51
|
Li M, Hensel G, Melzer M, Junker A, Tschiersch H, Ruwe H, Arend D, Kumlehn J, Börner T, Stein N. Mutation of the ALBOSTRIANS Ohnologous Gene HvCMF3 Impairs Chloroplast Development and Thylakoid Architecture in Barley. FRONTIERS IN PLANT SCIENCE 2021; 12:732608. [PMID: 34659298 PMCID: PMC8517540 DOI: 10.3389/fpls.2021.732608] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/10/2021] [Indexed: 05/12/2023]
Abstract
Gene pairs resulting from whole genome duplication (WGD), so-called ohnologous genes, are retained if at least one member of the pair undergoes neo- or sub-functionalization. Phylogenetic analyses of the ohnologous genes ALBOSTRIANS (HvAST/HvCMF7) and ALBOSTRIANS-LIKE (HvASL/HvCMF3) of barley (Hordeum vulgare) revealed them as members of a subfamily of genes coding for CCT motif (CONSTANS, CONSTANS-LIKE and TIMING OF CAB1) proteins characterized by a single CCT domain and a putative N-terminal chloroplast transit peptide. Recently, we showed that HvCMF7 is needed for chloroplast ribosome biogenesis. Here we demonstrate that mutations in HvCMF3 lead to seedlings delayed in development. They exhibit a yellowish/light green - xantha - phenotype and successively develop pale green leaves. Compared to wild type, plastids of mutant seedlings show a decreased PSII efficiency, impaired processing and reduced amounts of ribosomal RNAs; they contain less thylakoids and grana with a higher number of more loosely stacked thylakoid membranes. Site-directed mutagenesis of HvCMF3 identified a previously unknown functional domain, which is highly conserved within this subfamily of CCT domain containing proteins. HvCMF3:GFP fusion constructs were localized to plastids and nucleus. Hvcmf3Hvcmf7 double mutants exhibited a xantha-albino or albino phenotype depending on the strength of molecular lesion of the HvCMF7 allele. The chloroplast ribosome deficiency is discussed as the primary observed defect of the Hvcmf3 mutants. Based on our observations, the genes HvCMF3 and HvCMF7 have similar but not identical functions in chloroplast development of barley supporting our hypothesis of neo-/sub-functionalization between both ohnologous genes.
Collapse
Affiliation(s)
- Mingjiu Li
- Genomics of Genetic Resources, Department of Genebank, Leibniz Institute of Plant Genetics and Crop Plant Research, Seeland, Germany
| | - Goetz Hensel
- Plant Reproductive Biology, Department of Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research, Seeland, Germany
| | - Michael Melzer
- Structural Cell Biology, Department of Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research, Seeland, Germany
| | - Astrid Junker
- Acclimation Dynamics and Phenotyping, Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research, Seeland, Germany
| | - Henning Tschiersch
- Heterosis Research Group, Department of Molecular Genetics, Leibniz Institute of Plant Genetics and Crop Plant Research, Seeland, Germany
| | - Hannes Ruwe
- Molecular Genetics, Institute of Biology, Humboldt University, Berlin, Germany
| | - Daniel Arend
- Research Group Bioinformatics and Information Technology, Department of Breeding Research, Leibniz Institute of Plant Genetics and Crop Plant Research, Seeland, Germany
| | - Jochen Kumlehn
- Plant Reproductive Biology, Department of Physiology and Cell Biology, Leibniz Institute of Plant Genetics and Crop Plant Research, Seeland, Germany
| | - Thomas Börner
- Molecular Genetics, Institute of Biology, Humboldt University, Berlin, Germany
- *Correspondence: Thomas Börner,
| | - Nils Stein
- Genomics of Genetic Resources, Department of Genebank, Leibniz Institute of Plant Genetics and Crop Plant Research, Seeland, Germany
- Department of Crop Sciences, Center for Integrated Breeding Research, Georg-August-University, Göttingen, Germany
- Nils Stein,
| |
Collapse
|
52
|
Ip YK, Teng GCY, Boo MV, Poo JST, Hiong KC, Kim H, Wong WP, Chew SF. Symbiodiniaceae Dinoflagellates Express Urease in Three Subcellular Compartments and Upregulate its Expression Levels in situ in Three Organs of a Giant Clam (Tridacna squamosa) During Illumination. JOURNAL OF PHYCOLOGY 2020; 56:1696-1711. [PMID: 32725784 DOI: 10.1111/jpy.13053] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 07/08/2020] [Indexed: 06/11/2023]
Abstract
Giant clams harbor three genera of symbiotic dinoflagellates (Symbiodinium, Cladocopium, and Durusdinium) as extracellular symbionts (zooxanthellae). While symbiotic dinoflagellates can synthesize amino acids to benefit the host, they are nitrogen-deficient. Hence, the host must supply them with nitrogen including urea, which can be degraded to ammonia and carbon dioxide by urease (URE). Here, we report three complete coding cDNA sequences of URE, one for each genus of dinoflagellate, obtained from the colorful outer mantle of the giant clam, Tridacna squamosa. The outer mantle had higher transcript level of Tridacna squamosa zooxanthellae URE (TSZURE) than the whitish inner mantle, foot muscle, hepatopancreas, and ctenidium. TSZURE was immunolocalized strongly and atypically in the plastid, moderately in the cytoplasm, and weakly in the cell wall and plasma membrane of symbiotic dinoflagellates. In the outer mantle, illumination upregulated the protein abundance of TSZURE, which could enhance urea degradation in photosynthesizing dinoflagellates. The urea-nitrogen released could then augment synthesis of amino acids to be shared with the host for its general needs. Illumination also enhanced gene and protein expression levels of TSZURE/TSZURE in the inner mantle and foot muscle, which contain only small quantities of symbiotic dinoflagellate, have no iridocyte, and lack direct exposure to light. With low phototrophic potential, dinoflagellates in the inner mantle and foot muscle might need to absorb carbohydrates in order to assimilate the urea-nitrogen into amino acids. Amino acids donated by dinoflagellates to the inner mantle and the foot muscle could be used especially for synthesis of organic matrix needed for light-enhanced shell formation and muscle protein, respectively.
Collapse
Affiliation(s)
- Yuen Kwong Ip
- Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore, 117543
| | - Germaine Ching Yun Teng
- Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore, 117543
| | - Mel Veen Boo
- Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore, 117543
| | - Jeslyn Shi Ting Poo
- Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore, 117543
| | - Kum Chew Hiong
- Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore, 117543
| | - Hyoju Kim
- Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore, 117543
| | - Wai Peng Wong
- Department of Biological Sciences, National University of Singapore, Kent Ridge, Singapore, 117543
| | - Shit Fun Chew
- Natural Sciences and Science Education, National Institute of Education, Nanyang Technological University, 1 Nanyang Walk, Singapore, 637616
| |
Collapse
|
53
|
Zhang R, Xu B, Li J, Zhao Z, Han J, Lei Y, Yang Q, Peng F, Liu ZL. Transit From Autotrophism to Heterotrophism: Sequence Variation and Evolution of Chloroplast Genomes in Orobanchaceae Species. Front Genet 2020; 11:542017. [PMID: 33133143 PMCID: PMC7573133 DOI: 10.3389/fgene.2020.542017] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 09/07/2020] [Indexed: 01/15/2023] Open
Abstract
The family Orobanchaceae including autotrophic, hemiparasitic, and holoparasitic species, is becoming a key taxa to study the evolution of chloroplast genomes in different lifestyles. But the early evolutionary trajectory in the transit from autotrophism to hemiparasitism still maintains unclear for the inadequate sampling. In this study, we compared 50 complete chloroplast genomes in Orobanchaceae, containing four newly sequenced plastomes from hemiparasitic Pedicularis, to elucidate the sequence variation patterns in the evolution of plastomes. Contrasted to the sequence and structural hypervariabilities in holoparasites, hemiparasitic plastomes exhibited high similarity to those of autotrophs in gene and GC contents. They are generally characterized with functional or physical loss of ndh/tRNA genes and the inverted small-single-copy region. Gene losses in Orobanchaceae were lineage-specific and convergent, possibly related to structural reconfiguration and expansion/contraction of the inverted region. Pseudogenization of ndh genes was unique in hemiparasites. At least in Pedicularis, the ndhF gene might be most sensitive to the environmental factors and easily pseudogenized when autotrophs transit to hemiparasites. And the changes in gene contents and structural variation potentially deeply rely on the feeding type. Selective pressure, together with mutational bias, was the dominant factor of shaping the codon usage patterns. The relaxed selective constraint, potentially with genome-based GC conversion (gBGC) and preferential codon usage, drive the fluctuation of GC contents among taxa with different lifestyles. Phylogenetic analysis in Orobanchaceae supported that parasitic species were single-originated while holoparasites were multiple-originated. Overall, the comparison of plastomes provided a good opportunity to understand the evolution process in Orobanchaceae with different lifestyles.
Collapse
Affiliation(s)
- Ruiting Zhang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Science, Northwest University, Xi'an, China
| | - Bei Xu
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Science, Northwest University, Xi'an, China
| | - Jianfang Li
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Science, Northwest University, Xi'an, China
| | - Zhe Zhao
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Science, Northwest University, Xi'an, China
| | - Jie Han
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Science, Northwest University, Xi'an, China
| | - Yunjing Lei
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Science, Northwest University, Xi'an, China
| | - Qian Yang
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Science, Northwest University, Xi'an, China
| | - Fangfang Peng
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Science, Northwest University, Xi'an, China
| | - Zhan-Lin Liu
- Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Science, Northwest University, Xi'an, China
| |
Collapse
|
54
|
Li S, Wang S, Wang P, Gao L, Yang R, Li Y. Label-free comparative proteomic and physiological analysis provides insight into leaf color variation of the golden-yellow leaf mutant of Lagerstroemia indica. J Proteomics 2020; 228:103942. [PMID: 32805451 DOI: 10.1016/j.jprot.2020.103942] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 08/06/2020] [Accepted: 08/10/2020] [Indexed: 12/26/2022]
Abstract
GL1 is a golden-yellow leaf mutant that cultivated from natural bud-mutation of Lagerstroemia indica and has a very low level of photosynthetic pigment under sunlight. GL1 can gradually increase its pigment content and turn into pale-green leaf when shading under sunshade net (referred as Re-GL1). The mechanisms that cause leaf color variation are complicated and are not still unclear. Here, we have used a label-free comparative proteomics to investigate differences in proteins abundance and analyze the specific biological process associated with mechanisms of leaf color variation in GL1. A total of 245 and 160 proteins with different abundance were identified in GL1 vs WT and GL1 vs Re-GL1, respectively. Functional classification analysis revealed that the proteins with different abundance mainly related to photosynthesis, heat shock proteins, ribosome proteins, and oxidation-reduction. The proteins that the most significantly contributed to leaf color variation were photosynthetic proteins of PSII and PSI, which directly related to photooxidation and determined the photosynthetic performance of photosystem. Further analysis demonstrated that low jasmonic acid content was needed to golden-yellow leaf GL1. These findings lay a solid foundation for future studies into the molecular mechanisms that underlie leaf color formation of GL1. BIOLOGICAL SIGNIFICANCE: The natural bud mutant GL1 of L. indica is an example through changing leaf color to cope with complex environment. However, the molecular mechanism of leaf color variation are largely elusive. The proteins with different abundance identified from a label-free comparative proteomics revealed a range of biological processes associated with leaf color variation, including photosynthesis, oxidation-reduction and jasmonic acid signaling. The photooxidation and low level of jasmonic acid played a primary role in GL1 adaptation in golden-yellow leaf. These findings provide possible pathway or signal for the molecular mechanism associated with leaf color formation and as a valuable resource for signal transaction of chloroplast.
Collapse
Affiliation(s)
- Sumei Li
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, No. 1 Qianhu Houcun, Nanjing 210014, Jiangsu Province, PR China
| | - Shuan Wang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, No. 1 Qianhu Houcun, Nanjing 210014, Jiangsu Province, PR China
| | - Peng Wang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, No. 1 Qianhu Houcun, Nanjing 210014, Jiangsu Province, PR China
| | - Lulu Gao
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, No. 1 Qianhu Houcun, Nanjing 210014, Jiangsu Province, PR China
| | - Rutong Yang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, No. 1 Qianhu Houcun, Nanjing 210014, Jiangsu Province, PR China
| | - Ya Li
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences, No. 1 Qianhu Houcun, Nanjing 210014, Jiangsu Province, PR China.
| |
Collapse
|
55
|
Dong X, Duan S, Wang H, Jin H. Plastid ribosomal protein LPE2 is involved in photosynthesis and the response to C/N balance in Arabidopsis thaliana. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2020; 62:1418-1432. [PMID: 31944575 PMCID: PMC7540278 DOI: 10.1111/jipb.12907] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Accepted: 01/09/2020] [Indexed: 05/31/2023]
Abstract
The balance between cellular carbon (C) and nitrogen (N) must be tightly coordinated to sustain optimal growth and development in plants. In chloroplasts, photosynthesis converts inorganic C to organic C, which is important for maintenance of C content in plant cells. However, little is known about the role of chloroplasts in C/N balance. Here, we identified a nuclear-encoded protein LOW PHOTOSYNTHETIC EFFICIENCY2 (LPE2) that it is required for photosynthesis and C/N balance in Arabidopsis. LPE2 is specifically localized in the chloroplast. Both loss-of-function mutants, lpe2-1 and lpe2-2, showed lower photosynthetic activity, characterized by slower electron transport and lower PSII quantum yield than the wild type. Notably, LPE2 is predicted to encode the plastid ribosomal protein S21 (RPS21). Deficiency of LPE2 significantly perturbed the thylakoid membrane composition and plastid protein accumulation, although the transcription of plastid genes is not affected obviously. More interestingly, transcriptome analysis indicated that the loss of LPE2 altered the expression of C and N response related genes in nucleus, which is confirmed by quantitative real-time-polymerase chain reaction. Moreover, deficiency of LPE2 suppressed the response of C/N balance in physiological level. Taken together, our findings suggest that LPE2 plays dual roles in photosynthesis and the response to C/N balance.
Collapse
Affiliation(s)
- Xiaoxiao Dong
- School of Life SciencesSun Yat‐sen UniversityGuangzhou510275China
| | - Sujuan Duan
- School of Life SciencesSun Yat‐sen UniversityGuangzhou510275China
- School of Pharmaceutical SciencesGuangzhou University of Chinese MedicineGuangzhou510006China
| | - Hong‐Bin Wang
- School of Life SciencesSun Yat‐sen UniversityGuangzhou510275China
| | - Hong‐Lei Jin
- School of Pharmaceutical SciencesGuangzhou University of Chinese MedicineGuangzhou510006China
| |
Collapse
|
56
|
The Role of Chloroplast Gene Expression in Plant Responses to Environmental Stress. Int J Mol Sci 2020; 21:ijms21176082. [PMID: 32846932 PMCID: PMC7503970 DOI: 10.3390/ijms21176082] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 08/18/2020] [Accepted: 08/20/2020] [Indexed: 12/16/2022] Open
Abstract
Chloroplasts are plant organelles that carry out photosynthesis, produce various metabolites, and sense changes in the external environment. Given their endosymbiotic origin, chloroplasts have retained independent genomes and gene-expression machinery. Most genes from the prokaryotic ancestors of chloroplasts were transferred into the nucleus over the course of evolution. However, the importance of chloroplast gene expression in environmental stress responses have recently become more apparent. Here, we discuss the emerging roles of the distinct chloroplast gene expression processes in plant responses to environmental stresses. For example, the transcription and translation of psbA play an important role in high-light stress responses. A better understanding of the connection between chloroplast gene expression and environmental stress responses is crucial for breeding stress-tolerant crops better able to cope with the rapidly changing environment.
Collapse
|
57
|
Areces-Berazain F, Wang Y, Hinsinger DD, Strijk JS. Plastome comparative genomics in maples resolves the infrageneric backbone relationships. PeerJ 2020; 8:e9483. [PMID: 32742784 PMCID: PMC7365138 DOI: 10.7717/peerj.9483] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Accepted: 06/15/2020] [Indexed: 12/28/2022] Open
Abstract
Maples (Acer) are among the most diverse and ecologically important tree genera of the north-temperate forests. They include species highly valued as ornamentals and as a source of timber and sugar products. Previous phylogenetic studies employing plastid markers have not provided sufficient resolution, particularly at deeper nodes, leaving the backbone of the maple plastid tree essentially unresolved. We provide the plastid genome sequences of 16 species of maples spanning the sectional diversity of the genus and explore the utility of these sequences as a source of information for genetic and phylogenetic studies in this group. We analyzed the distribution of different types of repeated sequences and the pattern of codon usage, and identified variable regions across the plastome. Maximum likelihood and Bayesian analyses using two partitioning strategies were performed with these and previously published sequences. The plastomes ranged in size from 155,212 to 157,023 bp and had structure and gene content except for Acer palmatum (sect. Palmata), which had longer inverted repeats and an additional copy of the rps19 gene. Two genes, rps2 and rpl22, were found to be truncated at different positions and might be non-functional in several species. Most dispersed repeats, SSRs, and overall variation were detected in the non-coding sequences of the LSC and SSC regions. Fifteen loci, most of which have not been used before in the genus, were identified as the most variable and potentially useful as molecular markers for barcoding and genetic studies. Both ML and Bayesian analyses produced similar results irrespective of the partitioning strategy used. The plastome-based tree largely supported the topology inferred in previous studies using cp markers while providing resolution to the backbone relationships but was highly incongruous with a recently published nuclear tree presenting an opportunity for further research to investigate the causes of discordance, and particularly the role of hybridization in the diversification of the genus. Plastome sequences are valuable tools to resolve deep-level relationships within Acer. The variable loci and SSRs identified in this study will facilitate the development of markers for ecological and evolutionary studies in the genus. This study underscores the potential of plastid genome sequences to improve our understanding of the evolution of maples.
Collapse
Affiliation(s)
- Fabiola Areces-Berazain
- Biodiversity Genomics Team, Plant Ecophysiology & Evolution Group, Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, Guangxi, China
- Alliance for Conservation Tree Genomics, Pha Tad Ke Botanical Garden, Luang Prabang, Laos
| | - Yixi Wang
- Biodiversity Genomics Team, Plant Ecophysiology & Evolution Group, Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, Guangxi, China
| | - Damien D. Hinsinger
- Alliance for Conservation Tree Genomics, Pha Tad Ke Botanical Garden, Luang Prabang, Laos
- Génomique Métabolique, Genoscope, Institut de Biologie François Jacob, Commisariat à l’Énergie Atomique (CEA), CNRS, Université Évry, Université Paris-Saclay, Évry, France
| | - Joeri S. Strijk
- Biodiversity Genomics Team, Plant Ecophysiology & Evolution Group, Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, Guangxi, China
- Alliance for Conservation Tree Genomics, Pha Tad Ke Botanical Garden, Luang Prabang, Laos
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Forestry, Guangxi University, Nanning, Guangxi, China
| |
Collapse
|
58
|
Zhu X, Mou C, Zhang F, Huang Y, Yang C, Ji J, Liu X, Cao P, Nguyen T, Lan J, Zhou C, Liu S, Jiang L, Wan J. WSL9 Encodes an HNH Endonuclease Domain-Containing Protein that Is Essential for Early Chloroplast Development in Rice. RICE (NEW YORK, N.Y.) 2020; 13:45. [PMID: 32654074 PMCID: PMC7354284 DOI: 10.1186/s12284-020-00407-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 07/06/2020] [Indexed: 05/15/2023]
Abstract
BACKGROUND The plant chloroplast is essential for photosynthesis and other cellular processes, but an understanding of the biological mechanisms of plant chloroplast development are incomplete. RESULTS A new temperature-sensitive white stripe leaf 9(wsl9) rice mutant is described. The mutant develops white stripes during early leaf development, but becomes green after the three-leaf stage under field conditions. The wsl9 mutant was albinic when grown at low temperature. Gene mapping of the WSL9 locus, together with complementation tests indicated that WSL9 encodes a novel protein with an HNH domain. WSL9 was expressed in various tissues. Under low temperature, the wsl9 mutation caused defects in splicing of rpl2, but increased the editing efficiency of rpoB. Expression levels of plastid genome-encoded genes, which are transcribed by plastid-coded RNA polymerase (PEP), chloroplast development genes and photosynthesis-related genes were altered in the wsl9 mutant. CONCLUSION WSL9 encodes an HNH endonuclease domain-containing protein that is essential for early chloroplast development. Our study provides opportunities for further research on regulatory mechanisms of chloroplast development in rice.
Collapse
Affiliation(s)
- Xingjie Zhu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Changling Mou
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Fulin Zhang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yunshuai Huang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chunyan Yang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jingli Ji
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xi Liu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Penghui Cao
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Thanhliem Nguyen
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
- Department of Biology and Agricultural Engineering, Quynhon University, Quynhon, Binhdinh, 590000, Vietnam
| | - Jie Lan
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chunlei Zhou
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
- Department of Biology and Agricultural Engineering, Quynhon University, Quynhon, Binhdinh, 590000, Vietnam
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shijia Liu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ling Jiang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Jianmin Wan
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China.
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
59
|
OsCpn60β1 is Essential for Chloroplast Development in Rice ( Oryza sativa L.). Int J Mol Sci 2020; 21:ijms21114023. [PMID: 32512821 PMCID: PMC7313468 DOI: 10.3390/ijms21114023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/01/2020] [Accepted: 06/02/2020] [Indexed: 01/03/2023] Open
Abstract
The chaperonin 60 (Cpn60) protein is of great importance to plants due to its involvement in modulating the folding of numerous chloroplast protein polypeptides. In chloroplasts, Cpn60 is differentiated into two subunit types—Cpn60α and Cpn60β and the rice genome encodes three α and three β plastid chaperonin subunits. However, the functions of Cpn60 family members in rice were poorly understood. In order to investigate the molecular mechanism of OsCpn60β1, we attempted to disrupt the OsCpn60β1 gene by CRISPR/Cas9-mediated targeted mutagenesis in this study. We succeeded in the production of homozygous OsCpn60β1 knockout rice plants. The OsCpn60β1 mutant displayed a striking albino leaf phenotype and was seedling lethal. Electron microscopy observation demonstrated that chloroplasts were severely disrupted in the OsCpn60β1 mutant. In addition, OsCpn60β1 was located in the chloroplast and OsCpn60β1 is constitutively expressed in various tissues particularly in the green tissues. The label-free qualitative proteomics showed that photosynthesis-related pathways and ribosomal pathways were significantly inhibited in OsCpn60β1 mutants. These results indicate that OsCpn60β1 is essential for chloroplast development in rice.
Collapse
|
60
|
Zou M, Mu Y, Chai X, Ouyang M, Yu LJ, Zhang L, Meurer J, Chi W. The critical function of the plastid rRNA methyltransferase, CMAL, in ribosome biogenesis and plant development. Nucleic Acids Res 2020; 48:3195-3210. [PMID: 32095829 PMCID: PMC7102989 DOI: 10.1093/nar/gkaa129] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 02/12/2020] [Accepted: 02/18/2020] [Indexed: 12/12/2022] Open
Abstract
Methylation of nucleotides in ribosomal RNAs (rRNAs) is a ubiquitous feature that occurs in all living organisms. The formation of methylated nucleotides is performed by a variety of RNA-methyltransferases. Chloroplasts of plant cells result from an endosymbiotic event and possess their own genome and ribosomes. However, enzymes responsible for rRNA methylation and the function of modified nucleotides in chloroplasts remain to be determined. Here, we identified an rRNA methyltransferase, CMAL (Chloroplast MraW-Like), in the Arabidopsis chloroplast and investigated its function. CMAL is the Arabidopsis ortholog of bacterial MraW/ RsmH proteins and accounts to the N4-methylation of C1352 in chloroplast 16S rRNA, indicating that CMAL orthologs and this methyl-modification nucleotide is conserved between bacteria and the endosymbiont-derived eukaryotic organelle. The knockout of CMAL in Arabidopsis impairs the chloroplast ribosome accumulation and accordingly reduced the efficiency of mRNA translation. Interestingly, the loss of CMAL leads not only to defects in chloroplast function, but also to abnormal leaf and root development and overall plant morphology. Further investigation showed that CMAL is involved in the plant development probably by modulating auxin derived signaling pathways. This study uncovered the important role of 16S rRNA methylation mediated by CMAL in chloroplast ribosome biogenesis and plant development.
Collapse
Affiliation(s)
- Meijuan Zou
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Ying Mu
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Xin Chai
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Min Ouyang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Long-Jiang Yu
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Lixin Zhang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.,Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Jörg Meurer
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University, Munich, D-82152 Planegg-Martinsried, Germany
| | - Wei Chi
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
61
|
Shi C, Han K, Li L, Seim I, Lee SMY, Xu X, Yang H, Fan G, Liu X. Complete Chloroplast Genomes of 14 Mangroves: Phylogenetic and Comparative Genomic Analyses. BIOMED RESEARCH INTERNATIONAL 2020; 2020:8731857. [PMID: 32462024 PMCID: PMC7225854 DOI: 10.1155/2020/8731857] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 03/20/2020] [Accepted: 04/02/2020] [Indexed: 11/17/2022]
Abstract
Mangroves are a group of plant species that occupy the coastal intertidal zone and are major components of this ecologically important ecosystem. Mangroves belong to about twenty diverse families. Here, we sequenced and assembled chloroplast genomes of 14 mangrove species from eight families spanning five rosid orders and one asterid order: Fabales (Pongamia pinnata), Lamiales (Avicennia marina), Malpighiales (Excoecaria agallocha, Bruguiera sexangula, Kandelia obovata, Rhizophora stylosa, and Ceriops tagal), Malvales (Hibiscus tiliaceus, Heritiera littoralis, and Thespesia populnea), Myrtales (Laguncularia racemosa, Sonneratia ovata, and Pemphis acidula), and Sapindales (Xylocarpus moluccensis). These chloroplast genomes range from 149 kb to 168 kb in length. A conserved structure of two inverted repeats (IRa and IRb, ~25.8 kb), one large single-copy region (LSC, ~89.0 kb), and one short single-copy region (SSC, ~18.9 kb) as well as ~130 genes (85 protein-coding, 37 tRNAs, and 8 rRNAs) was observed. We found the lowest divergence in the IR regions among the four regions. We also identified simple sequence repeats (SSRs), which were found to be variable in numbers. Most chloroplast genes are highly conserved, with only four genes under positive selection or relaxed pressure. Combined with publicly available chloroplast genomes, we carried out phylogenetic analysis and confirmed the previously reported phylogeny within rosids, including the positioning of obscure families in Malpighiales. Our study reports 14 mangrove chloroplast genomes and illustrates their genome features and evolution.
Collapse
Affiliation(s)
- Chengcheng Shi
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 101408, China
- BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China
| | - Kai Han
- BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China
| | - Liangwei Li
- BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China
| | - Inge Seim
- Integrative Biology Laboratory, Nanjing Normal University, Nanjing 210046, China
- Comparative and Endocrine Biology Laboratory, Translational Research Institute-Institute of Health and Biomedical Innovation, School of Biomedical Sciences, Queensland University of Technology, Woolloongabba 4102, Australia
| | - Simon Ming-Yuen Lee
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
| | - Xun Xu
- BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China
- BGI-Shenzhen, Shenzhen 518083, China
- China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China
| | - Huanming Yang
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 101408, China
- BGI-Shenzhen, Shenzhen 518083, China
| | - Guangyi Fan
- BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, China
- BGI-Shenzhen, Shenzhen 518083, China
| | - Xin Liu
- BGI-Qingdao, BGI-Shenzhen, Qingdao 266555, China
- BGI-Shenzhen, Shenzhen 518083, China
- China National GeneBank, BGI-Shenzhen, Shenzhen 518120, China
- State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen 518083, China
| |
Collapse
|
62
|
Agrawal S, Karcher D, Ruf S, Bock R. The Functions of Chloroplast Glutamyl-tRNA in Translation and Tetrapyrrole Biosynthesis. PLANT PHYSIOLOGY 2020; 183:263-276. [PMID: 32071153 PMCID: PMC7210637 DOI: 10.1104/pp.20.00009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 01/31/2020] [Indexed: 06/02/2023]
Abstract
The chloroplast glutamyl-tRNA (tRNAGlu) is unique in that it has two entirely different functions. In addition to acting in translation, it serves as the substrate of glutamyl-tRNA reductase (GluTR), the enzyme catalyzing the committed step in the tetrapyrrole biosynthetic pathway. How the tRNAGlu pool is distributed between the two pathways and whether tRNAGlu allocation limits tetrapyrrole biosynthesis and/or protein biosynthesis remains poorly understood. We generated a series of transplastomic tobacco (Nicotiana tabacum) plants to alter tRNAGlu expression levels and introduced a point mutation into the plastid trnE gene, which has been reported to uncouple protein biosynthesis from tetrapyrrole biosynthesis in chloroplasts of the protist Euglena gracilis We show that, rather than comparable uncoupling of the two pathways, the trnE mutation is lethal in tobacco because it inhibits tRNA processing, thus preventing translation of Glu codons. Ectopic expression of the mutated trnE gene uncovered an unexpected inhibition of glutamyl-tRNA reductase by immature tRNAGlu We further demonstrate that whereas overexpression of tRNAGlu does not affect tetrapyrrole biosynthesis, reduction of GluTR activity through inhibition by tRNAGlu precursors causes tetrapyrrole synthesis to become limiting in early plant development when active photosystem biogenesis provokes a high demand for de novo chlorophyll biosynthesis. Taken together, our findings provide insight into the roles of tRNAGlu at the intersection of protein biosynthesis and tetrapyrrole biosynthesis.
Collapse
Affiliation(s)
- Shreya Agrawal
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Daniel Karcher
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Stephanie Ruf
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Ralph Bock
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| |
Collapse
|
63
|
Chardon F, Cueff G, Delannoy E, Aubé F, Lornac A, Bedu M, Gilard F, Pateyron S, Rogniaux H, Gargaros A, Mireau H, Rajjou L, Martin-Magniette ML, Budar F. The Consequences of a Disruption in Cyto-Nuclear Coadaptation on the Molecular Response to a Nitrate Starvation in Arabidopsis. PLANTS (BASEL, SWITZERLAND) 2020; 9:E573. [PMID: 32369924 PMCID: PMC7285260 DOI: 10.3390/plants9050573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/20/2020] [Accepted: 04/22/2020] [Indexed: 12/04/2022]
Abstract
Mitochondria and chloroplasts are important actors in the plant nutritional efficiency. So, it could be expected that a disruption of the coadaptation between nuclear and organellar genomes impact plant response to nutrient stresses. We addressed this issue using two Arabidopsis accessions, namely Ct1 and Jea, and their reciprocal cytolines possessing the nuclear genome from one parent and the organellar genomes of the other one. We measured gene expression, and quantified proteins and metabolites under N starvation and non-limiting conditions. We observed a typical response to N starvation at the phenotype and molecular levels. The phenotypical response to N starvation was similar in the cytolines compared to the parents. However, we observed an effect of the disruption of genomic coadaptation at the molecular levels, distinct from the previously described responses to organellar stresses. Strikingly, genes differentially expressed in cytolines compared to parents were mainly repressed in the cytolines. These genes encoded more mitochondrial and nuclear proteins than randomly expected, while N starvation responsive ones were enriched in genes for chloroplast and nuclear proteins. In cytolines, the non-coadapted cytonuclear genomic combination tends to modulate the response to N starvation observed in the parental lines on various biological processes.
Collapse
Affiliation(s)
- Fabien Chardon
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France; (G.C.); (F.A.); (A.L.); (M.B.); (H.M.); (L.R.)
| | - Gwendal Cueff
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France; (G.C.); (F.A.); (A.L.); (M.B.); (H.M.); (L.R.)
| | - Etienne Delannoy
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Univ Evry, 91405 Orsay, France; (E.D.); (F.G.); (S.P.); (M.-L.M.-M.)
- CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Université de Paris, 91405 Orsay, France
| | - Fabien Aubé
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France; (G.C.); (F.A.); (A.L.); (M.B.); (H.M.); (L.R.)
| | - Aurélia Lornac
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France; (G.C.); (F.A.); (A.L.); (M.B.); (H.M.); (L.R.)
| | - Magali Bedu
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France; (G.C.); (F.A.); (A.L.); (M.B.); (H.M.); (L.R.)
| | - Françoise Gilard
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Univ Evry, 91405 Orsay, France; (E.D.); (F.G.); (S.P.); (M.-L.M.-M.)
- CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Université de Paris, 91405 Orsay, France
| | - Stéphanie Pateyron
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Univ Evry, 91405 Orsay, France; (E.D.); (F.G.); (S.P.); (M.-L.M.-M.)
- CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Université de Paris, 91405 Orsay, France
| | - Hélène Rogniaux
- INRAE, UR BIA, F-44316 Nantes, France; (H.R.); (A.G.)
- INRAE, BIBS Facility, F-44316 Nantes, France
| | - Audrey Gargaros
- INRAE, UR BIA, F-44316 Nantes, France; (H.R.); (A.G.)
- INRAE, BIBS Facility, F-44316 Nantes, France
| | - Hakim Mireau
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France; (G.C.); (F.A.); (A.L.); (M.B.); (H.M.); (L.R.)
| | - Loïc Rajjou
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France; (G.C.); (F.A.); (A.L.); (M.B.); (H.M.); (L.R.)
| | - Marie-Laure Martin-Magniette
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Univ Evry, 91405 Orsay, France; (E.D.); (F.G.); (S.P.); (M.-L.M.-M.)
- CNRS, INRAE, Institute of Plant Sciences Paris-Saclay (IPS2), Université de Paris, 91405 Orsay, France
- UMR MIA-Paris, AgroParisTech, INRA, Université Paris-Saclay, 75005 Paris, France
| | - Françoise Budar
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, 78000 Versailles, France; (G.C.); (F.A.); (A.L.); (M.B.); (H.M.); (L.R.)
| |
Collapse
|
64
|
Núñez-Delegido E, Robles P, Ferrández-Ayela A, Quesada V. Functional analysis of mTERF5 and mTERF9 contribution to salt tolerance, plastid gene expression and retrograde signalling in Arabidopsis thaliana. PLANT BIOLOGY (STUTTGART, GERMANY) 2020; 22:459-471. [PMID: 31850621 DOI: 10.1111/plb.13084] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 12/06/2019] [Indexed: 05/16/2023]
Abstract
We previously showed that Arabidopsis mda1 and mterf9 mutants, defective in the chloroplast-targeted mitochondrial transcription termination factors mTERF5 and mTERF9, respectively, display altered responses to abiotic stresses and abscisic acid (ABA), as well as perturbed development, likely through abnormal chloroplast biogenesis. To advance the functional analysis of mTERF5 and mTERF9, we obtained and characterized overexpression (OE) lines. Additionally, we studied genetic interactions between sca3-2, affected in the plastid-RNA polymerase RpoTp, and the mda1-1 and mterf9 mutations. We also investigated the role of mTERF5 and mTERF9 in plastid translation and plastid-to-nucleus signalling. We found that mTERF9 OE reduces salt and ABA tolerance, while mTERF5 or mTERF9 OE alter expression of nuclear and plastid genes. We determined that mda1-1 and mterf9 mutations genetically interact with sca3-2. Further, plastid 16S rRNA levels were reduced in mda1-1 and mterf9 mutants, and mterf9 was more sensitive to chemical inhibitors of chloroplast translation. Expression of the photosynthesis gene LHCB1, a retrograde signalling marker, was differentially affected in mda1-1 and/or mterf9 compared to wild-type Col-0, after treatments with inhibitors of carotenoid biosynthesis (norflurazon) or chloroplast translation (lincomycin). Moreover, mterf9, but not mda1-1, synergistically interacts with gun1-1, defective in GUN1, a central integrator of plastid retrograde signals. Our results show that mTERF9, and to a lesser extent mTERF5, are negative regulators of salt tolerance and that both genes are functionally related to RpoTp, and that mTERF9 is likely required for plastid ribosomal stability and/or assembly. Furthermore, our findings support a role for mTERF9 in retrograde signalling.
Collapse
Affiliation(s)
- E Núñez-Delegido
- Instituto de Bioingeniería, Universidad Miguel Hernández, Elche, Spain
| | - P Robles
- Instituto de Bioingeniería, Universidad Miguel Hernández, Elche, Spain
| | - A Ferrández-Ayela
- Instituto de Bioingeniería, Universidad Miguel Hernández, Elche, Spain
| | - V Quesada
- Instituto de Bioingeniería, Universidad Miguel Hernández, Elche, Spain
| |
Collapse
|
65
|
Lv J, Shang L, Chen Y, Han Y, Yang X, Xie S, Bai W, Hu M, Wu H, Lei K, Yang Y, Ge S, Trinh HP, Zhang Y, Guo L, Wang Z. OsSLC1 Encodes a Pentatricopeptide Repeat Protein Essential for Early Chloroplast Development and Seedling Survival. RICE (NEW YORK, N.Y.) 2020; 13:25. [PMID: 32297039 PMCID: PMC7160225 DOI: 10.1186/s12284-020-00385-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 04/01/2020] [Indexed: 05/10/2023]
Abstract
BACKGROUND The large family of pentatricopeptide repeat (PPR) proteins is widely distributed among land plants. Such proteins play vital roles in intron splicing, RNA editing, RNA processing, RNA stability and RNA translation. However, only a small number of PPR genes have been identified in rice. RESULTS In this study, we raised a mutant from tissue-culture-derived plants of Oryza sativa subsp. japonica 'Zhonghua 11', which exhibited a lethal chlorosis phenotype from germination to the third-leaf stage. The mutant was designated seedling-lethal chlorosis 1 (slc1). The slc1 mutant leaves showed extremely low contents of photosynthetic pigments and abnormal chloroplast development, and were severely defective in photosynthesis. Map-based cloning of OsSLC1 revealed that a single base (G) deletion was detected in the first exon of Os06g0710800 in the slc1 mutant, which caused a premature stop codon. Knockout and complementation experiments further confirmed that OsSLC1 is responsible for the seedling-lethal chlorosis phenotype in the slc1 mutant. OsSLC1 was preferentially expressed in green leaves, and encoded a chloroplast-localized PPR protein harboring 12 PPR motifs. Loss-of-function of OsSLC1 affected the intron splicing of multiple group II introns, and especially precluded the intron splicing of rps16, and resulted in significant increase in the transcript levels of 3 chloroplast ribosomal RNAs and 16 chloroplast development-related and photosynthesis-related genes, and in significant reduction in the transcript levels of 1 chloroplast ribosomal RNAs and 2 chloroplast development-related and photosynthesis-related genes. CONCLUSION We characterized a novel chloroplast-localized PPR protein, OsSLC1, which plays a vital role in the intron splicing of multiple group II introns, especially the rps16 intron, and is essential for early chloroplast development and seedling survival in rice.
Collapse
Affiliation(s)
- Jun Lv
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715 China
| | - Lianguang Shang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124 China
| | - Yun Chen
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Research Center for Perennial Rice Engineering and Technology in Yunnan, School of Agriculture, Yunnan University, Kunming, 650500 China
| | - Yao Han
- Chongqing Key Laboratory of Adversity Agriculture Research, Biotechnology Research Center, Chongqing Academy of Agricultural Sciences, Chongqing, 401329 China
| | - Xiaoyan Yang
- Chongqing Key Laboratory of Adversity Agriculture Research, Biotechnology Research Center, Chongqing Academy of Agricultural Sciences, Chongqing, 401329 China
| | - Shuzhang Xie
- Chongqing Key Laboratory of Adversity Agriculture Research, Biotechnology Research Center, Chongqing Academy of Agricultural Sciences, Chongqing, 401329 China
| | - Wenqin Bai
- Chongqing Key Laboratory of Adversity Agriculture Research, Biotechnology Research Center, Chongqing Academy of Agricultural Sciences, Chongqing, 401329 China
| | - Mingyu Hu
- Chongqing Key Laboratory of Adversity Agriculture Research, Biotechnology Research Center, Chongqing Academy of Agricultural Sciences, Chongqing, 401329 China
| | - Hong Wu
- Chongqing Key Laboratory of Adversity Agriculture Research, Biotechnology Research Center, Chongqing Academy of Agricultural Sciences, Chongqing, 401329 China
| | - Kairong Lei
- Chongqing Key Laboratory of Adversity Agriculture Research, Biotechnology Research Center, Chongqing Academy of Agricultural Sciences, Chongqing, 401329 China
| | - Ya’nan Yang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, 518124 China
| | - Shengzhen Ge
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715 China
| | - Hai Phuong Trinh
- College of Agronomy and Biotechnology, Southwest University, Chongqing, 400715 China
| | - Yi Zhang
- State Key Laboratory for Conservation and Utilization of Bio-resources in Yunnan, Research Center for Perennial Rice Engineering and Technology in Yunnan, School of Agriculture, Yunnan University, Kunming, 650500 China
| | - Longbiao Guo
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Zhejiang, 310006 China
| | - Zhongwei Wang
- Chongqing Key Laboratory of Adversity Agriculture Research, Biotechnology Research Center, Chongqing Academy of Agricultural Sciences, Chongqing, 401329 China
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Zhejiang, 310006 China
| |
Collapse
|
66
|
Nagashima Y, Ohshiro K, Iwase A, Nakata MT, Maekawa S, Horiguchi G. The bRPS6-Family Protein RFC3 Prevents Interference by the Splicing Factor CFM3b during Plastid rRNA Biogenesis in Arabidopsis thaliana. PLANTS 2020; 9:plants9030328. [PMID: 32143506 PMCID: PMC7154815 DOI: 10.3390/plants9030328] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 02/24/2020] [Accepted: 03/03/2020] [Indexed: 01/03/2023]
Abstract
Plastid ribosome biogenesis is important for plant growth and development. REGULATOR OF FATTY ACID COMPOSITION3 (RFC3) is a member of the bacterial ribosomal protein S6 family and is important for lateral root development. rfc3-2 dramatically reduces the plastid rRNA level and produces lateral roots that lack stem cells. In this study, we isolated a suppressor of rfc three2 (sprt2) mutant that enabled recovery of most rfc3 mutant phenotypes, including abnormal primary and lateral root development and reduced plastid rRNA level. Northern blotting showed that immature and mature plastid rRNA levels were reduced, with the exception of an early 23S rRNA intermediate, in rfc3-2 mutants. These changes were recovered in rfc3-2 sprt2-1 mutants, but a second defect in the processing of 16S rRNA appeared in this line. The results suggest that rfc3 mutants may be defective in at least two steps of plastid rRNA processing, one of which is specifically affected by the sprt2-1 mutation. sprt2-1 mutants had a mutation in CRM FAMILY MEMBER 3b (CFM3b), which encodes a plastid-localized splicing factor. A bimolecular fluorescence complementation (BiFC) assay suggested that RFC3 and SPRT2/CFM3b interact with each other in plastids. These results suggest that RFC3 suppresses the nonspecific action of SPRT2/CFM3b and improves the accuracy of plastid rRNA processing.
Collapse
Affiliation(s)
- Yumi Nagashima
- Department of Life Science, College of Science, Rikkyo University, Toshima, Tokyo 171-8501, Japan
| | - Katsutomo Ohshiro
- Department of Life Science, College of Science, Rikkyo University, Toshima, Tokyo 171-8501, Japan
| | - Akiyasu Iwase
- Department of Life Science, College of Science, Rikkyo University, Toshima, Tokyo 171-8501, Japan
| | - Miyuki T Nakata
- Research Center for Life Science, College of Science, Rikkyo University, Toshima, Tokyo 171-8501, Japan
- Current address: Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma, Nara 630-0192, Japan
| | - Shugo Maekawa
- Department of Life Science, College of Science, Rikkyo University, Toshima, Tokyo 171-8501, Japan
- Research Center for Life Science, College of Science, Rikkyo University, Toshima, Tokyo 171-8501, Japan
| | - Gorou Horiguchi
- Department of Life Science, College of Science, Rikkyo University, Toshima, Tokyo 171-8501, Japan
- Research Center for Life Science, College of Science, Rikkyo University, Toshima, Tokyo 171-8501, Japan
| |
Collapse
|
67
|
Reiter B, Vamvaka E, Marino G, Kleine T, Jahns P, Bolle C, Leister D, Rühle T. The Arabidopsis Protein CGL20 Is Required for Plastid 50S Ribosome Biogenesis. PLANT PHYSIOLOGY 2020; 182:1222-1238. [PMID: 31937683 PMCID: PMC7054867 DOI: 10.1104/pp.19.01502] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 12/22/2019] [Indexed: 05/29/2023]
Abstract
Biogenesis of plastid ribosomes is facilitated by auxiliary factors that process and modify ribosomal RNAs (rRNAs) or are involved in ribosome assembly. In comparison with their bacterial and mitochondrial counterparts, the biogenesis of plastid ribosomes is less well understood, and few auxiliary factors have been described so far. In this study, we report the functional characterization of CONSERVED ONLY IN THE GREEN LINEAGE20 (CGL20) in Arabidopsis (Arabidopsis thaliana; AtCGL20), which is a Pro-rich, ∼10-kD protein that is targeted to mitochondria and chloroplasts. In Arabidopsis, CGL20 is encoded by segmentally duplicated genes of high sequence similarity (AtCGL20A and AtCGL20B). Inactivation of these genes in the atcgl20ab mutant led to a visible virescent phenotype and growth arrest at low temperature. The chloroplast proteome, pigment composition, and photosynthetic performance were significantly affected in atcgl20ab mutants. Loss of AtCGL20 impaired plastid translation, perturbing the formation of a hidden break in the 23S rRNA and causing abnormal accumulation of 50S ribosomal subunits in the high-molecular-mass fraction of chloroplast stromal extracts. Moreover, AtCGL20A-eGFP fusion proteins comigrated with 50S ribosomal subunits in Suc density gradients, even after RNase treatment of stromal extracts. Therefore, we propose that AtCGL20 participates in the late stages of the biogenesis of 50S ribosomal subunits in plastids, a role that presumably evolved in the green lineage as a consequence of structural divergence of plastid ribosomes.
Collapse
Affiliation(s)
- Bennet Reiter
- Plant Molecular Biology Faculty of Biology I, Ludwig-Maximilians-Universität, D-82152 Planegg-Martinsried, Germany
| | - Evgenia Vamvaka
- Plant Molecular Biology Faculty of Biology I, Ludwig-Maximilians-Universität, D-82152 Planegg-Martinsried, Germany
| | - Giada Marino
- Plant Molecular Biology Faculty of Biology I, Ludwig-Maximilians-Universität, D-82152 Planegg-Martinsried, Germany
| | - Tatjana Kleine
- Plant Molecular Biology Faculty of Biology I, Ludwig-Maximilians-Universität, D-82152 Planegg-Martinsried, Germany
| | - Peter Jahns
- Institute of Plant Biochemistry, Heinrich-Heine University, 40225 Duesseldorf, Germany
| | - Cordelia Bolle
- Plant Molecular Biology Faculty of Biology I, Ludwig-Maximilians-Universität, D-82152 Planegg-Martinsried, Germany
| | - Dario Leister
- Plant Molecular Biology Faculty of Biology I, Ludwig-Maximilians-Universität, D-82152 Planegg-Martinsried, Germany
| | - Thilo Rühle
- Plant Molecular Biology Faculty of Biology I, Ludwig-Maximilians-Universität, D-82152 Planegg-Martinsried, Germany
| |
Collapse
|
68
|
Martínez-Alberola F, Barreno E, Casano LM, Gasulla F, Molins A, Moya P, González-Hourcade M, Del Campo EM. The chloroplast genome of the lichen-symbiont microalga Trebouxia sp. Tr9 (Trebouxiophyceae, Chlorophyta) shows short inverted repeats with a single gene and loss of the rps4 gene, which is encoded by the nucleus. JOURNAL OF PHYCOLOGY 2020; 56:170-184. [PMID: 31578712 DOI: 10.1111/jpy.12928] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 09/15/2019] [Indexed: 06/10/2023]
Abstract
The Trebouxiophyceae is the class of Chlorophyta algae from which the highest number of chloroplast genome (cpDNA) sequences has been obtained. Several species in this class participate in symbioses with fungi to form lichens. However, no cpDNA has been obtained from any Trebouxia lichen-symbiont microalgae, which are present in approximately half of all lichens. Here, we report the sequence of the completely assembled cpDNA from Trebouxia sp. TR9 and a comparative study with other Trebouxio-phyceae. The organization of the chloroplast genome of Trebouxia sp. TR9 has certain features that are unusual in the Trebouxiophyceae and other green algae. The most remarkable characteristics are the presence of long intergenic spacers, a quadripartite structure with short inverted repeated sequences (IRs), and the loss of the rps4 gene. The presence of long intergenic spacers accounts for a larger cpDNA size in comparison to other closely related Trebouxiophyceae. The IRs, which were thought to be lost in the Trebouxiales, are distinct from most of cpDNAs since they lack the rRNA operon and uniquely includes the rbcL gene. The functional transfer of the rps4 gene to the nuclear genome has been confirmed by sequencing and examination of the gene architecture, which includes three spliceosomal introns as well as the verification of the presence of the corresponding transcript. This is the first documented transfer of the rps4 gene from the chloroplast to the nucleus among Viridiplantae. Additionally, a fairly well-resolved phylogenetic reconstruction, including Trebouxia sp. TR9 along with other Trebouxiophyceae, was obtained based on a set of conserved chloroplast genes.
Collapse
Affiliation(s)
- Fernando Martínez-Alberola
- ICBIBE, Botánica, Facultad de Ciencias Biológicas, Universitat de València, Dr. Moliner 50, Burjassot, Valencia, 46100, Spain
| | - Eva Barreno
- ICBIBE, Botánica, Facultad de Ciencias Biológicas, Universitat de València, Dr. Moliner 50, Burjassot, Valencia, 46100, Spain
| | - Leonardo M Casano
- Department of Life Sciences, University of Alcalá, Alcalá de Henares, Madrid, 28805, Spain
| | - Francisco Gasulla
- Department of Life Sciences, University of Alcalá, Alcalá de Henares, Madrid, 28805, Spain
| | - Arantzazu Molins
- ICBIBE, Botánica, Facultad de Ciencias Biológicas, Universitat de València, Dr. Moliner 50, Burjassot, Valencia, 46100, Spain
| | - Patricia Moya
- ICBIBE, Botánica, Facultad de Ciencias Biológicas, Universitat de València, Dr. Moliner 50, Burjassot, Valencia, 46100, Spain
| | | | - Eva M Del Campo
- Department of Life Sciences, University of Alcalá, Alcalá de Henares, Madrid, 28805, Spain
| |
Collapse
|
69
|
Wang X, Zhao L, Man Y, Li X, Wang L, Xiao J. PDM4, a Pentatricopeptide Repeat Protein, Affects Chloroplast Gene Expression and Chloroplast Development in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2020; 11:1198. [PMID: 32849743 PMCID: PMC7432182 DOI: 10.3389/fpls.2020.01198] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Accepted: 07/23/2020] [Indexed: 05/10/2023]
Abstract
Extensive studies have been carried out on chloroplast gene expression and chloroplast development; however, the regulatory mechanism is still largely unknown. Here, we characterized Pigment-Defective Mutant4 (PDM4), a P-type PPR protein localized in chloroplast. The pdm4 mutant showed seedling-lethal and albino phenotype under heterotrophic growth conditions. Transmission electron microscopic analysis revealed that thylakoid structure was totally disrupted in pdm4 mutant and eventually led to the breakdown of chloroplasts. The levels of several chloroplast- and nuclear-encoded proteins are strongly reduced in pdm4 mutant. Besides, transcript profile analysis detected that, in pdm4 mutant, the expression of plastid-encoded RNA polymerase-dependent genes was markedly affected, and deviant chloroplast rRNA processing was also observed. In addition, we found that PDM4 functions in the splicing of group II introns and may also be involved in the assembly of the 50S ribosomal particle. Our results demonstrate that PDM4 plays an important role in chloroplast gene expression and chloroplast development in Arabidopsis.
Collapse
Affiliation(s)
- Xinwei Wang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Lirong Zhao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Yi Man
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Xiaojuan Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
| | - Li Wang
- College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, China
| | - Jianwei Xiao
- Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, China
- College of Biological Sciences and Biotechnology, Beijing Forestry University, Beijing, China
- *Correspondence: Jianwei Xiao,
| |
Collapse
|
70
|
Nováková S, Šubr Z, Kováč A, Fialová I, Beke G, Danchenko M. Cucumber mosaic virus resistance: Comparative proteomics of contrasting Cucumis sativus cultivars after long-term infection. J Proteomics 2019; 214:103626. [PMID: 31881349 DOI: 10.1016/j.jprot.2019.103626] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 12/10/2019] [Accepted: 12/22/2019] [Indexed: 02/07/2023]
Abstract
Plant viruses are a significant threat to a wide range of host species, causing substantial losses in agriculture. Particularly, Cucumber mosaic virus (CMV) evokes severe symptoms, thus dramatically limiting yield. Activation of plant defense reactions is associated with changes in the cellular proteome to ensure virus resistance. Herein, we studied two cultivars of cucumber (Cucumis sativus) resistant host Heliana and susceptible host Vanda. Plant cotyledons were mechanically inoculated with CMV isolate PK1, and systemic leaves were harvested at 33 days post-inoculation. Proteome was profiled by ultrahigh-performance liquid chromatography and comprehensively quantified by ion mobility enhanced mass spectrometry. From 1516 reproducibly quantified proteins using a label-free approach, 133 were differentially abundant among cultivars or treatments by strict statistic and effect size criteria. Pigments and hydrogen peroxide measurements corroborated proteomic findings. Comparison of both cultivars in the uninfected state highlighted more abundant photosynthetic and development-related proteins in resistant cucumber cultivar. Long-term CMV infection caused worse preservation of energy processes and less robust translation in the susceptible cultivar. Contrary, compatible plants had numerous more abundant stress and defense-related proteins. We proposed promising targets for functional validation in transgenic lines: A step toward durable virus resistance in cucurbits and other crops. SIGNIFICANCE: Sustainable production of crops requires an understanding of natural mechanisms of resistance/susceptibility to ubiquitous viral infections. We report original findings of comparative analysis of plant genotypes exposed to CMV. Deep discovery proteomics of resistant and susceptible cucumber cultivars, inoculated with widespread phytovirus, allowed to suggest several novel molecular targets for functional testing in plant protection strategies.
Collapse
Affiliation(s)
- Slavomíra Nováková
- Biomedical Research Center, Slovak Academy of Sciences; Dubravska cesta 9, 84505 Bratislava, Slovak Republic; Biomedical Center Martin, Jessenius Faculty of Medicine in Martin, Comenius University in Bratislava; Mala Hora 4C, 03601 Martin, Slovak Republic.
| | - Zdeno Šubr
- Biomedical Research Center, Slovak Academy of Sciences; Dubravska cesta 9, 84505 Bratislava, Slovak Republic.
| | - Andrej Kováč
- Institute of Neuroimmunology, Slovak Academy of Sciences; Dubravska cesta 9, 84510 Bratislava, Slovak Republic.
| | - Ivana Fialová
- Plant Science and Biodiversity Center, Slovak Academy of Sciences; Dubravska cesta 9, 84523 Bratislava, Slovak Republic.
| | - Gábor Beke
- Institute of Molecular Biology, Slovak Academy of Sciences; Dubravska cesta 21, 84551 Bratislava, Slovak Republic.
| | - Maksym Danchenko
- Biomedical Research Center, Slovak Academy of Sciences; Dubravska cesta 9, 84505 Bratislava, Slovak Republic; Plant Science and Biodiversity Center, Slovak Academy of Sciences; Dubravska cesta 9, 84523 Bratislava, Slovak Republic.
| |
Collapse
|
71
|
Evangelisti E, Yunusov T, Shenhav L, Schornack S. N-acetyltransferase AAC(3)-I confers gentamicin resistance to Phytophthora palmivora and Phytophthora infestans. BMC Microbiol 2019; 19:265. [PMID: 31775609 PMCID: PMC6882347 DOI: 10.1186/s12866-019-1642-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 11/14/2019] [Indexed: 12/12/2022] Open
Abstract
Background Oomycetes are pathogens of mammals, fish, insects and plants, and the potato late blight agent Phytophthora infestans and the oil palm and cocoa infecting pathogen Phytophthora palmivora cause economically impacting diseases on a wide range of crop plants. Increasing genomic and transcriptomic resources and recent advances in oomycete biology demand new strategies for genetic modification of oomycetes. Most oomycete transformation procedures rely on geneticin-based selection of transgenic strains. Results We established N-acetyltransferase AAC(3)-I as a gentamicin-based selectable marker for oomycete transformation without interference with existing geneticin resistance. Strains carrying gentamicin resistance are fully infectious in plants. We further demonstrate the usefulness of this new antibiotic selection to super-transform well-characterized, already fluorescently-labelled P. palmivora strains and provide a comprehensive protocol for maintenance and zoospore electro-transformation of Phytophthora strains to aid in plant-pathogen research. Conclusions N-acetyltransferase AAC(3)-I is functional in Phytophthora oomycetes. In addition, the substrate specificity of the AAC(3)-I enzyme allows for re-transformation of geneticin-resistant strains. Our findings and resources widen the possibilities to study oomycete cell biology and plant-oomycete interactions.
Collapse
Affiliation(s)
| | - Temur Yunusov
- Sainsbury Laboratory Cambridge University (SLCU), Cambridge, UK
| | - Liron Shenhav
- Sainsbury Laboratory Cambridge University (SLCU), Cambridge, UK
| | | |
Collapse
|
72
|
Bdolach E, Prusty MR, Faigenboim-Doron A, Filichkin T, Helgerson L, Schmid KJ, Greiner S, Fridman E. Thermal plasticity of the circadian clock is under nuclear and cytoplasmic control in wild barley. PLANT, CELL & ENVIRONMENT 2019; 42:3105-3120. [PMID: 31272129 DOI: 10.1111/pce.13606] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 06/27/2019] [Accepted: 06/30/2019] [Indexed: 06/09/2023]
Abstract
Temperature compensation, expressed as the ability to maintain clock characteristics (mainly period) in face of temperature changes, that is, robustness, is considered a key feature of circadian clock systems. In this study, we explore the genetic basis for lack of robustness, that is, plasticity, of circadian clock as reflected by photosynthesis rhythmicity. The clock rhythmicity of a new wild barley reciprocal doubled haploid population was analysed with a high temporal resolution of pulsed amplitude modulation of chlorophyll fluorescence under optimal (22°C) and high (32°C) temperature. This comparison between two environments pointed to the prevalence of clock acceleration under heat. Genotyping by sequencing of doubled haploid lines indicated a rich recombination landscape with minor fixation (less than 8%) for one of the parental alleles. Quantitative genetic analysis included genotype by environment interactions and binary-threshold models. Variation in the circadian rhythm plasticity phenotypes, expressed as change (delta) of period and amplitude under two temperatures, was associated with maternal organelle genome (the plasmotype), as well as with several nuclear loci. This first reported rhythmicity driven by nuclear loci and plasmotype with few identified variants, paves the way for studying impact of cytonuclear variations on clock robustness and on plant adaptation to changing environments.
Collapse
Affiliation(s)
- Eyal Bdolach
- Plant Sciences Institute, Volcani Agricultural Research Organization (ARO), Bet Dagan, Israel
- Department of Life Sciences, Ben-Gurion University, Beer-Sheva, Israel
| | - Manas Ranjan Prusty
- Plant Sciences Institute, Volcani Agricultural Research Organization (ARO), Bet Dagan, Israel
| | - Adi Faigenboim-Doron
- Plant Sciences Institute, Volcani Agricultural Research Organization (ARO), Bet Dagan, Israel
| | - Tanya Filichkin
- Crop and Soil Science Department, Oregon State University, Corvallis, Oregon
| | - Laura Helgerson
- Crop and Soil Science Department, Oregon State University, Corvallis, Oregon
| | - Karl J Schmid
- Institute of Plant Breeding, Seed Science and Population Genetics, University of Hohenheim, Stuttgart, Germany
| | - Stephan Greiner
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Potsdam-Golm, Germany
| | - Eyal Fridman
- Plant Sciences Institute, Volcani Agricultural Research Organization (ARO), Bet Dagan, Israel
| |
Collapse
|
73
|
Schelkunov MI, Nuraliev MS, Logacheva MD. Rhopalocnemis phalloides has one of the most reduced and mutated plastid genomes known. PeerJ 2019; 7:e7500. [PMID: 31565552 PMCID: PMC6745192 DOI: 10.7717/peerj.7500] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 07/16/2019] [Indexed: 11/20/2022] Open
Abstract
Although most plant species are photosynthetic, several hundred species have lost the ability to photosynthesize and instead obtain nutrients via various types of heterotrophic feeding. Their plastid genomes markedly differ from the plastid genomes of photosynthetic plants. In this work, we describe the sequenced plastid genome of the heterotrophic plant Rhopalocnemis phalloides, which belongs to the family Balanophoraceae and feeds by parasitizing other plants. The genome is highly reduced (18,622 base pairs vs. approximately 150 kbp in autotrophic plants) and possesses an extraordinarily high AT content, 86.8%, which is inferior only to AT contents of plastid genomes of Balanophora, a genus from the same family. The gene content of this genome is quite typical of heterotrophic plants, with all of the genes related to photosynthesis having been lost. The remaining genes are notably distorted by a high mutation rate and the aforementioned AT content. The high AT content has led to sequence convergence between some of the remaining genes and their homologs from AT-rich plastid genomes of protists. Overall, the plastid genome of R. phalloides is one of the most unusual plastid genomes known.
Collapse
Affiliation(s)
- Mikhail I. Schelkunov
- Skolkovo Institute of Science and Technology, Moscow, Russia
- Institute for Information Transmission Problems, Moscow, Russia
| | - Maxim S. Nuraliev
- Faculty of Biology, Moscow State University, Moscow, Russia
- Joint Russian–Vietnamese Tropical Scientific and Technological Center, Cau Giay, Hanoi, Vietnam
| | - Maria D. Logacheva
- Skolkovo Institute of Science and Technology, Moscow, Russia
- A.N. Belozersky Research Institute of Physico-Chemical Biology, Moscow State University, Moscow, Russia
| |
Collapse
|
74
|
Rugen N, Straube H, Franken LE, Braun HP, Eubel H. Complexome Profiling Reveals Association of PPR Proteins with Ribosomes in the Mitochondria of Plants. Mol Cell Proteomics 2019; 18:1345-1362. [PMID: 31023727 PMCID: PMC6601216 DOI: 10.1074/mcp.ra119.001396] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/12/2019] [Indexed: 12/28/2022] Open
Abstract
Mitochondrial transcripts are subject to a wealth of processing mechanisms including cis- and trans-splicing events, as well as base modifications (RNA editing). Hundreds of proteins are required for these processes in plant mitochondria, many of which belong to the pentatricopeptide repeat (PPR) protein superfamily. The structure, localization, and function of these proteins is only poorly understood. Here we present evidence that several PPR proteins are bound to mitoribosomes in plants. A novel complexome profiling strategy in combination with chemical crosslinking has been employed to systematically define the protein constituents of the large and the small ribosomal subunits in the mitochondria of plants. We identified more than 80 ribosomal proteins, which include several PPR proteins and other non-conventional ribosomal proteins. These findings reveal a potential coupling of transcriptional and translational events in the mitochondria of plants. Furthermore, the data indicate an extremely high molecular mass of the "small" subunit, even exceeding that of the "large" subunit.
Collapse
Affiliation(s)
- Nils Rugen
- From the ‡Leibniz Universität Hannover, Institute of Plant Genetics, Herrenhäuser Str. 2, 30419 Hannover, Germany
| | - Henryk Straube
- From the ‡Leibniz Universität Hannover, Institute of Plant Genetics, Herrenhäuser Str. 2, 30419 Hannover, Germany
| | - Linda E Franken
- §Heinrich Pette Institute, Leibniz Institute for Experimental Virology - Centre for Structural Systems Biology, Notkestraβe 85, 22607 Hamburg, Germany
| | - Hans-Peter Braun
- From the ‡Leibniz Universität Hannover, Institute of Plant Genetics, Herrenhäuser Str. 2, 30419 Hannover, Germany
| | - Holger Eubel
- From the ‡Leibniz Universität Hannover, Institute of Plant Genetics, Herrenhäuser Str. 2, 30419 Hannover, Germany;.
| |
Collapse
|
75
|
Zhu L, Wang D, Sun J, Mu Y, Pu W, Ma B, Ren F, Yan W, Zhang Z, Li G, Li Y, Pan Y. Phenotypic and proteomic characteristics of sorghum (Sorghum bicolor) albino lethal mutant sbe6-a1. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 139:400-410. [PMID: 30981156 DOI: 10.1016/j.plaphy.2019.04.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 04/01/2019] [Indexed: 05/27/2023]
Abstract
Leaf color mutants are ideal materials for chloroplast development and photosynthetic mechanism research. Here, we characterized an EMS (ethyl methane sulfonate)-mutagenized sorghum (Sorghum bicolor) mutant, sbe6-a1, in which the severe disruption in chloroplast structure and a chlorophyll deficiency promote an albino leaf phenotype and lead to premature death. The proteomic analyses of mutant and its progenitor wild-type (WT) were performed using a Q Exactive plus Orbitrap mass spectrometer and 4,233 proteins were accurately quantitated. The function analysis showed that most of up-regulated proteins in mutant sbe6-a1 had not been well characterized. GO-enrichment analysis of the differentially abundant proteins (DAPs) showed that up-regulated DAPs were significantly enriched in catabolic process and located in mitochondria, while down regulated DAPs were located in chloroplasts and participated in photosynthesis and some other processes. KEGG pathway-enrichment analyses indicated that the degradation and metabolic pathways of fatty acids, as well as some amino acids and secondary metabolites, were significantly enhanced in the mutant sbe6-a1, while photosynthesis-related pathways, some secondary metabolites' biosynthesis and ribosomal pathways were significantly inhibited. Analysis also shows that some DAPs, such as FBAs, MDHs, PEPC, ATP synthase, CABs, CHLM, PRPs, pathogenesis-related protein, sHSP, ACP2 and AOX may be closely associated with the albino phenotype. Our analysis will promote the understanding of the molecular phenomena that result in plant albino phenotypes.
Collapse
Affiliation(s)
- Li Zhu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Daoping Wang
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Jiusheng Sun
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China; Research Institute of Soil, Fertilizer and Agricultural Water Conservation, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, PR China
| | - Yongying Mu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Weijun Pu
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Bo Ma
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Fuli Ren
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Wenxiu Yan
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Zhiguo Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Guiying Li
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China
| | - Yubin Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China.
| | - Yinghong Pan
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, PR China; The National Key Facility for Crop Gene Resources and Genetic Improvement, Beijing, 100081, PR China.
| |
Collapse
|
76
|
Krupinska K, Braun S, Nia MS, Schäfer A, Hensel G, Bilger W. The nucleoid-associated protein WHIRLY1 is required for the coordinate assembly of plastid and nucleus-encoded proteins during chloroplast development. PLANTA 2019; 249:1337-1347. [PMID: 30631956 DOI: 10.1007/s00425-018-03085-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 12/21/2018] [Indexed: 05/08/2023]
Abstract
Chloroplasts deficient in the major chloroplast nucleoid-associated protein WHIRLY1 have an enhanced ratio of LHCs to reaction centers, indicating that WHIRLY1 is required for a coordinate assembly of the photosynthetic apparatus during chloroplast development. Chloroplast development was found to be delayed in barley plants with an RNAi-mediated knockdown of WHIRLY1 encoding a major nucleoid-associated protein of chloroplasts. The plastids of WHIRLY1 deficient plants had a reduced ribosome content. Accordingly, plastid-encoded proteins of the photosynthetic apparatus showed delayed accumulation during chloroplast development coinciding with a delayed increase in photosystem II efficiency measured by chlorophyll fluorescence. In contrast, light harvesting complex proteins being encoded in the nucleus had a high abundance as in the wild type. The unbalanced assembly of the proteins of the photosynthetic apparatus in WHIRLY1-deficient plants coincided with the enhanced contents of chlorophyll b and xanthophylls. The lack of coordination was most obvious at the early stages of development. Overaccumulation of LHC proteins in comparison to reaction center proteins at the early stages of chloroplast development did not correlate with enhanced expression levels of the corresponding genes in the nucleus. This work revealed that WHIRLY1 does not influence LHC abundance at the transcriptional level. Rather, WHIRLY1 in association with nucleoids might play a structural role for both the assembly of ribosomes and the complexes of the photosynthetic apparatus.
Collapse
Affiliation(s)
- Karin Krupinska
- Institute of Botany, Christian-Albrechts-University of Kiel, Kiel, Germany.
| | - Susanne Braun
- Institute of Botany, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Monireh Saeid Nia
- Institute of Botany, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Anke Schäfer
- Institute of Botany, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Götz Hensel
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Seeland, OT Gatersleben, Germany
| | - Wolfgang Bilger
- Institute of Botany, Christian-Albrechts-University of Kiel, Kiel, Germany
| |
Collapse
|
77
|
Xu D, Marino G, Klingl A, Enderle B, Monte E, Kurth J, Hiltbrunner A, Leister D, Kleine T. Extrachloroplastic PP7L Functions in Chloroplast Development and Abiotic Stress Tolerance. PLANT PHYSIOLOGY 2019; 180:323-341. [PMID: 30760637 PMCID: PMC6501107 DOI: 10.1104/pp.19.00070] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 02/05/2019] [Indexed: 05/18/2023]
Abstract
Chloroplast biogenesis is indispensable for proper plant development and environmental acclimation. In a screen for mutants affected in photosynthesis, we identified the protein phosphatase7-like (pp7l) mutant, which displayed delayed chloroplast development in cotyledons and young leaves. PP7L, PP7, and PP7-long constitute a subfamily of phosphoprotein phosphatases. PP7 is thought to transduce a blue-light signal perceived by crys and phy a that induces expression of SIGMA FACTOR5 (SIG5). We observed that, like PP7, PP7L was predominantly localized to the nucleus in Arabidopsis (Arabidopsis thaliana), and the pp7l phenotype was similar to that of the sig6 mutant. However, SIG6 expression was unaltered in pp7l mutants. Instead, loss of PP7L compromised translation and ribosomal RNA (rRNA) maturation in chloroplasts, pointing to a distinct mechanism influencing chloroplast development. Promoters of genes deregulated in pp7l-1 were enriched in PHYTOCHROME-INTERACTING FACTOR (PIF)-binding motifs and the transcriptome of pp7l-1 resembled those of pif and CONSTITUTIVE PHOTOMORPHOGENESIS1 (COP1) signalosome complex (csn) mutants. However, pif and csn mutants, as well as cop1, cryptochromes (cry)1 cry2, and phytochromes (phy)A phyB mutants, do not share the pp7l photosynthesis phenotype. PhyB protein levels were elevated in pp7l mutants, but phyB overexpression plants did not resemble pp7l These results indicate that PP7L operates through a different pathway and that the control of greening and photosystem biogenesis can be separated. The lack of PP7L increased susceptibility to salt and high-light stress, whereas PP7L overexpression conferred resistance to high-light stress. Strikingly, PP7L was specifically recruited to Brassicales for the regulation of chloroplast development. This study adds another player involved in chloroplast biogenesis.
Collapse
Affiliation(s)
- Duorong Xu
- Plant Molecular Biology (Botany), Department Biology I, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Giada Marino
- Plant Molecular Biology (Botany), Department Biology I, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Andreas Klingl
- Plant Development, Department Biology I, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Beatrix Enderle
- Institute of Biology II, Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | - Elena Monte
- Plant Development and Signal Transduction Program, Center for Research in Agricultural Genomics Consejo Superior de Investigaciones Científicas-Institute of Agrifood Research and Technology-Universidad Autonoma de Barcelona-Universidad de Barcelona, 08193 Barcelona, Spain
| | - Joachim Kurth
- Plant Development, Department Biology I, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Andreas Hiltbrunner
- Institute of Biology II, Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
- Centre for Biological Signalling Studies (BIOSS), University of Freiburg, 79104 Freiburg, Germany
| | - Dario Leister
- Plant Molecular Biology (Botany), Department Biology I, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Tatjana Kleine
- Plant Molecular Biology (Botany), Department Biology I, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| |
Collapse
|
78
|
Ferretti MB, Karbstein K. Does functional specialization of ribosomes really exist? RNA (NEW YORK, N.Y.) 2019; 25:521-538. [PMID: 30733326 PMCID: PMC6467006 DOI: 10.1261/rna.069823.118] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
It has recently become clear that ribosomes are much more heterogeneous than previously thought, with diversity arising from rRNA sequence and modifications, ribosomal protein (RP) content and posttranslational modifications (PTMs), as well as bound nonribosomal proteins. In some cases, the existence of these diverse ribosome populations has been verified by biochemical or structural methods. Furthermore, knockout or knockdown of RPs can diversify ribosome populations, while also affecting the translation of some mRNAs (but not others) with biological consequences. However, the effects on translation arising from depletion of diverse proteins can be highly similar, suggesting that there may be a more general defect in ribosome function or stability, perhaps arising from reduced ribosome numbers. Consistently, overall reduced ribosome numbers can differentially affect subclasses of mRNAs, necessitating controls for specificity. Moreover, in order to study the functional consequences of ribosome diversity, perturbations including affinity tags and knockouts are introduced, which can also affect the outcome of the experiment. Here we review the available literature to carefully evaluate whether the published data support functional diversification, defined as diverse ribosome populations differentially affecting translation of distinct mRNA (classes). Based on these observations and the commonly observed cellular responses to perturbations in the system, we suggest a set of important controls to validate functional diversity, which should include gain-of-function assays and the demonstration of inducibility under physiological conditions.
Collapse
Affiliation(s)
- Max B Ferretti
- Department of Integrative Structural and Molecular Biology, The Scripps Research Institute, Jupiter, Florida 33458, USA
- The Skaggs Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, Jupiter, Florida 33458, USA
| | - Katrin Karbstein
- Department of Integrative Structural and Molecular Biology, The Scripps Research Institute, Jupiter, Florida 33458, USA
- The Skaggs Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, Jupiter, Florida 33458, USA
| |
Collapse
|
79
|
Zuo Z, Weraduwage SM, Lantz AT, Sanchez LM, Weise SE, Wang J, Childs KL, Sharkey TD. Isoprene Acts as a Signaling Molecule in Gene Networks Important for Stress Responses and Plant Growth. PLANT PHYSIOLOGY 2019; 180:124-152. [PMID: 30760638 PMCID: PMC6501071 DOI: 10.1104/pp.18.01391] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 02/04/2019] [Indexed: 05/05/2023]
Abstract
Isoprene synthase converts dimethylallyl diphosphate to isoprene and appears to be necessary and sufficient to allow plants to emit isoprene at significant rates. Isoprene can protect plants from abiotic stress but is not produced naturally by all plants; for example, Arabidopsis (Arabidopsis thaliana) and tobacco (Nicotiana tabacum) do not produce isoprene. It is typically present at very low concentrations, suggesting a role as a signaling molecule; however, its exact physiological role and mechanism of action are not fully understood. We transformed Arabidopsis with a Eucalyptus globulus isoprene synthase The regulatory mechanisms of photosynthesis and isoprene emission were similar to those of native emitters, indicating that regulation of isoprene emission is not specific to isoprene-emitting species. Leaf chlorophyll and carotenoid contents were enhanced by isoprene, which also had a marked positive effect on hypocotyl, cotyledon, leaf, and inflorescence growth in Arabidopsis. By contrast, leaf and stem growth was reduced in tobacco engineered to emit isoprene. Expression of genes belonging to signaling networks or associated with specific growth regulators (e.g. gibberellic acid that promotes growth and jasmonic acid that promotes defense) and genes that lead to stress tolerance was altered by isoprene emission. Isoprene likely executes its effects on growth and stress tolerance through direct regulation of gene expression. Enhancement of jasmonic acid-mediated defense signaling by isoprene may trigger a growth-defense tradeoff leading to variations in the growth response. Our data support a role for isoprene as a signaling molecule.
Collapse
Affiliation(s)
- Zhaojiang Zuo
- School of Forestry and Biotechnology, Zhejiang Agriculture and Forestry University, Lin'an 311300, China
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824
| | - Sarathi M Weraduwage
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824
- Plant Resilience Institute, Michigan State University, East Lansing, Michigan 48824
| | - Alexandra T Lantz
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824
| | - Lydia M Sanchez
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824
| | - Sean E Weise
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824
| | - Jie Wang
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824
| | - Kevin L Childs
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824
| | - Thomas D Sharkey
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan 48824
- Plant Resilience Institute, Michigan State University, East Lansing, Michigan 48824
| |
Collapse
|
80
|
Xie DF, Yu HX, Price M, Xie C, Deng YQ, Chen JP, Yu Y, Zhou SD, He XJ. Phylogeny of Chinese Allium Species in Section Daghestanica and Adaptive Evolution of Allium (Amaryllidaceae, Allioideae) Species Revealed by the Chloroplast Complete Genome. FRONTIERS IN PLANT SCIENCE 2019; 10:460. [PMID: 31114591 PMCID: PMC6503222 DOI: 10.3389/fpls.2019.00460] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Accepted: 03/27/2019] [Indexed: 05/25/2023]
Abstract
The genus Allium (Amaryllidaceae, Allioideae) is one of the largest monocotyledonous genera and it includes many economically important crops that are cultivated for consumption or medicinal uses. Recent advances in molecular phylogenetics have revolutionized our understanding of Allium taxonomy and evolution. However, the phylogenetic relationships in some Allium sections (such as the Allium section Daghestanica) and the genetic bases of adaptative evolution, remain poorly understood. Here, we newly assembled six chloroplast genomes from Chinese endemic species in Allium section Daghestanica and by combining these genomes with another 35 allied species, we performed a series of analyses including genome structure, GC content, species pairwise Ka/Ks ratios, and the SSR component, nucleotide diversity and codon usage. Positively selected genes (PSGs) were detected in the Allium lineage using the branch-site model. Comparison analysis of Bayesian and ML phylogeny on CCG (complete chloroplast genome), SCG (single copy genes) and CDS (coding DNA sequences) produced a well-resolved phylogeny of Allioideae plastid lineages, which illustrated several novel relationships with the section Daghestanica. In addition, six species in section Daghestanica showed highly conserved structures. The GC content and the GC3s content in Allioideae species exhibited lower values than studied non-Allioideae species, along with elevated pairwise Ka/Ks ratios. The rps2 gene was lost in all examined Allioideae species, and 10 genes with significant posterior probabilities for codon sites were identified in the positive selection analysis, seven of them are associated with photosynthesis. Our study uncovered a new species relationship in section Daghestanica and suggested that the selective pressure has played an important role in Allium adaptation and evolution, these results will facilitate our further understanding of evolution and adaptation of species in the genus Allium.
Collapse
Affiliation(s)
- Deng-Feng Xie
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Huan-Xi Yu
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Megan Price
- Sichuan Key Laboratory of Conservation Biology on Endangered Wildlife, College of Life Sciences, Sichuan University, Chengdu, China
| | - Chuan Xie
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yi-Qi Deng
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Jun-Pei Chen
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yan Yu
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Song-Dong Zhou
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Xing-Jin He
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| |
Collapse
|
81
|
Chen L, Huang L, Dai L, Gao Y, Zou W, Lu X, Wang C, Zhang G, Ren D, Hu J, Shen L, Dong G, Gao Z, Chen G, Xue D, Guo L, Xing Y, Qian Q, Zhu L, Zeng D. PALE-GREEN LEAF12 Encodes a Novel Pentatricopeptide Repeat Protein Required for Chloroplast Development and 16S rRNA Processing in Rice. PLANT & CELL PHYSIOLOGY 2019; 60:587-598. [PMID: 30508149 DOI: 10.1093/pcp/pcy229] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 11/21/2018] [Indexed: 05/21/2023]
Abstract
Pentatricopeptide repeat (PPR) proteins regulate organellar gene expression in plants, through their involvement in organellar RNA metabolism. In rice (Oryza sativa), 477 genes are predicted to encode PPR proteins; however, the majority of their functions remain unknown. In this study, we identified and characterized a rice mutant, pale-green leaf12 (pgl12); at the seedling stage, pgl12 mutants had yellow-green leaves, which gradually turned pale green as the plants grew. The pgl12 mutant had significantly reduced Chl contents and increased sensitivity to changes in temperature. A genetic analysis revealed that the pgl12 mutation is recessive and located within a single nuclear gene. Map-based cloning of PGL12, including a transgenic complementation test, confirmed the presence of a base substitution (C to T), generating a stop codon, within LOC_Os12g10184 in the pgl12 mutant. LOC_Os12g10184 encodes a novel PLS-type PPR protein containing 17 PPR motifs and targeted to the chloroplasts. A quantitative real-time PCR analysis showed that PGL12 was expressed in various tissues, especially the leaves. We also showed that the transcript levels of several nuclear- and plastid-encoded genes associated with chloroplast development and photosynthesis were significantly altered in pgl12 mutants. The mutant exhibited defects in the 16S rRNA processing and splicing of the plastid transcript ndhA. Our results indicate that PGL12 is a new PLS-type PPR protein required for proper chloroplast development and 16S rRNA processing in rice.
Collapse
Affiliation(s)
- Long Chen
- State Key Lab for Rice Biology, China National Rice Research Institute, Hangzhou, PR China
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan, China
| | - Lichao Huang
- State Key Lab for Rice Biology, China National Rice Research Institute, Hangzhou, PR China
| | - Liping Dai
- State Key Lab for Rice Biology, China National Rice Research Institute, Hangzhou, PR China
| | - Yihong Gao
- State Key Lab for Rice Biology, China National Rice Research Institute, Hangzhou, PR China
| | - Weiwei Zou
- State Key Lab for Rice Biology, China National Rice Research Institute, Hangzhou, PR China
| | - Xueli Lu
- State Key Lab for Rice Biology, China National Rice Research Institute, Hangzhou, PR China
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Changjian Wang
- State Key Lab for Rice Biology, China National Rice Research Institute, Hangzhou, PR China
| | - Guangheng Zhang
- State Key Lab for Rice Biology, China National Rice Research Institute, Hangzhou, PR China
| | - Deyong Ren
- State Key Lab for Rice Biology, China National Rice Research Institute, Hangzhou, PR China
| | - Jiang Hu
- State Key Lab for Rice Biology, China National Rice Research Institute, Hangzhou, PR China
| | - Lan Shen
- State Key Lab for Rice Biology, China National Rice Research Institute, Hangzhou, PR China
| | - Guojun Dong
- State Key Lab for Rice Biology, China National Rice Research Institute, Hangzhou, PR China
| | - Zhenyu Gao
- State Key Lab for Rice Biology, China National Rice Research Institute, Hangzhou, PR China
| | - Guang Chen
- State Key Lab for Rice Biology, China National Rice Research Institute, Hangzhou, PR China
| | - Dawei Xue
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Longbiao Guo
- State Key Lab for Rice Biology, China National Rice Research Institute, Hangzhou, PR China
| | - Yongzhong Xing
- National Key Laboratory of Crop Genetic Improvement and National Centre of Plant Gene Research, Huazhong Agricultural University, Wuhan, China
| | - Qian Qian
- State Key Lab for Rice Biology, China National Rice Research Institute, Hangzhou, PR China
| | - Li Zhu
- State Key Lab for Rice Biology, China National Rice Research Institute, Hangzhou, PR China
| | - Dali Zeng
- State Key Lab for Rice Biology, China National Rice Research Institute, Hangzhou, PR China
| |
Collapse
|
82
|
Cao P, Ren Y, Liu X, Zhang T, Zhang P, Xiao L, Zhang F, Liu S, Jiang L, Wan J. Purine nucleotide biosynthetic gene GARS controls early chloroplast development in rice (Oryza sativa L.). PLANT CELL REPORTS 2019; 38:183-194. [PMID: 30499032 DOI: 10.1007/s00299-018-2360-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Accepted: 11/22/2018] [Indexed: 06/09/2023]
Abstract
GARS encodes an enzyme catalyzing the second step of purine nucleotide biosynthesis and plays an important role to maintain the development of chloroplasts in juvenile plants by affecting the expression of plastid-encoded genes. A series of rice white striped mutants were previously described. In this research, we characterized a novel gars mutant with white striped leaves at the seedling stage. By positional cloning, we identified the mutated gene, which encodes a glycinamide ribonucleotide synthetase (GARS) that catalyzes the second step of purine nucleotide biosynthesis. Thylakoid membranes were less abundant in the albinic sectors of mutant seedling leaves compared to the wild type. The expression levels of genes involved in chlorophyll synthesis and photosynthesis were changed. Contents of ATP, ADP, AMP, GTP and GDP, which are crucial for plant growth and development, were decreased in the mutant seedlings. Complementation and CrispR tests confirmed the role of the GARS allele, which was expressed in all rice tissues, especially in the leaves. GARS protein displayed a typical chloroplast location pattern in rice protoplasts. Our results indicated that GARS was involved in chloroplast development at early leaf development by affecting the expression of plastid-encoded genes.
Collapse
Affiliation(s)
- Penghui Cao
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yakun Ren
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xi Liu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Tianyu Zhang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ping Zhang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Lianjie Xiao
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Fulin Zhang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shijia Liu
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ling Jiang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Jianmin Wan
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Jiangsu Plant Gene Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095, China.
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
83
|
Gao C, Deng Y, Wang J. The Complete Chloroplast Genomes of Echinacanthus Species (Acanthaceae): Phylogenetic Relationships, Adaptive Evolution, and Screening of Molecular Markers. FRONTIERS IN PLANT SCIENCE 2019; 9:1989. [PMID: 30687376 PMCID: PMC6335349 DOI: 10.3389/fpls.2018.01989] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 12/20/2018] [Indexed: 05/28/2023]
Abstract
Among the four species of Echinacanthus (Acanthaceae), one distributed in the West Himalayan region and three restricted to the Sino-Vietnamese karst region. Because of its ecological significance, molecular markers are necessary for proper assessment of its genetic diversity and phylogenetic relationships. Herein, the complete chloroplast genomes of four Echinacanthus species were determined for the first time. The results indicated that all the chloroplast genomes were mapped as a circular structure and each genomes included 113 unique genes, of which 80 were protein-coding, 29 were tRNAs, and 4 were rRNAs. However, the four cp genomes ranged from 151,333 to 152,672 bp in length. Comparison of the four cp genomes showed that the divergence level was greater between geographic groups. We also analyzed IR expansion or contraction in the four cp genomes and the fifth type of the large single copy/inverted repeat region in Lamiales was suggested. Furthermore, based on the analyses of comparison and nucleotide variability, six most divergent sequences (rrn16, ycf1, ndhA, rps16-trnQ-UUG, trnS-GCU-trnG-UCC, and psaA-ycf3) were identified. A total of 37-45 simple sequence repeats were discovered in the four species and 22 SSRs were identified as candidate effective molecular markers for detecting interspecies polymorphisms. These SSRs and hotspot regions could be used as potential molecular markers for future study. Phylogenetic analysis based on Bayesian and parsimony methods did not support the monophyly of Echinacanthus. The phylogenetic relationships among the four species were clearly resolved and the results supported the recognition of the Sino-Vietnamese Echinacanthus species as a new genus. Based on the protein sequence evolution analysis, 12 genes (rpl14, rpl16, rps4, rps15, rps18, rps19, psbK, psbN, ndhC, ndhJ, rpoB, and infA) were detected under positive selection in branch of Sino-Vietnamese Echinacanthus species. These genes will lead to understanding the adaptation of Echinacanthus species to karst environment. The study will help to resolve the phylogenetic relationship and understand the adaptive evolution of Echinacanthus. It will also provide genomic resources and potential markers suitable for future species identification and speciation studies of the genus.
Collapse
Affiliation(s)
- Chunming Gao
- College of Biological and Environmental Engineering, Binzhou University, Binzhou, China
- Shandong Provincial Key Laboratory of Eco-Environmental Science for the Yellow River Delta, Binzhou University, Binzhou, China
- Shandong Provincial Engineering and Technology Research Center for Wild Plant Resources Development and Application of Yellow River Delta, College of Biological and Environmental Engineering, Binzhou University, Binzhou, China
| | - Yunfei Deng
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Yezin, Myanmar
| | - Jun Wang
- College of Biological and Environmental Engineering, Binzhou University, Binzhou, China
- Shandong Provincial Key Laboratory of Eco-Environmental Science for the Yellow River Delta, Binzhou University, Binzhou, China
- Shandong Provincial Engineering and Technology Research Center for Wild Plant Resources Development and Application of Yellow River Delta, College of Biological and Environmental Engineering, Binzhou University, Binzhou, China
| |
Collapse
|
84
|
Cheng R, Gong L, Li Z, Liang YK. Rice BIG gene is required for seedling viability. JOURNAL OF PLANT PHYSIOLOGY 2019; 232:39-50. [PMID: 30530202 DOI: 10.1016/j.jplph.2018.11.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2018] [Revised: 11/04/2018] [Accepted: 11/04/2018] [Indexed: 05/07/2023]
Abstract
Arabidopsis BIG (AtBIG) gene encodes an enormous protein that is required for auxin transport. Loss of AtBIG function not only profoundly changes plant architecture but also alters plant adaptability to environmental stimuli. A putative homolog of AtBIG exists in the rice genome, but no function has been ascribed to it. In this study, we focus on the characterization of the gene structure and function of OsBIG. Sequence and phylogenetic analysis shows that the homologs of OsBIG have high amino acid conservation in several domains across species. Transgenic rice plants in which the expression of OsBIG was disrupted through the CRISPR/Cas9 system-mediated genome editing were used for phenotypic analysis. The Osbig/- plants show high levels of cell death, enhanced electrolyte leakage and membrane lipid peroxidation, and reduced chlorophyll content, which likely accounted for the seedling lethality. Moreover, gene expression between Osbig/- and wild-type plants analyzed by RNA-seq indicates that a number of metabolic and hormonal pathways including ribosome, DNA replication, photosynthesis, and chlorophyll metabolism were significantly perturbed by OsBIG deficiency. In summary, OsBIG gene is integral to the normal growth and development in rice.
Collapse
Affiliation(s)
- Rui Cheng
- State Key Laboratory of Hybrid Rice, Department of Plant Science, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Luping Gong
- State Key Laboratory of Hybrid Rice, Department of Plant Science, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Zhengzheng Li
- State Key Laboratory of Hybrid Rice, Department of Plant Science, College of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Yun-Kuan Liang
- State Key Laboratory of Hybrid Rice, Department of Plant Science, College of Life Sciences, Wuhan University, Wuhan, 430072, China.
| |
Collapse
|
85
|
Bobik K, Fernandez JC, Hardin SR, Ernest B, Ganusova EE, Staton ME, Burch-Smith TM. The essential chloroplast ribosomal protein uL15c interacts with the chloroplast RNA helicase ISE2 and affects intercellular trafficking through plasmodesmata. THE NEW PHYTOLOGIST 2019; 221:850-865. [PMID: 30192000 DOI: 10.1111/nph.15427] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Accepted: 07/24/2018] [Indexed: 05/07/2023]
Abstract
Chloroplasts retain part of their ancestral genomes and the machinery for expression of those genomes. The nucleus-encoded chloroplast RNA helicase INCREASED SIZE EXCLUSION LIMIT2 (ISE2) is required for chloroplast ribosomal RNA processing and chloro-ribosome assembly. To further elucidate ISE2's role in chloroplast translation, two independent approaches were used to identify its potential protein partners. Both a yeast two-hybrid screen and a pull-down assay identified plastid ribosomal protein L15, uL15c (formerly RPL15), as interacting with ISE2. The interaction was confirmed in vivo by co-immunoprecipitation. Interestingly, we found that rpl15 null mutants do not complete embryogenesis, indicating that RPL15 is an essential gene for autotrophic growth of Arabidopsis thaliana. Arabidopsis and Nicotiana benthamiana plants with reduced expression of RPL15 developed chlorotic leaves, had reduced photosynthetic capacity and exhibited defective chloroplast development. Processing of chloroplast ribosomal RNAs and assembly of ribosomal subunits were disrupted by reduced expression of RPL15. Chloroplast translation was also decreased, reducing accumulation of chloroplast-encoded proteins, in such plants compared to wild-type plants. Notably, knockdown of RPL15 expression increased intercellular trafficking, a phenotype also observed in plants with reduced ISE2 expression. This finding provides further evidence for chloroplast function in modulating intercellular trafficking via plasmodesmata.
Collapse
Affiliation(s)
- Krzysztof Bobik
- Department of Biochemistry and Cellular & Molecular Biology, University of Tennessee, Knoxville, TN, 37996, USA
| | - Jessica C Fernandez
- Department of Biochemistry and Cellular & Molecular Biology, University of Tennessee, Knoxville, TN, 37996, USA
| | - Sara R Hardin
- Department of Biochemistry and Cellular & Molecular Biology, University of Tennessee, Knoxville, TN, 37996, USA
| | - Ben Ernest
- School of Genome Science and Technology, University of Tennessee, Knoxville, TN, 37996, USA
| | - Elena E Ganusova
- Department of Biochemistry and Cellular & Molecular Biology, University of Tennessee, Knoxville, TN, 37996, USA
| | - Margaret E Staton
- Department of Entomology and Plant Pathology, University of Tennessee Institute of Agriculture, Knoxville, TN, 37996, USA
| | - Tessa M Burch-Smith
- Department of Biochemistry and Cellular & Molecular Biology, University of Tennessee, Knoxville, TN, 37996, USA
- School of Genome Science and Technology, University of Tennessee, Knoxville, TN, 37996, USA
| |
Collapse
|
86
|
Liu S, Zheng L, Jia J, Guo J, Zheng M, Zhao J, Shao J, Liu X, An L, Yu F, Qi Y. Chloroplast Translation Elongation Factor EF-Tu/SVR11 Is Involved in var2-Mediated Leaf Variegation and Leaf Development in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2019; 10:295. [PMID: 30915096 PMCID: PMC6423176 DOI: 10.3389/fpls.2019.00295] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 02/22/2019] [Indexed: 05/02/2023]
Abstract
Chloroplasts are semiautonomous organelles, retaining their own genomes and gene expression apparatuses but controlled by nucleus genome encoded protein factors during evolution. To analyze the genetic regulatory network of FtsH-mediated chloroplast development in Arabidopsis, a set of suppressor mutants of yellow variegated (var2) have been identified. In this research, we reported the identification of another new var2 suppressor locus, SUPPRESSOR OF VARIEGATION11 (SVR11), which encodes a putative chloroplast-localized prokaryotic type translation elongation factor EF-Tu. SVR11 is likely essential to chloroplast development and plant survival. GUS activity reveals that SVR11 is abundant in the juvenile leaf tissue, lateral roots, and root tips. Interestingly, we found that SVR11 and SVR9 together regulate leaf development, including leaf margin development and cotyledon venation patterns. These findings reinforce the notion that chloroplast translation state triggers retrograde signals regulate not only chloroplast development but also leaf development.
Collapse
|
87
|
Wang P, Chen X, Xu X, Lu C, Zhang W, Zhao FJ. ARSENATE INDUCED CHLOROSIS 1/ TRANSLOCON AT THE OUTER ENVOLOPE MEMBRANE OF CHLOROPLASTS 132 Protects Chloroplasts from Arsenic Toxicity. PLANT PHYSIOLOGY 2018; 178:1568-1583. [PMID: 30309965 PMCID: PMC6288752 DOI: 10.1104/pp.18.01042] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Accepted: 10/03/2018] [Indexed: 05/14/2023]
Abstract
Arsenic (As) is highly toxic to plants and detoxified primarily through complexation with phytochelatins (PCs) and other thiol compounds. To understand the mechanisms of As toxicity and detoxification beyond PCs, we isolated an arsenate-sensitive mutant of Arabidopsis (Arabidopsis thaliana), arsenate induced chlorosis1 (aic1), in the background of the PC synthase-defective mutant cadmium-sensitive1-3 (cad1-3). Under arsenate stress, aic1 cad1-3 showed larger decreases in chlorophyll content and the number and size of chloroplasts than cad1-3 and a severely distorted chloroplast structure. The aic1 single mutant also was more sensitive to arsenate than the wild type (Columbia-0). As concentrations in the roots, shoots, and chloroplasts were similar between aic1 cad1-3 and cad1-3 Using genome resequencing and complementation, TRANSLOCON AT THE OUTER ENVOLOPE MEMBRANE OF CHLOROPLAST132 (TOC132) was identified as the mutant gene, which encodes a translocon protein involved in the import of preproteins from the cytoplasm into the chloroplasts. Proteomic analysis showed that the proteome of aic1 cad1-3 chloroplasts was more affected by arsenate stress than that of cad1-3 A number of proteins related to chloroplast ribosomes, photosynthesis, compound synthesis, and thioredoxin systems were less abundant in aic1 cad1-3 than in cad1-3 under arsenate stress. Our results indicate that chloroplasts are a sensitive target of As toxicity and that AIC1/Toc132 plays an important role in protecting chloroplasts from As toxicity.
Collapse
Affiliation(s)
- Peitong Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xi Chen
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xuan Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Chenni Lu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Wei Zhang
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Fang-Jie Zhao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
88
|
Wu W, Yan Y. Chloroplast proteome analysis of Nicotiana tabacum overexpressing TERF1 under drought stress condition. BOTANICAL STUDIES 2018; 59:26. [PMID: 30374844 PMCID: PMC6206318 DOI: 10.1186/s40529-018-0239-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 10/17/2018] [Indexed: 05/11/2023]
Abstract
BACKGROUND Chloroplast is indispensable for plant response to environmental stresses, growth and development, whose function is regulated by different plant hormones. The chloroplast proteome is encoded by chloroplast genome and nuclear genome, which play essential roles in plant photosynthesis, metabolism and other biological processes. Ethylene response factors (ERFs) are key transcription factors in activating the ethylene signaling pathway and plant response to abiotic stress. But we know little about how ethylene regulates plastid function under drought stress condition. In this study we utilized tobacco overexpressing tomato ethylene responsive factor 1 (TERF1), an ERF transcription factor isolated from tomato, to investigate its effects on the plastid proteome under drought stress condition by method of iTRAQ technology. RESULTS Results show that TERF1 represses the genes encoding the photosynthetic apparatus at both transcriptional and translational level, but the genes involved in carbon fixation are significantly induced by TERF1. TERF1 regulates multiple retrograde signaling pathways, providing a new mechanism for regulating nuclear gene expression. TERF1 also regulates plant utilization of phosphorus (Pi) and nitrogen (N). We find that several metabolic and signaling pathways related with Pi are significantly repressed and gene expression analysis shows that TERF1 significantly represses the Pi transport from root to shoot. However, the N metabolism is upregulated by TERF1 as shown by the activation of different amino acids biosynthesis pathways due to the induction of glutamine synthetase and stabilization of nitrate reductase although the root-to-shoot N transport is also reduced. TERF1 also regulates other core metabolic pathways and secondary metabolic pathways that are important for plant growth, development and response to environmental stresses. Gene set linkage analysis was applied for the upregulated proteins by TERF1, showing some new potential for regulating plant response to drought stress by TERF1. CONCLUSIONS Our research reveals effects of ethylene signaling on plastid proteome related with two key biological processes, including photosynthesis and nutrition utilization. We also provide a new mechanism to regulate nuclear gene expression by ERF1 transcription factor through retrograde signals in chloroplast. These results can enrich our knowledge about ERF1 transcription factor and function of ethylene signaling pathway.
Collapse
Affiliation(s)
- Wei Wu
- Graduate School of Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South St., Haidian District, Beijing, 100081 People’s Republic of China
| | - Yanchun Yan
- Graduate School of Chinese Academy of Agricultural Sciences, No. 12 Zhongguancun South St., Haidian District, Beijing, 100081 People’s Republic of China
| |
Collapse
|
89
|
Janowski M, Zoschke R, Scharff LB, Martinez Jaime S, Ferrari C, Proost S, Ng Wei Xiong J, Omranian N, Musialak-Lange M, Nikoloski Z, Graf A, Schöttler MA, Sampathkumar A, Vaid N, Mutwil M. AtRsgA from Arabidopsis thaliana is important for maturation of the small subunit of the chloroplast ribosome. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 96:404-420. [PMID: 30044525 DOI: 10.1111/tpj.14040] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Revised: 07/12/2018] [Accepted: 07/17/2018] [Indexed: 05/24/2023]
Abstract
Plastid ribosomes are very similar in structure and function to the ribosomes of their bacterial ancestors. Since ribosome biogenesis is not thermodynamically favorable under biological conditions it requires the activity of many assembly factors. Here we have characterized a homolog of bacterial RsgA in Arabidopsis thaliana and show that it can complement the bacterial homolog. Functional characterization of a strong mutant in Arabidopsis revealed that the protein is essential for plant viability, while a weak mutant produced dwarf, chlorotic plants that incorporated immature pre-16S ribosomal RNA into translating ribosomes. Physiological analysis of the mutant plants revealed smaller, but more numerous, chloroplasts in the mesophyll cells, reduction of chlorophyll a and b, depletion of proplastids from the rib meristem and decreased photosynthetic electron transport rate and efficiency. Comparative RNA sequencing and proteomic analysis of the weak mutant and wild-type plants revealed that various biotic stress-related, transcriptional regulation and post-transcriptional modification pathways were repressed in the mutant. Intriguingly, while nuclear- and chloroplast-encoded photosynthesis-related proteins were less abundant in the mutant, the corresponding transcripts were increased, suggesting an elaborate compensatory mechanism, potentially via differentially active retrograde signaling pathways. To conclude, this study reveals a chloroplast ribosome assembly factor and outlines the transcriptomic and proteomic responses of the compensatory mechanism activated during decreased chloroplast function.
Collapse
Affiliation(s)
- Marcin Janowski
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476, Potsdam, Germany
| | - Reimo Zoschke
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476, Potsdam, Germany
| | - Lars B Scharff
- Copenhagen Plant Science Centre, Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871, Frederiksberg C, Denmark
| | - Silvia Martinez Jaime
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476, Potsdam, Germany
| | - Camilla Ferrari
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476, Potsdam, Germany
| | - Sebastian Proost
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476, Potsdam, Germany
| | - Jonathan Ng Wei Xiong
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
| | - Nooshin Omranian
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476, Potsdam, Germany
| | | | - Zoran Nikoloski
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476, Potsdam, Germany
- Bioinformatics Group, Institute of Biochemistry and Biology, University of Potsdam, Karl- Liebknecht-Strasse 24-25, 14476, Potsdam-Golm, Germany
| | - Alexander Graf
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476, Potsdam, Germany
| | - Mark A Schöttler
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476, Potsdam, Germany
| | - Arun Sampathkumar
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476, Potsdam, Germany
| | - Neha Vaid
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476, Potsdam, Germany
| | - Marek Mutwil
- Max Planck Institute of Molecular Plant Physiology, Am Muehlenberg 1, 14476, Potsdam, Germany
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore, 637551, Singapore
| |
Collapse
|
90
|
Zhang Y, Cui YL, Zhang XL, Yu QB, Wang X, Yuan XB, Qin XM, He XF, Huang C, Yang ZN. A nuclear-encoded protein, mTERF6, mediates transcription termination of rpoA polycistron for plastid-encoded RNA polymerase-dependent chloroplast gene expression and chloroplast development. Sci Rep 2018; 8:11929. [PMID: 30093718 PMCID: PMC6085346 DOI: 10.1038/s41598-018-30166-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 04/20/2018] [Indexed: 12/13/2022] Open
Abstract
The expression of plastid genes is regulated by two types of DNA-dependent RNA polymerases, plastid-encoded RNA polymerase (PEP) and nuclear-encoded RNA polymerase (NEP). The plastid rpoA polycistron encodes a series of essential chloroplast ribosome subunits and a core subunit of PEP. Despite the functional importance, little is known about the regulation of rpoA polycistron. In this work, we show that mTERF6 directly associates with a 3′-end sequence of rpoA polycistron in vitro and in vivo, and that absence of mTERF6 promotes read-through transcription at this site, indicating that mTERF6 acts as a factor required for termination of plastid genes’ transcription in vivo. In addition, the transcriptions of some essential ribosome subunits encoded by rpoA polycistron and PEP-dependent plastid genes are reduced in the mterf6 knockout mutant. RpoA, a PEP core subunit, accumulates to about 50% that of the wild type in the mutant, where early chloroplast development is impaired. Overall, our functional analyses of mTERF6 provide evidence that it is more likely a factor required for transcription termination of rpoA polycistron, which is essential for chloroplast gene expression and chloroplast development.
Collapse
Affiliation(s)
- Yi Zhang
- College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, 200234, China.,Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences, Shanghai, 201602, China
| | - Yong-Lan Cui
- College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Xiao-Lei Zhang
- College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Qing-Bo Yu
- College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Xi Wang
- College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Xin-Bo Yuan
- College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Xue-Mei Qin
- College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Xiao-Fang He
- College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Chao Huang
- College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, 200234, China
| | - Zhong-Nan Yang
- College of Life and Environmental Sciences, Shanghai Normal University, Shanghai, 200234, China.
| |
Collapse
|
91
|
Schelkunov MI, Penin AA, Logacheva MD. RNA-seq highlights parallel and contrasting patterns in the evolution of the nuclear genome of fully mycoheterotrophic plants. BMC Genomics 2018; 19:602. [PMID: 30092758 PMCID: PMC6085651 DOI: 10.1186/s12864-018-4968-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 07/30/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND While photosynthesis is the most notable trait of plants, several lineages of plants (so-called full heterotrophs) have adapted to obtain organic compounds from other sources. The switch to heterotrophy leads to profound changes at the morphological, physiological and genomic levels. RESULTS Here, we characterize the transcriptomes of three species representing two lineages of mycoheterotrophic plants: orchids (Epipogium aphyllum and Epipogium roseum) and Ericaceae (Hypopitys monotropa). Comparative analysis is used to highlight the parallelism between distantly related fully heterotrophic plants. In both lineages, we observed genome-wide elimination of nuclear genes that encode proteins related to photosynthesis, while systems associated with protein import to plastids as well as plastid transcription and translation remain active. Genes encoding components of plastid ribosomes that have been lost from the plastid genomes have not been transferred to the nuclear genomes; instead, some of the encoded proteins have been substituted by homologs. The nuclear genes of both Epipogium species accumulated nucleotide substitutions twice as rapidly as their photosynthetic relatives; in contrast, no increase in the substitution rate was observed in H. monotropa. CONCLUSIONS Full heterotrophy leads to profound changes in nuclear gene content. The observed increase in the rate of nucleotide substitutions is lineage specific, rather than a universal phenomenon among non-photosynthetic plants.
Collapse
Affiliation(s)
- Mikhail I Schelkunov
- Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia.
| | - Aleksey A Penin
- Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia.,A.N Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia.,Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Maria D Logacheva
- Institute for Information Transmission Problems, Russian Academy of Sciences, Moscow, Russia. .,Skolkovo Institute of Science and Technology, Moscow, Russia. .,Extreme Biology Laboratory, Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Russia.
| |
Collapse
|
92
|
Siqueira JA, Hardoim P, Ferreira PCG, Nunes-Nesi A, Hemerly AS. Unraveling Interfaces between Energy Metabolism and Cell Cycle in Plants. TRENDS IN PLANT SCIENCE 2018; 23:731-747. [PMID: 29934041 DOI: 10.1016/j.tplants.2018.05.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 05/01/2018] [Accepted: 05/08/2018] [Indexed: 05/22/2023]
Abstract
Oscillation in energy levels is widely variable in dividing and differentiated cells. To synchronize cell proliferation and energy fluctuations, cell cycle-related proteins have been implicated in the regulation of mitochondrial energy-generating pathways in yeasts and animals. Plants have chloroplasts and mitochondria, coordinating the cell energy flow. Recent findings suggest an integrated regulation of these organelles and the nuclear cell cycle. Furthermore, reports indicate a set of interactions between the cell cycle and energy metabolism, coordinating the turnover of proteins in plants. Here, we discuss how cell cycle-related proteins directly interact with energy metabolism-related proteins to modulate energy homeostasis and cell cycle progression. We provide interfaces between cell cycle and energy metabolism-related proteins that could be explored to maximize plant yield.
Collapse
Affiliation(s)
- João Antonio Siqueira
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21491-902, Brazil; These authors share first authorship
| | - Pablo Hardoim
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21491-902, Brazil; These authors share first authorship
| | - Paulo C G Ferreira
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21491-902, Brazil
| | - Adriano Nunes-Nesi
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900 Viçosa, MG, Brazil
| | - Adriana S Hemerly
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, 21491-902, Brazil.
| |
Collapse
|
93
|
Pulido P, Zagari N, Manavski N, Gawronski P, Matthes A, Scharff LB, Meurer J, Leister D. CHLOROPLAST RIBOSOME ASSOCIATED Supports Translation under Stress and Interacts with the Ribosomal 30S Subunit. PLANT PHYSIOLOGY 2018; 177:1539-1554. [PMID: 29914890 PMCID: PMC6084680 DOI: 10.1104/pp.18.00602] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 06/09/2018] [Indexed: 05/07/2023]
Abstract
Chloroplast ribosomes, which originated from cyanobacteria, comprise a large subunit (50S) and a small subunit (30S) containing ribosomal RNAs (rRNAs) and various ribosomal proteins. Genes for many chloroplast ribosomal proteins, as well as proteins with auxiliary roles in ribosome biogenesis or functioning, reside in the nucleus. Here, we identified Arabidopsis (Arabidopsis thaliana) CHLOROPLAST RIBOSOME ASSOCIATED (CRASS), a member of the latter class of proteins, based on the tight coexpression of its mRNA with transcripts for nucleus-encoded chloroplast ribosomal proteins. CRASS was acquired during the evolution of embryophytes and is localized to the chloroplast stroma. Loss of CRASS results in minor defects in development, photosynthetic efficiency, and chloroplast translation activity under controlled growth conditions, but these phenotypes are greatly exacerbated under stress conditions induced by the translational inhibitors lincomycin and chloramphenicol or by cold treatment. The CRASS protein comigrates with chloroplast ribosomal particles and coimmunoprecipitates with the 16S rRNA and several chloroplast ribosomal proteins, particularly the plastid ribosomal proteins of the 30S subunit (PRPS1 and PRPS5). The association of CRASS with PRPS1 and PRPS5 is independent of rRNA and is not detectable in yeast two-hybrid experiments, implying that either CRASS interacts indirectly with PRPS1 and PRPS5 via another component of the small ribosomal subunit or that it recognizes structural features of the multiprotein/rRNA particle. CRASS plays a role in the biogenesis and/or stability of the chloroplast ribosome that becomes critical under certain stressful conditions when ribosomal activity is compromised.
Collapse
Affiliation(s)
- Pablo Pulido
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University, Munich, D-82152 Planegg-Martinsried, Germany
- Copenhagen Plant Science Center, University of Copenhagen, 1871 Frederiksberg C, Denmark
| | - Nicola Zagari
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University, Munich, D-82152 Planegg-Martinsried, Germany
- Copenhagen Plant Science Center, University of Copenhagen, 1871 Frederiksberg C, Denmark
- Centro Ricerca e Innovazione, Fondazione Edmund Mach, I-38010 San Michele all'Adige, Italy
| | - Nikolay Manavski
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University, Munich, D-82152 Planegg-Martinsried, Germany
| | - Piotr Gawronski
- Copenhagen Plant Science Center, University of Copenhagen, 1871 Frederiksberg C, Denmark
- Department of Plant Genetics, Breeding, and Biotechnology, Warsaw University of Life Sciences, 02-776 Warsaw, Poland
| | - Annemarie Matthes
- Copenhagen Plant Science Center, University of Copenhagen, 1871 Frederiksberg C, Denmark
| | - Lars B Scharff
- Copenhagen Plant Science Center, University of Copenhagen, 1871 Frederiksberg C, Denmark
| | - Jörg Meurer
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University, Munich, D-82152 Planegg-Martinsried, Germany
| | - Dario Leister
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University, Munich, D-82152 Planegg-Martinsried, Germany
- Copenhagen Plant Science Center, University of Copenhagen, 1871 Frederiksberg C, Denmark
| |
Collapse
|
94
|
Qiu Z, Chen D, He L, Zhang S, Yang Z, Zhang Y, Wang Z, Ren D, Qian Q, Guo L, Zhu L. The rice white green leaf 2 gene causes defects in chloroplast development and affects the plastid ribosomal protein S9. RICE (NEW YORK, N.Y.) 2018; 11:39. [PMID: 29995230 PMCID: PMC6041223 DOI: 10.1186/s12284-018-0233-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 07/04/2018] [Indexed: 05/22/2023]
Abstract
BACKGROUND Plastid ribosomal proteins (PRPs) play important roles in the translation of key proteins involved in chloroplast development and photosynthesis. PRPs have been widely studied in many plant species; however, few studies have investigated their roles in rice. RESULT In the present study, we used ethyl methane sulfonate mutagenesis and obtained a novel rice mutant called white green leaf 2 (wgl2). The wgl2 mutants exhibited an albino phenotype from germination through the three-leaf stage, and then gradually transitioned to green through the later developmental stages. Consistent with this albino phenotype, wgl2 mutants had abnormal chloroplasts and lower levels of photosynthetic pigments. Map-based cloning and DNA sequencing analyses of wgl2 revealed a single-nucleotide substitution (G to T) in the first exon of LOC_Os03g55930, which resulted in a substitution of glycine 92 to valine (G92 V). WGL2 encodes a conserved ribosomal protein, which localizes to the chloroplast. Complementation and targeted deletion experiments confirmed that the point mutation in WGL2 is responsible for the wgl2 mutant phenotype. WGL2 is preferentially expressed in the leaf, and mutating WGL2 led to obvious changes in the expression of genes related to chlorophyll biosynthesis, photosynthesis, chloroplast development, and ribosome development compared with wild-type. CONCLUSIONS WGL2 encodes a conserved ribosomal protein, which localizes to the chloroplast. WGL2 is essential for early chloroplast development in rice. These results facilitate research that will further uncover the molecular mechanism of chloroplast development.
Collapse
Affiliation(s)
- Zhennan Qiu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006 China
| | - Dongdong Chen
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006 China
| | - Lei He
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006 China
| | - Sen Zhang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006 China
| | - Zenan Yang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006 China
| | - Yu Zhang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006 China
| | - Zhongwei Wang
- Biotechnology Research Center, Chongqing Academy of Agricultural Sciences, Chongqing, 401329 China
| | - Deyong Ren
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006 China
| | - Qian Qian
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006 China
| | - Longbiao Guo
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006 China
| | - Li Zhu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, 310006 China
| |
Collapse
|
95
|
Tang X, Wang Y, Zhang Y, Huang S, Liu Z, Fei D, Feng H. A missense mutation of plastid RPS4 is associated with chlorophyll deficiency in Chinese cabbage (Brassica campestris ssp. pekinensis). BMC PLANT BIOLOGY 2018; 18:130. [PMID: 29940850 PMCID: PMC6019835 DOI: 10.1186/s12870-018-1353-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 06/17/2018] [Indexed: 05/19/2023]
Abstract
BACKGROUND Plastome mutants are ideal resources for elucidating the functions of plastid genes. Numerous studies have been conducted for the function of plastid genes in barley and tobacco; however, related information is limited in Chinese cabbage. RESULTS A chlorophyll-deficient mutant of Chinese cabbage that was derived by ethyl methanesulfonate treatment on isolated microspores showed uniformly pale green inner leaves and slow growth compared with that shown by the wild type "Fukuda 50' ('FT'). Genetic analysis revealed that cdm was cytoplasmically inherited. Physiological and ultrastructural analyses of cdm showed impaired photosynthesis and abnormal chloroplast development. Utilizing next generation sequencing, the complete plastomes of cdm and 'FT' were respectively re-mapped to the reference genome of Chinese cabbage, and an A-to-C base substitution with a mutation ratio higher than 99% was detected. The missense mutation of plastid ribosomal protein S4 led to valine substitution for glycine at residue 193. The expression level of rps4 was analyzed using quantitative real-time PCR and found lower in than in 'FT'. RNA gel-blot assays showed that the abundance of mature 23S rRNA, 16S rRNA, 5S rRNA, and 4.5S rRNA significantly decreased and that the processing of 23S, 16S rRNA, and 4.5S rRNA was seriously impaired, affecting the ribosomal function in cdm. CONCLUSIONS These findings indicated that cdm was a plastome mutant and that chlorophyll deficiency might be due to an A-to-C base substitution of the plastome-encoded rps4 that impaired the rRNA processing and affected the ribosomal function.
Collapse
Affiliation(s)
- Xiaoyan Tang
- College of Horticulture, Liaoning Key Lab of Genetics and Breeding for Cruciferous Vegetable Crops, Shenyang Agricultural University, Shenyang, Liaoning 110866 People’s Republic of China
| | - Yiheng Wang
- College of Horticulture, Liaoning Key Lab of Genetics and Breeding for Cruciferous Vegetable Crops, Shenyang Agricultural University, Shenyang, Liaoning 110866 People’s Republic of China
| | - Yun Zhang
- College of Horticulture, Liaoning Key Lab of Genetics and Breeding for Cruciferous Vegetable Crops, Shenyang Agricultural University, Shenyang, Liaoning 110866 People’s Republic of China
| | - Shengnan Huang
- College of Horticulture, Liaoning Key Lab of Genetics and Breeding for Cruciferous Vegetable Crops, Shenyang Agricultural University, Shenyang, Liaoning 110866 People’s Republic of China
| | - Zhiyong Liu
- College of Horticulture, Liaoning Key Lab of Genetics and Breeding for Cruciferous Vegetable Crops, Shenyang Agricultural University, Shenyang, Liaoning 110866 People’s Republic of China
| | - Danli Fei
- College of Horticulture, Liaoning Key Lab of Genetics and Breeding for Cruciferous Vegetable Crops, Shenyang Agricultural University, Shenyang, Liaoning 110866 People’s Republic of China
| | - Hui Feng
- College of Horticulture, Liaoning Key Lab of Genetics and Breeding for Cruciferous Vegetable Crops, Shenyang Agricultural University, Shenyang, Liaoning 110866 People’s Republic of China
| |
Collapse
|
96
|
Transcriptome analysis highlights nuclear control of chloroplast development in the shoot apex. Sci Rep 2018; 8:8881. [PMID: 29892011 PMCID: PMC5995843 DOI: 10.1038/s41598-018-27305-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 05/31/2018] [Indexed: 01/28/2023] Open
Abstract
In dicots, the key developmental process by which immature plastids differentiate into photosynthetically competent chloroplasts commences in the shoot apical meristem (SAM), within the shoot apex. Using laser-capture microdissection and single-cell RNA sequencing methodology, we studied the changes in the transcriptome along the chloroplast developmental pathway in the shoot apex of tomato seedlings. The analysis revealed the presence of transcripts for different chloroplast functions already in the stem cell-containing region of the SAM. Thereafter, an en masse up-regulation of genes encoding for various proteins occurs, including chloroplast ribosomal proteins and proteins involved in photosynthesis, photoprotection and detoxification of reactive oxygen species. The results highlight transcriptional events that operate during chloroplast biogenesis, leading to the rapid establishment of photosynthetic competence.
Collapse
|
97
|
Jiang T, Zhang J, Rong L, Feng Y, Wang Q, Song Q, Zhang L, Ouyang M. ECD1 functions as an RNA-editing trans-factor of rps14-149 in plastids and is required for early chloroplast development in seedlings. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:3037-3051. [PMID: 29648606 PMCID: PMC5972661 DOI: 10.1093/jxb/ery139] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 03/29/2018] [Indexed: 05/18/2023]
Abstract
Chloroplast development is a highly complex process and the regulatory mechanisms have not yet been fully characterized. In this study, we identified Early Chloroplast Development 1 (ECD1), a chloroplast-localized pentatricopeptide repeat protein (PPR) belonging to the PLS subfamily. Inactivation of ECD1 in Arabidopsis led to embryo lethality, and abnormal embryogenesis occurred in ecd1/+ heterozygous plants. A decrease in ECD1 expression induced by RNAi resulted in seedlings with albino cotyledons but normal true leaves. The aberrant morphology and under-developed thylakoid membrane system in cotyledons of RNAi seedlings suggests a role of ECD1 specifically in chloroplast development in seedlings. In cotyledons of ECD1-RNAi plants, RNA-editing of rps14-149 (encoding ribosomal protein S14) was seriously impaired. In addition, dramatically decreased plastid-encoded RNA polymerase-dependent gene expression and abnormal chloroplast rRNA processing were also observed. Taken together, our results indicate that ECD1 is indispensable for chloroplast development at the seedling stage in Arabidopsis.
Collapse
Affiliation(s)
- Tian Jiang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jing Zhang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Liwei Rong
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yanjiang Feng
- Cultivation and Crop Tillage Institute of Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Qi Wang
- Cultivation and Crop Tillage Institute of Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Qiulai Song
- Cultivation and Crop Tillage Institute of Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Lixin Zhang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Min Ouyang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
- Correspondence:
| |
Collapse
|
98
|
Tikhodeyev ON. The mechanisms of epigenetic inheritance: how diverse are they? Biol Rev Camb Philos Soc 2018; 93:1987-2005. [PMID: 29790249 DOI: 10.1111/brv.12429] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 04/22/2018] [Accepted: 04/27/2018] [Indexed: 12/18/2022]
Abstract
Although epigenetic inheritance (EI) is a rapidly growing field of modern biology, it still has no clear place in fundamental genetic concepts which are traditionally based on the hereditary role of DNA. Moreover, not all mechanisms of EI attract the same attention, with most studies focused on DNA methylation, histone modification, RNA interference and amyloid prionization, but relatively few considering other mechanisms such as stable inhibition of plastid translation. Herein, we discuss all known and some hypothetical mechanisms that can underlie the stable inheritance of phenotypically distinct hereditary factors that lack differences in DNA sequence. These mechanisms include (i) regulation of transcription by DNA methylation, histone modifications, and transcription factors, (ii) RNA splicing, (iii) RNA-mediated post-transcriptional silencing, (iv) organellar translation, (v) protein processing by truncation, (vi) post-translational chemical modifications, (vii) protein folding, and (viii) homologous and non-homologous protein interactions. The breadth of this list suggests that any or almost any regulatory mechanism that participates in gene expression or gene-product functioning, under certain circumstances, may produce EI. Although the modes of EI are highly variable, in many epigenetic systems, stable allelic variants can be distinguished. Irrespective of their nature, all such alleles have an underlying similarity: each is a bimodular hereditary unit, whose features depend on (i) a certain epigenetic mark (epigenetic determinant) in the DNA sequence or its product, and (ii) the DNA sequence itself (DNA determinant; if this is absent, the epigenetic allele fails to perpetuate). Thus, stable allelic epigenetic inheritance (SAEI) does not contradict the hereditary role of DNA, but involves additional molecular mechanisms with no or almost no limitations to their variety.
Collapse
Affiliation(s)
- Oleg N Tikhodeyev
- Department of Genetics & Biotechnology, Saint-Petersburg State University, Saint-Petersburg 199034, Russia
| |
Collapse
|
99
|
Field B. Green magic: regulation of the chloroplast stress response by (p)ppGpp in plants and algae. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:2797-2807. [PMID: 29281108 DOI: 10.1093/jxb/erx485] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 12/14/2017] [Indexed: 06/07/2023]
Abstract
The hyperphosphorylated nucleotides guanosine pentaphosphate and tetraphosphate [together referred to as (p)ppGpp, or 'magic spot'] orchestrate a signalling cascade in bacteria that controls growth under optimal conditions and in response to environmental stress. (p)ppGpp is also found in the chloroplasts of plants and algae where it has also been shown to accumulate in response to abiotic stress. Recent studies suggest that (p)ppGpp is a potent inhibitor of chloroplast gene expression in vivo, and is a significant regulator of chloroplast function that can influence both the growth and the development of plants. However, little is currently known about how (p)ppGpp is wired into eukaryotic signalling pathways, or how it may act to enhance fitness when plants or algae are exposed to environmental stress. This review discusses our current understanding of (p)ppGpp metabolism and its extent in plants and algae, and how (p)ppGpp signalling may be an important factor that is capable of influencing growth and stress acclimation in this major group of organisms.
Collapse
Affiliation(s)
- Ben Field
- Aix Marseille Univ, CEA, CNRS, France
| |
Collapse
|
100
|
Ties that bind: the integration of plastid signalling pathways in plant cell metabolism. Essays Biochem 2018; 62:95-107. [PMID: 29563221 DOI: 10.1042/ebc20170011] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 01/17/2018] [Accepted: 01/22/2018] [Indexed: 12/11/2022]
Abstract
Plastids are critical organelles in plant cells that perform diverse functions and are central to many metabolic pathways. Beyond their major roles in primary metabolism, of which their role in photosynthesis is perhaps best known, plastids contribute to the biosynthesis of phytohormones and other secondary metabolites, store critical biomolecules, and sense a range of environmental stresses. Accordingly, plastid-derived signals coordinate a host of physiological and developmental processes, often by emitting signalling molecules that regulate the expression of nuclear genes. Several excellent recent reviews have provided broad perspectives on plastid signalling pathways. In this review, we will highlight recent advances in our understanding of chloroplast signalling pathways. Our discussion focuses on new discoveries illuminating how chloroplasts determine life and death decisions in cells and on studies elucidating tetrapyrrole biosynthesis signal transduction networks. We will also examine the role of a plastid RNA helicase, ISE2, in chloroplast signalling, and scrutinize intriguing results investigating the potential role of stromules in conducting signals from the chloroplast to other cellular locations.
Collapse
|