51
|
Watson-Lazowski A, Papanicolaou A, Koller F, Ghannoum O. The transcriptomic responses of C 4 grasses to subambient CO 2 and low light are largely species specific and only refined by photosynthetic subtype. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 101:1170-1184. [PMID: 31651067 DOI: 10.1111/tpj.14583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 09/23/2019] [Accepted: 10/03/2019] [Indexed: 06/10/2023]
Abstract
Three subtypes of C4 photosynthesis exist (NADP-ME, NAD-ME and PEPCK), each known to be beneficial under specific environmental conditions. However, the influence of photosynthetic subtype on transcriptomic plasticity, as well as the genes underpinning this variability, remain largely unknown. Here, we comprehensively investigate the responses of six C4 grass species, spanning all three C4 subtypes, to two controlled environmental stresses: low light (200 µmol m-2 sec-1 ) and glacial CO2 (subambient; 180 ppm). We identify a susceptibility within NADP-ME species to glacial CO2 . Notably, although glacial CO2 phenotypes could be tied to C4 subtype, biochemical and transcriptomic responses to glacial CO2 were largely species specific. Nevertheless, we were able to identify subtype specific subsets of significantly differentially expressed transcripts which link resource acquisition and allocation to NADP-ME species susceptibility to glacial CO2 . Here, low light phenotypes were comparable across species with no clear subtype response, while again, transcriptomic responses to low light were largely species specific. However, numerous functional similarities were noted within the transcriptomic responses to low light, suggesting these responses are functionally relatively conserved. Additionally, PEPCK species exhibited heightened regulation of transcripts related to metabolism in response to both stresses, likely tied to their C4 metabolic pathway. These results highlight the influence that both species and subtype can have on plant responses to abiotic stress, building on our mechanistic understanding of acclimation within C4 grasses and highlighting avenues for future crop improvements.
Collapse
Affiliation(s)
- Alexander Watson-Lazowski
- Hawkesbury Institute for the Environment, University of Western Sydney, Locked Bag 1797, Penrith, NSW, 2751, Australia
- ARC Centre of Excellence for Translational Photosynthesis, Canberra, Australia
| | - Alexie Papanicolaou
- Hawkesbury Institute for the Environment, University of Western Sydney, Locked Bag 1797, Penrith, NSW, 2751, Australia
- ARC Centre of Excellence for Translational Photosynthesis, Canberra, Australia
| | - Fiona Koller
- Hawkesbury Institute for the Environment, University of Western Sydney, Locked Bag 1797, Penrith, NSW, 2751, Australia
- ARC Centre of Excellence for Translational Photosynthesis, Canberra, Australia
| | - Oula Ghannoum
- Hawkesbury Institute for the Environment, University of Western Sydney, Locked Bag 1797, Penrith, NSW, 2751, Australia
- ARC Centre of Excellence for Translational Photosynthesis, Canberra, Australia
| |
Collapse
|
52
|
Blätke MA, Bräutigam A. Evolution of C4 photosynthesis predicted by constraint-based modelling. eLife 2019; 8:e49305. [PMID: 31799932 PMCID: PMC6905489 DOI: 10.7554/elife.49305] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 11/08/2019] [Indexed: 01/03/2023] Open
Abstract
Constraint-based modelling (CBM) is a powerful tool for the analysis of evolutionary trajectories. Evolution, especially evolution in the distant past, is not easily accessible to laboratory experimentation. Modelling can provide a window into evolutionary processes by allowing the examination of selective pressures which lead to particular optimal solutions in the model. To study the evolution of C4 photosynthesis from a ground state of C3 photosynthesis, we initially construct a C3 model. After duplication into two cells to reflect typical C4 leaf architecture, we allow the model to predict the optimal metabolic solution under various conditions. The model thus identifies resource limitation in conjunction with high photorespiratory flux as a selective pressure relevant to the evolution of C4. It also predicts that light availability and distribution play a role in guiding the evolutionary choice of possible decarboxylation enzymes. The data shows evolutionary CBM in eukaryotes predicts molecular evolution with precision.
Collapse
Affiliation(s)
- Mary-Ann Blätke
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)GaterslebenGermany
| | - Andrea Bräutigam
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK)GaterslebenGermany
- Computational Biology, Faculty of Biology, Bielefeld University, UniversitätsstraßeBielefeldGermany
| |
Collapse
|
53
|
Marshall-Colón A, Kliebenstein DJ. Plant Networks as Traits and Hypotheses: Moving Beyond Description. TRENDS IN PLANT SCIENCE 2019; 24:840-852. [PMID: 31300195 DOI: 10.1016/j.tplants.2019.06.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 05/31/2019] [Accepted: 06/04/2019] [Indexed: 05/04/2023]
Abstract
Biology relies on the central thesis that the genes in an organism encode molecular mechanisms that combine with stimuli and raw materials from the environment to create a final phenotypic expression representative of the genomic programming. While conceptually simple, the genotype-to-phenotype linkage in a eukaryotic organism relies on the interactions of thousands of genes and an environment with a potentially unknowable level of complexity. Modern biology has moved to the use of networks in systems biology to try to simplify this complexity to decode how an organism's genome works. Previously, biological networks were basic ways to organize, simplify, and analyze data. However, recent advances are allowing networks to move beyond description and become phenotypes or hypotheses in their own right. This review discusses these efforts, like mapping responses across biological scales, including relationships among cellular entities, and the direct use of networks as traits or hypotheses.
Collapse
Affiliation(s)
- Amy Marshall-Colón
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Daniel J Kliebenstein
- Department of Plant Sciences, University of California, Davis, One Shields Avenue, Davis, CA 95616, USA; DynaMo Center of Excellence, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark.
| |
Collapse
|
54
|
Bellasio C. A generalised dynamic model of leaf-level C 3 photosynthesis combining light and dark reactions with stomatal behaviour. PHOTOSYNTHESIS RESEARCH 2019; 141:99-118. [PMID: 30471008 DOI: 10.1007/s11120-018-0601-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2018] [Accepted: 10/27/2018] [Indexed: 05/16/2023]
Abstract
Global food demand is rising, impelling us to develop strategies for improving the efficiency of photosynthesis. Classical photosynthesis models based on steady-state assumptions are inherently unsuitable for assessing biochemical and stomatal responses to rapid variations in environmental drivers. To identify strategies to increase photosynthetic efficiency, we need models that account for the timing of CO2 assimilation responses to dynamic environmental stimuli. Herein, I present a dynamic process-based photosynthetic model for C3 leaves. The model incorporates both light and dark reactions, coupled with a hydro-mechanical model of stomatal behaviour. The model achieved a stable and realistic rate of light-saturated CO2 assimilation and stomatal conductance. Additionally, it replicated complete typical assimilatory response curves (stepwise change in CO2 and light intensity at different oxygen levels) featuring both short lag times and full photosynthetic acclimation. The model also successfully replicated transient responses to changes in light intensity (light flecks), CO2 concentration, and atmospheric oxygen concentration. This dynamic model is suitable for detailed ecophysiological studies and has potential for superseding the long-dominant steady-state approach to photosynthesis modelling. The model runs as a stand-alone workbook in Microsoft® Excel® and is freely available to download along with a video tutorial.
Collapse
Affiliation(s)
- Chandra Bellasio
- Research School of Biology, Australian National University, Acton, ACT, 2601, Australia.
- University of the Balearic Islands, 07122, Palma, Illes Balears, Spain.
- Trees and Timber Institute, National Research Council of Italy, Sesto Fiorentino, 50019, Florence, Italy.
| |
Collapse
|
55
|
Bellasio C, Farquhar GD. A leaf-level biochemical model simulating the introduction of C 2 and C 4 photosynthesis in C 3 rice: gains, losses and metabolite fluxes. THE NEW PHYTOLOGIST 2019; 223:150-166. [PMID: 30859576 DOI: 10.1111/nph.15787] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 03/03/2019] [Indexed: 05/21/2023]
Abstract
This work aims at developing an adequate theoretical basis for comparing assimilation of the ancestral C3 pathway with CO2 concentrating mechanisms (CCM) that have evolved to reduce photorespiratory yield losses. We present a novel model for C3 , C2 , C2 + C4 and C4 photosynthesis simulating assimilatory metabolism, energetics and metabolite traffic at the leaf level. It integrates a mechanistic description of light reactions to simulate ATP and NADPH production, and a variable engagement of cyclic electron flow. The analytical solutions are compact and thus suitable for larger scale simulations. Inputs were derived with a comprehensive gas-exchange experiment. We show trade-offs in the operation of C4 that are in line with ecophysiological data. C4 has the potential to increase assimilation over C3 at high temperatures and light intensities, but this benefit is reversed under low temperatures and light. We apply the model to simulate the introduction of progressively complex levels of CCM into C3 rice, which feeds > 3.5 billion people. Increasing assimilation will require considerable modifications such as expressing the NAD(P)H Dehydrogenase-like complex and upregulating cyclic electron flow, enlarging the bundle sheath, and expressing suitable transporters to allow adequate metabolite traffic. The simpler C2 rice may be a desirable alternative.
Collapse
Affiliation(s)
- Chandra Bellasio
- Research School of Biology, Australian National University, Acton, ACT, 2601, Australia
- University of the Balearic Islands, Palma, Illes Balears, 07122, Spain
- Trees and Timber Institute, National Research Council of Italy, Sesto Fiorentino, Florence, 50019, Italy
| | - Graham D Farquhar
- Research School of Biology, Australian National University, Acton, ACT, 2601, Australia
| |
Collapse
|
56
|
Dunning LT, Moreno-Villena JJ, Lundgren MR, Dionora J, Salazar P, Adams C, Nyirenda F, Olofsson JK, Mapaura A, Grundy IM, Kayombo CJ, Dunning LA, Kentatchime F, Ariyarathne M, Yakandawala D, Besnard G, Quick WP, Bräutigam A, Osborne CP, Christin PA. Key changes in gene expression identified for different stages of C4 evolution in Alloteropsis semialata. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:3255-3268. [PMID: 30949663 PMCID: PMC6598098 DOI: 10.1093/jxb/erz149] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 03/19/2019] [Indexed: 05/23/2023]
Abstract
C4 photosynthesis is a complex trait that boosts productivity in tropical conditions. Compared with C3 species, the C4 state seems to require numerous novelties, but species comparisons can be confounded by long divergence times. Here, we exploit the photosynthetic diversity that exists within a single species, the grass Alloteropsis semialata, to detect changes in gene expression associated with different photosynthetic phenotypes. Phylogenetically informed comparative transcriptomics show that intermediates with a weak C4 cycle are separated from the C3 phenotype by increases in the expression of 58 genes (0.22% of genes expressed in the leaves), including those encoding just three core C4 enzymes: aspartate aminotransferase, phosphoenolpyruvate carboxykinase, and phosphoenolpyruvate carboxylase. The subsequent transition to full C4 physiology was accompanied by increases in another 15 genes (0.06%), including only the core C4 enzyme pyruvate orthophosphate dikinase. These changes probably created a rudimentary C4 physiology, and isolated populations subsequently improved this emerging C4 physiology, resulting in a patchwork of expression for some C4 accessory genes. Our work shows how C4 assembly in A. semialata happened in incremental steps, each requiring few alterations over the previous step. These create short bridges across adaptive landscapes that probably facilitated the recurrent origins of C4 photosynthesis through a gradual process of evolution.
Collapse
Affiliation(s)
- Luke T Dunning
- Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield, UK
| | | | - Marjorie R Lundgren
- Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield, UK
| | | | - Paolo Salazar
- International Rice Research Institute, DAPO, Metro Manila, Philippines
| | - Claire Adams
- Botany Department, Rhodes University, Grahamstown, South Africa
| | - Florence Nyirenda
- Department of Biological Sciences, University of Zambia, Lusaka, Zambia
| | - Jill K Olofsson
- Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield, UK
| | | | - Isla M Grundy
- Institute of Environmental Studies, University of Zimbabwe, Harare, Zimbabwe
| | | | - Lucy A Dunning
- Department of Social Sciences, University of Sheffield, Sheffield, UK
| | | | - Menaka Ariyarathne
- Department of Botany, Faculty of Science, University of Peradeniya, Peradeiya, Sri Lanka
| | - Deepthi Yakandawala
- Department of Botany, Faculty of Science, University of Peradeniya, Peradeiya, Sri Lanka
| | - Guillaume Besnard
- Laboratoire Évolution et Diversité Biologique (EDB UMR5174), Université de Toulouse, CNRS, IRD, UPS, Toulouse, France
| | - W Paul Quick
- Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield, UK
- International Rice Research Institute, DAPO, Metro Manila, Philippines
| | | | - Colin P Osborne
- Animal and Plant Sciences, University of Sheffield, Western Bank, Sheffield, UK
| | | |
Collapse
|
57
|
Hernández-Prieto MA, Foster C, Watson-Lazowski A, Ghannoum O, Chen M. Comparative analysis of thylakoid protein complexes in the mesophyll and bundle sheath cells from C 3 , C 4 and C 3 -C 4 Paniceae grasses. PHYSIOLOGIA PLANTARUM 2019; 166:134-147. [PMID: 30838662 DOI: 10.1111/ppl.12956] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 03/01/2019] [Indexed: 06/09/2023]
Abstract
To better understand the coordination between dark and light reactions during the transition from C3 to C4 photosynthesis, we optimized a method for separating thylakoids from mesophyll (MC) and bundle sheath cells (BSCs) across different plant species. We grew six Paniceae grasses including representatives from the C3 , C3 -C4 and C4 photosynthetic types and all three C4 biochemical subtypes [nicotinamide adenine dinucleotide phosphate-dependent malic enzyme (NADP-ME), nicotinamide adenine dinucleotide-dependent malic enzyme (NAD-ME) and phosphoenolpyruvate carboxykinase (PEPCK)] in addition to Zea mays under control conditions (1000 μmol quanta m-2 s-1 and 400 ppm of CO2 ). Proteomics analysis of thylakoids under native conditions, using blue native polyacrylamide gel electrophoresis followed by liquid chromatography-mass spectrometry (LC-MS), demonstrated the presence of subunits of all light-reaction-related complexes in all species and cell types. C4 NADP-ME species showed a higher photosystems I/II ratio and a clear accumulation of the NADH dehydrogenase-like complexes in BSCs, while Cytb6 f was more abundant in BSCs of C4 NAD-ME species. The C4 PEPCK species showed no clear differences between cell types. Our study presents, for the first time, a good separation between BSC and MC for a C3 -C4 intermediate grass which did not show noticeable differences in the distribution of the thylakoid complexes. For the NADP-ME species Panicum antidotale, growth at glacial CO2 (180 ppm of CO2 ) had no effect on the distribution of the light-reaction complexes, while growth at low light (200 μmol quanta m-2 s-1 ) promoted the accumulation of light-harvesting proteins in both cell types. These results add to our understanding of thylakoid distribution across photosynthetic types and subtypes, and introduce thylakoid distribution between the MC and BSC of a C3 -C4 intermediate species.
Collapse
Affiliation(s)
- Miguel A Hernández-Prieto
- ARC Centre of Excellence for Translational Photosynthesis, School of Life and Environmental Sciences, The University of Sydney, Sydney, 2006, Australia
| | - Christie Foster
- ARC Centre of Excellence for Translational Photosynthesis, Hawkesbury Institute for the Environment, Western Sydney University, Sydney, 2751, Australia
| | - Alexander Watson-Lazowski
- ARC Centre of Excellence for Translational Photosynthesis, Hawkesbury Institute for the Environment, Western Sydney University, Sydney, 2751, Australia
| | - Oula Ghannoum
- ARC Centre of Excellence for Translational Photosynthesis, Hawkesbury Institute for the Environment, Western Sydney University, Sydney, 2751, Australia
| | - Min Chen
- ARC Centre of Excellence for Translational Photosynthesis, School of Life and Environmental Sciences, The University of Sydney, Sydney, 2006, Australia
| |
Collapse
|
58
|
Cacefo V, Ribas AF, Zilliani RR, Neris DM, Domingues DS, Moro AL, Vieira LGE. Decarboxylation mechanisms of C4 photosynthesis in Saccharum spp.: increased PEPCK activity under water-limiting conditions. BMC PLANT BIOLOGY 2019; 19:144. [PMID: 30991938 PMCID: PMC6469216 DOI: 10.1186/s12870-019-1745-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 03/28/2019] [Indexed: 05/22/2023]
Abstract
BACKGROUND C4 plants have been classified into three subtypes based on the enzymes used to decarboxylate C4 acids in the bundle sheath cells (NADP-ME, NAD-ME and PEPCK pathways). Evidences indicate that, depending on environmental factors, C4 plants may exhibit a certain degree of flexibility in the use of the decarboxylation mechanisms. In this context, the objective was to extend the knowledge on the degree of flexibility between the pathways of decarboxylation in sugarcane, a NADP-ME species, at different levels of water deficit. RESULTS An experiment was carried out with two cultivars - RB92579 (tolerant to water deficit) and SP80-3280 (susceptible to water deficit) subjected to moderate level (- 1.5 to - 1.8 MPa), severe level (below - 2.0 MPa) and recovery (48 h after rehydration) and changes in the activities of the enzymes involved in the three C4 mechanisms and in gene expression were investigated. Our results showed that sugarcane uses the PEPCK pathway as a decarboxylation mechanism in addition to the NADP-ME, which was more evident under water deficit conditions for both cultivars. CONCLUSIONS The results obtained here, show that sugarcane increases the use of the PEPCK pathway as a decarboxylation mechanism, in addition to the NADP-ME pathway, under conditions of water deficit, particularly in the tolerant cultivar.
Collapse
Affiliation(s)
- Viviane Cacefo
- Centro de Estudos em Ecofisiologia Vegetal do Oeste Paulista (CEVOP), Universidade do Oeste Paulista (UNOESTE), Rodovia Raposo Tavares, Km 572, CEP, Presidente Prudente, SP 19067-175 Brazil
| | - Alessandra Ferreira Ribas
- Agronomy Graduate Program, Universidade do Oeste Paulista (UNOESTE), Rodovia Raposo Tavares, Km 572, CEP, Presidente Prudente, SP 19067-175 Brazil
| | - Rafael Rebes Zilliani
- Centro de Estudos em Ecofisiologia Vegetal do Oeste Paulista (CEVOP), Universidade do Oeste Paulista (UNOESTE), Rodovia Raposo Tavares, Km 572, CEP, Presidente Prudente, SP 19067-175 Brazil
| | - Daniel Moreira Neris
- Centro de Estudos em Ecofisiologia Vegetal do Oeste Paulista (CEVOP), Universidade do Oeste Paulista (UNOESTE), Rodovia Raposo Tavares, Km 572, CEP, Presidente Prudente, SP 19067-175 Brazil
| | - Douglas Silva Domingues
- Departamento de Botânica, Instituto de Biociências de Rio Claro, Universidade Estadual Paulista (UNESP), Avenida 24-A, 1515, CEP, Rio Claro, SP 13506-900 Brazil
| | - Adriana Lima Moro
- Centro de Estudos em Ecofisiologia Vegetal do Oeste Paulista (CEVOP), Universidade do Oeste Paulista (UNOESTE), Rodovia Raposo Tavares, Km 572, CEP, Presidente Prudente, SP 19067-175 Brazil
| | - Luiz Gonzaga Esteves Vieira
- Agronomy Graduate Program, Universidade do Oeste Paulista (UNOESTE), Rodovia Raposo Tavares, Km 572, CEP, Presidente Prudente, SP 19067-175 Brazil
| |
Collapse
|
59
|
Döring F, Billakurthi K, Gowik U, Sultmanis S, Khoshravesh R, Das Gupta S, Sage TL, Westhoff P. Reporter-based forward genetic screen to identify bundle sheath anatomy mutants in A. thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 97:984-995. [PMID: 30447112 PMCID: PMC6850095 DOI: 10.1111/tpj.14165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 10/31/2018] [Accepted: 11/06/2018] [Indexed: 05/22/2023]
Abstract
The evolution of C4 photosynthesis proceeded stepwise with each small step increasing the fitness of the plant. An important pre-condition for the introduction of a functional C4 cycle is the photosynthetic activation of the C3 bundle sheath by increasing its volume and organelle number. Therefore, to engineer C4 photosynthesis into existing C3 crops, information about genes that control the bundle sheath cell size and organelle content is needed. However, very little information is known about the genes that could be manipulated to create a more C4 -like bundle sheath. To this end, an ethylmethanesulfonate (EMS)-based forward genetic screen was established in the Brassicaceae C3 species Arabidopsis thaliana. To ensure a high-throughput primary screen, the bundle sheath cells of A. thaliana were labeled using a luciferase (LUC68) or by a chloroplast-targeted green fluorescent protein (sGFP) reporter using a bundle sheath specific promoter. The signal strengths of the reporter genes were used as a proxy to search for mutants with altered bundle sheath anatomy. Here, we show that our genetic screen predominantly identified mutants that were primarily affected in the architecture of the vascular bundle, and led to an increase in bundle sheath volume. By using a mapping-by-sequencing approach the genomic segments that contained mutated candidate genes were identified.
Collapse
Affiliation(s)
- Florian Döring
- Institute of Plant Molecular and Developmental BiologyHeinrich‐Heine UniversityUniversitätsstrasse 140225DuesseldorfGermany
| | - Kumari Billakurthi
- Institute of Plant Molecular and Developmental BiologyHeinrich‐Heine UniversityUniversitätsstrasse 140225DuesseldorfGermany
- Cluster of Excellence on Plant Sciences ‘From Complex Traits towards Synthetic Modules’40225 Duesseldorf and50923CologneGermany
| | - Udo Gowik
- Institute of Plant Molecular and Developmental BiologyHeinrich‐Heine UniversityUniversitätsstrasse 140225DuesseldorfGermany
- Department of Biology and Environmental SciencesCarl Von Ossietzky UniversityAmmerlaender Heerstrasse 11426129OldenburgGermany
| | - Stefanie Sultmanis
- Department of Ecology and Evolutionary BiologyThe University of TorontoTorontoONM5S 3B2Canada
| | - Roxana Khoshravesh
- Department of Ecology and Evolutionary BiologyThe University of TorontoTorontoONM5S 3B2Canada
| | - Shipan Das Gupta
- Institute of Plant Molecular and Developmental BiologyHeinrich‐Heine UniversityUniversitätsstrasse 140225DuesseldorfGermany
| | - Tammy L. Sage
- Department of Ecology and Evolutionary BiologyThe University of TorontoTorontoONM5S 3B2Canada
| | - Peter Westhoff
- Institute of Plant Molecular and Developmental BiologyHeinrich‐Heine UniversityUniversitätsstrasse 140225DuesseldorfGermany
- Cluster of Excellence on Plant Sciences ‘From Complex Traits towards Synthetic Modules’40225 Duesseldorf and50923CologneGermany
| |
Collapse
|
60
|
Éva C, Oszvald M, Tamás L. Current and possible approaches for improving photosynthetic efficiency. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 280:433-440. [PMID: 30824023 DOI: 10.1016/j.plantsci.2018.11.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 10/09/2018] [Accepted: 11/19/2018] [Indexed: 06/09/2023]
Abstract
One of the most important tasks laying ahead today's biotechnology is to improve crop productivity with the aim of meeting increased food and energy demands of humankind. Plant productivity depends on many genetic factors, including life cycle, harvest index, stress tolerance and photosynthetic activity. Many approaches were already tested or suggested to improve either. Limitations of photosynthesis have also been uncovered and efforts been taken to increase its efficiency. Examples include decreasing photosynthetic antennae size, increasing the photosynthetically available light spectrum, countering oxygenase activity of Rubisco by implementing C4 photosynthesis to C3 plants and altering source to sink transport of metabolites. A natural and effective photosynthetic adaptation, the sugar alcohol metabolism got however remarkably little attention in the last years, despite being comparably efficient as C4, and can be considered easier to introduce to new species. We also propose root to shoot carbon-dioxide transport as a means to improve photosynthetic performance and drought tolerance at the same time. Different suggestions and successful examples are covered here for improving plant photosynthesis as well as novel perspectives are presented for future research.
Collapse
Affiliation(s)
- Csaba Éva
- Applied Genomics Department, Agricultural Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Martonvásár 2462, Hungary.
| | - Mária Oszvald
- Plant Biology and Crop Science, Rothamsted Research, Harpenden, Hertfordshire AL5 2JQ, UK
| | - László Tamás
- Department of Plant Physiology and Molecular Plant Biology, Eötvös Loránd University, Budapest 1117, Hungary
| |
Collapse
|
61
|
Niklaus M, Kelly S. The molecular evolution of C4 photosynthesis: opportunities for understanding and improving the world's most productive plants. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:795-804. [PMID: 30462241 DOI: 10.1093/jxb/ery416] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Accepted: 11/09/2018] [Indexed: 05/28/2023]
Abstract
C4 photosynthesis is a convergent evolutionary trait that enhances photosynthetic efficiency in a variety of environmental conditions. It has evolved repeatedly following a fall in atmospheric CO2 concentration such that there is up to a 30 million year difference in the amount of time that natural selection has had to improve C4 function between the oldest and youngest C4 lineages. This large difference in time, coupled with the phylogenetic distance between lineages, has resulted in a large disparity in anatomy, physiology, and biochemistry between extant C4 species. This review summarizes the myriad of molecular sequence changes that have been linked to the evolution of C4 photosynthesis. These range from single nucleotide changes to duplication of entire genes, and provide a roadmap for how natural selection has adapted enzymes and pathways for enhanced C4 function. Finally, this review discusses how this molecular diversity can provide opportunities for understanding and improving photosynthesis for multiple important C4 food, feed, and bioenergy crops.
Collapse
Affiliation(s)
- Michael Niklaus
- Department of Plant Sciences, University of Oxford, Oxford, UK
| | - Steven Kelly
- Department of Plant Sciences, University of Oxford, Oxford, UK
| |
Collapse
|
62
|
Habermann E, Dias de Oliveira EA, Contin DR, Delvecchio G, Viciedo DO, de Moraes MA, de Mello Prado R, de Pinho Costa KA, Braga MR, Martinez CA. Warming and water deficit impact leaf photosynthesis and decrease forage quality and digestibility of a C4 tropical grass. PHYSIOLOGIA PLANTARUM 2019; 165:383-402. [PMID: 30525220 DOI: 10.1111/ppl.12891] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 11/29/2018] [Indexed: 05/24/2023]
Abstract
Global warming is predicted to cause more intense extreme events such as heat waves, flooding and severe droughts, producing significant effects on agriculture. In tropics, climate change will severely impact livestock production affecting water availability, forage quality and food for cattle. We investigated the isolated and combined effects of soil water deficit (wS) and + 2°C increase in canopy temperature (eT) on leaf gas exchange, chlorophyll fluorescence, carbohydrate content, forage quality and in vitro dry matter digestibility (IVDMD) of a field-grown C4 tropical forage grass Panicum maximum Jacq. using a temperature-free air-controlled enhancement (T-FACE) system. The wS and eT treatments showed no effects on photosystem II photochemistry. However, wS under ambient temperature decreased net photosynthesis rate (A), stomatal conductance (gs ) and maximum rate of carboxylation of Rubisco (Vcmax ), leading to a reduced starch content in leaves. A 16% reduction in leaf dry mass (LDM) and reduction in forage quality by increasing fibers, reducing crude protein (CP) and decreasing the IVDMD was also observed by effect of wS. Warming under adequate soil moisture (eT) significantly increased LDM by 25% but reduced the forage quality, increasing the lignin content and reducing starch, CP and digestibility. The combined wSeT treatment reduced A, gs , Vcmax and the forage quality. When compared to control, the lignin content in leaves increased by 43, 28 and 17% in wS, eT and wSeT, respectively, causing a significant reduction in IVDMD. We concluded that despite physiological mechanisms to acclimate to warming, both warming and water deficit will impair the quality and digestibility of C4 tropical pastures.
Collapse
Affiliation(s)
- Eduardo Habermann
- Department of Biology, FFCLRP, University of Sao Paulo, Ribeirão Preto, São Paulo, Brazil
| | | | - Daniele Ribeiro Contin
- Department of Biology, FFCLRP, University of Sao Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Gustavo Delvecchio
- Department of Biology, FFCLRP, University of Sao Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Dilier Olivera Viciedo
- Department of Soils and Fertilizers, FCAV, São Paulo State University, São Paulo, Brazil
| | | | - Renato de Mello Prado
- Department of Soils and Fertilizers, FCAV, São Paulo State University, São Paulo, Brazil
| | | | | | | |
Collapse
|
63
|
Zou C, Li L, Miki D, Li D, Tang Q, Xiao L, Rajput S, Deng P, Peng L, Jia W, Huang R, Zhang M, Sun Y, Hu J, Fu X, Schnable PS, Chang Y, Li F, Zhang H, Feng B, Zhu X, Liu R, Schnable JC, Zhu JK, Zhang H. The genome of broomcorn millet. Nat Commun 2019; 10:436. [PMID: 30683860 PMCID: PMC6347628 DOI: 10.1038/s41467-019-08409-5] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2018] [Accepted: 12/04/2018] [Indexed: 01/05/2023] Open
Abstract
Broomcorn millet (Panicum miliaceum L.) is the most water-efficient cereal and one of the earliest domesticated plants. Here we report its high-quality, chromosome-scale genome assembly using a combination of short-read sequencing, single-molecule real-time sequencing, Hi-C, and a high-density genetic map. Phylogenetic analyses reveal two sets of homologous chromosomes that may have merged ~5.6 million years ago, both of which exhibit strong synteny with other grass species. Broomcorn millet contains 55,930 protein-coding genes and 339 microRNA genes. We find Paniceae-specific expansion in several subfamilies of the BTB (broad complex/tramtrack/bric-a-brac) subunit of ubiquitin E3 ligases, suggesting enhanced regulation of protein dynamics may have contributed to the evolution of broomcorn millet. In addition, we identify the coexistence of all three C4 subtypes of carbon fixation candidate genes. The genome sequence is a valuable resource for breeders and will provide the foundation for studying the exceptional stress tolerance as well as C4 biology.
Collapse
Affiliation(s)
- Changsong Zou
- Shanghai Center for Plant Stress Biology and CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, 3888 Chenhua Rd, 201602, Shanghai, China
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, 85 Minglun Street, 475001, Kaifeng, Henan, China
| | - Leiting Li
- Shanghai Center for Plant Stress Biology and CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, 3888 Chenhua Rd, 201602, Shanghai, China
| | - Daisuke Miki
- Shanghai Center for Plant Stress Biology and CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, 3888 Chenhua Rd, 201602, Shanghai, China
| | - Delin Li
- Data2Bio LLC, Ames, IA, 50011-3650, USA
- Dryland Genetics LLC, Ames, IA, 50010, USA
- China Agricultural University, 100193, Beijing, China
| | - Qiming Tang
- Shanghai Center for Plant Stress Biology and CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, 3888 Chenhua Rd, 201602, Shanghai, China
| | - Lihong Xiao
- Shanghai Center for Plant Stress Biology and CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, 3888 Chenhua Rd, 201602, Shanghai, China
| | | | - Ping Deng
- Shanghai Center for Plant Stress Biology and CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, 3888 Chenhua Rd, 201602, Shanghai, China
| | - Li Peng
- Shanghai Center for Plant Stress Biology and CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, 3888 Chenhua Rd, 201602, Shanghai, China
| | - Wei Jia
- Shanghai Center for Plant Stress Biology and CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, 3888 Chenhua Rd, 201602, Shanghai, China
| | - Ru Huang
- Shanghai Center for Plant Stress Biology and CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, 3888 Chenhua Rd, 201602, Shanghai, China
| | - Meiling Zhang
- Shanghai Center for Plant Stress Biology and CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, 3888 Chenhua Rd, 201602, Shanghai, China
| | - Yidan Sun
- Shanghai Center for Plant Stress Biology and CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, 3888 Chenhua Rd, 201602, Shanghai, China
| | - Jiamin Hu
- Shanghai Center for Plant Stress Biology and CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, 3888 Chenhua Rd, 201602, Shanghai, China
| | - Xing Fu
- Shanghai Center for Plant Stress Biology and CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, 3888 Chenhua Rd, 201602, Shanghai, China
| | - Patrick S Schnable
- Data2Bio LLC, Ames, IA, 50011-3650, USA
- Dryland Genetics LLC, Ames, IA, 50010, USA
- China Agricultural University, 100193, Beijing, China
- Department of Agronomy, Iowa State University, Ames, IA, 50011-3650, USA
| | - Yuxiao Chang
- Agricultural Genomes Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 518120, Shenzhen, China
| | - Feng Li
- Shanghai Center for Plant Stress Biology and CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, 3888 Chenhua Rd, 201602, Shanghai, China
| | - Hui Zhang
- Key Laboratory of Plant Stress Research, Shandong Normal University, No. 88 Wenhua East Rd, Jinan, 250014, Shandong, China
| | - Baili Feng
- School of Agronomy, Northwest Agriculture & Forestry University, 3 Weihui Rd, 712100, Yangling, China
| | - Xinguang Zhu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, 300 Fenglin Rd, 200032, Shanghai, China
| | - Renyi Liu
- Shanghai Center for Plant Stress Biology and CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, 3888 Chenhua Rd, 201602, Shanghai, China
| | - James C Schnable
- Data2Bio LLC, Ames, IA, 50011-3650, USA
- Dryland Genetics LLC, Ames, IA, 50010, USA
- Department of Agriculture and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
| | - Jian-Kang Zhu
- Shanghai Center for Plant Stress Biology and CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, 3888 Chenhua Rd, 201602, Shanghai, China.
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, 47907, USA.
| | - Heng Zhang
- Shanghai Center for Plant Stress Biology and CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, 3888 Chenhua Rd, 201602, Shanghai, China.
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, 3888 Chenhua Rd, 201602, Shanghai, China.
| |
Collapse
|
64
|
Schlüter U, Bräutigam A, Droz JM, Schwender J, Weber APM. The role of alanine and aspartate aminotransferases in C 4 photosynthesis. PLANT BIOLOGY (STUTTGART, GERMANY) 2019; 21 Suppl 1:64-76. [PMID: 30126035 DOI: 10.1111/plb.12904] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 08/15/2018] [Indexed: 06/08/2023]
Abstract
Alanine and aspartate are essential transfer metabolites for C4 species of the NAD-malic enzyme and phosphoenolpyruvate carboxykinase subtype. To some degree both amino acids are also part of the metabolite shuttle in NADP-malic enzyme plants. In comparison with C3 species, the majority of C4 species are therefore characterised by enhanced expression and activity of alanine and aspartate aminotransferases (AT) in the photosynthetically active tissue. Both enzymes exist in multiple copies and have been found in different subcellular compartments. We tested whether different C4 species show preferential recruitment of enzymes from specific lineages and subcellular compartments. Phylogenetic analysis of alanine and aspartate ATs from a variety of monocot and eudicot C4 species and their C3 relatives was combined with subcellular prediction tools and analysis of the subsequent transcript amounts in mature leaves. Recruitment of aspartate AT from a specific subcellular compartment was strongly connected to the biochemical subtype. Deviation from the main model was however observed in Gynandropsis gynandra. The configuration of alanine AT generally differed in monocot and eudicot species. C4 monocots recruited an alanine AT from a specific cytosolic branch, but eudicots use alanine AT copies from a mitochondrial branch. Generally, plants display high plasticity in the setup of the C4 pathway. Beside the common models for the different C4 subtypes, individual solutions were found for plant groups or lineages.
Collapse
Affiliation(s)
- U Schlüter
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Science (CEPLAS), Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - A Bräutigam
- Computational Biology, Centre for Biotechnology, University Bielefeld, Bielefeld, Germany
| | | | - J Schwender
- Biology Department, Brookhaven National Laboratory, Upton, New York, USA
| | - A P M Weber
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Science (CEPLAS), Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
65
|
Watson-Lazowski A, Papanicolaou A, Sharwood R, Ghannoum O. Investigating the NAD-ME biochemical pathway within C 4 grasses using transcript and amino acid variation in C 4 photosynthetic genes. PHOTOSYNTHESIS RESEARCH 2018; 138:233-248. [PMID: 30078073 DOI: 10.1007/s11120-018-0569-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Accepted: 07/28/2018] [Indexed: 05/18/2023]
Abstract
Expanding knowledge of the C4 photosynthetic pathway can provide key information to aid biological improvements to crop photosynthesis and yield. While the C4 NADP-ME pathway is well characterised, there is increasing agricultural and bioengineering interest in the comparably understudied NAD-ME and PEPCK pathways. Within this study, a systematic identification of key differences across species has allowed us to investigate the evolution of C4-recruited genes in one C3 and eleven C4 grasses (Poaceae) spanning two independent origins of C4 photosynthesis. We present evidence for C4-specific paralogs of NAD-malic enzyme 2, MPC1 and MPC2 (mitochondrial pyruvate carriers) via increased transcript abundance and associated rates of evolution, implicating them as genes recruited to perform C4 photosynthesis within NAD-ME and PEPCK subtypes. We then investigate the localisation of AspAT across subtypes, using novel and published evidence to place AspAT3 in both the cytosol and peroxisome. Finally, these findings are integrated with transcript abundance of previously identified C4 genes to provide an updated model for C4 grass NAD-ME and PEPCK photosynthesis. This updated model allows us to develop on the current understanding of NAD-ME and PEPCK photosynthesis in grasses, bolstering our efforts to understand the evolutionary 'path to C4' and improve C4 photosynthesis.
Collapse
Affiliation(s)
- Alexander Watson-Lazowski
- Hawkesbury Institute for the Environment, University of Western Sydney, Locked Bag 1797, Penrith, NSW, 2751, Australia.
- ARC Centre of Excellence for Translational Photosynthesis, Australian National University, Canberra, ACT, 2601, Australia.
| | - Alexie Papanicolaou
- Hawkesbury Institute for the Environment, University of Western Sydney, Locked Bag 1797, Penrith, NSW, 2751, Australia
- ARC Centre of Excellence for Translational Photosynthesis, Australian National University, Canberra, ACT, 2601, Australia
| | - Robert Sharwood
- Research School of Biology, Australian National University, Canberra, ACT, 2601, Australia
- ARC Centre of Excellence for Translational Photosynthesis, Australian National University, Canberra, ACT, 2601, Australia
| | - Oula Ghannoum
- Hawkesbury Institute for the Environment, University of Western Sydney, Locked Bag 1797, Penrith, NSW, 2751, Australia
- ARC Centre of Excellence for Translational Photosynthesis, Australian National University, Canberra, ACT, 2601, Australia
| |
Collapse
|
66
|
Ewe D, Tachibana M, Kikutani S, Gruber A, Río Bártulos C, Konert G, Kaplan A, Matsuda Y, Kroth PG. The intracellular distribution of inorganic carbon fixing enzymes does not support the presence of a C4 pathway in the diatom Phaeodactylum tricornutum. PHOTOSYNTHESIS RESEARCH 2018; 137:263-280. [PMID: 29572588 DOI: 10.1007/s11120-018-0500-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 03/18/2018] [Indexed: 05/20/2023]
Abstract
Diatoms are unicellular algae and important primary producers. The process of carbon fixation in diatoms is very efficient even though the availability of dissolved CO2 in sea water is very low. The operation of a carbon concentrating mechanism (CCM) also makes the more abundant bicarbonate accessible for photosynthetic carbon fixation. Diatoms possess carbonic anhydrases as well as metabolic enzymes potentially involved in C4 pathways; however, the question as to whether a C4 pathway plays a general role in diatoms is not yet solved. While genome analyses indicate that the diatom Phaeodactylum tricornutum possesses all the enzymes required to operate a C4 pathway, silencing of the pyruvate orthophosphate dikinase (PPDK) in a genetically transformed cell line does not lead to reduced photosynthetic carbon fixation. In this study, we have determined the intracellular location of all enzymes potentially involved in C4-like carbon fixing pathways in P. tricornutum by expression of the respective proteins fused to green fluorescent protein (GFP), followed by fluorescence microscopy. Furthermore, we compared the results to known pathways and locations of enzymes in higher plants performing C3 or C4 photosynthesis. This approach revealed that the intracellular distribution of the investigated enzymes is quite different from the one observed in higher plants. In particular, the apparent lack of a plastidic decarboxylase in P. tricornutum indicates that this diatom does not perform a C4-like CCM.
Collapse
Affiliation(s)
- Daniela Ewe
- Fachbereich Biologie, Universität Konstanz, 78457, Konstanz, Germany.
- Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Třeboň, Czech Republic.
| | - Masaaki Tachibana
- Department of Bioscience, School of Science and Technology, Kwansei Gakuin University, Sanda, Hyogo, 669-1337, Japan
- Lion Corporation Pharmaceutical Laboratories No.1, Odawara, Kanagawa, 256-0811, Japan
| | - Sae Kikutani
- Department of Bioscience, School of Science and Technology, Kwansei Gakuin University, Sanda, Hyogo, 669-1337, Japan
- Tech Manage Corp., Tokyo, 160-0023, Japan
| | - Ansgar Gruber
- Fachbereich Biologie, Universität Konstanz, 78457, Konstanz, Germany
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budějovice, Czech Republic
| | | | - Grzegorz Konert
- Centre Algatech, Institute of Microbiology of the Czech Academy of Sciences, Třeboň, Czech Republic
| | - Aaron Kaplan
- Department of Plant and Environmental Sciences, Edmond J. Safra Campus-Givat Ram, Hebrew University of Jerusalem, 91904, Jerusalem, Israel
| | - Yusuke Matsuda
- Department of Bioscience, School of Science and Technology, Kwansei Gakuin University, Sanda, Hyogo, 669-1337, Japan
| | - Peter G Kroth
- Fachbereich Biologie, Universität Konstanz, 78457, Konstanz, Germany
| |
Collapse
|
67
|
Igamberdiev AU, Bykova NV. Role of organic acids in the integration of cellular redox metabolism and mediation of redox signalling in photosynthetic tissues of higher plants. Free Radic Biol Med 2018; 122:74-85. [PMID: 29355740 DOI: 10.1016/j.freeradbiomed.2018.01.016] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 01/10/2018] [Accepted: 01/13/2018] [Indexed: 12/11/2022]
Abstract
Organic acids play a crucial role in numerous metabolic processes accompanied by transfer of electrons and protons and linked to the reduction/oxidation of major redox couples in plant cells, such as NAD, NADP, glutathione, and ascorbate. Fluxes through the pathways metabolizing organic acids modulate redox states in cell compartments, contribute to generation of reactive oxygen and nitrogen species, and mediate signal transduction processes. Organic acid metabolism not only functions to equilibrate the redox potential in plant cells but also to transfer redox equivalents between cell compartments supporting various metabolic processes. The most important role in this transfer belongs to different forms of malate dehydrogenase interconverting malate and oxaloacetate or forming pyruvate (malic enzymes). During photosynthesis malate serves as a major form of transfer of redox equivalents from chloroplasts to the cytosol and other compartments via the malate valve. On the other hand, mitochondria, via alterations of their redox potential, become a source of citrate that can be transported to the cytosol and support biosynthesis of amino acids. Citrate is also an important retrograde signalling compound that regulates transcription of several genes including those encoding the alternative oxidase. The alternative oxidase, which is activated by increased redox potential and by pyruvate, is, in turn, important for the maintenance of redox potential in mitochondria. The roles of organic acids in establishing redox equilibrium, supporting ionic gradients on membranes, acidification of the extracellular medium, and regulation of production of reactive oxygen and nitrogen species are discussed.
Collapse
Affiliation(s)
- Abir U Igamberdiev
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, Canada A1B 3X9.
| | - Natalia V Bykova
- Morden Research and Development Centre, Agriculture and Agri-Food Canada, Morden, MB, Canada R6M 1Y5
| |
Collapse
|
68
|
Borba AR, Serra TS, Górska A, Gouveia P, Cordeiro AM, Reyna-Llorens I, Kneřová J, Barros PM, Abreu IA, Oliveira MM, Hibberd JM, Saibo NJM. Synergistic Binding of bHLH Transcription Factors to the Promoter of the Maize NADP-ME Gene Used in C4 Photosynthesis Is Based on an Ancient Code Found in the Ancestral C3 State. Mol Biol Evol 2018; 35:1690-1705. [PMID: 29659975 PMCID: PMC5995220 DOI: 10.1093/molbev/msy060] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
C4 photosynthesis has evolved repeatedly from the ancestral C3 state to generate a carbon concentrating mechanism that increases photosynthetic efficiency. This specialized form of photosynthesis is particularly common in the PACMAD clade of grasses, and is used by many of the world's most productive crops. The C4 cycle is accomplished through cell-type-specific accumulation of enzymes but cis-elements and transcription factors controlling C4 photosynthesis remain largely unknown. Using the NADP-Malic Enzyme (NADP-ME) gene as a model we tested whether mechanisms impacting on transcription in C4 plants evolved from ancestral components found in C3 species. Two basic Helix-Loop-Helix (bHLH) transcription factors, ZmbHLH128 and ZmbHLH129, were shown to bind the C4NADP-ME promoter from maize. These proteins form heterodimers and ZmbHLH129 impairs trans-activation by ZmbHLH128. Electrophoretic mobility shift assays indicate that a pair of cis-elements separated by a seven base pair spacer synergistically bind either ZmbHLH128 or ZmbHLH129. This pair of cis-elements is found in both C3 and C4 Panicoid grass species of the PACMAD clade. Our analysis is consistent with this cis-element pair originating from a single motif present in the ancestral C3 state. We conclude that C4 photosynthesis has co-opted an ancient C3 regulatory code built on G-box recognition by bHLH to regulate the NADP-ME gene. More broadly, our findings also contribute to the understanding of gene regulatory networks controlling C4 photosynthesis.
Collapse
Affiliation(s)
- Ana Rita Borba
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
- Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
| | - Tânia S Serra
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
- Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
| | - Alicja Górska
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
- Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
| | - Paulo Gouveia
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
- Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
| | - André M Cordeiro
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
- Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
| | - Ivan Reyna-Llorens
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Jana Kneřová
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Pedro M Barros
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Isabel A Abreu
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
- Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
| | - Maria Margarida Oliveira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
- Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
| | - Julian M Hibberd
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Nelson J M Saibo
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
- Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
| |
Collapse
|
69
|
Sonawane BV, Sharwood RE, Whitney S, Ghannoum O. Shade compromises the photosynthetic efficiency of NADP-ME less than that of PEP-CK and NAD-ME C4 grasses. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:3053-3068. [PMID: 29659931 PMCID: PMC5972597 DOI: 10.1093/jxb/ery129] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Accepted: 03/19/2018] [Indexed: 05/18/2023]
Abstract
The high energy cost and apparently low plasticity of C4 photosynthesis compared with C3 photosynthesis may limit the productivity and distribution of C4 plants in low light (LL) environments. C4 photosynthesis evolved numerous times, but it remains unclear how different biochemical subtypes perform under LL. We grew eight C4 grasses belonging to three biochemical subtypes [NADP-malic enzyme (NADP-ME), NAD-malic enzyme (NAD-ME), and phosphoenolpyruvate carboxykinase (PEP-CK)] under shade (16% sunlight) or control (full sunlight) conditions and measured their photosynthetic characteristics at both low and high light. We show for the first time that LL (during measurement or growth) compromised the CO2-concentrating mechanism (CCM) to a greater extent in NAD-ME than in PEP-CK or NADP-ME C4 grasses by virtue of a greater increase in carbon isotope discrimination (∆P) and bundle sheath CO2 leakiness (ϕ), and a greater reduction in photosynthetic quantum yield (Φmax). These responses were partly explained by changes in the ratios of phosphoenolpyruvate carboxylase (PEPC)/initial Rubisco activity and dark respiration/photosynthesis (Rd/A). Shade induced a greater photosynthetic acclimation in NAD-ME than in NADP-ME and PEP-CK species due to a greater Rubisco deactivation. Shade also reduced plant dry mass to a greater extent in NAD-ME and PEP-CK relative to NADP-ME grasses. In conclusion, LL compromised the co-ordination of the C4 and C3 cycles and, hence, the efficiency of the CCM to a greater extent in NAD-ME than in PEP-CK species, while CCM efficiency was less impacted by LL in NADP-ME species. Consequently, NADP-ME species are more efficient at LL, which could explain their agronomic and ecological dominance relative to other C4 grasses.
Collapse
Affiliation(s)
- Balasaheb V Sonawane
- ARC Centre of Excellence for Translational Photosynthesis and Hawkesbury Institute for the Environment, Western Sydney University, NSW, Australia
- School of Biological Sciences, Washington State University, Pullman, WA, USA
- Correspondence:
| | - Robert E Sharwood
- ARC Centre of Excellence for Translational Photosynthesis and Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Spencer Whitney
- ARC Centre of Excellence for Translational Photosynthesis and Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Oula Ghannoum
- ARC Centre of Excellence for Translational Photosynthesis and Hawkesbury Institute for the Environment, Western Sydney University, NSW, Australia
| |
Collapse
|
70
|
Muhaidat R, McKown AD, Al Zoubi M, Bani Domi Z, Otoum O. C 4 photosynthesis and transition of Kranz anatomy in cotyledons and leaves of Tetraena simplex. AMERICAN JOURNAL OF BOTANY 2018; 105:822-835. [PMID: 29791720 DOI: 10.1002/ajb2.1087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 02/22/2018] [Indexed: 06/08/2023]
Abstract
PREMISE OF THE STUDY Tetraena simplex is an independently evolved C4 species in the Zygophylloideae (Zygophyllaceae) and a characteristic forb of saline flats in hot and sandy desert habitats. During early ontogeny, the species had a morphological shift from planar cotyledons (dorsiventral symmetry) to terete, succulent leaves (radial symmetry). We tested whether this shift had a corresponding change in internal Kranz anatomy and tissue patterning. METHODS For a comprehensive characterization of C4 photosynthesis across early ontogeny in T. simplex, structural and ultrastructural anatomical properties and localization patterns, activities, and immunoblotting of key C4 photosynthetic enzymes were compared in mesophyll and bundle sheath tissues in cotyledons and leaves. KEY RESULTS Cotyledons and leaves possessed different types of Kranz anatomy (atriplicoid type and a "Tetraena" variant of the kochioid type, respectively), reflecting the change in leaf morphology. In bundle sheath cells, key differences in ultrastructural features included increased organelle numbers and chloroplast thylakoid stacking. C4 enzymes had strict tissue-specific localization patterns within bundle sheath and mesophyll cells in both cotyledons and leaves. The decarboxylase NAD-ME maintained the highest activity, increasing from cotyledons to leaves. This classified T. simplex as fully C4 across ontogeny and a strictly NAD-ME biochemical subtype. CONCLUSIONS Tetraena simplex cotyledons and leaves showed differences in Kranz type, with associated progression in ultrastructural features, and differing activities/expression levels of C4 enzymes. Furthermore, leaves characterized a new "Tetraena" variation of the kochioid Kranz anatomy.
Collapse
Affiliation(s)
- Riyadh Muhaidat
- Department of Biological Sciences, Faculty of Science, Yarmouk University, Irbid, P. O. Box 21163, Jordan
| | - Athena D McKown
- Department of Forest and Conservation Sciences, Faculty of Forestry, University of British Columbia, Forest Sciences Centre, 2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Mazhar Al Zoubi
- Department of Biological Sciences, Faculty of Science, Yarmouk University, Irbid, P. O. Box 21163, Jordan
- Department of Basic Sciences, Faculty of Medicine, Yarmouk University, Irbid, P. O. Box 21163, Jordan
| | - Zakariya Bani Domi
- Department of Biological Sciences, Faculty of Science, Yarmouk University, Irbid, P. O. Box 21163, Jordan
| | - Osama Otoum
- Department of Biological Sciences, Faculty of Science, Yarmouk University, Irbid, P. O. Box 21163, Jordan
| |
Collapse
|
71
|
Yin X, Struik PC. The energy budget in C 4 photosynthesis: insights from a cell-type-specific electron transport model. THE NEW PHYTOLOGIST 2018; 218:986-998. [PMID: 29520959 PMCID: PMC5947737 DOI: 10.1111/nph.15051] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 01/16/2018] [Indexed: 05/18/2023]
Abstract
Extra ATP required in C4 photosynthesis for the CO2 -concentrating mechanism probably comes from cyclic electron transport (CET). As metabolic ATP : NADPH requirements in mesophyll (M) and bundle-sheath (BS) cells differ among C4 subtypes, the subtypes may differ in the extent to which CET operates in these cells. We present an analytical model for cell-type-specific CET and linear electron transport. Modelled NADPH and ATP production were compared with requirements. For malic-enzyme (ME) subtypes, c. 50% of electron flux is CET, occurring predominantly in BS cells for standard NADP-ME species, but in a ratio of c. 6 : 4 in BS : M cells for NAD-ME species. Some C4 acids follow a secondary decarboxylation route, which is obligatory, in the form of 'aspartate-malate', for the NADP-ME subtype, but facultative, in the form of phosphoenolpyruvate-carboxykinase (PEP-CK), for the NAD-ME subtype. The percentage for secondary decarboxylation is c. 25% and that for 3-phosphoglycerate reduction in BS cells is c. 40%; but these values vary with species. The 'pure' PEP-CK type is unrealistic because its is impossible to fulfil ATP : NADPH requirements in BS cells. The standard PEP-CK subtype requires negligible CET, and thus has the highest intrinsic quantum yields and deserves further studies in the context of improving canopy productivity.
Collapse
Affiliation(s)
- Xinyou Yin
- Department of Plant SciencesCentre for Crop Systems AnalysisWageningen University & ResearchPO Box 4306700 AKWageningenthe Netherlands
| | - Paul C. Struik
- Department of Plant SciencesCentre for Crop Systems AnalysisWageningen University & ResearchPO Box 4306700 AKWageningenthe Netherlands
| |
Collapse
|
72
|
Nuccio ML, Potter L, Stiegelmeyer SM, Curley J, Cohn J, Wittich PE, Tan X, Davis J, Ni J, Trullinger J, Hall R, Bate NJ. Strategies and tools to improve crop productivity by targeting photosynthesis. Philos Trans R Soc Lond B Biol Sci 2018; 372:rstb.2016.0377. [PMID: 28808096 DOI: 10.1098/rstb.2016.0377] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2017] [Indexed: 12/15/2022] Open
Abstract
Crop productivity needs to substantially increase to meet global food and feed demand for a rapidly growing world population. Agricultural technology developers are pursuing a variety of approaches based on both traditional technologies such as genetic improvement, pest control and mechanization as well as new technologies such as genomics, gene manipulation and environmental modelling to develop crops that are capable of meeting growing demand. Photosynthesis is a key biochemical process that, many suggest, is not yet optimized for industrial agriculture or the modern global environment. We are interested in identifying control points in maize photoassimilation that are amenable to gene manipulation to improve overall productivity. Our approach encompasses: developing and using novel gene discovery techniques, translating our discoveries into traits and evaluating each trait in a stepwise manner that reflects a modern production environment. Our aim is to provide step change advancement in overall crop productivity and deliver this new technology into the hands of growers.This article is part of the themed issue 'Enhancing photosynthesis in crop plants: targets for improvement'.
Collapse
Affiliation(s)
- Michael L Nuccio
- Syngenta Crop Protection, LLC., 9 Davis Drive, Research Triangle Park, NC 541-8500, USA
| | - Laura Potter
- Syngenta Crop Protection, LLC., 9 Davis Drive, Research Triangle Park, NC 541-8500, USA
| | - Suzy M Stiegelmeyer
- Syngenta Crop Protection, LLC., 9 Davis Drive, Research Triangle Park, NC 541-8500, USA
| | - Joseph Curley
- Syngenta Crop Protection, LLC., 9 Davis Drive, Research Triangle Park, NC 541-8500, USA
| | - Jonathan Cohn
- Syngenta Crop Protection, LLC., 9 Davis Drive, Research Triangle Park, NC 541-8500, USA
| | - Peter E Wittich
- Syngenta Crop Protection, LLC., 9 Davis Drive, Research Triangle Park, NC 541-8500, USA
| | - Xiaoping Tan
- Syngenta Crop Protection, LLC., 9 Davis Drive, Research Triangle Park, NC 541-8500, USA
| | - Jimena Davis
- Syngenta Crop Protection, LLC., 9 Davis Drive, Research Triangle Park, NC 541-8500, USA
| | - Junjian Ni
- Syngenta Crop Protection, LLC., 9 Davis Drive, Research Triangle Park, NC 541-8500, USA
| | - Jon Trullinger
- Syngenta Crop Protection, LLC., 9 Davis Drive, Research Triangle Park, NC 541-8500, USA
| | - Rick Hall
- Syngenta Crop Protection, LLC., 9 Davis Drive, Research Triangle Park, NC 541-8500, USA
| | - Nicholas J Bate
- Syngenta Crop Protection, LLC., 9 Davis Drive, Research Triangle Park, NC 541-8500, USA
| |
Collapse
|
73
|
Kolbe AR, Studer AJ, Cousins AB. Biochemical and transcriptomic analysis of maize diversity to elucidate drivers of leaf carbon isotope composition. FUNCTIONAL PLANT BIOLOGY : FPB 2018; 45:489-500. [PMID: 32290988 DOI: 10.1071/fp17265] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2017] [Accepted: 11/01/2017] [Indexed: 05/13/2023]
Abstract
Carbon isotope discrimination is used to study CO2 diffusion, substrate availability for photosynthesis, and leaf biochemistry, but the intraspecific drivers of leaf carbon isotope composition (δ13C) in C4 species are not well understood. In this study, the role of photosynthetic enzymes and post-photosynthetic fractionation on δ13C (‰) was explored across diverse maize inbred lines. A significant 1.3‰ difference in δ13C was observed between lines but δ13C did not correlate with in vitro leaf carbonic anhydrase (CA), phosphoenolpyruvate carboxylase (PEPC), or ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) activity. RNA-sequencing was used to identify potential differences in post-photosynthetic metabolism that would influence δ13C; however, no correlations were identified that would indicate significant differences in post-photosynthetic fractionation between lines. Variation in δ13C has been observed between C4 subtypes, but differential expression of NADP-ME and PEP-CK pathways within these lines did not correlate with δ13C. However, co-expression network analysis provided novel evidence for isoforms of C4 enzymes and putative transporters. Together, these data indicate that diversity in maize δ13C cannot be fully explained by variation in CA, PEPC, or Rubisco activity or gene expression. The findings further emphasise the need for future work exploring the influence of stomatal sensitivity and mesophyll conductance on δ13C in maize.
Collapse
Affiliation(s)
- Allison R Kolbe
- School of Biological Sciences, PO Box 644236, Washington State University, Pullman, WA 99164, USA
| | - Anthony J Studer
- Department of Crop Sciences, 1201 West Gregory Drive, Edward R. Madigan Laboratory 289, University of Illinois Urbana-Champaign, Urbana, IL 61801, USA
| | - Asaph B Cousins
- School of Biological Sciences, PO Box 644236, Washington State University, Pullman, WA 99164, USA
| |
Collapse
|
74
|
Danila FR, Quick WP, White RG, Kelly S, von Caemmerer S, Furbank RT. Multiple mechanisms for enhanced plasmodesmata density in disparate subtypes of C4 grasses. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:1135-1145. [PMID: 29300922 PMCID: PMC6018992 DOI: 10.1093/jxb/erx456] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 11/30/2017] [Indexed: 05/25/2023]
Abstract
Proliferation of plasmodesmata (PD) connections between bundle sheath (BS) and mesophyll (M) cells has been proposed as a key step in the evolution of two-cell C4 photosynthesis; However, a lack of quantitative data has hampered further exploration and validation of this hypothesis. In this study, we quantified leaf anatomical traits associated with metabolite transport in 18 species of BEP and PACMAD grasses encompassing four origins of C4 photosynthesis and all three C4 subtypes (NADP-ME, NAD-ME, and PCK). We demonstrate that C4 leaves have greater PD density between M and BS cells than C3 leaves. We show that this greater PD density is achieved by increasing either the pit field (cluster of PD) area or the number of PD per pit field area. NAD-ME species had greater pit field area per M-BS interface than NADP-ME or PCK species. In contrast, NADP-ME and PCK species had lower pit field area with increased number of PD per pit field area than NAD-ME species. Overall, PD density per M-BS cell interface was greatest in NAD-ME species while PD density in PCK species exhibited the largest variability. Finally, the only other anatomical characteristic that clearly distinguished C4 from C3 species was their greater Sb value, the BS surface area to subtending leaf area ratio. In contrast, BS cell volume was comparable between the C3 and C4 grass species examined.
Collapse
Affiliation(s)
- Florence R Danila
- Research School of Biology, Australian National University, Canberra Australian Capital Territory, Australia
- ARC Centre of Excellence for Translational Photosynthesis, Australian National University, Canberra Australian Capital Territory, Australia
| | - William Paul Quick
- ARC Centre of Excellence for Translational Photosynthesis, Australian National University, Canberra Australian Capital Territory, Australia
- International Rice Research Institute, Los Baños, Laguna, Philippines
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK
| | - Rosemary G White
- CSIRO Agriculture, Canberra Australian Capital Territory, Australia
| | - Steven Kelly
- Department of Plant Sciences, University of Oxford, Oxford, UK
| | - Susanne von Caemmerer
- Research School of Biology, Australian National University, Canberra Australian Capital Territory, Australia
- ARC Centre of Excellence for Translational Photosynthesis, Australian National University, Canberra Australian Capital Territory, Australia
| | - Robert T Furbank
- Research School of Biology, Australian National University, Canberra Australian Capital Territory, Australia
- ARC Centre of Excellence for Translational Photosynthesis, Australian National University, Canberra Australian Capital Territory, Australia
- CSIRO Agriculture, Canberra Australian Capital Territory, Australia
| |
Collapse
|
75
|
Chastain CJ, Baird LM, Walker MT, Bergman CC, Novbatova GT, Mamani-Quispe CS, Burnell JN. Maize leaf PPDK regulatory protein isoform-2 is specific to bundle sheath chloroplasts and paradoxically lacks a Pi-dependent PPDK activation activity. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:1171-1181. [PMID: 29281064 PMCID: PMC6019023 DOI: 10.1093/jxb/erx471] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Accepted: 12/04/2017] [Indexed: 05/18/2023]
Abstract
In C4 plants, the pyruvate phosphate dikinase regulatory protein (PDRP) regulates the C4 pathway enzyme pyruvate phosphate dikinase (PPDK) in response to changes in incident light intensity. In maize (Zea mays) leaves, two distinct isoforms of PDRP are expressed, ZmPDRP1 and ZmPDRP2. The properties and C4 function of the ZmPDRP1 isoform are well understood. However, the PDRP2 isoform has only recently been identified and its properties and function(s) in maize leaves are unknown. We therefore initiated an investigation into the maize PDRP2 isoform by performing a side by side comparison of its enzyme properties and cell-specific distribution with PDRP1. In terms of enzyme functionality, PDRP2 was found to possess the same protein kinase-specific activity as PDRP1. However, the PDRP2 isoform was found to lack the phosphotransferase activity of the bifunctional PDRP1 isoform except when PDRP2 in the assays is elevated 5- to 10-fold. A primarily immuno-based approach was used to show that PDRP1 is strictly expressed in mesophyll cells and PDRP2 is strictly expressed in bundle sheath strand cells (BSCs). Additionally, using in situ immunolocalization, we establish a regulatory target for PDRP2 by showing a significant presence of C4 PPDK in BSC chloroplasts. However, a metabolic role for PPDK in this compartment is obscure, assuming PPDK accumulating in this compartment would be irreversibly inactivated each dark cycle by a monofunctional PDRP2.
Collapse
Affiliation(s)
- Chris J Chastain
- Department of Biosciences, Minnesota State University-Moorhead, USA
- Correspondence:
| | - Lisa M Baird
- Department of Biology, University of San Diego, San Diego, CA, USA
| | | | | | | | | | - Jim N Burnell
- Department of Molecular and Cell Biology, James Cook University, Australia
| |
Collapse
|
76
|
Slattery RA, Walker BJ, Weber APM, Ort DR. The Impacts of Fluctuating Light on Crop Performance. PLANT PHYSIOLOGY 2018; 176:990-1003. [PMID: 29192028 PMCID: PMC5813574 DOI: 10.1104/pp.17.01234] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 11/27/2017] [Indexed: 05/18/2023]
Abstract
Rapidly changing light conditions can reduce carbon gain and productivity in field crops because photosynthetic responses to light fluctuations are not instantaneous. Plant responses to fluctuating light occur across levels of organizational complexity from entire canopies to the biochemistry of a single reaction and across orders of magnitude of time. Although light availability and variation at the top of the canopy are largely dependent on the solar angle and degree of cloudiness, lower crop canopies rely more heavily on light in the form of sunflecks, the quantity of which depends mostly on canopy structure but also may be affected by wind. The ability of leaf photosynthesis to respond rapidly to these variations in light intensity is restricted by the relatively slow opening/closing of stomata, activation/deactivation of C3 cycle enzymes, and up-regulation/down-regulation of photoprotective processes. The metabolic complexity of C4 photosynthesis creates the apparently contradictory possibilities that C4 photosynthesis may be both more and less resilient than C3 to dynamic light regimes, depending on the frequency at which these light fluctuations occur. We review the current understanding of the underlying mechanisms of these limitations to photosynthesis in fluctuating light that have shown promise in improving the response times of photosynthesis-related processes to changes in light intensity.
Collapse
Affiliation(s)
- Rebecca A Slattery
- Global Change and Photosynthesis Research Unit, Agricultural Research Service, United States Department of Agriculture, Urbana, Illinois 61801
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, Illinois 61801
| | - Berkley J Walker
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences, Heinrich-Heine-University, Duesseldorf, Germany 40225
| | - Andreas P M Weber
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences, Heinrich-Heine-University, Duesseldorf, Germany 40225
| | - Donald R Ort
- Global Change and Photosynthesis Research Unit, Agricultural Research Service, United States Department of Agriculture, Urbana, Illinois 61801
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, Illinois 61801
- Department of Plant Biology, University of Illinois, Urbana, Illinois 61801
| |
Collapse
|
77
|
Sonawane BV, Sharwood RE, von Caemmerer S, Whitney SM, Ghannoum O. Short-term thermal photosynthetic responses of C4 grasses are independent of the biochemical subtype. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:5583-5597. [PMID: 29045727 PMCID: PMC5853683 DOI: 10.1093/jxb/erx350] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 09/14/2017] [Indexed: 05/20/2023]
Abstract
C4 photosynthesis evolved independently many times, resulting in multiple biochemical pathways; however, little is known about how these different pathways respond to temperature. We investigated the photosynthetic responses of eight C4 grasses belonging to three biochemical subtypes (NADP-ME, PEP-CK, and NAD-ME) to four leaf temperatures (18, 25, 32, and 40 °C). We also explored whether the biochemical subtype influences the thermal responses of (i) in vitro PEPC (Vpmax) and Rubisco (Vcmax) maximal activities, (ii) initial slope (IS) and CO2-saturated rate (CSR) derived from the A-Ci curves, and (iii) CO2 leakage out of the bundle sheath estimated from carbon isotope discrimination. We focussed on leakiness and the two carboxylases because they determine the coordination of the CO2-concentrating mechanism and are important for parameterizing the semi-mechanistic C4 photosynthesis model. We found that the thermal responses of Vpmax and Vcmax, IS, CSR, and leakiness varied among the C4 species independently of the biochemical subtype. No correlation was observed between Vpmax and IS or between Vcmax and CSR; while the ratios Vpmax/Vcmax and IS/CSR did not correlate with leakiness among the C4 grasses. Determining mesophyll and bundle sheath conductances in diverse C4 grasses is required to further elucidate how C4 photosynthesis responds to temperature.
Collapse
Affiliation(s)
- Balasaheb V Sonawane
- ARC Centre of Excellence for Translational Photosynthesis and Hawkesbury Institute for the Environment, Western Sydney University, Richmond NSW, Australia
| | - Robert E Sharwood
- ARC Centre of Excellence for Translational Photosynthesis and Research School of Biology, Australian National University, Canberra ACT, Australia
| | - Susanne von Caemmerer
- ARC Centre of Excellence for Translational Photosynthesis and Research School of Biology, Australian National University, Canberra ACT, Australia
| | - Spencer M Whitney
- ARC Centre of Excellence for Translational Photosynthesis and Research School of Biology, Australian National University, Canberra ACT, Australia
| | - Oula Ghannoum
- ARC Centre of Excellence for Translational Photosynthesis and Hawkesbury Institute for the Environment, Western Sydney University, Richmond NSW, Australia
| |
Collapse
|
78
|
Lauterbach M, Schmidt H, Billakurthi K, Hankeln T, Westhoff P, Gowik U, Kadereit G. De novo Transcriptome Assembly and Comparison of C 3, C 3-C 4, and C 4 Species of Tribe Salsoleae (Chenopodiaceae). FRONTIERS IN PLANT SCIENCE 2017; 8:1939. [PMID: 29184562 PMCID: PMC5694442 DOI: 10.3389/fpls.2017.01939] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Accepted: 10/27/2017] [Indexed: 05/29/2023]
Abstract
C4 photosynthesis is a carbon-concentrating mechanism that evolved independently more than 60 times in a wide range of angiosperm lineages. Among other alterations, the evolution of C4 from ancestral C3 photosynthesis requires changes in the expression of a vast number of genes. Differential gene expression analyses between closely related C3 and C4 species have significantly increased our understanding of C4 functioning and evolution. In Chenopodiaceae, a family that is rich in C4 origins and photosynthetic types, the anatomy, physiology and phylogeny of C4, C2, and C3 species of Salsoleae has been studied in great detail, which facilitated the choice of six samples of five representative species with different photosynthetic types for transcriptome comparisons. mRNA from assimilating organs of each species was sequenced in triplicates, and sequence reads were de novo assembled. These novel genetic resources were then analyzed to provide a better understanding of differential gene expression between C3, C2 and C4 species. All three analyzed C4 species belong to the NADP-ME type as most genes encoding core enzymes of this C4 cycle are highly expressed. The abundance of photorespiratory transcripts is decreased compared to the C3 and C2 species. Like in other C4 lineages of Caryophyllales, our results suggest that PEPC1 is the C4-specific isoform in Salsoleae. Two recently identified transporters from the PHT4 protein family may not only be related to the C4 syndrome, but also active in C2 photosynthesis in Salsoleae. In the two populations of the C2 species S. divaricata transcript abundance of several C4 genes are slightly increased, however, a C4 cycle is not detectable in the carbon isotope values. Most of the core enzymes of photorespiration are highly increased in the C2 species compared to both C3 and C4 species, confirming a successful establishment of the C2 photosynthetic pathway. Furthermore, a function of PEP-CK in C2 photosynthesis appears likely, since PEP-CK gene expression is not only increased in S. divaricata but also in C2 species of other groups.
Collapse
Affiliation(s)
- Maximilian Lauterbach
- Institute for Molecular Physiology, Johannes Gutenberg-University Mainz, Mainz, Germany
- Institute for Organismic and Molecular Evolutionary Biology, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Hanno Schmidt
- Institute for Organismic and Molecular Evolutionary Biology, Johannes Gutenberg-University Mainz, Mainz, Germany
- Senckenberg Biodiversity and Climate Research Centre (SBiK-F), Frankfurt am Main, Germany
| | - Kumari Billakurthi
- Institute for Developmental and Molecular Biology of Plants, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- Cluster of Excellence on Plant Sciences, Düsseldorf, Germany
| | - Thomas Hankeln
- Institute for Organismic and Molecular Evolutionary Biology, Johannes Gutenberg-University Mainz, Mainz, Germany
| | - Peter Westhoff
- Institute for Developmental and Molecular Biology of Plants, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- Cluster of Excellence on Plant Sciences, Düsseldorf, Germany
| | - Udo Gowik
- Institute for Developmental and Molecular Biology of Plants, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
- Institute for Biology and Environmental Science (IBU), Plant Evolutionary Genetics, Carl von Ossietzky University Oldenburg, Oldenburg, Germany
| | - Gudrun Kadereit
- Institute for Molecular Physiology, Johannes Gutenberg-University Mainz, Mainz, Germany
- Institute for Organismic and Molecular Evolutionary Biology, Johannes Gutenberg-University Mainz, Mainz, Germany
| |
Collapse
|
79
|
Reyna-Llorens I, Hibberd JM. Recruitment of pre-existing networks during the evolution of C 4 photosynthesis. Philos Trans R Soc Lond B Biol Sci 2017; 372:20160386. [PMID: 28808102 PMCID: PMC5566883 DOI: 10.1098/rstb.2016.0386] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2017] [Indexed: 11/12/2022] Open
Abstract
During C4 photosynthesis, CO2 is concentrated around the enzyme RuBisCO. The net effect is to reduce photorespiration while increasing water and nitrogen use efficiencies. Species that use C4 photosynthesis have evolved independently from their C3 ancestors on more than 60 occasions. Along with mimicry and the camera-like eye, the C4 pathway therefore represents a remarkable example of the repeated evolution of a highly complex trait. In this review, we provide evidence that the polyphyletic evolution of C4 photosynthesis is built upon pre-existing metabolic and genetic networks. For example, cells around veins of C3 species show similarities to those of the C4 bundle sheath in terms of C4 acid decarboxylase activity and also the photosynthetic electron transport chain. Enzymes of C4 photosynthesis function together in gluconeogenesis during early seedling growth of C3Arabidopsis thaliana Furthermore, multiple C4 genes appear to be under control of both light and chloroplast signals in the ancestral C3 state. We, therefore, hypothesize that relatively minor rewiring of pre-existing genetic and metabolic networks has facilitated the recurrent evolution of this trait. Understanding how these changes are likely to have occurred could inform attempts to install C4 traits into C3 crops.This article is part of the themed issue 'Enhancing photosynthesis in crop plants: targets for improvement'.
Collapse
Affiliation(s)
- Ivan Reyna-Llorens
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Julian M Hibberd
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| |
Collapse
|
80
|
Shen Z, Dong XM, Gao ZF, Chao Q, Wang BC. Phylogenic and phosphorylation regulation difference of phosphoenolpyruvate carboxykinase of C3 and C4 plants. JOURNAL OF PLANT PHYSIOLOGY 2017; 213:16-22. [PMID: 28285130 DOI: 10.1016/j.jplph.2017.02.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 02/22/2017] [Accepted: 02/22/2017] [Indexed: 05/07/2023]
Abstract
In C4 plants, phosphoenolpyruvate carboxykinase (PEPCK) plays a key role in the C4 cycle. PEPCK is also involved in gluconeogenesis and is conserved in both lower and higher organisms, including in animals and plants. A phylogenic tree constructed from PEPCK sequences from bacteria to higher plants indicates that the C4 Poaceae PEPCKs are conserved and have diverged from the PEPCKs of C3 plants. The maximum enzymatic activities of wild-type and phosphorylation mimic PEPCK proteins indicate that there is a significant difference between C3 and C4 plant PEPCKs. The conserved PEPCK phosphorylation sites are regulated differently in C3 and C4 plants. These results suggest that the functions of PEPCK have been conserved, but that sequences have diverged and regulation of PEPCK is important in C4 plants, but not in herbaceous and, in particular, woody C3 plants.
Collapse
Affiliation(s)
- Zhuo Shen
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Xiu-Mei Dong
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Zhi-Fang Gao
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Qing Chao
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Bai-Chen Wang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.
| |
Collapse
|
81
|
Cañas RA, Yesbergenova-Cuny Z, Simons M, Chardon F, Armengaud P, Quilleré I, Cukier C, Gibon Y, Limami AM, Nicolas S, Brulé L, Lea PJ, Maranas CD, Hirel B. Exploiting the Genetic Diversity of Maize Using a Combined Metabolomic, Enzyme Activity Profiling, and Metabolic Modeling Approach to Link Leaf Physiology to Kernel Yield. THE PLANT CELL 2017; 29:919-943. [PMID: 28396554 PMCID: PMC5466022 DOI: 10.1105/tpc.16.00613] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 03/07/2017] [Accepted: 04/06/2017] [Indexed: 05/18/2023]
Abstract
A combined metabolomic, biochemical, fluxomic, and metabolic modeling approach was developed using 19 genetically distant maize (Zea mays) lines from Europe and America. Considerable differences were detected between the lines when leaf metabolic profiles and activities of the main enzymes involved in primary metabolism were compared. During grain filling, the leaf metabolic composition appeared to be a reliable marker, allowing a classification matching the genetic diversity of the lines. During the same period, there was a significant correlation between the genetic distance of the lines and the activities of enzymes involved in carbon metabolism, notably glycolysis. Although large differences were observed in terms of leaf metabolic fluxes, these variations were not tightly linked to the genome structure of the lines. Both correlation studies and metabolic network analyses allowed the description of a maize ideotype with a high grain yield potential. Such an ideotype is characterized by low accumulation of soluble amino acids and carbohydrates in the leaves and high activity of enzymes involved in the C4 photosynthetic pathway and in the biosynthesis of amino acids derived from glutamate. Chlorogenates appear to be important markers that can be used to select for maize lines that produce larger kernels.
Collapse
Affiliation(s)
- Rafael A Cañas
- Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique (INRA), Centre de Versailles-Grignon, Unité Mixte de Recherche 1318, INRA-Agro-ParisTech, Equipe de Recherche Labellisée, Centre National de la Recherche Scientifique (CNRS) 3559, F-78026 Versailles cedex, France
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, 29071 Málaga, Spain
| | - Zhazira Yesbergenova-Cuny
- Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique (INRA), Centre de Versailles-Grignon, Unité Mixte de Recherche 1318, INRA-Agro-ParisTech, Equipe de Recherche Labellisée, Centre National de la Recherche Scientifique (CNRS) 3559, F-78026 Versailles cedex, France
| | - Margaret Simons
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Fabien Chardon
- Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique (INRA), Centre de Versailles-Grignon, Unité Mixte de Recherche 1318, INRA-Agro-ParisTech, Equipe de Recherche Labellisée, Centre National de la Recherche Scientifique (CNRS) 3559, F-78026 Versailles cedex, France
| | - Patrick Armengaud
- Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique (INRA), Centre de Versailles-Grignon, Unité Mixte de Recherche 1318, INRA-Agro-ParisTech, Equipe de Recherche Labellisée, Centre National de la Recherche Scientifique (CNRS) 3559, F-78026 Versailles cedex, France
| | - Isabelle Quilleré
- Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique (INRA), Centre de Versailles-Grignon, Unité Mixte de Recherche 1318, INRA-Agro-ParisTech, Equipe de Recherche Labellisée, Centre National de la Recherche Scientifique (CNRS) 3559, F-78026 Versailles cedex, France
| | - Caroline Cukier
- University of Angers, Institut de Recherche en Horticulture et Semences, INRA, Structure Fédérative de Recherche 4207, Qualité et Santé du Végétal, F-49045 Angers, France
| | - Yves Gibon
- Unité Mixte Recherche 1332, Biologie du Fruit et Pathologie, Bordeaux Métabolome Platform, INRA de Bordeaux-Aquitaine, F-33883 Villenave d'Ornon cedex, France
| | - Anis M Limami
- University of Angers, Institut de Recherche en Horticulture et Semences, INRA, Structure Fédérative de Recherche 4207, Qualité et Santé du Végétal, F-49045 Angers, France
| | - Stéphane Nicolas
- Station de Génétique Végétale, INRA-UPS-INAPG-CNRS, Ferme du Moulon, F-91190 Gif/Yvette, France
| | - Lenaïg Brulé
- Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique (INRA), Centre de Versailles-Grignon, Unité Mixte de Recherche 1318, INRA-Agro-ParisTech, Equipe de Recherche Labellisée, Centre National de la Recherche Scientifique (CNRS) 3559, F-78026 Versailles cedex, France
| | - Peter J Lea
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, United Kingdom
| | - Costas D Maranas
- Department of Chemical Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802
| | - Bertrand Hirel
- Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique (INRA), Centre de Versailles-Grignon, Unité Mixte de Recherche 1318, INRA-Agro-ParisTech, Equipe de Recherche Labellisée, Centre National de la Recherche Scientifique (CNRS) 3559, F-78026 Versailles cedex, France
| |
Collapse
|
82
|
Dunning LT, Lundgren MR, Moreno-Villena JJ, Namaganda M, Edwards EJ, Nosil P, Osborne CP, Christin PA. Introgression and repeated co-option facilitated the recurrent emergence of C 4 photosynthesis among close relatives. Evolution 2017; 71:1541-1555. [PMID: 28395112 PMCID: PMC5488178 DOI: 10.1111/evo.13250] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 04/04/2017] [Indexed: 01/16/2023]
Abstract
The origins of novel traits are often studied using species trees and modeling phenotypes as different states of the same character, an approach that cannot always distinguish multiple origins from fewer origins followed by reversals. We address this issue by studying the origins of C4 photosynthesis, an adaptation to warm and dry conditions, in the grass Alloteropsis. We dissect the C4 trait into its components, and show two independent origins of the C4 phenotype via different anatomical modifications, and the use of distinct sets of genes. Further, inference of enzyme adaptation suggests that one of the two groups encompasses two transitions to a full C4 state from a common ancestor with an intermediate phenotype that had some C4 anatomical and biochemical components. Molecular dating of C4 genes confirms the introgression of two key C4 components between species, while the inheritance of all others matches the species tree. The number of origins consequently varies among C4 components, a scenario that could not have been inferred from analyses of the species tree alone. Our results highlight the power of studying individual components of complex traits to reconstruct trajectories toward novel adaptations.
Collapse
Affiliation(s)
- Luke T Dunning
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, United Kingdom
| | - Marjorie R Lundgren
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, United Kingdom
| | - Jose J Moreno-Villena
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, United Kingdom
| | | | - Erika J Edwards
- Department of Ecology and Evolutionary Biology, Brown University, Providence, Rhode Island, 02912
| | - Patrik Nosil
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, United Kingdom
| | - Colin P Osborne
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, United Kingdom
| | - Pascal-Antoine Christin
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, United Kingdom
| |
Collapse
|
83
|
Furbank RT. Walking the C4 pathway: past, present, and future. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:4057-4066. [PMID: 28110279 DOI: 10.1093/jxb/erx006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The year 2016 marks 50 years since the publication of the seminal paper by Hatch and Slack describing the biochemical pathway we now know as C4 photosynthesis. This review provides insight into the initial discovery of this pathway, the clues which led Hatch and Slack and others to these definitive experiments, some of the intrigue which surrounds the international activities which led up to the discovery, and personal insights into the future of this research field. While the biochemical understanding of the basic pathways came quickly, the role of the bundle sheath intermediate CO2 pool was not understood for a number of years, and the nature of C4 as a biochemical CO2 pump then linked the unique Kranz anatomy of C4 plants to their biochemical specialization. Decades of "grind and find biochemistry" and leaf physiology fleshed out the regulation of the pathway and the differences in physiological response to the environment between C3 and C4 plants. The more recent advent of plant transformation then high-throughput RNA and DNA sequencing and synthetic biology has allowed us both to carry out biochemical experiments and test hypotheses in planta and to better understand the evolution-driven molecular and genetic changes which occurred in the genomes of plants in the transition from C3 to C4 Now we are using this knowledge in attempts to engineer C4 rice and improve the C4 engine itself for enhanced food security and to provide novel biofuel feedstocks. The next 50 years of photosynthesis will no doubt be challenging, stimulating, and a drawcard for the best young minds in plant biology.
Collapse
Affiliation(s)
- Robert T Furbank
- ARC Centre of Excellence for Translational Photosynthesis, The Australian National University, Research School of Biology, 134 Linnaeus Way, Acton ACT 2601, Australia
- CSIRO Agriculture, Clunies Ross St, Acton ACT 2601, Australia
| |
Collapse
|
84
|
Denton AK, Maß J, Külahoglu C, Lercher MJ, Bräutigam A, Weber APM. Freeze-quenched maize mesophyll and bundle sheath separation uncovers bias in previous tissue-specific RNA-Seq data. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:147-160. [PMID: 28043950 PMCID: PMC5853576 DOI: 10.1093/jxb/erw463] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 11/18/2016] [Indexed: 05/18/2023]
Abstract
The high efficiency of C4 photosynthesis relies on spatial division of labor, classically with initial carbon fixation in the mesophyll and carbon reduction in the bundle sheath. By employing grinding and serial filtration over liquid nitrogen, we enriched C4 tissues along a developing leaf gradient. This method treats both C4 tissues in an integrity-preserving and consistent manner, while allowing complementary measurements of metabolite abundance and enzyme activity, thus providing a comprehensive data set. Meta-analysis of this and the previous studies highlights the strengths and weaknesses of different C4 tissue separation techniques. While the method reported here achieves the least enrichment, it is the only one that shows neither strong 3' (degradation) bias, nor different severity of 3' bias between samples. The meta-analysis highlighted previously unappreciated observations, such as an accumulation of evidence that aspartate aminotransferase is more mesophyll specific than expected from the current NADP-ME C4 cycle model, and a shift in enrichment of protein synthesis genes from bundle sheath to mesophyll during development. The full comparative dataset is available for download, and a web visualization tool (available at http://www.plant-biochemistry.hhu.de/resources.html) facilitates comparison of the the Z. mays bundle sheath and mesophyll studies, their consistencies and their conflicts.
Collapse
Affiliation(s)
- Alisandra K Denton
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS), iGRAD-Plant Program, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - Janina Maß
- Institute of Informatics, Cluster of Excellence on Plant Sciences (CEPLAS), iGRAD-Plant Program, Heinrich-Heine University, 40225 Düsseldorf, Germany
| | - Canan Külahoglu
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS), iGRAD-Plant Program, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - Martin J Lercher
- Institute of Informatics, Cluster of Excellence on Plant Sciences (CEPLAS), iGRAD-Plant Program, Heinrich-Heine University, 40225 Düsseldorf, Germany
| | - Andrea Bräutigam
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS), iGRAD-Plant Program, Heinrich-Heine-University, 40225 Düsseldorf, Germany
- Network Analysis and Modeling Group, IPK Gatersleben, Corrensstrasse 3, D-06466 Stadt Seeland, Germany
| | - Andreas P M Weber
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Sciences (CEPLAS), iGRAD-Plant Program, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| |
Collapse
|
85
|
Wang S, Tholen D, Zhu X. C 4 photosynthesis in C 3 rice: a theoretical analysis of biochemical and anatomical factors. PLANT, CELL & ENVIRONMENT 2017; 40:80-94. [PMID: 27628301 PMCID: PMC6139432 DOI: 10.1111/pce.12834] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Revised: 09/08/2016] [Accepted: 09/10/2016] [Indexed: 05/05/2023]
Abstract
Engineering C4 photosynthesis into rice has been considered a promising strategy to increase photosynthesis and yield. A question that remains to be answered is whether expressing a C4 metabolic cycle into a C3 leaf structure and without removing the C3 background metabolism improves photosynthetic efficiency. To explore this question, we developed a 3D reaction diffusion model of bundle-sheath and connected mesophyll cells in a C3 rice leaf. Our results show that integrating a C4 metabolic pathway into rice leaves with a C3 metabolism and mesophyll structure may lead to an improved photosynthesis under current ambient CO2 concentration. We analysed a number of physiological factors that influence the CO2 uptake rate, which include the chloroplast surface area exposed to intercellular air space, bundle-sheath cell wall thickness, bundle-sheath chloroplast envelope permeability, Rubisco concentration and the energy partitioning between C3 and C4 cycles. Among these, partitioning of energy between C3 and C4 photosynthesis and the partitioning of Rubisco between mesophyll and bundle-sheath cells are decisive factors controlling photosynthetic efficiency in an engineered C3 -C4 leaf. The implications of the results for the sequence of C4 evolution are also discussed.
Collapse
Affiliation(s)
- Shuyue Wang
- Key Laboratory of Computational Biology, CAS‐MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological SciencesChinese Academy of SciencesShanghai200031China
- University of Chinese Academy of SciencesBeijing100049China
| | - Danny Tholen
- Institute of Botany, Department of Integrative BiologyUniversity of Natural Resources and Applied Life Sciences, BOKU ViennaGregor‐Mendel‐Str. 33A‐1180ViennaAustria
| | - Xin‐Guang Zhu
- Key Laboratory of Computational Biology, CAS‐MPG Partner Institute for Computational Biology, Shanghai Institutes for Biological SciencesChinese Academy of SciencesShanghai200031China
- University of Chinese Academy of SciencesBeijing100049China
| |
Collapse
|
86
|
Arrivault S, Obata T, Szecówka M, Mengin V, Guenther M, Hoehne M, Fernie AR, Stitt M. Metabolite pools and carbon flow during C4 photosynthesis in maize: 13CO2 labeling kinetics and cell type fractionation. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:283-298. [PMID: 27834209 PMCID: PMC5853532 DOI: 10.1093/jxb/erw414] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 10/18/2016] [Indexed: 05/17/2023]
Abstract
Worldwide efforts to engineer C4 photosynthesis into C3 crops require a deep understanding of how this complex pathway operates. CO2 is incorporated into four-carbon metabolites in the mesophyll, which move to the bundle sheath where they are decarboxylated to concentrate CO2 around RuBisCO. We performed dynamic 13CO2 labeling in maize to analyze C flow in C4 photosynthesis. The overall labeling kinetics reflected the topology of C4 photosynthesis. Analyses of cell-specific labeling patterns after fractionation to enrich bundle sheath and mesophyll cells revealed concentration gradients to drive intercellular diffusion of malate, but not pyruvate, in the major CO2-concentrating shuttle. They also revealed intercellular concentration gradients of aspartate, alanine, and phosphenolpyruvate to drive a second phosphoenolpyruvate carboxykinase (PEPCK)-type shuttle, which carries 10-14% of the carbon into the bundle sheath. Gradients also exist to drive intercellular exchange of 3-phosphoglycerate and triose-phosphate. There is rapid carbon exchange between the Calvin-Benson cycle and the CO2-concentrating shuttle, equivalent to ~10% of carbon gain. In contrast, very little C leaks from the large pools of metabolites in the C concentration shuttle into respiratory metabolism. We postulate that the presence of multiple shuttles, alongside carbon transfer between them and the Calvin-Benson cycle, confers great flexibility in C4 photosynthesis.
Collapse
Affiliation(s)
- Stéphanie Arrivault
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Toshihiro Obata
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Marek Szecówka
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Virginie Mengin
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Manuela Guenther
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Melanie Hoehne
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Mark Stitt
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, D-14476 Potsdam-Golm, Germany
| |
Collapse
|
87
|
Kümpers BMC, Burgess SJ, Reyna-Llorens I, Smith-Unna R, Boursnell C, Hibberd JM. Shared characteristics underpinning C4 leaf maturation derived from analysis of multiple C3 and C4 species of Flaveria. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:177-189. [PMID: 28062590 PMCID: PMC5853325 DOI: 10.1093/jxb/erw488] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 12/13/2016] [Indexed: 05/08/2023]
Abstract
Most terrestrial plants use C3 photosynthesis to fix carbon. In multiple plant lineages a modified system known as C4 photosynthesis has evolved. To better understand the molecular patterns associated with induction of C4 photosynthesis, the genus Flaveria that contains C3 and C4 species was used. A base to tip maturation gradient of leaf anatomy was defined, and RNA sequencing was undertaken along this gradient for two C3 and two C4 Flaveria species. Key C4 traits including vein density, mesophyll and bundle sheath cross-sectional area, chloroplast ultrastructure, and abundance of transcripts encoding proteins of C4 photosynthesis were quantified. Candidate genes underlying each of these C4 characteristics were identified. Principal components analysis indicated that leaf maturation and the photosynthetic pathway were responsible for the greatest amount of variation in transcript abundance. Photosynthesis genes were over-represented for a prolonged period in the C4 species. Through comparison with publicly available data sets, we identify a small number of transcriptional regulators that have been up-regulated in diverse C4 species. The analysis identifies similar patterns of expression in independent C4 lineages and so indicates that the complex C4 pathway is associated with parallel as well as convergent evolution.
Collapse
Affiliation(s)
- Britta M C Kümpers
- Department of Plant Sciences, Downing Street, University of Cambridge, Cambridge CB2 3EA, UK
| | - Steven J Burgess
- Department of Plant Sciences, Downing Street, University of Cambridge, Cambridge CB2 3EA, UK
| | - Ivan Reyna-Llorens
- Department of Plant Sciences, Downing Street, University of Cambridge, Cambridge CB2 3EA, UK
| | - Richard Smith-Unna
- Department of Plant Sciences, Downing Street, University of Cambridge, Cambridge CB2 3EA, UK
| | - Chris Boursnell
- Department of Plant Sciences, Downing Street, University of Cambridge, Cambridge CB2 3EA, UK
| | - Julian M Hibberd
- Department of Plant Sciences, Downing Street, University of Cambridge, Cambridge CB2 3EA, UK
| |
Collapse
|
88
|
Bellasio C. A generalized stoichiometric model of C3, C2, C2+C4, and C4 photosynthetic metabolism. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:269-282. [PMID: 27535993 PMCID: PMC5853385 DOI: 10.1093/jxb/erw303] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 07/21/2016] [Indexed: 05/22/2023]
Abstract
The goal of suppressing photorespiration in crops to maximize assimilation and yield is stimulating considerable interest among researchers looking to bioengineer carbon-concentrating mechanisms into C3 plants. However, detailed quantification of the biochemical activities in the bundle sheath is lacking. This work presents a general stoichiometric model for C3, C2, C2+C4, and C4 assimilation (SMA) in which energetics, metabolite traffic, and the different decarboxylating enzymes (NAD-dependent malic enzyme, NADP-dependent malic enzyme, or phosphoenolpyruvate carboxykinase) are explicitly included. The SMA can be used to refine experimental data analysis or formulate hypothetical scenarios, and is coded in a freely available Microsoft Excel workbook. The theoretical underpinnings and general model behaviour are analysed with a range of simulations, including (i) an analysis of C3, C2, C2+C4, and C4 in operational conditions; (ii) manipulating photorespiration in a C3 plant; (iii) progressively upregulating a C2 shuttle in C3 photosynthesis; (iv) progressively upregulating a C4 cycle in C2 photosynthesis; and (v) manipulating processes that are hypothesized to respond to transient environmental inputs. Results quantify the functional trade-offs, such as the electron transport needed to meet ATP/NADPH demand, as well as metabolite traffic, inherent to different subtypes. The SMA refines our understanding of the stoichiometry of photosynthesis, which is of paramount importance for basic and applied research.
Collapse
Affiliation(s)
- Chandra Bellasio
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, S10 2TN, UK
| |
Collapse
|
89
|
Lauterbach M, Billakurthi K, Kadereit G, Ludwig M, Westhoff P, Gowik U. C3 cotyledons are followed by C4 leaves: intra-individual transcriptome analysis of Salsola soda (Chenopodiaceae). JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:161-176. [PMID: 27660482 PMCID: PMC5853821 DOI: 10.1093/jxb/erw343] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Some species of Salsoleae (Chenopodiaceae) convert from C3 photosynthesis during the seedling stage to the C4 pathway in adult leaves. This unique developmental transition of photosynthetic pathways offers the exceptional opportunity to follow the development of the derived C4 syndrome from the C3 condition within individual plants, avoiding phylogenetic noise. Here we investigate Salsola soda, a little-studied species from tribe Salsoleae, using an ontogenetic approach. Anatomical sections, carbon isotope (δ13C) values, transcriptome analysis by means of mRNA sequencing, and protein levels of the key C4 enzyme phosphoenolpyruvate carboxylase (PEPC) were examined from seed to adult plant stages. Despite a previous report, our results based on δ13C values, anatomy and transcriptomics clearly indicate a C3 phase during the cotyledon stage. During this stage, the entire transcriptional repertoire of the C4 NADP-malic enzyme type is detected at low levels compared to a significant increase in true leaves. In contrast, abundance of transcripts encoding most of the major photorespiratory enzymes is not significantly decreased in leaves compared to cotyledons. PEPC polypeptide was detected only in leaves, correlating with increased PEPC transcript abundance from the cotyledon to leaf stage.
Collapse
Affiliation(s)
- Maximilian Lauterbach
- Institut für Allgemeine und Spezielle Botanik und Botanischer Garten der Johannes Gutenberg-Universität Mainz, D-55099 Mainz, Germany
| | - Kumari Billakurthi
- Institut für Entwicklungs- und Molekularbiologie der Pflanzen, D-40225 Düsseldorf, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), D-06225 Düsseldorf, Germany
| | - Gudrun Kadereit
- Institut für Allgemeine und Spezielle Botanik und Botanischer Garten der Johannes Gutenberg-Universität Mainz, D-55099 Mainz, Germany
| | - Martha Ludwig
- School of Chemistry and Biochemistry, University of Western Australia, Crawley, WA 6009, Australia
| | - Peter Westhoff
- Institut für Entwicklungs- und Molekularbiologie der Pflanzen, D-40225 Düsseldorf, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), D-06225 Düsseldorf, Germany
| | - Udo Gowik
- Institut für Entwicklungs- und Molekularbiologie der Pflanzen, D-40225 Düsseldorf, Germany
| |
Collapse
|
90
|
Yesbergenova-Cuny Z, Dinant S, Martin-Magniette ML, Quilleré I, Armengaud P, Monfalet P, Lea PJ, Hirel B. Genetic variability of the phloem sap metabolite content of maize (Zea mays L.) during the kernel-filling period. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2016; 252:347-357. [PMID: 27717471 DOI: 10.1016/j.plantsci.2016.08.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 08/08/2016] [Accepted: 08/09/2016] [Indexed: 06/06/2023]
Abstract
Using a metabolomic approach, we have quantified the metabolite composition of the phloem sap exudate of seventeen European and American lines of maize that had been previously classified into five main groups on the basis of molecular marker polymorphisms. In addition to sucrose, glutamate and aspartate, which are abundant in the phloem sap of many plant species, large quantities of aconitate and alanine were also found in the phloem sap exudates of maize. Genetic variability of the phloem sap composition was observed in the different maize lines, although there was no obvious relationship between the phloem sap composition and the five previously classified groups. However, following hierarchical clustering analysis there was a clear relationship between two of the subclusters of lines defined on the basis of the composition of the phloem sap exudate and the earliness of silking date. A comparison between the metabolite contents of the ear leaves and the phloem sap exudates of each genotype, revealed that the relative content of most of the carbon- and nitrogen-containing metabolites was similar. Correlation studies performed between the metabolite content of the phloem sap exudates and yield-related traits also revealed that for some carbohydrates such as arabitol and sucrose there was a negative or positive correlation with kernel yield and kernel weight respectively. A posititive correlation was also found between kernel number and soluble histidine.
Collapse
Affiliation(s)
- Zhazira Yesbergenova-Cuny
- Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique, INRA, Centre de Versailles-Grignon, Unité Mixte de Recherche 1318 INRA-Agro-ParisTech, Equipe de Recherce Labellisée (ERL), Centre National de la Recherche Scientifique, CNRS 3559, RD10(,) F-78026 Versailles Cedex, France
| | - Sylvie Dinant
- Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique, INRA, Centre de Versailles-Grignon, Unité Mixte de Recherche 1318 INRA-Agro-ParisTech, Equipe de Recherce Labellisée (ERL), Centre National de la Recherche Scientifique, CNRS 3559, RD10(,) F-78026 Versailles Cedex, France
| | - Marie-Laure Martin-Magniette
- Institute of Plant Sciences Paris Saclay IPS2, CNRS, INRA, Université Paris-Sud, Université Evry, Université Paris-Saclay, Batiment 630, 91405 Orsay, France; Institute of Plant Sciences Paris-Saclay IPS2, Paris Diderot, Sorbonne Paris-Cité, Bâtiment 630, 91405, Orsay, France; UMR MIA-Paris, AgroParisTech, INRA, Université Paris-Saclay, 75005, Paris, France
| | - Isabelle Quilleré
- Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique, INRA, Centre de Versailles-Grignon, Unité Mixte de Recherche 1318 INRA-Agro-ParisTech, Equipe de Recherce Labellisée (ERL), Centre National de la Recherche Scientifique, CNRS 3559, RD10(,) F-78026 Versailles Cedex, France
| | - Patrick Armengaud
- Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique, INRA, Centre de Versailles-Grignon, Unité Mixte de Recherche 1318 INRA-Agro-ParisTech, Equipe de Recherce Labellisée (ERL), Centre National de la Recherche Scientifique, CNRS 3559, RD10(,) F-78026 Versailles Cedex, France
| | - Priscilla Monfalet
- Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique, INRA, Centre de Versailles-Grignon, Unité Mixte de Recherche 1318 INRA-Agro-ParisTech, Equipe de Recherce Labellisée (ERL), Centre National de la Recherche Scientifique, CNRS 3559, RD10(,) F-78026 Versailles Cedex, France; UMR MIA-Paris, AgroParisTech, INRA, Université Paris-Saclay, 75005, Paris, France
| | - Peter J Lea
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, United Kingdom
| | - Bertrand Hirel
- Institut Jean-Pierre Bourgin, Institut National de la Recherche Agronomique, INRA, Centre de Versailles-Grignon, Unité Mixte de Recherche 1318 INRA-Agro-ParisTech, Equipe de Recherce Labellisée (ERL), Centre National de la Recherche Scientifique, CNRS 3559, RD10(,) F-78026 Versailles Cedex, France.
| |
Collapse
|
91
|
Studer AJ, Schnable JC, Weissmann S, Kolbe AR, McKain MR, Shao Y, Cousins AB, Kellogg EA, Brutnell TP. The draft genome of the C 3 panicoid grass species Dichanthelium oligosanthes. Genome Biol 2016; 17:223. [PMID: 27793170 PMCID: PMC5084476 DOI: 10.1186/s13059-016-1080-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 10/05/2016] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Comparisons between C3 and C4 grasses often utilize C3 species from the subfamilies Ehrhartoideae or Pooideae and C4 species from the subfamily Panicoideae, two clades that diverged over 50 million years ago. The divergence of the C3 panicoid grass Dichanthelium oligosanthes from the independent C4 lineages represented by Setaria viridis and Sorghum bicolor occurred approximately 15 million years ago, which is significantly more recent than members of the Bambusoideae, Ehrhartoideae, and Pooideae subfamilies. D. oligosanthes is ideally placed within the panicoid clade for comparative studies of C3 and C4 grasses. RESULTS We report the assembly of the nuclear and chloroplast genomes of D. oligosanthes, from high-throughput short read sequencing data and a comparative transcriptomics analysis of the developing leaf of D. oligosanthes, S. viridis, and S. bicolor. Physiological and anatomical characterizations verified that D. oligosanthes utilizes the C3 pathway for carbon fixation and lacks Kranz anatomy. Expression profiles of transcription factors along developing leaves of D. oligosanthes and S. viridis were compared with previously published data from S. bicolor, Zea mays, and Oryza sativa to identify a small suite of transcription factors that likely acquired functions specifically related to C4 photosynthesis. CONCLUSIONS The phylogenetic location of D. oligosanthes makes it an ideal C3 plant for comparative analysis of C4 evolution in the panicoid grasses. This genome will not only provide a better C3 species for comparisons with C4 panicoid grasses, but also highlights the power of using high-throughput sequencing to address questions in evolutionary biology.
Collapse
Affiliation(s)
- Anthony J. Studer
- Donald Danforth Plant Science Center, St. Louis, MO 63132 USA
- Present address: Department of Crop Sciences, University of Illinois Urbana-Champaign, Urbana, IL 61801 USA
| | - James C. Schnable
- Donald Danforth Plant Science Center, St. Louis, MO 63132 USA
- Present address: Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68588 USA
| | - Sarit Weissmann
- Donald Danforth Plant Science Center, St. Louis, MO 63132 USA
| | - Allison R. Kolbe
- School of Biological Sciences, Washington State University, Pullman, WA 99164 USA
| | | | - Ying Shao
- Donald Danforth Plant Science Center, St. Louis, MO 63132 USA
- St. Jude Children’s Research Hospital, Pediatric Cancer Genome Project, Memphis, TN USA
| | - Asaph B. Cousins
- School of Biological Sciences, Washington State University, Pullman, WA 99164 USA
| | | | | |
Collapse
|
92
|
Rao X, Dixon RA. The Differences between NAD-ME and NADP-ME Subtypes of C 4 Photosynthesis: More than Decarboxylating Enzymes. FRONTIERS IN PLANT SCIENCE 2016; 7:1525. [PMID: 27790235 PMCID: PMC5061750 DOI: 10.3389/fpls.2016.01525] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 09/28/2016] [Indexed: 05/03/2023]
Abstract
As an adaptation to changing climatic conditions that caused high rates of photorespiration, C4 plants have evolved to display higher photosynthetic efficiency than C3 plants under elevated temperature, high light intensities, and drought. The C4 plants independently evolved more than 60 times in 19 families of angiosperms to establish similar but not uniform C4 mechanisms to concentrate CO2 around the carboxylating enzyme Rubisco (ribulose bisphosphate carboxylase oxygenase). C4 photosynthesis is divided into at least two basic biochemical subtypes based on the primary decarboxylating enzymes, NAD-dependent malic enzyme (NAD-ME) and NADP-dependent malic enzyme (NADP-ME). The multiple polygenetic origins of these subtypes raise questions about the association of C4 variation between biochemical subtypes and diverse lineages. This review addresses the differences in evolutionary scenario, leaf anatomy, and especially C4 metabolic flow, C4 transporters, and cell-specific function deduced from recently reported cell-specific transcriptomic, proteomic, and metabolic analyses of NAD-ME and NADP-ME subtypes. Current omic analysis has revealed the extent to which component abundances differ between the two biochemical subtypes, leading to a better understanding of C4 photosynthetic mechanisms in NAD-ME and NADP-ME subtypes.
Collapse
Affiliation(s)
- Xiaolan Rao
- BioDiscovery Institute and Department of Biological Sciences, University of North TexasDenton, TX, USA
- BioEnergy Science Center, US Department of EnergyOak Ridge, TN, USA
| | - Richard A. Dixon
- BioDiscovery Institute and Department of Biological Sciences, University of North TexasDenton, TX, USA
- BioEnergy Science Center, US Department of EnergyOak Ridge, TN, USA
| |
Collapse
|
93
|
Luís IM, Alexandre BM, Oliveira MM, Abreu IA. Selection of an Appropriate Protein Extraction Method to Study the Phosphoproteome of Maize Photosynthetic Tissue. PLoS One 2016; 11:e0164387. [PMID: 27727304 PMCID: PMC5058499 DOI: 10.1371/journal.pone.0164387] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 09/23/2016] [Indexed: 12/14/2022] Open
Abstract
Often plant tissues are recalcitrant and, due to that, methods relying on protein precipitation, such as TCA/acetone precipitation and phenol extraction, are usually the methods of choice for protein extraction in plant proteomic studies. However, the addition of precipitation steps to protein extraction methods may negatively impact protein recovery, due to problems associated with protein re-solubilization. Moreover, we show that when working with non-recalcitrant plant tissues, such as young maize leaves, protein extraction methods with precipitation steps compromise the maintenance of some labile post-translational modifications (PTMs), such as phosphorylation. Therefore, a critical issue when studying PTMs in plant proteins is to ensure that the protein extraction method is the most appropriate, both at qualitative and quantitative levels. In this work, we compared five methods for protein extraction of the C4-photosynthesis related proteins, in the tip of fully expanded third-leaves. These included: TCA/Acetone Precipitation; Phenol Extraction; TCA/Acetone Precipitation followed by Phenol Extraction; direct extraction in Lysis Buffer (a urea-based buffer); and direct extraction in Lysis Buffer followed by Cleanup with a commercial kit. Protein extraction in Lysis Buffer performed better in comparison to the other methods. It gave one of the highest protein yields, good coverage of the extracted proteome and phosphoproteome, high reproducibility, and little protein degradation. This was also the easiest and fastest method, warranting minimal sample handling. We also show that this method is adequate for the successful extraction of key enzymes of the C4-photosynthetic metabolism, such as PEPC, PPDK, PEPCK, and NADP-ME. This was confirmed by MALDI-TOF/TOF MS analysis of excised spots of 2DE analyses of the extracted protein pools. Staining for phosphorylated proteins in 2DE revealed the presence of several phosphorylated isoforms of PEPC, PPDK, and PEPCK.
Collapse
Affiliation(s)
- Inês M. Luís
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB-UNL), Oeiras, Portugal
| | | | - M. Margarida Oliveira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB-UNL), Oeiras, Portugal
| | - Isabel A. Abreu
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB-UNL), Oeiras, Portugal
- Instituto Biologia Experimental e Tecnológica (iBET), Oeiras, Portugal
| |
Collapse
|
94
|
Plett D, Holtham L, Baumann U, Kalashyan E, Francis K, Enju A, Toubia J, Roessner U, Bacic A, Rafalski A, Dhugga KS, Tester M, Garnett T, Kaiser BN. Nitrogen assimilation system in maize is regulated by developmental and tissue-specific mechanisms. PLANT MOLECULAR BIOLOGY 2016; 92:293-312. [PMID: 27511191 DOI: 10.1007/s11103-016-0512-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 07/10/2016] [Indexed: 05/21/2023]
Abstract
We found metabolites, enzyme activities and enzyme transcript abundances vary significantly across the maize lifecycle, but weak correlation exists between the three groups. We identified putative genes regulating nitrate assimilation. Progress in improving nitrogen (N) use efficiency (NUE) of crop plants has been hampered by the complexity of the N uptake and utilisation systems. To understand this complexity we measured the activities of seven enzymes and ten metabolites related to N metabolism in the leaf and root tissues of Gaspe Flint maize plants grown in 0.5 or 2.5 mM NO3 (-) throughout the lifecycle. The amino acids had remarkably similar profiles across the lifecycle except for transient responses, which only appeared in the leaves for aspartate or in the roots for asparagine, serine and glycine. The activities of the enzymes for N assimilation were also coordinated to a certain degree, most noticeably with a peak in root activity late in the lifecycle, but with wide variation in the activity levels over the course of development. We analysed the transcriptional data for gene sets encoding the measured enzymes and found that, unlike the enzyme activities, transcript levels of the corresponding genes did not exhibit the same coordination across the lifecycle and were only weakly correlated with the levels of various amino acids or individual enzyme activities. We identified gene sets which were correlated with the enzyme activity profiles, including seven genes located within previously known quantitative trait loci for enzyme activities and hypothesise that these genes are important for the regulation of enzyme activities. This work provides insights into the complexity of the N assimilation system throughout development and identifies candidate regulatory genes, which warrant further investigation in efforts to improve NUE in crop plants.
Collapse
Affiliation(s)
- Darren Plett
- Australian Centre for Plant Functional Genomics, Waite Research Institute, University of Adelaide, Adelaide, SA, 5064, Australia
- School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Adelaide, SA, 5064, Australia
| | - Luke Holtham
- Australian Centre for Plant Functional Genomics, Waite Research Institute, University of Adelaide, Adelaide, SA, 5064, Australia
- School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Adelaide, SA, 5064, Australia
| | - Ute Baumann
- Australian Centre for Plant Functional Genomics, Waite Research Institute, University of Adelaide, Adelaide, SA, 5064, Australia
- School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Adelaide, SA, 5064, Australia
| | - Elena Kalashyan
- Australian Centre for Plant Functional Genomics, Waite Research Institute, University of Adelaide, Adelaide, SA, 5064, Australia
- School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Adelaide, SA, 5064, Australia
| | - Karen Francis
- School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Adelaide, SA, 5064, Australia
| | - Akiko Enju
- Australian Centre for Plant Functional Genomics, Waite Research Institute, University of Adelaide, Adelaide, SA, 5064, Australia
- School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Adelaide, SA, 5064, Australia
| | - John Toubia
- Australian Centre for Plant Functional Genomics, Waite Research Institute, University of Adelaide, Adelaide, SA, 5064, Australia
- School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Adelaide, SA, 5064, Australia
- ACRF South Australian Cancer Genomics Facility, Centre for Cancer Biology, SA Pathology, Adelaide, SA, 5000, Australia
- School of Molecular and Biomedical Science, The University of Adelaide, Adelaide, SA, 5000, Australia
| | - Ute Roessner
- Australian Centre for Plant Functional Genomics, School of BioSciences, The University of Melbourne, Parkville, VIC, 3010, Australia
- Metabolomics Australia, School of BioSciences, The University of Melbourne, Parkville, VIC, 3010, Australia
| | - Antony Bacic
- Metabolomics Australia, School of BioSciences, The University of Melbourne, Parkville, VIC, 3010, Australia
- ARC Centre of Excellence in Plant Cell Walls, School of BioSciences, The University of Melbourne, Parkville, VIC, 3010, Australia
| | | | - Kanwarpal S Dhugga
- DuPont Pioneer, Johnston, IA, 50131, USA
- International Maize and Wheat Improvement Center (CIMMYT), Carretera México Veracruz, Km. 45, El Batán, Texcoco, Estado De México, 56237, USA
| | - Mark Tester
- Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Trevor Garnett
- Australian Centre for Plant Functional Genomics, Waite Research Institute, University of Adelaide, Adelaide, SA, 5064, Australia.
- School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Adelaide, SA, 5064, Australia.
- The Plant Accelerator, Australian Plant Phenomics Facility, The University of Adelaide, PMB 1, Glen Osmond, 5064, Australia.
| | - Brent N Kaiser
- School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, Adelaide, SA, 5064, Australia
- Centre For Carbon Water and Food, The Faculty of Agriculture and Environment, The University of Sydney, Camden, NSW, 2570, Australia
| |
Collapse
|
95
|
Rangan P, Furtado A, Henry RJ. New evidence for grain specific C4 photosynthesis in wheat. Sci Rep 2016; 6:31721. [PMID: 27530078 PMCID: PMC4987656 DOI: 10.1038/srep31721] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 07/22/2016] [Indexed: 11/30/2022] Open
Abstract
The C4 photosynthetic pathway evolved to allow efficient CO2 capture by plants where effective carbon supply may be limiting as in hot or dry environments, explaining the high growth rates of C4 plants such as maize. Important crops such as wheat and rice are C3 plants resulting in efforts to engineer them to use the C4 pathway. Here we show the presence of a C4 photosynthetic pathway in the developing wheat grain that is absent in the leaves. Genes specific for C4 photosynthesis were identified in the wheat genome and found to be preferentially expressed in the photosynthetic pericarp tissue (cross- and tube-cell layers) of the wheat caryopsis. The chloroplasts exhibit dimorphism that corresponds to chloroplasts of mesophyll- and bundle sheath-cells in leaves of classical C4 plants. Breeding to optimize the relative contributions of C3 and C4 photosynthesis may adapt wheat to climate change, contributing to wheat food security.
Collapse
Affiliation(s)
- Parimalan Rangan
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane QLD 4072, Australia.,Division of Genomic Resources, ICAR-National Bureau of Plant Genetic Resources, New Delhi-110012, India
| | - Agnelo Furtado
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane QLD 4072, Australia
| | - Robert J Henry
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, Brisbane QLD 4072, Australia
| |
Collapse
|
96
|
Furbank RT. Walking the C4 pathway: past, present, and future. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:4057-66. [PMID: 27059273 DOI: 10.1093/jxb/erw161] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The year 2016 marks 50 years since the publication of the seminal paper by Hatch and Slack describing the biochemical pathway we now know as C4 photosynthesis. This review provides insight into the initial discovery of this pathway, the clues which led Hatch and Slack and others to these definitive experiments, some of the intrigue which surrounds the international activities which led up to the discovery, and personal insights into the future of this research field. While the biochemical understanding of the basic pathways came quickly, the role of the bundle sheath intermediate CO2 pool was not understood for a number of years, and the nature of C4 as a biochemical CO2 pump then linked the unique Kranz anatomy of C4 plants to their biochemical specialization. Decades of "grind and find biochemistry" and leaf physiology fleshed out the regulation of the pathway and the differences in physiological response to the environment between C3 and C4 plants. The more recent advent of plant transformation then high-throughput RNA and DNA sequencing and synthetic biology has allowed us both to carry out biochemical experiments and test hypotheses in planta and to better understand the evolution-driven molecular and genetic changes which occurred in the genomes of plants in the transition from C3 to C4 Now we are using this knowledge in attempts to engineer C4 rice and improve the C4 engine itself for enhanced food security and to provide novel biofuel feedstocks. The next 50 years of photosynthesis will no doubt be challenging, stimulating, and a drawcard for the best young minds in plant biology.
Collapse
Affiliation(s)
- Robert T Furbank
- ARC Centre of Excellence for Translational Photosynthesis, The Australian National University, Research School of Biology, 134 Linnaeus Way, Acton ACT 2601, Australia CSIRO Agriculture, Clunies Ross St, Acton ACT 2601, Australia
| |
Collapse
|
97
|
Schuler ML, Mantegazza O, Weber APM. Engineering C4 photosynthesis into C3 chassis in the synthetic biology age. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 87:51-65. [PMID: 26945781 DOI: 10.1111/tpj.13155] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Revised: 02/15/2016] [Accepted: 02/22/2016] [Indexed: 05/21/2023]
Abstract
C4 photosynthetic plants outperform C3 plants in hot and arid climates. By concentrating carbon dioxide around Rubisco C4 plants drastically reduce photorespiration. The frequency with which plants evolved C4 photosynthesis independently challenges researchers to unravel the genetic mechanisms underlying this convergent evolutionary switch. The conversion of C3 crops, such as rice, towards C4 photosynthesis is a long-standing goal. Nevertheless, at the present time, in the age of synthetic biology, this still remains a monumental task, partially because the C4 carbon-concentrating biochemical cycle spans two cell types and thus requires specialized anatomy. Here we review the advances in understanding the molecular basis and the evolution of the C4 trait, advances in the last decades that were driven by systems biology methods. In this review we emphasise essential genetic engineering tools needed to translate our theoretical knowledge into engineering approaches. With our current molecular understanding of the biochemical C4 pathway, we propose a simplified rational engineering model exclusively built with known C4 metabolic components. Moreover, we discuss an alternative approach to the progressing international engineering attempts that would combine targeted mutagenesis and directed evolution.
Collapse
Affiliation(s)
- Mara L Schuler
- Institute for Plant Molecular and Developmental Biology, Cluster of Excellence on Plant Science (CEPLAS), Heinrich Heine University, 40225, Düsseldorf, Germany
| | - Otho Mantegazza
- Institute for Plant Biochemistry, Cluster of Excellence on Plant Science (CEPLAS), Heinrich Heine University, 40225, Düsseldorf, Germany
| | - Andreas P M Weber
- Institute for Plant Biochemistry, Cluster of Excellence on Plant Science (CEPLAS), Heinrich Heine University, 40225, Düsseldorf, Germany
| |
Collapse
|
98
|
Dong XM, Li Y, Chao Q, Shen J, Gong XJ, Zhao BG, Wang BC. Analysis of gene expression and histone modification between C4 and non-C4 homologous genes of PPDK and PCK in maize. PHOTOSYNTHESIS RESEARCH 2016; 129:71-83. [PMID: 27161567 DOI: 10.1007/s11120-016-0271-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 04/27/2016] [Indexed: 06/05/2023]
Abstract
More efficient photosynthesis has allowed C4 plants to adapt to more diverse ecosystems (such as hot and arid conditions) than C3 plants. To better understand C4 photosynthesis, we investigated the expression patterns of C4 genes (C4PPDK and PCK1) and their non-C4 homologous genes (CyPPDK1, CyPPDK2, and PCK2) in the different organs of maize (Zea mays). Both C4 genes and non-C4 genes showed organ-dependent expression patterns. The mRNA levels of C4 genes were more abundant in leaf organ than in seeds at 25 days after pollination (DAP), while non-C4 genes were mainly expressed in developing seeds. Further, acetylation of histone H3 lysine 9 (H3K9ac) positively correlates with mRNA levels of C4 genes (C4PPDK and PCK1) in roots, stems, leaves, and seeds at 25 DAP, acetylation of histone H4 lysine 5 (H4K5ac) in the promoter regions of both C4 (C4PPDK and PCK1) and non-C4 genes (CyPPDK1, CyPPDK2, and PCK2) correlated well with their transcripts abundance in stems. In photosynthetic organs (stems and leaves), dimethylation of histone H3 lysine 9 (H3K9me2) negatively correlated with mRNA levels of both C4 and non-C4 genes. Taken together, our data suggest that histone modification was involved in the transcription regulation of both C4 genes and non-C4 genes, which might provide a clue of the functional evolution of C4 genes.
Collapse
Affiliation(s)
- Xiu-Mei Dong
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, No.20 Nanxincun, Xiangshan, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100093, China
| | - Yuan Li
- State Key Laboratory of Forest Genetics and Tree Breeding, Northeast Forestry University, Harbin, 150040, Heilongjiang, China
| | - Qing Chao
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, No.20 Nanxincun, Xiangshan, Beijing, 100093, China
| | - Jie Shen
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, No.20 Nanxincun, Xiangshan, Beijing, 100093, China
| | - Xiu-Jie Gong
- Institute of Crop Cultivation and Farming, Heilongjiang Academy of Agricultural Sciences, Harbin, 150086, Heilongjiang, China
| | - Biligen-Gaowa Zhao
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, No.20 Nanxincun, Xiangshan, Beijing, 100093, China
| | - Bai-Chen Wang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, No.20 Nanxincun, Xiangshan, Beijing, 100093, China.
| |
Collapse
|
99
|
Munekage YN, Taniguchi YY. Promotion of Cyclic Electron Transport Around Photosystem I with the Development of C4 Photosynthesis. PLANT & CELL PHYSIOLOGY 2016; 57:897-903. [PMID: 26893472 DOI: 10.1093/pcp/pcw012] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 01/11/2016] [Indexed: 06/05/2023]
Abstract
C4 photosynthesis is present in approximately 7,500 species classified into 19 families, including monocots and eudicots. In the majority of documented cases, a two-celled CO2-concentrating system that uses a metabolic cycle of four-carbon compounds is employed. C4 photosynthesis repeatedly evolved from C3 photosynthesis, possibly driven by the survival advantages it bestows in the hot, often dry, and nutrient-poor soils of the tropics and subtropics. The development of the C4 metabolic cycle greatly increased the ATP demand in chloroplasts during the evolution of malic enzyme-type C4 photosynthesis, and the additional ATP required for C4 metabolism may be produced by the cyclic electron transport around PSI. Recent studies have revealed the nature of cyclic electron transport and the elevation of its components during C4 evolution. In this review, we discuss the energy requirements of C3 and C4 photosynthesis, the current model of cyclic electron transport around PSI and how cyclic electron transport is promoted during C4 evolution using studies on the genus Flaveria, which contains a number of closely related C3, C4 and C3-C4 intermediate species.
Collapse
Affiliation(s)
- Yuri Nakajima Munekage
- School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo, 669-1337 Japan
| | - Yukimi Y Taniguchi
- School of Science and Technology, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo, 669-1337 Japan
| |
Collapse
|
100
|
Döring F, Streubel M, Bräutigam A, Gowik U. Most photorespiratory genes are preferentially expressed in the bundle sheath cells of the C4 grass Sorghum bicolor. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:3053-64. [PMID: 26976818 PMCID: PMC4867894 DOI: 10.1093/jxb/erw041] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
One of the hallmarks of C4 plants is the division of labor between two different photosynthetic cell types, the mesophyll and the bundle sheath cells. C4 plants are of polyphyletic origin and, during the evolution of C4 photosynthesis, the expression of thousands of genes was altered and many genes acquired a cell type-specific or preferential expression pattern. Several lines of evidence, including computational modeling and physiological and phylogenetic analyses, indicate that alterations in the expression of a key photorespiration-related gene, encoding the glycine decarboxylase P subunit, was an early and important step during C4 evolution. Restricting the expression of this gene to the bundle sheath led to the establishment of a photorespiratory CO2 pump. We were interested in whether the expression of genes related to photorespiration remains bundle sheath specific in a fully optimized C4 species. Therefore we analyzed the expression of photorespiratory and C4 cycle genes using RNA in situ hybridization and transcriptome analysis of isolated mesophyll and bundle sheath cells in the C4 grass Sorghum bicolor It turns out that the C4 metabolism of Sorghum is based solely on the NADP-dependent malic enzyme pathway. The majority of photorespiratory gene expression, with some important exceptions, is restricted to the bundle sheath.
Collapse
Affiliation(s)
- Florian Döring
- Institute of Plant Molecular and Developmental Biology, Universitätsstrasse 1, Heinrich-Heine-University, D-40225 Düsseldorf, Germany
| | - Monika Streubel
- Institute of Plant Molecular and Developmental Biology, Universitätsstrasse 1, Heinrich-Heine-University, D-40225 Düsseldorf, Germany
| | - Andrea Bräutigam
- Institute of Plant Biochemistry, Universitätsstrasse 1, Heinrich-Heine-University, D-40225 Düsseldorf, Germany Cluster of Excellence on Plant Sciences (CEPLAS) 'From Complex Traits towards Synthetic Modules', D-40225 Düsseldorf, Germany
| | - Udo Gowik
- Institute of Plant Molecular and Developmental Biology, Universitätsstrasse 1, Heinrich-Heine-University, D-40225 Düsseldorf, Germany
| |
Collapse
|