51
|
Almeida GD, Nair S, Borém A, Cairns J, Trachsel S, Ribaut JM, Bänziger M, Prasanna BM, Crossa J, Babu R. Molecular mapping across three populations reveals a QTL hotspot region on chromosome 3 for secondary traits associated with drought tolerance in tropical maize. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2014; 34:701-715. [PMID: 25076840 PMCID: PMC4092235 DOI: 10.1007/s11032-014-0068-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Accepted: 03/05/2014] [Indexed: 05/18/2023]
Abstract
Identifying quantitative trait loci (QTL) of sizeable effects that are expressed in diverse genetic backgrounds across contrasting water regimes particularly for secondary traits can significantly complement the conventional drought tolerance breeding efforts. We evaluated three tropical maize biparental populations under water-stressed and well-watered regimes for drought-related morpho-physiological traits, such as anthesis-silking interval (ASI), ears per plant (EPP), stay-green (SG) and plant-to-ear height ratio (PEH). In general, drought stress reduced the genetic variance of grain yield (GY), while that of morpho-physiological traits remained stable or even increased under drought conditions. We detected consistent genomic regions across different genetic backgrounds that could be target regions for marker-assisted introgression for drought tolerance in maize. A total of 203 QTL for ASI, EPP, SG and PEH were identified under both the water regimes. Meta-QTL analysis across the three populations identified six constitutive genomic regions with a minimum of two overlapping traits. Clusters of QTL were observed on chromosomes 1.06, 3.06, 4.09, 5.05, 7.03 and 10.04/06. Interestingly, a ~8-Mb region delimited in 3.06 harboured QTL for most of the morpho-physiological traits considered in the current study. This region contained two important candidate genes viz., zmm16 (MADS-domain transcription factor) and psbs1 (photosystem II unit) that are responsible for reproductive organ development and photosynthate accumulation, respectively. The genomic regions identified in this study partially explained the association of secondary traits with GY. Flanking single nucleotide polymorphism markers reported herein may be useful in marker-assisted introgression of drought tolerance in tropical maize.
Collapse
Affiliation(s)
- Gustavo Dias Almeida
- Universidade Federal de Viçosa (UFV), CEP: 36.570-000 Viçosa, Minas Gerais State Brazil
- Monsanto Company, CEP: 38.405-232 Uberlândia, Minas Gerais Brazil
| | - Sudha Nair
- International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, Mexico, DF Mexico
| | - Aluízio Borém
- Universidade Federal de Viçosa (UFV), CEP: 36.570-000 Viçosa, Minas Gerais State Brazil
| | - Jill Cairns
- International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, Mexico, DF Mexico
| | - Samuel Trachsel
- International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, Mexico, DF Mexico
| | - Jean-Marcel Ribaut
- Generation Challenge Program, Hosted by CIMMYT, Apdo. Postal 6-641, Mexico, DF Mexico
| | - Marianne Bänziger
- International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, Mexico, DF Mexico
| | | | - Jose Crossa
- International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, Mexico, DF Mexico
| | - Raman Babu
- International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, Mexico, DF Mexico
| |
Collapse
|
52
|
Wallace JG, Larsson SJ, Buckler ES. Entering the second century of maize quantitative genetics. Heredity (Edinb) 2014; 112:30-8. [PMID: 23462502 PMCID: PMC3860165 DOI: 10.1038/hdy.2013.6] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 12/27/2012] [Accepted: 01/14/2013] [Indexed: 12/14/2022] Open
Abstract
Maize is the most widely grown cereal in the world. In addition to its role in global agriculture, it has also long served as a model organism for genetic research. Maize stands at a genetic crossroads, as it has access to all the tools available for plant genetics but exhibits a genetic architecture more similar to other outcrossing organisms than to self-pollinating crops and model plants. In this review, we summarize recent advances in maize genetics, including the development of powerful populations for genetic mapping and genome-wide association studies (GWAS), and the insights these studies yield on the mechanisms underlying complex maize traits. Most maize traits are controlled by a large number of genes, and linkage analysis of several traits implicates a 'common gene, rare allele' model of genetic variation where some genes have many individually rare alleles contributing. Most natural alleles exhibit small effect sizes with little-to-no detectable pleiotropy or epistasis. Additionally, many of these genes are locked away in low-recombination regions that encourage the formation of multi-gene blocks that may underlie maize's strong heterotic effect. Domestication left strong marks on the maize genome, and some of the differences in trait architectures may be due to different selective pressures over time. Overall, maize's advantages as a model system make it highly desirable for studying the genetics of outcrossing species, and results from it can provide insight into other such species, including humans.
Collapse
Affiliation(s)
- J G Wallace
- Institute for Genomic Diversity, Cornell University, Ithaca, NY, USA
| | - S J Larsson
- Department of Plant Breeding and Genetics, Cornell University, Ithaca, NY, USA
| | - E S Buckler
- Institute for Genomic Diversity, Cornell University, Ithaca, NY, USA
- Department of Plant Breeding and Genetics, Cornell University, Ithaca, NY, USA
- United States Department of Agriculture-Agricultural Research Service, Ithaca, NY, USA
| |
Collapse
|
53
|
Abdelgawad ZA, Khalafaallah AA, Abdallah MM. Impact of Methyl Jasmonate on Antioxidant Activity and Some Biochemical Aspects of Maize Plant Grown under Water Stress Condition. ACTA ACUST UNITED AC 2014. [DOI: 10.4236/as.2014.512117] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
54
|
Xue Y, Warburton ML, Sawkins M, Zhang X, Setter T, Xu Y, Grudloyma P, Gethi J, Ribaut JM, Li W, Zhang X, Zheng Y, Yan J. Genome-wide association analysis for nine agronomic traits in maize under well-watered and water-stressed conditions. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2013; 126:2587-96. [PMID: 23884600 DOI: 10.1007/s00122-013-2158-x] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2013] [Accepted: 07/12/2013] [Indexed: 05/03/2023]
Abstract
Drought can cause severe reduction in maize production, and strongly threatens crop yields. To dissect this complex trait and identify superior alleles, 350 tropical and subtropical maize inbred lines were genotyped using a 1536-SNP array developed from drought-related genes and an array of 56,110 random SNPs. The inbred lines were crossed with a common tester, CML312, and the testcrosses were phenotyped for nine traits under well-watered and water-stressed conditions in seven environments. Using genome-wide association mapping with correction for population structure, 42 associated SNPs (P ≤ 2.25 × 10(-6) 0.1/N) were identified, located in 33 genes for 126 trait × environment × treatment combinations. Of these genes, three were co-localized to drought-related QTL regions. Gene GRMZM2G125777 was strongly associated with ear relative position, hundred kernel weight and timing of male and female flowering, and encodes NAC domain-containing protein 2, a transcription factor expressed in different tissues. These results provide some good information for understanding the genetic basis for drought tolerance and further studies on identified candidate genes should illuminate mechanisms of drought tolerance and provide tools for designing drought-tolerant maize cultivars tailored to different environmental scenarios.
Collapse
Affiliation(s)
- Yadong Xue
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, 430070, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Upadhyaya HD, Wang YH, Sharma R, Sharma S. Identification of genetic markers linked to anthracnose resistance in sorghum using association analysis. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2013; 126:1649-57. [PMID: 23463493 DOI: 10.1007/s00122-013-2081-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Accepted: 02/23/2013] [Indexed: 05/20/2023]
Abstract
Anthracnose in sorghum caused by Colletotrichum sublineolum is one of the most destructive diseases affecting sorghum production under warm and humid conditions. Markers and genes linked to resistance to the disease are important for plant breeding. Using 14,739 SNP markers, we have mapped eight loci linked to resistance in sorghum through association analysis of a sorghum mini-core collection consisting of 242 diverse accessions evaluated for anthracnose resistance for 2 years in the field. The mini-core was representative of the International Crops Research Institute for the Semi-Arid Tropics' world-wide sorghum landrace collection. Eight marker loci were associated with anthracnose resistance in both years. Except locus 8, disease resistance-related genes were found in all loci based on their physical distance from linked SNP markers. These include two NB-ARC class of R genes on chromosome 10 that were partially homologous to the rice blast resistance gene Pib, two hypersensitive response-related genes: autophagy-related protein 3 on chromosome 1 and 4 harpin-induced 1 (Hin1) homologs on chromosome 8, a RAV transcription factor that is also part of R gene pathway, an oxysterol-binding protein that functions in the non-specific host resistance, and homologs of menthone:neomenthol reductase (MNR) that catalyzes a menthone reduction to produce the antimicrobial neomenthol. These genes and markers may be developed into molecular tools for genetic improvement of anthracnose resistance in sorghum.
Collapse
Affiliation(s)
- Hari D Upadhyaya
- International Crops Research Institute for the Semi Arid Tropics (ICRISAT), Patancheru, Hyderabad 502 324, Andhra Pradesh, India
| | | | | | | |
Collapse
|
56
|
Yu X, Bai G, Liu S, Luo N, Wang Y, Richmond DS, Pijut PM, Jackson SA, Yu J, Jiang Y. Association of candidate genes with drought tolerance traits in diverse perennial ryegrass accessions. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:1537-51. [PMID: 23386684 PMCID: PMC3617828 DOI: 10.1093/jxb/ert018] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Drought is a major environmental stress limiting growth of perennial grasses in temperate regions. Plant drought tolerance is a complex trait that is controlled by multiple genes. Candidate gene association mapping provides a powerful tool for dissection of complex traits. Candidate gene association mapping of drought tolerance traits was conducted in 192 diverse perennial ryegrass (Lolium perenne L.) accessions from 43 countries. The panel showed significant variations in leaf wilting, leaf water content, canopy and air temperature difference, and chlorophyll fluorescence under well-watered and drought conditions across six environments. Analysis of 109 simple sequence repeat markers revealed five population structures in the mapping panel. A total of 2520 expression-based sequence readings were obtained for a set of candidate genes involved in antioxidant metabolism, dehydration, water movement across membranes, and signal transduction, from which 346 single nucleotide polymorphisms were identified. Significant associations were identified between a putative LpLEA3 encoding late embryogenesis abundant group 3 protein and a putative LpFeSOD encoding iron superoxide dismutase and leaf water content, as well as between a putative LpCyt Cu-ZnSOD encoding cytosolic copper-zinc superoxide dismutase and chlorophyll fluorescence under drought conditions. Four of these identified significantly associated single nucleotide polymorphisms from these three genes were also translated to amino acid substitutions in different genotypes. These results indicate that allelic variation in these genes may affect whole-plant response to drought stress in perennial ryegrass.
Collapse
Affiliation(s)
- Xiaoqing Yu
- Department of Agronomy, Purdue University, West Lafayette, IN 47907, USA
| | - Guihua Bai
- USDA-ARS Hard Winter Wheat Genetics Research Unit, Manhattan, KS 66506, USA
| | - Shuwei Liu
- School of Life Science, Shandong University, Jinan 250100, China
| | - Na Luo
- College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Ying Wang
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN 47907, USA
| | | | - Paula M. Pijut
- USDA-Forest Service, Northern Research Station, Hardwood Tree Improvement and Regeneration Center, West Lafayette, IN 47907, USA
| | - Scott A. Jackson
- Center for Applied Genetic Technologies, The University of Georgia, Athens, GA 30602, USA
| | - Jianming Yu
- Department of Agronomy, Kansas State University, Manhattan, KS 66506, USA
| | - Yiwei Jiang
- Department of Agronomy, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
57
|
Almeida GD, Makumbi D, Magorokosho C, Nair S, Borém A, Ribaut JM, Bänziger M, Prasanna BM, Crossa J, Babu R. QTL mapping in three tropical maize populations reveals a set of constitutive and adaptive genomic regions for drought tolerance. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2013; 126:583-600. [PMID: 23124431 PMCID: PMC3579412 DOI: 10.1007/s00122-012-2003-7] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2012] [Accepted: 10/06/2012] [Indexed: 05/18/2023]
Abstract
Despite numerous published reports of quantitative trait loci (QTL) for drought-related traits, practical applications of such QTL in maize improvement are scarce. Identifying QTL of sizeable effects that express more or less uniformly in diverse genetic backgrounds across contrasting water regimes could significantly complement conventional breeding efforts to improve drought tolerance. We evaluated three tropical bi-parental populations under water-stress (WS) and well-watered (WW) regimes in Mexico, Kenya and Zimbabwe to identify genomic regions responsible for grain yield (GY) and anthesis-silking interval (ASI) across multiple environments and diverse genetic backgrounds. Across the three populations, on average, drought stress reduced GY by more than 50 % and increased ASI by 3.2 days. We identified a total of 83 and 62 QTL through individual environment analyses for GY and ASI, respectively. In each population, most QTL consistently showed up in each water regime. Across the three populations, the phenotypic variance explained by various individual QTL ranged from 2.6 to 17.8 % for GY and 1.7 to 17.8 % for ASI under WS environments and from 5 to 19.5 % for GY under WW environments. Meta-QTL (mQTL) analysis across the three populations and multiple environments identified seven genomic regions for GY and one for ASI, of which six mQTL on chr.1, 4, 5 and 10 for GY were constitutively expressed across WS and WW environments. One mQTL on chr.7 for GY and one on chr.3 for ASI were found to be 'adaptive' to WS conditions. High throughput assays were developed for SNPs that delimit the physical intervals of these mQTL. At most of the QTL, almost equal number of favorable alleles was donated by either of the parents within each cross, thereby demonstrating the potential of drought tolerant × drought tolerant crosses to identify QTL under contrasting water regimes.
Collapse
Affiliation(s)
- Gustavo Dias Almeida
- Universidade Federal de Viçosa (UFV), CEP 36.570-000 Viçosa, Minas Gerais Brazil
- International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, Mexico, DF Mexico
| | - Dan Makumbi
- CIMMYT, ICRAF House, United Nations Avenue, Gigiri, Nairobi, 00621 Kenya
| | | | - Sudha Nair
- International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, Mexico, DF Mexico
| | - Aluízio Borém
- Universidade Federal de Viçosa (UFV), CEP 36.570-000 Viçosa, Minas Gerais Brazil
| | - Jean-Marcel Ribaut
- Generation Challenge Program, hosted By CIMMYT, Apdo. Postal 6-641, Mexico, DF Mexico
| | - Marianne Bänziger
- International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, Mexico, DF Mexico
| | | | - Jose Crossa
- International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, Mexico, DF Mexico
| | - Raman Babu
- International Maize and Wheat Improvement Center (CIMMYT), Apdo. Postal 6-641, Mexico, DF Mexico
| |
Collapse
|
58
|
Liu YH, Offler CE, Ruan YL. Regulation of fruit and seed response to heat and drought by sugars as nutrients and signals. FRONTIERS IN PLANT SCIENCE 2013; 4:282. [PMID: 23914195 PMCID: PMC3729977 DOI: 10.3389/fpls.2013.00282] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Accepted: 07/10/2013] [Indexed: 05/21/2023]
Abstract
A large body of evidence shows that sugars function both as nutrients and signals to regulate fruit and seed set under normal and stress conditions including heat and drought. Inadequate sucrose import to, and its degradation within, reproductive organs cause fruit and seed abortion under heat and drought. As nutrients, sucrose-derived hexoses provide carbon skeletons and energy for growth and development of fruits and seeds. Sugar metabolism can also alleviate the impact of stress on fruit and seed through facilitating biosynthesis of heat shock proteins (Hsps) and non-enzymic antioxidants (e.g., glutathione, ascorbic acid), which collectively maintain the integrity of membranes and prevent programmed cell death (PCD) through protecting proteins and scavenging reactive oxygen species (ROS). In parallel, sugars (sucrose, glucose, and fructose), also exert signaling roles through cross-talk with hormone and ROS signaling pathways and by mediating cell division and PCD. At the same time, emerging data indicate that sugar-derived signaling systems, including trehalose-6 phosphate (T6P), sucrose non-fermenting related kinase-1 (SnRK), and the target of rapamycin (TOR) kinase complex also play important roles in regulating plant development through modulating nutrient and energy signaling and metabolic processes, especially under abiotic stresses where sugar availability is low. This review aims to evaluate recent progress of research on abiotic stress responses of reproductive organs focusing on roles of sugar metabolism and signaling and addressing the possible biochemical and molecular mechanism by which sugars regulate fruit and seed set under heat and drought.
Collapse
Affiliation(s)
- Yong-Hua Liu
- Department of Biology, School of Environmental and Life Sciences, The University of NewcastleNewcastle, NSW, Australia
- Institute of Vegetables, Zhejiang Academy of Agricultural SciencesHangzhou, China
| | - Christina E. Offler
- Department of Biology, School of Environmental and Life Sciences, The University of NewcastleNewcastle, NSW, Australia
| | - Yong-Ling Ruan
- Department of Biology, School of Environmental and Life Sciences, The University of NewcastleNewcastle, NSW, Australia
- *Correspondence: Yong-Ling Ruan, Department of Biology, School of Environmental and Life Sciences, The University of Newcastle, Newcastle, NSW, Australia e-mail:
| |
Collapse
|
59
|
Westengen OT, Berg PR, Kent MP, Brysting AK. Spatial structure and climatic adaptation in African maize revealed by surveying SNP diversity in relation to global breeding and landrace panels. PLoS One 2012; 7:e47832. [PMID: 23091649 PMCID: PMC3472975 DOI: 10.1371/journal.pone.0047832] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Accepted: 09/17/2012] [Indexed: 01/11/2023] Open
Abstract
Background Climate change threatens maize productivity in sub-Saharan Africa. To ensure food security, access to locally adapted genetic resources and varieties is an important adaptation measure. Most of the maize grown in Africa is a genetic mix of varieties introduced at different historic times following the birth of the trans-Atlantic economy, and knowledge about geographic structure and local adaptations is limited. Methodology A panel of 48 accessions of maize representing various introduction routes and sources of historic and recent germplasm introductions in Africa was genotyped with the MaizeSNP50 array. Spatial genetic structure and genetic relationships in the African panel were analysed separately and in the context of a panel of 265 inbred lines representing global breeding material (based on 26,900 SNPs) and a panel of 1127 landraces from the Americas (270 SNPs). Environmental association analysis was used to detect SNPs associated with three climatic variables based on the full 43,963 SNP dataset. Conclusions The genetic structure is consistent between subsets of the data and the markers are well suited for resolving relationships and admixture among the accessions. The African accessions are structured in three clusters reflecting historical and current patterns of gene flow from the New World and within Africa. The Sahelian cluster reflects original introductions of Meso-American landraces via Europe and a modern introduction of temperate breeding material. The Western cluster reflects introduction of Coastal Brazilian landraces, as well as a Northeast-West spread of maize through Arabic trade routes across the continent. The Eastern cluster most strongly reflects gene flow from modern introduced tropical varieties. Controlling for population history in a linear model, we identify 79 SNPs associated with maximum temperature during the growing season. The associations located in genes of known importance for abiotic stress tolerance are interesting candidates for local adaptations.
Collapse
Affiliation(s)
- Ola T Westengen
- Centre for Development and the Environment, SUM, University of Oslo, Oslo, Norway.
| | | | | | | |
Collapse
|
60
|
Kakumanu A, Ambavaram MM, Klumas C, Krishnan A, Batlang U, Myers E, Grene R, Pereira A. Effects of drought on gene expression in maize reproductive and leaf meristem tissue revealed by RNA-Seq. PLANT PHYSIOLOGY 2012; 160:846-67. [PMID: 22837360 PMCID: PMC3461560 DOI: 10.1104/pp.112.200444] [Citation(s) in RCA: 211] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2012] [Accepted: 07/19/2012] [Indexed: 05/18/2023]
Abstract
Drought stress affects cereals especially during the reproductive stage. The maize (Zea mays) drought transcriptome was studied using RNA-Seq analysis to compare drought-treated and well-watered fertilized ovary and basal leaf meristem tissue. More drought-responsive genes responded in the ovary compared with the leaf meristem. Gene Ontology enrichment analysis revealed a massive decrease in transcript abundance of cell division and cell cycle genes in the drought-stressed ovary only. Among Gene Ontology categories related to carbohydrate metabolism, changes in starch and Suc metabolism-related genes occurred in the ovary, consistent with a decrease in starch levels, and in Suc transporter function, with no comparable changes occurring in the leaf meristem. Abscisic acid (ABA)-related processes responded positively, but only in the ovaries. Related responses suggested the operation of low glucose sensing in drought-stressed ovaries. The data are discussed in the context of the susceptibility of maize kernel to drought stress leading to embryo abortion and the relative robustness of dividing vegetative tissue taken at the same time from the same plant subjected to the same conditions. Our working hypothesis involves signaling events associated with increased ABA levels, decreased glucose levels, disruption of ABA/sugar signaling, activation of programmed cell death/senescence through repression of a phospholipase C-mediated signaling pathway, and arrest of the cell cycle in the stressed ovary at 1 d after pollination. Increased invertase levels in the stressed leaf meristem, on the other hand, resulted in that tissue maintaining hexose levels at an "unstressed" level, and at lower ABA levels, which was correlated with successful resistance to drought stress.
Collapse
Affiliation(s)
| | | | - Curtis Klumas
- Virginia Bioinformatics Institute (A.Ka., M.M.R.A., A.Kr., U.B., A.P.), Department of Plant Pathology (A.Ka., R.G.), and Genetics, Bioinformatics, and Computational Biology Program (C.K., E.M.), Virginia Tech, Blacksburg, Virginia 24061; and Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, Arkansas 72701 (A.P.)
| | | | | | - Elijah Myers
- Virginia Bioinformatics Institute (A.Ka., M.M.R.A., A.Kr., U.B., A.P.), Department of Plant Pathology (A.Ka., R.G.), and Genetics, Bioinformatics, and Computational Biology Program (C.K., E.M.), Virginia Tech, Blacksburg, Virginia 24061; and Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, Arkansas 72701 (A.P.)
| | - Ruth Grene
- Virginia Bioinformatics Institute (A.Ka., M.M.R.A., A.Kr., U.B., A.P.), Department of Plant Pathology (A.Ka., R.G.), and Genetics, Bioinformatics, and Computational Biology Program (C.K., E.M.), Virginia Tech, Blacksburg, Virginia 24061; and Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, Arkansas 72701 (A.P.)
| | - Andy Pereira
- Virginia Bioinformatics Institute (A.Ka., M.M.R.A., A.Kr., U.B., A.P.), Department of Plant Pathology (A.Ka., R.G.), and Genetics, Bioinformatics, and Computational Biology Program (C.K., E.M.), Virginia Tech, Blacksburg, Virginia 24061; and Crop, Soil, and Environmental Sciences, University of Arkansas, Fayetteville, Arkansas 72701 (A.P.)
| |
Collapse
|
61
|
Weng J, Liu X, Wang Z, Wang J, Zhang L, Hao Z, Xie C, Li M, Zhang D, Bai L, Liu C, Zhang S, Li X. Molecular mapping of the major resistance quantitative trait locus qHS2.09 with simple sequence repeat and single nucleotide polymorphism markers in maize. PHYTOPATHOLOGY 2012; 102:692-9. [PMID: 22439860 DOI: 10.1094/phyto-12-11-0330] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The major quantitative trait locus (QTL) qHS2.09 plays an important role in resistance to head smut during maize breeding and production. In this study, a near-isogenic line (NIL), L34, which harbors the major QTL qHS2.09 in bin 2.09, was developed using a resistant donor 'Mo17' in a susceptible genetic background 'Huangzao4'. Using 18,683 genome-wide polymorphic loci, this major QTL was finely mapped into an interval of ≈1.10 Mb, flanked by single nucleotide polymorphism (SNP) markers PZE-102187307 and PZE-102188421. Moreover, the favorable allele from 'Mo17' for SNP PZE-102187611 in this interval that was most significantly associated with resistance to head smut (P = 1.88 E-10) and accounted for 39.7 to 44.4% of the phenotypic variance in an association panel consisting of 80 inbred lines. With combined linkage and association mapping, this major QTL was finally located between SNP PZE-102187486 and PZE-102188421 with an interval of ≈1.00 Mb. Based on the pedigrees of 'Mo17' and its derivatives widely used in temperate maize breeding programs, the favorable haplotype from 'Mo17' is shown to be the main source of resistance to head smut in these lines. Therefore, the SNPs closely linked to the major QTL qHS2.09, detected in both linkage and association mapping, and could be useful for marker-assisted selection in maize breeding programs.
Collapse
Affiliation(s)
- Jianfeng Weng
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
62
|
Lu FH, Kwon SW, Yoon MY, Kim KT, Cho MC, Yoon MK, Park YJ. SNP marker integration and QTL analysis of 12 agronomic and morphological traits in F₈ RILs of pepper (Capsicum annuum L.). Mol Cells 2012; 34:25-34. [PMID: 22684870 PMCID: PMC3887781 DOI: 10.1007/s10059-012-0018-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2011] [Revised: 05/02/2012] [Accepted: 05/03/2012] [Indexed: 01/05/2023] Open
Abstract
Red pepper, Capsicum annuum L., has been attracting geneticists' and breeders' attention as one of the important agronomic crops. This study was to integrate 41 SNP markers newly developed from comparative transcriptomes into a previous linkage map, and map 12 agronomic and morphological traits into the integrated map. A total of 39 markers found precise position and were assigned to 13 linkage groups (LGs) as well as the unassigned LGe, leading to total 458 molecular markers present in this genetic map. Linkage mapping was supported by the physical mapping to tomato and potato genomes using BLAST retrieving, revealing at least two-thirds of the markers mapped to the corresponding LGs. A sum of 23 quantitative trait loci from 11 traits was detected using the composite interval mapping algorithm. A consistent interval between a035_1 and a170_1 on LG5 was detected as a main-effect locus among the resistance QTLs to Phytophthora capsici at high-, intermediate- and low-level tests, and interactions between the QTLs for high-level resistance test were found. Considering the epistatic effect, those QTLs could explain up to 98.25% of the phenotype variations of resistance. Moreover, 17 QTLs for another eight traits were found to locate on LG3, 4, and 12 mostly with varying phenotypic contribution. Furthermore, the locus for corolla color was mapped to LG10 as a marker. The integrated map and the QTLs identified would be helpful for current genetics research and crop breeding, especially in the Solanaceae family.
Collapse
Affiliation(s)
- Fu-Hao Lu
- Department of Plant Resources, College of Industrial Sciences, Kongju National University, Yesan 340-702,
Korea
| | - Soon-Wook Kwon
- Department of Plant Resources, College of Industrial Sciences, Kongju National University, Yesan 340-702,
Korea
- Legume Bio-Resource Center of Green Manure (LBRCGM), Kongju National University, Yesan 340-702,
Korea
| | - Min-Young Yoon
- Department of Plant Resources, College of Industrial Sciences, Kongju National University, Yesan 340-702,
Korea
| | - Ki-Taek Kim
- The Foundation of Agricultural Technology Commercialization and Transfer, Suwon 441-100,
Korea
| | - Myeong-Cheoul Cho
- Vegetable Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Suwon 441-440,
Korea
| | - Moo-Kyung Yoon
- Vegetable Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Suwon 441-440,
Korea
| | - Yong-Jin Park
- Department of Plant Resources, College of Industrial Sciences, Kongju National University, Yesan 340-702,
Korea
- Legume Bio-Resource Center of Green Manure (LBRCGM), Kongju National University, Yesan 340-702,
Korea
| |
Collapse
|
63
|
Park W, Scheffler BE, Bauer PJ, Campbell BT. Genome-wide identification of differentially expressed genes under water deficit stress in upland cotton (Gossypium hirsutum L.). BMC PLANT BIOLOGY 2012; 12:90. [PMID: 22703539 PMCID: PMC3438127 DOI: 10.1186/1471-2229-12-90] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2011] [Accepted: 05/10/2012] [Indexed: 05/17/2023]
Abstract
BACKGROUND Cotton is the world's primary fiber crop and is a major agricultural commodity in over 30 countries. Like many other global commodities, sustainable cotton production is challenged by restricted natural resources. In response to the anticipated increase of agricultural water demand, a major research direction involves developing crops that use less water or that use water more efficiently. In this study, our objective was to identify differentially expressed genes in response to water deficit stress in cotton. A global expression analysis using cDNA-Amplified Fragment Length Polymorphism was conducted to compare root and leaf gene expression profiles from a putative drought resistant cotton cultivar grown under water deficit stressed and well watered field conditions. RESULTS We identified a total of 519 differentially expressed transcript derived fragments. Of these, 147 transcript derived fragment sequences were functionally annotated according to their gene ontology. Nearly 70 percent of transcript derived fragments belonged to four major categories: 1) unclassified, 2) stress/defense, 3) metabolism, and 4) gene regulation. We found heat shock protein-related and reactive oxygen species-related transcript derived fragments to be among the major parts of functional pathways induced by water deficit stress. Also, twelve novel transcripts were identified as both water deficit responsive and cotton specific. A subset of differentially expressed transcript derived fragments was verified using reverse transcription-polymerase chain reaction. Differential expression analysis also identified five pairs of duplicated transcript derived fragments in which four pairs responded differentially between each of their two homologues under water deficit stress. CONCLUSIONS In this study, we detected differentially expressed transcript derived fragments from water deficit stressed root and leaf tissues in tetraploid cotton and provided their gene ontology, functional/biological distribution, and possible roles of gene duplication. This discovery demonstrates complex mechanisms involved with polyploid cotton's transcriptome response to naturally occurring field water deficit stress. The genes identified in this study will provide candidate targets to manipulate the water use characteristics of cotton at the molecular level.
Collapse
Affiliation(s)
- Wonkeun Park
- USDA-ARS, Coastal Plains Soil, Water and Plant Research Center, Florence, SC, USA
| | | | - Philip J Bauer
- USDA-ARS, Coastal Plains Soil, Water and Plant Research Center, Florence, SC, USA
| | - B Todd Campbell
- USDA-ARS, Coastal Plains Soil, Water and Plant Research Center, Florence, SC, USA
| |
Collapse
|
64
|
Setter TL. Analysis of constituents for phenotyping drought tolerance in crop improvement. Front Physiol 2012; 3:180. [PMID: 22675308 PMCID: PMC3365635 DOI: 10.3389/fphys.2012.00180] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2011] [Accepted: 05/16/2012] [Indexed: 01/12/2023] Open
Abstract
Investigators now have a wide range of analytical tools to use in measuring metabolites, proteins and transcripts in plant tissues. These tools have the potential to assist genetic studies that seek to phenotype genetic lines for heritable traits that contribute to drought tolerance. To be useful for crop breeding, hundreds or thousands of genetic lines must be assessed. This review considers the utility of assaying certain constituents with roles in drought tolerance for phenotyping genotypes. Abscisic acid (ABA), organic and inorganic osmolytes, compatible solutes, and late embryogenesis abundant proteins, are considered. Confounding effects that require appropriate tissue and timing specificity, and the need for high-throughput and analytical cost efficiency are discussed. With future advances in analytical methods and the value of analyzing constituents that provide information on the underlying mechanisms of drought tolerance, these approaches are expected to contribute to development crops with improved drought tolerance.
Collapse
Affiliation(s)
- Tim L. Setter
- Department Crop and Soil Sciences, Cornell UniversityIthaca, NY, USA
| |
Collapse
|
65
|
Witt S, Galicia L, Lisec J, Cairns J, Tiessen A, Araus JL, Palacios-Rojas N, Fernie AR. Metabolic and phenotypic responses of greenhouse-grown maize hybrids to experimentally controlled drought stress. MOLECULAR PLANT 2012; 5:401-17. [PMID: 22180467 DOI: 10.1093/mp/ssr102] [Citation(s) in RCA: 145] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Adaptation to abiotic stresses like drought is an important acquirement of agriculturally relevant crops like maize. Development of enhanced drought tolerance in crops grown in climatic zones where drought is a very dominant stress factor therefore plays an essential role in plant breeding. Previous studies demonstrated that corn yield potential and enhanced stress tolerance are associated traits. In this study, we analyzed six different maize hybrids for their ability to deal with drought stress in a greenhouse experiment. We were able to combine data from morphophysiological parameters measured under well-watered conditions and under water restriction with metabolic data from different organs. These different organs possessed distinct metabolite compositions, with the leaf blade displaying the most considerable metabolome changes following water deficiency. Whilst we could show a general increase in metabolite levels under drought stress, including changes in amino acids, sugars, sugar alcohols, and intermediates of the TCA cycle, these changes were not differential between maize hybrids that had previously been designated based on field trial data as either drought-tolerant or susceptible. The fact that data described here resulted from a greenhouse experiment with rather different growth conditions compared to natural ones in the field may explain why tolerance groups could not be confirmed in this study. We were, however, able to highlight several metabolites that displayed conserved responses to drought as well as metabolites whose levels correlated well with certain physiological traits.
Collapse
Affiliation(s)
- Sandra Witt
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | | | | | | | | | | | | | | |
Collapse
|
66
|
Sehgal D, Rajaram V, Armstead IP, Vadez V, Yadav YP, Hash CT, Yadav RS. Integration of gene-based markers in a pearl millet genetic map for identification of candidate genes underlying drought tolerance quantitative trait loci. BMC PLANT BIOLOGY 2012; 12:9. [PMID: 22251627 PMCID: PMC3287966 DOI: 10.1186/1471-2229-12-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Accepted: 01/17/2012] [Indexed: 05/21/2023]
Abstract
BACKGROUND Identification of genes underlying drought tolerance (DT) quantitative trait loci (QTLs) will facilitate understanding of molecular mechanisms of drought tolerance, and also will accelerate genetic improvement of pearl millet through marker-assisted selection. We report a map based on genes with assigned functional roles in plant adaptation to drought and other abiotic stresses and demonstrate its use in identifying candidate genes underlying a major DT-QTL. RESULTS Seventy five single nucleotide polymorphism (SNP) and conserved intron spanning primer (CISP) markers were developed from available expressed sequence tags (ESTs) using four genotypes, H 77/833-2, PRLT 2/89-33, ICMR 01029 and ICMR 01004, representing parents of two mapping populations. A total of 228 SNPs were obtained from 30.5 kb sequenced region resulting in a SNP frequency of 1/134 bp. The positions of major pearl millet linkage group (LG) 2 DT-QTLs (reported from crosses H 77/833-2 × PRLT 2/89-33 and 841B × 863B) were added to the present consensus function map which identified 18 genes, coding for PSI reaction center subunit III, PHYC, actin, alanine glyoxylate aminotransferase, uridylate kinase, acyl-CoA oxidase, dipeptidyl peptidase IV, MADS-box, serine/threonine protein kinase, ubiquitin conjugating enzyme, zinc finger C- × 8-C × 5-C × 3-H type, Hd3, acetyl CoA carboxylase, chlorophyll a/b binding protein, photolyase, protein phosphatase1 regulatory subunit SDS22 and two hypothetical proteins, co-mapping in this DT-QTL interval. Many of these candidate genes were found to have significant association with QTLs of grain yield, flowering time and leaf rolling under drought stress conditions. CONCLUSIONS We have exploited available pearl millet EST sequences to generate a mapped resource of seventy five new gene-based markers for pearl millet and demonstrated its use in identifying candidate genes underlying a major DT-QTL in this species. The reported gene-based markers represent an important resource for identification of candidate genes for other mapped abiotic stress QTLs in pearl millet. They also provide a resource for initiating association studies using candidate genes and also for comparing the structure and function of distantly related plant genomes such as other Poaceae members.
Collapse
Affiliation(s)
- Deepmala Sehgal
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Gogerddan, Aberystwyth, Ceredigion SY23 3 EB, UK
| | - Vengaldas Rajaram
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), ICRISAT-Patencheru, Hyderabad 502 324, Andhra Pradesh, India
| | - Ian Peter Armstead
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Gogerddan, Aberystwyth, Ceredigion SY23 3 EB, UK
| | - Vincent Vadez
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), ICRISAT-Patencheru, Hyderabad 502 324, Andhra Pradesh, India
| | - Yash Pal Yadav
- Chaudhary Charan Singh Haryana Agricultural University (CCSHAU), Bawal 123 501, Haryana, India
| | - Charles Thomas Hash
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), ICRISAT-Patencheru, Hyderabad 502 324, Andhra Pradesh, India
| | - Rattan Singh Yadav
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Gogerddan, Aberystwyth, Ceredigion SY23 3 EB, UK
| |
Collapse
|
67
|
Genome-wide association study identifies candidate genes that affect plant height in Chinese elite maize (Zea mays L.) inbred lines. PLoS One 2011; 6:e29229. [PMID: 22216221 PMCID: PMC3247246 DOI: 10.1371/journal.pone.0029229] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2011] [Accepted: 11/22/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND The harvest index for many crops can be improved through introduction of dwarf stature to increase lodging resistance, combined with early maturity. The inbred line Shen5003 has been widely used in maize breeding in China as a key donor line for the dwarf trait. Also, one major quantitative trait locus (QTL) controlling plant height has been identified in bin 5.05-5.06, across several maize bi-parental populations. With the progress of publicly available maize genome sequence, the objective of this work was to identify the candidate genes that affect plant height among Chinese maize inbred lines with genome wide association studies (GWAS). METHODS AND FINDINGS A total of 284 maize inbred lines were genotyped using over 55,000 evenly spaced SNPs, from which a set of 41,101 SNPs were filtered with stringent quality control for further data analysis. With the population structure controlled in a mixed linear model (MLM) implemented with the software TASSEL, we carried out a genome-wide association study (GWAS) for plant height. A total of 204 SNPs (P≤0.0001) and 105 genomic loci harboring coding regions were identified. Four loci containing genes associated with gibberellin (GA), auxin, and epigenetic pathways may be involved in natural variation that led to a dwarf phenotype in elite maize inbred lines. Among them, a favorable allele for dwarfing on chromosome 5 (SNP PZE-105115518) was also identified in six Shen5003 derivatives. CONCLUSIONS The fact that a large number of previously identified dwarf genes are missing from our study highlights the discovery of the consistently significant association of the gene harboring the SNP PZE-105115518 with plant height (P=8.91e-10) and its confirmation in the Shen5003 introgression lines. Results from this study suggest that, in the maize breeding schema in China, specific alleles were selected, that have played important roles in maize production.
Collapse
|
68
|
Wang YH, Poudel DD, Hasenstein KH. Identification of SSR markers associated with saccharification yield using pool-based genome-wide association mapping in sorghum. Genome 2011; 54:883-9. [PMID: 21999235 DOI: 10.1139/g11-055] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Saccharification describes the conversion of plant biomass by cellulase into glucose. Because plants have never been selected for high saccharification yield, cellulosic ethanol production faces a significant bottleneck. To improve saccharification yield, it is critical to identify the genes that affect this process. In this study, we used pool-based genome-wide association mapping to identify simple sequence repeat (SSR) markers associated with saccharification yield. Screening of 703 SSR markers against the low and high saccharification pools identified two markers on the sorghum chromosomes 2 (23-1062) and 4 (74-508c) associated with saccharification yield. The association was significant at 1% using either general or mixed linear models. Localization of these markers based on the whole genome sequence indicates that 23-1062 is 223 kb from a β-glucanase (Bg) gene and 74-508c is 81 kb from a steroid-binding protein (Sbp) gene. Bg is critical for cell wall assembly and degradation, but Sbp can suppress the expression of Bg as demonstrated in Arabidopsis (Yang et al. 2005). These markers are found physically close to genes encoding plant cell wall synthesis enzymes such as xyloglucan fucosyltransferase (149 kb from 74-508c) and UDP-D-glucose 4-epimerase (46 kb from 23-1062). Genetic transformation of selected candidate genes is in progress to examine their effect on saccharification yield in plants.
Collapse
Affiliation(s)
- Yi-Hong Wang
- Department of Biology, University of Louisiana at Lafayette, Lafayette, LA 70504, USA.
| | | | | |
Collapse
|
69
|
Lu Y, Shah T, Hao Z, Taba S, Zhang S, Gao S, Liu J, Cao M, Wang J, Prakash AB, Rong T, Xu Y. Comparative SNP and haplotype analysis reveals a higher genetic diversity and rapider LD decay in tropical than temperate germplasm in maize. PLoS One 2011; 6:e24861. [PMID: 21949770 PMCID: PMC3174237 DOI: 10.1371/journal.pone.0024861] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2011] [Accepted: 08/23/2011] [Indexed: 11/18/2022] Open
Abstract
Understanding of genetic diversity and linkage disequilibrium (LD) decay in diverse maize germplasm is fundamentally important for maize improvement. A total of 287 tropical and 160 temperate inbred lines were genotyped with 1943 single nucleotide polymorphism (SNP) markers of high quality and compared for genetic diversity and LD decay using the SNPs and their haplotypes developed from genic and intergenic regions. Intronic SNPs revealed a substantial higher variation than exonic SNPs. The big window size haplotypes (3-SNP slide-window covering 2160 kb on average) revealed much higher genetic diversity than the 10 kb-window and gene-window haplotypes. The polymorphic information content values revealed by the haplotypes (0.436-0.566) were generally much higher than individual SNPs (0.247-0.259). Cluster analysis classified the 447 maize lines into two major groups, corresponding to temperate and tropical types. The level of genetic diversity and subpopulation structure were associated with the germplasm origin and post-domestication selection. Compared to temperate lines, the tropical lines had a much higher level of genetic diversity with no significant subpopulation structure identified. Significant variation in LD decay distance (2-100 kb) was found across the genome, chromosomal regions and germplasm groups. The average of LD decay distance (10-100 kb) in the temperate germplasm was two to ten times larger than that in the tropical germplasm (5-10 kb). In conclusion, tropical maize not only host high genetic diversity that can be exploited for future plant breeding, but also show rapid LD decay that provides more opportunity for selection.
Collapse
Affiliation(s)
- Yanli Lu
- Maize Research Institute, Sichuan Agricultural University, Wenjiang, Sichuan, China
- Global Maize Program, International Maize and Wheat Improvement Center (CIMMYT), Carretera, Mexico-Veracruz, El Batan, Texcoco, Mexico
| | - Trushar Shah
- International Crops Research Institute for the Semi-Arid Tropics, Patancheru, Hyderabad, Andhra Pradesh, India
| | - Zhuanfang Hao
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Key Facilities for Crop Genetic Resources and Improvement, Beijing, China
- Global Maize Program, International Maize and Wheat Improvement Center (CIMMYT), Carretera, Mexico-Veracruz, El Batan, Texcoco, Mexico
| | - Suketoshi Taba
- Global Maize Program, International Maize and Wheat Improvement Center (CIMMYT), Carretera, Mexico-Veracruz, El Batan, Texcoco, Mexico
| | - Shihuang Zhang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Key Facilities for Crop Genetic Resources and Improvement, Beijing, China
| | - Shibin Gao
- Maize Research Institute, Sichuan Agricultural University, Wenjiang, Sichuan, China
| | - Jian Liu
- Maize Research Institute, Sichuan Agricultural University, Wenjiang, Sichuan, China
| | - Moju Cao
- Maize Research Institute, Sichuan Agricultural University, Wenjiang, Sichuan, China
| | - Jing Wang
- Maize Research Institute, Sichuan Agricultural University, Wenjiang, Sichuan, China
| | - A. Bhanu Prakash
- International Crops Research Institute for the Semi-Arid Tropics, Patancheru, Hyderabad, Andhra Pradesh, India
| | - Tingzhao Rong
- Maize Research Institute, Sichuan Agricultural University, Wenjiang, Sichuan, China
- * E-mail: (TR); (YX)
| | - Yunbi Xu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, National Key Facilities for Crop Genetic Resources and Improvement, Beijing, China
- Global Maize Program, International Maize and Wheat Improvement Center (CIMMYT), Carretera, Mexico-Veracruz, El Batan, Texcoco, Mexico
- * E-mail: (TR); (YX)
| |
Collapse
|
70
|
Tardieu F, Granier C, Muller B. Water deficit and growth. Co-ordinating processes without an orchestrator? CURRENT OPINION IN PLANT BIOLOGY 2011; 14:283-9. [PMID: 21388861 DOI: 10.1016/j.pbi.2011.02.002] [Citation(s) in RCA: 118] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Revised: 02/11/2011] [Accepted: 02/14/2011] [Indexed: 05/20/2023]
Abstract
Water deficit affects plant growth via reduced carbon accumulation, cell number and tissue expansion. We review the ways in which these processes are co-ordinated. Tissue expansion and its sensitivity to water deficit may be the most crucial process, involving tight co-ordination between the mechanisms which govern cell wall mechanical properties and plant hydraulics. The analyses of sensitivities, time constants and genetic correlations suggest that tissue expansion is loosely co-ordinated with cell division and carbon accumulation which may have limited direct effects on growth under water deficit. We therefore argue for essentially uncoupled mechanisms with feedbacks between them, rather than for a co-ordinated re-programming of all processes. Consequences on plant modelling and plant breeding in dry environment are discussed.
Collapse
Affiliation(s)
- François Tardieu
- Institut National de la Recherche Agronomique/LEPSE, 2 place Viala, Montpellier, France.
| | | | | |
Collapse
|