51
|
Liu S, Li A, Liu Y, Yan H, Wang M, Sun Y, Fan L, Song M, Xu K, Chen J, Chen Y, Wang H, Guo H, Wan P, Lv L, Yang Y, Li P, Lu L, Yan J, Wang H, Zhang H, Wu H, Ning Y, Zhang D, Jiang T, Liu B. Polygenic effects of schizophrenia on hippocampal grey matter volume and hippocampus-medial prefrontal cortex functional connectivity. Br J Psychiatry 2020; 216:267-274. [PMID: 31169117 DOI: 10.1192/bjp.2019.127] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Schizophrenia is a complex mental disorder with high heritability and polygenic inheritance. Multimodal neuroimaging studies have also indicated that abnormalities of brain structure and function are a plausible neurobiological characterisation of schizophrenia. However, the polygenic effects of schizophrenia on these imaging endophenotypes have not yet been fully elucidated. AIMS To investigate the effects of polygenic risk for schizophrenia on the brain grey matter volume and functional connectivity, which are disrupted in schizophrenia. METHOD Genomic and neuroimaging data from a large sample of Han Chinese patients with schizophrenia (N = 509) and healthy controls (N = 502) were included in this study. We examined grey matter volume and functional connectivity via structural and functional magnetic resonance imaging, respectively. Using the data from a recent meta-analysis of a genome-wide association study that comprised a large number of Chinese people, we calculated a polygenic risk score (PGRS) for each participant. RESULTS The imaging genetic analysis revealed that the individual PGRS showed a significantly negative correlation with the hippocampal grey matter volume and hippocampus-medial prefrontal cortex functional connectivity, both of which were lower in the people with schizophrenia than in the controls. We also found that the observed neuroimaging measures showed weak but similar changes in unaffected first-degree relatives of patients with schizophrenia. CONCLUSIONS These findings suggested that genetically influenced brain grey matter volume and functional connectivity may provide important clues for understanding the pathological mechanisms of schizophrenia and for the early diagnosis of schizophrenia.
Collapse
Affiliation(s)
- Shu Liu
- MSc Student, Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences.,School of Artificial Intelligence, University of Chinese Academy of Sciences, China
| | - Ang Li
- School of Artificial Intelligence, University of Chinese Academy of Sciences, China.,PhD Student, Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences
| | - Yong Liu
- School of Artificial Intelligence, University of Chinese Academy of Sciences, China.,Professor, Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences
| | - Hao Yan
- Associate Professor, Peking University Sixth Hospital, Institute of Mental Health.,Key Laboratory of Mental Health, Ministry of Health (Peking University), China
| | - Meng Wang
- School of Artificial Intelligence, University of Chinese Academy of Sciences, China.,PhD Student, Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences
| | - Yuqing Sun
- School of Artificial Intelligence, University of Chinese Academy of Sciences, China.,PhD Student, Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences
| | - Lingzhong Fan
- School of Artificial Intelligence, University of Chinese Academy of Sciences, China.,Professor, Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences
| | - Ming Song
- School of Artificial Intelligence, University of Chinese Academy of Sciences, China.,Associate Professor, Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences
| | - Kaibin Xu
- School of Artificial Intelligence, University of Chinese Academy of Sciences, China.,PhD Student, Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences
| | - Jun Chen
- Associate Professor, Department of Radiology, Renmin Hospital of Wuhan University, China
| | - Yunchun Chen
- Associate Professor, Department of Psychiatry, Xijing Hospital, The Fourth Military Medical University, China
| | - Huaning Wang
- Associate Professor, Department of Psychiatry, Xijing Hospital, The Fourth Military Medical University, China
| | - Hua Guo
- Professor, Zhumadian Psychiatric Hospital, China
| | - Ping Wan
- Professor, Zhumadian Psychiatric Hospital, China
| | - Luxian Lv
- Professor, Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University.,Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, China
| | - Yongfeng Yang
- Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, China.,Attending Doctor, Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University
| | - Peng Li
- Key Laboratory of Mental Health, Ministry of Health (Peking University), China.,Associate Professor, Peking University Sixth Hospital, Institute of Mental Health
| | - Lin Lu
- Key Laboratory of Mental Health, Ministry of Health (Peking University), China.,Professor, Peking University Sixth Hospital, Institute of Mental Health
| | - Jun Yan
- Key Laboratory of Mental Health, Ministry of Health (Peking University), China.,Professor, Peking University Sixth Hospital, Institute of Mental Health
| | - Huiling Wang
- Professor, Department of Radiology, Renmin Hospital of Wuhan University, China
| | - Hongxing Zhang
- Henan Key Lab of Biological Psychiatry, Xinxiang Medical University, China.,Professor, Department of Psychiatry, Henan Mental Hospital, The Second Affiliated Hospital of Xinxiang Medical University
| | - Huawang Wu
- Attending Doctor, Guangzhou Brain Hospital, The Affiliated Brain Hospital of Guangzhou Medical University, China
| | - Yuping Ning
- Professor, Guangzhou Brain Hospital, The Affiliated Brain Hospital of Guangzhou Medical University, China
| | - Dai Zhang
- Key Laboratory of Mental Health, Ministry of Health (Peking University), China.,Professor, Peking University Sixth Hospital, Institute of Mental Health
| | - Tianzi Jiang
- School of Artificial Intelligence, University of Chinese Academy of Sciences, China.,Professor, Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences
| | - Bing Liu
- School of Artificial Intelligence, University of Chinese Academy of Sciences, China.,Professor, Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences
| |
Collapse
|
52
|
Caspi Y, Brouwer RM, Schnack HG, van de Nieuwenhuijzen ME, Cahn W, Kahn RS, Niessen WJ, van der Lugt A, Pol HH. Changes in the intracranial volume from early adulthood to the sixth decade of life: A longitudinal study. Neuroimage 2020; 220:116842. [PMID: 32339774 DOI: 10.1016/j.neuroimage.2020.116842] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 03/04/2020] [Accepted: 04/06/2020] [Indexed: 01/09/2023] Open
Abstract
Normal brain-aging occurs at all structural levels. Excessive pathophysiological changes in the brain, beyond the normal one, are implicated in the etiology of brain disorders such as severe forms of the schizophrenia spectrum and dementia. To account for brain-aging in health and disease, it is critical to study the age-dependent trajectories of brain biomarkers at various levels and among different age groups. The intracranial volume (ICV) is a key biological marker, and changes in the ICV during the lifespan can teach us about the biology of development, aging, and gene X environment interactions. However, whether ICV changes with age in adulthood is not resolved. Applying a semi-automatic in-house-built algorithm for ICV extraction on T1w MR brain scans in the Dutch longitudinal cohort (GROUP), we measured ICV changes. Individuals between the ages of 16 and 55 years were scanned up to three consecutive times with 3.32±0.32 years between consecutive scans (N = 482, 359, 302). Using the extracted ICVs, we calculated ICV longitudinal aging-trajectories based on three analysis methods; direct calculation of ICV differences between the first and the last scan, fitting all ICV measurements of individuals to a straight line, and applying a global linear mixed model fitting. We report statistically significant increase in the ICV in adulthood until the fourth decade of life (average change +0.03%/y, or about 0.5 ml/y, at age 20), and decrease in the ICV afterward (-0.09%/y, or about -1.2 ml/y, at age 55). To account for previous cross-sectional reports of ICV changes, we analyzed the same data using a cross-sectional approach. Our cross-sectional analysis detected ICV changes consistent with the previously reported cross-sectional effect. However, the reported amount of cross-sectional changes within this age range was significantly larger than the longitudinal changes. We attribute the cross-sectional results to a generational effect. In conclusion, the human intracranial volume does not stay constant during adulthood but instead shows a small increase during young adulthood and a decrease thereafter from the fourth decade of life. The age-related changes in the longitudinalmeasure are smaller than those reported using cross-sectional approaches and unlikely to affect structural brain imaging studies correcting for intracranial volume considerably. As to the possible mechanisms involved, this awaits further study, although thickening of the meninges and skull bones have been proposed, as well as a smaller amount of brain fluids addition above the overall loss of brain tissue.
Collapse
Affiliation(s)
- Yaron Caspi
- UMC Utrecht Brain Center, Department of Psychiatry, University Medical Center Utrecht, the Netherlands.
| | - Rachel M Brouwer
- UMC Utrecht Brain Center, Department of Psychiatry, University Medical Center Utrecht, the Netherlands
| | - Hugo G Schnack
- UMC Utrecht Brain Center, Department of Psychiatry, University Medical Center Utrecht, the Netherlands
| | | | - Wiepke Cahn
- UMC Utrecht Brain Center, Department of Psychiatry, University Medical Center Utrecht, the Netherlands
| | - René S Kahn
- UMC Utrecht Brain Center, Department of Psychiatry, University Medical Center Utrecht, the Netherlands; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Wiro J Niessen
- Department of Radiology and Nuclear Medicine, Erasmus MC: University Medical Center Rotterdam, the Netherlands
| | - Aad van der Lugt
- Department of Radiology and Nuclear Medicine, Erasmus MC: University Medical Center Rotterdam, the Netherlands
| | - Hilleke Hulshoff Pol
- UMC Utrecht Brain Center, Department of Psychiatry, University Medical Center Utrecht, the Netherlands.
| |
Collapse
|
53
|
Indicated association between polygenic risk score and treatment-resistance in a naturalistic sample of patients with schizophrenia spectrum disorders. Schizophr Res 2020; 218:55-62. [PMID: 32171635 DOI: 10.1016/j.schres.2020.03.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 03/02/2020] [Accepted: 03/05/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND One third of people diagnosed with schizophrenia fail to respond adequately to antipsychotic medication, resulting in persisting disabling symptoms, higher rates of hospitalization and higher costs for society. In an effort to better understand the mechanisms behind resistance to antipsychotic treatment in schizophrenia, we investigated its potential relationship to the genetic architecture of the disorder. METHODS Patients diagnosed with a schizophrenia spectrum disorder (N = 321) were classified as either being treatment-resistant (N = 108) or non-treatment-resistant (N = 213) to antipsychotic medication using defined consensus criteria. A schizophrenia polygenic risk score based on genome-wide association studies (GWAS) was calculated for each patient and binary logistic regression was performed to investigate the association between polygenetic risk and treatment resistance. We adjusted for principal components, batch number, age and sex. Additional analyses were performed to investigate associations with demographic and clinical variables. RESULTS High levels of polygenic risk score for schizophrenia significantly predicted treatment resistance (p = 0.003). The positive predictive value of the model was 61.5% and the negative predictive value was 71.7%. The association was significant for one (p = 0.01) out of five tested SNP significance thresholds. Season of birth was able to predict treatment-resistance in the regression model (p = 0.05). CONCLUSIONS The study indicates that treatment-resistance to antipsychotic medication is associated with higher polygenetic risk of schizophrenia, suggesting a link between antipsychotics mechanism of action and the genetic underpinnings of the disorder.
Collapse
|
54
|
Thompson PM, Jahanshad N, Ching CRK, Salminen LE, Thomopoulos SI, Bright J, Baune BT, Bertolín S, Bralten J, Bruin WB, Bülow R, Chen J, Chye Y, Dannlowski U, de Kovel CGF, Donohoe G, Eyler LT, Faraone SV, Favre P, Filippi CA, Frodl T, Garijo D, Gil Y, Grabe HJ, Grasby KL, Hajek T, Han LKM, Hatton SN, Hilbert K, Ho TC, Holleran L, Homuth G, Hosten N, Houenou J, Ivanov I, Jia T, Kelly S, Klein M, Kwon JS, Laansma MA, Leerssen J, Lueken U, Nunes A, Neill JO, Opel N, Piras F, Piras F, Postema MC, Pozzi E, Shatokhina N, Soriano-Mas C, Spalletta G, Sun D, Teumer A, Tilot AK, Tozzi L, van der Merwe C, Van Someren EJW, van Wingen GA, Völzke H, Walton E, Wang L, Winkler AM, Wittfeld K, Wright MJ, Yun JY, Zhang G, Zhang-James Y, Adhikari BM, Agartz I, Aghajani M, Aleman A, Althoff RR, Altmann A, Andreassen OA, Baron DA, Bartnik-Olson BL, Marie Bas-Hoogendam J, Baskin-Sommers AR, Bearden CE, Berner LA, Boedhoe PSW, Brouwer RM, Buitelaar JK, Caeyenberghs K, Cecil CAM, Cohen RA, Cole JH, Conrod PJ, De Brito SA, de Zwarte SMC, Dennis EL, Desrivieres S, Dima D, Ehrlich S, Esopenko C, Fairchild G, Fisher SE, Fouche JP, Francks C, Frangou S, Franke B, Garavan HP, Glahn DC, Groenewold NA, Gurholt TP, Gutman BA, Hahn T, Harding IH, Hernaus D, Hibar DP, Hillary FG, Hoogman M, Hulshoff Pol HE, Jalbrzikowski M, Karkashadze GA, Klapwijk ET, Knickmeyer RC, Kochunov P, Koerte IK, Kong XZ, Liew SL, Lin AP, Logue MW, Luders E, Macciardi F, Mackey S, Mayer AR, McDonald CR, McMahon AB, Medland SE, Modinos G, Morey RA, Mueller SC, Mukherjee P, Namazova-Baranova L, Nir TM, Olsen A, Paschou P, Pine DS, Pizzagalli F, Rentería ME, Rohrer JD, Sämann PG, Schmaal L, Schumann G, Shiroishi MS, Sisodiya SM, Smit DJA, Sønderby IE, Stein DJ, Stein JL, Tahmasian M, Tate DF, Turner JA, van den Heuvel OA, van der Wee NJA, van der Werf YD, van Erp TGM, van Haren NEM, van Rooij D, van Velzen LS, Veer IM, Veltman DJ, Villalon-Reina JE, Walter H, Whelan CD, Wilde EA, Zarei M, Zelman V. ENIGMA and global neuroscience: A decade of large-scale studies of the brain in health and disease across more than 40 countries. Transl Psychiatry 2020; 10:100. [PMID: 32198361 PMCID: PMC7083923 DOI: 10.1038/s41398-020-0705-1] [Citation(s) in RCA: 317] [Impact Index Per Article: 79.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 12/11/2019] [Accepted: 12/20/2019] [Indexed: 02/07/2023] Open
Abstract
This review summarizes the last decade of work by the ENIGMA (Enhancing NeuroImaging Genetics through Meta Analysis) Consortium, a global alliance of over 1400 scientists across 43 countries, studying the human brain in health and disease. Building on large-scale genetic studies that discovered the first robustly replicated genetic loci associated with brain metrics, ENIGMA has diversified into over 50 working groups (WGs), pooling worldwide data and expertise to answer fundamental questions in neuroscience, psychiatry, neurology, and genetics. Most ENIGMA WGs focus on specific psychiatric and neurological conditions, other WGs study normal variation due to sex and gender differences, or development and aging; still other WGs develop methodological pipelines and tools to facilitate harmonized analyses of "big data" (i.e., genetic and epigenetic data, multimodal MRI, and electroencephalography data). These international efforts have yielded the largest neuroimaging studies to date in schizophrenia, bipolar disorder, major depressive disorder, post-traumatic stress disorder, substance use disorders, obsessive-compulsive disorder, attention-deficit/hyperactivity disorder, autism spectrum disorders, epilepsy, and 22q11.2 deletion syndrome. More recent ENIGMA WGs have formed to study anxiety disorders, suicidal thoughts and behavior, sleep and insomnia, eating disorders, irritability, brain injury, antisocial personality and conduct disorder, and dissociative identity disorder. Here, we summarize the first decade of ENIGMA's activities and ongoing projects, and describe the successes and challenges encountered along the way. We highlight the advantages of collaborative large-scale coordinated data analyses for testing reproducibility and robustness of findings, offering the opportunity to identify brain systems involved in clinical syndromes across diverse samples and associated genetic, environmental, demographic, cognitive, and psychosocial factors.
Collapse
Affiliation(s)
- Paul M Thompson
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA.
| | - Neda Jahanshad
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Christopher R K Ching
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Lauren E Salminen
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Sophia I Thomopoulos
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Joanna Bright
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Bernhard T Baune
- Department of Psychiatry, University of Münster, Münster, Germany
- Department of Psychiatry, The University of Melbourne, Melbourne, VIC, Australia
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Sara Bertolín
- Department of Psychiatry, Bellvitge University Hospital, Bellvitge Biomedical Research Institute-IDIBELL, Barcelona, Spain
| | - Janita Bralten
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Willem B Bruin
- Department of Psychiatry, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Robin Bülow
- Institute for Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, Greifswald, Germany
| | - Jian Chen
- Department of Computer Science and Engineering, The Ohio State University, Columbus, OH, USA
| | - Yann Chye
- Turner Institute for Brain and Mental Health, School of Psychological Sciences, Monash University, Clayton, VIC, Australia
| | - Udo Dannlowski
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Carolien G F de Kovel
- Biometris Wageningen University and Research, Wageningen, The Netherlands
- Language & Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| | - Gary Donohoe
- The Center for Neuroimaging and Cognitive Genomics, School of Psychology, National University of Ireland, Galway, Ireland
| | - Lisa T Eyler
- Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA
- Desert-Pacific Mental Illness Research, Education, and Clinical Center, VA San Diego Healthcare System, San Diego, CA, USA
| | - Stephen V Faraone
- Departments of Psychiatry and of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Pauline Favre
- INSERM Unit 955 Team 15 'Translational Psychiatry', Créteil, France
- NeuroSpin, UNIACT Lab, Psychiatry Team, CEA Saclay, Gif-Sur-Yvette, France
| | - Courtney A Filippi
- National Institute of Mental Health, National of Health, Bethesda, MD, USA
| | - Thomas Frodl
- Department of Psychiatry and Psychotherapy, Otto von Guericke University Magdeburg, Magdeburg, Germany
- Department of Psychiatry, Trinity College Dublin, Dublin, Ireland
- German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Daniel Garijo
- Information Sciences Institute, University of Southern California, Marina del Rey, CA, USA
| | - Yolanda Gil
- Information Sciences Institute, University of Southern California, Marina del Rey, CA, USA
- Department of Computer Science, University of Southern California, Los Angeles, CA, USA
| | - Hans J Grabe
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
- German Center for Neurodegenerative Diseases (DZNE), Site Rostock/Greifswald, Greifswald, Germany
| | - Katrina L Grasby
- Psychiatric Genetics, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Tomas Hajek
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
- National Institute of Mental Health, Klecany, Czech Republic
| | - Laura K M Han
- Department of Psychiatry, Amsterdam University Medical Centers, VU University Medical Center, GGZ inGeest, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Sean N Hatton
- Center for Multimodal Imaging and Genetics, University of California, San Diego, La Jolla, CA, USA
- Brain and Mind Centre, University of Sydney, Sydney, Australia
| | - Kevin Hilbert
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Tiffany C Ho
- Department of Psychiatry & Behavioral Sciences, Stanford University, Stanford, CA, USA
- Department of Psychiatry & Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
| | - Laurena Holleran
- The Center for Neuroimaging and Cognitive Genomics, School of Psychology, National University of Ireland, Galway, Ireland
| | - Georg Homuth
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | - Norbert Hosten
- Institute for Diagnostic Radiology and Neuroradiology, University Medicine Greifswald, Greifswald, Germany
| | - Josselin Houenou
- INSERM Unit 955 Team 15 'Translational Psychiatry', Créteil, France
- NeuroSpin, UNIACT Lab, Psychiatry Team, CEA Saclay, Gif-Sur-Yvette, France
- APHP, Mondor University Hospitals, School of Medicine, DMU Impact, Psychiatry Department, Créteil, France
| | - Iliyan Ivanov
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Tianye Jia
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Shanghai, China
- Centre for Population Neuroscience and Precision Medicine (PONS), MRC SGDP Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Sinead Kelly
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Department of Psychiatry, Brigham and Women's Hospital, Boston, MA, USA
| | - Marieke Klein
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
- Department of Psychiatry, UMC Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Jun Soo Kwon
- Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Brain and Cognitive Sciences, Seoul National University College of Natural Sciences, Seoul, Republic of Korea
| | - Max A Laansma
- Department of Anatomy & Neurosciences, Amsterdam UMC, Location VUmc, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Jeanne Leerssen
- Department of Sleep and Cognition, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
| | - Ulrike Lueken
- Department of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Abraham Nunes
- Department of Psychiatry, Dalhousie University, Halifax, NS, Canada
- Faculty of Computer Science, Dalhousie University, Halifax, NS, Canada
| | - Joseph O' Neill
- Child & Adolescent Psychiatry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Nils Opel
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Fabrizio Piras
- Laboratory of Neuropsychiatry, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Federica Piras
- Laboratory of Neuropsychiatry, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Merel C Postema
- Language & Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| | - Elena Pozzi
- Melbourne Neuropsychiatry Centre, Department of Psychiatry, The University of Melbourne, Melbourne, VIC, Australia
- Orygen, The National Centre of Excellence in Youth Mental Health, Melbourne, VIC, Australia
| | - Natalia Shatokhina
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Carles Soriano-Mas
- Department of Psychiatry, Bellvitge University Hospital, Bellvitge Biomedical Research Institute-IDIBELL, Barcelona, Spain
- CIBERSAM-G17, Madrid, Spain
- Department of Psychobiology and Methodology in Health Sciences, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Gianfranco Spalletta
- Laboratory of Neuropsychiatry, IRCCS Santa Lucia Foundation, Rome, Italy
- Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA
| | - Daqiang Sun
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Mental Health, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, CA, USA
| | - Alexander Teumer
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
| | - Amanda K Tilot
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Leonardo Tozzi
- Department of Psychiatry & Behavioral Sciences, Stanford University, Stanford, CA, USA
| | - Celia van der Merwe
- Stanley Center for Psychiatric Research, The Broad Institute, Cambridge, MA, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Eus J W Van Someren
- Department of Sleep and Cognition, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
- Psychiatry and Integrative Neurophysiology, VU University, Amsterdam UMC, Amsterdam, The Netherlands
| | - Guido A van Wingen
- Department of Psychiatry, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Henry Völzke
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
- German Centre for Cardiovascular Research, Partner Site Greifswald, Greifswald, Germany
| | - Esther Walton
- Department of Psychology, University of Bath, Bath, UK
| | - Lei Wang
- Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Radiology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Anderson M Winkler
- National Institute of Mental Health, National of Health, Bethesda, MD, USA
| | - Katharina Wittfeld
- Department of Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
- German Center for Neurodegenerative Diseases (DZNE), Site Rostock/Greifswald, Greifswald, Germany
| | - Margaret J Wright
- Queensland Brain Institute, University of Queensland, Brisbane, QLD, Australia
- Centre for Advanced Imaging, University of Queensland, Brisbane, QLD, Australia
| | - Je-Yeon Yun
- Seoul National University Hospital, Seoul, Republic of Korea
- Yeongeon Student Support Center, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Guohao Zhang
- Department of Computer Science and Electrical Engineering, University of Maryland, Baltimore County, MD, USA
| | - Yanli Zhang-James
- Departments of Psychiatry and of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY, USA
- Department of Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Bhim M Adhikari
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Ingrid Agartz
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health & Addiction, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Clinical Neuroscience, Centre for Psychiatric Research, Karolinska Institutet, Stockholm, Sweden
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| | - Moji Aghajani
- Department of Psychiatry, Amsterdam UMC, Location VUmc, Amsterdam Neuroscience, Amsterdam, The Netherlands
- Department of Research & Innovation, GGZ InGeest, Amsterdam, The Netherlands
| | - André Aleman
- University of Groningen, University Medical Center Groningen, Groningen, The Netherlands
| | - Robert R Althoff
- Psychiatry, Pediatrics, and Psychological Sciences, University of Vermont, Burlington, VT, USA
| | - Andre Altmann
- Centre for Medical Image Computing (CMIC), Department of Medical Physics and Biomedical Engineering, University College London, London, UK
| | - Ole A Andreassen
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health & Addiction, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - David A Baron
- Provost and Senior Vice President, Western University of Health Sciences, Pomona, CA, USA
| | | | - Janna Marie Bas-Hoogendam
- Institute of Psychology, Leiden University, Leiden, The Netherlands
- Department of Psychiatry, Leiden University Medical Center, Leiden, The Netherlands
- Leiden Institute for Brain and Cognition, Leiden, The Netherlands
| | | | - Carrie E Bearden
- Department of Psychiatry and Biobehavioral Sciences, Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Psychology, University of California, Los Angeles, CA, USA
| | - Laura A Berner
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Premika S W Boedhoe
- Department of Psychiatry, Amsterdam UMC, Location VUmc, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Rachel M Brouwer
- Department of Psychiatry, UMC Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Jan K Buitelaar
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Karen Caeyenberghs
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Burwood, VIC, Australia
| | - Charlotte A M Cecil
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus Medical Centre, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Ronald A Cohen
- Center for Cognitive Aging and Memory, University of Florida, Gainesville, FL, USA
- Clinical and Health Psychology, Gainesville, FL, USA
| | - James H Cole
- Centre for Medical Image Computing (CMIC), Department of Computer Science, University College London, London, UK
- Dementia Research Centre, Institute of Neurology, University College London, London, UK
| | - Patricia J Conrod
- Universite de Montreal, Centre de Recherche CHU Ste-Justine, Montreal, QC, Canada
| | - Stephane A De Brito
- School of Psychology and Centre for Human Brain Health, University of Birmingham, Birmingham, UK
| | - Sonja M C de Zwarte
- Department of Psychiatry, UMC Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Emily L Dennis
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
- Department of Neurology, University of Utah, Salt Lake City, UT, USA
- Psychiatry Neuroimaging Laboratory, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Sylvane Desrivieres
- Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Danai Dima
- Department of Psychology, School of Arts and Social Sciences, City, University of London, London, UK
- Department of Neuroimaging, Institute of Psychology, Psychiatry and Neurosciences, King's College London, London, UK
| | - Stefan Ehrlich
- Division of Psychological and Social Medicine and Developmental Neurosciences, Faculty of Medicine, TU Dresden, Dresden, Germany
| | - Carrie Esopenko
- Department of Rehabilitation and Movement Sciences, School of Health Professions, Rutgers Biomedical Health Sciences, Newark, NJ, USA
| | | | - Simon E Fisher
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
- Language & Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| | - Jean-Paul Fouche
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
- SU/UCT MRC Unit on Risk & Resilience in Mental Disorders, University of Stellenbosch, Stellenbosch, South Africa
| | - Clyde Francks
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
- Language & Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| | - Sophia Frangou
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- University of British Columbia, Vancouver, Canada
| | - Barbara Franke
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
- Department of Psychiatry, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Hugh P Garavan
- Department of Psychiatry, University of Vermont, Burlington, VT, USA
| | - David C Glahn
- Department of Psychiatry, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
- Olin Neuropsychiatric Research Center, Institute of Living, Hartford, CT, USA
| | - Nynke A Groenewold
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
| | - Tiril P Gurholt
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health & Addiction, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Boris A Gutman
- Biomedical Engineering, Illinois Institute of Technology, Chicago, IL, USA
- Institute for Information Transmission Problems, Kharkevich Institute, Moscow, Russian Federation
| | - Tim Hahn
- Department of Psychiatry, University of Münster, Münster, Germany
| | - Ian H Harding
- Turner Institute for Brain and Mental Health & School of Psychological Sciences, Monash University, Melbourne, VIC, Australia
| | - Dennis Hernaus
- Department of Psychiatry & Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | | | - Frank G Hillary
- Department of Psychology, Penn State University, University Park, PA, USA
- Social Life and Engineering Sciences Imaging Center, University Park, PA, USA
| | - Martine Hoogman
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Hilleke E Hulshoff Pol
- Department of Psychiatry, UMC Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | | | - George A Karkashadze
- Research and Scientific Institute of Pediatrics and Child Health, CCH RAS, Ministry of Science and Higher Education, Moscow, Russian Federation
| | - Eduard T Klapwijk
- Institute of Psychology, Leiden University, Leiden, The Netherlands
- Leiden Institute for Brain and Cognition, Leiden, The Netherlands
| | - Rebecca C Knickmeyer
- Department of Pediatrics, Michigan State University, East Lansing, MI, USA
- Institute for Quantitative Health Science and Engineering, East Lansing, MI, USA
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Peter Kochunov
- Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Inga K Koerte
- Psychiatry Neuroimaging Laboratory, Brigham & Women's Hospital, Harvard Medical School, Boston, MA, USA
- CBRAIN, Department of Child and Adolescent Psychiatry, Psychosomatics, and Psychotherapy, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Xiang-Zhen Kong
- Language & Genetics Department, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| | - Sook-Lei Liew
- Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Chan Division of Occupational Science and Occupational Therapy, Los Angeles, CA, USA
| | - Alexander P Lin
- Center for Clinical Spectroscopy, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Mark W Logue
- National Center for PTSD at Boston VA Healthcare System, Boston, MA, USA
- Department of Psychiatry, Boston University School of Medicine, Boston, MA, USA
- Biomedical Genetics, Boston University School of Medicine, Boston, MA, USA
| | - Eileen Luders
- School of Psychology, University of Auckland, Auckland, New Zealand
- Laboratory of Neuro Imaging, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Fabio Macciardi
- Department of Psychiatry and Human Behavior, University of California, Irvine, Irvine, CA, USA
| | - Scott Mackey
- Department of Psychiatry, University of Vermont, Burlington, VT, USA
| | | | - Carrie R McDonald
- Center for Multimodal Imaging and Genetics, University of California, San Diego, La Jolla, CA, USA
- Psychiatry, San Diego, CA, USA
| | - Agnes B McMahon
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
- The Kavli Foundation, Los Angeles, CA, USA
| | - Sarah E Medland
- Psychiatric Genetics, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Gemma Modinos
- Department of Neuroimaging, Institute of Psychology, Psychiatry and Neurosciences, King's College London, London, UK
- Department of Psychosis Studies, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Rajendra A Morey
- Department of Psychiatry, Duke University School of Medicine, Durham, NC, USA
- Mental Illness Research Education and Clinical Center, Durham VA Medical Center, Durham, NC, USA
| | - Sven C Mueller
- Experimental Clinical & Health Psychology, Ghent University, Ghent, Belgium
- Department of Personality, Psychological Assessment and Treatment, University of Deusto, Bilbao, Spain
| | | | - Leyla Namazova-Baranova
- Research and Scientific Institute of Pediatrics and Child Health, CCH RAS, Ministry of Science and Higher Education, Moscow, Russian Federation
- Department of Pediatrics, Russian National Research Medical University MoH RF, Moscow, Russian Federation
| | - Talia M Nir
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Alexander Olsen
- Department of Psychology, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Physical Medicine and Rehabilitation, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
| | | | - Daniel S Pine
- National Institute of Mental Health Intramural Research Program, Bethesda, MD, USA
| | - Fabrizio Pizzagalli
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Miguel E Rentería
- Department of Genetics and Computational Biology, QIMR Berghofer Medical Research Institute, Brisbane, QLD, Australia
| | - Jonathan D Rohrer
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
| | | | - Lianne Schmaal
- Orygen, The National Centre of Excellence in Youth Mental Health, Melbourne, VIC, Australia
- Centre for Youth Mental Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Gunter Schumann
- Centre for Population Neuroscience and Precision Medicine (PONS), MRC SGDP Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
- Department of Psychiatry and Psychotherapy, Charite, Humboldt University, Berlin, Germany
| | - Mark S Shiroishi
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
- Department of Radiology, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, USA
| | - Sanjay M Sisodiya
- Department of Clinical and Experimental Epilepsy, University College London, London, UK
- Chalfont Centre for Epilepsy, Chalfont St Peter, UK
| | - Dirk J A Smit
- Department of Psychiatry, Amsterdam UMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Ida E Sønderby
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health & Addiction, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Dan J Stein
- Department of Psychiatry & Neuroscience Institute, SA MRC Unit on Risk & Resilience in Mental Disorders, Cape Town, South Africa
| | - Jason L Stein
- Department of Genetics & UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Masoud Tahmasian
- Institute of Medical Science and Technology, Shahid Beheshti University, Tehran, I. R., Iran
| | - David F Tate
- Department of Neurology, TBI and Concussion Center, Salt Lake City, UT, USA
- Missouri Institute of Mental Health, Berkeley, MO, USA
| | - Jessica A Turner
- Psychology Department & Neuroscience Institute, Georgia State University, Atlanta, GA, USA
| | - Odile A van den Heuvel
- Department of Anatomy & Neurosciences, Amsterdam UMC, Location VUmc, Amsterdam Neuroscience, Amsterdam, The Netherlands
- Department of Psychiatry, Amsterdam UMC, Location VUmc, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Nic J A van der Wee
- Department of Psychiatry, Leiden University Medical Center, Leiden, The Netherlands
- Leiden Institute for Brain and Cognition, Leiden, The Netherlands
| | - Ysbrand D van der Werf
- Department of Anatomy & Neurosciences, Amsterdam UMC, Location VUmc, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Theo G M van Erp
- Clinical Translational Neuroscience Laboratory, Department of Psychiatry and Human Behavior, University of California Irvine, Irvine, CA, USA
- Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, CA, USA
| | - Neeltje E M van Haren
- Department of Psychiatry, UMC Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus Medical Centre, Rotterdam, The Netherlands
| | - Daan van Rooij
- Donders Centre for Cognitive Neuroimaging, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Laura S van Velzen
- Orygen, The National Centre of Excellence in Youth Mental Health, Melbourne, VIC, Australia
- Centre for Youth Mental Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Ilya M Veer
- Division of Mind and Brain Research, Department of Psychiatry and Psychotherapy CCM, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Dick J Veltman
- Department of Psychiatry, Amsterdam UMC, Location VUmc, Amsterdam Neuroscience, Amsterdam, The Netherlands
| | - Julio E Villalon-Reina
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, CA, USA
| | - Henrik Walter
- Division of Mind and Brain Research, Department of Psychiatry and Psychotherapy CCM, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Christopher D Whelan
- Molecular and Cellular Therapeutics, Royal College of Surgeons in Ireland, Dublin, Ireland
- Research and Early Development, Biogen Inc, Cambridge, MA, USA
| | - Elisabeth A Wilde
- Department of Neurology, University of Utah, Salt Lake City, UT, USA
- VA Salt Lake City Healthcare System, Salt Lake City, UT, USA
- Department of Physical Medicine and Rehabilitation, Baylor College of Medicine, Houston, TX, USA
| | - Mojtaba Zarei
- Institute of Medical Science and Technology, Shahid Beheshti University, Tehran, I. R., Iran
| | - Vladimir Zelman
- Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Skolkovo Institute of Science and Technology, Moscow, Russian Federation
| |
Collapse
|
55
|
Yoo T, Kim SG, Yang SH, Kim H, Kim E, Kim SY. A DLG2 deficiency in mice leads to reduced sociability and increased repetitive behavior accompanied by aberrant synaptic transmission in the dorsal striatum. Mol Autism 2020; 11:19. [PMID: 32164788 PMCID: PMC7069029 DOI: 10.1186/s13229-020-00324-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 03/02/2020] [Indexed: 02/08/2023] Open
Abstract
Background DLG2, also known as postsynaptic density protein-93 (PSD-93) or chapsyn-110, is an excitatory postsynaptic scaffolding protein that interacts with synaptic surface receptors and signaling molecules. A recent study has demonstrated that mutations in the DLG2 promoter region are significantly associated with autism spectrum disorder (ASD). Although DLG2 is well known as a schizophrenia-susceptibility gene, the mechanisms that link DLG2 gene disruption with ASD-like behaviors remain unclear. Methods Mice lacking exon 14 of the Dlg2 gene (Dlg2–/– mice) were used to investigate whether Dlg2 deletion leads to ASD-like behavioral abnormalities. To this end, we performed a battery of behavioral tests assessing locomotion, anxiety, sociability, and repetitive behaviors. In situ hybridization was performed to determine expression levels of Dlg2 mRNA in different mouse brain regions during embryonic and postnatal brain development. We also measured excitatory and inhibitory synaptic currents to determine the impacts of Dlg2 deletion on synaptic transmission in the dorsolateral striatum. Results Dlg2–/– mice showed hypoactivity in a novel environment. They also exhibited decreased social approach, but normal social novelty recognition, compared with wild-type animals. In addition, Dlg2–/– mice displayed strong self-grooming, both in home cages and novel environments. Dlg2 mRNA levels in the striatum were heightened until postnatal day 7 in mice, implying potential roles of DLG2 in the development of striatal connectivity. In addition, the frequency of excitatory, but not inhibitory, spontaneous postsynaptic currents in the Dlg2–/– dorsolateral striatum was significantly reduced. Conclusion These results suggest that homozygous Dlg2 deletion in mice leads to ASD-like behavioral phenotypes, including social deficits and increased repetitive behaviors, as well as reductions in excitatory synaptic input onto dorsolateral spiny projection neurons, implying that the dorsal striatum is one of the brain regions vulnerable to the developmental dysregulation of DLG2.
Collapse
Affiliation(s)
- Taesun Yoo
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon, 34141, Korea
| | - Sun-Gyun Kim
- Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, 34141, Korea
| | - Soo Hyun Yang
- Department of Anatomy, College of Medicine, Korea University, Seoul, 02841, Korea
| | - Hyun Kim
- Department of Anatomy, College of Medicine, Korea University, Seoul, 02841, Korea
| | - Eunjoon Kim
- Department of Biological Sciences, Korea Advanced Institute for Science and Technology (KAIST), Daejeon, 34141, Korea.,Center for Synaptic Brain Dysfunctions, Institute for Basic Science (IBS), Daejeon, 34141, Korea
| | - Soo Young Kim
- College of Pharmacy, Yeungnam University, Gyeongsan, 38541, Korea.
| |
Collapse
|
56
|
Vosberg DE, Leyton M, Flores C. The Netrin-1/DCC guidance system: dopamine pathway maturation and psychiatric disorders emerging in adolescence. Mol Psychiatry 2020; 25:297-307. [PMID: 31659271 PMCID: PMC6974431 DOI: 10.1038/s41380-019-0561-7] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 08/01/2019] [Accepted: 08/19/2019] [Indexed: 02/02/2023]
Abstract
Axon guidance molecules direct growing axons toward their targets, assembling the intricate wiring of the nervous system. One of these molecules, Netrin-1, and its receptor, DCC (deleted in colorectal cancer), has profound effects, in laboratory animals, on the adolescent expansion of mesocorticolimbic pathways, particularly dopamine. Now, a rapidly growing literature suggests that (1) these same alterations could occur in humans, and (2) genetic variants in Netrin-1 and DCC are associated with depression, schizophrenia, and substance use. Together, these findings provide compelling evidence that Netrin-1 and DCC influence mesocorticolimbic-related psychopathological states that emerge during adolescence.
Collapse
Affiliation(s)
- Daniel E Vosberg
- Department of Psychiatry, McGill University, Montreal, QC, Canada
- Integrated Program in Neuroscience (IPN), McGill University, Montreal, QC, Canada
- Population Neuroscience and Developmental Neuroimaging, Bloorview Research Institute, Holland Bloorview Kids Rehabilitation Hospital, Toronto, ON, Canada
| | - Marco Leyton
- Department of Psychiatry, McGill University, Montreal, QC, Canada.
- Integrated Program in Neuroscience (IPN), McGill University, Montreal, QC, Canada.
- Neurology and Neurosurgery, McGill University, Montreal, QC, Canada.
| | - Cecilia Flores
- Department of Psychiatry, McGill University, Montreal, QC, Canada.
- Integrated Program in Neuroscience (IPN), McGill University, Montreal, QC, Canada.
- Neurology and Neurosurgery, McGill University, Montreal, QC, Canada.
- Douglas Mental Health University Institute, Montreal, QC, Canada.
| |
Collapse
|
57
|
Shen L, Thompson PM. Brain Imaging Genomics: Integrated Analysis and Machine Learning. PROCEEDINGS OF THE IEEE. INSTITUTE OF ELECTRICAL AND ELECTRONICS ENGINEERS 2020; 108:125-162. [PMID: 31902950 PMCID: PMC6941751 DOI: 10.1109/jproc.2019.2947272] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Brain imaging genomics is an emerging data science field, where integrated analysis of brain imaging and genomics data, often combined with other biomarker, clinical and environmental data, is performed to gain new insights into the phenotypic, genetic and molecular characteristics of the brain as well as their impact on normal and disordered brain function and behavior. It has enormous potential to contribute significantly to biomedical discoveries in brain science. Given the increasingly important role of statistical and machine learning in biomedicine and rapidly growing literature in brain imaging genomics, we provide an up-to-date and comprehensive review of statistical and machine learning methods for brain imaging genomics, as well as a practical discussion on method selection for various biomedical applications.
Collapse
Affiliation(s)
- Li Shen
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, PA 19104, USA
| | - Paul M Thompson
- Imaging Genetics Center, Mark & Mary Stevens Institute for Neuroimaging & Informatics, Keck School of Medicine, University of Southern California, Los Angeles, CA 90232, USA
| |
Collapse
|
58
|
Papiol S, Keeser D, Hasan A, Schneider-Axmann T, Raabe F, Degenhardt F, Rossner MJ, Bickeböller H, Cantuti-Castelvetri L, Simons M, Wobrock T, Schmitt A, Malchow B, Falkai P. Polygenic burden associated to oligodendrocyte precursor cells and radial glia influences the hippocampal volume changes induced by aerobic exercise in schizophrenia patients. Transl Psychiatry 2019; 9:284. [PMID: 31712617 PMCID: PMC6848123 DOI: 10.1038/s41398-019-0618-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 09/10/2019] [Accepted: 10/03/2019] [Indexed: 02/04/2023] Open
Abstract
Hippocampal volume decrease is a structural hallmark of schizophrenia (SCZ), and convergent evidence from postmortem and imaging studies suggests that it may be explained by changes in the cytoarchitecture of the cornu ammonis 4 (CA4) and dentate gyrus (DG) subfields. Increasing evidence indicates that aerobic exercise increases hippocampal volume in CA subfields and improves cognition in SCZ patients. Previous studies showed that the effects of exercise on the hippocampus might be connected to the polygenic burden of SCZ risk variants. However, little is known about cell type-specific genetic contributions to these structural changes. In this secondary analysis, we evaluated the modulatory role of cell type-specific SCZ polygenic risk scores (PRS) on volume changes in the CA1, CA2/3, and CA4/DG subfields over time. We studied 20 multi-episode SCZ patients and 23 healthy controls who performed aerobic exercise, and 21 multi-episode SCZ patients allocated to a control intervention (table soccer) for 3 months. Magnetic resonance imaging-based assessments were performed with FreeSurfer at baseline and after 3 months. The analyses showed that the polygenic burden associated with oligodendrocyte precursor cells (OPC) and radial glia (RG) significantly influenced the volume changes between baseline and 3 months in the CA4/DG subfield in SCZ patients performing aerobic exercise. A higher OPC- or RG-associated genetic risk burden was associated with a less pronounced volume increase or even a decrease in CA4/DG during the exercise intervention. We hypothesize that SCZ cell type-specific polygenic risk modulates the aerobic exercise-induced neuroplastic processes in the hippocampus.
Collapse
Affiliation(s)
- Sergi Papiol
- Department of Psychiatry, University Hospital, Nussbaumstrasse 7, 80336, Munich, Germany. .,Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, Ludwig Maximilian University, Nussbaumstrasse 7, 80336, Munich, Germany.
| | - Daniel Keeser
- 0000 0004 0477 2585grid.411095.8Department of Psychiatry, University Hospital, Nussbaumstrasse 7, 80336 Munich, Germany ,0000 0004 1936 973Xgrid.5252.0Institute of Clinical Radiology, Ludwig Maximilian University Munich, Marchioninistrasse 15, 81377 Munich, Germany
| | - Alkomiet Hasan
- 0000 0004 0477 2585grid.411095.8Department of Psychiatry, University Hospital, Nussbaumstrasse 7, 80336 Munich, Germany
| | - Thomas Schneider-Axmann
- 0000 0004 0477 2585grid.411095.8Department of Psychiatry, University Hospital, Nussbaumstrasse 7, 80336 Munich, Germany
| | - Florian Raabe
- 0000 0004 0477 2585grid.411095.8Department of Psychiatry, University Hospital, Nussbaumstrasse 7, 80336 Munich, Germany ,International Max Planck Research School for Translational Psychiatry, Kraepelinstr. 2-10, 80804 Munich, Germany
| | - Franziska Degenhardt
- 0000 0001 2240 3300grid.10388.32Institute of Human Genetics, University of Bonn, Bonn, Germany
| | - Moritz J. Rossner
- 0000 0004 0477 2585grid.411095.8Department of Psychiatry, University Hospital, Nussbaumstrasse 7, 80336 Munich, Germany
| | - Heike Bickeböller
- Department of Genetic Epidemiology, University Medical Center, Georg-August-Universität Göttingen, Humboldtallee 32, 37073 Göttingen, Germany
| | - Ludovico Cantuti-Castelvetri
- 0000 0004 0438 0426grid.424247.3German Center for Neurodegenerative Diseases (DZNE), Feodor-Lynen Str. 17, 81377 Munich, Germany
| | - Mikael Simons
- 0000 0004 0438 0426grid.424247.3German Center for Neurodegenerative Diseases (DZNE), Feodor-Lynen Str. 17, 81377 Munich, Germany ,grid.452617.3Munich Cluster for Systems Neurology (SyNergy), 81377 Munich, Germany ,0000000123222966grid.6936.aInstitute of Neuronal Cell Biology, Technical University Munich, 80805 Munich, Germany
| | - Thomas Wobrock
- Department of Psychiatry and Psychotherapy, County Hospitals Darmstadt-Dieburg, Krankenhausstrasse 7, 64823 Groß-Umstadt, Germany
| | - Andrea Schmitt
- 0000 0004 0477 2585grid.411095.8Department of Psychiatry, University Hospital, Nussbaumstrasse 7, 80336 Munich, Germany ,0000 0004 1937 0722grid.11899.38Laboratory of Neuroscience (LIM27), Institute of Psychiatry, University of Sao Paulo, Rua Dr. Ovídio Pires de Campos 785, Sao Paulo-SP, 05403-903 Brazil
| | - Berend Malchow
- 0000 0004 0477 2585grid.411095.8Department of Psychiatry, University Hospital, Nussbaumstrasse 7, 80336 Munich, Germany
| | - Peter Falkai
- 0000 0004 0477 2585grid.411095.8Department of Psychiatry, University Hospital, Nussbaumstrasse 7, 80336 Munich, Germany
| |
Collapse
|
59
|
de Zwarte SMC, Brouwer RM, Tsouli A, Cahn W, Hillegers MHJ, Hulshoff Pol HE, Kahn RS, van Haren NEM. Running in the Family? Structural Brain Abnormalities and IQ in Offspring, Siblings, Parents, and Co-twins of Patients with Schizophrenia. Schizophr Bull 2019; 45:1209-1217. [PMID: 30597053 PMCID: PMC6811835 DOI: 10.1093/schbul/sby182] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Structural brain abnormalities and cognitive deficits have been reported in patients with schizophrenia and to a lesser extent in their first-degree relatives (FDRs). Here we investigated whether brain abnormalities in nonpsychotic relatives differ per type of FDR and how these abnormalities are related to intelligent quotient (IQ). Nine hundred eighty individuals from 5 schizophrenia family cohorts (330 FDRs, 432 controls, 218 patients) were included. Effect sizes were calculated to compare brain measures of FDRs and patients with controls, and between each type of FDR. Analyses were repeated with a correction for IQ, having a nonpsychotic diagnosis, and intracranial volume (ICV). FDRs had significantly smaller ICV, surface area, total brain, cortical gray matter, cerebral white matter, cerebellar gray and white matter, thalamus, putamen, amygdala, and accumbens volumes as compared with controls (ds < -0.19, q < 0.05 corrected). Offspring showed the largest effect sizes relative to the other FDRs; however, none of the effects in the different relative types survived correction for multiple comparisons. After IQ correction, all effects disappeared in the FDRs after correction for multiple comparisons. The findings in FDRs were not explained by having a nonpsychotic disorder and were only partly explained by ICV. FDRs show brain abnormalities that are strongly covarying with IQ. On the basis of consistent evidence of genetic overlap between schizophrenia, IQ, and brain measures, we suggest that the brain abnormalities in FDRs are at least partly explained by genes predisposing to both schizophrenia risk and IQ.
Collapse
Affiliation(s)
- Sonja M C de Zwarte
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands,To whom correspondence should be addressed; Department of Psychiatry, University Medical Center Utrecht, House A.01.126 A01.126, PO Box 85500, 3508 GA Utrecht, The Netherlands; tel: +31-88-75-67656, e-mail:
| | - Rachel M Brouwer
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Andromachi Tsouli
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Wiepke Cahn
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Manon H J Hillegers
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands,Department of Child and Adolescent Psychiatry/Psychology, Sophia Children’s Hospital, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Hilleke E Hulshoff Pol
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - René S Kahn
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands,Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Neeltje E M van Haren
- Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands,Department of Child and Adolescent Psychiatry/Psychology, Sophia Children’s Hospital, Erasmus Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
60
|
Population-Based Mapping of Polygenic Risk for Schizophrenia on the Human Brain: New Opportunities to Capture the Dimensional Aspects of Severe Mental Disorders. Biol Psychiatry 2019; 86:499-501. [PMID: 31521208 DOI: 10.1016/j.biopsych.2019.08.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 08/01/2019] [Indexed: 01/12/2023]
|
61
|
Smeland OB, Frei O, Fan CC, Shadrin A, Dale AM, Andreassen OA. The emerging pattern of shared polygenic architecture of psychiatric disorders, conceptual and methodological challenges. Psychiatr Genet 2019; 29:152-159. [PMID: 31464996 PMCID: PMC10752571 DOI: 10.1097/ypg.0000000000000234] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Genome-wide association studies have transformed psychiatric genetics and provided novel insights into the genetic etiology of psychiatric disorders. Two major discoveries have emerged; the disorders are polygenic, with a large number of common variants each with a small effect and many genetic variants influence more than one phenotype, suggesting shared genetic etiology. These concepts have the potential to revolutionize the current classification system with diagnostic categories and facilitate development of better treatments. However, to reach clinical impact, we need larger samples and better analytical tools, as most polygenic factors remain undetected. We here present statistical approaches designed to improve the yield of existing genome-wide association studies for polygenic phenotypes. We review how these tools have informed the current knowledge on the genetic architecture of psychiatric disorders, focusing on schizophrenia, bipolar disorder and major depression, and overlap with psychological and cognitive traits. We discuss application of statistical tools for stratification and prediction.
Collapse
Affiliation(s)
- Olav B. Smeland
- NORMENT Centre, Institute of Clinical Medicine, Division of Mental Health and Addiction, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Oleksandr Frei
- NORMENT Centre, Institute of Clinical Medicine, Division of Mental Health and Addiction, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Chun-Chieh Fan
- Center for Human Development, University of California, San Diego, USA
| | - Alexey Shadrin
- NORMENT Centre, Institute of Clinical Medicine, Division of Mental Health and Addiction, University of Oslo and Oslo University Hospital, Oslo, Norway
| | - Anders M. Dale
- Department of Radiology, University of California, USA
- Department of Neuroscience, University of California, San Diego, USA
- Center for Multimodal Imaging and Genetics, University of California, San Diego, La Jolla, California, USA
| | - Ole A. Andreassen
- NORMENT Centre, Institute of Clinical Medicine, Division of Mental Health and Addiction, University of Oslo and Oslo University Hospital, Oslo, Norway
| |
Collapse
|
62
|
de Zwarte SMC, Brouwer RM, Agartz I, Alda M, Aleman A, Alpert KI, Bearden CE, Bertolino A, Bois C, Bonvino A, Bramon E, Buimer EEL, Cahn W, Cannon DM, Cannon TD, Caseras X, Castro-Fornieles J, Chen Q, Chung Y, De la Serna E, Di Giorgio A, Doucet GE, Eker MC, Erk S, Fears SC, Foley SF, Frangou S, Frankland A, Fullerton JM, Glahn DC, Goghari VM, Goldman AL, Gonul AS, Gruber O, de Haan L, Hajek T, Hawkins EL, Heinz A, Hillegers MHJ, Hulshoff Pol HE, Hultman CM, Ingvar M, Johansson V, Jönsson EG, Kane F, Kempton MJ, Koenis MMG, Kopecek M, Krabbendam L, Krämer B, Lawrie SM, Lenroot RK, Marcelis M, Marsman JBC, Mattay VS, McDonald C, Meyer-Lindenberg A, Michielse S, Mitchell PB, Moreno D, Murray RM, Mwangi B, Najt P, Neilson E, Newport J, van Os J, Overs B, Ozerdem A, Picchioni MM, Richter A, Roberts G, Aydogan AS, Schofield PR, Simsek F, Soares JC, Sugranyes G, Toulopoulou T, Tronchin G, Walter H, Wang L, Weinberger DR, Whalley HC, Yalin N, Andreassen OA, Ching CRK, van Erp TGM, Turner JA, Jahanshad N, Thompson PM, Kahn RS, van Haren NEM. The Association Between Familial Risk and Brain Abnormalities Is Disease Specific: An ENIGMA-Relatives Study of Schizophrenia and Bipolar Disorder. Biol Psychiatry 2019; 86:545-556. [PMID: 31443932 PMCID: PMC7068800 DOI: 10.1016/j.biopsych.2019.03.985] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 03/19/2019] [Accepted: 03/24/2019] [Indexed: 11/30/2022]
Abstract
BACKGROUND Schizophrenia and bipolar disorder share genetic liability, and some structural brain abnormalities are common to both conditions. First-degree relatives of patients with schizophrenia (FDRs-SZ) show similar brain abnormalities to patients, albeit with smaller effect sizes. Imaging findings in first-degree relatives of patients with bipolar disorder (FDRs-BD) have been inconsistent in the past, but recent studies report regionally greater volumes compared with control subjects. METHODS We performed a meta-analysis of global and subcortical brain measures of 6008 individuals (1228 FDRs-SZ, 852 FDRs-BD, 2246 control subjects, 1016 patients with schizophrenia, 666 patients with bipolar disorder) from 34 schizophrenia and/or bipolar disorder family cohorts with standardized methods. Analyses were repeated with a correction for intracranial volume (ICV) and for the presence of any psychopathology in the relatives and control subjects. RESULTS FDRs-BD had significantly larger ICV (d = +0.16, q < .05 corrected), whereas FDRs-SZ showed smaller thalamic volumes than control subjects (d = -0.12, q < .05 corrected). ICV explained the enlargements in the brain measures in FDRs-BD. In FDRs-SZ, after correction for ICV, total brain, cortical gray matter, cerebral white matter, cerebellar gray and white matter, and thalamus volumes were significantly smaller; the cortex was thinner (d < -0.09, q < .05 corrected); and third ventricle was larger (d = +0.15, q < .05 corrected). The findings were not explained by psychopathology in the relatives or control subjects. CONCLUSIONS Despite shared genetic liability, FDRs-SZ and FDRs-BD show a differential pattern of structural brain abnormalities, specifically a divergent effect in ICV. This may imply that the neurodevelopmental trajectories leading to brain anomalies in schizophrenia or bipolar disorder are distinct.
Collapse
Affiliation(s)
- Sonja M C de Zwarte
- Department of Psychiatry, University Medical Center Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.
| | - Rachel M Brouwer
- Department of Psychiatry, University Medical Center Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Ingrid Agartz
- Norwegian Centre for Mental Disorders Research (NORMENT), K.G. Jebsen Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Centre for Psychiatric Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden; Department of Psychiatry, Diakonhjemmet Hospital, Oslo, Norway
| | - Martin Alda
- Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada; National Institute of Mental Health, Klecany, Czech Republic
| | - André Aleman
- Cognitive Neuroscience Center, Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Kathryn I Alpert
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Carrie E Bearden
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, California; Department of Psychology, University of California, Los Angeles, Los Angeles, California
| | - Alessandro Bertolino
- Department of Basic Medical Science, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - Catherine Bois
- Division of Psychiatry, Royal Edinburgh Hospital, University of Edinburgh, Edinburgh, United Kingdom
| | - Aurora Bonvino
- Department of Basic Medical Science, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - Elvira Bramon
- Division of Psychiatry, Neuroscience in Mental Health Research Department, University College London, London, United Kingdom
| | - Elizabeth E L Buimer
- Department of Psychiatry, University Medical Center Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Wiepke Cahn
- Department of Psychiatry, University Medical Center Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Dara M Cannon
- Centre for Neuroimaging and Cognitive Genomics and National Centre for Biomedical Engineering (NCBES), Galway Neuroscience Centre, National University of Ireland Galway, Galway, Ireland
| | - Tyrone D Cannon
- Department of Psychology, Yale University, New Haven, Connecticut, United Kingdom
| | - Xavier Caseras
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, United Kingdom
| | - Josefina Castro-Fornieles
- Psychology and Psychology, 2017SGR881, Institute of Neuroscience, Hospital Clínic of Barcelona, Institute d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), University of Barcelona, Spain
| | - Qiang Chen
- Lieber Institute for Brain Development, Baltimore, Maryland
| | - Yoonho Chung
- Department of Psychology, Yale University, New Haven, Connecticut, United Kingdom
| | - Elena De la Serna
- Psychology and Psychology, 2017SGR881, Institute of Neuroscience, Hospital Clínic of Barcelona, Institute d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), University of Barcelona, Spain
| | - Annabella Di Giorgio
- Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy
| | - Gaelle E Doucet
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Mehmet Cagdas Eker
- SoCAT LAB, Department of Psychiatry, School of Medicine, Ege University, Bornova, Izmir, Turkey; Department of Psychiatry, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York
| | - Susanne Erk
- Research Division of Mind and Brain, Department of Psychiatry and Psychotherapy, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Scott C Fears
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, California; Center for Neurobehavioral Genetics, University of California, Los Angeles, Los Angeles, California
| | - Sonya F Foley
- Cardiff University Brain Research Imaging Centre, Cardiff University, United Kingdom
| | - Sophia Frangou
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Andrew Frankland
- School of Psychiatry, University of New South Wales, Sydney, Australia
| | - Janice M Fullerton
- School of Medical Sciences, University of New South Wales, Sydney, Australia; Neuroscience Research Australia, Sydney, Australia
| | - David C Glahn
- Olin Neuropsychiatry Research Center, Institute of Living, Hartford Hospital, Hartford, Connecticut; Tommy Fuss Center for Neuropsychiatric Disease Research, Boston Children's Hospital, Boston, Massachusetts; Harvard Medical School, Boston, Massachusetts
| | - Vina M Goghari
- Department of Psychology, University of Toronto, Toronto, Ontario, Canada; Graduate Department of Psychological Clinical Science, University of Toronto, Toronto, Ontario, Canada
| | | | - Ali Saffet Gonul
- SoCAT LAB, Department of Psychiatry, School of Medicine, Ege University, Bornova, Izmir, Turkey; Department of Psychiatry and Behavioral Sciences, Mercer University School of Medicine, Macon, Georgia
| | - Oliver Gruber
- Experimental Psychopathology and Neuroimaging, Department of General Psychiatry, University of Heidelberg, Heidelberg, Germany
| | - Lieuwe de Haan
- Early Psychosis Unit, Department of Psychiatry, Academic Medical Center, Amsterdam, Netherlands
| | - Tomas Hajek
- Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada; National Institute of Mental Health, Klecany, Czech Republic
| | - Emma L Hawkins
- Division of Psychiatry, Royal Edinburgh Hospital, University of Edinburgh, Edinburgh, United Kingdom
| | - Andreas Heinz
- Research Division of Mind and Brain, Department of Psychiatry and Psychotherapy, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Manon H J Hillegers
- Department of Psychiatry, University Medical Center Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands; Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Center-Sophia Children's Hospital, Rotterdam, Netherlands
| | - Hilleke E Hulshoff Pol
- Department of Psychiatry, University Medical Center Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Christina M Hultman
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Martin Ingvar
- Centre for Psychiatric Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Viktoria Johansson
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Erik G Jönsson
- Norwegian Centre for Mental Disorders Research (NORMENT), K.G. Jebsen Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Centre for Psychiatric Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Fergus Kane
- Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Matthew J Kempton
- Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Marinka M G Koenis
- Olin Neuropsychiatry Research Center, Institute of Living, Hartford Hospital, Hartford, Connecticut; Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut
| | - Miloslav Kopecek
- National Institute of Mental Health, Klecany, Czech Republic; Department of Psychiatry, Third Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Lydia Krabbendam
- Department of Clinical, Neuro and Developmental Psychology, Faculty of Behaviour and Movement Sciences, Vrije Universiteit, Amsterdam, Netherlands
| | - Bernd Krämer
- Experimental Psychopathology and Neuroimaging, Department of General Psychiatry, University of Heidelberg, Heidelberg, Germany
| | - Stephen M Lawrie
- Division of Psychiatry, Royal Edinburgh Hospital, University of Edinburgh, Edinburgh, United Kingdom
| | - Rhoshel K Lenroot
- Neuroscience Research Australia, Sydney, Australia; Department of Psychiatry and Behavioral Sciences, University of New Mexico, Albuquerque, New Mexico
| | - Machteld Marcelis
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University Medical Centre, Maastricht University, Maastricht, Netherlands
| | - Jan-Bernard C Marsman
- Cognitive Neuroscience Center, Department of Biomedical Sciences of Cells and Systems, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Venkata S Mattay
- Lieber Institute for Brain Development, Baltimore, Maryland; Department of Radiology, The Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Colm McDonald
- Centre for Neuroimaging and Cognitive Genomics and National Centre for Biomedical Engineering (NCBES), Galway Neuroscience Centre, National University of Ireland Galway, Galway, Ireland
| | - Andreas Meyer-Lindenberg
- Clinical Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Stijn Michielse
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University Medical Centre, Maastricht University, Maastricht, Netherlands
| | - Philip B Mitchell
- School of Psychiatry, University of New South Wales, Sydney, Australia
| | - Dolores Moreno
- Child and Adolescent Psychiatry Department, Hospital General Universitario Gregorio Marañón (IiSGM), School of Medicine, Universidad Complutense, Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Madrid, Spain
| | - Robin M Murray
- Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Benson Mwangi
- Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Pablo Najt
- Centre for Neuroimaging and Cognitive Genomics and National Centre for Biomedical Engineering (NCBES), Galway Neuroscience Centre, National University of Ireland Galway, Galway, Ireland
| | - Emma Neilson
- Division of Psychiatry, Royal Edinburgh Hospital, University of Edinburgh, Edinburgh, United Kingdom
| | - Jason Newport
- Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Jim van Os
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University Medical Centre, Maastricht University, Maastricht, Netherlands
| | | | - Aysegul Ozerdem
- Department of Psychiatry, Renaissance School of Medicine at Stony Brook University, Stony Brook, New York; Department of Psychiatry, Faculty of Medicine, Izmir, Turkey; Department of Neurosciences, Health Sciences Institute, Dokuz Eylül University, Izmir, Turkey
| | - Marco M Picchioni
- Department of Forensic and Neurodevelopmental Science, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Anja Richter
- Experimental Psychopathology and Neuroimaging, Department of General Psychiatry, University of Heidelberg, Heidelberg, Germany
| | - Gloria Roberts
- School of Psychiatry, University of New South Wales, Sydney, Australia
| | - Aybala Saricicek Aydogan
- Department of Neurosciences, Health Sciences Institute, Dokuz Eylül University, Izmir, Turkey; Department of Psychiatry, Faculty of Medicine, Izmir Katip Çelebi University, Izmir, Turkey
| | - Peter R Schofield
- School of Medical Sciences, University of New South Wales, Sydney, Australia; Neuroscience Research Australia, Sydney, Australia
| | - Fatma Simsek
- SoCAT LAB, Department of Psychiatry, School of Medicine, Ege University, Bornova, Izmir, Turkey; Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom; Department of Psychiatry, Cigli State Hospital, Izmir, Turkey
| | - Jair C Soares
- Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, Texas
| | - Gisela Sugranyes
- Psychology and Psychology, 2017SGR881, Institute of Neuroscience, Hospital Clínic of Barcelona, Institute d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), University of Barcelona, Spain
| | - Timothea Toulopoulou
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom; Department of Psychology, Bilkent University, Ankara, Turkey; Department of Psychology, University of Hong Kong, Hong Kong, China
| | - Giulia Tronchin
- Centre for Neuroimaging and Cognitive Genomics and National Centre for Biomedical Engineering (NCBES), Galway Neuroscience Centre, National University of Ireland Galway, Galway, Ireland
| | - Henrik Walter
- Research Division of Mind and Brain, Department of Psychiatry and Psychotherapy, Charité Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Lei Wang
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | | | - Heather C Whalley
- Division of Psychiatry, Royal Edinburgh Hospital, University of Edinburgh, Edinburgh, United Kingdom
| | - Nefize Yalin
- Centre for Affective Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Ole A Andreassen
- Norwegian Centre for Mental Disorders Research (NORMENT), K.G. Jebsen Centre, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Christopher R K Ching
- Department of Psychiatry and Biobehavioral Sciences, University of California, Los Angeles, Los Angeles, California; Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles, Los Angeles, California; Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, California
| | - Theo G M van Erp
- Clinical Translational Neuroscience Laboratory, Department of Psychiatry and Human Behavior, University of California, Irvine, Irvine, California; Center for the Neurobiology of Learning and Memory, University of California, Irvine, Irvine, California
| | - Jessica A Turner
- Department of Psychology, Georgia State University, Atlanta, Georgia; Neuroscience Institute, Georgia State University, Atlanta, Georgia
| | - Neda Jahanshad
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, California
| | - Paul M Thompson
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, Marina del Rey, California
| | - René S Kahn
- Department of Psychiatry, University Medical Center Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Neeltje E M van Haren
- Department of Psychiatry, University Medical Center Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands; Department of Child and Adolescent Psychiatry/Psychology, Erasmus University Medical Center-Sophia Children's Hospital, Rotterdam, Netherlands
| |
Collapse
|
63
|
Smeland OB, Frei O, Shadrin A, O'Connell K, Fan CC, Bahrami S, Holland D, Djurovic S, Thompson WK, Dale AM, Andreassen OA. Discovery of shared genomic loci using the conditional false discovery rate approach. Hum Genet 2019; 139:85-94. [PMID: 31520123 DOI: 10.1007/s00439-019-02060-2] [Citation(s) in RCA: 100] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 08/08/2019] [Indexed: 02/07/2023]
Abstract
In recent years, genome-wide association study (GWAS) sample sizes have become larger, the statistical power has improved and thousands of trait-associated variants have been uncovered, offering new insights into the genetic etiology of complex human traits and disorders. However, a large fraction of the polygenic architecture underlying most complex phenotypes still remains undetected. We here review the conditional false discovery rate (condFDR) method, a model-free strategy for analysis of GWAS summary data, which has improved yield of existing GWAS and provided novel findings of genetic overlap between a wide range of complex human phenotypes, including psychiatric, cardiovascular, and neurological disorders, as well as psychological and cognitive traits. The condFDR method was inspired by Empirical Bayes approaches and leverages auxiliary genetic information to improve statistical power for discovery of single-nucleotide polymorphisms (SNPs). The cross-trait condFDR strategy analyses separate GWAS data, and leverages overlapping SNP associations, i.e., cross-trait enrichment, to increase discovery of trait-associated SNPs. The extension of the condFDR approach to conjunctional FDR (conjFDR) identifies shared genomic loci between two phenotypes. The conjFDR approach allows for detection of shared genomic associations irrespective of the genetic correlation between the phenotypes, often revealing a mixture of antagonistic and agonistic directional effects among the shared loci. This review provides a methodological comparison between condFDR and other relevant cross-trait analytical tools and demonstrates how condFDR analysis may provide novel insights into the genetic relationship between complex phenotypes.
Collapse
Affiliation(s)
- Olav B Smeland
- NORMENT Centre, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Kirkeveien 166, 0424, Oslo, Norway.
| | - Oleksandr Frei
- NORMENT Centre, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Kirkeveien 166, 0424, Oslo, Norway
| | - Alexey Shadrin
- NORMENT Centre, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Kirkeveien 166, 0424, Oslo, Norway
| | - Kevin O'Connell
- NORMENT Centre, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Kirkeveien 166, 0424, Oslo, Norway
| | - Chun-Chieh Fan
- Department of Cognitive Science, University of California San Diego, La Jolla, San Diego, CA, 92093, USA.,Department of Radiology, University of California of San Diego, La Jolla, San Diego, CA, 92093, USA
| | - Shahram Bahrami
- NORMENT Centre, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Kirkeveien 166, 0424, Oslo, Norway
| | - Dominic Holland
- Department of Radiology, University of California of San Diego, La Jolla, San Diego, CA, 92093, USA.,Department of Neuroscience, University of California San Diego, La Jolla, San Diego, CA, 92093, USA.,Center for Multimodal Imaging and Genetics, University of California San Diego, La Jolla, San Diego, CA, 92037, USA
| | - Srdjan Djurovic
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway.,NORMENT Centre, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Wesley K Thompson
- Department of Family Medicine and Public Health, University of California San Diego, La Jolla, San Diego, CA, 92093, USA
| | - Anders M Dale
- Department of Cognitive Science, University of California San Diego, La Jolla, San Diego, CA, 92093, USA.,Department of Radiology, University of California of San Diego, La Jolla, San Diego, CA, 92093, USA.,Department of Neuroscience, University of California San Diego, La Jolla, San Diego, CA, 92093, USA.,Center for Multimodal Imaging and Genetics, University of California San Diego, La Jolla, San Diego, CA, 92037, USA
| | - Ole A Andreassen
- NORMENT Centre, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Kirkeveien 166, 0424, Oslo, Norway.
| |
Collapse
|
64
|
Alnæs D, Kaufmann T, van der Meer D, Córdova-Palomera A, Rokicki J, Moberget T, Bettella F, Agartz I, Barch DM, Bertolino A, Brandt CL, Cervenka S, Djurovic S, Doan NT, Eisenacher S, Fatouros-Bergman H, Flyckt L, Di Giorgio A, Haatveit B, Jönsson EG, Kirsch P, Lund MJ, Meyer-Lindenberg A, Pergola G, Schwarz E, Smeland OB, Quarto T, Zink M, Andreassen OA, Westlye LT. Brain Heterogeneity in Schizophrenia and Its Association With Polygenic Risk. JAMA Psychiatry 2019; 76:739-748. [PMID: 30969333 PMCID: PMC6583664 DOI: 10.1001/jamapsychiatry.2019.0257] [Citation(s) in RCA: 171] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 01/14/2019] [Indexed: 12/28/2022]
Abstract
Importance Between-individual variability in brain structure is determined by gene-environment interactions, possibly reflecting differential sensitivity to environmental and genetic perturbations. Magnetic resonance imaging (MRI) studies have revealed thinner cortices and smaller subcortical volumes in patients with schizophrenia. However, group-level comparisons may mask considerable within-group heterogeneity, which has largely remained unnoticed in the literature. Objectives To compare brain structural variability between individuals with schizophrenia and healthy controls and to test whether respective variability reflects the polygenic risk score (PRS) for schizophrenia in an independent sample of healthy controls. Design, Setting, and Participants This case-control and polygenic risk analysis compared MRI-derived cortical thickness and subcortical volumes between healthy controls and patients with schizophrenia across 16 cohorts and tested for associations between PRS and MRI features in a control cohort from the UK Biobank. Data were collected from October 27, 2004, through April 12, 2018, and analyzed from December 3, 2017, through August 1, 2018. Main Outcomes and Measures Mean and dispersion parameters were estimated using double generalized linear models. Vertex-wise analysis was used to assess cortical thickness, and regions-of-interest analyses were used to assess total cortical volume, total surface area, and white matter, subcortical, and hippocampal subfield volumes. Follow-up analyses included within-sample analysis, test of robustness of the PRS threshold, population covariates, outlier removal, and control for image quality. Results A comparison of 1151 patients with schizophrenia (mean [SD] age, 33.8 [10.6] years; 68.6% male [n = 790] and 31.4% female [n = 361]) with 2010 healthy controls (mean [SD] age, 32.6 [10.4] years; 56.0% male [n = 1126] and 44.0% female [n = 884]) revealed higher heterogeneity in schizophrenia for cortical thickness and area (t = 3.34), cortical (t = 3.24) and ventricle (t range, 3.15-5.78) volumes, and hippocampal subfields (t range, 2.32-3.55). In the UK Biobank sample of 12 490 participants (mean [SD] age, 55.9 [7.5] years; 48.2% male [n = 6025] and 51.8% female [n = 6465]), higher PRS was associated with thinner frontal and temporal cortices and smaller left CA2/3 (t = -3.00) but was not significantly associated with dispersion. Conclusions and Relevance This study suggests that schizophrenia is associated with substantial brain structural heterogeneity beyond the mean differences. These findings may reflect higher sensitivity to environmental and genetic perturbations in patients, supporting the heterogeneous nature of schizophrenia. A higher PRS was associated with thinner frontotemporal cortices and smaller hippocampal subfield volume, but not heterogeneity. This finding suggests that brain variability in schizophrenia results from interactions between environmental and genetic factors that are not captured by the PRS. Factors contributing to heterogeneity in frontotemporal cortices and hippocampus are key to furthering our understanding of how genetic and environmental factors shape brain biology in schizophrenia.
Collapse
Affiliation(s)
- Dag Alnæs
- Norwegian Centre for Mental Disorders Research, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Norway
| | - Tobias Kaufmann
- Norwegian Centre for Mental Disorders Research, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Norway
| | - Dennis van der Meer
- Norwegian Centre for Mental Disorders Research, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Norway
| | - Aldo Córdova-Palomera
- Norwegian Centre for Mental Disorders Research, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Norway
| | - Jaroslav Rokicki
- Norwegian Centre for Mental Disorders Research, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Norway
| | - Torgeir Moberget
- Norwegian Centre for Mental Disorders Research, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Norway
| | - Francesco Bettella
- Norwegian Centre for Mental Disorders Research, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Norway
| | - Ingrid Agartz
- Norwegian Centre for Mental Disorders Research, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Norway
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Deanna M. Barch
- Department of Psychological and Brain Sciences, Washington University in Saint Louis, St Louis, Missouri
| | - Alessandro Bertolino
- Psychiatric Neuroscience Group, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - Christine L. Brandt
- Norwegian Centre for Mental Disorders Research, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Norway
| | - Simon Cervenka
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Srdjan Djurovic
- Norwegian Centre for Mental Disorders Research, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Norway
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway
| | - Nhat Trung Doan
- Norwegian Centre for Mental Disorders Research, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Norway
| | - Sarah Eisenacher
- Central Institute of Mental Health, University of Heidelberg, Mannheim, Germany
| | - Helena Fatouros-Bergman
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Lena Flyckt
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Annabella Di Giorgio
- Psychiatric Neuroscience Group, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy
- Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Casa Sollievo della Sofferenza, San Giovanni Rotondo, Italy
| | - Beathe Haatveit
- Norwegian Centre for Mental Disorders Research, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Norway
| | - Erik G. Jönsson
- Norwegian Centre for Mental Disorders Research, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Norway
- Centre for Psychiatry Research, Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Peter Kirsch
- Central Institute of Mental Health, University of Heidelberg, Mannheim, Germany
- Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Martina J. Lund
- Norwegian Centre for Mental Disorders Research, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Norway
| | - Andreas Meyer-Lindenberg
- Central Institute of Mental Health, University of Heidelberg, Mannheim, Germany
- Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Giulio Pergola
- Psychiatric Neuroscience Group, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - Emanuel Schwarz
- Central Institute of Mental Health, University of Heidelberg, Mannheim, Germany
| | - Olav B. Smeland
- Norwegian Centre for Mental Disorders Research, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Norway
| | - Tiziana Quarto
- Psychiatric Neuroscience Group, Department of Basic Medical Sciences, Neuroscience and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - Mathias Zink
- Central Institute of Mental Health, University of Heidelberg, Mannheim, Germany
| | - Ole A. Andreassen
- Norwegian Centre for Mental Disorders Research, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Norway
| | - Lars T. Westlye
- Norwegian Centre for Mental Disorders Research, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital and Institute of Clinical Medicine, University of Oslo, Norway
- Department of Psychology, University of Oslo, Oslo, Norway
| |
Collapse
|
65
|
Luo X, Mao Q, Shi J, Wang X, Li CSR. Putamen gray matter volumes in neuropsychiatric and neurodegenerative disorders. WORLD JOURNAL OF PSYCHIATRY AND MENTAL HEALTH RESEARCH 2019; 3:1020. [PMID: 31328186 PMCID: PMC6641567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Putamen is enriched with dopamine and associated with dopamine-related phenotypes including many neuropsychiatric and neurodegenerative disorders that manifest with motor impairment, impulsive behavior, and cognitive deficits. The gray matter volume of the putamen is age-dependent and genetically controlled. In most neuropsychiatric and neurodegenerative disorders, including Parkinson's spectrum disorders, Huntington's disease, dementia with Lewy bodies, Alzheimer's disease, multiple sclerosis, attention deficit hyperactivity disorder, developmental dyslexia, and major depression, the putamen volume is significantly reduced. On the other hand, in individuals with bipolar disorder, schizophrenia spectrum disorders, especially neuroleptics-medicated patients with schizophrenia, autism spectrum disorders, obsessive-compulsive spectrum disorders, and cocaine/amphetamine dependence, the putamen volume is significantly enlarged. Therefore, the putamen volume may serve as a structural neural marker for many neuropsychiatric and neurodegenerative disorders and a predictor of treatment outcomes in individuals afflicted with these conditions. We provided an overview of the genetic bases of putamen volume and explored potential mechanisms whereby altered putamen volume manifests in these neuropsychiatric and neurodegenerative conditions, with a specific focus on dopaminergic processes.
Collapse
Affiliation(s)
- Xingguang Luo
- Biological Psychiatry Research Center, Beijing Huilongguan Hospital, Beijing 100096, China
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Qiao Mao
- Department of Psychosomatic Medicine, People’s Hospital of Deyang City, Deyang, Sichuan 618000, China
| | - Jing Shi
- Biological Psychiatry Research Center, Beijing Huilongguan Hospital, Beijing 100096, China
| | - Xiaoping Wang
- Department of Neurology, Shanghai Tongren Hospital, Shanghai Jiao Tong University, Shanghai 200080, China
| | - Chiang-Shan R. Li
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06510, USA
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510, USA
| |
Collapse
|
66
|
Fan CC, Smeland OB, Schork AJ, Chen CH, Holland D, Lo MT, Sundar VS, Frei O, Jernigan TL, Andreassen OA, Dale AM. Beyond heritability: improving discoverability in imaging genetics. Hum Mol Genet 2019. [PMID: 29522091 DOI: 10.1093/hmg/ddy082] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Structural neuroimaging measures based on magnetic resonance imaging have been at the forefront of imaging genetics. Global efforts to ensure homogeneity of measurements across study sites have enabled large-scale imaging genetic projects, accumulating nearly 50K samples for genome-wide association studies (GWAS). However, not many novel genetic variants have been identified by these GWAS, despite the high heritability of structural neuroimaging measures. Here, we discuss the limitations of using heritability as a guidance for assessing statistical power of GWAS, and highlight the importance of discoverability-which is the power to detect genetic variants for a given phenotype depending on its unique genomic architecture and GWAS sample size. Further, we present newly developed methods that boost genetic discovery in imaging genetics. By redefining imaging measures independent of traditional anatomical conventions, it is possible to improve discoverability, enabling identification of more genetic effects. Moreover, by leveraging enrichment priors from genomic annotations and independent GWAS of pleiotropic traits, we can better characterize effect size distributions, and identify reliable and replicable loci associated with structural neuroimaging measures. Statistical tools leveraging novel insights into the genetic discoverability of human traits, promises to accelerate the identification of genetic underpinnings underlying brain structural variation.
Collapse
Affiliation(s)
- Chun Chieh Fan
- Center for Multimodal Imaging and Genetics, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA
| | - Olav B Smeland
- NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Andrew J Schork
- Institute for Biological Psychiatry, Mental Health Center Sct. Hans, Capital Region of Denmark, Denmark
| | - Chi-Hua Chen
- Center for Multimodal Imaging and Genetics, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA.,Department of Radiology, School of Medicine, University of California San Diego, La Jolla, CA 92037, USA
| | - Dominic Holland
- Department of Neurosciences, School of Medicine, University of California San Diego, La Jolla, CA 92037, USA
| | - Min-Tzu Lo
- Center for Multimodal Imaging and Genetics, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA.,Department of Radiology, School of Medicine, University of California San Diego, La Jolla, CA 92037, USA
| | - V S Sundar
- Center for Multimodal Imaging and Genetics, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA.,Department of Radiology, School of Medicine, University of California San Diego, La Jolla, CA 92037, USA
| | - Oleksandr Frei
- NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Terry L Jernigan
- Center for Human Development, University of California San Diego, La Jolla, CA 92093, USA
| | - Ole A Andreassen
- NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Anders M Dale
- Center for Multimodal Imaging and Genetics, School of Medicine, University of California San Diego, La Jolla, CA 92093, USA.,Department of Radiology, School of Medicine, University of California San Diego, La Jolla, CA 92037, USA.,Department of Neurosciences, School of Medicine, University of California San Diego, La Jolla, CA 92037, USA
| |
Collapse
|
67
|
Banerjee N, Polushina T, Bettella F, Steen VM, Andreassen OA, Le Hellard S. Analysis of differentially methylated regions in great apes and extinct hominids provides support for the evolutionary hypothesis of schizophrenia. Schizophr Res 2019; 206:209-216. [PMID: 30545758 DOI: 10.1016/j.schres.2018.11.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 10/12/2018] [Accepted: 11/22/2018] [Indexed: 12/12/2022]
Abstract
INTRODUCTION The persistence of schizophrenia in human populations separated by geography and time led to the evolutionary hypothesis that proposes schizophrenia as a by-product of the higher cognitive abilities of modern humans. To explore this hypothesis, we used here an evolutionary epigenetics approach building on differentially methylated regions (DMRs) of the genome. METHODS We implemented a polygenic enrichment testing pipeline using the summary statistics of genome-wide association studies (GWAS) of schizophrenia and 12 other phenotypes. We investigated the enrichment of association of these traits across genomic regions with variable methylation between modern humans and great apes (orangutans, chimpanzees and gorillas; great ape DMRs) and between modern humans and recently extinct hominids (Neanderthals and Denisovans; hominid DMRs). RESULTS Regions that are hypo-methylated in humans compared to great apes show enrichment of association with schizophrenia only if the major histocompatibility complex (MHC) region is included. With the MHC region removed from the analysis, only a modest enrichment for SNPs of low effect persists. The INRICH pipeline confirms this finding after rigorous permutation and bootstrapping procedures. CONCLUSION The analyses of regions with differential methylation changes in humans and great apes do not provide compelling evidence of enrichment of association with schizophrenia, in contrast to our previous findings on more recent methylation differences between modern humans, Neanderthals and Denisovans. Our results further support the evolutionary hypothesis of schizophrenia and indicate that the origin of some of the genetic susceptibility factors of schizophrenia may lie in recent human evolution.
Collapse
Affiliation(s)
- Niladri Banerjee
- NORMENT - K.G. Jebsen Center for Psychosis Research, Department of Clinical Science, University of Bergen, Bergen, Norway; Dr. Einar Martens Research Group for Biological Psychiatry, Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway.
| | - Tatiana Polushina
- NORMENT - K.G. Jebsen Center for Psychosis Research, Department of Clinical Science, University of Bergen, Bergen, Norway; Dr. Einar Martens Research Group for Biological Psychiatry, Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway.
| | - Francesco Bettella
- NORMENT - K.G. Jebsen Center for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; NORMENT - K.G. Jebsen Centre, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway.
| | - Vidar M Steen
- NORMENT - K.G. Jebsen Center for Psychosis Research, Department of Clinical Science, University of Bergen, Bergen, Norway; Dr. Einar Martens Research Group for Biological Psychiatry, Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway.
| | - Ole A Andreassen
- NORMENT - K.G. Jebsen Center for Psychosis Research, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; NORMENT - K.G. Jebsen Centre, Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway.
| | - Stephanie Le Hellard
- NORMENT - K.G. Jebsen Center for Psychosis Research, Department of Clinical Science, University of Bergen, Bergen, Norway; Dr. Einar Martens Research Group for Biological Psychiatry, Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway.
| |
Collapse
|
68
|
Klein M, Walters RK, Demontis D, Stein JL, Hibar DP, Adams HH, Bralten J, Roth Mota N, Schachar R, Sonuga-Barke E, Mattheisen M, Neale BM, Thompson PM, Medland SE, Børglum AD, Faraone SV, Arias-Vasquez A, Franke B. Genetic Markers of ADHD-Related Variations in Intracranial Volume. Am J Psychiatry 2019; 176:228-238. [PMID: 30818988 PMCID: PMC7780894 DOI: 10.1176/appi.ajp.2018.18020149] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Attention deficit hyperactivity disorder (ADHD) is a common and highly heritable neurodevelopmental disorder with a complex pathophysiology. Intracranial volume (ICV) and volumes of the nucleus accumbens, amygdala, caudate nucleus, hippocampus, and putamen are smaller in people with ADHD compared with healthy individuals. The authors investigated the overlap between common genetic variation associated with ADHD risk and these brain volume measures to identify underlying biological processes contributing to the disorder. METHODS The authors combined genome-wide association results from the largest available studies of ADHD (N=55,374) and brain volumes (N=11,221-24,704), using a set of complementary methods to investigate overlap at the level of global common variant genetic architecture and at the single variant level. RESULTS Analyses revealed a significant negative genetic correlation between ADHD and ICV (rg=-0.22). Meta-analysis of single variants revealed two significant loci of interest associated with both ADHD risk and ICV; four additional loci were identified for ADHD and volumes of the amygdala, caudate nucleus, and putamen. Exploratory gene-based and gene-set analyses in the ADHD-ICV meta-analytic data showed association with variation in neurite outgrowth-related genes. CONCLUSIONS This is the first genome-wide study to show significant genetic overlap between brain volume measures and ADHD, both on the global and the single variant level. Variants linked to smaller ICV were associated with increased ADHD risk. These findings can help us develop new hypotheses about biological mechanisms by which brain structure alterations may be involved in ADHD disease etiology.
Collapse
Affiliation(s)
- Marieke Klein
- The Department of Human Genetics, Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands (Klein, Bralten, Roth Mota, Arias-Vasquez, Franke); University Medical Center Utrecht, UMC Utrecht Brain Center, Department of Psychiatry, Utrecht, the Netherlands (Klein); the Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston (Walters, Neale); Program in Medical and Population
| | - Raymond K. Walters
- The Department of Human Genetics, Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands (Klein, Bralten, Roth Mota, Arias-Vasquez, Franke); University Medical Center Utrecht, UMC Utrecht Brain Center, Department of Psychiatry, Utrecht, the Netherlands (Klein); the Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston (Walters, Neale); Program in Medical and Population
| | - Ditte Demontis
- The Department of Human Genetics, Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands (Klein, Bralten, Roth Mota, Arias-Vasquez, Franke); University Medical Center Utrecht, UMC Utrecht Brain Center, Department of Psychiatry, Utrecht, the Netherlands (Klein); the Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston (Walters, Neale); Program in Medical and Population
| | - Jason L. Stein
- The Department of Human Genetics, Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands (Klein, Bralten, Roth Mota, Arias-Vasquez, Franke); University Medical Center Utrecht, UMC Utrecht Brain Center, Department of Psychiatry, Utrecht, the Netherlands (Klein); the Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston (Walters, Neale); Program in Medical and Population
| | - Derrek P. Hibar
- The Department of Human Genetics, Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands (Klein, Bralten, Roth Mota, Arias-Vasquez, Franke); University Medical Center Utrecht, UMC Utrecht Brain Center, Department of Psychiatry, Utrecht, the Netherlands (Klein); the Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston (Walters, Neale); Program in Medical and Population
| | - Hieab H. Adams
- The Department of Human Genetics, Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands (Klein, Bralten, Roth Mota, Arias-Vasquez, Franke); University Medical Center Utrecht, UMC Utrecht Brain Center, Department of Psychiatry, Utrecht, the Netherlands (Klein); the Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston (Walters, Neale); Program in Medical and Population
| | - Janita Bralten
- The Department of Human Genetics, Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands (Klein, Bralten, Roth Mota, Arias-Vasquez, Franke); University Medical Center Utrecht, UMC Utrecht Brain Center, Department of Psychiatry, Utrecht, the Netherlands (Klein); the Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston (Walters, Neale); Program in Medical and Population
| | - Nina Roth Mota
- The Department of Human Genetics, Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands (Klein, Bralten, Roth Mota, Arias-Vasquez, Franke); University Medical Center Utrecht, UMC Utrecht Brain Center, Department of Psychiatry, Utrecht, the Netherlands (Klein); the Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston (Walters, Neale); Program in Medical and Population
| | - Russell Schachar
- The Department of Human Genetics, Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands (Klein, Bralten, Roth Mota, Arias-Vasquez, Franke); University Medical Center Utrecht, UMC Utrecht Brain Center, Department of Psychiatry, Utrecht, the Netherlands (Klein); the Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston (Walters, Neale); Program in Medical and Population
| | - Edmund Sonuga-Barke
- The Department of Human Genetics, Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands (Klein, Bralten, Roth Mota, Arias-Vasquez, Franke); University Medical Center Utrecht, UMC Utrecht Brain Center, Department of Psychiatry, Utrecht, the Netherlands (Klein); the Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston (Walters, Neale); Program in Medical and Population
| | - Manuel Mattheisen
- The Department of Human Genetics, Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands (Klein, Bralten, Roth Mota, Arias-Vasquez, Franke); University Medical Center Utrecht, UMC Utrecht Brain Center, Department of Psychiatry, Utrecht, the Netherlands (Klein); the Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston (Walters, Neale); Program in Medical and Population
| | - Benjamin M. Neale
- The Department of Human Genetics, Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands (Klein, Bralten, Roth Mota, Arias-Vasquez, Franke); University Medical Center Utrecht, UMC Utrecht Brain Center, Department of Psychiatry, Utrecht, the Netherlands (Klein); the Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston (Walters, Neale); Program in Medical and Population
| | - Paul M. Thompson
- The Department of Human Genetics, Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands (Klein, Bralten, Roth Mota, Arias-Vasquez, Franke); University Medical Center Utrecht, UMC Utrecht Brain Center, Department of Psychiatry, Utrecht, the Netherlands (Klein); the Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston (Walters, Neale); Program in Medical and Population
| | - Sarah E. Medland
- The Department of Human Genetics, Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands (Klein, Bralten, Roth Mota, Arias-Vasquez, Franke); University Medical Center Utrecht, UMC Utrecht Brain Center, Department of Psychiatry, Utrecht, the Netherlands (Klein); the Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston (Walters, Neale); Program in Medical and Population
| | - Anders D. Børglum
- The Department of Human Genetics, Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands (Klein, Bralten, Roth Mota, Arias-Vasquez, Franke); University Medical Center Utrecht, UMC Utrecht Brain Center, Department of Psychiatry, Utrecht, the Netherlands (Klein); the Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston (Walters, Neale); Program in Medical and Population
| | - Stephen V. Faraone
- The Department of Human Genetics, Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands (Klein, Bralten, Roth Mota, Arias-Vasquez, Franke); University Medical Center Utrecht, UMC Utrecht Brain Center, Department of Psychiatry, Utrecht, the Netherlands (Klein); the Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston (Walters, Neale); Program in Medical and Population
| | - Alejandro Arias-Vasquez
- The Department of Human Genetics, Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands (Klein, Bralten, Roth Mota, Arias-Vasquez, Franke); University Medical Center Utrecht, UMC Utrecht Brain Center, Department of Psychiatry, Utrecht, the Netherlands (Klein); the Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston (Walters, Neale); Program in Medical and Population
| | - Barbara Franke
- The Department of Human Genetics, Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands (Klein, Bralten, Roth Mota, Arias-Vasquez, Franke); University Medical Center Utrecht, UMC Utrecht Brain Center, Department of Psychiatry, Utrecht, the Netherlands (Klein); the Analytic and Translational Genetics Unit, Department of Medicine, Massachusetts General Hospital and Harvard Medical School, Boston (Walters, Neale); Program in Medical and Population
| |
Collapse
|
69
|
Genome-wide analysis reveals extensive genetic overlap between schizophrenia, bipolar disorder, and intelligence. Mol Psychiatry 2019; 25:844-853. [PMID: 30610197 PMCID: PMC6609490 DOI: 10.1038/s41380-018-0332-x] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 10/18/2018] [Accepted: 11/29/2018] [Indexed: 02/08/2023]
Abstract
Schizophrenia (SCZ) and bipolar disorder (BD) are severe mental disorders associated with cognitive impairment, which is considered a major determinant of functional outcome. Despite this, the etiology of the cognitive impairment is poorly understood, and no satisfactory cognitive treatments exist. Increasing evidence indicates that genetic risk for SCZ may contribute to cognitive impairment, whereas the genetic relationship between BD and cognitive function remains unclear. Here, we combined large genome-wide association study data on SCZ (n = 82,315), BD (n = 51,710), and general intelligence (n = 269,867) to investigate overlap in common genetic variants using conditional false discovery rate (condFDR) analysis. We observed substantial genetic enrichment in both SCZ and BD conditional on associations with intelligence indicating polygenic overlap. Using condFDR analysis, we leveraged this enrichment to increase statistical power and identified 75 distinct genomic loci associated with both SCZ and intelligence, and 12 loci associated with both BD and intelligence at conjunctional FDR < 0.01. Among these loci, 20 are novel for SCZ, and four are novel for BD. Most SCZ risk alleles (61 of 75, 81%) were associated with poorer cognitive performance, whereas most BD risk alleles (9 of 12, 75%) were associated with better cognitive performance. A gene set analysis of the loci shared between SCZ and intelligence implicated biological processes related to neurodevelopment, synaptic integrity, and neurotransmission; the same analysis for BD was underpowered. Altogether, the study demonstrates that both SCZ and BD share genetic influences with intelligence, albeit in a different manner, providing new insights into their genetic architectures.
Collapse
|
70
|
Polygenic risk for schizophrenia and associated brain structural changes: A systematic review. Compr Psychiatry 2019; 88:77-82. [PMID: 30529765 DOI: 10.1016/j.comppsych.2018.11.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 10/22/2018] [Accepted: 11/27/2018] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND Genome wide association studies (GWAS) of schizophrenia allow the generation of Polygenic Risk Scores (PRS). PRS can be used to determine the contribution to altered brain structures in this disorder, which have been well described. However, findings from studies using PRS to predict brain structural changes in schizophrenia have been inconsistent. We therefore performed a systematic review to determine the association between schizophrenia PRS and brain structure. METHODS Following PRISMA systematic review guidelines, databases were searched for literature using key search terms. Inclusion criteria for the discovery sample required case-control schizophrenia GWAS summary statistics from European populations. The target sample was required to be of European ancestry, and have brain structure and genotype information. Quality assessment of the publications was conducted using the Mixed Methods Appraisal Tool for quantitative non-randomised studies. MAIN FINDINGS A total of seven studies were found to be eligible for review. Five studies found no significant association and two studies found a significant association of schizophrenia PRS with total brain, reduced white matter volume, and globus pallidus volume. However, the latter studies were conducted using smaller discovery (ncases = 9394 ncontrols = 12,462) and target samples compared to the studies with substantially larger discovery (ncases = 33,636 ncontrols = 43,008) and target samples where no association was observed. Taken together, the results suggest that schizophrenia PRS are not significantly associated with brain structural changes in this disorder. CONCLUSIONS The lack of significant association between schizophrenia PRS and brain structural changes may indicate that intermediate phenotypes other than brain structure should be the focus of future work. Alternatively, however, the lack of association found here may point to limitations of the current evidence-base, and so point to the need for future better powered studies.
Collapse
|
71
|
Abstract
Recent large-scale genomic studies have confirmed that schizophrenia is a polygenic syndrome and have implicated a number of biological pathways in its aetiology. Both common variants individually of small effect and rarer but more penetrant genetic variants have been shown to play a role in the pathogenesis of the disorder. No simple Mendelian forms of the condition have been identified, but progress has been made in stratifying risk on the basis of the polygenic burden of common variants individually of small effect, and the contribution of rarer variants of larger effect such as Copy Number Variants (CNVs). Pathway analysis of risk-associated variants has begun to identify specific biological processes implicated in risk for the disorder, including elements of the glutamatergic NMDA receptor complex and post synaptic density, voltage-gated calcium channels, targets of the Fragile X Mental Retardation Protein (FMRP targets) and immune pathways. Genetic studies have also been used to drive genomic imaging approaches to the investigation of brain markers associated with risk for the disorder. Genomic imaging approaches have been applied both to investigate the effect of polygenic risk and to study the impact of individual higher-penetrance variants such as CNVs. Both genomic and genomic imaging approaches offer potential for the stratification of patients and at-risk groups and the development of better biomarkers of risk and treatment response; however, further research is needed to integrate this work and realise the full potential of these approaches.
Collapse
|
72
|
Leveraging genome characteristics to improve gene discovery for putamen subcortical brain structure. Sci Rep 2017; 7:15736. [PMID: 29147026 PMCID: PMC5691156 DOI: 10.1038/s41598-017-15705-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 10/31/2017] [Indexed: 12/21/2022] Open
Abstract
Discovering genetic variants associated with human brain structures is an on-going effort. The ENIGMA consortium conducted genome-wide association studies (GWAS) with standard multi-study analytical methodology and identified several significant single nucleotide polymorphisms (SNPs). Here we employ a novel analytical approach that incorporates functional genome annotations (e.g., exon or 5′UTR), total linkage disequilibrium (LD) scores and heterozygosity to construct enrichment scores for improved identification of relevant SNPs. The method provides increased power to detect associated SNPs by estimating stratum-specific false discovery rate (FDR), where strata are classified according to enrichment scores. Applying this approach to the GWAS summary statistics of putamen volume in the ENIGMA cohort, a total of 15 independent significant SNPs were identified (conditional FDR < 0.05). In contrast, 4 SNPs were found based on standard GWAS analysis (P < 5 × 10−8). These 11 novel loci include GATAD2B, ASCC3, DSCAML1, and HELZ, which are previously implicated in various neural related phenotypes. The current findings demonstrate the boost in power with the annotation-informed FDR method, and provide insight into the genetic architecture of the putamen.
Collapse
|