID: PMC4553903 DOI: 10.1016/j.exer.2015.06.007] [Citation(s) in RCA: 92] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 06/03/2015] [Accepted: 06/04/2015] [Indexed: 12/21/2022]
Abstract
Mammalian photoreceptors contain specialised connecting cilia that connect the inner (IS) to the outer segments (OS). Dysfunction of the connecting cilia due to mutations in ciliary proteins are a common cause of the inherited retinal dystrophy retinitis pigmentosa (RP). Mutations affecting the Retinitis Pigmentosa GTPase Regulator (RPGR) protein is one such cause, affecting 10-20% of all people with RP and the majority of those with X-linked RP. RPGR is located in photoreceptor connecting cilia. It interacts with a wide variety of ciliary proteins, but its exact function is unknown. Recently, there have been important advances both in our understanding of RPGR function and towards the development of a therapy. This review summarises the existing literature on human RPGR function and dysfunction, and suggests that RPGR plays a role in the function of the ciliary gate, which controls access of both membrane and soluble proteins to the photoreceptor outer segment. We discuss key models used to investigate and treat RPGR disease and suggest that gene augmentation therapy offers a realistic therapeutic approach, although important questions still remain to be answered, while cell replacement therapy based on retinal progenitor cells represents a more distant prospect.
Collapse
Affiliation(s)
- Roly D Megaw
- Scottish Centre for Regenerative Medicine, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, United Kingdom.
| | - Dinesh C Soares
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom.
| | - Alan F Wright
- Medical Research Council Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, United Kingdom.
| |
Collapse
|
76
|
Abstract
Despite remarkable progress in the identification of mutations that drive genetic disorders, progress in understanding the effect of genetic background on the penetrance and expressivity of causal alleles has been modest, in part because of the methodological challenges in identifying genetic modifiers. Nonetheless, the progressive discovery of modifier alleles has improved both our interpretative ability and our analytical tools to dissect such phenomena. In this review, we analyze the genetic properties and behaviors of modifiers as derived from studies in patient populations and model organisms and we highlight conceptual and technological tools used to overcome some of the challenges inherent in modifier mapping and cloning. Finally, we discuss how the identification of these modifiers has facilitated the elucidation of biological pathways and holds the potential to improve the clinical predictive value of primary causal mutations and to develop novel drug targets.
Collapse
Affiliation(s)
- Maria Kousi
- Center for Human Disease Modeling, Duke University, Durham, North Carolina 27710
| | - Nicholas Katsanis
- Center for Human Disease Modeling, Duke University, Durham, North Carolina 27710
| |
Collapse
|
77
|
The PDZ-domain protein Whirlin facilitates mechanosensory signaling in mammalian proprioceptors. J Neurosci 2015; 35:3073-84. [PMID: 25698744 DOI: 10.1523/jneurosci.3699-14.2015] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Mechanoreception is an essential feature of many sensory modalities. Nevertheless, the mechanisms that govern the conversion of a mechanical force to distinct patterns of action potentials remain poorly understood. Proprioceptive mechanoreceptors reside in skeletal muscle and inform the nervous system of the position of body and limbs in space. We show here that Whirlin/Deafness autosomal recessive 31 (DFNB31), a PDZ-scaffold protein involved in vestibular and auditory hair cell transduction, is also expressed by proprioceptive sensory neurons (pSNs) in dorsal root ganglia in mice. Whirlin localizes to the peripheral sensory endings of pSNs and facilitates pSN afferent firing in response to muscle stretch. The requirement of Whirlin in both proprioceptors and hair cells suggests that accessory mechanosensory signaling molecules define common features of mechanoreceptive processing across sensory systems.
Collapse
|
78
|
Discovery of molecular markers to discriminate corneal endothelial cells in the human body. PLoS One 2015; 10:e0117581. [PMID: 25807145 PMCID: PMC4373821 DOI: 10.1371/journal.pone.0117581] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 12/29/2014] [Indexed: 12/13/2022] Open
Abstract
The corneal endothelium is a monolayer of hexagonal corneal endothelial cells (CECs) on the inner surface of the cornea. CECs are critical in maintaining corneal transparency through their barrier and pump functions. CECs in vivo have a limited capacity in proliferation, and loss of a significant number of CECs results in corneal edema called bullous keratopathy which can lead to severe visual loss. Corneal transplantation is the most effective method to treat corneal endothelial dysfunction, where it suffers from donor shortage. Therefore, regeneration of CECs from other cell types attracts increasing interests, and specific markers of CECs are crucial to identify actual CECs. However, the currently used markers are far from satisfactory because of their non-specific expression in other cell types. Here, we explored molecular markers to discriminate CECs from other cell types in the human body by integrating the published RNA-seq data of CECs and the FANTOM5 atlas representing diverse range of cell types based on expression patterns. We identified five genes, CLRN1, MRGPRX3, HTR1D, GRIP1 and ZP4 as novel markers of CECs, and the specificities of these genes were successfully confirmed by independent experiments at both the RNA and protein levels. Notably none of them have been documented in the context of CEC function. These markers could be useful for the purification of actual CECs, and also available for the evaluation of the products derived from other cell types. Our results demonstrate an effective approach to identify molecular markers for CECs and open the door for the regeneration of CECs in vitro.
Collapse
|
79
|
Rigo F, Seth PP, Bennett CF. Antisense oligonucleotide-based therapies for diseases caused by pre-mRNA processing defects. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2014; 825:303-52. [PMID: 25201110 DOI: 10.1007/978-1-4939-1221-6_9] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Before a messenger RNA (mRNA) is translated into a protein in the cytoplasm, its pre-mRNA precursor is extensively processed through capping, splicing and polyadenylation in the nucleus. Defects in the processing of pre-mRNAs due to mutations in RNA sequences often cause disease. Traditional small molecules or protein-based therapeutics are not well suited for correcting processing defects by targeting RNA. However, antisense oligonucleotides (ASOs) designed to bind RNA by Watson-Crick base pairing can target most RNA transcripts and have emerged as the ideal therapeutic agents for diseases that are caused by pre-mRNA processing defects. Here we review the diverse ASO-based mechanisms that can be exploited to modulate the expression of RNA. We also discuss how advancements in medicinal chemistry and a deeper understanding of the pharmacokinetic and toxicological properties of ASOs have enabled their use as therapeutic agents. We end by describing how ASOs have been used successfully to treat various pre-mRNA processing diseases in animal models.
Collapse
Affiliation(s)
- Frank Rigo
- Isis Pharmaceuticals, 2855 Gazelle Court, Carlsbad, CA, USA,
| | | | | |
Collapse
|
80
|
Mathur P, Yang J. Usher syndrome: Hearing loss, retinal degeneration and associated abnormalities. Biochim Biophys Acta Mol Basis Dis 2014; 1852:406-20. [PMID: 25481835 DOI: 10.1016/j.bbadis.2014.11.020] [Citation(s) in RCA: 222] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Revised: 11/25/2014] [Accepted: 11/26/2014] [Indexed: 02/06/2023]
Abstract
Usher syndrome (USH), clinically and genetically heterogeneous, is the leading genetic cause of combined hearing and vision loss. USH is classified into three types, based on the hearing and vestibular symptoms observed in patients. Sixteen loci have been reported to be involved in the occurrence of USH and atypical USH. Among them, twelve have been identified as causative genes and one as a modifier gene. Studies on the proteins encoded by these USH genes suggest that USH proteins interact among one another and function in multiprotein complexes in vivo. Although their exact functions remain enigmatic in the retina, USH proteins are required for the development, maintenance and function of hair bundles, which are the primary mechanosensitive structure of inner ear hair cells. Despite the unavailability of a cure, progress has been made to develop effective treatments for this disease. In this review, we focus on the most recent discoveries in the field with an emphasis on USH genes, protein complexes and functions in various tissues as well as progress toward therapeutic development for USH.
Collapse
Affiliation(s)
- Pranav Mathur
- Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center, University of Utah, Salt Lake City, UT 84132, USA; Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT 84132, USA
| | - Jun Yang
- Department of Ophthalmology and Visual Sciences, John A. Moran Eye Center, University of Utah, Salt Lake City, UT 84132, USA; Department of Neurobiology and Anatomy, University of Utah, Salt Lake City, UT 84132, USA; Department of Otolaryngology Head and Neck Surgery, University of Utah, Salt Lake City, UT 84132, USA.
| |
Collapse
|
81
|
Antoniu SA. Fresh from the designation pipeline: orphan drugs recently designated in the EU (June–July 2014). Expert Opin Orphan Drugs 2014. [DOI: 10.1517/21678707.2014.987123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
82
|
Aparisi MJ, Aller E, Fuster-García C, García-García G, Rodrigo R, Vázquez-Manrique RP, Blanco-Kelly F, Ayuso C, Roux AF, Jaijo T, Millán JM. Targeted next generation sequencing for molecular diagnosis of Usher syndrome. Orphanet J Rare Dis 2014; 9:168. [PMID: 25404053 PMCID: PMC4245769 DOI: 10.1186/s13023-014-0168-7] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 10/27/2014] [Indexed: 11/17/2022] Open
Abstract
Background Usher syndrome is an autosomal recessive disease that associates sensorineural hearing loss, retinitis pigmentosa and, in some cases, vestibular dysfunction. It is clinically and genetically heterogeneous. To date, 10 genes have been associated with the disease, making its molecular diagnosis based on Sanger sequencing, expensive and time-consuming. Consequently, the aim of the present study was to develop a molecular diagnostics method for Usher syndrome, based on targeted next generation sequencing. Methods A custom HaloPlex panel for Illumina platforms was designed to capture all exons of the 10 known causative Usher syndrome genes (MYO7A, USH1C, CDH23, PCDH15, USH1G, CIB2, USH2A, GPR98, DFNB31 and CLRN1), the two Usher syndrome-related genes (HARS and PDZD7) and the two candidate genes VEZT and MYO15A. A cohort of 44 patients suffering from Usher syndrome was selected for this study. This cohort was divided into two groups: a test group of 11 patients with known mutations and another group of 33 patients with unknown mutations. Results Forty USH patients were successfully sequenced, 8 USH patients from the test group and 32 patients from the group composed of USH patients without genetic diagnosis. We were able to detect biallelic mutations in one USH gene in 22 out of 32 USH patients (68.75%) and to identify 79.7% of the expected mutated alleles. Fifty-three different mutations were detected. These mutations included 21 missense, 8 nonsense, 9 frameshifts, 9 intronic mutations and 6 large rearrangements. Conclusions Targeted next generation sequencing allowed us to detect both point mutations and large rearrangements in a single experiment, minimizing the economic cost of the study, increasing the detection ratio of the genetic cause of the disease and improving the genetic diagnosis of Usher syndrome patients.
Collapse
Affiliation(s)
- María J Aparisi
- Grupo de Investigación en Enfermedades Neurosensoriales. Instituto de Investigación Sanitaria IIS-La Fe, Semisótano Escuela de Enfermería, Hospital Universitario La Fe, Avda. Campanar, 21, 46009, Valencia, Spain. .,CIBER de Enfermedades Raras (CIBERER), Valencia, Spain.
| | - Elena Aller
- Grupo de Investigación en Enfermedades Neurosensoriales. Instituto de Investigación Sanitaria IIS-La Fe, Semisótano Escuela de Enfermería, Hospital Universitario La Fe, Avda. Campanar, 21, 46009, Valencia, Spain. .,CIBER de Enfermedades Raras (CIBERER), Valencia, Spain.
| | - Carla Fuster-García
- Grupo de Investigación en Enfermedades Neurosensoriales. Instituto de Investigación Sanitaria IIS-La Fe, Semisótano Escuela de Enfermería, Hospital Universitario La Fe, Avda. Campanar, 21, 46009, Valencia, Spain.
| | - Gema García-García
- Grupo de Investigación en Enfermedades Neurosensoriales. Instituto de Investigación Sanitaria IIS-La Fe, Semisótano Escuela de Enfermería, Hospital Universitario La Fe, Avda. Campanar, 21, 46009, Valencia, Spain. .,CHU Montpellier, Laboratoire de Génétique Moléculaire and Inserm, U827, Montpellier, F-34000, France.
| | - Regina Rodrigo
- Grupo de Investigación en Enfermedades Neurosensoriales. Instituto de Investigación Sanitaria IIS-La Fe, Semisótano Escuela de Enfermería, Hospital Universitario La Fe, Avda. Campanar, 21, 46009, Valencia, Spain. .,CIBER de Enfermedades Raras (CIBERER), Valencia, Spain.
| | - Rafael P Vázquez-Manrique
- Grupo de Investigación en Enfermedades Neurosensoriales. Instituto de Investigación Sanitaria IIS-La Fe, Semisótano Escuela de Enfermería, Hospital Universitario La Fe, Avda. Campanar, 21, 46009, Valencia, Spain. .,CIBER de Enfermedades Raras (CIBERER), Valencia, Spain.
| | - Fiona Blanco-Kelly
- CIBER de Enfermedades Raras (CIBERER), Valencia, Spain. .,Servicio de Genética, IIS - Fundación Jiménez Díaz, University Hospital, UAM, Madrid, Spain.
| | - Carmen Ayuso
- CIBER de Enfermedades Raras (CIBERER), Valencia, Spain. .,Servicio de Genética, IIS - Fundación Jiménez Díaz, University Hospital, UAM, Madrid, Spain.
| | - Anne-Françoise Roux
- CHU Montpellier, Laboratoire de Génétique Moléculaire and Inserm, U827, Montpellier, F-34000, France.
| | - Teresa Jaijo
- Grupo de Investigación en Enfermedades Neurosensoriales. Instituto de Investigación Sanitaria IIS-La Fe, Semisótano Escuela de Enfermería, Hospital Universitario La Fe, Avda. Campanar, 21, 46009, Valencia, Spain. .,CIBER de Enfermedades Raras (CIBERER), Valencia, Spain.
| | - José M Millán
- Grupo de Investigación en Enfermedades Neurosensoriales. Instituto de Investigación Sanitaria IIS-La Fe, Semisótano Escuela de Enfermería, Hospital Universitario La Fe, Avda. Campanar, 21, 46009, Valencia, Spain. .,CIBER de Enfermedades Raras (CIBERER), Valencia, Spain. .,Unidad de Genética y Diagnóstico Prenatal, Hospital Universitario y Politécnico La Fe, Valencia, Spain.
| |
Collapse
|
83
|
Zhang X, Liu Y, Zhang L, Yang Z, Shao Y, Jiang C, Wang Q, Fang X, Xu Y, Wang H, Zhang S, Zhu Y. Genetic variations in protocadherin 15 and their interactions with noise exposure associated with noise-induced hearing loss in Chinese population. ENVIRONMENTAL RESEARCH 2014; 135:247-252. [PMID: 25462672 DOI: 10.1016/j.envres.2014.09.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2014] [Revised: 09/23/2014] [Accepted: 09/25/2014] [Indexed: 06/04/2023]
Abstract
OBJECTIVES The purpose of this study was to examine the associations between genetic variations in the Protocadherin 15 gene (PCDH15) and the risk to noise induced hearing loss (NIHL) in a Chinese population. METHODS A case-control study was conducted with 476 noise-sensitive workers (NIHL) and 475 noise-resistant workers (normal) matched for gender, years of noise exposure, and intensity of noise exposure. 13 tag single-nucleotide polymorphisms in PCDH15 were genotyped using nanofluidic dynamic arrays on the Fluidigm platform. Multiple logistic regression was used to analyze the associations of genetic variations of PCDH15 with NIHL adjusted by age, smoking/drinking status, and cumulative noise exposure and their interactions with noise exposure. RESULTS The allele frequency and genotypes of rs1104085 were significantly associated with the risk of NIHL(P=0.009 and 0.005 respectively ). The subjects carrying variant alleles (CT or CC) of rs11004085 had a decreased the risk for NIHL (adjusted odds ratio=0.587, 95% confidence interval 0.409-0.842) compared with subjects who had the wild-type (TT) homozygotes. The interactions were found between the SNPs of rs1100085, rs10825122, rs1930146, rs2384437, rs4540756, and rs2384375 and noise exposure. CONCLUSIONS Genetic variations of PCDH15 and their interactions with occupational noise exposure are associated with genetic susceptibility to NIHL and modify the risk of noise induced hearing loss.
Collapse
Affiliation(s)
- Xuhui Zhang
- Hangzhou Center for Disease Control and Prevention, Hangzhou 310021, PR China
| | - Yi Liu
- Department of Epidemiology and Biostatistics, Zhejiang University School of Public Health, Hangzhou 310058, Zhejiang, PR China
| | - Lei Zhang
- Hangzhou Center for Disease Control and Prevention, Hangzhou 310021, PR China
| | - Zhangping Yang
- Hangzhou Center for Disease Control and Prevention, Hangzhou 310021, PR China
| | - Yuxian Shao
- Hangzhou Prevention and Treatment for Occupational Diseases, Hangzhou 310014, Zhejiang, PR China
| | - Caixia Jiang
- Hangzhou Center for Disease Control and Prevention, Hangzhou 310021, PR China
| | - Qiang Wang
- Hangzhou Center for Disease Control and Prevention, Hangzhou 310021, PR China
| | - Xinyan Fang
- Yongkang Center for Disease Control and Prevention, Yongkang 321304, PR China
| | - Yuyang Xu
- Hangzhou Center for Disease Control and Prevention, Hangzhou 310021, PR China
| | - Hao Wang
- Yongkang Center for Disease Control and Prevention, Yongkang 321304, PR China
| | - Shuai Zhang
- Department of Pathology, Zhejiang University School of Medicine, Hangzhou 310058, PR China
| | - Yimin Zhu
- Department of Epidemiology and Biostatistics, Zhejiang University School of Public Health, Hangzhou 310058, Zhejiang, PR China.
| |
Collapse
|
84
|
Blanco-Sánchez B, Clément A, Fierro J, Washbourne P, Westerfield M. Complexes of Usher proteins preassemble at the endoplasmic reticulum and are required for trafficking and ER homeostasis. Dis Model Mech 2014; 7:547-59. [PMID: 24626987 PMCID: PMC4007406 DOI: 10.1242/dmm.014068] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Usher syndrome (USH), the leading cause of hereditary combined hearing and vision loss, is characterized by sensorineural deafness and progressive retinal degeneration. Mutations in several different genes produce USH, but the proximal cause of sensory cell death remains mysterious. We adapted a proximity ligation assay to analyze associations among three of the USH proteins, Cdh23, Harmonin and Myo7aa, and the microtubule-based transporter Ift88 in zebrafish inner ear mechanosensory hair cells. We found that the proteins are in close enough proximity to form complexes and that these complexes preassemble at the endoplasmic reticulum (ER). Defects in any one of the three USH proteins disrupt formation and trafficking of the complex and result in diminished levels of the other proteins, generalized trafficking defects and ER stress that triggers apoptosis. ER stress, thus, contributes to sensory hair cell loss and provides a new target to explore for protective therapies for USH.
Collapse
|
85
|
Bauß K, Knapp B, Jores P, Roepman R, Kremer H, Wijk EV, Märker T, Wolfrum U. Phosphorylation of the Usher syndrome 1G protein SANS controls Magi2-mediated endocytosis. Hum Mol Genet 2014; 23:3923-42. [PMID: 24608321 DOI: 10.1093/hmg/ddu104] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The human Usher syndrome (USH) is a complex ciliopathy with at least 12 chromosomal loci assigned to three clinical subtypes, USH1-3. The heterogeneous USH proteins are organized into protein networks. Here, we identified Magi2 (membrane-associated guanylate kinase inverted-2) as a new component of the USH protein interactome, binding to the multifunctional scaffold protein SANS (USH1G). We showed that the SANS-Magi2 complex assembly is regulated by the phosphorylation of an internal PDZ-binding motif in the sterile alpha motif domain of SANS by the protein kinase CK2. We affirmed Magi2's role in receptor-mediated, clathrin-dependent endocytosis and showed that phosphorylated SANS tightly regulates Magi2-mediated endocytosis. Specific depletions by RNAi revealed that SANS and Magi2-mediated endocytosis regulates aspects of ciliogenesis. Furthermore, we demonstrated the localization of the SANS-Magi2 complex in the periciliary membrane complex facing the ciliary pocket of retinal photoreceptor cells in situ. Our data suggest that endocytotic processes may not only contribute to photoreceptor cell homeostasis but also counterbalance the periciliary membrane delivery accompanying the exocytosis processes for the cargo vesicle delivery. In USH1G patients, mutations in SANS eliminate Magi2 binding and thereby deregulate endocytosis, lead to defective ciliary transport modules and ultimately disrupt photoreceptor cell function inducing retinal degeneration.
Collapse
Affiliation(s)
- Katharina Bauß
- Cell and Matrix Biology, Institute of Zoology, Focus Program Translational Neurosciences (FTN), Johannes Gutenberg University of Mainz, 55122 Mainz, Germany
| | - Barbara Knapp
- Cell and Matrix Biology, Institute of Zoology, Focus Program Translational Neurosciences (FTN), Johannes Gutenberg University of Mainz, 55122 Mainz, Germany
| | - Pia Jores
- Cell and Matrix Biology, Institute of Zoology, Focus Program Translational Neurosciences (FTN), Johannes Gutenberg University of Mainz, 55122 Mainz, Germany
| | - Ronald Roepman
- Department of Human Genetics, Institute for Genetic and Metabolic Disease, Nijmegen Centre for Molecular Life Sciences and
| | - Hannie Kremer
- Department of Human Genetics, Department of Otorhinolaryngology, Head and Neck Surgery, Nijmegen Centre for Molecular Life Sciences and Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, 6500 HB, Nijmegen, Netherlands
| | - Erwin V Wijk
- Department of Human Genetics, Department of Otorhinolaryngology, Head and Neck Surgery, Nijmegen Centre for Molecular Life Sciences and Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, 6500 HB, Nijmegen, Netherlands
| | - Tina Märker
- Cell and Matrix Biology, Institute of Zoology, Focus Program Translational Neurosciences (FTN), Johannes Gutenberg University of Mainz, 55122 Mainz, Germany
| | - Uwe Wolfrum
- Cell and Matrix Biology, Institute of Zoology, Focus Program Translational Neurosciences (FTN), Johannes Gutenberg University of Mainz, 55122 Mainz, Germany
| |
Collapse
|
86
|
Tian M, Wang W, Delimont D, Cheung L, Zallocchi M, Cosgrove D, Peng YW. Photoreceptors in whirler mice show defective transducin translocation and are susceptible to short-term light/dark changes-induced degeneration. Exp Eye Res 2014; 118:145-53. [PMID: 24211856 PMCID: PMC4408763 DOI: 10.1016/j.exer.2013.10.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2013] [Revised: 09/26/2013] [Accepted: 10/29/2013] [Indexed: 12/12/2022]
Abstract
Usher syndrome combines congenital hearing loss and retinitis pigmentosa (RP). Mutations in the whirlin gene (DFNB31/WHRN) cause a subtype of Usher syndrome (USH2D). Whirler mice have a defective whirlin gene. They have inner ear defects but usually do not develop retinal degeneration. Here we report that, in whirler mouse photoreceptors, the light-activated rod transducin translocation is delayed and its activation threshold is shifted to a higher level. Rhodopsin mis-localization is observed in rod inner segments. Continuous moderate light exposure can induce significant rod photoreceptor degeneration. Whirler mice reared under a 1500 lux light/dark cycle also develop severe photoreceptor degeneration. Previously, we have reported that shaker1 mice, a USH1B model, show moderate light-induced photoreceptor degeneration with delayed transducin translocation. Here, we further show that, in both whirler and shaker1 mice, short-term moderate light/dark changes can induce rod degeneration as severe as that induced by continuous light exposure. The results from shaker1 and whirler mice suggest that defective transducin translocation may be functionally related to light-induced degeneration, and these two symptoms may be caused by defects in Usher protein function in rods. Furthermore, these results indicate that both Usher syndrome mouse models possess a light-induced retinal phenotype and may share a closely related pathobiological mechanism.
Collapse
Affiliation(s)
- Mei Tian
- Sensory Neuroscience Department, Boys Town National Research Hospital, 555 North 30th St., Omaha, NE 68131, USA; National Institute for Radiological Protection, Chinese Center for Disease Control and Prevention, Beijing 100088, China
| | - Weimin Wang
- Sensory Neuroscience Department, Boys Town National Research Hospital, 555 North 30th St., Omaha, NE 68131, USA
| | - Duane Delimont
- Sensory Neuroscience Department, Boys Town National Research Hospital, 555 North 30th St., Omaha, NE 68131, USA
| | - Linda Cheung
- Sensory Neuroscience Department, Boys Town National Research Hospital, 555 North 30th St., Omaha, NE 68131, USA
| | - Marisa Zallocchi
- Sensory Neuroscience Department, Boys Town National Research Hospital, 555 North 30th St., Omaha, NE 68131, USA
| | - Dominic Cosgrove
- Sensory Neuroscience Department, Boys Town National Research Hospital, 555 North 30th St., Omaha, NE 68131, USA; University of Nebraska Medical Center, 600 S 42nd, Omaha, NE 68198, USA
| | - You-Wei Peng
- Sensory Neuroscience Department, Boys Town National Research Hospital, 555 North 30th St., Omaha, NE 68131, USA.
| |
Collapse
|
87
|
Nongranulomatous anterior uveitis in a patient with Usher syndrome. Saudi J Ophthalmol 2013; 27:295-8. [PMID: 24371428 DOI: 10.1016/j.sjopt.2013.06.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 05/20/2013] [Accepted: 06/01/2013] [Indexed: 11/22/2022] Open
Abstract
A 34-year-old female with Usher syndrome, but no family history of similar illness, presented with complaints of vision reduction, redness, and photophobia. Biomicroscopic examination showed mildly injected conjunctivae bilateral, small, round keratic precipitates; bilateral +2 cells with no flare reaction in the anterior chamber; and bilateral posterior subcapsular cataracts. No associated posterior synechiae, angle neovascularization, or iris changes were detected; normal intraocular pressures were obtained. Fundus examination demonstrated waxy pallor of both optic nerves, marked vasoconstriction in retinal vessels, and retinal bone spicule pigment formation, with a normal macula. Electroretinography confirmed the diagnosis of retinitis pigmentosa, optical coherent tomography was normal and otolaryngology consultation was conducted. To our knowledge, an association between Usher syndrome and bilateral nongranulomatous anterior uveitis has not been previously reported, and our purpose is to report this association.
Collapse
|
88
|
Abstract
The 10 different genes associated with the deaf/blind disorder, Usher syndrome, encode a number of structurally and functionally distinct proteins, most expressed as multiple isoforms/protein variants. Functional characterization of these proteins suggests a role in stereocilia development in cochlear hair cells, likely owing to adhesive interactions in hair bundles. In mature hair cells, homodimers of the Usher cadherins, cadherin 23 and protocadherin 15, interact to form a structural fiber, the tip link, and the linkages that anchor the taller stereocilia's actin cytoskeleton core to the shorter adjacent stereocilia and the elusive mechanotransduction channels, explaining the deafness phenotype when these molecular interactions are perturbed. The conundrum is that photoreceptors lack a synonymous mechanotransduction apparatus, and so a common theory for Usher protein function in the two neurosensory cell types affected in Usher syndrome is lacking. Recent evidence linking photoreceptor cell dysfunction in the shaker 1 mouse model for Usher syndrome to light-induced protein translocation defects, combined with localization of an Usher protein interactome at the periciliary region of the photoreceptors suggests Usher proteins might regulate protein trafficking between the inner and outer segments of photoreceptors. A distinct Usher protein complex is trafficked to the ribbon synapses of hair cells, and synaptic defects have been reported in Usher mutants in both hair cells and photoreceptors. This review aims to clarify what is known about Usher protein function at the synaptic and apical poles of hair cells and photoreceptors and the prospects for identifying a unifying pathobiological mechanism to explain deaf/blindness in Usher syndrome.
Collapse
|
89
|
Quintero OA, Unrath WC, Stevens SM, Manor U, Kachar B, Yengo CM. Myosin 3A kinase activity is regulated by phosphorylation of the kinase domain activation loop. J Biol Chem 2013; 288:37126-37. [PMID: 24214986 DOI: 10.1074/jbc.m113.511014] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Class III myosins are unique members of the myosin superfamily in that they contain both a motor and kinase domain. We have found that motor activity is decreased by autophosphorylation, although little is known about the regulation of the kinase domain. We demonstrate by mass spectrometry that Thr-178 and Thr-184 in the kinase domain activation loop and two threonines in the loop 2 region of the motor domain are autophosphorylated (Thr-908 and Thr-919). The kinase activity of MYO3A 2IQ with the phosphomimic (T184E) or phosphoblock (T184A) mutations demonstrates that kinase activity is reduced 30-fold as a result of the T184A mutation, although the Thr-178 site only had a minor impact on kinase activity. Interestingly, the actin-activated ATPase activity of MYO3A 2IQ is slightly reduced as a result of the T178A and T184A mutations suggesting coupling between motor and kinase domains. Full-length GFP-tagged T184A and T184E MYO3A constructs transfected into COS7 cells do not disrupt the ability of MYO3A to localize to filopodia structures. In addition, we demonstrate that T184E MYO3A reduces filopodia elongation in the presence of espin-1, whereas T184A enhances filopodia elongation in a similar fashion to kinase-dead MYO3A. Our results suggest that as MYO3A accumulates at the tips of actin protrusions, autophosphorylation of Thr-184 enhances kinase activity resulting in phosphorylation of the MYO3A motor and reducing motor activity. The differential regulation of the kinase and motor activities allows for MYO3A to precisely self-regulate its concentration in the actin bundle-based structures of cells.
Collapse
Affiliation(s)
- Omar A Quintero
- From the Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033
| | | | | | | | | | | |
Collapse
|
90
|
Västinsalo H, Jalkanen R, Bergmann C, Neuhaus C, Kleemola L, Jauhola L, Bolz HJ, Sankila EM. Extended mutation spectrum of Usher syndrome in Finland. Acta Ophthalmol 2013; 91:325-34. [PMID: 22681893 DOI: 10.1111/j.1755-3768.2012.02397.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
PURPOSE The Finnish distribution of clinical Usher syndrome (USH) types is 40% USH3, 34% USH1 and 12% USH2. All patients with USH3 carry the founder mutation in clarin 1 (CLRN1), whereas we recently reported three novel myosin VIIA (MYO7A) mutations in two unrelated patients with USH1. This study was carried out to further investigate the USH mutation spectrum in Finnish patients. METHODS We analysed samples from nine unrelated USH patients/families without known mutations and two USH3 families with atypically severe phenotype. The Asper Ophthalmics USH mutation chip was used to screen for known mutations and to evaluate the chip in molecular diagnostics of Finnish patients. RESULTS The chip revealed a heterozygous usherin (USH2A) mutation, p.N346H, in one patient. Sequencing of MYO7A and/or USH2A in three index patients revealed two novel heterozygous mutations, p.R873W in MYO7A and c.14343+2T>C in USH2A. We did not identify definite pathogenic second mutations in the patients, but identified several probably nonpathogenic variations that may modify the disease phenotype. Possible digenism could not be excluded in two families segregating genomic variations in both MYO7A and USH2A, and two families with CLRN1 and USH2A. CONCLUSION We conclude that there is considerable genetic heterogeneity of USH1 and USH2 in Finland, making molecular diagnostics and genetic counselling of patients and families challenging.
Collapse
Affiliation(s)
- Hanna Västinsalo
- The Folkhälsan Institute of Genetics, Biomedicum Helsinki, Helsinki, Finland.
| | | | | | | | | | | | | | | |
Collapse
|
91
|
Vele O, Schrijver I. Inherited hearing loss: molecular genetics and diagnostic testing. ACTA ACUST UNITED AC 2013; 2:231-48. [PMID: 23495655 DOI: 10.1517/17530059.2.3.231] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
BACKGROUND Hearing loss is a clinically and genetically heterogeneous condition with major medical and social consequences. It affects up to 8% of the general population. OBJECTIVE This review recapitulates the principles of auditory physiology and the molecular basis of hearing loss, outlines the main types of non-syndromic and syndromic deafness by mode of inheritance, and provides an overview of current clinically available genetic testing. METHODS This paper reviews the literature on auditory physiology and on genes, associated with hearing loss, for which genetic testing is presently offered. RESULTS/CONCLUSION The advent of molecular diagnostic assays for hereditary hearing loss permits earlier detection of the underlying causes, facilitates appropriate interventions, and is expected to generate the data necessary for more specific genotype-phenotype correlations.
Collapse
Affiliation(s)
- Oana Vele
- Stanford University School of Medicine, Department of Pathology and Pediatrics, L235, 300 Pasteur Drive, Stanford, CA 94305, USA +1 650 724 2403 ; +1 650 724 1567 ;
| | | |
Collapse
|
92
|
Affiliation(s)
- M Amanda Hartman
- Department of Biochemistry, Stanford University, Stanford, CA 94305, USA
| | | |
Collapse
|
93
|
Regulated vesicular trafficking of specific PCDH15 and VLGR1 variants in auditory hair cells. J Neurosci 2013; 32:13841-59. [PMID: 23035094 DOI: 10.1523/jneurosci.1242-12.2012] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Usher syndrome is a genetically heterogeneous disorder characterized by hearing and balance dysfunction and progressive retinitis pigmentosa. Mouse models carrying mutations for the nine Usher-associated genes have splayed stereocilia, and some show delayed maturation of ribbon synapses suggesting these proteins may play different roles in terminal differentiation of auditory hair cells. The presence of the Usher proteins at the basal and apical aspects of the neurosensory epithelia suggests the existence of regulated trafficking through specific transport proteins and routes. Immature mouse cochleae and UB/OC-1 cells were used in this work to address whether specific variants of PCDH15 and VLGR1 are being selectively transported to opposite poles of the hair cells. Confocal colocalization studies between apical and basal vesicular markers and the different PCDH15 and VLGR1 variants along with sucrose density gradients and the use of vesicle trafficking inhibitors show the existence of Usher protein complexes in at least two vesicular subpools. The apically trafficked pool colocalized with the early endosomal vesicle marker, rab5, while the basally trafficked pool associated with membrane microdomains and SNAP25. Moreover, coimmunoprecipitation experiments between SNAP25 and VLGR1 show a physical interaction of these two proteins in organ of Corti and brain. Collectively, these findings establish the existence of a differential vesicular trafficking mechanism for specific Usher protein variants in mouse cochlear hair cells, with the apical variants playing a potential role in endosomal recycling and stereocilia development/maintenance, and the basolateral variants involved in vesicle docking and/or fusion through SNAP25-mediated interactions.
Collapse
|
94
|
Eisenberger T, Slim R, Mansour A, Nauck M, Nürnberg G, Nürnberg P, Decker C, Dafinger C, Ebermann I, Bergmann C, Bolz HJ. Targeted next-generation sequencing identifies a homozygous nonsense mutation in ABHD12, the gene underlying PHARC, in a family clinically diagnosed with Usher syndrome type 3. Orphanet J Rare Dis 2012; 7:59. [PMID: 22938382 PMCID: PMC3518140 DOI: 10.1186/1750-1172-7-59] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Accepted: 08/29/2012] [Indexed: 12/21/2022] Open
Abstract
Background Usher syndrome (USH) is an autosomal recessive genetically heterogeneous disorder with congenital sensorineural hearing impairment and retinitis pigmentosa (RP). We have identified a consanguineous Lebanese family with two affected members displaying progressive hearing loss, RP and cataracts, therefore clinically diagnosed as USH type 3 (USH3). Our study was aimed at the identification of the causative mutation in this USH3-like family. Methods Candidate loci were identified using genomewide SNP-array-based homozygosity mapping followed by targeted enrichment and next-generation sequencing. Results Using a capture array targeting the three identified homozygosity-by-descent regions on chromosomes 1q43-q44, 20p13-p12.2 and 20p11.23-q12, we identified a homozygous nonsense mutation, p.Arg65X, in ABHD12 segregating with the phenotype. Conclusion Mutations of ABHD12, an enzyme hydrolyzing an endocannabinoid lipid transmitter, cause PHARC (polyneuropathy, hearing loss, ataxia, retinitis pigmentosa, and early-onset cataract). After the identification of the ABHD12 mutation in this family, one patient underwent neurological examination which revealed ataxia, but no polyneuropathy. ABHD12 is not known to be related to the USH protein interactome. The phenotype of our patient represents a variant of PHARC, an entity that should be taken into account as differential diagnosis for USH3. Our study demonstrates the potential of comprehensive genetic analysis for improving the clinical diagnosis.
Collapse
Affiliation(s)
- Tobias Eisenberger
- Bioscientia Center for Human Genetics, Konrad Adenauer-Str, 17, Ingelheim 55218, Germany
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
95
|
Ronquillo CC, Bernstein PS, Baehr W. Senior-Løken syndrome: a syndromic form of retinal dystrophy associated with nephronophthisis. Vision Res 2012; 75:88-97. [PMID: 22819833 DOI: 10.1016/j.visres.2012.07.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Revised: 07/06/2012] [Accepted: 07/09/2012] [Indexed: 02/06/2023]
Abstract
Senior-Løken syndrome (SLS) is an autosomal recessive disease characterized by development of a retinitis pigmentosa (RP)- or Leber congenital amaurosis (LCA)-like retinal dystrophy and a medullary cystic kidney disease, nephronophthisis. Mutations in several genes (called nephrocystins) have been shown to cause SLS. The proteins encoded by these genes are localized in the connecting cilium of photoreceptor cells and in the primary cilium of kidney cells. Nephrocystins are thought to have a role in regulating transport of proteins bound to the outer segment/primary cilium; however, the precise molecular mechanisms are largely undetermined. This review will survey the biochemistry, cell biology and existing animal models for each of the nephrocystins as it relates to photoreceptor biology and pathogenesis of retinal degeneration.
Collapse
Affiliation(s)
- C C Ronquillo
- Program in Neuroscience, University of Utah Health Science Center, Salt Lake City, UT 84132, USA
| | | | | |
Collapse
|
96
|
Pang JJ, Lei L, Dai X, Shi W, Liu X, Dinculescu A, McDowell JH. AAV-mediated gene therapy in mouse models of recessive retinal degeneration. Curr Mol Med 2012; 12:316-30. [PMID: 22300136 DOI: 10.2174/156652412799218877] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Revised: 08/23/2011] [Accepted: 10/25/2011] [Indexed: 02/01/2023]
Abstract
In recent years, more and more mutant genes that cause retinal diseases have been detected. At the same time, many naturally occurring mouse models of retinal degeneration have also been found, which show similar changes to human retinal diseases. These, together with improved viral vector quality allow more and more traditionally incurable inherited retinal disorders to become potential candidates for gene therapy. Currently, the most common vehicle to deliver the therapeutic gene into target retinal cells is the adenoassociated viral vector (AAV). Following delivery to the immuno-privileged subretinal space, AAV-vectors can efficiently target both retinal pigment epithelium and photoreceptor cells, the origin of most retinal degenerations. This review focuses on the AAV-based gene therapy in mouse models of recessive retinal degenerations, especially those in which delivery of the correct copy of the wild-type gene has led to significant beneficial effects on visual function, as determined by morphological, biochemical, electroretinographic and behavioral analysis. The past studies in animal models and ongoing successful LCA2 clinical trials, predict a bright future for AAV gene replacement treatment for inherited recessive retinal diseases.
Collapse
Affiliation(s)
- J-J Pang
- Eye Hospital, School of Ophthalmology & Optometry, Wenzhou Medical College, China.
| | | | | | | | | | | | | |
Collapse
|
97
|
Jaworek TJ, Bhatti R, Latief N, Khan SN, Riazuddin S, Ahmed ZM. USH1K, a novel locus for type I Usher syndrome, maps to chromosome 10p11.21-q21.1. J Hum Genet 2012; 57:633-7. [PMID: 22718019 PMCID: PMC3596105 DOI: 10.1038/jhg.2012.79] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
We ascertained two large Pakistani consanguineous families (PKDF231 and PKDF608) segregating profound hearing loss, vestibular dysfunction, and retinitis pigmentosa; the defining features of Usher syndrome type 1 (USH1). To date, seven USH1 loci have been reported. Here, we map a novel locus, USH1K, on chromosome 10p11.21-q21.1. In family PKDF231, we performed a genome-wide linkage screen and found a region of homozygosity shared among the affected individuals at chromosome 10p11.21-q21.1. Meiotic recombination events in family PKDF231 define a critical interval of 11.74 cM (20.20 Mb) bounded by markers D10S1780 (63.83 cM) and D10S546 (75.57 cM). Affected individuals of family PKDF608 were also homozygous for chromosome 10p11.21-q21.1-linked STR markers. Of the 85 genes within the linkage interval, PCDH15, GJD4, FZD4, RET and LRRC18 were sequenced in both families, but no potential pathogenic mutation was identified. The USH1K locus overlaps the non-syndromic deafness locus DFNB33 raising the possibility that the two disorders may be caused by allelic mutations.
Collapse
Affiliation(s)
- Thomas J Jaworek
- Division of Pediatric Ophthalmology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | | | | | | | | | | |
Collapse
|
98
|
Abstract
Retinal photoreceptor degeneration takes many forms. Mutations in rhodopsin genes or disorders of the retinal pigment epithelium, defects in the adenosine triphosphate binding cassette transporter, ABCR gene defects, receptor tyrosine kinase defects, ciliopathies and transport defects, defects in both transducin and arrestin, defects in rod cyclic guanosine 3',5'-monophosphate phosphodiesterase, peripherin defects, defects in metabotropic glutamate receptors, synthetic enzymatic defects, defects in genes associated with signaling, and many more can all result in retinal degenerative disease like retinitis pigmentosa (RP) or RP-like disorders. Age-related macular degeneration (AMD) and AMD-like disorders are possibly due to a constellation of potential gene targets and gene/gene interactions, while other defects result in diabetic retinopathy or glaucoma. However, all of these insults as well as traumatic insults to the retina result in retinal remodeling. Retinal remodeling is a universal finding subsequent to retinal degenerative disease that results in deafferentation of the neural retina from photoreceptor input as downstream neuronal elements respond to loss of input with negative plasticity. This negative plasticity is not passive in the face of photoreceptor degeneration, with a phased revision of retinal structure and function found at the molecular, synaptic, cell, and tissue levels involving all cell classes in the retina, including neurons and glia. Retinal remodeling has direct implications for the rescue of vision loss through bionic or biological approaches, as circuit revision in the retina corrupts any potential surrogate photoreceptor input to a remnant neural retina. However, there are a number of potential opportunities for intervention that are revealed through the study of retinal remodeling, including therapies that are designed to slow down photoreceptor loss, interventions that are designed to limit or arrest remodeling events, and optogenetic approaches that target appropriate classes of neurons in the remnant neural retina.
Collapse
|
99
|
Pan L, Zhang M. Structures of usher syndrome 1 proteins and their complexes. Physiology (Bethesda) 2012; 27:25-42. [PMID: 22311968 DOI: 10.1152/physiol.00037.2011] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Usher syndrome 1 (USH1) is the most common and severe form of hereditary loss of hearing and vision. Genetic, physiological, and cell biological studies, together with recent structural investigations, have not only uncovered the physiological functions of the five USH1 proteins but also provided mechanistic explanations for the hearing and visual deficiencies in humans caused by USH1 mutations. This review focuses on the structural basis of the USH1 protein complex organization.
Collapse
Affiliation(s)
- Lifeng Pan
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
| | | |
Collapse
|
100
|
CNGA3 is expressed in inner ear hair cells and binds to an intracellular C-terminus domain of EMILIN1. Biochem J 2012; 443:463-76. [PMID: 22248097 DOI: 10.1042/bj20111255] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The molecular characteristics of CNG (cyclic nucleotide-gated) channels in auditory/vestibular hair cells are largely unknown, unlike those of CNG mediating sensory transduction in vision and olfaction. In the present study we report the full-length sequence for three CNGA3 variants in a hair cell preparation from the trout saccule with high identity to CNGA3 in olfactory receptor neurons/cone photoreceptors. A custom antibody targeting the N-terminal sequence immunolocalized CNGA3 to the stereocilia and subcuticular plate region of saccular hair cells. The cytoplasmic C-terminus of CNGA3 was found by yeast two-hybrid analysis to bind the C-terminus of EMILIN1 (elastin microfibril interface-located protein 1) in both the vestibular hair cell model and rat organ of Corti. Specific binding between CNGA3 and EMILIN1 was confirmed with surface plasmon resonance analysis, predicting dependence on Ca2+ with Kd=1.6×10-6 M for trout hair cell proteins and Kd=2.7×10-7 M for organ of Corti proteins at 68 μM Ca2+. Pull-down assays indicated that the binding to organ of Corti CNGA3 was attributable to the EMILIN1 intracellular sequence that follows a predicted transmembrane domain in the C-terminus. Saccular hair cells also express the transcript for PDE6C (phosphodiesterase 6C), which in cone photoreceptors regulates the degradation of cGMP used to gate CNGA3 in phototransduction. Taken together, the evidence supports the existence in saccular hair cells of a molecular pathway linking CNGA3, its binding partner EMILIN1 (and β1 integrin) and cGMP-specific PDE6C, which is potentially replicated in cochlear outer hair cells, given stereociliary immunolocalizations of CNGA3, EMILIN1 and PDE6C.
Collapse
|