51
|
Abstract
ABSTRACT
Bordetella bronchiseptica
is involved in respiratory tract infections mainly in dogs and pigs but may also cause infections in humans. Valid and representative data on antimicrobial susceptibility of
B. bronchiseptica
is rare. Approved antimicrobial susceptibility testing methods have been published, but very few clinical breakpoints are available. The MIC values are low for most agents but high for β-lactam antibiotics and macrolides. Information on the genetic basis of resistance is scarce. For a small number of isolates that are resistant or show elevated MICs, the molecular basis of resistance was identified. Three tetracycline resistance genes,
tet
(A),
tet
(C), and
tet
(31), coding for major facilitator superfamily efflux pumps, were identified. Two other major facilitator superfamily exporter genes confer resistance to chloramphenicol (
cmlB1
) or to chloramphenicol and florfenicol (
floR
). Two class B chloramphenicol acetyltransferase genes (
catB1
and
catB3
), which confer resistance to nonfluorinated phenicols by enzymatic inactivation, have been identified in
B. bronchiseptica
. Like the trimethoprim resistance genes
dfrA1
and
dfrB1
, which code for trimethoprim-insensitive dihydrofolate reductases, the genes
catB1
and
catB3
were located on gene cassettes and found in class 1 integrons also harboring the sulfonamide resistance gene
sul1
. In addition, the gene
sul2
has also been detected. Both
sul1
and
sul2
code for sulfonamide-insensitive dihydropteroate synthases. A gene cassette harboring the β-lactamase gene
bla
OXA-2
was also identified, whereas β-lactam resistance in
B. bronchiseptica
seems to be more likely due to reduced influx in combination with the species-specific β-lactamase encoded by
bla
BOR-1
. The resistance genes were mostly located on conjugative plasmids.
Collapse
|
52
|
Bhatt K, Timsit E, Rawlyk N, Potter A, Liljebjelke K. Integrative Conjugative Element ICE Hs1 Encodes for Antimicrobial Resistance and Metal Tolerance in Histophilus somni. Front Vet Sci 2018; 5:153. [PMID: 30042951 PMCID: PMC6048870 DOI: 10.3389/fvets.2018.00153] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Accepted: 06/18/2018] [Indexed: 12/21/2022] Open
Abstract
The objectives of this study were to determine antimicrobial resistance and metal tolerance, and identify associated genes and mobile genetic elements in clinical strains of Histophilus somni isolated from feedlot cattle in Alberta during years 2012-2016 (contemporary isolates, n = 63) and years 1980-1990 (historical isolates, n = 31). Comparison of antimicrobial resistance (AMR) showed a significant increase in resistance among contemporary isolates compared to historical isolates (P < 0.001). Tolerance to copper (Cu) and zinc (Zn) concentrations above 1 mM was observed in 68 and 52% of the contemporary isolates, respectively. The tet(H) gene associated with oxytetracycline resistance and multicopper oxidase (mco) and cation efflux (czcD) genes associated with Cu and Zn tolerance were identified. An integrative conjugative element; ICEHs1, was identified in whole genome sequences of strains resistant to oxytetracycline, which had Cu and Zn minimum inhibitory concentrations (MIC) >1 mM. The length of ICEHs1 was 64,932 bp and it contained 83 genes, including tetracycline resistance gene tetH, a multidrug efflux pump gene ebrB, and metal tolerance genes mco, czcD, and acr3. Comparative genomics of ICEs revealed that ICEHs1 shares high homology with previously described ICEs of Histophilus somni, Pasteurella multocida, and Mannheimia haemolytica. The ICEHs1 is an active element capable of intra- and inter-genus transfer as demonstrated by successful transfer to H. somni and P. multocida recipients. All isolates carrying ICEHs1 were resistant to tetracycline, a commonly used antibiotic in feedlots, and had Cu and Zn MIC higher than 1 mM. Since Cu and Zn are routinely used in feedlots, there is the possibility of co-selection of AMR in H. somni due to selection pressure created by Cu and Zn. Based on results of in-vitro conjugation experiments, ICEHs1 mediated transmission of antimicrobial and metal resistance genes is possible between BRD pathogens in the respiratory tract, potentially undermining treatment options available for histophilosis and BRD.
Collapse
Affiliation(s)
- Krishna Bhatt
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Edouard Timsit
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| | - Neil Rawlyk
- Vaccine and Infectious Disease Organization-International Vaccine Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | - Andrew Potter
- Vaccine and Infectious Disease Organization-International Vaccine Centre, University of Saskatchewan, Saskatoon, SK, Canada
| | - Karen Liljebjelke
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
53
|
Beker M, Rose S, Lykkebo CA, Douthwaite S. Integrative and Conjugative Elements (ICEs) in Pasteurellaceae Species and Their Detection by Multiplex PCR. Front Microbiol 2018; 9:1329. [PMID: 29997583 PMCID: PMC6028734 DOI: 10.3389/fmicb.2018.01329] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 05/30/2018] [Indexed: 11/13/2022] Open
Abstract
Strains of the Pasteurellaceae bacteria Pasteurella multocida and Mannheimia haemolytica are major etiological agents of bovine respiratory disease (BRD). Treatment of BRD with antimicrobials is becoming more challenging due to the increasing occurrence of resistance in infecting strains. In Pasteurellaceae strains exhibiting resistance to multiple antimicrobials including aminoglycosides, beta-lactams, macrolides and sulfonamides, the resistance determinants are often chromosomally encoded within integrative and conjugative elements (ICEs). To gain a more comprehensive picture of ICE structures, we sequenced the genomes of six strains of P. multocida and four strains of M. haemolytica; all strains were independent isolates and eight of them were multiple-resistant. ICE sequences varied in size from 49 to 79 kb, and were comprised of an array of conserved genes within a core region and varieties of resistance genes within accessory regions. These latter regions mainly account for the variation in the overall ICE sizes. From the sequence data, we developed a multiplex PCR assay targeting four conserved core genes required for integration and maintenance of ICE structures. Application of this assay on 75 isolates of P. multocida and M. haemolytica reveals how the presence and structures of ICEs are related to their antibiotic resistance phenotypes. The assay is also applicable to other members of the Pasteurellaceae family including Histophilus somni and indicates how clustering and dissemination of the resistance genes came about.
Collapse
Affiliation(s)
- Michal Beker
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Simon Rose
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Claus A Lykkebo
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| | - Stephen Douthwaite
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
54
|
Woolums AR, Karisch BB, Frye JG, Epperson W, Smith DR, Blanton J, Austin F, Kaplan R, Hiott L, Woodley T, Gupta SK, Jackson CR, McClelland M. Multidrug resistant Mannheimia haemolytica isolated from high-risk beef stocker cattle after antimicrobial metaphylaxis and treatment for bovine respiratory disease. Vet Microbiol 2018; 221:143-152. [PMID: 29981701 DOI: 10.1016/j.vetmic.2018.06.005] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Revised: 05/16/2018] [Accepted: 06/07/2018] [Indexed: 10/14/2022]
Abstract
Antimicrobial resistance (AMR) in bacterial respiratory pathogens in high-risk stocker cattle has been poorly characterized. The objective of this study was to describe the prevalence of multidrug resistant (MDR; resistance to > 3 antimicrobial classes) respiratory pathogens in 50 conventionally managed stocker cattle over 21 days after arrival. Cattle received tildipirosin metaphylaxis on day 0 and were eligible to receive up to 3 additional antimicrobials for bovine respiratory disease (BRD): florfenicol, ceftiofur and enrofloxacin. Nasopharyngeal swabs were collected on days 0, 7, 14, and 21 for bacterial culture and antimicrobial susceptibility testing using disc diffusion and broth microdilution. Mannheimia haemolytica was isolated from 5 of 48, 27 of 50, 44 of 50, and 40 of 50 cattle on days 0, 7, 14, and 21, respectively. One of 5, 27 of 27, 43 of 44, and 40 of 40 M. haemolytica were MDR on days 0, 7, 14, and 21, respectively. Pasteurella multocida was isolated from 6 of 48 cattle on day 0 and none were MDR; no other pathogens were isolated. Twenty-four cattle required at least one BRD treatment; M. haemolytica was isolated before treatment from 13 of 24 cattle; all were MDR. One hundred-eighteen M. haemolytica isolates were subjected to pulsed-field gel electrophoresis (PFGE); multiple genotypes were identified. Whole genome sequencing of 33 isolates revealed 14 known AMR genes. Multidrug resistant M. haemolytica can be highly prevalent and genetically diverse in stocker cattle; additional research is necessary to determine factors that influence prevalence and the impact on cattle health.
Collapse
Affiliation(s)
- Amelia R Woolums
- Department of Veterinary Pathobiology and Population Medicine, Mississippi State University, Mississippi State, MS, USA.
| | - Brandi B Karisch
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS, USA
| | - Jonathan G Frye
- Bacterial Epidemiology and Antimicrobial Resistance Research Unit, U.S. Department of Agriculture, Agricultural Research Service, U.S. National Poultry Research Center, Athens, GA, USA
| | - William Epperson
- Department of Veterinary Pathobiology and Population Medicine, Mississippi State University, Mississippi State, MS, USA
| | - David R Smith
- Department of Veterinary Pathobiology and Population Medicine, Mississippi State University, Mississippi State, MS, USA
| | - John Blanton
- Department of Animal and Dairy Sciences, Mississippi State University, Mississippi State, MS, USA
| | - Frank Austin
- Department of Veterinary Pathobiology and Population Medicine, Mississippi State University, Mississippi State, MS, USA
| | - Ray Kaplan
- Department of Infectious Diseases, University of Georgia, Athens, GA, USA
| | - Lari Hiott
- Bacterial Epidemiology and Antimicrobial Resistance Research Unit, U.S. Department of Agriculture, Agricultural Research Service, U.S. National Poultry Research Center, Athens, GA, USA
| | - Tiffanie Woodley
- Bacterial Epidemiology and Antimicrobial Resistance Research Unit, U.S. Department of Agriculture, Agricultural Research Service, U.S. National Poultry Research Center, Athens, GA, USA
| | - Sushim K Gupta
- Bacterial Epidemiology and Antimicrobial Resistance Research Unit, U.S. Department of Agriculture, Agricultural Research Service, U.S. National Poultry Research Center, Athens, GA, USA
| | - Charlene R Jackson
- Bacterial Epidemiology and Antimicrobial Resistance Research Unit, U.S. Department of Agriculture, Agricultural Research Service, U.S. National Poultry Research Center, Athens, GA, USA
| | - Michael McClelland
- Department of Microbiology and Molecular Genetics, and Department of Pathology and Laboratory Medicine, University of California, Irvine, CA, USA
| |
Collapse
|
55
|
Li R, Yu H, Xie M, Chen K, Dong N, Lin D, Chan EWC, Chen S. Genetic basis of chromosomally-encoded mcr-1 gene. Int J Antimicrob Agents 2018; 51:578-585. [DOI: 10.1016/j.ijantimicag.2017.11.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 11/21/2017] [Accepted: 11/22/2017] [Indexed: 11/15/2022]
|
56
|
A Novel aadA Aminoglycoside Resistance Gene in Bovine and Porcine Pathogens. mSphere 2018; 3:mSphere00568-17. [PMID: 29507894 PMCID: PMC5830473 DOI: 10.1128/msphere.00568-17] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 01/23/2018] [Indexed: 11/30/2022] Open
Abstract
Aminoglycosides are important antimicrobials used worldwide for prophylaxis and/or therapy in multiple production animal species. The emergence of new resistance genes jeopardizes current pathogen detection and treatment methods. The risk of resistance gene transfer to other animal and human pathogens is elevated when resistance genes are carried by mobile genetic elements. This study identified a new variant of a spectinomycin/streptomycin resistance gene harbored in a self-transmissible mobile element. The gene was also present in four different bovine pathogen species. A novel variant of the AAD(3″) class of aminoglycoside-modifying enzymes was discovered in fatal bovine respiratory disease-associated pathogens Pasteurella multocida and Histophilus somni. The aadA31 gene encodes a spectinomycin/streptomycin adenylyltransferase and was located in a variant of the integrative and conjugative element ICEMh1, a mobile genetic element transmissible among members of the family Pasteurellaceae. The gene was also detected in Mannheimia haemolytica from a case of porcine pneumonia and in Moraxella bovoculi from a case of keratoconjunctivitis. IMPORTANCE Aminoglycosides are important antimicrobials used worldwide for prophylaxis and/or therapy in multiple production animal species. The emergence of new resistance genes jeopardizes current pathogen detection and treatment methods. The risk of resistance gene transfer to other animal and human pathogens is elevated when resistance genes are carried by mobile genetic elements. This study identified a new variant of a spectinomycin/streptomycin resistance gene harbored in a self-transmissible mobile element. The gene was also present in four different bovine pathogen species.
Collapse
|
57
|
Anholt RM, Klima C, Allan N, Matheson-Bird H, Schatz C, Ajitkumar P, Otto SJ, Peters D, Schmid K, Olson M, McAllister T, Ralston B. Antimicrobial Susceptibility of Bacteria That Cause Bovine Respiratory Disease Complex in Alberta, Canada. Front Vet Sci 2017; 4:207. [PMID: 29255716 PMCID: PMC5723070 DOI: 10.3389/fvets.2017.00207] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 11/20/2017] [Indexed: 01/08/2023] Open
Abstract
Bovine respiratory disease (BRD) is the most important illness of feedlot cattle. Disease management targets the associated bacterial pathogens, Mannheimia haemolytica, Mycoplasma bovis, Pasteurella multocida, Histophilus somni, and Trueperella pyogenes. We conducted a cross-sectional study to measure the frequencies of antimicrobial-resistant BRD pathogens using a collaborative network of veterinarians, industry, government, and a diagnostic laboratory. Seven private veterinary practices in southern Alberta collected samples from both living and dead BRD-affected animals at commercial feedlots. Susceptibility testing of 745 isolates showed that 100% of the M. haemolytica, M. bovis, P. multocida, and T. pyogenes isolates and 66.7% of the H. somni isolates were resistant to at least one antimicrobial class. Resistance to macrolide antimicrobials (90.2% of all isolates) was notable for their importance to beef production and human medicine. Multidrug resistance (MDR) was high in all target pathogens with 47.2% of the isolates resistant to four or five antimicrobial classes and 24.0% resistance to six to nine classes. We compared the MDR profiles of isolates from two feedlots serviced by different veterinary practices. Differences in the average number of resistant classes were found for M. haemolytica (p < 0.001) and P. multocida (p = 0.002). Compared to previous studies, this study suggests an increasing trend of resistance in BRD pathogens against the antimicrobials used to manage the disease in Alberta. For the veterinary clinician, the results emphasize the importance of ongoing susceptibility testing of BRD pathogens to inform treatment protocols. Surveillance studies that collect additional epidemiological information and manage sampling bias will be necessary to develop strategies to limit the spread of resistance.
Collapse
Affiliation(s)
| | - Cassidy Klima
- Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Nick Allan
- Chinook Contract Research Inc., Airdrie, AB, Canada
| | | | | | | | - Simon Jg Otto
- Alberta Ministry of Agriculture and Forestry, Airdrie, AB, Canada.,School of Public Health, University of Alberta, Edmonton, AB, Canada
| | - Delores Peters
- Alberta Ministry of Agriculture and Forestry, Airdrie, AB, Canada
| | | | - Merle Olson
- Alberta Veterinary Laboratories Ltd, Calgary, AB, Canada
| | - Tim McAllister
- Agriculture and Agri-Food Canada, Lethbridge, AB, Canada
| | - Brenda Ralston
- Alberta Ministry of Agriculture and Forestry, Airdrie, AB, Canada
| |
Collapse
|
58
|
Wang Z, Kong LC, Jia BY, Liu SM, Jiang XY, Ma HX. Aminoglycoside susceptibility of Pasteurella multocida isolates from bovine respiratory infections in China and mutations in ribosomal protein S5 associated with high-level induced spectinomycin resistance. J Vet Med Sci 2017; 79:1678-1681. [PMID: 28867688 PMCID: PMC5658559 DOI: 10.1292/jvms.17-0219] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Twenty-three isolates of Pasteurella multocida were tested for
susceptibility to six aminoglycoside agents and screened by polymerase chain reaction for
the presence of aminoglycoside resistance genes. In addition, mutations in the
resistance-determining region of strains showing a high level of induced resistance to
spectinomycin strains were examined. Susceptibility testing showed that all of the
isolates were resistant to at least two types of aminoglycosides, and that the most
effective antimicrobial was spectinomycin. The resistance genes aphA1,
strB and aacA4 were present in all 23 isolates. In the
three induced spectinomycin-resistant strains, a 9-bp deletion in rpsE
that encodes ribosomal protein S5 was detected.
Collapse
Affiliation(s)
- Zi Wang
- College of Animal Science and Technology, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, P.R. China
| | - Ling-Cong Kong
- College of Animal Science and Technology, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, P.R. China
| | - Bo-Yan Jia
- College of Animal Science and Technology, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, P.R. China
| | - Shu-Ming Liu
- College of Animal Science and Technology, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, P.R. China
| | - Xiu-Yun Jiang
- College of Animal Science and Technology, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, P.R. China
| | - Hong-Xia Ma
- College of Animal Science and Technology, Jilin Agricultural University, Xincheng Street No. 2888, Changchun 130118, P.R. China
| |
Collapse
|
59
|
Prevalence and antimicrobial susceptibility of Mannheimia haemolytica, Pasteurella multocida, and Histophilus somni isolated from the lower respiratory tract of healthy feedlot cattle and those diagnosed with bovine respiratory disease. Vet Microbiol 2017; 208:118-125. [PMID: 28888626 DOI: 10.1016/j.vetmic.2017.07.013] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 07/11/2017] [Accepted: 07/12/2017] [Indexed: 11/23/2022]
Abstract
Current information on prevalence and antimicrobial resistance (AMR) of bacterial respiratory pathogens is crucial to guide antimicrobial choice for control and treatment of bovine respiratory disease (BRD). The objectives were to describe the prevalence of three BRD-associated bacteria (Mannheimia haemolytica, Pasteurella multocida, and Histophilus somni) in the lower airways of feedlot cattle, and to analyze AMR in these bacteria. Cattle with (n=210) and without (n=107) BRD were sampled by trans-tracheal aspiration at four feedlots (Nov. 15-Jan. 16). These cattle had received 2.5mg/kg of tulathromycin on arrival at the feedlot for BRD control and two in-feed pulses of chlortetracycline (5g/animal/day for 5days) within the first 21days on feed to prevent histophilosis. Bacteria were detected by culture and AMR was tested by microdilution. Pasteurella multocida was the most frequent bacterium isolated in cattle with BRD (54.8%), followed by M. haemolytica (30.5%) and H. somni (22.9%). Compared to those with BRD, healthy cattle were less likely to be positive for P. multocida (OR=0.27), M. haemolytica (OR=0.32), or H. somni (OR=0.25). There were high levels of resistance (>70%) against tulathromycin and oxytetracycline in M. haemolytica and P. multocida isolates and high levels of resistance against oxytetracycline (67%) and penicillin (52%) in H. somni isolates. None or few isolates were resistant to florfenicol, enrofloxacin and ceftiofur. The high prevalence of resistance against tulathromycin and oxytetracycline suggests that these antimicrobials should not be repeatedly used for both control and treatment of BRD and/or histophilosis.
Collapse
|
60
|
Genome characterization of Pasteurella multocida subspecies septica and comparison with Pasteurella multocida subspecies multocida and gallicida. Arch Microbiol 2017; 199:635-640. [DOI: 10.1007/s00203-017-1341-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 12/07/2016] [Accepted: 01/10/2017] [Indexed: 10/20/2022]
|
61
|
Zhang G, Leclercq SO, Tian J, Wang C, Yahara K, Ai G, Liu S, Feng J. A new subclass of intrinsic aminoglycoside nucleotidyltransferases, ANT(3")-II, is horizontally transferred among Acinetobacter spp. by homologous recombination. PLoS Genet 2017; 13:e1006602. [PMID: 28152054 PMCID: PMC5313234 DOI: 10.1371/journal.pgen.1006602] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Revised: 02/16/2017] [Accepted: 01/24/2017] [Indexed: 12/16/2022] Open
Abstract
The emergence and spread of antibiotic resistance among Acinetobacter spp. have been investigated extensively. Most studies focused on the multiple antibiotic resistance genes located on plasmids or genomic resistance islands. On the other hand, the mechanisms controlling intrinsic resistance are still not well understood. In this study, we identified the novel subclass of aminoglycoside nucleotidyltransferase ANT(3")-II in Acinetobacter spp., which comprised numerous variants distributed among three main clades. All members of this subclass can inactivate streptomycin and spectinomycin. The three ant(3")-II genes, encoding for the three ANT(3")-II clades, are widely distributed in the genus Acinetobacter and always located in the same conserved genomic region. According to their prevalence, these genes are intrinsic in Acinetobacter baumannii, Acinetobacter pittii, and Acinetobacter gyllenbergii. We also demonstrated that the ant(3")-II genes are located in a homologous recombination hotspot and were recurrently transferred among Acinetobacter species. In conclusion, our findings demonstrated a novel mechanism of natural resistance in Acinetobacter spp., identified a novel subclass of aminoglycoside nucleotidyltransferase and provided new insight into the evolutionary history of intrinsic resistance genes. The level of interest in intrinsic resistance genes has increased recently, and one of reasons is that their mobilization could lead to emergence of resistant pathogens. Insertion sequences (ISs) or plasmids can capture intrinsic resistance genes and disseminate them in bacterial populations. In this study, we identified a novel subclass of aminoglycoside nucleotidyltransferases which are intrinsic in A. baumannii and other Acinetobacter species. The genes encoding the aminoglycoside nucleotidyltransferase were frequently horizontally transferred between different Acinetobacter species by homologous recombination. This work reports a novel mechanism of natural resistance in Acinetobacter and an overlooked pathway for the dissemination of resistance among species in this genus.
Collapse
Affiliation(s)
- Gang Zhang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Sébastien Olivier Leclercq
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jingjing Tian
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Chao Wang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Koji Yahara
- Department of Bacteriology II, National Institute of Infectious Diseases, Musashimurayama, Tokyo, Japan
| | - Guomin Ai
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Shuangjiang Liu
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jie Feng
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
- * E-mail:
| |
Collapse
|
62
|
Sweeney MT, Papich MG, Watts JL. New interpretive criteria for danofloxacin antibacterial susceptibility testing against Mannheimia haemolytica and Pasteurella multocida associated with bovine respiratory disease. J Vet Diagn Invest 2017; 29:224-227. [PMID: 28064562 DOI: 10.1177/1040638716683212] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Danofloxacin is a fluoroquinolone antibacterial agent approved for use in veterinary medicine to treat and control bovine respiratory disease caused by Mannheimia haemolytica or Pasteurella multocida. Susceptible minimal inhibitory concentration (MIC) breakpoint (≤0.25 µg/mL) and disk diffusion interpretive criteria (≥22 mm) values for danofloxacin against M. haemolytica and P. multocida were first approved by the Clinical and Laboratory Standards Institute (CLSI) in 2003. However, intermediate and resistant breakpoint values were not established because only susceptible wild-type populations were evident at the time of breakpoint approvals. Since then, nonsusceptible isolates of M. haemolytica and P. multocida have been identified. We report danofloxacin intermediate MIC breakpoint (0.5 µg/mL) and disk diffusion interpretive criteria (18-21 mm), as well as danofloxacin-resistant MIC breakpoint (≥1 µg/mL) and disk diffusion interpretive criteria (≤17 mm), based on scattergram plots of MIC values versus disk zone diameters and calculated error-bound rates using M. haemolytica and P. multocida isolates recovered from bovine respiratory disease in North America in 2004-2014. These newly established intermediate and resistant clinical breakpoint values have been endorsed by CLSI and can be used for interpreting results from antibacterial susceptibility testing of danofloxacin against M. haemolytica and P. multocida isolated from bovine respiratory disease.
Collapse
Affiliation(s)
- Michael T Sweeney
- Zoetis Global Therapeutics Research, Kalamazoo, MI (Sweeney, Watts).,College of Veterinary Medicine, North Carolina State University, Raleigh, NC (Papich)
| | - Mark G Papich
- Zoetis Global Therapeutics Research, Kalamazoo, MI (Sweeney, Watts).,College of Veterinary Medicine, North Carolina State University, Raleigh, NC (Papich)
| | - Jeffrey L Watts
- Zoetis Global Therapeutics Research, Kalamazoo, MI (Sweeney, Watts).,College of Veterinary Medicine, North Carolina State University, Raleigh, NC (Papich)
| |
Collapse
|
63
|
Cameron A, McAllister TA. Antimicrobial usage and resistance in beef production. J Anim Sci Biotechnol 2016; 7:68. [PMID: 27999667 PMCID: PMC5154118 DOI: 10.1186/s40104-016-0127-3] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Accepted: 10/28/2016] [Indexed: 11/10/2022] Open
Abstract
Antimicrobials are critical to contemporary high-intensity beef production. Many different antimicrobials are approved for beef cattle, and are used judiciously for animal welfare, and controversially, to promote growth and feed efficiency. Antimicrobial administration provides a powerful selective pressure that acts on the microbial community, selecting for resistance gene determinants and antimicrobial-resistant bacteria resident in the bovine flora. The bovine microbiota includes many harmless bacteria, but also opportunistic pathogens that may acquire and propagate resistance genes within the microbial community via horizontal gene transfer. Antimicrobial-resistant bovine pathogens can also complicate the prevention and treatment of infectious diseases in beef feedlots, threatening the efficiency of the beef production system. Likewise, the transmission of antimicrobial resistance genes to bovine-associated human pathogens is a potential public health concern. This review outlines current antimicrobial use practices pertaining to beef production, and explores the frequency of antimicrobial resistance in major bovine pathogens. The effect of antimicrobials on the composition of the bovine microbiota is examined, as are the effects on the beef production resistome. Antimicrobial resistance is further explored within the context of the wider beef production continuum, with emphasis on antimicrobial resistance genes in the food chain, and risk to the human population.
Collapse
Affiliation(s)
- Andrew Cameron
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB Canada ; Agriculture and Agri-Food Canada, Lethbridge, AB Canada
| | | |
Collapse
|
64
|
Peng Z, Liang W, Wang Y, Liu W, Zhang H, Yu T, Zhang A, Chen H, Wu B. Experimental pathogenicity and complete genome characterization of a pig origin Pasteurella multocida serogroup F isolate HN07. Vet Microbiol 2016; 198:23-33. [PMID: 28062004 DOI: 10.1016/j.vetmic.2016.11.028] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Revised: 10/31/2016] [Accepted: 11/27/2016] [Indexed: 01/17/2023]
Abstract
Pasteurella multocida serotype F isolates are predominately prevalent in avian hosts, but rarely seen in pigs. However, we isolated several strains of P. multocida serotype F from clinical samples of pigs in China. To understand the pathogenicity of these strains, one of the serotype F isolates designated HN07, was used to challenge experimental chickens, as P. multocida of this serotype is predominately prevalent in avian hosts. However, strain HN07 could not resulted in significant clinical signs in experimental chickens even at an infective dose of ∼109 CFU, suggesting the isolate was avirulent to chickens and therefore raising the possibility that the porcine serotype F isolate is not transmitted by chickens. We then used HN07 to challenge experimental pigs, as this strain was isolated from pigs. As expected, the strain led to the clinical signs and the pathological lesions in experimental pigs that are similar to the pasteurellosis disease. We then determined the complete genome sequence of the pig origin serogroup F isolate HN07 for the first time. Genome comparison between HN07 and the avian serotype F P. multocida Pm70 identified a novel integrative conjugative element (ICE) ICEpmcn07 which was likely to harbor a series of genes responsible for a putative type IV secretion system (T4SS) in HN07. This is the first time that we determined an ICE carrying a T4SS in P. multocida. Besides, comparative analysis also defined a number of virulence-associated genes in HN07 but absent in Pm70 which may have a contribution to the pathogenicity of the strain. This is the first report of the pathogenicity and genome characterization of a pig origin Pasteurella multocida serogroup F isolate. The pathogenic and genomic definition of the pig origin P. multocida serogroup F in our study would have significance on the pathogenesis and genetic diversity and virulence variability of P. multocida.
Collapse
Affiliation(s)
- Zhong Peng
- State Key Laboratory of Agricultural Microbiology, College of Animal Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Wan Liang
- The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei 430070, China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Yuanguo Wang
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, United States
| | - Wenjing Liu
- State Key Laboratory of Agricultural Microbiology, College of Animal Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Hongfeng Zhang
- State Key Laboratory of Agricultural Microbiology, College of Animal Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Teng Yu
- State Key Laboratory of Agricultural Microbiology, College of Animal Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Anding Zhang
- State Key Laboratory of Agricultural Microbiology, College of Animal Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, College of Animal Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Bin Wu
- State Key Laboratory of Agricultural Microbiology, College of Animal Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei 430070, China; The Cooperative Innovation Center for Sustainable Pig Production, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| |
Collapse
|
65
|
Schwarz S, Shen J, Kadlec K, Wang Y, Brenner Michael G, Feßler AT, Vester B. Lincosamides, Streptogramins, Phenicols, and Pleuromutilins: Mode of Action and Mechanisms of Resistance. Cold Spring Harb Perspect Med 2016; 6:a027037. [PMID: 27549310 PMCID: PMC5088508 DOI: 10.1101/cshperspect.a027037] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Lincosamides, streptogramins, phenicols, and pleuromutilins (LSPPs) represent four structurally different classes of antimicrobial agents that inhibit bacterial protein synthesis by binding to particular sites on the 50S ribosomal subunit of the ribosomes. Members of all four classes are used for different purposes in human and veterinary medicine in various countries worldwide. Bacteria have developed ways and means to escape the inhibitory effects of LSPP antimicrobial agents by enzymatic inactivation, active export, or modification of the target sites of the agents. This review provides a comprehensive overview of the mode of action of LSPP antimicrobial agents as well as of the mutations and resistance genes known to confer resistance to these agents in various bacteria of human and animal origin.
Collapse
Affiliation(s)
- Stefan Schwarz
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut (FLI), 31535 Neustadt-Mariensee, Germany
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing, P.R. China
| | - Jianzhong Shen
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing, P.R. China
| | - Kristina Kadlec
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut (FLI), 31535 Neustadt-Mariensee, Germany
| | - Yang Wang
- Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing, P.R. China
| | - Geovana Brenner Michael
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut (FLI), 31535 Neustadt-Mariensee, Germany
| | - Andrea T Feßler
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut (FLI), 31535 Neustadt-Mariensee, Germany
| | - Birte Vester
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark
| |
Collapse
|
66
|
Schwarz S, Enne VI, van Duijkeren E. 40 years of veterinary papers inJAC– what have we learnt? J Antimicrob Chemother 2016; 71:2681-90. [DOI: 10.1093/jac/dkw363] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
67
|
Schwarz S, Loeffler A, Kadlec K. Bacterial resistance to antimicrobial agents and its impact on veterinary and human medicine. Vet Dermatol 2016; 28:82-e19. [PMID: 27581211 DOI: 10.1111/vde.12362] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/06/2016] [Indexed: 12/12/2022]
Abstract
BACKGROUND Antimicrobial resistance has become a major challenge in veterinary medicine, particularly in the context of bacterial pathogens that play a role in both humans and animals. OBJECTIVES This review serves as an update on acquired resistance mechanisms in bacterial pathogens of human and animal origin, including examples of transfer of resistant pathogens between hosts and of resistance genes between bacteria. RESULTS Acquired resistance is based on resistance-mediating mutations or on mobile resistance genes. Although mutations are transferred vertically, mobile resistance genes are also transferred horizontally (by transformation, transduction or conjugation/mobilization), contributing to the dissemination of resistance. Mobile genes specifying any of the three major resistance mechanisms - enzymatic inactivation, reduced intracellular accumulation or modification of the cellular target sites - have been found in a variety of bacteria that may be isolated from animals. Such resistance genes are associated with plasmids, transposons, gene cassettes, integrative and conjugative elements or other mobile elements. Bacteria, including zoonotic pathogens, can be exchanged between animals and humans mainly via direct contact, but also via dust, aerosols or foods. Proof of the direction of transfer of resistant bacteria can be difficult and depends on the location of resistance genes or mutations in the chromosomal DNA or on a mobile element. CONCLUSION The wide variety in resistance and resistance transfer mechanisms will continue to ensure the success of bacterial pathogens in the future. Our strategies to counteract resistance and preserve the efficacy of antimicrobial agents need to be equally diverse and resourceful.
Collapse
Affiliation(s)
- Stefan Schwarz
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut (FLI), Höltystr. 10, 31535, Neustadt-Mariensee, Germany
| | - Anette Loeffler
- Clinical Sciences and Services, The Royal Veterinary College, Hawkshead Lane, Hatfield, Hertfordshire, AL9 7TA, UK
| | - Kristina Kadlec
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut (FLI), Höltystr. 10, 31535, Neustadt-Mariensee, Germany
| |
Collapse
|
68
|
DeDonder KD, Harhay DM, Apley MD, Lubbers BV, Clawson ML, Schuller G, Harhay GP, White BJ, Larson RL, Capik SF, Riviere JE, Kalbfleisch T, Tessman RK. Observations on macrolide resistance and susceptibility testing performance in field isolates collected from clinical bovine respiratory disease cases. Vet Microbiol 2016; 192:186-193. [PMID: 27527782 DOI: 10.1016/j.vetmic.2016.07.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 07/12/2016] [Accepted: 07/25/2016] [Indexed: 12/21/2022]
Abstract
The objectives of this study were; first, to describe gamithromycin susceptibility of Mannheimia haemolytica, Pasteurella multocida, and Histophilus somni isolated from cattle diagnosed with bovine respiratory disease (BRD) and previously treated with either gamithromycin for control of BRD (mass medication=MM) or sham-saline injected (control=CON); second, to describe the macrolide resistance genes present in genetically typed M. haemolytica isolates; third, use whole-genome sequencing (WGS) to correlate the phenotypic resistance and genetic determinants for resistance among M. haemolytica isolates. M. haemolytica (n=276), P. multocida (n=253), and H. somni (n=78) were isolated from feedlot cattle diagnosed with BRD. Gamithromycin susceptibility was determined by broth microdilution. Whole-genome sequencing was utilized to determine the presence/absence of macrolide resistance genes and to genetically type M. haemolytica. Generalized linear mixed models were built for analysis. There was not a significant difference between MM and CON groups in regards to the likelihood of culturing a resistant isolate of M. haemolytica or P. multocida. The likelihood of culturing a resistant isolate of M. haemolytica differed significantly by state of origin in this study. A single M. haemolytica genetic subtype was associated with an over whelming majority of the observed resistance. H. somni isolation counts were low and statistical models would not converge. Phenotypic resistance was predicted with high sensitivity and specificity by WGS. Additional studies to elucidate the relationships between phenotypic expression of resistance/genetic determinants for resistance and clinical response to antimicrobials are necessary to inform judicious use of antimicrobials in the context of relieving animal disease and suffering.
Collapse
Affiliation(s)
- Keith D DeDonder
- Diagnostic Medicine/Pathobiology, Kansas State University College of Veterinary Medicine, Manhattan, KS, United States.
| | - Dayna M Harhay
- USDA ARS US Meat Animal Research Center, Clay Center, NE, United States
| | - Michael D Apley
- Clinical Sciences, Kansas State University College of Veterinary Medicine, Manhattan, KS, United States
| | - Brian V Lubbers
- Kansas State Veterinary Diagnostic Laboratory, Kansas State University College of Veterinary Medicine, Manhattan, KS, United States
| | - Michael L Clawson
- USDA ARS US Meat Animal Research Center, Clay Center, NE, United States
| | - Gennie Schuller
- USDA ARS US Meat Animal Research Center, Clay Center, NE, United States
| | - Gregory P Harhay
- USDA ARS US Meat Animal Research Center, Clay Center, NE, United States
| | - Brad J White
- Clinical Sciences, Kansas State University College of Veterinary Medicine, Manhattan, KS, United States
| | - Robert L Larson
- Clinical Sciences, Kansas State University College of Veterinary Medicine, Manhattan, KS, United States
| | - Sarah F Capik
- Diagnostic Medicine/Pathobiology, Kansas State University College of Veterinary Medicine, Manhattan, KS, United States
| | - Jim E Riviere
- Institute of Computational Comparative Medicine, Kansas State University College of Veterinary Medicine, Manhattan, KS, United States
| | - Ted Kalbfleisch
- Biochemistry and Molecular Genetics Department, School of Medicine, University of Louisville, Louisville, KY, United States
| | - Ronald K Tessman
- Pharmaceutical Research and Development, Merial, Duluth, GA, United States
| |
Collapse
|
69
|
Einarsdottir T, Gunnarsson E, Sigurdardottir OG, Jorundsson E, Fridriksdottir V, Thorarinsdottir GE, Hjartardottir S. Variability of Pasteurella multocida isolated from Icelandic sheep and detection of the toxA gene. J Med Microbiol 2016; 65:897-904. [PMID: 27381564 DOI: 10.1099/jmm.0.000306] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Pasteurella multocida can be part of the upper respiratory flora of animals, but under conditions of stress or immunocompromisation, the bacteria can cause severe respiratory symptoms. In this study, we compared 10 P. multocida isolates from Icelandic sheep with respiratory symptoms and 19 isolates from apparently healthy abattoir sheep. We examined capsule type, genetic variability and the presence of the toxA gene in the two groups. Surprisingly, we found that all ovine P. multocida isolates examined in this study carried the toxA gene, which markedly differs from what has been published from other studies. Interestingly, all isolates from abattoir animals were capsule type D, whilst bacteria isolated from animals with clinical respiratory symptoms had capsule type A, D or F. Examination of seven housekeeping genes indicated that the clinical respiratory isolates were significantly more heterogeneous than the abattoir isolates (P<0.05, two-tailed Mann-Whitney U test). The results suggest that there may be at least two groups of P. multocida in sheep - a genetically homogeneous group that resides in the respiratory tract and a genetically heterogeneous group that is the predominant cause of disease.
Collapse
Affiliation(s)
- Thorbjorg Einarsdottir
- Institute for Experimental Pathology, University of Iceland, Keldur, Keldnavegur 3, 112 Reykjavik, Iceland.,BioMedical Center, University of Iceland, Reykjavík, Iceland
| | - Eggert Gunnarsson
- Institute for Experimental Pathology, University of Iceland, Keldur, Keldnavegur 3, 112 Reykjavik, Iceland
| | - Olof G Sigurdardottir
- Institute for Experimental Pathology, University of Iceland, Keldur, Keldnavegur 3, 112 Reykjavik, Iceland.,BioMedical Center, University of Iceland, Reykjavík, Iceland
| | - Einar Jorundsson
- Institute for Experimental Pathology, University of Iceland, Keldur, Keldnavegur 3, 112 Reykjavik, Iceland.,BioMedical Center, University of Iceland, Reykjavík, Iceland
| | - Vala Fridriksdottir
- Institute for Experimental Pathology, University of Iceland, Keldur, Keldnavegur 3, 112 Reykjavik, Iceland
| | | | - Sigridur Hjartardottir
- Institute for Experimental Pathology, University of Iceland, Keldur, Keldnavegur 3, 112 Reykjavik, Iceland
| |
Collapse
|
70
|
Bossé JT, Li Y, Fernandez Crespo R, Chaudhuri RR, Rogers J, Holden MTG, Maskell DJ, Tucker AW, Wren BW, Rycroft AN, Langford PR. ICEApl1, an Integrative Conjugative Element Related to ICEHin1056, Identified in the Pig Pathogen Actinobacillus pleuropneumoniae. Front Microbiol 2016; 7:810. [PMID: 27379024 PMCID: PMC4908127 DOI: 10.3389/fmicb.2016.00810] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 05/12/2016] [Indexed: 12/26/2022] Open
Abstract
ICEApl1 was identified in the whole genome sequence of MIDG2331, a tetracycline-resistant (MIC = 8 mg/L) serovar 8 clinical isolate of Actinobacillus pleuropneumoniae, the causative agent of porcine pleuropneumonia. PCR amplification of virB4, one of the core genes involved in conjugation, was used to identify other A. pleuropneumoniae isolates potentially carrying ICEApl1. MICs for tetracycline were determined for virB4 positive isolates, and shotgun whole genome sequence analysis was used to confirm presence of the complete ICEApl1. The sequence of ICEApl1 is 56083 bp long and contains 67 genes including a Tn10 element encoding tetracycline resistance. Comparative sequence analysis was performed with similar integrative conjugative elements (ICEs) found in other members of the Pasteurellaceae. ICEApl1 is most similar to the 59393 bp ICEHin1056, from Haemophilus influenzae strain 1056. Although initially identified only in serovar 8 isolates of A. pleuropneumoniae (31 from the UK and 1 from Cyprus), conjugal transfer of ICEApl1 to representative isolates of other serovars was confirmed. All isolates carrying ICEApl1 had a MIC for tetracycline of 8 mg/L. This is, to our knowledge, the first description of an ICE in A. pleuropneumoniae, and the first report of a member of the ICEHin1056 subfamily in a non-human pathogen. ICEApl1 confers resistance to tetracycline, currently one of the more commonly used antibiotics for treatment and control of porcine pleuropneumonia.
Collapse
Affiliation(s)
- Janine T Bossé
- Section of Paediatrics, Department of Medicine, Imperial College London London, UK
| | - Yanwen Li
- Section of Paediatrics, Department of Medicine, Imperial College London London, UK
| | | | - Roy R Chaudhuri
- Department of Veterinary Medicine, University of Cambridge Cambridge, UK
| | - Jon Rogers
- Animal and Plant Health Agency Bury St Edmunds Suffolk, UK
| | - Matthew T G Holden
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton Cambridge, UK
| | - Duncan J Maskell
- Department of Veterinary Medicine, University of Cambridge Cambridge, UK
| | - Alexander W Tucker
- Department of Veterinary Medicine, University of Cambridge Cambridge, UK
| | - Brendan W Wren
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine London, UK
| | - Andrew N Rycroft
- Department of Pathology and Pathogen Biology, The Royal Veterinary College Hatfield, UK
| | - Paul R Langford
- Section of Paediatrics, Department of Medicine, Imperial College London London, UK
| | | |
Collapse
|
71
|
Huedo P, Gori M, Amato E, Bianchi R, Valerio E, Magnoli L, Pontello M. A Multischool Outbreak Due to Salmonella enterica serovar Napoli Associated with Elevated Rates of Hospitalizations and Bacteremia, Milan, Italy, 2014. Foodborne Pathog Dis 2016; 13:417-22. [PMID: 27148636 DOI: 10.1089/fpd.2015.2091] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
A multischool outbreak of salmonellosis caused by Salmonella enterica serovar Napoli was investigated in the province of Milan from October to November 2014, following an increase in school absenteeism coinciding with two positive cases. Epidemiological studies detected 47 cases in four primary schools: 46 children and 1 adult woman (51.4% males and 48.6% females, median age 8.9). From these, 14 cases (29.8%) were severe and resulted in hospitalization, including 6 children (12.8%) who developed an invasive salmonellosis. The epidemic curve revealed an abnormally long incubation period, peaking 1 week after the first confirmed case. Twenty-five available isolates were typed by pulsed-field gel electrophoresis showing an identical pattern. The isolate belongs to ST474, an ST composed exclusively of Salmonella Napoli human strains isolated in France and Italy. Antibiotic resistance analysis showed resistance to aminoglycosides, correlating with the presence of the aminoglycoside resistance gene aadA25 in its genome. Trace-back investigations strongly suggested contaminated ham as the most likely food vehicle, which was delivered by a common food center on 21 October. Nevertheless, this ingredient could not be retrospectively investigated since it was no longer available at the repository. This represents the largest Salmonella Napoli outbreak ever reported in Italy and provides a unique scenario for studying the outcome of salmonellosis caused by this emerging and potentially invasive nontyphoidal serotype.
Collapse
Affiliation(s)
- Pol Huedo
- 1 Dipartimento di Scienze della Salute, Università degli Studi di Milano , Milan, Italy
| | - Maria Gori
- 1 Dipartimento di Scienze della Salute, Università degli Studi di Milano , Milan, Italy
| | - Ettore Amato
- 1 Dipartimento di Scienze della Salute, Università degli Studi di Milano , Milan, Italy
| | - Roberta Bianchi
- 2 Dipartimento di Prevenzione Medico ASL Milano 1 , Milan, Italy
| | - Edgardo Valerio
- 2 Dipartimento di Prevenzione Medico ASL Milano 1 , Milan, Italy
| | - Luigi Magnoli
- 2 Dipartimento di Prevenzione Medico ASL Milano 1 , Milan, Italy
| | - Mirella Pontello
- 1 Dipartimento di Scienze della Salute, Università degli Studi di Milano , Milan, Italy
| |
Collapse
|
72
|
Raszek MM, Guan LL, Plastow GS. Use of Genomic Tools to Improve Cattle Health in the Context of Infectious Diseases. Front Genet 2016; 7:30. [PMID: 27014337 PMCID: PMC4780072 DOI: 10.3389/fgene.2016.00030] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2015] [Accepted: 02/18/2016] [Indexed: 12/15/2022] Open
Abstract
Although infectious diseases impose a heavy economic burden on the cattle industry, the etiology of many disorders that affect livestock is not fully elucidated, and effective countermeasures are often lacking. The main tools available until now have been vaccines, antibiotics and antiparasitic drugs. Although these have been very successful in some cases, the appearance of parasite and microbial resistance to these treatments is a cause of concern. Next-generation sequencing provides important opportunities to tackle problems associated with pathogenic illnesses. This review describes the rapid gains achieved to track disease progression, identify the pathogens involved, and map pathogen interactions with the host. Use of novel genomic tools subsequently aids in treatment development, as well as successful creation of breeding programs aimed toward less susceptible livestock. These may be important tools for mitigating the long term effects of combating infection and helping reduce the reliance on antibiotic treatment.
Collapse
Affiliation(s)
- Mikolaj M Raszek
- Livestock Gentec, Department of Agricultural, Food and Nutritional Science, University of Alberta Edmonton, AB, Canada
| | - Le L Guan
- Livestock Gentec, Department of Agricultural, Food and Nutritional Science, University of Alberta Edmonton, AB, Canada
| | - Graham S Plastow
- Livestock Gentec, Department of Agricultural, Food and Nutritional Science, University of Alberta Edmonton, AB, Canada
| |
Collapse
|
73
|
Roberts MC, Schwarz S. Tetracycline and Phenicol Resistance Genes and Mechanisms: Importance for Agriculture, the Environment, and Humans. JOURNAL OF ENVIRONMENTAL QUALITY 2016; 45:576-592. [PMID: 27065405 DOI: 10.2134/jeq2015.04.0207] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Recent reports have speculated on the future impact that antibiotic-resistant bacteria will have on food production, human health, and global economics. This review examines microbial resistance to tetracyclines and phenicols, antibiotics that are widely used in global food production. The mechanisms of resistance, mode of spread between agriculturally and human-impacted environments and ecosystems, distribution among bacteria, and the genes most likely to be associated with agricultural and environmental settings are included. Forty-six different tetracycline resistance () genes have been identified in 126 genera, with (M) having the broadest taxonomic distribution among all bacteria and (B) having the broadest coverage among the Gram-negative genera. Phenicol resistance genes are organized into 37 groups and have been identified in 70 bacterial genera. The review provides the latest information on tetracycline and phenicol resistance genes, including their association with mobile genetic elements in bacteria of environmental, medical, and veterinary relevance. Knowing what specific antibiotic-resistance genes (ARGs) are found in specific bacterial species and/or genera is critical when using a selective suite of ARGs for detection or surveillance studies. As detection methods move to molecular techniques, our knowledge about which type of bacteria carry which resistance gene(s) will become more important to ensure that the whole spectrum of bacteria are included in future surveillance studies. This review provides information needed to integrate the biology, taxonomy, and ecology of tetracycline- and phenicol-resistant bacteria and their resistance genes so that informative surveillance strategies can be developed and the correct genes selected.
Collapse
|
74
|
Peng Z, Liang W, Liu W, Wu B, Tang B, Tan C, Zhou R, Chen H. Genomic characterization of Pasteurella multocida HB01, a serotype A bovine isolate from China. Gene 2016; 581:85-93. [PMID: 26827796 DOI: 10.1016/j.gene.2016.01.041] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 01/10/2016] [Accepted: 01/18/2016] [Indexed: 10/22/2022]
Abstract
Pasteurella multocida infects various domestic and feral animals, generally causing clinical disease. To investigate P. multocida disease in cattle, we sequenced the complete genome of P. multocida HB01 (GenBank accession CP006976), a serotype A organism isolated from a cow in China. The genome is composed of a single circular chromosome of 2,416,068 base pairs containing 2212 protein-coding sequences, 6 ribosomal rRNA operons, and 56 tRNA genes. The present study confirms that P. multocida HB01 possesses a more complete metabolic pathway with an intact trichloroacetic acid cycle for anabolism compared with A. pleuropneumoniae and Haemophilus parasuis. This is the first time that this metabolic mechanism of P. multocida has been described. We also identified a full spectrum of genes related to known virulence factors of P. multocida. The differences in virulence factors between strains of different serotypes and origins were also compared. This comprehensive comparative genome analysis will help in further studies of the metabolic pathways, genetic basis of serotype, and virulence of P. multocida.
Collapse
Affiliation(s)
- Zhong Peng
- State Key Laboratory of Agricultural Microbiology, The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Wan Liang
- State Key Laboratory of Agricultural Microbiology, The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Education, The Cooperative Innovation Center for Sustainable Pig Production, College of Animal Science and Technology, Huazhong Agricultural University, Wuhan 430070, China.
| | - Wenjing Liu
- State Key Laboratory of Agricultural Microbiology, The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Bin Wu
- State Key Laboratory of Agricultural Microbiology, The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Biao Tang
- State Key Laboratory of Genetic Engineering, Department of Microbiology, School of Life Sciences, Fudan University, Shanghai 200000, China.
| | - Chen Tan
- State Key Laboratory of Agricultural Microbiology, The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Rui Zhou
- State Key Laboratory of Agricultural Microbiology, The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| | - Huanchun Chen
- State Key Laboratory of Agricultural Microbiology, The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
75
|
Michael GB, Freitag C, Wendlandt S, Eidam C, Feßler AT, Lopes GV, Kadlec K, Schwarz S. Emerging issues in antimicrobial resistance of bacteria from food-producing animals. Future Microbiol 2016; 10:427-43. [PMID: 25812464 DOI: 10.2217/fmb.14.93] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
During the last decade, antimicrobial resistance in bacteria from food-producing animals has become a major research topic. In this review, different emerging resistance properties related to bacteria of food-producing animals are highlighted. These include: extended-spectrum β-lactamase-producing Enterobacteriaceae; carbapenemase-producing bacteria; bovine respiratory tract pathogens, such as Pasteurella multocida and Mannheimia haemolytica, which harbor the multiresistance mediating integrative and conjugative element ICEPmu1; Gram-positive and Gram-negative bacteria that carry the multiresistance gene cfr; and the occurrence of numerous novel antimicrobial resistance genes in livestock-associated methicillin-resistant Staphylococcus aureus. The emergence of the aforementioned resistance properties is mainly based on the exchange of mobile genetic elements that carry the respective resistance genes.
Collapse
|
76
|
Draft Genome Sequence of Pasteurella multocida Isolate P1062, Isolated from Bovine Respiratory Disease. GENOME ANNOUNCEMENTS 2015; 3:3/5/e01254-15. [PMID: 26494687 PMCID: PMC4616194 DOI: 10.1128/genomea.01254-15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Here, we report the draft genome of Pasteurella multocida isolate P1062 recovered from pneumonic bovine lung in the United States in 1959.
Collapse
|
77
|
A literature review of antimicrobial resistance in Pathogens associated with bovine respiratory disease. Anim Health Res Rev 2015; 16:125-34. [PMID: 26373635 DOI: 10.1017/s146625231500016x] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The objective of this paper was to perform a critical review of the literature as it pertains to the current status of antimicrobial resistance in pathogens associated with bovine respiratory disease (BRD) in beef cattle and to provide a concise yet informative narrative on the most relevant publications available. As such, the scientific literature contained in PubMed, AGRICOLA, and CAB were searched in February of 2014 for articles related to susceptibility testing of Mannheimia haemolytica, Pasteurella multocida, and Histophilus somni from cases of BRD. Titles and abstracts were read and 105 articles that were relevant to the subject of BRD antibiotic resistance were attained for further review. After the application of exclusion criterion (publications must have originated from North America, be in English, adhere to standards set forth by the Clinical and Laboratory Standards Institute, and be concerning antimicrobial resistance in BRD in beef cattle), 16 articles remained and are the focus of this publication. Due to the disparate data from the few studies that investigate susceptibility testing of BRD pathogens, a quantitative assessment or meta-analysis was not performed on the studies presented in this review. However, considering diagnostic lab data, there appears to be a clear trend of a decrease in susceptibility of the three major BRD pathogens to the antimicrobials used commonly for treatment and control of BRD. Studies performing sensitivity testing on healthy cattle report much lower resistance, but it remains unclear if this is because of a true lack of resistance mechanisms, or if the isolates do contain quiescent genes for resistance that are only phenotypically expressed following the administration of an antimicrobial for either treatment or control of BRD. Future research to address this question of genotype and phenotypic expression before and after antimicrobial administration will further advance our knowledge in this area.
Collapse
|
78
|
Okay S, Kurt Kızıldoğan A. Comparative genome analysis of five Pasteurella multocida strains to decipher the diversification in pathogenicity and host specialization. Gene 2015; 567:58-72. [DOI: 10.1016/j.gene.2015.04.063] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 04/08/2015] [Accepted: 04/23/2015] [Indexed: 01/15/2023]
|
79
|
Moustafa AM, Seemann T, Gladman S, Adler B, Harper M, Boyce JD, Bennett MD. Comparative Genomic Analysis of Asian Haemorrhagic Septicaemia-Associated Strains of Pasteurella multocida Identifies More than 90 Haemorrhagic Septicaemia-Specific Genes. PLoS One 2015; 10:e0130296. [PMID: 26151935 PMCID: PMC4495038 DOI: 10.1371/journal.pone.0130296] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Accepted: 05/19/2015] [Indexed: 12/16/2022] Open
Abstract
Pasteurella multocida is the primary causative agent of a range of economically important diseases in animals, including haemorrhagic septicaemia (HS), a rapidly fatal disease of ungulates. There is limited information available on the diversity of P. multocida strains that cause HS. Therefore, we determined draft genome sequences of ten disease-causing isolates and two vaccine strains and compared these genomes using a range of bioinformatic analyses. The draft genomes of the 12 HS strains were between 2,298,035 and 2,410,300 bp in length. Comparison of these genomes with the North American HS strain, M1404, and other available P. multocida genomes (Pm70, 3480, 36950 and HN06) identified a core set of 1,824 genes. A set of 96 genes was present in all HS isolates and vaccine strains examined in this study, but absent from Pm70, 3480, 36950 and HN06. Moreover, 59 genes were shared only by the Asian B:2 strains. In two Pakistani isolates, genes with high similarity to genes in the integrative and conjugative element, ICEPmu1 from strain 36950 were identified along with a range of other antimicrobial resistance genes. Phylogenetic analysis indicated that the HS strains formed clades based on their country of isolation. Future analysis of the 96 genes unique to the HS isolates will aid the identification of HS-specific virulence attributes and facilitate the development of disease-specific diagnostic tests.
Collapse
Affiliation(s)
- Ahmed M. Moustafa
- School of Veterinary and Life Sciences, Murdoch University, South Street, Perth, Western Australia, Australia
| | - Torsten Seemann
- Victorian Bioinformatics Consortium, Monash University, Wellington Road, Clayton, Melbourne, Victoria, Australia
- Victorian Life Sciences Computation Initiative, Grattan Street, Carlton, Melbourne, Victoria, Australia
| | - Simon Gladman
- Victorian Bioinformatics Consortium, Monash University, Wellington Road, Clayton, Melbourne, Victoria, Australia
- Victorian Life Sciences Computation Initiative, Grattan Street, Carlton, Melbourne, Victoria, Australia
| | - Ben Adler
- Australian Research Council Centre of Excellence in Structural and Functional Microbial Genomics, Monash University, Wellington Road, Clayton, Melbourne, Victoria, Australia
- Department of Microbiology, Monash University, Wellington Road, Clayton, Melbourne, Victoria, Australia
| | - Marina Harper
- Australian Research Council Centre of Excellence in Structural and Functional Microbial Genomics, Monash University, Wellington Road, Clayton, Melbourne, Victoria, Australia
- Department of Microbiology, Monash University, Wellington Road, Clayton, Melbourne, Victoria, Australia
| | - John D. Boyce
- Australian Research Council Centre of Excellence in Structural and Functional Microbial Genomics, Monash University, Wellington Road, Clayton, Melbourne, Victoria, Australia
- Department of Microbiology, Monash University, Wellington Road, Clayton, Melbourne, Victoria, Australia
- * E-mail:
| | - Mark D. Bennett
- School of Veterinary and Life Sciences, Murdoch University, South Street, Perth, Western Australia, Australia
| |
Collapse
|
80
|
Pearce SL, Oakeshott JG, Pandey G. Insights into Ongoing Evolution of the Hexachlorocyclohexane Catabolic Pathway from Comparative Genomics of Ten Sphingomonadaceae Strains. G3 (BETHESDA, MD.) 2015; 5:1081-94. [PMID: 25850427 PMCID: PMC4478539 DOI: 10.1534/g3.114.015933] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 03/29/2015] [Indexed: 11/18/2022]
Abstract
Hexachlorocyclohexane (HCH), a synthetic organochloride, was first used as a broad-acre insecticide in the 1940s, and many HCH-degrading bacterial strains have been isolated from around the globe during the last 20 years. To date, the same degradation pathway (the lin pathway) has been implicated in all strains characterized, although the pathway has only been characterized intensively in two strains and for only a single HCH isomer. To further elucidate the evolution of the lin pathway, we have biochemically and genetically characterized three HCH-degrading strains from the Czech Republic and compared the genomes of these and seven other HCH-degrading bacterial strains. The three new strains each yielded a distinct set of metabolites during their degradation of HCH isomers. Variable assembly of the pathway is a common feature across the 10 genomes, eight of which (including all three Czech strains) were either missing key lin genes or containing duplicate copies of upstream lin genes (linA-F). The analysis also confirmed the important role of horizontal transfer mediated by insertion sequence IS6100 in the acquisition of the pathway, with a stronger association of IS6100 to the lin genes in the new strains. In one strain, a linA variant was identified that likely caused a novel degradation phenotype involving a shift in isomer preference. This study identifies a number of strains that are in the early stages of lin pathway acquisition and shows that the state of the pathway can explain the degradation patterns observed.
Collapse
Affiliation(s)
| | | | - Gunjan Pandey
- CSIRO Ecosystem Sciences, Acton, ACT-2601, Australia
| |
Collapse
|
81
|
Weese JS, Giguère S, Guardabassi L, Morley PS, Papich M, Ricciuto DR, Sykes JE. ACVIM consensus statement on therapeutic antimicrobial use in animals and antimicrobial resistance. J Vet Intern Med 2015; 29:487-98. [PMID: 25783842 PMCID: PMC4895515 DOI: 10.1111/jvim.12562] [Citation(s) in RCA: 176] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 01/21/2015] [Accepted: 01/27/2015] [Indexed: 12/22/2022] Open
Abstract
The epidemic of antimicrobial resistant infections continues to challenge, compromising animal care, complicating food animal production and posing zoonotic disease risks. While the overall role of therapeutic antimicrobial use in animals in the development AMR in animal and human pathogens is poorly defined, veterinarians must consider the impacts of antimicrobial use in animal and take steps to optimize antimicrobial use, so as to maximize the health benefits to animals while minimizing the likelihood of antimicrobial resistance and other adverse effects. This consensus statement aims to provide guidance on the therapeutic use of antimicrobials in animals, balancing the need for effective therapy with minimizing development of antimicrobial resistance in bacteria from animals and humans.
Collapse
Affiliation(s)
- J S Weese
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON, Canada
| | | | | | | | | | | | | |
Collapse
|
82
|
Genome Sequences of Serotype A6 Mannheimia haemolytica Isolates D174 and D38 Recovered from Bovine Pneumonia. GENOME ANNOUNCEMENTS 2015; 3:3/2/e00086-15. [PMID: 25745008 PMCID: PMC4358395 DOI: 10.1128/genomea.00086-15] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Here, we report two genomes, one complete and one draft, from virulent bovine strains of Mannheimia haemolytica serotype A6 recovered prior to the field usage of modern antimicrobial drugs.
Collapse
|
83
|
Ferreira TSP, Felizardo MR, de Gobbi DDS, Moreno M, Moreno AM. Antimicrobial resistance and virulence gene profiles in P. multocida strains isolated from cats. Braz J Microbiol 2015. [PMID: 26221117 PMCID: PMC4512071 DOI: 10.1590/s1517-838246120140084] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Cats are often described as carriers of Pasteurella multocida
in their oral microbiota. This agent is thought to cause pneumonia, conjunctivitis, rhinitis, gingivostomatitis, abscess and osteonecrosis in cats. Human infection with P. multocida
has been described in several cases affecting cat owners or after cat bites. In Brazil, the cat population is approximately 21 million animals and is increasing, but there are no studies of the presence of P. multocida
in the feline population or of human cases of infection associated with cats. In this study, one hundred and ninety-one healthy cats from owners and shelters in São Paulo State, Brazil, were evaluated for the presence of P. multocida
in their oral cavities. Twenty animals were positive for P. multocida
, and forty-one strains were selected and characterized by means of biochemical tests and PCR. The P. multocida
strains were tested for capsular type, virulence genes and resistance profile. A total of 75.6% (31/41) of isolates belonged to capsular type A, and 24.4% (10/41) of the isolates were untypeable. None of the strains harboured toxA, tbpA
or pfhA
genes. The frequencies of the other genes tested were variable, and the data generated were used to build a dendrogram showing the relatedness of strains, which were clustered according to origin. The most common resistance profile observed was against sulfizoxazole and trimethoprim-sulphamethoxazole.
Collapse
Affiliation(s)
- Thais Sebastiana Porfida Ferreira
- Laboratório de Epidemiologia Molecular e Resistencia a Antimicrobianos, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Maria Roberta Felizardo
- Laboratório de Epidemiologia Molecular e Resistencia a Antimicrobianos, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Debora Dirani Sena de Gobbi
- Laboratório de Epidemiologia Molecular e Resistencia a Antimicrobianos, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Marina Moreno
- Laboratório de Epidemiologia Molecular e Resistencia a Antimicrobianos, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Andrea Micke Moreno
- Laboratório de Epidemiologia Molecular e Resistencia a Antimicrobianos, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
84
|
He T, Shen J, Schwarz S, Wu C, Wang Y. Characterization of a genomic island in Stenotrophomonas maltophilia that carries a novel floR gene variant. J Antimicrob Chemother 2014; 70:1031-6. [PMID: 25477328 DOI: 10.1093/jac/dku491] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES To characterize the chromosomally encoded novel floR gene variant floRv from Stenotrophomonas maltophilia of porcine origin and elucidate the gene order and content of the floRv-flanking regions in an MDR genomic island (GI). METHODS Whole genome sequencing was used to identify the unknown florfenicol resistance gene in S. maltophilia strain GZP-Sm1. The candidate gene was cloned into pMD19-T and Escherichia coli transformants carrying this vector were tested for phenicol MICs. Flanking sequences of the florfenicol resistance gene were identified by a de novo assembly and a primer walking strategy. RESULTS GZP-Sm1 carried a floR gene variant, designated floRv. E. coli clones carrying this gene were resistant to chloramphenicol and florfenicol. The deduced 404 amino acid FloRv protein showed 84.1%-91.8% amino acid identity to various FloR proteins. The gene floRv was located in an MDR region within a 40 226 bp GI region. Six resistance genes, including floRv (phenicol resistance), tetR-tetA(A) (tetracycline resistance), strA/strB (streptomycin resistance), sul1 (sulphonamide resistance) and aadA2 (streptomycin/spectinomycin resistance), were located in this MDR region. PCR analysis revealed that the GI was not stable and could be excised from the chromosome as a circular intermediate. CONCLUSIONS The floRv gene was identified in a porcine S. maltophilia isolate. Six resistance genes including floRv were located in a novel GI. As an opportunistic pathogen in animals and humans, S. maltophilia might act as a resistance gene reservoir in farm environments. Its contribution to the spread of resistance genes to other pathogens should be monitored.
Collapse
Affiliation(s)
- Tao He
- National Center for Veterinary Drug Safety Evaluation, College of Veterinary Medicine, China Agricultural University, Beijing 100193, P. R. China
| | - Jianzhong Shen
- National Center for Veterinary Drug Safety Evaluation, College of Veterinary Medicine, China Agricultural University, Beijing 100193, P. R. China
| | - Stefan Schwarz
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut (FLI), Höltystr. 10, 31535 Neustadt-Mariensee, Germany
| | - Congming Wu
- National Center for Veterinary Drug Safety Evaluation, College of Veterinary Medicine, China Agricultural University, Beijing 100193, P. R. China
| | - Yang Wang
- National Center for Veterinary Drug Safety Evaluation, College of Veterinary Medicine, China Agricultural University, Beijing 100193, P. R. China
| |
Collapse
|
85
|
Harmer CJ, Holt KE, Hall RM. A type 2 A/C2 plasmid carrying the aacC4 apramycin resistance gene and the erm(42) erythromycin resistance gene recovered from two Salmonella enterica serovars. J Antimicrob Chemother 2014; 70:1021-5. [PMID: 25468903 DOI: 10.1093/jac/dku489] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVES To determine the relationships between RepA/C2 plasmids carrying several antibiotic resistance genes found in isolates of Salmonella enterica serovars Ohio and Senftenberg from pigs. METHODS Illumina HiSeq was used to sequence seven S. enterica isolates. BLAST searches identified relevant A/C2 plasmid contigs and contigs were assembled using PCR. RESULTS Two serovar Ohio isolates were ST329 and the five Senftenberg isolates were ST210. The A/C2 plasmids recovered from the seven isolates belong to type 2 and contain two resistance islands. Their backbones are closely related, differing by five or fewer SNPs. The sul2-containing resistance island ARI-B is 19.9 kb and also contains the kanamycin and neomycin resistance gene aphA1, the tetracycline resistance gene tetA(D) and an erythromycin resistance gene, erm(42), not previously seen in A/C2 plasmids. A second 30.3 kb resistance island, RI-119, is in a unique location in the A/C2 backbone 8.2 kb downstream of rhs. RI-119 contained genes conferring resistance to apramycin, netilmicin and tobramycin (aacC4), hygromycin (hph), sulphonamides (sul1) and spectinomycin and streptomycin (aadA2). In one of the seven plasmids, this resistance region contained two IS26-mediated deletions. A discrete 5.7 kb segment containing the aacC4 and hph genes and bounded by IS26 on one side and the inverted repeat of Tn5393 on the other was identified. CONCLUSIONS The presence of almost identical A/C2 plasmids in two serovars indicates a common origin. Type 2 A/C2 plasmids continue to evolve via addition of new resistance regions such as RI-119 and evolution of existing ones.
Collapse
Affiliation(s)
- Christopher J Harmer
- School of Molecular Bioscience, The University of Sydney, Sydney, New South Wales, Australia
| | - Kathryn E Holt
- Department of Biochemistry and Molecular Biology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria, Australia
| | - Ruth M Hall
- School of Molecular Bioscience, The University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
86
|
Olsen AS, Warrass R, Douthwaite S. Macrolide resistance conferred by rRNA mutations in field isolates of Mannheimia haemolytica and Pasteurella multocida. J Antimicrob Chemother 2014; 70:420-3. [PMID: 25261417 DOI: 10.1093/jac/dku385] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES To determine how resistance to macrolides is conferred in field isolates of Pasteurella multocida and Mannheimia haemolytica that lack previously identified resistance determinants for rRNA methylation, efflux and macrolide-modifying enzymes. METHODS Isolates of P. multocida and M. haemolytica identified as being highly resistant (MICs >64 mg/L) to the macrolides erythromycin, gamithromycin, tilmicosin, tildipirosin and tulathromycin were screened by multiplex PCR for the previously identified resistance genes erm(42), msr(E) and mph(E). Strains lacking these determinants were analysed by genome sequencing and primer extension on the rRNAs. RESULTS Macrolide resistance in one M. haemolytica isolate was conferred by the 23S rRNA mutation A2058G; resistance in three P. multocida isolates were caused by mutations at the neighbouring nucleotide A2059G. In each strain, all six copies of the rrn operons encoded the respective mutations. There were no mutations in the ribosomal protein genes rplD or rplV, and no other macrolide resistance mechanism was evident. CONCLUSIONS High-level macrolide resistance can arise from 23S rRNA mutations in P. multocida and M. haemolytica despite their multiple copies of rrn. Selective pressures from exposure to different macrolide or lincosamide drugs presumably resulted in consolidation of either the A2058G or the A2059G mutation.
Collapse
Affiliation(s)
- Anders S Olsen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Ralf Warrass
- MSD Animal Health Innovation GmbH, Zur Propstei, D-55270 Schwabenheim, Germany
| | - Stephen Douthwaite
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| |
Collapse
|
87
|
Eidam C, Poehlein A, Leimbach A, Michael GB, Kadlec K, Liesegang H, Daniel R, Sweeney MT, Murray RW, Watts JL, Schwarz S. Analysis and comparative genomics of ICEMh1, a novel integrative and conjugative element (ICE) of Mannheimia haemolytica. J Antimicrob Chemother 2014; 70:93-7. [DOI: 10.1093/jac/dku361] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
88
|
Kong LC, Gao D, Gao YH, Liu SM, Ma HX. Fluoroquinolone resistance mechanism of clinical isolates and selected mutants of Pasteurella multocida from bovine respiratory disease in China. J Vet Med Sci 2014; 76:1655-7. [PMID: 25649952 PMCID: PMC4300385 DOI: 10.1292/jvms.14-0240] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The minimum inhibitory
concentrations (MICs), mutation prevention concentrations (MPCs) and contribution of
quinolone resistance-determining region (QRDR) mutations to fluoroquinolone
(ciprofloxacin, enrofloxacin and orbifloxacin) susceptibility in 23 Pasteurella
multocida (Pm) isolates were investigated.
Fluoroquinolone-susceptible isolates (MICs ≤0.25 µg/ml,
9 isolates) had no QRDR mutations, and their respective MPCs were low.
Fluoroquinolone-intermediate isolates (MICs=0.5 µg/ml,
14 isolates) had QRDR mutations (Asp87 to Asn or Ala84 to Pro in gyrA),
and their respective MPCs were high (4–32 µg/ml).
First-step mutants (n=5) and laboratory-derived highly resistant fluoroquinolone mutants
(n=5) also had QRDR mutations. The MICs of fluoroquinolones for mutant-derived strains
were decreased in the presence of efflux inhibitors. The results indicated that the
fluoroquinolone resistance of Pm is mainly due to multiple target gene
mutations in gyrA and parC and the overexpression of
efflux pump genes.
Collapse
Affiliation(s)
- Ling-Cong Kong
- College of Animal Science and Technology, Jilin Agricultural University, Xincheng Street No.#2888, Changchun 130118, P.R. China
| | | | | | | | | |
Collapse
|
89
|
Liu Y, Wang Y, Schwarz S, Wang S, Chen L, Wu C, Shen J. Investigation of a multiresistance gene cfr that fails to mediate resistance to phenicols and oxazolidinones in Enterococcus faecalis. J Antimicrob Chemother 2013; 69:892-8. [DOI: 10.1093/jac/dkt459] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
90
|
Pathogens of bovine respiratory disease in North American feedlots conferring multidrug resistance via integrative conjugative elements. J Clin Microbiol 2013; 52:438-48. [PMID: 24478472 DOI: 10.1128/jcm.02485-13] [Citation(s) in RCA: 126] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this study, we determined the prevalence of bovine respiratory disease (BRD)-associated viral and bacterial pathogens in cattle and characterized the genetic profiles, antimicrobial susceptibilities, and nature of antimicrobial resistance determinants in collected bacteria. Nasopharyngeal swab and lung tissue samples from 68 BRD mortalities in Alberta, Canada (n = 42), Texas (n = 6), and Nebraska (n = 20) were screened using PCR for bovine viral diarrhea virus (BVDV), bovine respiratory syncytial virus, bovine herpesvirus 1, parainfluenza type 3 virus, Mycoplasma bovis, Mannheimia haemolytica, Pasteurella multocida, and Histophilus somni. Excepting bovine herpesvirus 1, all agents were detected. M. haemolytica (91%) and BVDV (69%) were the most prevalent, with cooccurrence in 63% of the cattle. Isolates of M. haemolytica (n = 55), P. multocida (n = 8), and H. somni (n = 10) from lungs were also collected. Among M. haemolytica isolates, a clonal subpopulation (n = 8) was obtained from a Nebraskan feedlot. All three bacterial pathogens exhibited a high rate of antimicrobial resistance, with 45% exhibiting resistance to three or more antimicrobials. M. haemolytica (n = 18), P. multocida (n = 3), and H. somni (n = 3) from Texas and Nebraska possessed integrative conjugative elements (ICE) that conferred resistance for up to seven different antimicrobial classes. ICE were shown to be transferred via conjugation from P. multocida to Escherichia coli and from M. haemolytica and H. somni to P. multocida. ICE-mediated multidrug-resistant profiles of bacterial BRD pathogens could be a major detriment to many of the therapeutic antimicrobial strategies currently used to control BRD.
Collapse
|
91
|
Draft Genome Sequence of Pasteurella multocida subsp. multocida Strain PMTB, Isolated from a Buffalo. GENOME ANNOUNCEMENTS 2013; 1:1/5/e00872-13. [PMID: 24136854 PMCID: PMC3798460 DOI: 10.1128/genomea.00872-13] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Pasteurella multocida serotypes B:2 and E:2 are the main causative agents of ruminant hemorrhagic septicemia in Asia and Africa, respectively. Pasteurella multocida strain PMTB was isolated from a buffalo with hemorrhagic septicemia and has been determined to be serotype B:2. Here we report the draft genome sequence of strain PMTB.
Collapse
|
92
|
Genome Sequences of Mannheimia haemolytica Serotype A1 Strains D153 and D193 from Bovine Pneumonia. GENOME ANNOUNCEMENTS 2013; 1:1/5/e00848-13. [PMID: 24136851 PMCID: PMC3798457 DOI: 10.1128/genomea.00848-13] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Here we report two genome sequences, one complete and one draft, from virulent bovine strains of Mannheimia haemolytica serotype A1 recovered prior to the field usage of modern antimicrobial drugs.
Collapse
|
93
|
Stanton TB. A call for antibiotic alternatives research. Trends Microbiol 2013; 21:111-3. [PMID: 23473628 DOI: 10.1016/j.tim.2012.11.002] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Revised: 10/29/2012] [Accepted: 11/02/2012] [Indexed: 11/26/2022]
Abstract
The persistence and spread of antibiotic resistance, in conjunction with decreased profitability of new antibiotics, have created the dangerous prospect of ineffective therapies against bacterial diseases. National strategies aimed at discovery, development, and definition of the mechanisms of effective antibiotic alternatives, especially for agricultural applications, should be encouraged.
Collapse
Affiliation(s)
- Thaddeus B Stanton
- Food Safety and Enteric Diseases Unit, National Animal Disease Center, USDA-ARS, Ames, IA 50010, USA.
| |
Collapse
|
94
|
Abstract
In a world where most emerging and reemerging infectious diseases are zoonotic in nature and our contacts with both domestic and wild animals abound, there is growing awareness of the potential for human acquisition of animal diseases. Like other Pasteurellaceae, Pasteurella species are highly prevalent among animal populations, where they are often found as part of the normal microbiota of the oral, nasopharyngeal, and upper respiratory tracts. Many Pasteurella species are opportunistic pathogens that can cause endemic disease and are associated increasingly with epizootic outbreaks. Zoonotic transmission to humans usually occurs through animal bites or contact with nasal secretions, with P. multocida being the most prevalent isolate observed in human infections. Here we review recent comparative genomics and molecular pathogenesis studies that have advanced our understanding of the multiple virulence mechanisms employed by Pasteurella species to establish acute and chronic infections. We also summarize efforts being explored to enhance our ability to rapidly and accurately identify and distinguish among clinical isolates and to control pasteurellosis by improved development of new vaccines and treatment regimens.
Collapse
Affiliation(s)
- Brenda A Wilson
- Department of Microbiology and Host-Microbe Systems Theme of the Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA.
| | | |
Collapse
|
95
|
Complete Genome Sequence of Mannheimia haemolytica Strain 42548 from a Case of Bovine Respiratory Disease. GENOME ANNOUNCEMENTS 2013; 1:1/3/e00318-13. [PMID: 23723408 PMCID: PMC3668016 DOI: 10.1128/genomea.00318-13] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Mannheimia haemolytica is the major bacterial component in the bovine respiratory disease complex, which accounts for considerable economic losses to the cattle industry worldwide. The complete genome sequence of M. haemolytica strain 42548 was determined. It has a size of 2.73 Mb and contains 2,888 genes, including several antibiotic resistance genes.
Collapse
|
96
|
Zaheer R, Cook SR, Klima CL, Stanford K, Alexander T, Topp E, Read RR, McAllister TA. Effect of subtherapeutic vs. therapeutic administration of macrolides on antimicrobial resistance in Mannheimia haemolytica and enterococci isolated from beef cattle. Front Microbiol 2013; 4:133. [PMID: 23750157 PMCID: PMC3664329 DOI: 10.3389/fmicb.2013.00133] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2013] [Accepted: 05/06/2013] [Indexed: 11/13/2022] Open
Abstract
Macrolides are the first-line treatment against bovine respiratory disease (BRD), and are also used to treat infections in humans. The macrolide, tylosin phosphate, is often included in the diet of cattle as a preventative for liver abscesses in many regions of the world outside of Europe. This study investigated the effects of administering macrolides to beef cattle either systemically through a single subcutaneous injection (therapeutic) or continuously in-feed (subtherapeutic), on the prevalence and antimicrobial resistance of Mannheimia haemolytica and Enterococcus spp. isolated from the nasopharynx and faeces, respectively. Nasopharyngeal and faecal samples were collected weekly over 28 days from untreated beef steers and from steers injected once with tilmicosin or tulathromycin or continuously fed tylosin phosphate at dosages recommended by manufacturers. Tilmicosin and tulathromycin were effective in lowering (P < 0.05) the prevalence of M. haemolytica, whereas subtherapeutic tylosin had no effect. M. haemolytica isolated from control- and macrolide-treated animals were susceptible to macrolides as well as to other antibiotics. Major bacteria co-isolated with M. haemolytica from the nasopharynx included Pasteurella multocida, Staphylococcus spp., Acinetobacter spp., Escherichia coli and Bacillus spp. With the exception of M. haemolytica and P. multocida, erythromycin resistance was frequently found in other isolated species. Both methods of macrolide administration increased (P < 0.05) the proportion of erythromycin resistant enterococci within the population, which was comprised almost exclusively of Enterococcus hirae. Injectable macrolides impacted both respiratory and enteric microbes, whereas orally administered macrolides only influenced enteric bacteria.
Collapse
Affiliation(s)
- Rahat Zaheer
- Lethbridge Research Centre, Agriculture and Agri-Food CanadaLethbridge, AB, Canada
| | - Shaun R. Cook
- Lethbridge Research Centre, Agriculture and Agri-Food CanadaLethbridge, AB, Canada
| | - Cassidy L. Klima
- Lethbridge Research Centre, Agriculture and Agri-Food CanadaLethbridge, AB, Canada
| | - Kim Stanford
- Alberta Agriculture and Rural DevelopmentLethbridge, AB, Canada
| | - Trevor Alexander
- Lethbridge Research Centre, Agriculture and Agri-Food CanadaLethbridge, AB, Canada
| | - Edward Topp
- Southern Crop Protection and Food Research Centre, Agriculture and Agri-Food CanadaLondon, ON, Canada
| | - Ron R. Read
- Faculty of Medicine, University of CalgaryCalgary, AB, Canada
| | - Tim A. McAllister
- Lethbridge Research Centre, Agriculture and Agri-Food CanadaLethbridge, AB, Canada
| |
Collapse
|
97
|
Abstract
The first complete genome sequence of the P. multocida avian isolate Pm70 was reported in 2001. Analysis of the genome identified many predicted virulence genes, including two encoding homologues of the Bordetella pertussis filamentous haemagluttinins, and genes involved in iron transport and metabolism. Availability of the genome sequence allowed for a range of whole-genome transcriptomic and proteomic analyses and these have helped us understand how P. multocida responds to growth in the presence of antibiotics, under low iron conditions and in the host. Unfortunately, no new P. multocida genome sequences were determined during the rest of the decade, limiting any possible comparative genomic analyses until recently, when several new genome sequences have become available. Here we use the available data to identify a number of important similarities and differences between the strains and determine their phylogenetic relationships. Interestingly, based on the current data there is no clear correlation between phylogenetic relatedness and host predilection or disease.
Collapse
|
98
|
Poehlsgaard J, Andersen NM, Warrass R, Douthwaite S. Visualizing the 16-membered ring macrolides tildipirosin and tilmicosin bound to their ribosomal site. ACS Chem Biol 2012; 7:1351-5. [PMID: 22563863 DOI: 10.1021/cb300105p] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The veterinary antibiotic tildipirosin (20,23-dipiperidinyl-mycaminosyl-tylonolide, Zuprevo) was developed recently to treat bovine and swine respiratory tract infections caused by bacterial pathogens such as Pasteurella multocida. Tildipirosin is a derivative of the naturally occurring compound tylosin. Here, we define drug-target interactions by combining chemical footprinting with structure modeling and show that tildipirosin, tylosin, and an earlier tylosin derivative, tilmicosin (20-dimethylpiperidinyl-mycaminosyl-tylonolide, Micotil), bind to the same macrolide site within the large subunit of P. multocida and Escherichia coli ribosomes. The drugs nevertheless differ in how they occupy this site. Interactions of the two piperidine components, which are unique to tildipirosin, distinguish this drug from tylosin and tilmicosin. The 23-piperidine of tildipirosin contacts ribosomal residues on the tunnel wall while its 20-piperidine is oriented into the tunnel lumen and is positioned to interfere with the growing nascent peptide.
Collapse
Affiliation(s)
- Jacob Poehlsgaard
- Department of Biochemistry & Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Niels M. Andersen
- Department of Biochemistry & Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | - Ralf Warrass
- MSD Animal
Health Group, Intervet Innovation GmbH,
Zur Propstei, D-55270 Schwabenheim, Germany
| | - Stephen Douthwaite
- Department of Biochemistry & Molecular Biology, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| |
Collapse
|
99
|
Multiplex PCR to identify macrolide resistance determinants in Mannheimia haemolytica and Pasteurella multocida. Antimicrob Agents Chemother 2012; 56:3664-9. [PMID: 22564832 DOI: 10.1128/aac.00266-12] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The bacterial pathogens Mannheimia haemolytica and Pasteurella multocida are major etiological agents in respiratory tract infections of cattle. Although these infections can generally be successfully treated with veterinary macrolide antibiotics, a few recent isolates have shown resistance to these drugs. Macrolide resistance in members of the family Pasteurellaceae is conferred by combinations of at least three genes: erm(42), which encodes a monomethyltransferase and confers a type I MLS(B) (macrolide, lincosamide, and streptogramin B) phenotype; msr(E), which encodes a macrolide efflux pump; and mph(E), which encodes a macrolide-inactivating phosphotransferase. Here, we describe a multiplex PCR assay that detects the presence of erm(42), msr(E), and mph(E) and differentiates between these genes. In addition, the assay distinguishes P. multocida from M. haemolytica by amplifying distinctive fragments of the 23S rRNA (rrl) genes. One rrl fragment acts as a general indicator of gammaproteobacterial species and confirms whether the PCR assay has functioned as intended on strains that are negative for erm(42), msr(E), and mph(E). The multiplex system has been tested on more than 40 selected isolates of P. multocida and M. haemolytica and correlated with MICs for the veterinary macrolides tulathromycin and tilmicosin, and the newer compounds gamithromycin and tildipirosin. The multiplex PCR system gives a rapid and robustly accurate determination of macrolide resistance genotypes and bacterial genus, matching results from microbiological methods and whole-genome sequencing.
Collapse
|
100
|
Michael GB, Eidam C, Kadlec K, Meyer K, Sweeney MT, Murray RW, Watts JL, Schwarz S. Increased MICs of gamithromycin and tildipirosin in the presence of the genes erm(42) and msr(E)-mph(E) for bovine Pasteurella multocida and Mannheimia haemolytica. J Antimicrob Chemother 2012; 67:1555-7. [PMID: 22398653 DOI: 10.1093/jac/dks076] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|