51
|
Tamayo-Ordóñez YJ, Narváez-Zapata JA, Tamayo-Ordóñez MC, Sánchez-Teyer LF. Retroelements and DNA Methylation Could Contribute to Diversity of 5S rDNA in Agave L. J Mol Evol 2018; 86:404-423. [DOI: 10.1007/s00239-018-9856-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 07/03/2018] [Indexed: 01/21/2023]
|
52
|
Serrão VHB, Silva IR, da Silva MTA, Scortecci JF, de Freitas Fernandes A, Thiemann OH. The unique tRNASec and its role in selenocysteine biosynthesis. Amino Acids 2018; 50:1145-1167. [DOI: 10.1007/s00726-018-2595-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 05/26/2018] [Indexed: 12/26/2022]
|
53
|
Systematic identification of endogenous RNA polymerase III promoters for efficient RNA guide-based genome editing technologies in maize. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.cj.2018.02.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
54
|
Zhang X, Hu S, Su J, Xie Z, Li W, Zeng Y. Correlation Analyses Reveal a Limited Role of Transcription in Genome-Wide Differential MicroRNA Expression in Mammals. Front Genet 2018; 9:154. [PMID: 29780403 PMCID: PMC5946028 DOI: 10.3389/fgene.2018.00154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 04/13/2018] [Indexed: 11/22/2022] Open
Abstract
Transcription initiates the cascade of gene expression and is often assumed to play a predominant role in determining how much gene products are ultimately expressed. The relationship between mRNA levels and protein levels has been studied extensively to reveal the degrees of transcriptional and post-transcriptional regulation of protein expression. The extent to which transcription globally controls the differential expression of non-coding RNAs, however, is poorly defined. MicroRNAs (miRNAs) are a class of small, non-coding RNAs whose biogenesis involves transcription followed by extensive processing. Here, using hundreds of datasets produced from the ENCODE (Encyclopedia of DNA Elements) project we calculated the correlations between transcriptional activity and mature miRNA expression in diverse human cells, human tissues, and mouse tissues. While correlations vary among samples, most correlation coefficients are small. Interestingly, excluding miRNAs that were discovered later or weighting miRNA expression improves the correlations. Our results suggest that transcription contributes only modestly to differential miRNA expression at the genome-wide scale in mammals.
Collapse
Affiliation(s)
- Xiaoxiao Zhang
- Department of Zoology, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Siling Hu
- Department of Zoology, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Jia Su
- Department of Zoology, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Zixuan Xie
- Department of Zoology, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Wenjing Li
- Department of Zoology, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Yan Zeng
- Department of Zoology, College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
55
|
Glugoski L, Giuliano-Caetano L, Moreira-Filho O, Vicari MR, Nogaroto V. Co-located hAT transposable element and 5S rDNA in an interstitial telomeric sequence suggest the formation of Robertsonian fusion in armored catfish. Gene 2018; 650:49-54. [DOI: 10.1016/j.gene.2018.01.099] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 01/23/2018] [Accepted: 01/31/2018] [Indexed: 01/12/2023]
|
56
|
Johnston R, D'Costa Z, Ray S, Gorski J, Harkin DP, Mullan P, Panov KI. The identification of a novel role for BRCA1 in regulating RNA polymerase I transcription. Oncotarget 2018; 7:68097-68110. [PMID: 27589844 PMCID: PMC5356541 DOI: 10.18632/oncotarget.11770] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 08/24/2016] [Indexed: 12/22/2022] Open
Abstract
The unrestrained proliferation of cancer cells requires a high level of ribosome biogenesis. The first stage of ribosome biogenesis is the transcription of the large ribosomal RNAs (rRNAs); the structural and functional components of the ribosome. Transcription of rRNA is carried out by RNA polymerase I (Pol-I) and its associated holoenzyme complex.Here we report that BRCA1, a nuclear phosphoprotein, and a known tumour suppressor involved in variety of cellular processes such as DNA damage response, transcriptional regulation, cell cycle control and ubiquitylation, is associated with rDNA repeats, in particular with the regulatory regions of the rRNA gene.We demonstrate that BRCA1 interacts directly with the basal Pol-I transcription factors; upstream binding factor (UBF), selectivity factor-1 (SL1) as well as interacting with RNA Pol-I itself. We show that in response to DNA damage, BRCA1 occupancy at the rDNA repeat is decreased and the observed BRCA1 interactions with the Pol-I transcription machinery are weakened.We propose, therefore, that there is a rDNA associated fraction of BRCA1 involved in DNA damage dependent regulation of Pol-I transcription, regulating the stability and formation of the Pol-I holoenzyme during initiation and/or elongation in response to DNA damage.
Collapse
Affiliation(s)
- Rebecca Johnston
- School of Biological Sciences, Queen's University Belfast, Belfast, BT9 7BL, UK
| | - Zenobia D'Costa
- The Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, BT9 7BL, UK.,Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK
| | - Swagat Ray
- School of Biological Sciences, Queen's University Belfast, Belfast, BT9 7BL, UK.,Krebs Institute, Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, S10 2TN, UK
| | - Julia Gorski
- The Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, BT9 7BL, UK
| | - D Paul Harkin
- The Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, BT9 7BL, UK
| | - Paul Mullan
- The Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, BT9 7BL, UK
| | - Konstantin I Panov
- School of Biological Sciences, Queen's University Belfast, Belfast, BT9 7BL, UK.,The Centre for Cancer Research and Cell Biology, Queen's University Belfast, Belfast, BT9 7BL, UK
| |
Collapse
|
57
|
Martínez-Calvillo S, Romero-Meza G, Vizuet-de-Rueda JC, Florencio-Martínez LE, Manning-Cela R, Nepomuceno-Mejía T. Epigenetic Regulation of Transcription in Trypanosomatid Protozoa. Curr Genomics 2018; 19:140-149. [PMID: 29491742 PMCID: PMC5814962 DOI: 10.2174/1389202918666170911163517] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Revised: 02/13/2017] [Accepted: 04/18/2017] [Indexed: 12/15/2022] Open
Abstract
The Trypanosomatid family includes flagellated parasites that cause fatal human diseases. Remarkably, protein-coding genes in these organisms are positioned in long tandem arrays that are transcribed polycistronically. However, the knowledge about regulation of transcription initiation and termination in trypanosomatids is scarce. The importance of epigenetic regulation in these processes has become evident in the last years, as distinctive histone modifications and histone variants have been found in transcription initiation and termination regions. Moreover, multiple chromatin-related proteins have been identified and characterized in trypanosomatids, including histone-modifying enzymes, effector complexes, chromatin-remodelling enzymes and histone chaperones. Notably, base J, a modified thymine residue present in the nuclear DNA of trypanosomatids, has been implicated in transcriptional regulation. Here we review the current knowledge on epigenetic control of transcription by all three RNA polymerases in this group of early-diverged eukaryotes.
Collapse
Affiliation(s)
- Santiago Martínez-Calvillo
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México. Av. de los Barrios 1, Col. Los Reyes Iztacala, Tlalnepantla, Edo. de México, CP 54090, México
| | - Gabriela Romero-Meza
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México. Av. de los Barrios 1, Col. Los Reyes Iztacala, Tlalnepantla, Edo. de México, CP 54090, México
| | - Juan C. Vizuet-de-Rueda
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México. Av. de los Barrios 1, Col. Los Reyes Iztacala, Tlalnepantla, Edo. de México, CP 54090, México
| | - Luis E. Florencio-Martínez
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México. Av. de los Barrios 1, Col. Los Reyes Iztacala, Tlalnepantla, Edo. de México, CP 54090, México
| | - Rebeca Manning-Cela
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del IPN, Av. IPN 2508, México, D.F., CP 07360, México
| | - Tomás Nepomuceno-Mejía
- Unidad de Biomedicina, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México. Av. de los Barrios 1, Col. Los Reyes Iztacala, Tlalnepantla, Edo. de México, CP 54090, México
| |
Collapse
|
58
|
Dunker W, Zhao Y, Song Y, Karijolich J. Recognizing the SINEs of Infection: Regulation of Retrotransposon Expression and Modulation of Host Cell Processes. Viruses 2017; 9:v9120386. [PMID: 29258254 PMCID: PMC5744160 DOI: 10.3390/v9120386] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 12/12/2017] [Accepted: 12/17/2017] [Indexed: 12/16/2022] Open
Abstract
Short interspersed elements (SINEs) are a family of retrotransposons evolutionarily derived from cellular RNA polymerase III transcripts. Over evolutionary time, SINEs have expanded throughout the human genome and today comprise ~11% of total chromosomal DNA. While generally transcriptionally silent in healthy somatic cells, SINE expression increases during a variety of types of stresses, including DNA virus infection. The relevance of SINE expression to viral infection was largely unexplored, however, recent years have seen great progress towards defining the impact of SINE expression on viral replication and host gene expression. Here we review the origin and diversity of SINE elements and their transcriptional control, with an emphasis on how their expression impacts host cell biology during viral infection.
Collapse
Affiliation(s)
- William Dunker
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232-2363, USA.
| | - Yang Zhao
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232-2363, USA.
| | - Yu Song
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232-2363, USA.
- College of Pharmacy, Xinxiang Medical University, Xingxiang 453000, China.
| | - John Karijolich
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232-2363, USA.
- Vanderbilt-Ingram Cancer Center, Nashville, TN 37232-2363, USA.
| |
Collapse
|
59
|
Sergeeva EM, Shcherban AB, Adonina IG, Nesterov MA, Beletsky AV, Rakitin AL, Mardanov AV, Ravin NV, Salina EA. Fine organization of genomic regions tagged to the 5S rDNA locus of the bread wheat 5B chromosome. BMC PLANT BIOLOGY 2017; 17:183. [PMID: 29143604 PMCID: PMC5688495 DOI: 10.1186/s12870-017-1120-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
BACKGROUND The multigene family encoding the 5S rRNA, one of the most important structurally-functional part of the large ribosomal subunit, is an obligate component of all eukaryotic genomes. 5S rDNA has long been a favored target for cytological and phylogenetic studies due to the inherent peculiarities of its structural organization, such as the tandem arrays of repetitive units and their high interspecific divergence. The complex polyploid nature of the genome of bread wheat, Triticum aestivum, and the technically difficult task of sequencing clusters of tandem repeats mean that the detailed organization of extended genomic regions containing 5S rRNA genes remains unclear. This is despite the recent progress made in wheat genomic sequencing. Using pyrosequencing of BAC clones, in this work we studied the organization of two distinct 5S rDNA-tagged regions of the 5BS chromosome of bread wheat. RESULTS Three BAC-clones containing 5S rDNA were identified in the 5BS chromosome-specific BAC-library of Triticum aestivum. Using the results of pyrosequencing and assembling, we obtained six 5S rDNA- containing contigs with a total length of 140,417 bp, and two sets (pools) of individual 5S rDNA sequences belonging to separate, but closely located genomic regions on the 5BS chromosome. Both regions are characterized by the presence of approximately 70-80 copies of 5S rDNA, however, they are completely different in their structural organization. The first region contained highly diverged short-type 5S rDNA units that were disrupted by multiple insertions of transposable elements. The second region contained the more conserved long-type 5S rDNA, organized as a single tandem array. FISH using probes specific to both 5S rDNA unit types showed differences in the distribution and intensity of signals on the chromosomes of polyploid wheat species and their diploid progenitors. CONCLUSION A detailed structural organization of two closely located 5S rDNA-tagged genomic regions on the 5BS chromosome of bread wheat has been established. These two regions differ in the organization of both 5S rDNA and the neighboring sequences comprised of transposable elements, implying different modes of evolution for these regions.
Collapse
Affiliation(s)
- Ekaterina M Sergeeva
- The Federal Research Center "Institute of Cytology and Genetics SB RAS", Novosibirsk, Russia
| | - Andrey B Shcherban
- The Federal Research Center "Institute of Cytology and Genetics SB RAS", Novosibirsk, Russia.
| | - Irina G Adonina
- The Federal Research Center "Institute of Cytology and Genetics SB RAS", Novosibirsk, Russia
| | - Michail A Nesterov
- The Federal Research Center "Institute of Cytology and Genetics SB RAS", Novosibirsk, Russia
| | - Alexey V Beletsky
- The Federal Research Center "Fundamentals of Biotechnology RAS", Moscow, Russia
| | - Andrey L Rakitin
- The Federal Research Center "Fundamentals of Biotechnology RAS", Moscow, Russia
| | - Andrey V Mardanov
- The Federal Research Center "Fundamentals of Biotechnology RAS", Moscow, Russia
| | - Nikolai V Ravin
- The Federal Research Center "Fundamentals of Biotechnology RAS", Moscow, Russia
- Faculty of Biology, Moscow State University, Moscow, Russia
| | - Elena A Salina
- The Federal Research Center "Institute of Cytology and Genetics SB RAS", Novosibirsk, Russia
| |
Collapse
|
60
|
VanDusen NJ, Guo Y, Gu W, Pu WT. CASAAV: A CRISPR-Based Platform for Rapid Dissection of Gene Function In Vivo. CURRENT PROTOCOLS IN MOLECULAR BIOLOGY 2017; 120:31.11.1-31.11.14. [PMID: 28967995 PMCID: PMC5654550 DOI: 10.1002/cpmb.46] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In vivo loss-of-function studies are currently limited by the need for appropriate conditional knockout alleles. CRISPR/Cas9 is a powerful tool commonly used to induce loss-of-function mutations in vitro. However, CRISPR components have been difficult to deploy in vivo. To address this problem, we developed the CASAAV (CRISPR/Cas9/AAV-based somatic mutagenesis) platform, in which recombinant adeno-associated virus (AAV) is used to deliver tandem guide RNAs and Cre recombinase to Cre-dependent Cas9-P2A-GFP mice. Because Cre is under the control of a tissue-specific promoter, this system allows temporally controlled, cell type-selective knockout of virtually any gene to be obtained within a month using only one mouse line. Here, we focus on gene disruption in cardiomyocytes, but the system could easily be adapted to inactivate genes in other cell types transduced by AAV. © 2017 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Nathan J VanDusen
- Department of Cardiology, Boston Children's Hospital, Boston, Massachusetts
| | - Yuxuan Guo
- Department of Cardiology, Boston Children's Hospital, Boston, Massachusetts
| | - Weiliang Gu
- Department of Pharmacology, School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - William T Pu
- Department of Cardiology, Boston Children's Hospital, Boston, Massachusetts
- Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts
| |
Collapse
|
61
|
D'Aquila P, Montesanto A, Mandalà M, Garasto S, Mari V, Corsonello A, Bellizzi D, Passarino G. Methylation of the ribosomal RNA gene promoter is associated with aging and age-related decline. Aging Cell 2017. [PMID: 28625020 PMCID: PMC5595699 DOI: 10.1111/acel.12603] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
The transcription of ribosomal RNA genes (rDNA) is subject to epigenetic regulation, as it is abrogated by the methylation of CpG dinucleotides within their promoter region. Here, we investigated, through Sequenom platform, the age-related methylation status of the CpG island falling into the rDNA promoter in 472 blood samples from 20- to 105-year-old humans and in different tissues (blood, heart, liver, kidney, and testis) of 15 rats 3-96 weeks old. In humans, we did not find a consistently significant correlation between CpG site methylation and chronological age. Furthermore, the methylation levels of one of the analyzed CpG sites were negatively associated with both cognitive performance and survival chance measured in a 9-year follow-up study. We consistently confirmed such result in a replication sample. In rats, the analysis of the homologous region in the tissues revealed the existence of increased methylation in old rats. rRNA expression data, in both humans and rats, were consistent with observed methylation patterns, with a lower expression of rRNA in highly methylated samples. As chronological and biological ages in rats of a given strain are likely to be much closer to each other than in humans, these results seem to provide the first evidence that epigenetic modifications of rDNA change over time according to the aging decline. Thus, the methylation profile of rDNA may represent a potential biomarker of aging.
Collapse
Affiliation(s)
- Patrizia D'Aquila
- Department of Biology, Ecology and Earth Sciences; University of Calabria; 87036 Rende Italy
| | - Alberto Montesanto
- Department of Biology, Ecology and Earth Sciences; University of Calabria; 87036 Rende Italy
| | - Maurizio Mandalà
- Department of Biology, Ecology and Earth Sciences; University of Calabria; 87036 Rende Italy
| | - Sabrina Garasto
- Italian National Research Center on Aging (INRCA); 87100 Cosenza Italy
| | - Vincenzo Mari
- Italian National Research Center on Aging (INRCA); 87100 Cosenza Italy
| | - Andrea Corsonello
- Italian National Research Center on Aging (INRCA); 87100 Cosenza Italy
| | - Dina Bellizzi
- Department of Biology, Ecology and Earth Sciences; University of Calabria; 87036 Rende Italy
| | - Giuseppe Passarino
- Department of Biology, Ecology and Earth Sciences; University of Calabria; 87036 Rende Italy
| |
Collapse
|
62
|
Higher-order organisation of extremely amplified, potentially functional and massively methylated 5S rDNA in European pikes (Esox sp.). BMC Genomics 2017; 18:391. [PMID: 28521734 PMCID: PMC5437419 DOI: 10.1186/s12864-017-3774-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 05/09/2017] [Indexed: 12/16/2022] Open
Abstract
Background Pikes represent an important genus (Esox) harbouring a pre-duplication karyotype (2n = 2x = 50) of economically important salmonid pseudopolyploids. Here, we have characterized the 5S ribosomal RNA genes (rDNA) in Esox lucius and its closely related E. cisalpinus using cytogenetic, molecular and genomic approaches. Intragenomic homogeneity and copy number estimation was carried out using Illumina reads. The higher-order structure of rDNA arrays was investigated by the analysis of long PacBio reads. Position of loci on chromosomes was determined by FISH. DNA methylation was analysed by methylation-sensitive restriction enzymes. Results The 5S rDNA loci occupy exclusively (peri)centromeric regions on 30–38 acrocentric chromosomes in both E. lucius and E. cisalpinus. The large number of loci is accompanied by extreme amplification of genes (>20,000 copies), which is to the best of our knowledge one of the highest copy number of rRNA genes in animals ever reported. Conserved secondary structures of predicted 5S rRNAs indicate that most of the amplified genes are potentially functional. Only few SNPs were found in genic regions indicating their high homogeneity while intergenic spacers were more heterogeneous and several families were identified. Analysis of 10–30 kb-long molecules sequenced by the PacBio technology (containing about 40% of total 5S rDNA) revealed that the vast majority (96%) of genes are organised in large several kilobase-long blocks. Dispersed genes or short tandems were less common (4%). The adjacent 5S blocks were directly linked, separated by intervening DNA and even inverted. The 5S units differing in the intergenic spacers formed both homogeneous and heterogeneous (mixed) blocks indicating variable degree of homogenisation between the loci. Both E. lucius and E. cisalpinus 5S rDNA was heavily methylated at CG dinucleotides. Conclusions Extreme amplification of 5S rRNA genes in the Esox genome occurred in the absence of significant pseudogenisation suggesting its recent origin and/or intensive homogenisation processes. The dense methylation of units indicates that powerful epigenetic mechanisms have evolved in this group of fish to silence amplified genes. We discuss how the higher-order repeat structures impact on homogenisation of 5S rDNA in the genome. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3774-7) contains supplementary material, which is available to authorized users.
Collapse
|
63
|
Tran PLT, Pohl TJ, Chen CF, Chan A, Pott S, Zakian VA. PIF1 family DNA helicases suppress R-loop mediated genome instability at tRNA genes. Nat Commun 2017; 8:15025. [PMID: 28429714 PMCID: PMC5413955 DOI: 10.1038/ncomms15025] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 02/17/2017] [Indexed: 01/21/2023] Open
Abstract
Saccharomyces cerevisiae encodes two Pif1 family DNA helicases, Pif1 and Rrm3. Rrm3 promotes DNA replication past stable protein complexes at tRNA genes (tDNAs). We identify a new role for the Pif1 helicase: promotion of replication and suppression of DNA damage at tDNAs. Pif1 binds multiple tDNAs, and this binding is higher in rrm3Δ cells. Accumulation of replication intermediates and DNA damage at tDNAs is higher in pif1Δ rrm3Δ than in rrm3Δ cells. DNA damage at tDNAs in the absence of these helicases is suppressed by destabilizing R-loops while Pif1 and Rrm3 binding to tDNAs is increased upon R-loop stabilization. We propose that Rrm3 and Pif1 promote genome stability at tDNAs by displacing the stable multi-protein transcription complex and by removing R-loops. Thus, we identify tDNAs as a new source of R-loop-mediated DNA damage. Given their large number and high transcription rate, tDNAs may be a potent source of genome instability. The budding yeast genome encodes two Pif1 family helicases, Pif1 and Rrm3, previously shown to have distinct functions in the maintenance of telomeres and other aspects of genome stability. Here the authors identify a role for Pif1 (and Rrm3) in promoting DNA replication and suppressing R-loop mediated DNA damage at tRNA genes.
Collapse
Affiliation(s)
- Phong Lan Thao Tran
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Princeton, New Jersey 08544, USA
| | - Thomas J Pohl
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Princeton, New Jersey 08544, USA
| | - Chi-Fu Chen
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Princeton, New Jersey 08544, USA
| | - Angela Chan
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Princeton, New Jersey 08544, USA
| | - Sebastian Pott
- Department of Human Genetics, University of Chicago, 920 E 58th St, Chicago, Illinois 60637, USA
| | - Virginia A Zakian
- Department of Molecular Biology, Lewis Thomas Laboratory, Princeton University, Princeton, New Jersey 08544, USA
| |
Collapse
|
64
|
Barros AV, Wolski MAV, Nogaroto V, Almeida MC, Moreira-Filho O, Vicari MR. Fragile sites, dysfunctional telomere and chromosome fusions: What is 5S rDNA role? Gene 2017; 608:20-27. [DOI: 10.1016/j.gene.2017.01.013] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 01/04/2017] [Accepted: 01/18/2017] [Indexed: 11/29/2022]
|
65
|
Xu L, Zhao L, Gao Y, Xu J, Han R. Empower multiplex cell and tissue-specific CRISPR-mediated gene manipulation with self-cleaving ribozymes and tRNA. Nucleic Acids Res 2017; 45:e28. [PMID: 27799472 PMCID: PMC5389707 DOI: 10.1093/nar/gkw1048] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Revised: 10/06/2016] [Accepted: 10/20/2016] [Indexed: 01/12/2023] Open
Abstract
Clustered regularly interspaced short palindromic repeat/Cas9 (CRISPR/Cas9) system has emerged in recent years as a highly efficient RNA-guided gene manipulation platform. Simultaneous editing or transcriptional activation/suppression of different genes becomes feasible with the co-delivery of multiple guide RNAs (gRNAs). Here, we report that multiple gRNAs linked with self-cleaving ribozymes and/or tRNA could be simultaneously expressed from a single U6 promoter to exert genome editing of dystrophin and myosin binding protein C3 in human and mouse cells. Moreover, this strategy allows the expression of multiple gRNAs for synergistic transcription activation of follistatin when used with catalytically inactive dCas9-VP64 or dCas9-p300core fusions. Finally, the gRNAs linked by the self-cleaving ribozymes and tRNA could be expressed from RNA polymerase type II (pol II) promoters such as generic CMV and muscle/heart-specific MHCK7. This is particularly useful for in vivo applications when the packaging capacity of recombinant adeno-associated virus is limited while tissue-specific delivery of gRNAs and Cas9 is desired. Taken together, this study provides a novel strategy to enable tissue-specific expression of more than one gRNAs for multiplex gene editing from a single pol II promoter.
Collapse
MESH Headings
- Animals
- CRISPR-Cas Systems
- Cell Line
- Cytomegalovirus/genetics
- Cytomegalovirus/metabolism
- DNA Polymerase II/genetics
- DNA Polymerase II/metabolism
- Dystrophin/genetics
- Dystrophin/metabolism
- Follistatin/genetics
- Follistatin/metabolism
- Gene Editing
- HEK293 Cells
- Humans
- Liver/metabolism
- Macrophages/cytology
- Macrophages/metabolism
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Muscle, Skeletal/metabolism
- Myoblasts/cytology
- Myoblasts/metabolism
- Myosins/genetics
- Myosins/metabolism
- Promoter Regions, Genetic
- RNA, Catalytic/genetics
- RNA, Catalytic/metabolism
- RNA, Guide, CRISPR-Cas Systems/genetics
- RNA, Guide, CRISPR-Cas Systems/metabolism
- RNA, Small Nuclear/genetics
- RNA, Small Nuclear/metabolism
- RNA, Transfer/genetics
- RNA, Transfer/metabolism
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Transcriptional Activation
Collapse
Affiliation(s)
- Li Xu
- Department of Surgery, Davis Heart and Lung Research Institute, Biomedical Sciences Graduate Program, Biophysics Graduate Program, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Lixia Zhao
- Department of Surgery, Davis Heart and Lung Research Institute, Biomedical Sciences Graduate Program, Biophysics Graduate Program, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Yandi Gao
- Department of Surgery, Davis Heart and Lung Research Institute, Biomedical Sciences Graduate Program, Biophysics Graduate Program, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Jing Xu
- Department of Surgery, Davis Heart and Lung Research Institute, Biomedical Sciences Graduate Program, Biophysics Graduate Program, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Renzhi Han
- Department of Surgery, Davis Heart and Lung Research Institute, Biomedical Sciences Graduate Program, Biophysics Graduate Program, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| |
Collapse
|
66
|
Mao Y, Botella JR, Zhu JK. Heritability of targeted gene modifications induced by plant-optimized CRISPR systems. Cell Mol Life Sci 2017; 74:1075-1093. [PMID: 27677493 PMCID: PMC11107718 DOI: 10.1007/s00018-016-2380-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 09/22/2016] [Accepted: 09/23/2016] [Indexed: 02/06/2023]
Abstract
The Streptococcus-derived CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)/Cas9 (CRISPR-associated protein 9) system has emerged as a very powerful tool for targeted gene modifications in many living organisms including plants. Since the first application of this system for plant gene modification in 2013, this RNA-guided DNA endonuclease system has been extensively engineered to meet the requirements of functional genomics and crop trait improvement in a number of plant species. Given its short history, the emphasis of many studies has been the optimization of the technology to improve its reliability and efficiency to generate heritable gene modifications in plants. Here we review and analyze the features of customized CRISPR/Cas9 systems developed for plant genetic studies and crop breeding. We focus on two essential aspects: the heritability of gene modifications induced by CRISPR/Cas9 and the factors affecting its efficiency, and we provide strategies for future design of systems with improved activity and heritability in plants.
Collapse
Affiliation(s)
- Yanfei Mao
- Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences, Shanghai, 200032, China.
| | - Jose Ramon Botella
- School of Agriculture and Food Sciences, University of Queensland, Brisbane, QLD, 4072, Australia
| | - Jian-Kang Zhu
- Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences, Shanghai, 200032, China.
- Department of Horticulture and Landscape Architecture, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
67
|
Akhoundi M, Downing T, Votýpka J, Kuhls K, Lukeš J, Cannet A, Ravel C, Marty P, Delaunay P, Kasbari M, Granouillac B, Gradoni L, Sereno D. Leishmania infections: Molecular targets and diagnosis. Mol Aspects Med 2017; 57:1-29. [PMID: 28159546 DOI: 10.1016/j.mam.2016.11.012] [Citation(s) in RCA: 189] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 11/08/2016] [Accepted: 11/28/2016] [Indexed: 12/15/2022]
Abstract
Progress in the diagnosis of leishmaniases depends on the development of effective methods and the discovery of suitable biomarkers. We propose firstly an update classification of Leishmania species and their synonymies. We demonstrate a global map highlighting the geography of known endemic Leishmania species pathogenic to humans. We summarize a complete list of techniques currently in use and discuss their advantages and limitations. The available data highlights the benefits of molecular markers in terms of their sensitivity and specificity to quantify variation from the subgeneric level to species complexes, (sub) species within complexes, and individual populations and infection foci. Each DNA-based detection method is supplied with a comprehensive description of markers and primers and proposal for a classification based on the role of each target and primer in the detection, identification and quantification of leishmaniasis infection. We outline a genome-wide map of genes informative for diagnosis that have been used for Leishmania genotyping. Furthermore, we propose a classification method based on the suitability of well-studied molecular markers for typing the 21 known Leishmania species pathogenic to humans. This can be applied to newly discovered species and to hybrid strains originating from inter-species crosses. Developing more effective and sensitive diagnostic methods and biomarkers is vital for enhancing Leishmania infection control programs.
Collapse
Affiliation(s)
- Mohammad Akhoundi
- Service de Parasitologie-Mycologie, Hôpital de l'Archet, Centre Hospitalier Universitaire de Nice, Nice, France; MIVEGEC, UMR CNRS5290-IRD224-Université de Montpellier Centre IRD, Montpellier, France.
| | - Tim Downing
- School of Biotechnology, Dublin City University, Dublin, Ireland
| | - Jan Votýpka
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budějovice, Czech Republic; Department of Parasitology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Katrin Kuhls
- Division of Molecular Biotechnology and Functional Genomics, Technical University of Applied Sciences Wildau, Wildau, Germany
| | - Julius Lukeš
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budějovice, Czech Republic; Faculty of Sciences, University of South Bohemia, České Budějovice, Czech Republic; Canadian Institute for Advanced Research, Toronto, Canada
| | - Arnaud Cannet
- Inserm U1065, Centre Méditerranéen de Médecine Moléculaire, Université de Nice-Sophia Antipolis, Nice, France
| | - Christophe Ravel
- French National Reference Centre on Leishmaniasis, Montpellier University, Montpellier, France
| | - Pierre Marty
- Service de Parasitologie-Mycologie, Hôpital de l'Archet, Centre Hospitalier Universitaire de Nice, Nice, France; Inserm U1065, Centre Méditerranéen de Médecine Moléculaire, Université de Nice-Sophia Antipolis, Nice, France
| | - Pascal Delaunay
- Service de Parasitologie-Mycologie, Hôpital de l'Archet, Centre Hospitalier Universitaire de Nice, Nice, France; Inserm U1065, Centre Méditerranéen de Médecine Moléculaire, Université de Nice-Sophia Antipolis, Nice, France; MIVEGEC, UMR CNRS5290-IRD224-Université de Montpellier Centre IRD, Montpellier, France
| | - Mohamed Kasbari
- Agence Nationale de Sécurité Sanitaire de l'Alimentation, de l'Environnement et du Travail, ANSES, Laboratoire de Santé Animale, Maisons-Alfort, Cedex, France
| | - Bruno Granouillac
- IRD/UMI 233, INSERM U1175, Montpellier University, Montpellier, France; MIVEGEC, UMR CNRS5290-IRD224-Université de Montpellier Centre IRD, Montpellier, France
| | - Luigi Gradoni
- Unit of Vector-borne Diseases and International Health, Istituto Superiore di Sanità, Rome, Italy
| | - Denis Sereno
- MIVEGEC, UMR CNRS5290-IRD224-Université de Montpellier Centre IRD, Montpellier, France; Intertryp UMR IRD177, Centre IRD de Montpellier, Montpellier, France
| |
Collapse
|
68
|
Hantsche M, Cramer P. Strukturelle Grundlage der Transkription: 10 Jahre nach dem Chemie-Nobelpreis. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201608066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Merle Hantsche
- Abteilung für Molekularbiologie; Max-Planck-Institut für biophysikalische Chemie; Am Fassberg 11 37077 Göttingen Deutschland
| | - Patrick Cramer
- Abteilung für Molekularbiologie; Max-Planck-Institut für biophysikalische Chemie; Am Fassberg 11 37077 Göttingen Deutschland
| |
Collapse
|
69
|
Hantsche M, Cramer P. The Structural Basis of Transcription: 10 Years After the Nobel Prize in Chemistry. Angew Chem Int Ed Engl 2016; 55:15972-15981. [DOI: 10.1002/anie.201608066] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Indexed: 12/21/2022]
Affiliation(s)
- Merle Hantsche
- Abteilung für Molekularbiologie; Max Planck Institut für biophysikalische Chemie; Am Fassberg 11 37077 Göttingen Germany
| | - Patrick Cramer
- Abteilung für Molekularbiologie; Max Planck Institut für biophysikalische Chemie; Am Fassberg 11 37077 Göttingen Germany
| |
Collapse
|
70
|
Insertion of an Alu element in a lncRNA leads to primate-specific modulation of alternative splicing. Nat Struct Mol Biol 2016; 23:1011-1019. [DOI: 10.1038/nsmb.3302] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 09/07/2016] [Indexed: 12/20/2022]
|
71
|
Johnson DL, Stiles BL. Maf1, A New PTEN Target Linking RNA and Lipid Metabolism. Trends Endocrinol Metab 2016; 27:742-750. [PMID: 27296319 PMCID: PMC5035567 DOI: 10.1016/j.tem.2016.04.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 04/22/2016] [Accepted: 04/29/2016] [Indexed: 01/07/2023]
Abstract
PTEN is a critical tumor suppressor whose dysregulation leads to metabolic disease and cancer. How these diseases are linked at a molecular level is poorly understood. Maf1 is a novel PTEN target that connects PTEN's ability to repress intracellular lipid accumulation with its tumor suppressor function. Maf1 represses the expression of rRNAs and tRNAs to restrain biosynthetic capacity and oncogenic transformation. Recent studies demonstrate that Maf1 also controls intracellular lipid accumulation. In animal models, dysregulation of RNA polymerase I- and III-dependent transcription, and subsequent upregulation of rRNAs and tRNAs, leads to altered lipid metabolism and storage. Together these results identify unexpected connections between RNA and lipid metabolism that may help explain the strong epidemiological association between obesity and cancer.
Collapse
|
72
|
Abstract
Short interfering RNAs (siRNAs) are as effective at targeting and silencing genes by RNA interference (RNAi) as long double-stranded RNAs (dsRNAs). siRNAs are widely used for assessing gene function in cultured mammalian cells or early developing vertebrate embryos. siRNAs are also promising reagents for developing gene-specific therapeutics. Specifically, the inhibition of HIV-1 replication is particularly well-suited to RNAi, as several stages of the viral life cycle and many viral and cellular genes can be targeted. The future success of this approach will depend on recent advances in siRNA-based silencing technologies.
Collapse
Affiliation(s)
- Hiroshi Takaku
- Department of Life & Environmental Sciences and High Technology Research Center, Chiba Institute of Technology, Chiba, Japan.
| |
Collapse
|
73
|
Wei M, Zhao X, Liu M, Niu M, Seif E, Kleiman L. Export of Precursor tRNAIle from the Nucleus to the Cytoplasm in Human Cells. PLoS One 2016; 11:e0154044. [PMID: 27101286 PMCID: PMC4839721 DOI: 10.1371/journal.pone.0154044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Accepted: 04/07/2016] [Indexed: 11/19/2022] Open
Abstract
In the current concept, tRNA maturation in vertebrate cells, including splicing of introns, trimming of 5’ leader and 3’ trailer, and adding of CCA, is thought to occur exclusively in the nucleus. Here we provide evidence to challenge this concept. Unspliced intron-containing precursor tRNAIle was identified in Human Immunodeficiency Virus type 1 (HIV-1) virions, which are synthesized in the cytoplasm. Northern blot, confocal microscopy and quantitative RT-PCR further verified enrichment of this unspliced tRNAIle within the cytoplasm in human cells. In addition to containing an intron, the cytoplasmic precursor tRNAIle also contains a short incompletely processed 5´ leader and a 3´ trailer, which abundance is around 1000 fold higher than the nuclear precursor tRNAIle with long 5’ leader and long 3’ trailer. In vitro data also suggest that the cytoplasmic unspliced end-immature precursor tRNAIle could be processed by short isoform of RNase Z, but not long isoform of RNase Z. These data suggest that precursor tRNAs could export from the nucleus to the cytoplasm in human cells, instead of be processed only in the nucleus.
Collapse
Affiliation(s)
- Min Wei
- School of Medicine, Nankai University, Tianjin, China
- Lady Davis Institute, Jewish General Hospital, McGill University, Canada
- * E-mail:
| | - Xia Zhao
- Lady Davis Institute, Jewish General Hospital, McGill University, Canada
| | - Mi Liu
- State Key Laboratory for Infectious Disease Prevention and Control, National Center for AIDS/STD Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Meijuan Niu
- Lady Davis Institute, Jewish General Hospital, McGill University, Canada
| | - Elias Seif
- Lady Davis Institute, Jewish General Hospital, McGill University, Canada
| | - Lawrence Kleiman
- Lady Davis Institute, Jewish General Hospital, McGill University, Canada
| |
Collapse
|
74
|
Ribosomal RNA Genes in the Protozoan Parasite Leishmania major Possess a Nucleosomal Structure. Protist 2016; 167:121-35. [PMID: 26963795 DOI: 10.1016/j.protis.2016.02.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 12/14/2015] [Accepted: 02/03/2016] [Indexed: 01/07/2023]
Abstract
Little is known about nucleosome structure and epigenetic regulation of transcription of rRNA genes in early-branched eukaryotes. Here we analyze the chromatin architecture and distribution of some histone modifications in the rRNA genes in the parasitic protozoon Leishmania major. Southern blots of MNase-partially-digested chromatin with DNA probes spanning the whole rRNA gene repeat showed that the intergenic spacer presents a tight nucleosomal structure, whereas the promoter region is practically devoid of nucleosomes. Intermediate levels of nucleosomes were found in the rRNA coding regions. ChIP assays allowed us to determine that H3K14ac, H3K23ac and H3K27ac, epigenetics marks that are generally associated with activation of transcription, are enriched in the promoter region. In contrast, H4K20me3, which is generally related to transcriptional silencing, was absent from the promoter region and intergenic spacer and enriched in the coding region. Interestingly, the distribution pattern for H3K9me3, generally linked to heterochromatin formation, was very similar to the distribution observed with the euchromatin marks, suggesting that this modification could be involved in transcriptional activation of rRNA genes in L. major.
Collapse
|
75
|
Morales-Hernández A, González-Rico FJ, Román AC, Rico-Leo E, Alvarez-Barrientos A, Sánchez L, Macia Á, Heras SR, García-Pérez JL, Merino JM, Fernández-Salguero PM. Alu retrotransposons promote differentiation of human carcinoma cells through the aryl hydrocarbon receptor. Nucleic Acids Res 2016; 44:4665-83. [PMID: 26883630 PMCID: PMC4889919 DOI: 10.1093/nar/gkw095] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Accepted: 02/09/2016] [Indexed: 12/18/2022] Open
Abstract
Cell differentiation is a central process in development and in cancer growth and dissemination. OCT4 (POU5F1) and NANOG are essential for cell stemness and pluripotency; yet, the mechanisms that regulate their expression remain largely unknown. Repetitive elements account for almost half of the Human Genome; still, their role in gene regulation is poorly understood. Here, we show that the dioxin receptor (AHR) leads to differentiation of human carcinoma cells through the transcriptional upregulation of Alu retrotransposons, whose RNA transcripts can repress pluripotency genes. Despite the genome-wide presence of Alu elements, we provide evidences that those located at the NANOG and OCT4 promoters bind AHR, are transcribed by RNA polymerase-III and repress NANOG and OCT4 in differentiated cells. OCT4 and NANOG repression likely involves processing of Alu-derived transcripts through the miRNA machinery involving the Microprocessor and RISC. Consistently, stable AHR knockdown led to basal undifferentiation, impaired Alus transcription and blockade of OCT4 and NANOG repression. We suggest that transcripts produced from AHR-regulated Alu retrotransposons may control the expression of stemness genes OCT4 and NANOG during differentiation of carcinoma cells. The control of discrete Alu elements by specific transcription factors may have a dynamic role in genome regulation under physiological and diseased conditions.
Collapse
Affiliation(s)
- Antonio Morales-Hernández
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de Extremadura, Avenida de Elvas s/n, 06071-Badajoz, Spain
| | - Francisco J González-Rico
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de Extremadura, Avenida de Elvas s/n, 06071-Badajoz, Spain
| | - Angel C Román
- Instituto Cajal, Consejo Superior de Investigaciones Científicas, Avenida Doctor Arce 37, 28002-Madrid, Spain
| | - Eva Rico-Leo
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de Extremadura, Avenida de Elvas s/n, 06071-Badajoz, Spain
| | - Alberto Alvarez-Barrientos
- Servicio de Técnicas Aplicadas a las Biociencias, Universidad de Extremadura, Avenida de Elvas s/n 06071-Badajoz, Spain
| | - Laura Sánchez
- GENYO. Centro de Genómica e Investigación Oncológica: Pfizer/Universidad de Granada/Junta de Andalucía, Avda. de la Ilustración 114, PTS Granada, 18016-Granada, Spain
| | - Ángela Macia
- GENYO. Centro de Genómica e Investigación Oncológica: Pfizer/Universidad de Granada/Junta de Andalucía, Avda. de la Ilustración 114, PTS Granada, 18016-Granada, Spain
| | - Sara R Heras
- GENYO. Centro de Genómica e Investigación Oncológica: Pfizer/Universidad de Granada/Junta de Andalucía, Avda. de la Ilustración 114, PTS Granada, 18016-Granada, Spain
| | - José L García-Pérez
- GENYO. Centro de Genómica e Investigación Oncológica: Pfizer/Universidad de Granada/Junta de Andalucía, Avda. de la Ilustración 114, PTS Granada, 18016-Granada, Spain
| | - Jaime M Merino
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de Extremadura, Avenida de Elvas s/n, 06071-Badajoz, Spain
| | - Pedro M Fernández-Salguero
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias, Universidad de Extremadura, Avenida de Elvas s/n, 06071-Badajoz, Spain
| |
Collapse
|
76
|
Recruitment of Saccharomyces cerevisiae Cmr1/Ydl156w to Coding Regions Promotes Transcription Genome Wide. PLoS One 2016; 11:e0148897. [PMID: 26848854 PMCID: PMC4744024 DOI: 10.1371/journal.pone.0148897] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 01/25/2016] [Indexed: 12/03/2022] Open
Abstract
Cmr1 (changed mutation rate 1) is a largely uncharacterized nuclear protein that has recently emerged in several global genetic interaction and protein localization studies. It clusters with proteins involved in DNA damage and replication stress response, suggesting a role in maintaining genome integrity. Under conditions of proteasome inhibition or replication stress, this protein localizes to distinct sub-nuclear foci termed as intranuclear quality control (INQ) compartments, which sequester proteins for their subsequent degradation. Interestingly, it also interacts with histones, chromatin remodelers and modifiers, as well as with proteins involved in transcription including subunits of RNA Pol I and Pol III, but not with those of Pol II. It is not known whether Cmr1 plays a role in regulating transcription of Pol II target genes. Here, we show that Cmr1 is recruited to the coding regions of transcribed genes of S. cerevisiae. Cmr1 occupancy correlates with the Pol II occupancy genome-wide, indicating that it is recruited to coding sequences in a transcription-dependent manner. Cmr1-enriched genes include Gcn4 targets and ribosomal protein genes. Furthermore, our results show that Cmr1 recruitment to coding sequences is stimulated by Pol II CTD kinase, Kin28, and the histone deacetylases, Rpd3 and Hos2. Finally, our genome-wide analyses implicate Cmr1 in regulating Pol II occupancy at transcribed coding sequences. However, it is dispensable for maintaining co-transcriptional histone occupancy and histone modification (acetylation and methylation). Collectively, our results show that Cmr1 facilitates transcription by directly engaging with transcribed coding regions.
Collapse
|
77
|
Chen C, Xie T, Ye S, Jensen AB, Eilenberg J. Selection of reference genes for expression analysis in the entomophthoralean fungus Pandora neoaphidis. Braz J Microbiol 2016; 47:259-65. [PMID: 26887253 PMCID: PMC4822748 DOI: 10.1016/j.bjm.2015.11.031] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 08/23/2015] [Indexed: 01/04/2023] Open
Abstract
The selection of suitable reference genes is crucial for accurate quantification of gene expression and can add to our understanding of host-pathogen interactions. To identify suitable reference genes in Pandora neoaphidis, an obligate aphid pathogenic fungus, the expression of three traditional candidate genes including 18S rRNA(18S), 28S rRNA(28S) and elongation factor 1 alpha-like protein (EF1), were measured by quantitative polymerase chain reaction at different developmental stages (conidia, conidia with germ tubes, short hyphae and elongated hyphae), and under different nutritional conditions. We calculated the expression stability of candidate reference genes using four algorithms including geNorm, NormFinder, BestKeeper and Delta Ct. The analysis results revealed that the comprehensive ranking of candidate reference genes from the most stable to the least stable was 18S (1.189), 28S (1.414) and EF1 (3). The 18S was, therefore, the most suitable reference gene for real-time RT-PCR analysis of gene expression under all conditions. These results will support further studies on gene expression in P. neoaphidis.
Collapse
Affiliation(s)
- Chun Chen
- China Jiliang University, Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, Hangzhou 310018, China.
| | - Tingna Xie
- China Jiliang University, Zhejiang Provincial Key Laboratory of Biometrology and Inspection & Quarantine, Hangzhou 310018, China
| | - Sudan Ye
- Zhejiang Economic & Trade Polytechnic, Hangzhou 310018, China
| | - Annette Bruun Jensen
- Department of Plant and Environmental Sciences, University of Copenhagen, DK 1871 Frederiksberg C, Denmark
| | - Jørgen Eilenberg
- Department of Plant and Environmental Sciences, University of Copenhagen, DK 1871 Frederiksberg C, Denmark
| |
Collapse
|
78
|
Conserved Curvature of RNA Polymerase I Core Promoter Beyond rRNA Genes: The Case of the Tritryps. GENOMICS PROTEOMICS & BIOINFORMATICS 2016; 13:355-63. [PMID: 26718450 PMCID: PMC4747651 DOI: 10.1016/j.gpb.2015.09.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 09/17/2015] [Accepted: 09/24/2015] [Indexed: 11/23/2022]
Abstract
In trypanosomatids, the RNA polymerase I (RNAPI)-dependent promoters controlling the ribosomal RNA (rRNA) genes have been well identified. Although the RNAPI transcription machinery recognizes the DNA conformation instead of the DNA sequence of promoters, no conformational study has been reported for these promoters. Here we present the in silico analysis of the intrinsic DNA curvature of the rRNA gene core promoters in Trypanosoma brucei, Trypanosoma cruzi, and Leishmania major. We found that, in spite of the absence of sequence conservation, these promoters hold conformational properties similar to other eukaryotic rRNA promoters. Our results also indicated that the intrinsic DNA curvature pattern is conserved within the Leishmania genus and also among strains of T. cruzi and T. brucei. Furthermore, we analyzed the impact of point mutations on the intrinsic curvature and their impact on the promoter activity. Furthermore, we found that the core promoters of protein-coding genes transcribed by RNAPI in T. brucei show the same conserved conformational characteristics. Overall, our results indicate that DNA intrinsic curvature of the rRNA gene core promoters is conserved in these ancient eukaryotes and such conserved curvature might be a requirement of RNAPI machinery for transcription of not only rRNA genes but also protein-coding genes.
Collapse
|
79
|
Schaeffer SM, Nakata PA. CRISPR/Cas9-mediated genome editing and gene replacement in plants: Transitioning from lab to field. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 240:130-42. [PMID: 26475194 DOI: 10.1016/j.plantsci.2015.09.011] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 09/09/2015] [Accepted: 09/09/2015] [Indexed: 05/22/2023]
Abstract
The CRISPR/Cas9 genome engineering system has ignited and swept through the scientific community like wildfire. Owing largely to its efficiency, specificity, and flexibility, the CRISPR/Cas9 system has quickly become the preferred genome-editing tool of plant scientists. In plants, much of the early CRISPR/Cas9 work has been limited to proof of concept and functional studies in model systems. These studies, along with those in other fields of biology, have led to the development of several utilities of CRISPR/Cas9 beyond single gene editing. Such utilities include multiplexing for inducing multiple cleavage events, controlling gene expression, and site specific transgene insertion. With much of the conceptual CRISPR/Cas9 work nearly complete, plant researchers are beginning to apply this gene editing technology for crop trait improvement. Before rational strategies can be designed to implement this technology to engineer a wide array of crops there is a need to expand the availability of crop-specific vectors, genome resources, and transformation protocols. We anticipate that these challenges will be met along with the continued evolution of the CRISPR/Cas9 system particularly in the areas of manipulation of large genomic regions, transgene-free genetic modification, development of breeding resources, discovery of gene function, and improvements upon CRISPR/Cas9 components. The CRISPR/Cas9 editing system appears poised to transform crop trait improvement.
Collapse
Affiliation(s)
- Scott M Schaeffer
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030-2600, United States
| | - Paul A Nakata
- USDA/ARS Children's Nutrition Research Center, Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030-2600, United States.
| |
Collapse
|
80
|
Shang R, Zhang F, Xu B, Xi H, Zhang X, Wang W, Wu L. Ribozyme-enhanced single-stranded Ago2-processed interfering RNA triggers efficient gene silencing with fewer off-target effects. Nat Commun 2015; 6:8430. [PMID: 26455506 PMCID: PMC4633630 DOI: 10.1038/ncomms9430] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Accepted: 08/21/2015] [Indexed: 02/06/2023] Open
Abstract
Short-hairpin RNAs (shRNAs) are widely used to produce small-interfering RNAs (siRNAs) for gene silencing. Here we design an alternative siRNA precursor, named single-stranded, Argonaute 2 (Ago2)-processed interfering RNA (saiRNA), containing a 16-18 bp stem and a loop complementary to the target transcript. The introduction of a self-cleaving ribozyme derived from hepatitis delta virus to the 3' end of the transcribed saiRNA dramatically improves its silencing activity by generating a short 3' overhang that facilitates the efficient binding of saiRNA to Ago2. The same ribozyme also enhances the activity of Dicer-dependent shRNAs. Unlike a classical shRNA, the strand-specific cleavage of saiRNA by Ago2 during processing eliminates the passenger strand and prevents the association of siRNA with non-nucleolytic Ago proteins. As a result, off-target effects are reduced. In addition, saiRNA exhibits less competition with the biogenesis of endogenous miRNAs. Therefore, ribozyme-enhanced saiRNA provides a reliable tool for RNA interference applications.
Collapse
Affiliation(s)
- Renfu Shang
- National Center for Protein Science Shanghai, State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.,Shanghai Science Research Center, Chinese Academy of Sciences, Shanghai 201204, China.,Shanghai Key Laboratory of Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Fengjuan Zhang
- National Center for Protein Science Shanghai, State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.,Shanghai Science Research Center, Chinese Academy of Sciences, Shanghai 201204, China.,Shanghai Key Laboratory of Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Beiying Xu
- National Center for Protein Science Shanghai, State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.,Shanghai Science Research Center, Chinese Academy of Sciences, Shanghai 201204, China.,Shanghai Key Laboratory of Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Hairui Xi
- School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Xue Zhang
- National Center for Protein Science Shanghai, State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.,Shanghai Science Research Center, Chinese Academy of Sciences, Shanghai 201204, China.,Shanghai Key Laboratory of Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Weihua Wang
- National Center for Protein Science Shanghai, State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.,Shanghai Science Research Center, Chinese Academy of Sciences, Shanghai 201204, China.,Shanghai Key Laboratory of Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ligang Wu
- National Center for Protein Science Shanghai, State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.,Shanghai Science Research Center, Chinese Academy of Sciences, Shanghai 201204, China.,Shanghai Key Laboratory of Molecular Andrology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
81
|
Charton R, Guintini L, Peyresaubes F, Conconi A. Repair of UV induced DNA lesions in ribosomal gene chromatin and the role of "Odd" RNA polymerases (I and III). DNA Repair (Amst) 2015; 36:49-58. [PMID: 26411875 DOI: 10.1016/j.dnarep.2015.09.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In fast growing eukaryotic cells, a subset of rRNA genes are transcribed at very high rates by RNA polymerase I (RNAPI). Nuclease digestion-assays and psoralen crosslinking have shown that they are open; that is, largely devoid of nucleosomes. In the yeast Saccharomyces cerevisae, nucleotide excision repair (NER) and photolyase remove UV photoproducts faster from open rRNA genes than from closed and nucleosome-loaded inactive rRNA genes. After UV irradiation, rRNA transcription declines because RNAPI halt at UV photoproducts and are then displaced from the transcribed strand. When the DNA lesion is quickly recognized by NER, it is the sub-pathway transcription-coupled TC-NER that removes the UV photoproduct. If dislodged RNAPI are replaced by nucleosomes before NER recognizes the lesion, then it is the sub-pathway global genome GG-NER that removes the UV photoproducts from the transcribed strand. Also, GG-NER maneuvers in the non-transcribed strand of open genes and in both strands of closed rRNA genes. After repair, transcription resumes and elongating RNAPI reopen the rRNA gene. In higher eukaryotes, NER in rRNA genes is inefficient and there is no evidence for TC-NER. Moreover, TC-NER does not occur in RNA polymerase III transcribed genes of both, yeast and human fibroblast.
Collapse
Affiliation(s)
- Romain Charton
- Département de Microbiologie et Infectiologie, Faculté de Médecine, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
| | - Laetitia Guintini
- Département de Microbiologie et Infectiologie, Faculté de Médecine, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
| | - François Peyresaubes
- Département de Microbiologie et Infectiologie, Faculté de Médecine, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada
| | - Antonio Conconi
- Département de Microbiologie et Infectiologie, Faculté de Médecine, Université de Sherbrooke, Sherbrooke, QC J1E 4K8, Canada.
| |
Collapse
|
82
|
Abstract
Eukaryotic genomes are colonized by various transposons including short interspersed elements (SINEs). The 5' region (head) of the majority of SINEs is derived from one of the three types of RNA genes--7SL RNA, transfer RNA (tRNA), or 5S ribosomal RNA (rRNA)--and the internal promoter inside the head promotes the transcription of the entire SINEs. Here I report a new group of SINEs whose heads originate from either the U1 or U2 small nuclear RNA gene. These SINEs, named SINEU, are distributed among crocodilians and classified into three families. The structures of the SINEU-1 subfamilies indicate the recurrent addition of a U1- or U2-derived sequence onto the 5' end of SINEU-1 elements. SINEU-1 and SINEU-3 are ancient and shared among alligators, crocodiles, and gharials, while SINEU-2 is absent in the alligator genome. SINEU-2 is the only SINE family that was active after the split of crocodiles and gharials. All SINEU families, especially SINEU-3, are preferentially inserted into a family of Mariner DNA transposon, Mariner-N4_AMi. A group of Tx1 non-long terminal repeat retrotransposons designated Tx1-Mar also show target preference for Mariner-N4_AMi, indicating that SINEU was mobilized by Tx1-Mar.
Collapse
|
83
|
Karahan G, Sayar N, Gozum G, Bozkurt B, Konu O, Yulug IG. Relative expression of rRNA transcripts and 45S rDNA promoter methylation status are dysregulated in tumors in comparison with matched-normal tissues in breast cancer. Oncol Rep 2015; 33:3131-45. [PMID: 25962577 DOI: 10.3892/or.2015.3940] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 03/14/2015] [Indexed: 11/06/2022] Open
Abstract
Ribosomal RNA (rRNA) expression, one of the most important factors regulating ribosome production, is primarily controlled by a CG-rich 45 S rDNA promoter. However, the DNA methylation state of the 45 S rDNA promoter, as well as its effect on rRNA gene expression in types of human cancers is controversial. In the present study we analyzed the methylation status of the rDNA promoter (-380 to +53 bp) as well as associated rRNA expression levels in breast cancer cell lines and breast tumor-normal tissue pairs. We found that the aforementioned regulatory region was extensively methylated (74-96%) in all cell lines and in 68% (13/19 tumor-normal pairs) of the tumors. Expression levels of rRNA transcripts 18 S, 28 S, 5.8 S and 45 S external transcribed spacer (45 S ETS) greatly varied in the breast cancer cell lines regardless of their methylation status. Analyses of rRNA transcript expression levels in the breast tumor and normal matched tissues showed no significant difference when normalized with TBP. On the other hand, using the geometric mean of the rRNA expression values (GM-rRNA) as reference enabled us to identify significant changes in the relative expression of rRNAs in the tissue samples. We propose GM-rRNA normalization as a novel strategy to analyze expression differences between rRNA transcripts. Accordingly, the 18S rRNA/GM-rRNA ratio was significantly higher whereas the 5.8S rRNA/GM-rRNA ratio was significantly lower in breast tumor samples than this ratio in the matched normal samples. Moreover, the 18S rRNA/GM-rRNA ratio was negatively correlated with the 45 S rDNA promoter methylation level in the normal breast tissue samples, yet not in the breast tumors. Significant correlations observed between the expression levels of rRNA transcripts in the normal samples were lost in the tumor samples. We showed that the expression of rRNA transcripts may not be based solely on promoter methylation. Carcinogenesis may cause dysregulation of the correlation between spliced rRNA expression levels, possibly due to changes in rRNA processing, which requires further investigation.
Collapse
Affiliation(s)
- Gurbet Karahan
- Department of Molecular Biology and Genetics, Bilkent University, Faculty of Science, TR-06800 Ankara, Turkey
| | - Nilufer Sayar
- Department of Molecular Biology and Genetics, Bilkent University, Faculty of Science, TR-06800 Ankara, Turkey
| | - Gokcen Gozum
- Department of Molecular Biology and Genetics, Bilkent University, Faculty of Science, TR-06800 Ankara, Turkey
| | - Betul Bozkurt
- Department of General Surgery, Ankara Numune Research and Teaching Hospital, TR-06100 Ankara, Turkey
| | - Ozlen Konu
- Department of Molecular Biology and Genetics, Bilkent University, Faculty of Science, TR-06800 Ankara, Turkey
| | - Isik G Yulug
- Department of Molecular Biology and Genetics, Bilkent University, Faculty of Science, TR-06800 Ankara, Turkey
| |
Collapse
|
84
|
Longo MS, Brown JD, Zhang C, O'Neill MJ, O'Neill RJ. Identification of a recently active mammalian SINE derived from ribosomal RNA. Genome Biol Evol 2015; 7:775-88. [PMID: 25637222 PMCID: PMC4994717 DOI: 10.1093/gbe/evv015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Complex eukaryotic genomes are riddled with repeated sequences whose derivation does not coincide with phylogenetic history and thus is often unknown. Among such sequences, the capacity for transcriptional activity coupled with the adaptive use of reverse transcription can lead to a diverse group of genomic elements across taxa, otherwise known as selfish elements or mobile elements. Short interspersed nuclear elements (SINEs) are nonautonomous mobile elements found in eukaryotic genomes, typically derived from cellular RNAs such as tRNAs, 7SL or 5S rRNA. Here, we identify and characterize a previously unknown SINE derived from the 3'-end of the large ribosomal subunit (LSU or 28S rDNA) and transcribed via RNA polymerase III. This new element, SINE28, is represented in low-copy numbers in the human reference genome assembly, wherein we have identified 27 discrete loci. Phylogenetic analysis indicates these elements have been transpositionally active within primate lineages as recently as 6 MYA while modern humans still carry transcriptionally active copies. Moreover, we have identified SINE28s in all currently available assembled mammalian genome sequences. Phylogenetic comparisons indicate that these elements are frequently rederived from the highly conserved LSU rRNA sequences in a lineage-specific manner. We propose that this element has not been previously recognized as a SINE given its high identity to the canonical LSU, and that SINE28 likely represents one of possibly many unidentified, active transposable elements within mammalian genomes.
Collapse
Affiliation(s)
- Mark S Longo
- Department of Molecular and Cell Biology and Institute for Systems Genomics, University of Connecticut
| | - Judy D Brown
- Department of Allied Health Sciences and Institute for Systems Genomics, University of Connecticut
| | - Chu Zhang
- Department of Molecular and Cell Biology and Institute for Systems Genomics, University of Connecticut
| | - Michael J O'Neill
- Department of Molecular and Cell Biology and Institute for Systems Genomics, University of Connecticut
| | - Rachel J O'Neill
- Department of Molecular and Cell Biology and Institute for Systems Genomics, University of Connecticut
| |
Collapse
|
85
|
Tay FC, Lim JK, Zhu H, Hin LC, Wang S. Using artificial microRNA sponges to achieve microRNA loss-of-function in cancer cells. Adv Drug Deliv Rev 2015; 81:117-27. [PMID: 24859534 DOI: 10.1016/j.addr.2014.05.010] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Revised: 04/18/2014] [Accepted: 05/15/2014] [Indexed: 12/19/2022]
Abstract
Widely observed dysregulation of microRNAs (miRNAs) in human cancer has led to substantial speculation regarding possible functions of these short, non-coding RNAs in cancer development and manipulation of miRNA expression to treat cancer. To achieve miRNA loss-of-function, miRNA sponge technology has been developed to use plasmid or viral vectors for intracellular expression of tandemly arrayed, bulged miRNA binding sites complementary to a miRNA target to saturate its ability to regulate natural mRNAs. A strong viral promoter can be used in miRNA sponge vectors to generate high-level expression of the competitive inhibitor transcripts for either transient or long-term inhibition of miRNA function. Taking the advantage of sharing a common seed sequence by members of a miRNA family, this technology is especially useful in knocking down the expression of a family of miRNAs, providing a powerful means for simultaneous inhibition of multiple miRNAs of interest with a single inhibitor. Knockdown of overexpressed oncogenic miRNAs with the technology can be a rational therapeutic strategy for cancer, whereas inhibition of tumor-suppressive miRNAs by the sponges will be useful in deciphering functions of miRNAs in oncogenesis. Herein, we discuss the design of miRNA sponge expression vectors and the use of the vectors to gain better understanding of miRNA's roles in cancer biology and as an alternative tool for anticancer gene therapy.
Collapse
|
86
|
Grewal SS. Why should cancer biologists care about tRNAs? tRNA synthesis, mRNA translation and the control of growth. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2014; 1849:898-907. [PMID: 25497380 DOI: 10.1016/j.bbagrm.2014.12.005] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Revised: 12/01/2014] [Accepted: 12/04/2014] [Indexed: 10/24/2022]
Abstract
Transfer RNAs (tRNAs) are essential for mRNA translation. They are transcribed in the nucleus by RNA polymerase III and undergo many modifications before contributing to cytoplasmic protein synthesis. In this review I highlight our understanding of how tRNA biology may be linked to the regulation of mRNA translation, growth and tumorigenesis. First, I review how oncogenes and tumour suppressor signalling pathways, such as the PI3 kinase/TORC1, Ras/ERK, Myc, p53 and Rb pathways, regulate Pol III and tRNA synthesis. In several cases, this regulation contributes to cell, tissue and body growth, and has implications for our understanding of tumorigenesis. Second, I highlight some recent work, particularly in model organisms such as yeast and Drosophila, that shows how alterations in tRNA synthesis may be not only necessary, but also sufficient to drive changes in mRNA translation and growth. These effects may arise due to both absolute increases in total tRNA levels, but also changes in the relative levels of tRNAs in the overall pool. Finally, I review some recent studies that have revealed how tRNA modifications (amino acid acylation, base modifications, subcellular shuttling, and cleavage) can be regulated by growth and stress cues to selectively influence mRNA translation. Together these studies emphasize the importance of the regulation of tRNA synthesis and modification as critical control points in protein synthesis and growth. This article is part of a Special Issue entitled: Translation and Cancer.
Collapse
Affiliation(s)
- Savraj S Grewal
- Department of Biochemistry and Molecular Biology, Clark H. Smith Brain Tumour Centre, Southern Alberta Cancer Research Institute, University of Calgary, HRIC, 3330 Hospital Drive NW, Calgary, Alberta T2N 4N1, Canada.
| |
Collapse
|
87
|
Edenborough K, Marsh GA. Reverse genetics: Unlocking the secrets of negative sense RNA viral pathogens. World J Clin Infect Dis 2014; 4:16-26. [DOI: 10.5495/wjcid.v4.i4.16] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 08/29/2014] [Accepted: 09/24/2014] [Indexed: 02/06/2023] Open
Abstract
Negative-sense RNA viruses comprise several zoonotic pathogens that mutate rapidly and frequently emerge in people including Influenza, Ebola, Rabies, Hendra and Nipah viruses. Acute respiratory distress syndrome, encephalitis and vasculitis are common disease outcomes in people as a result of pathogenic viral infection, and are also associated with high case fatality rates. Viral spread from exposure sites to systemic tissues and organs is mediated by virulence factors, including viral attachment glycoproteins and accessory proteins, and their contribution to infection and disease have been delineated by reverse genetics; a molecular approach that enables researchers to experimentally produce recombinant and reassortant viruses from cloned cDNA. Through reverse genetics we have developed a deeper understanding of virulence factors key to disease causation thereby enabling development of targeted antiviral therapies and well-defined live attenuated vaccines. Despite the value of reverse genetics for virulence factor discovery, classical reverse genetic approaches may not provide sufficient resolution for characterization of heterogeneous viral populations, because current techniques recover clonal virus, representing a consensus sequence. In this review the contribution of reverse genetics to virulence factor characterization is outlined, while the limitation of the technique is discussed with reference to new technologies that may be utilized to improve reverse genetic approaches.
Collapse
|
88
|
Diebel KW, Claypool DJ, van Dyk LF. A conserved RNA polymerase III promoter required for gammaherpesvirus TMER transcription and microRNA processing. Gene 2014; 544:8-18. [PMID: 24747015 PMCID: PMC4544698 DOI: 10.1016/j.gene.2014.04.026] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2013] [Revised: 03/21/2014] [Accepted: 04/14/2014] [Indexed: 12/21/2022]
Abstract
Canonical RNA polymerase III (pol III) type 2 promoters contain a single A and B box and are well documented for their role in tRNA and SINE transcription in eukaryotic cells. The genome of Murid herpesvirus 4 (MuHV-4) contains eight polycistronic tRNA-microRNA encoded RNA (TMER) genes that are transcribed from a RNA pol III type 2-like promoter containing triplicated A box elements. Here, we demonstrate that the triplicated A box sequences are required in their entirety to produce functional MuHV-4 miRNAs. We also identify that these RNA pol III type 2-like promoters are conserved in eukaryotic genomes. Human and mouse predicted tRNA genes containing these promoters also show enrichment of alternative RNA pol III transcription termination sequences and are predicted to give rise to longer tRNA primary transcripts.
Collapse
MESH Headings
- 3T3 Cells
- Animals
- Base Sequence
- Blotting, Northern
- Fibroblasts/metabolism
- Fibroblasts/virology
- Gene Expression Regulation, Viral
- Genome, Viral/genetics
- Host-Pathogen Interactions
- Humans
- Mice
- MicroRNAs/genetics
- Molecular Sequence Data
- Mutagenesis, Site-Directed
- Polyproteins/genetics
- Promoter Regions, Genetic/genetics
- RNA Folding
- RNA Polymerase III/genetics
- RNA Processing, Post-Transcriptional
- RNA, Transfer/genetics
- RNA, Viral/chemistry
- RNA, Viral/genetics
- Reverse Transcriptase Polymerase Chain Reaction
- Rhadinovirus/genetics
- Transcription, Genetic
Collapse
Affiliation(s)
- Kevin W Diebel
- Program in Molecular Biology, University of Colorado School of Medicine, Aurora, CO 80045, USA; Department of Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA.
| | - David J Claypool
- Department of Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Linda F van Dyk
- Program in Molecular Biology, University of Colorado School of Medicine, Aurora, CO 80045, USA; Department of Microbiology, University of Colorado School of Medicine, Aurora, CO 80045, USA; Department of Immunology, University of Colorado School of Medicine, Aurora, CO 80045, USA.
| |
Collapse
|
89
|
Darrow EM, Chadwick BP. A novel tRNA variable number tandem repeat at human chromosome 1q23.3 is implicated as a boundary element based on conservation of a CTCF motif in mouse. Nucleic Acids Res 2014; 42:6421-35. [PMID: 24753417 PMCID: PMC4041453 DOI: 10.1093/nar/gku280] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 03/24/2014] [Accepted: 03/25/2014] [Indexed: 01/08/2023] Open
Abstract
The human genome contains numerous large tandem repeats, many of which remain poorly characterized. Here we report a novel transfer RNA (tRNA) tandem repeat on human chromosome 1q23.3 that shows extensive copy number variation with 9-43 repeat units per allele and displays evidence of meiotic and mitotic instability. Each repeat unit consists of a 7.3 kb GC-rich sequence that binds the insulator protein CTCF and bears the chromatin hallmarks of a bivalent domain in human embryonic stem cells. A tRNA containing tandem repeat composed of at least three 7.6-kb GC-rich repeat units reside within a syntenic region of mouse chromosome 1. However, DNA sequence analysis reveals that, with the exception of the tRNA genes that account for less than 6% of a repeat unit, the remaining 7.2 kb is not conserved with the notable exception of a 24 base pair sequence corresponding to the CTCF binding site, suggesting an important role for this protein at the locus.
Collapse
Affiliation(s)
- Emily M Darrow
- Department of Biological Science, Florida State University, Tallahassee, FL 32306-4295, USA
| | - Brian P Chadwick
- Department of Biological Science, Florida State University, Tallahassee, FL 32306-4295, USA
| |
Collapse
|
90
|
Schurr R, Kuehnle A. Microalgae Crop Improvement: Tools for Quality Control and Molecular Breeding. Ind Biotechnol (New Rochelle N Y) 2014. [DOI: 10.1089/ind.2013.0035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
91
|
Soma A. Circularly permuted tRNA genes: their expression and implications for their physiological relevance and development. Front Genet 2014; 5:63. [PMID: 24744771 PMCID: PMC3978253 DOI: 10.3389/fgene.2014.00063] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 03/12/2014] [Indexed: 12/02/2022] Open
Abstract
A number of genome analyses and searches using programs that focus on the RNA-specific bulge-helix-bulge (BHB) motif have uncovered a wide variety of disrupted tRNA genes. The results of these analyses have shown that genetic information encoding functional RNAs is described in the genome cryptically and is retrieved using various strategies. One such strategy is represented by circularly permuted tRNA genes, in which the sequences encoding the 5′-half and 3′-half of the specific tRNA are separated and inverted on the genome. Biochemical analyses have defined a processing pathway in which the termini of tRNA precursors (pre-tRNAs) are ligated to form a characteristic circular RNA intermediate, which is then cleaved at the acceptor-stem to generate the typical cloverleaf structure with functional termini. The sequences adjacent to the processing site located between the 3′-half and the 5′-half of pre-tRNAs potentially form a BHB motif, which is the dominant recognition site for the tRNA-intron splicing endonuclease, suggesting that circularization of pre-tRNAs depends on the splicing machinery. Some permuted tRNAs contain a BHB-mediated intron in their 5′- or 3′-half, meaning that removal of an intron, as well as swapping of the 5′- and 3′-halves, are required during maturation of their pre-tRNAs. To date, 34 permuted tRNA genes have been identified from six species of unicellular algae and one archaeon. Although their physiological significance and mechanism of development remain unclear, the splicing system of BHB motifs seems to have played a key role in the formation of permuted tRNA genes. In this review, current knowledge of circularly permuted tRNA genes is presented and some unanswered questions regarding these species are discussed.
Collapse
Affiliation(s)
- Akiko Soma
- Graduate School of Horticulture, Chiba University Matsudo, Japan
| |
Collapse
|
92
|
Luo X, Chae M, Krishnakumar R, Danko CG, Kraus WL. Dynamic reorganization of the AC16 cardiomyocyte transcriptome in response to TNFα signaling revealed by integrated genomic analyses. BMC Genomics 2014; 15:155. [PMID: 24564208 PMCID: PMC3945043 DOI: 10.1186/1471-2164-15-155] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 02/05/2014] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Defining cell type-specific transcriptomes in mammals can be challenging, especially for unannotated regions of the genome. We have developed an analytical pipeline called groHMM for annotating primary transcripts using global nuclear run-on sequencing (GRO-seq) data. Herein, we use this pipeline to characterize the transcriptome of an immortalized adult human ventricular cardiomyocyte cell line (AC16) in response to signaling by tumor necrosis factor alpha (TNFα), which is controlled in part by NF-κB, a key transcriptional regulator of inflammation. A unique aspect of this work is the use of the RNA polymerase II (Pol II) inhibitor α-amanitin, which we used to define a set of RNA polymerase I and III (Pol I and Pol III) transcripts. RESULTS Using groHMM, we identified ~30,000 coding and non-coding transcribed regions in AC16 cells, which includes a set of unique Pol I and Pol III primary transcripts. Many of these transcripts have not been annotated previously, including enhancer RNAs originating from NF-κB binding sites. In addition, we observed that AC16 cells rapidly and dynamically reorganize their transcriptomes in response to TNFα stimulation in an NF-κB-dependent manner, switching from a basal state to a proinflammatory state affecting a spectrum of cardiac-associated protein-coding and non-coding genes. Moreover, we observed distinct Pol II dynamics for up- and downregulated genes, with a rapid release of Pol II into productive elongation for TNFα-stimulated genes. As expected, the TNFα-induced changes in the AC16 transcriptome resulted in corresponding changes in cognate mRNA and protein levels in a similar manner, but with delayed kinetics. CONCLUSIONS Our studies illustrate how computational genomics can be used to characterize the signal-regulated transcriptome in biologically relevant cell types, providing new information about how the human genome is organized, transcribed and regulated. In addition, they show how α-amanitin can be used to reveal the Pol I and Pol III transcriptome. Furthermore, they shed new light on the regulation of the cardiomyocyte transcriptome in response to a proinflammatory signal and help to clarify the link between inflammation and cardiomyocyte function at the transcriptional level.
Collapse
Affiliation(s)
- Xin Luo
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Graduate School of Biomedical Sciences, Program in Genetics and Development, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Minho Chae
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Raga Krishnakumar
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14850, USA
- Graduate Field of Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, NY 14853, USA
- Current address: Institute for Regenerative Medicine, University of California, San Francisco 94143, USA
| | - Charles G Danko
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14850, USA
- Department of Biological Statistics and Computational Biology, Cornell University, Ithaca, NY 14850, USA
| | - W Lee Kraus
- Laboratory of Signaling and Gene Regulation, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Graduate School of Biomedical Sciences, Program in Genetics and Development, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14850, USA
- Graduate Field of Biochemistry, Molecular and Cell Biology, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
93
|
Alla RK, Cairns BR. RNA polymerase III transcriptomes in human embryonic stem cells and induced pluripotent stem cells, and relationships with pluripotency transcription factors. PLoS One 2014; 9:e85648. [PMID: 24465633 PMCID: PMC3896398 DOI: 10.1371/journal.pone.0085648] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 11/29/2013] [Indexed: 01/03/2023] Open
Abstract
Recent genomic approaches have revealed that the repertoire of RNA Pol III-transcribed genes varies in different human cell types, and that this variation is likely determined by a combination of the chromatin landscape, cell-specific DNA-binding transcription factors, and collaboration with RNA Pol II. Although much is known about this regulation in differentiated human cells, there is presently little understanding of this aspect of the Pol III system in human ES cells. Here, we determine the occupancy profiles of Pol III components in human H1 ES cells, and also induced pluripotent cells, and compare to known profiles of chromatin, transcription factors, and RNA expression. We find a relatively large fraction of the Pol III repertoire occupied in human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs). In ES cells we find clear correlations between Pol III occupancy and active chromatin. Interestingly, we find a highly significant fraction of Pol III-occupied genes with adjacent binding events by pluripotency factors in ES cells, especially NANOG. Notably, in human ES cells we find H3K27me3 adjacent to but not overlapping many active Pol III loci. We observe in all such cases, a peak of H3K4me3 and/or RNA Pol II, between the H3K27me3 and Pol III binding peaks, suggesting that H3K4me3 and Pol II activity may "insulate" Pol III from neighboring repressive H3K27me3. Further, we find iPSCs have a larger Pol III repertoire than their precursors. Finally, the active Pol III genome in iPSCs is not completely reprogrammed to a hESC like state and partially retains the transcriptional repertoire of the precursor. Together, our correlative results are consistent with Pol III binding and activity in human ES cells being enabled by active/permissive chromatin that is shaped in part by the pluripotency network of transcription factors and RNA Pol II activity.
Collapse
Affiliation(s)
- Ravi K. Alla
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - Bradley R. Cairns
- Department of Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
- * E-mail:
| |
Collapse
|
94
|
Wang J, Tadeo X, Hou H, Tu PG, Thompson J, Yates JR, Jia S. Epe1 recruits BET family bromodomain protein Bdf2 to establish heterochromatin boundaries. Genes Dev 2013; 27:1886-902. [PMID: 24013502 PMCID: PMC3778242 DOI: 10.1101/gad.221010.113] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Heterochromatin spreading leads to gene silencing, and boundary elements constrain such spreading. IRC inverted repeats are required for boundary function at centromeric heterochromatin in fission yeast. Jia and colleagues now identify BET family homolog Bdf2 as required for heterochromatin boundary function at IRCs. Bdf2 interacts with boundary protein Epe1, recognizes acetylated histone H4 tails, and antagonizes Sir2-mediated deacetylation of histone H4K16. This study illustrates a mechanism for establishing chromosome boundaries through recruitment of a factor that protects euchromatic histone modifications. Heterochromatin spreading leads to the silencing of genes within its path, and boundary elements have evolved to constrain such spreading. In fission yeast, heterochromatin at centromeres I and III is flanked by inverted repeats termed IRCs, which are required for proper boundary functions. However, the mechanisms by which IRCs prevent heterochromatin spreading are unknown. Here, we identified Bdf2, which is homologous to the mammalian bromodomain and extraterminal (BET) family double bromodomain proteins involved in diverse types of cancers, as a factor required for proper boundary function at IRCs. Bdf2 is enriched at IRCs through its interaction with the boundary protein Epe1. The bromodomains of Bdf2 recognize acetylated histone H4 tails and antagonize Sir2-mediated deacetylation of histone H4K16. Furthermore, abolishing H4K16 acetylation (H4K16ac) with an H4K16R mutation promotes heterochromatin spreading, and mimicking H4K16ac by an H4K16Q mutation blocks heterochromatin spreading at IRCs. Our results thus illustrate a mechanism of establishing chromosome boundaries at specific sites through the recruitment of a factor that protects euchromatic histone modifications. They also reveal a previously unappreciated function of H4K16ac in cooperation with H3K9 methylation to regulate heterochromatin spreading.
Collapse
Affiliation(s)
- Jiyong Wang
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| | | | | | | | | | | | | |
Collapse
|
95
|
Lukoszek R, Mueller-Roeber B, Ignatova Z. Interplay between polymerase II- and polymerase III-assisted expression of overlapping genes. FEBS Lett 2013; 587:3692-5. [PMID: 24113658 DOI: 10.1016/j.febslet.2013.09.033] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 09/22/2013] [Accepted: 09/23/2013] [Indexed: 11/18/2022]
Abstract
Up to 15% of the genes in different genomes overlap. This architecture, although beneficial for the genome size, represents an obstacle for simultaneous transcription of both genes. Here we analyze the interference between RNA-polymerase II (Pol II) and RNA-polymerase III (Pol III) when transcribing their target genes encoded on opposing strands within the same DNA fragment in Arabidopsis thaliana. The expression of a Pol II-dependent protein-coding gene negatively correlated with the transcription of a Pol III-dependent, tRNA-coding gene set. We suggest that the architecture of the overlapping genes introduces an additional layer of control of gene expression.
Collapse
Affiliation(s)
- Radoslaw Lukoszek
- Department of Biochemistry, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany; Department of Molecular Biology, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany
| | | | | |
Collapse
|
96
|
Binding of TFIIIC to sine elements controls the relocation of activity-dependent neuronal genes to transcription factories. PLoS Genet 2013; 9:e1003699. [PMID: 23966877 PMCID: PMC3744447 DOI: 10.1371/journal.pgen.1003699] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 06/20/2013] [Indexed: 12/31/2022] Open
Abstract
In neurons, the timely and accurate expression of genes in response to synaptic activity relies on the interplay between epigenetic modifications of histones, recruitment of regulatory proteins to chromatin and changes to nuclear structure. To identify genes and regulatory elements responsive to synaptic activation in vivo, we performed a genome-wide ChIPseq analysis of acetylated histone H3 using somatosensory cortex of mice exposed to novel enriched environmental (NEE) conditions. We discovered that Short Interspersed Elements (SINEs) located distal to promoters of activity-dependent genes became acetylated following exposure to NEE and were bound by the general transcription factor TFIIIC. Importantly, under depolarizing conditions, inducible genes relocated to transcription factories (TFs), and this event was controlled by TFIIIC. Silencing of the TFIIIC subunit Gtf3c5 in non-stimulated neurons induced uncontrolled relocation to TFs and transcription of activity-dependent genes. Remarkably, in cortical neurons, silencing of Gtf3c5 mimicked the effects of chronic depolarization, inducing a dramatic increase of both dendritic length and branching. These findings reveal a novel and essential regulatory function of both SINEs and TFIIIC in mediating gene relocation and transcription. They also suggest that TFIIIC may regulate the rearrangement of nuclear architecture, allowing the coordinated expression of activity-dependent neuronal genes. In neurons, acetylation of histones and other epigenetic modifications influence gene expression in response to synaptic activity. Genes that are concomitantly expressed in response to stimulation are transcribed at specific nuclear foci, known as transcription factories (TFs) that are enriched with active RNA Polymerase II and often include specific transcription factors. Here, we show a novel regulatory role for Short Interspersed Elements (SINEs) located in the proximity of activity-regulated genes. SINEs represent a new class of regulatory sequences that function as coordinators of depolarization-dependent transcription. Binding of the general transcription factor TFIIIC to SINEs regulates activity-dependent transcription, relocation of inducible genes to transcription factories and dendritogenesis. Our study provides new fundamental insights into the mechanisms by which relocation of inducible genes to transcription factories and changes of nuclear architecture coordinate the transcriptional program in response to neuronal activity.
Collapse
|
97
|
Nizami ZF, Gall JG. Pearls are novel Cajal body-like structures in the Xenopus germinal vesicle that are dependent on RNA pol III transcription. Chromosome Res 2013; 20:953-69. [PMID: 23135638 DOI: 10.1007/s10577-012-9320-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
We have identified novel nuclear bodies, which we call pearls, in the giant oocyte nuclei of Xenopus laevis and Xenopus tropicalis. Pearls are attached to the lampbrush chromosomes at specific loci that are transcribed by RNA polymerase III, and they disappear after inhibition of polymerase III activity. Pearls are enriched for small Cajal body-specific RNAs (scaRNAs), which are guide RNAs that modify specific nucleotides on splicing snRNAs. Surprisingly, snRNAs themselves are not present in pearls, suggesting that pearls are not functionally equivalent to Cajal bodies in other systems, which contain both snRNAs and scaRNAs. We suggest that pearls may function in the processing of RNA polymerase III transcripts, such as tRNA, 5S rRNA, and other short non-coding RNAs.
Collapse
Affiliation(s)
- Zehra F Nizami
- Department of Embryology, Carnegie Institution for Science, 3520 San Martin Drive, Baltimore, MD 21218, USA
| | | |
Collapse
|
98
|
Ray S, Johnston R, Campbell DC, Nugent S, McDade SS, Waugh D, Panov KI. Androgens and estrogens stimulate ribosome biogenesis in prostate and breast cancer cells in receptor dependent manner. Gene 2013; 526:46-53. [PMID: 23608168 DOI: 10.1016/j.gene.2013.04.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2013] [Revised: 03/05/2013] [Accepted: 04/01/2013] [Indexed: 11/29/2022]
Abstract
Ribosome biogenesis is a fundamental cellular process intimately linked to cell growth and proliferation, which is upregulated in most of cancers especially in aggressive cancers. In breast and prostate cancers steroid hormone receptor signalling is the principal stimulus for cancer growth and progression. Here we investigated the link between estrogen and androgen receptor signalling and the initial stage of ribosome biogenesis - transcription of rRNA genes. We have discovered that oestrogen or androgen treatment can positively regulate rRNA synthesis in breast and prostate cancer cells respectively and that this effect is receptor dependent. This novel and interesting finding suggests a previously unidentified link between steroid hormone receptor signalling pathways and the regulation of ribosome biogenesis.
Collapse
Affiliation(s)
- Swagat Ray
- School of Biological Sciences, The Queen's University Belfast, Belfast BT9 7BL, UK
| | | | | | | | | | | | | |
Collapse
|
99
|
Song MS, Baek YH, Pascua PNQ, Kwon HI, Park SJ, Kim EH, Lim GJ, Choi YK. Establishment of Vero cell RNA polymerase I-driven reverse genetics for Influenza A virus and its application for pandemic (H1N1) 2009 influenza virus vaccine production. J Gen Virol 2013; 94:1230-1235. [PMID: 23486669 DOI: 10.1099/vir.0.051284-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The constant threat of newly emerging influenza viruses with pandemic potential requires the need for prompt vaccine production. Here, we utilized the Vero cell polymerase I (PolI) promoter, rather than the commonly used human PolI promoter, in an established reverse-genetics system to rescue viable influenza viruses in Vero cells, an approved cell line for human vaccine production. The Vero PolI promoter was more efficient in Vero cells and demonstrated enhanced transcription levels and virus rescue rates commensurate with that of the human RNA PolI promoter in 293T cells. These results appeared to be associated with more efficient generation of A(H1N1)pdm09- and H5N1-derived vaccine seed viruses in Vero cells, whilst the rescue rates in 293T cells were comparable. Our study provides an alternative means for improving vaccine preparation by using a novel reverse-genetics system for generating influenza A viruses.
Collapse
Affiliation(s)
- Min-Suk Song
- College of Medicine and Medical Research Institute, Chungbuk National University, 12 Gaeshin-Dong, Heungduk-Ku, Cheongju, Republic of Korea
| | - Yun Hee Baek
- College of Medicine and Medical Research Institute, Chungbuk National University, 12 Gaeshin-Dong, Heungduk-Ku, Cheongju, Republic of Korea
| | - Philippe Noriel Q Pascua
- College of Medicine and Medical Research Institute, Chungbuk National University, 12 Gaeshin-Dong, Heungduk-Ku, Cheongju, Republic of Korea
| | - Hyeok-Il Kwon
- College of Medicine and Medical Research Institute, Chungbuk National University, 12 Gaeshin-Dong, Heungduk-Ku, Cheongju, Republic of Korea
| | - Su-Jin Park
- College of Medicine and Medical Research Institute, Chungbuk National University, 12 Gaeshin-Dong, Heungduk-Ku, Cheongju, Republic of Korea
| | - Eun-Ha Kim
- College of Medicine and Medical Research Institute, Chungbuk National University, 12 Gaeshin-Dong, Heungduk-Ku, Cheongju, Republic of Korea
| | - Gyo-Jin Lim
- College of Medicine and Medical Research Institute, Chungbuk National University, 12 Gaeshin-Dong, Heungduk-Ku, Cheongju, Republic of Korea
| | - Young-Ki Choi
- College of Medicine and Medical Research Institute, Chungbuk National University, 12 Gaeshin-Dong, Heungduk-Ku, Cheongju, Republic of Korea
| |
Collapse
|
100
|
Shimizu A, Kobayashi N, Shimada K, Oura K, Tanaka T, Okamoto A, Kondo K. Novel gene therapy viral vector using non-oncogenic lymphotropic herpesvirus. PLoS One 2013; 8:e56027. [PMID: 23409116 PMCID: PMC3569415 DOI: 10.1371/journal.pone.0056027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Accepted: 01/04/2013] [Indexed: 01/26/2023] Open
Abstract
Despite the use of retroviral vectors, efficiently introducing target genes into immunocytes such as T cells is difficult. In addition, retroviral vectors carry risks associated with the oncogenicity of the native virus and the potential for introducing malignancy in recipients due to genetic carryover from immortalized cells used during vector production. To address these issues, we have established a new virus vector that is based on human herpesvirus 6 (HHV-6), a non-oncogenic lymphotropic herpesvirus that infects CD4+ T cells, macrophages, and dendritic cells. In the present study, we have altered the cell specificity of the resulting recombinant HHV-6 by knocking out the U2–U8 genes. The resulting virus proliferated only in activated cord blood cells and not in peripheral blood cells. Umbilical cord blood cells produced replication-defective recombinant virus in sufficiently high titer to omit the use of immortalized cells during vector production. HHV-6 vectors led to high rates (>90%) of gene transduction in both CD4+ and CD8+ T cells. These viruses showed low-level replication of viral DNA that supported greater expression of the induced genes than that of other methods but that was insufficient to support the production of replication-competent virus. Furthermore, HHV-6 vectors containing short hairpin RNAs against CD4 and HIV Gag remarkably inhibited the production of these proteins and HIV particles. Here we demonstrate the utility of HHV-6 as a new non-carcinogenic viral vector for immunologic diseases and immunotherapy.
Collapse
Affiliation(s)
- Akihiro Shimizu
- Department of Virology, The Jikei University School of Medicine, Tokyo, Japan
| | - Nobuyuki Kobayashi
- Department of Virology, The Jikei University School of Medicine, Tokyo, Japan
| | - Kazuya Shimada
- Department of Virology, The Jikei University School of Medicine, Tokyo, Japan
| | - Kuniaki Oura
- Department of Obstetrics and Gynecology, The Jikei University School of Medicine, Tokyo, Japan
| | - Tadao Tanaka
- Department of Obstetrics and Gynecology, The Jikei University School of Medicine, Tokyo, Japan
| | - Aikou Okamoto
- Department of Obstetrics and Gynecology, The Jikei University School of Medicine, Tokyo, Japan
| | - Kazuhiro Kondo
- Department of Virology, The Jikei University School of Medicine, Tokyo, Japan
- * E-mail:
| |
Collapse
|