51
|
Gapper NE, Giovannoni JJ, Watkins CB. Understanding development and ripening of fruit crops in an 'omics' era. HORTICULTURE RESEARCH 2014; 1:14034. [PMID: 26504543 PMCID: PMC4596339 DOI: 10.1038/hortres.2014.34] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 05/21/2014] [Accepted: 05/28/2014] [Indexed: 05/17/2023]
Abstract
Next generation sequencing has revolutionized plant biology. Not only has our understanding of plant metabolism advanced using model systems and modern chromatography, but application of 'omics'-based technology has been widely extended to non-model systems as costs have plummeted and efficiency increased. As a result, important fundamental questions relating to important horticultural crops are being answered, and novel approaches with application to industry are in progress. Here we review recent research advances on development and ripening of fruit crops, how next generation sequencing approaches are driving this advance and the emerging future landscape.
Collapse
Affiliation(s)
- Nigel E Gapper
- Department of Horticulture, Cornell University, Ithaca, NY 14853, USA
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, NY 14853, USA
- mailto:
| | - James J Giovannoni
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, NY 14853, USA
- Plant, Soil, and Nutrition Laboratory, US Department of Agriculture/Agriculture Research Service, Ithaca, NY 14853, USA
| | | |
Collapse
|
52
|
Fujisawa M, Shima Y, Nakagawa H, Kitagawa M, Kimbara J, Nakano T, Kasumi T, Ito Y. Transcriptional regulation of fruit ripening by tomato FRUITFULL homologs and associated MADS box proteins. THE PLANT CELL 2014; 26:89-101. [PMID: 24415769 PMCID: PMC3963596 DOI: 10.1105/tpc.113.119453] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 12/11/2013] [Accepted: 12/19/2013] [Indexed: 05/18/2023]
Abstract
The tomato (Solanum lycopersicum) MADS box FRUITFULL homologs FUL1 and FUL2 act as key ripening regulators and interact with the master regulator MADS box protein RIPENING INHIBITOR (RIN). Here, we report the large-scale identification of direct targets of FUL1 and FUL2 by transcriptome analysis of FUL1/FUL2 suppressed fruits and chromatin immunoprecipitation coupled with microarray analysis (ChIP-chip) targeting tomato gene promoters. The ChIP-chip and transcriptome analysis identified FUL1/FUL2 target genes that contain at least one genomic region bound by FUL1 or FUL2 (regions that occur mainly in their promoters) and exhibit FUL1/FUL2-dependent expression during ripening. These analyses identified 860 direct FUL1 targets and 878 direct FUL2 targets; this set of genes includes both direct targets of RIN and nontargets of RIN. Functional classification of the FUL1/FUL2 targets revealed that these FUL homologs function in many biological processes via the regulation of ripening-related gene expression, both in cooperation with and independent of RIN. Our in vitro assay showed that the FUL homologs, RIN, and tomato AGAMOUS-LIKE1 form DNA binding complexes, suggesting that tetramer complexes of these MADS box proteins are mainly responsible for the regulation of ripening.
Collapse
Affiliation(s)
- Masaki Fujisawa
- National Food Research Institute, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-8642, Japan
| | - Yoko Shima
- National Food Research Institute, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-8642, Japan
| | - Hiroyuki Nakagawa
- National Food Research Institute, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-8642, Japan
| | - Mamiko Kitagawa
- Research Institute, Kagome Co., Nasushiobara, Tochigi 329-2762, Japan
| | - Junji Kimbara
- Research Institute, Kagome Co., Nasushiobara, Tochigi 329-2762, Japan
| | - Toshitsugu Nakano
- National Food Research Institute, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-8642, Japan
| | - Takafumi Kasumi
- Department of Chemistry and Lifescience, Nihon University, Fujisawa, Kanagawa 252-0880, Japan
| | - Yasuhiro Ito
- National Food Research Institute, National Agriculture and Food Research Organization, Tsukuba, Ibaraki 305-8642, Japan
- Address correspondence to
| |
Collapse
|
53
|
Mellway RD, Lund ST. Interaction analysis of grapevine MIKC(c)-type MADS transcription factors and heterologous expression of putative véraison regulators in tomato. JOURNAL OF PLANT PHYSIOLOGY 2013; 170:1424-33. [PMID: 23787144 DOI: 10.1016/j.jplph.2013.05.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Revised: 05/15/2013] [Accepted: 05/16/2013] [Indexed: 05/06/2023]
Abstract
MIKC(c)-type MADS-domain transcription factors include important regulators of floral development that interact in protein complexes to control the development of floral organs, as described by the ABC model. Members of the SEPALLATA (SEP) and AGAMOUS (AG) MADS clades include proteins involved in stamen and carpel specification and certain members of these families, such as tomato (Solanum lycopersicon) SlRIN and SlTAGL1, have been shown to regulate fruit development and ripening initiation. A number of expression studies have shown that several floral homeotic MADS genes are expressed during grapevine (Vitis vinifera) berry development, including potential homologues of these characterized ripening regulators. To gain insight into the regulation of berry development and ripening in grapevine, we studied the interactions and functions of grapevine floral homeotic MADS genes. Using the yeast 2- and 3-hybrid systems, we determined that the complexes formed during fruit development and ripening may involve several classes of floral homeotic MADS proteins. We found that a heterologously expressed grapevine SEP gene, VviSEP4, is capable of partially complementing the non-ripening phenotype of the tomato rin mutant, indicating that a role for this gene in ripening regulation may be conserved in fleshy fruit ripening. We also found that ectopic expression of a grapevine AG clade gene, VviAG1, in tomato results in the development of fleshy sepals with the chemical characteristics of tomato fruit pericarp. Additionally, we performed 2-hybrid screens on a library prepared from Pinot noir véraison-stage berry and identified proteins that may interact with the MADS factors that are expressed during berry development and that may represent regulatory functions in grape berry development.
Collapse
Affiliation(s)
- Robin D Mellway
- Wine Research Centre, Faculty of Land and Food Systems, 230-2205 East Mall, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| | | |
Collapse
|
54
|
Lovisetto A, Guzzo F, Tadiello A, Confortin E, Pavanello A, Botton A, Casadoro G. Characterization of a bZIP gene highly expressed during ripening of the peach fruit. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2013; 70:462-70. [PMID: 23845825 DOI: 10.1016/j.plaphy.2013.06.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 06/11/2013] [Indexed: 05/11/2023]
Abstract
A ripening specific bZIP gene of peach was studied by ectopically expressing it in tomato. Two lines, with either a mild or a strong phenotype, respectively, were analyzed in detail. Transgenic fruit morphology was normal, yet the time spent to proceed through the various ripening stages was longer compared to wild type. In agreement with this finding the transgenic berries produced less ethylene, and also had a modified expression of some ripening-related genes that was particularly evident in berries with a strong phenotype. In particular, in the latter fruits polygalacturonase and lipoxygenase genes, but also genes coding for transcription factors (TFs) important for tomato ripening (i.e. TAGL1, CNR, APETALA2a, NOR) did not show the expected decreased expression in the red berries. As regards the RIN gene, its expression continued to increase in both mild and strong lines, and this is in agreement with the dilated ripening times. Interestingly, a metabolomic analysis of berries at various stages of ripening showed that the longer time spent by the transgenic berries to proceed from a stage to another was not due to a slackened metabolism. In fact, the differences in amount of stage-specific marker metabolites indicated that the transgenic berries had a very active metabolism. Therefore, the dilated ripening and the enhanced metabolism of the berries over-expressing the bZIP gene suggest that such gene might regulate ripening by acting as a pacemaker for some of the ripening metabolic pathways.
Collapse
Affiliation(s)
- Alessandro Lovisetto
- Department of Biology, University of Padua, Via G. Colombo 3, 35131 Padua, Italy.
| | | | | | | | | | | | | |
Collapse
|
55
|
Daminato M, Guzzo F, Casadoro G. A SHATTERPROOF-like gene controls ripening in non-climacteric strawberries, and auxin and abscisic acid antagonistically affect its expression. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:3775-86. [PMID: 23888065 PMCID: PMC3745736 DOI: 10.1093/jxb/ert214] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Strawberries (Fragaria×ananassa) are false fruits the ripening of which follows the non-climacteric pathway. The role played by a C-type MADS-box gene [SHATTERPROOF-like (FaSHP)] in the ripening of strawberries has been studied by transiently modifying gene expression through either over-expression or RNA-interference-mediated down-regulation. The altered expression of the FaSHP gene caused a change in the time taken by the over-expressing and the down- regulated fruits to attain the pink stage, which was slightly shorter and much longer, respectively, compared to controls. In parallel with the modified ripening times, the metabolome components and the expression of ripening-related genes also appeared different in the transiently modified fruits. Differences in the response time of the analysed genes suggest that FaSHP can control the expression of ripening genes either directly or indirectly through other transcription factor-encoding genes. Because fleshy strawberries are false fruits these results indicate that C-type MADS-box genes like SHATTERPROOF may act as modulators of ripening in fleshy fruit-like structures independently of their anatomical origin. Treatment of strawberries with either auxin or abscisic acid had antagonistic impacts on both the expression of FaSHP and the expression of ripening-related genes and metabolome components.
Collapse
Affiliation(s)
- Margherita Daminato
- Department of Biology, University of Padua, Via G. Colombo, 3, I-35131 Padua, Italy
| | - Flavia Guzzo
- Department of Biotechnology, University of Verona, Strada Le Grazie 15, Ca’ Vignal 1, I-37134 Verona, Italy
| | - Giorgio Casadoro
- Department of Biology, University of Padua, Via G. Colombo, 3, I-35131 Padua, Italy
- Botanical Garden, University of Padua, Via Orto Botanico, 15, I-35123 Padua, Italy
- *To whom correspondence should be addressed. E-mail: ,
| |
Collapse
|
56
|
Gapper NE, McQuinn RP, Giovannoni JJ. Molecular and genetic regulation of fruit ripening. PLANT MOLECULAR BIOLOGY 2013. [PMID: 23585213 DOI: 10.1007/s1103-013-0050-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Fleshy fruit undergo a novel developmental program that ends in the irreversible process of ripening and eventual tissue senescence. During this maturation process, fruit undergo numerous physiological, biochemical and structural alterations, making them more attractive to seed dispersal organisms. In addition, advanced or over-ripening and senescence, especially through tissue softening and eventual decay, render fruit susceptible to invasion by opportunistic pathogens. While ripening and senescence are often used interchangeably, the specific metabolic activities of each would suggest that ripening is a distinct process of fleshy fruits that precedes and may predispose the fruit to subsequent senescence.
Collapse
Affiliation(s)
- Nigel E Gapper
- Department of Horticulture, Cornell University, Ithaca, NY 14853, USA
| | | | | |
Collapse
|
57
|
Gapper NE, McQuinn RP, Giovannoni JJ. Molecular and genetic regulation of fruit ripening. PLANT MOLECULAR BIOLOGY 2013; 82:575-91. [PMID: 23585213 DOI: 10.1007/s11103-013-0050-3] [Citation(s) in RCA: 159] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2013] [Accepted: 03/23/2013] [Indexed: 05/21/2023]
Abstract
Fleshy fruit undergo a novel developmental program that ends in the irreversible process of ripening and eventual tissue senescence. During this maturation process, fruit undergo numerous physiological, biochemical and structural alterations, making them more attractive to seed dispersal organisms. In addition, advanced or over-ripening and senescence, especially through tissue softening and eventual decay, render fruit susceptible to invasion by opportunistic pathogens. While ripening and senescence are often used interchangeably, the specific metabolic activities of each would suggest that ripening is a distinct process of fleshy fruits that precedes and may predispose the fruit to subsequent senescence.
Collapse
Affiliation(s)
- Nigel E Gapper
- Department of Horticulture, Cornell University, Ithaca, NY 14853, USA
| | | | | |
Collapse
|
58
|
Ubi BE, Saito T, Bai S, Nishitani C, Ban Y, Ikeda K, Ito A, Moriguchi T. Characterization of 10 MADS-box genes from Pyrus pyrifolia and their differential expression during fruit development and ripening. Gene 2013; 528:183-94. [PMID: 23891821 DOI: 10.1016/j.gene.2013.07.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 07/07/2013] [Accepted: 07/11/2013] [Indexed: 11/25/2022]
Abstract
We cloned 10 Japanese pear (Pyrus pyrifolia) MIKC-type II MADS-box genes, and analyzed their expression during fruit development and ripening. PpMADS2-1 was APETALA (AP)1-like; PpMADS3-1 was FRUITFULL (FUL)/SQUAMOSA (SQUA)-like; PpMADS4-1 was AGAMOUS-like (AGL)6; PpMADS5-1 and PpMADS8-1 were SUPPRESSOR OF OVEREXPRESSION OF CONSTANS (SOC)-like; PpMADS9-1, PpMADS12-1, PpMADS14-1 and PpMADS16-1 were SEPALLATA (SEP)-like; while PpMADS15-1 was AGL/SHATTERPROOF (SHP)-like. Phylogenetic analysis showed their grouping into five major clades (and 10 sub-clades) that was consistent with their diverse functional types. Expression analysis in flower tissue revealed their distinct putative homeotic functional classes: A-class (PpMADS2-1, PpMADS3-1, PpMADS4-1, and PpMADS14-1), C-class (PpMADS15-1), E-class (PpMADS9-1, PpMADS12-1, and PpMADS16-1) and E (F)-class (PpMADS5-1 and PpMADS8-1). Differential gene expression was observed in different fruit tissues (skin, cortex and core) as well as in the cortex during the course of fruit development and ripening. Collectively, our results suggest their involvement in the diverse aspects of plant development including flower development and the course of fruit development and ripening.
Collapse
Affiliation(s)
- Benjamin Ewa Ubi
- Plant Physiology and Fruit Chemistry Division, NARO Institute of Fruit Tree Science, Tsukuba, Ibaraki 305-8605, Japan
| | | | | | | | | | | | | | | |
Collapse
|
59
|
Abstract
Genes of the AGAMOUS subfamily have been shown to play crucial roles in reproductive organ identity determination, fruit, and seed development. They have been deeply studied in eudicot species and especially in Arabidopsis. Recently, the AGAMOUS subfamily of rice has been studied for their role in flower development and an enormous amount of data has been generated. In this review, we provide an overview of these data and discuss the conservation of gene functions between rice and Arabidopsis.
Collapse
Affiliation(s)
- Ludovico Dreni
- Department of Biosciences, Università degli Studi di Milano, via Celoria 26, 20133 Milan, Italy
| | | | | |
Collapse
|
60
|
Seymour GB, Chapman NH, Chew BL, Rose JKC. Regulation of ripening and opportunities for control in tomato and other fruits. PLANT BIOTECHNOLOGY JOURNAL 2013; 11:269-78. [PMID: 22958755 DOI: 10.1111/j.1467-7652.2012.00738.x] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2012] [Revised: 07/23/2012] [Accepted: 07/25/2012] [Indexed: 05/21/2023]
Abstract
Fruits are an important part of a healthy diet. They provide essential vitamins and minerals, and their consumption is associated with a reduced risk of heart disease and certain cancers. These important plant products can, however, be expensive to purchase, may be of disappointing quality and often have a short shelf life. A major challenge for crop improvement in fleshy fruit species is the enhancement of their health-promoting attributes while improving quality and reducing postharvest waste. To achieve these aims, a sound mechanistic understanding of the processes involved in fruit development and ripening is needed. In recent years, substantial insights have been made into the mechanistic basis of ethylene biosynthesis, perception and signalling and the identity of master regulators of ripening that operate upstream of, or in concert with a regulatory pathway mediated by this plant hormone. The role of other plant hormones in the ripening process has, however, remained elusive, and the links between regulators and downstream processes are still poorly understood. In this review, we focus on tomato as a model for fleshy fruit and provide an overview of the molecular circuits known to be involved in ripening, especially those controlling pigment accumulation and texture changes. We then discuss how this information can be used to understand ripening in other fleshy fruit-bearing species. Recent developments in comparative genomics and systems biology approaches are discussed. The potential role of epigenetic changes in generating useful variation is highlighted along with opportunities for enhancing the level of metabolites that have a beneficial effect on human health.
Collapse
Affiliation(s)
- Graham B Seymour
- Plant and Crops Sciences Division, University of Nottingham, Loughborough, Leics, UK
| | | | | | | |
Collapse
|
61
|
Ireland HS, Yao JL, Tomes S, Sutherland PW, Nieuwenhuizen N, Gunaseelan K, Winz RA, David KM, Schaffer RJ. Apple SEPALLATA1/2-like genes control fruit flesh development and ripening. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 73:1044-56. [PMID: 23236986 DOI: 10.1111/tpj.12094] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 11/29/2012] [Accepted: 12/10/2012] [Indexed: 05/19/2023]
Abstract
Flowering plants utilize different floral structures to develop flesh tissue in fruits. Here we show that suppression of the homeologous SEPALLATA1/2-like genes MADS8 and MADS9 in the fleshy fruit apple (Malus x domestica) leads to sepaloid petals and greatly reduced fruit flesh. Immunolabelling of cell-wall epitopes and differential staining showed that the developing hypanthium (from which the apple flesh develops) of MADS8/9-suppressed apple flowers lacks a tissue layer, and the remaining flesh tissue of fully developed apples has considerably smaller cells. From these observations, it is proposed that MADS8 and MADS9 control the development of discrete zones within the hypanthium tissue, and therefore fruit flesh, and also act as foundations for development of different floral organs. At fruit maturity, the MADS8/9-suppressed apples do not ripen in terms of both developmentally controlled ripening characters, such as starch degradation, and ethylene-modulated ripening traits. Transient assays suggest that, like the RIN gene in tomato, the MADS9 gene acts as a transcriptional activator of the ethylene biosynthesis enzyme, 1-aminocyclopropane-1-carboxylate (ACC) synthase 1. The existence of a single class of genes that regulate both flesh formation and ripening provides an evolutionary tool for controlling two critical aspects of fleshy fruit development.
Collapse
Affiliation(s)
- Hilary S Ireland
- New Zealand Institute of Plant & Food Research Ltd, Private Bag 92169, Auckland, 1142, New Zealand
| | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Osorio S, Scossa F, Fernie AR. Molecular regulation of fruit ripening. FRONTIERS IN PLANT SCIENCE 2013; 4:198. [PMID: 23785378 PMCID: PMC3682129 DOI: 10.3389/fpls.2013.00198] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2013] [Accepted: 05/28/2013] [Indexed: 05/18/2023]
Abstract
Fruit ripening is a highly coordinated developmental process that coincides with seed maturation. The ripening process is regulated by thousands of genes that control progressive softening and/or lignification of pericarp layers, accumulation of sugars, acids, pigments, and release of volatiles. Key to crop improvement is a deeper understanding of the processes underlying fruit ripening. In tomato, mutations blocking the transition to ripe fruits have provided insights into the role of ethylene and its associated molecular networks involved in the control of ripening. However, the role of other plant hormones is still poorly understood. In this review, we describe how plant hormones, transcription factors, and epigenetic changes are intimately related to provide a tight control of the ripening process. Recent findings from comparative genomics and system biology approaches are discussed.
Collapse
Affiliation(s)
- Sonia Osorio
- Max-Planck-Institut für Molekulare PflanzenphysiologiePotsdam-Golm, Germany
- Departamento de Biología Molecular y Bioquímica, Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Consejo Superior de Investigaciones Científicas, Universidad de MálagaMálaga, Spain
- *Correspondence: Sonia Osorio, Departamento de Biologïa Molecular y Bioquímica, Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora”, Consejo Superior de Investigaciones Científicas, Universidad de Málaga, Edificio I+D, 3 Planta, Campus Teatinos, 29071 Málaga, Spain e-mail:
| | - Federico Scossa
- Max-Planck-Institut für Molekulare PflanzenphysiologiePotsdam-Golm, Germany
- Consiglio per la ricerca e la sperimentazione in agricoltura, Centro di ricerca per l’OrticolturaPontecagnano (Salerno), Italy
| | - Alisdair R. Fernie
- Max-Planck-Institut für Molekulare PflanzenphysiologiePotsdam-Golm, Germany
| |
Collapse
|
63
|
Liu JH, Zhang J, Jia CH, Zhang JB, Wang JS, Yang ZX, Xu BY, Jin ZQ. The interaction of banana MADS-box protein MuMADS1 and ubiquitin-activating enzyme E-MuUBA in post-harvest banana fruit. PLANT CELL REPORTS 2013; 32:129-137. [PMID: 23007689 DOI: 10.1007/s00299-012-1347-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Revised: 09/09/2012] [Accepted: 09/11/2012] [Indexed: 06/01/2023]
Abstract
KEY MESSAGE : The interaction of MuMADS1 and MuUBA in banana was reported, which will help us to understand the mechanism of the MADS-box gene in regulating banana fruit development and ripening. The ubiquitin-activating enzyme E1 gene fragment MuUBA was obtained from banana (Musa acuminata L.AAA) fruit by the yeast two-hybrid method using the banana MADS-box gene MuMADS1 as bait and 2-day post-harvest banana fruit cDNA library as prey. MuMADS1 interacted with MuUBA. The interaction of MuMADS1 and MuUBA in vivo was further proved by bimolecular fluorescence complementation assay. Real-time quantitative PCR evaluation of MuMADS1 and MuUBA expression patterns in banana showed that they are highly expressed in the ovule 4 stage, but present in low levels in the stem, which suggests a simultaneously differential expression action exists for both MuMADS1 and MuUBA in different tissues and developmental fruits. MuMADS1 and MuUBA expression was highly stimulated by exogenous ethylene and suppressed by 1-methylcyclopropene. These results indicated that MuMADS1 and MuUBA were co-regulated by ethylene and might play an important role in post-harvest banana fruit ripening.
Collapse
Affiliation(s)
- Ju-Hua Liu
- Key Laboratory of Tropical Crop Biotechnology, Ministry of Agriculture; Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, 4 Xueyuan Road, Haikou 571101, China
| | | | | | | | | | | | | | | |
Collapse
|
64
|
Seymour GB, Østergaard L, Chapman NH, Knapp S, Martin C. Fruit development and ripening. ANNUAL REVIEW OF PLANT BIOLOGY 2013; 64:219-41. [PMID: 23394500 DOI: 10.1146/annurev-arplant-050312-120057] [Citation(s) in RCA: 328] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Fruiting structures in the angiosperms range from completely dry to highly fleshy organs and provide many of our major crop products, including grains. In the model plant Arabidopsis, which has dry fruits, a high-level regulatory network of transcription factors controlling fruit development has been revealed. Studies on rare nonripening mutations in tomato, a model for fleshy fruits, have provided new insights into the networks responsible for the control of ripening. It is apparent that there are strong similarities between dry and fleshy fruits in the molecular circuits governing development and maturation. Translation of information from tomato to other fleshy-fruited species indicates that regulatory networks are conserved across a wide spectrum of angiosperm fruit morphologies. Fruits are an essential part of the human diet, and recent developments in the sequencing of angiosperm genomes have provided the foundation for a step change in crop improvement through the understanding and harnessing of genome-wide genetic and epigenetic variation.
Collapse
Affiliation(s)
- Graham B Seymour
- Plant and Crop Science Division, School of Biosciences, University of Nottingham, Loughborough LE12 5RD, United Kingdom.
| | | | | | | | | |
Collapse
|
65
|
Hubert O, Mbéguié-A-Mbéguié D. Expression patterns of ethylene biosynthesis genes from bananas during fruit ripening and in relationship with finger drop. AOB PLANTS 2012; 2012:pls041. [PMID: 23267429 PMCID: PMC3529539 DOI: 10.1093/aobpla/pls041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2012] [Accepted: 10/26/2012] [Indexed: 06/01/2023]
Abstract
BACKGROUND AND AIMS Banana finger drop is defined as dislodgement of individual fruits from the hand at the pedicel rupture area. For some banana varieties, this is a major feature of the ripening process, in addition to ethylene production and sugar metabolism. The few studies devoted to assessing the physiological and molecular basis of this process revealed (i) the similarity between this process and softening, (ii) the early onset of related molecular events, between the first and fourth day after ripening induction, and (iii) the putative involvement of ethylene as a regulatory factor. This study was conducted with the aim of identifying, through a candidate gene approach, a quality-related marker that could be used as a tool in breeding programmes. Here we examined the relationship between ripening ethylene biosynthesis (EB) and finger drop in order to gain further insight into the upstream regulatory steps of the banana finger drop process and to identify putative related candidate genes. METHODS Postharvest ripening of green banana fruit was induced by acetylene treatment and fruit taken at 1-4 days after ripening induction, and total RNA extracted from the median area [control zone (CZ)] and the pedicel rupture area [drop zone (DZ)] of peel tissue. Then the expression patterns of EB genes (MaACO1, MaACO2, MaACS1, MaACS2, MaACS3 and MaACS4) were comparatively examined in CZ and DZ via real-time quantitative polymerase chain reaction. PRINCIPAL RESULTS Differential expression of EB gene was observed in CZ and DZ during the postharvest period examined in this study. MaACO1, MaACS2 and MaACS1 were more highly induced in DZ than in the control, while a slight induction of the MaACS4 gene was observed. No marked differences between the two zones were observed for the MaACO2 gene. CONCLUSIONS The finger drop process enhanced EB gene expression including developmental- and ripening-induced genes (MaACO1), specific ripening-induced genes (MaACS1) and wound-induced genes (MaACS2). Thus, this process might be associated with a specific ethylene production in DZ of the pedicel area and the result of crosstalk between developmental, ripening and wound regulatory pathways. MaACO1, MaACS1, MaACS2, and to a lesser extent MaACS4 genes, which are more highly induced in DZ than in CZ, could be considered as putative candidates of the finger drop process.
Collapse
Affiliation(s)
- Olivier Hubert
- CIRAD, UMR QUALISUD,
F-97130 Capesterre-Belle-Eau, Guadeloupe,
France
- CIRAD, UMR QUALISUD,
F-34398 Montpellier, France
| | - Didier Mbéguié-A-Mbéguié
- CIRAD, UMR QUALISUD,
F-97130 Capesterre-Belle-Eau, Guadeloupe,
France
- CIRAD, UMR QUALISUD,
F-34398 Montpellier, France
| |
Collapse
|
66
|
Fabi JP, Seymour GB, Graham NS, Broadley MR, May ST, Lajolo FM, Cordenunsi BR, Oliveira do Nascimento JR. Analysis of ripening-related gene expression in papaya using an Arabidopsis-based microarray. BMC PLANT BIOLOGY 2012; 12:242. [PMID: 23256600 PMCID: PMC3562526 DOI: 10.1186/1471-2229-12-242] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 12/17/2012] [Indexed: 05/02/2023]
Abstract
BACKGROUND Papaya (Carica papaya L.) is a commercially important crop that produces climacteric fruits with a soft and sweet pulp that contain a wide range of health promoting phytochemicals. Despite its importance, little is known about transcriptional modifications during papaya fruit ripening and their control. In this study we report the analysis of ripe papaya transcriptome by using a cross-species (XSpecies) microarray technique based on the phylogenetic proximity between papaya and Arabidopsis thaliana. RESULTS Papaya transcriptome analyses resulted in the identification of 414 ripening-related genes with some having their expression validated by qPCR. The transcription profile was compared with that from ripening tomato and grape. There were many similarities between papaya and tomato especially with respect to the expression of genes encoding proteins involved in primary metabolism, regulation of transcription, biotic and abiotic stress and cell wall metabolism. XSpecies microarray data indicated that transcription factors (TFs) of the MADS-box, NAC and AP2/ERF gene families were involved in the control of papaya ripening and revealed that cell wall-related gene expression in papaya had similarities to the expression profiles seen in Arabidopsis during hypocotyl development. CONCLUSION The cross-species array experiment identified a ripening-related set of genes in papaya allowing the comparison of transcription control between papaya and other fruit bearing taxa during the ripening process.
Collapse
Affiliation(s)
- João Paulo Fabi
- University of São Paulo, Department of Food Science and Experimental Nutrition, FCF, São Paulo, Brazil
| | - Graham B Seymour
- Plant and Crop Sciences Division, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leics, LE12 5RD, UK
| | - Neil S Graham
- Plant and Crop Sciences Division, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leics, LE12 5RD, UK
| | - Martin R Broadley
- Plant and Crop Sciences Division, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leics, LE12 5RD, UK
| | - Sean T May
- Plant and Crop Sciences Division, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leics, LE12 5RD, UK
| | - Franco Maria Lajolo
- University of São Paulo, Department of Food Science and Experimental Nutrition, FCF, São Paulo, Brazil
- University of São Paulo, – NAPAN – Food and Nutrition Research Center, São Paulo, Brazil
| | - Beatriz Rosana Cordenunsi
- University of São Paulo, Department of Food Science and Experimental Nutrition, FCF, São Paulo, Brazil
- University of São Paulo, – NAPAN – Food and Nutrition Research Center, São Paulo, Brazil
| | - João Roberto Oliveira do Nascimento
- University of São Paulo, Department of Food Science and Experimental Nutrition, FCF, São Paulo, Brazil
- University of São Paulo, – NAPAN – Food and Nutrition Research Center, São Paulo, Brazil
| |
Collapse
|
67
|
The draft genome of watermelon (Citrullus lanatus) and resequencing of 20 diverse accessions. Nat Genet 2012. [PMID: 23179023 DOI: 10.1038/ng.2470] [Citation(s) in RCA: 416] [Impact Index Per Article: 34.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Watermelon, Citrullus lanatus, is an important cucurbit crop grown throughout the world. Here we report a high-quality draft genome sequence of the east Asia watermelon cultivar 97103 (2n = 2× = 22) containing 23,440 predicted protein-coding genes. Comparative genomics analysis provided an evolutionary scenario for the origin of the 11 watermelon chromosomes derived from a 7-chromosome paleohexaploid eudicot ancestor. Resequencing of 20 watermelon accessions representing three different C. lanatus subspecies produced numerous haplotypes and identified the extent of genetic diversity and population structure of watermelon germplasm. Genomic regions that were preferentially selected during domestication were identified. Many disease-resistance genes were also found to be lost during domestication. In addition, integrative genomic and transcriptomic analyses yielded important insights into aspects of phloem-based vascular signaling in common between watermelon and cucumber and identified genes crucial to valuable fruit-quality traits, including sugar accumulation and citrulline metabolism.
Collapse
|
68
|
Podevin N, Krauss A, Henry I, Swennen R, Remy S. Selection and validation of reference genes for quantitative RT-PCR expression studies of the non-model crop Musa. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2012; 30:1237-1252. [PMID: 23024595 PMCID: PMC3460175 DOI: 10.1007/s11032-012-9711-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Accepted: 02/08/2012] [Indexed: 05/20/2023]
Abstract
Gene expression analysis by reverse transcriptase real-time or quantitative polymerase chain reaction (RT-qPCR) is becoming widely used for non-model plant species. Given the high sensitivity of this method, normalization using multiple housekeeping or reference genes is critical, and careful selection of these reference genes is one of the most important steps to obtain reliable results. In this study, reference genes commonly used for other plant species were investigated to identify genes displaying highly uniform expression patterns in different varieties, tissues, developmental stages, fungal infection, and osmotic stress conditions for the non-model crop Musa (banana and plantains). The expression stability of six candidate reference genes was tested on six different sample sets, and the results were analyzed using the publicly available algorithms geNorm and NormFinder. Our results show that variety, plant material, primer set, and gene identity can all influence the robustness and outcome of RT-qPCR analysis. In the case of Musa, a combination of three reference genes (EF1, TUB and ACT) can be used for normalization of gene expression data from greenhouse leaf samples. In the case of shoot meristem cultures, numerous combinations can be used because the investigated reference genes exhibited limited variability. In contrast, variability in expression of the reference genes was much larger among leaf samples from plants grown in vitro, for which the best combination of reference genes (L2 and ACT genes) is still suboptimal. Overall, our data confirm that the stability of candidate reference genes should be thoroughly investigated for each experimental condition under investigation. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s11032-012-9711-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nancy Podevin
- Laboratory of Tropical Crop Improvement, Department of Biosystems, Faculty of Bioscience Engineering, K.U. Leuven, Kasteelpark Arenberg 13, 3001 Leuven, Belgium
- Present Address: European Food Safety Authority (EFSA), Largo N. Palli 5/A, 43121 Parma, Italy
| | - An Krauss
- Laboratory of Tropical Crop Improvement, Department of Biosystems, Faculty of Bioscience Engineering, K.U. Leuven, Kasteelpark Arenberg 13, 3001 Leuven, Belgium
- Present Address: Roche Diagnostics Belgium, Schaarbeeklei 198, 1800 Vilvoorde, Belgium
| | - Isabelle Henry
- Laboratory of Tropical Crop Improvement, Department of Biosystems, Faculty of Bioscience Engineering, K.U. Leuven, Kasteelpark Arenberg 13, 3001 Leuven, Belgium
- Present Address: Section of Plant Biology and Genome Center, UC Davis, 451 E, Health Sciences Drive, Davis, CA 95616 USA
| | - Rony Swennen
- Laboratory of Tropical Crop Improvement, Department of Biosystems, Faculty of Bioscience Engineering, K.U. Leuven, Kasteelpark Arenberg 13, 3001 Leuven, Belgium
- Bioversity International, K.U. Leuven, Kasteelpark Arenberg 13, 3001 Leuven, Belgium
| | - Serge Remy
- Laboratory of Tropical Crop Improvement, Department of Biosystems, Faculty of Bioscience Engineering, K.U. Leuven, Kasteelpark Arenberg 13, 3001 Leuven, Belgium
| |
Collapse
|
69
|
Characterization of an AGAMOUS-like MADS box protein, a probable constituent of flowering and fruit ripening regulatory system in banana. PLoS One 2012; 7:e44361. [PMID: 22984496 PMCID: PMC3439491 DOI: 10.1371/journal.pone.0044361] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2011] [Accepted: 08/03/2012] [Indexed: 11/22/2022] Open
Abstract
The MADS-box family of genes has been shown to play a significant role in the development of reproductive organs, including dry and fleshy fruits. In this study, the molecular properties of an AGAMOUS like MADS box transcription factor in banana cultivar Giant governor (Musa sp, AAA group, subgroup Cavendish) has been elucidated. We have detected a CArG-box sequence binding AGAMOUS MADS-box protein in banana flower and fruit nuclear extracts in DNA-protein interaction assays. The protein fraction in the DNA-protein complex was analyzed by mass spectrometry and using this information we have obtained the full length cDNA of the corresponding protein. The deduced protein sequence showed ∼95% amino acid sequence homology with MA-MADS5, a MADS-box protein described previously from banana. We have characterized the domains of the identified AGAMOUS MADS-box protein involved in DNA binding and homodimer formation in vitro using full-length and truncated versions of affinity purified recombinant proteins. Furthermore, in order to gain insight about how DNA bending is achieved by this MADS-box factor, we performed circular permutation and phasing analysis using the wild type recombinant protein. The AGAMOUS MADS-box protein identified in this study has been found to predominantly accumulate in the climacteric fruit pulp and also in female flower ovary. In vivo and in vitro assays have revealed specific binding of the identified AGAMOUS MADS-box protein to CArG-box sequence in the promoters of major ripening genes in banana fruit. Overall, the expression patterns of this MADS-box protein in banana female flower ovary and during various phases of fruit ripening along with the interaction of the protein to the CArG-box sequence in the promoters of major ripening genes lead to interesting assumption about the possible involvement of this AGAMOUS MADS-box factor in banana fruit ripening and floral reproductive organ development.
Collapse
|
70
|
Shan W, Kuang JF, Chen L, Xie H, Peng HH, Xiao YY, Li XP, Chen WX, He QG, Chen JY, Lu WJ. Molecular characterization of banana NAC transcription factors and their interactions with ethylene signalling component EIL during fruit ripening. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:5171-87. [PMID: 22888129 PMCID: PMC3430993 DOI: 10.1093/jxb/ers178] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The plant-specific NAC (NAM, ATAF1/2, and CUC2) transcription factors (TFs) play important roles in plant growth, development, and stress responses. However, the precise role of NAC TFs in relation to fruit ripening is poorly understood. In this study, six NAC genes, designated MaNAC1-MaNAC6, were isolated and characterized from banana fruit. Subcellular localization showed that MaNAC1-MaNAC5 proteins localized preferentially to the nucleus, while MaNAC6 was distributed throughout the entire cell. A transactivation assay in yeast demonstrated that MaNAC4 and MaNAC6, as well as their C-terminal regions, possessed trans-activation activity. Gene expression profiles in fruit with four different ripening characteristics, including natural, ethylene-induced, 1-methylcyclopropene (1-MCP)-delayed, and a combination of 1-MCP with ethylene treatment, revealed that the MaNAC genes were differentially expressed in peel and pulp during post-harvest ripening. MaNAC1 and MaNAC2 were apparently upregulated by ethylene in peel and pulp, consistent with the increase in ethylene production. In contrast, MaNAC3 in peel and pulp and MaNAC5 in peel were constitutively expressed, and transcripts of MaNAC4 in peel and pulp and MaNAC6 in peel decreased, while MaNAC5 or MaNAC6 in pulp increased slightly during fruit ripening. Furthermore, the MaNAC2 promoter was activated after ethylene application, further enhancing the involvement of MaNAC2 in fruit ripening. More importantly, yeast two-hybrid and bimolecular fluorescence complementation analyses confirmed that MaNAC1/2 physically interacted with a downstream component of ethylene signalling, ethylene insensitive 3 (EIN3)-like protein, termed MaEIL5, which was downregulated during ripening. Taken together, these results suggest that MaNACs such as MaNAC1/MaNAC2, may be involved in banana fruit ripening via interaction with ethylene signalling components.
Collapse
Affiliation(s)
- Wei Shan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Key Laboratory for Postharvest Science, College of Horticultural ScienceSouth China Agricultural University, Guangzhou 510642, PR China
- These authors contributed equally to this work
| | - Jian-fei Kuang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Key Laboratory for Postharvest Science, College of Horticultural ScienceSouth China Agricultural University, Guangzhou 510642, PR China
- These authors contributed equally to this work
| | - Lei Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Key Laboratory for Postharvest Science, College of Horticultural ScienceSouth China Agricultural University, Guangzhou 510642, PR China
| | - Hui Xie
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Key Laboratory for Postharvest Science, College of Horticultural ScienceSouth China Agricultural University, Guangzhou 510642, PR China
| | - Huan-huan Peng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Key Laboratory for Postharvest Science, College of Horticultural ScienceSouth China Agricultural University, Guangzhou 510642, PR China
| | - Yun-yi Xiao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Key Laboratory for Postharvest Science, College of Horticultural ScienceSouth China Agricultural University, Guangzhou 510642, PR China
| | - Xue-ping Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Key Laboratory for Postharvest Science, College of Horticultural ScienceSouth China Agricultural University, Guangzhou 510642, PR China
| | - Wei-xin Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Key Laboratory for Postharvest Science, College of Horticultural ScienceSouth China Agricultural University, Guangzhou 510642, PR China
| | - Quan-guang He
- Institute of Agro-food Science & Technology, Guangxi Academy of Agricultural SciencesNanning 530007, PR China
| | - Jian-ye Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Key Laboratory for Postharvest Science, College of Horticultural ScienceSouth China Agricultural University, Guangzhou 510642, PR China
- To whom correspondence should be addressed. E-mail: or
| | - Wang-jin Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources/Guangdong Key Laboratory for Postharvest Science, College of Horticultural ScienceSouth China Agricultural University, Guangzhou 510642, PR China
- To whom correspondence should be addressed. E-mail: or
| |
Collapse
|
71
|
[Research progress on banana functional genomics involved in fruit quality]. YI CHUAN = HEREDITAS 2012; 34:412-9. [PMID: 22522158 DOI: 10.3724/sp.j.1005.2012.00412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Banana is one of the most important tropical fruits and main economical resource for tropical people. Banana quality is always becoming a focus for people to follow with interest. Here, we reviewed recent research progresses on isolation and identification of banana genes involved in fruit quality such as ripening, softening, glycometabolism, and scent, which will help us explore their functions and facilitate banana quality improvement.
Collapse
|
72
|
Abstract
Tomato ripening is a highly coordinated developmental process that coincides with seed maturation. Regulated expression of thousands of genes controls fruit softening as well as accumulation of pigments, sugars, acids, and volatile compounds that increase attraction to animals. A combination of molecular tools and ripening-affected mutants has permitted researchers to establish a framework for the control of ripening. Tomato is a climacteric fruit, with an absolute requirement for the phytohormone ethylene to ripen. This dependence upon ethylene has established tomato fruit ripening as a model system for study of regulation of its synthesis and perception. In addition, several important ripening mutants, including rin, nor, and Cnr, have provided novel insights into the control of ripening processes. Here, we describe how ethylene and the transcription factors associated with the ripening process fit together into a network controlling ripening.
Collapse
Affiliation(s)
- Harry J Klee
- University of Florida, Horticultural Sciences, Gainesville, Florida 32611, USA.
| | | |
Collapse
|
73
|
Sculpting the maturation, softening and ethylene pathway: the influences of microRNAs on tomato fruits. BMC Genomics 2012; 13:7. [PMID: 22230737 PMCID: PMC3266637 DOI: 10.1186/1471-2164-13-7] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Accepted: 01/09/2012] [Indexed: 11/24/2022] Open
Abstract
Background MicroRNAs (miRNAs), a ubiquitous class of short RNAs, play vital roles in physiological and biochemical processes in plants by mediating gene silencing at post-transcriptional (PTGS) level. Tomato is a model system to study molecular basis of fleshy fruit ripening and senescence, ethylene biosynthesis and signal transduction owing to its genetic and molecular tractability. To study the functions of miRNAs in tomato fruit ripening and senescence, and their possible roles in ethylene response, the next generation sequencing method was employed to identify miRNAs in tomato fruit. Bioinformatics and molecular biology approaches were combined to profile the miRNAs expression patterns at three different fruit ripening stages and by exogenous ethylene treatment. Results In addition to 7 novel miRNA families, 103 conserved miRNAs belonging to 24 families and 10 non-conserved miRNAs matching 9 families were identified in our libraries. The targets of many these miRNAs were predicted to be transcriptional factors. Other targets are known to play roles in the regulation of metabolic processes. Interestingly, some targets were predicted to be involved in fruit ripening and softening, such as Pectate Lyase, beta-galactosidase, while a few others were predicted to be involved in ethylene biosynthesis and signaling pathway, such as ACS, EIN2 and CTR1. The expression patterns of a number of such miRNAs at three ripening stages were confirmed by stem-loop RT-PCR, which showed a strong negative correlation with that of their targets. The regulation of exogenous ethylene on miRNAs expression profiles were analyzed simultaneously, and 3 down-regulated, 5 up-regulated miRNAs were found in this study. Conclusions A combination of high throughput sequencing and molecular biology approaches was used to explore the involvement of miRNAs during fruit ripening. Several miRNAs showed differential expression profiles during fruit ripening, and a number of miRNAs were influenced by ethylene treatment. The results suggest the importance of miRNAs in fruit ripening and ethylene response.
Collapse
|
74
|
Kulkarni RS, Chidley HG, Pujari KH, Giri AP, Gupta VS. Geographic variation in the flavour volatiles of Alphonso mango. Food Chem 2012. [DOI: 10.1016/j.foodchem.2011.06.053] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
75
|
Hershkovitz V, Friedman H, Goldschmidt EE, Feygenberg O, Pesis E. Effect of seed on ripening control components during avocado fruit development. JOURNAL OF PLANT PHYSIOLOGY 2011; 168:2177-2183. [PMID: 21930327 DOI: 10.1016/j.jplph.2011.07.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2011] [Revised: 07/06/2011] [Accepted: 07/21/2011] [Indexed: 05/31/2023]
Abstract
Seedless avocado fruit are produced alongside seeded fruit in the cultivar Arad, and both reach maturity at the same time. Using this system, it was possible to show that avocado seed inhibits the ripening process: seedless fruits exhibited higher response to exogenous ethylene already at the fruitlet stage, and also at the immature and mature fruit stages. They produced higher CO₂ levels, and the ethylene peak was apparent at the fruitlet stage of seedless fruit, but not of seeded ones. The expression levels of PaETR, PaERS1 and PaCTR1 on the day of harvest at all developmental stages were very similar between seeded and seedless fruit, except that PaCTR1 was higher in seedless fruit only at very early stages. This expression pattern suggests that the seed does not have an effect on components of the ethylene response pathway when fruits are just picked. The expression of MADS-box genes, PaAG1 and PaAGL9, preceded the increase in ethylene production of mature seeded fruit, but not at earlier stages. However, only PaAGL9 was induced in seedless fruit at early stages of development. Taken together, these data suggest that these genes are perhaps involved in climacteric response in seeded fruit, and the seed is responsible for their induction at normal fruit ripening.
Collapse
Affiliation(s)
- Vera Hershkovitz
- Institute of Postharvest and Food Science, The Volcani Center, P.O. Box 6, Bet Dagan 50250, Israel.
| | | | | | | | | |
Collapse
|
76
|
Chen L, Zhong HY, Kuang JF, Li JG, Lu WJ, Chen JY. Validation of reference genes for RT-qPCR studies of gene expression in banana fruit under different experimental conditions. PLANTA 2011; 234:377-90. [PMID: 21505864 DOI: 10.1007/s00425-011-1410-3] [Citation(s) in RCA: 229] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Accepted: 03/25/2011] [Indexed: 05/18/2023]
Abstract
Reverse transcription quantitative real-time PCR (RT-qPCR) is a sensitive technique for quantifying gene expression, but its success depends on the stability of the reference gene(s) used for data normalization. Only a few studies on validation of reference genes have been conducted in fruit trees and none in banana yet. In the present work, 20 candidate reference genes were selected, and their expression stability in 144 banana samples were evaluated and analyzed using two algorithms, geNorm and NormFinder. The samples consisted of eight sample sets collected under different experimental conditions, including various tissues, developmental stages, postharvest ripening, stresses (chilling, high temperature, and pathogen), and hormone treatments. Our results showed that different suitable reference gene(s) or combination of reference genes for normalization should be selected depending on the experimental conditions. The RPS2 and UBQ2 genes were validated as the most suitable reference genes across all tested samples. More importantly, our data further showed that the widely used reference genes, ACT and GAPDH, were not the most suitable reference genes in many banana sample sets. In addition, the expression of MaEBF1, a gene of interest that plays an important role in regulating fruit ripening, under different experimental conditions was used to further confirm the validated reference genes. Taken together, our results provide guidelines for reference gene(s) selection under different experimental conditions and a foundation for more accurate and widespread use of RT-qPCR in banana.
Collapse
Affiliation(s)
- Lei Chen
- Guangdong Key Laboratory for Postharvest Science, College of Horticultural Science, South China Agricultural University, Guangzhou, 510642, People's Republic of China
| | | | | | | | | | | |
Collapse
|
77
|
Tranbarger TJ, Dussert S, Joët T, Argout X, Summo M, Champion A, Cros D, Omore A, Nouy B, Morcillo F. Regulatory mechanisms underlying oil palm fruit mesocarp maturation, ripening, and functional specialization in lipid and carotenoid metabolism. PLANT PHYSIOLOGY 2011; 156:564-84. [PMID: 21487046 PMCID: PMC3177259 DOI: 10.1104/pp.111.175141] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2011] [Accepted: 04/12/2011] [Indexed: 05/17/2023]
Abstract
Fruit provide essential nutrients and vitamins for the human diet. Not only is the lipid-rich fleshy mesocarp tissue of the oil palm (Elaeis guineensis) fruit the main source of edible oil for the world, but it is also the richest dietary source of provitamin A. This study examines the transcriptional basis of these two outstanding metabolic characters in the oil palm mesocarp. Morphological, cellular, biochemical, and hormonal features defined key phases of mesocarp development. A 454 pyrosequencing-derived transcriptome was then assembled for the developmental phases preceding and during maturation and ripening, when high rates of lipid and carotenoid biosynthesis occur. A total of 2,629 contigs with differential representation revealed coordination of metabolic and regulatory components. Further analysis focused on the fatty acid and triacylglycerol assembly pathways and during carotenogenesis. Notably, a contig similar to the Arabidopsis (Arabidopsis thaliana) seed oil transcription factor WRINKLED1 was identified with a transcript profile coordinated with those of several fatty acid biosynthetic genes and the high rates of lipid accumulation, suggesting some common regulatory features between seeds and fruits. We also focused on transcriptional regulatory networks of the fruit, in particular those related to ethylene transcriptional and GLOBOSA/PISTILLATA-like proteins in the mesocarp and a central role for ethylene-coordinated transcriptional regulation of type VII ethylene response factors during ripening. Our results suggest that divergence has occurred in the regulatory components in this monocot fruit compared with those identified in the dicot tomato (Solanum lycopersicum) fleshy fruit model.
Collapse
Affiliation(s)
- Timothy J Tranbarger
- Institut de Recherche pour le Développement, UMR Diversité et Adaptation et Développement des Plantes, 34394 Montpellier cedex 5, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Seymour GB, Ryder CD, Cevik V, Hammond JP, Popovich A, King GJ, Vrebalov J, Giovannoni JJ, Manning K. A SEPALLATA gene is involved in the development and ripening of strawberry (Fragaria x ananassa Duch.) fruit, a non-climacteric tissue. JOURNAL OF EXPERIMENTAL BOTANY 2011; 62:1179-88. [PMID: 21115665 PMCID: PMC3022409 DOI: 10.1093/jxb/erq360] [Citation(s) in RCA: 139] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2010] [Revised: 10/08/2010] [Accepted: 10/11/2010] [Indexed: 05/18/2023]
Abstract
Climacteric and non-climacteric fruits have traditionally been viewed as representing two distinct programmes of ripening associated with differential respiration and ethylene hormone effects. In climacteric fruits, such as tomato and banana, the ripening process is marked by increased respiration and is induced and co-ordinated by ethylene, while in non-climacteric fruits, such as strawberry and grape, it is controlled by an ethylene-independent process with little change in respiration rate. The two contrasting mechanisms, however, both lead to texture, colour, and flavour changes that probably reflect some common programmes of regulatory control. It has been shown that a SEPALLATA(SEP)4-like gene is necessary for normal ripening in tomato. It has been demonstrated here that silencing a fruit-related SEP1/2-like (FaMADS9) gene in strawberry leads to the inhibition of normal development and ripening in the petal, achene, and receptacle tissues. In addition, analysis of transcriptome profiles reveals pleiotropic effects of FaMADS9 on fruit development and ripening-related gene expression. It is concluded that SEP genes play a central role in the developmental regulation of ripening in both climacteric and non-climacteric fruits. These findings provide important information to extend the molecular control of ripening in a non-climacteric fruit beyond the limited genetic and cultural options currently available.
Collapse
Affiliation(s)
- Graham B. Seymour
- University of Nottingham, School of Biosciences, Division of Plant and Crop Sciences, Sutton Bonington Campus, Loughborough, Leics LE12 5RD, UK
| | - Carol D. Ryder
- Warwick HRI, University of Warwick, Wellesbourne, Warwick CV35 9EF, UK
| | - Volkan Cevik
- Warwick HRI, University of Warwick, Wellesbourne, Warwick CV35 9EF, UK
| | - John P. Hammond
- Warwick HRI, University of Warwick, Wellesbourne, Warwick CV35 9EF, UK
| | | | - Graham J. King
- Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, UK
| | - Julia Vrebalov
- Boyce Thompson Institute for Plant Research and USDA-ARS, Tower Road, Cornell University Campus, Ithaca, NY 14853, USA
| | - James J. Giovannoni
- Boyce Thompson Institute for Plant Research and USDA-ARS, Tower Road, Cornell University Campus, Ithaca, NY 14853, USA
| | - Kenneth Manning
- Warwick HRI, University of Warwick, Wellesbourne, Warwick CV35 9EF, UK
- To whom correspondence should be addressed: E-mail:
| |
Collapse
|
79
|
Cin VD, Ramina A. MADS Box Transcript Amount is Affected by Ethylene during Abscission. ACTA ACUST UNITED AC 2011. [DOI: 10.4236/ajps.2011.23035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
80
|
Li HL, Wang Y, Guo D, Tian WM, Peng SQ. Three MADS-box genes of Hevea brasiliensis expressed during somatic embryogenesis and in the laticifer cells. Mol Biol Rep 2010; 38:4045-52. [PMID: 21107712 DOI: 10.1007/s11033-010-0523-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Accepted: 11/15/2010] [Indexed: 10/18/2022]
Abstract
Three MADS-box genes, designated HbMADS1, HbMADS2 and HbMADS3, were isolated from Hevea brasiliensis. HbMADS1, HbMADS2 and HbMADS3 encode polypetides consisting of 245, 217 and 239 amino acids, respectively, containing conserved MADS-box motifs at N-terminus. Transcription pattern analysis revealed that three MADS-box genes had highly transcription in the laticifer cells. The transcriptions of HbMADS1and HbMADS3 were induced in the laticifer cells by jamonic acid, while HbMADS2 was not induction by jamonic acid. Ethephone is not effective in inducing their expression. The three genes were differentially expressed during somatic embryogenesis of rubber tree. Characterization of HbMADSs will attribute to understand their possible function in rubber tree.
Collapse
Affiliation(s)
- Hui-Liang Li
- Key laboratory of Tropical Crop Biotechnology, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China.
| | | | | | | | | |
Collapse
|