51
|
Bai X, Huang Y, Lu M, Yang D. HKOH-1: A Highly Sensitive and Selective Fluorescent Probe for Detecting Endogenous Hydroxyl Radicals in Living Cells. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201705873] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Xiaoyu Bai
- Morningside Laboratory for Chemical Biology; Department of Chemistry; The University of Hong Kong; Pokfulam Road Hong Kong P. R. China
| | - Yueyang Huang
- Morningside Laboratory for Chemical Biology; Department of Chemistry; The University of Hong Kong; Pokfulam Road Hong Kong P. R. China
| | - Mingyang Lu
- Morningside Laboratory for Chemical Biology; Department of Chemistry; The University of Hong Kong; Pokfulam Road Hong Kong P. R. China
| | - Dan Yang
- Morningside Laboratory for Chemical Biology; Department of Chemistry; The University of Hong Kong; Pokfulam Road Hong Kong P. R. China
| |
Collapse
|
52
|
Bai X, Huang Y, Lu M, Yang D. HKOH-1: A Highly Sensitive and Selective Fluorescent Probe for Detecting Endogenous Hydroxyl Radicals in Living Cells. Angew Chem Int Ed Engl 2017; 56:12873-12877. [DOI: 10.1002/anie.201705873] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Indexed: 01/01/2023]
Affiliation(s)
- Xiaoyu Bai
- Morningside Laboratory for Chemical Biology; Department of Chemistry; The University of Hong Kong; Pokfulam Road Hong Kong P. R. China
| | - Yueyang Huang
- Morningside Laboratory for Chemical Biology; Department of Chemistry; The University of Hong Kong; Pokfulam Road Hong Kong P. R. China
| | - Mingyang Lu
- Morningside Laboratory for Chemical Biology; Department of Chemistry; The University of Hong Kong; Pokfulam Road Hong Kong P. R. China
| | - Dan Yang
- Morningside Laboratory for Chemical Biology; Department of Chemistry; The University of Hong Kong; Pokfulam Road Hong Kong P. R. China
| |
Collapse
|
53
|
Aluksanasuwan S, Khamchun S, Thongboonkerd V. Targeted functional investigations guided by integrative proteome network analysis revealed significant perturbations of renal tubular cell functions induced by high glucose. Proteomics 2017; 17. [DOI: 10.1002/pmic.201700151] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 06/09/2017] [Accepted: 06/23/2017] [Indexed: 12/24/2022]
Affiliation(s)
- Siripat Aluksanasuwan
- Medical Proteomics Unit, Office for Research and Development; and Graduate Program in Immunology, Department of Immunology, Faculty of Medicine Siriraj Hospital; and Center for Research in Complex Systems Science; Mahidol University; Bangkok Thailand
| | - Supaporn Khamchun
- Medical Proteomics Unit, Office for Research and Development; and Graduate Program in Immunology, Department of Immunology, Faculty of Medicine Siriraj Hospital; and Center for Research in Complex Systems Science; Mahidol University; Bangkok Thailand
| | - Visith Thongboonkerd
- Medical Proteomics Unit, Office for Research and Development; and Graduate Program in Immunology, Department of Immunology, Faculty of Medicine Siriraj Hospital; and Center for Research in Complex Systems Science; Mahidol University; Bangkok Thailand
| |
Collapse
|
54
|
Li SA, Jiang WD, Feng L, Liu Y, Wu P, Jiang J, Kuang SY, Tang L, Tang WN, Zhang YA, Tang X, Shi HQ, Zhou XQ. Dietary myo-inositol deficiency decreased the growth performances and impaired intestinal physical barrier function partly relating to nrf2, jnk, e2f4 and mlck signaling in young grass carp (Ctenopharyngodon idella). FISH & SHELLFISH IMMUNOLOGY 2017; 67:475-492. [PMID: 28610850 DOI: 10.1016/j.fsi.2017.06.032] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Revised: 06/06/2017] [Accepted: 06/09/2017] [Indexed: 06/07/2023]
Abstract
In this study, we investigated the effects of dietary myo-inositol on the growth and intestinal physical barrier functions of young grass carp (Ctenopharyngodon idella). A total of 540 young grass carp (221.83 ± 0.84 g) were fed six diets containing graded levels of myo-inositol (27.0, 137.9, 286.8, 438.6, 587.7 and 737.3 mg/kg) for 10 weeks. After the growth trial, fish were challenged with Aeromonas hydrophila for 14 days. The results indicated that compared with optimal myo-inositol levels, myo-inositol deficiency (27.0 mg/kg diet): (1) decreased glutathione (GSH) contents and antioxidant enzymes activities, and down-regulated the mRNA levels of antioxidant enzymes [not glutathione-S-transferase (gst) p1 and gstp2] and NF-E2-related factor 2 (nrf2), whereas up-regulated the reactive oxygen species (ROS), malondialdehyde (MDA) and protein carbonyl (PC) contents, and the mRNA levels of Kelch-like-ECH-associated protein 1 (keap1) in three intestinal segments of young grass carp (P < 0.05). (2) Up-regulated cysteinyl aspartic acid-protease (caspase)-2, -3, -7, -8, -9, apoptotic protease activating factor-1 (apaf-1), Bcl2-associated X protein (bax), fas ligand (fasl), gen-activated protein kinase (p38mapk) and c-Jun N-terminal protein kinase (jnk) mRNA levels, whereas down-regulated B-cell lymphoma-2 (bcl-2), inhibitor of apoptosis proteins (iap) and myeloid cell leukemia-1 (mcl-1) mRNA levels in three intestinal segments of young grass carp (P < 0.05). (3) Down-regulated mRNA levels of cell cycle proteins cyclin b, cyclin d, cyclin e and E2F transcription factor 4 (e2f4) in three intestinal segments of young grass carp (P < 0.05). (4) Down-regulated the mRNA levels of zonula occludens (zo) 1, zo-2, occludin, claudin-b, -c, -f, -3c, -7a, -7b as well as -11, and up-regulated the mRNA levels of claudin-12, -15a (not -15b) and myosin light chain kinase (mlck) in three intestinal segments of young grass carp (P < 0.05). All above data indicated that dietary myo-inositol deficiency could damage physical barrier function in three intestinal segments of fish. Finally, the myo-inositol requirements based on the percent weight gain (PWG), reactive oxygen species (ROS) contents in the proximal intestine (PI), relative mRNA levels of caspase-2 (PI), cyclin b (MI) as well as claudin-b (PI) were estimated to be 276.7, 304.1, 327.9, 416.7 and 313.2 mg/kg diet, respectively.
Collapse
Affiliation(s)
- Shuang-An Li
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China
| | - Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Jun Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China
| | - Sheng-Yao Kuang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Ling Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Wu-Neng Tang
- Animal Nutrition Institute, Sichuan Academy of Animal Science, Chengdu 610066, China
| | - Yong-An Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Xu Tang
- Chengdu Mytech Biotech Co., Ltd., Chengdu 610222, Sichuan, China
| | - He-Qun Shi
- Guangzhou Cohoo Bio-tech Research & Development Centre, Guangzhou 510663, Guangdong, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
55
|
Garud MS, Kulkarni YA. Attenuation of renal damage in type I diabetic rats by umbelliferone - a coumarin derivative. Pharmacol Rep 2017; 69:1263-1269. [PMID: 29128808 DOI: 10.1016/j.pharep.2017.06.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 06/21/2017] [Accepted: 06/22/2017] [Indexed: 10/19/2022]
Abstract
BACKGROUND It is well known that diabetes is one of the non-communicable disease affecting a large population worldwide. When diabetes remains untreated or uncontrolled, it leads to further serious complications, affecting vital organs like eyes, kidney, heart, etc. The present study was designed to evaluate effects of umbelliferone, a phytochemical, in treatment of diabetic nephropathy. METHODS Experimental model used was streptozotocin (55mg/kg, ip) induced diabetic nephropathy in male Sprague Dawley rats. After 28days of streptozotocin administration, diabetic animals were treated with umbelliferone at two dose levels, 20 and 40mg/kg for next 28days. RESULTS The results of the study showed that umbelliferone treatment significantly decreased the elevated plasma creatinine and blood urea nitrogen level while significantly increased the total protein and albumin level in diabetic animals. Creatinine clearance was improved in umbelliferone treated animals. Renal oxidative stress was decreased in umbelliferone treated animals significantly. Histopathological study of the kidney was carried out by specific stains like Hematoxylin-Eosin, Periodic Acid Schiff and Masson Trichrome stain. The sections of the kidney showed that umbelliferone treatment decreased the glomerular damage, mesangial matrix expansion as well as the renal fibrosis. Determination of renal transforming growth factor beta one (TGF-β1) expression by immunohistochemical analysis, western blotting and circulating TGF-β1 by ELISA assay showed that umbelliferone decreased the renal tissue and circulating TGF-β1 level. CONCLUSION Umbelliferone treatment can significantly reduce the diabetes induced renal damage and can improve the pathological conditions related to the diabetic nephropathy by down regulation of TGF-β.
Collapse
Affiliation(s)
- Mayuresh S Garud
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, Mumbai, India
| | - Yogesh A Kulkarni
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM's NMIMS, Mumbai, India.
| |
Collapse
|
56
|
Shirazi M, Eslahi A, Sharifi V, Rahimi F, Safarpour A. Evaluation of Caspase 3 Enzyme and TNF-alpha as Biomarkers in Ureteropelvic Junction Obstruction in Children- a preliminary report. Pak J Med Sci 2017; 33:315-319. [PMID: 28523029 PMCID: PMC5432696 DOI: 10.12669/pjms.332.11934] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To determine the applicability of urinary caspase 3 enzyme and TNF-α as biomarkers in children with ureteropelvic junction obstruction (UPJO). METHODS In this study, 31 unilateral UPJO patients and 33 age- and sex-matched healthy childrens were enrolled. The patients with UPJO consisted of 11 female and 20 male children between the ages of 2 to 62 months old. All participants were evaluated regarding anterior-posterior(AP) diameter and cortical thickness of affected kidney by ultrasonography. Technetium DTPA renal scan and voiding cystourethrogram(to assess vesicoureteral reflux) were performed, pre-operatively. Also, urinary levels of TNF-α and caspase 3 enzyme were checked. Follow-ups included measurement of aforementioned indices in patients: AP diameter and cortical thickness of the affected kidney, as well as TNF-α and caspase 3 levels in urine, three and six months after pyeloplasty. RESULTS The results showed highly significant decrease in urinary TNF-α and caspase 3 enzyme (P values < 0.01), approaching the level measured in children without UPJO after six months. Significant decrease in AP diameter and increase in cortical thickness were also noticed (P values < 0.01). CONCLUSION The results of this study strongly support that TNF-α and caspase 3 levels in urine can be used for improvement monitoring in follow-up of UPJO patients after pyeloplasty and can also be potentially used as determining indices for surgical plan but more studies, especially in patients who are not surgical candidates are needed to confirm our observaitons.
Collapse
Affiliation(s)
- Mehdi Shirazi
- Mehdi Shirazi, Department of Urology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali Eslahi
- Ali Eslahi, Department of Urology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Vahidreza Sharifi
- Vahidreza Sharifi, Urologist, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Rahimi
- Fatemeh Rahimi, Educational Manager, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Alireza Safarpour
- Alireza Safarpour, Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
57
|
Wang X, Meng L, Zhao L, Wang Z, Liu H, Liu G, Guan G. Resveratrol ameliorates hyperglycemia-induced renal tubular oxidative stress damage via modulating the SIRT1/FOXO3a pathway. Diabetes Res Clin Pract 2017; 126:172-181. [PMID: 28258028 DOI: 10.1016/j.diabres.2016.12.005] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 11/12/2016] [Accepted: 12/08/2016] [Indexed: 10/20/2022]
Abstract
AIMS Oxidative stress plays an important role in the development and progression of diabetic nephropathy (DN). We aimed to investigate if resveratrol (RSV) could ameliorate hyperglycemia-induced oxidative stress in renal tubules via modulating the SIRT1/FOXO3a pathway. METHODS The effects of RSV on diabetes rats were assessed by periodic acid-Schiff, Masson staining, immunohistochemistry, and western blot analyses. Additionally, oxidative indicators (such as catalase, superoxide dismutase, reactive oxygen species, and malondialdehyde), the deacetylase activity of SIRT1 and protein expressions of SIRT1, FOXO3a, and acetylated-FOXO3a were measured. These indicators were similarly evaluated in an in vitro study. Furthermore, the silencing of SIRT1 was used to confirm its role in the resistance to oxidative stress and the relationship between SIRT1 and FOXO3a in vitro. RESULTS After 16weeks of RSV treatment, the renal function and glomerulosclerosis of rats with DN was dramatically ameliorated. RSV treatment increased SIRT1 deacetylase activity, subsequently decreasing the expression of acetylated-FOXO3a and inhibiting the oxidative stress caused by hyperglycemia both in vivo and in vitro. The silencing of SIRT1 in HK-2 cells aggravated the high glucose-induced oxidative stress and overexpression of acetylated-FOXO3a; RSV treatment failed to protect against these effects. CONCLUSIONS RSV modulates the SIRT1/FOXO3a pathway by increasing SIRT1 deacetylase activity, subsequently ameliorating hyperglycemia-induced renal tubular oxidative stress damage. This mechanism provides the basis for a new approach to developing an effective DN treatment, which is of great clinical significance for reducing the morbidity and mortality associated with DN.
Collapse
Affiliation(s)
- Xueling Wang
- Nephrology Research Institute of Shandong University, The Second Hospital of Shandong University, Shandong University, Jinan, Shandong, China
| | - Linghang Meng
- Nephrology Research Institute of Shandong University, The Second Hospital of Shandong University, Shandong University, Jinan, Shandong, China
| | - Long Zhao
- Nephrology Research Institute of Shandong University, The Second Hospital of Shandong University, Shandong University, Jinan, Shandong, China
| | - Zengfu Wang
- Anesthesia Department, Shengli Oilfield Central Hospital, Dongying, Shandong, China
| | - Haiying Liu
- Nephrology Research Institute of Shandong University, The Second Hospital of Shandong University, Shandong University, Jinan, Shandong, China
| | - Gang Liu
- Nephrology Research Institute of Shandong University, The Second Hospital of Shandong University, Shandong University, Jinan, Shandong, China.
| | - Guangju Guan
- Nephrology Research Institute of Shandong University, The Second Hospital of Shandong University, Shandong University, Jinan, Shandong, China.
| |
Collapse
|
58
|
Aluksanasuwan S, Sueksakit K, Fong-Ngern K, Thongboonkerd V. Role of HSP60 (HSPD1) in diabetes-induced renal tubular dysfunction: regulation of intracellular protein aggregation, ATP production, and oxidative stress. FASEB J 2017; 31:2157-2167. [PMID: 28196897 DOI: 10.1096/fj.201600910rr] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 01/23/2017] [Indexed: 12/28/2022]
Abstract
Because underlying mechanisms of diabetic nephropathy/tubulopathy remained poorly understood, we aimed to define a key protein involving in hyperglycemia-induced renal tubular dysfunction. All altered renal proteins identified from previous large-scale proteome studies were subjected to global protein network analysis, which revealed heat shock protein 60 (HSP60, also known as HSPD1) as the central node of protein-protein interactions. Functional validation was performed using small interfering RNA (siRNA) to knock down HSP60 (siHSP60). At 48 h after exposure to high glucose (HG) (25 mM), Madin-Darby canine kidney (MDCK) renal tubular cells transfected with controlled siRNA (siControl) had significantly increased level of HSP60 compared to normal glucose (NG) (5.5 mM), whereas siHSP60-transfected cells showed a dramatically decreased HSP60 level. siHSP60 modestly increased intracellular protein aggregates in both NG and HG conditions. Luciferin-luciferase assay showed that HG modestly increased intracellular ATP, and siHSP60 further enhanced such an increase. OxyBlot assay showed significantly increased level of oxidized proteins in HG-treated siControl-transfected cells, whereas siHSP60 caused marked increase of oxidized proteins under the NG condition. However, the siHSP60-induced accumulation of oxidized proteins was abolished by HG. In summary, our data demonstrated that HSP60 plays roles in regulation of intracellular protein aggregation, ATP production, and oxidative stress in renal tubular cells. Its involvement in HG-induced tubular cell dysfunction was most likely via regulation of intracellular ATP production.-Aluksanasuwan, S., Sueksakit, K., Fong-ngern, K., Thongboonkerd, V. Role of HSP60 (HSPD1) in diabetes-induced renal tubular dysfunction: regulation of intracellular protein aggregation, ATP production, and oxidative stress.
Collapse
Affiliation(s)
- Siripat Aluksanasuwan
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.,Center for Research in Complex Systems Science, Mahidol University, Bangkok, Thailand
| | - Kanyarat Sueksakit
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.,Center for Research in Complex Systems Science, Mahidol University, Bangkok, Thailand
| | - Kedsarin Fong-Ngern
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand.,Center for Research in Complex Systems Science, Mahidol University, Bangkok, Thailand
| | - Visith Thongboonkerd
- Medical Proteomics Unit, Office for Research and Development, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand; .,Center for Research in Complex Systems Science, Mahidol University, Bangkok, Thailand
| |
Collapse
|
59
|
Xue B, Wang L, Zhang Z, Wang R, Xia XX, Han PP, Cao LJ, Liu YH, Sun LQ. Puerarin may protect against Schwann cell damage induced by glucose fluctuation. J Nat Med 2017; 71:472-481. [PMID: 28181078 DOI: 10.1007/s11418-016-1067-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 12/16/2016] [Indexed: 12/21/2022]
Abstract
Puerarin is one of the major active ingredients in Gegen, a traditional Chinese herb that has been reported to have a wide variety of beneficial pharmacology functions. Previous studies have implicated that the damaging effects of hyperglycemia resulting from oxidative stress and glucose fluctuation may be more dangerous than constant high glucose in the development of diabetes-related complications. The present study focuses on the effects of puerarin on glucose fluctuation-induced oxidative stress-induced Schwann cell (SC) apoptosis in vitro. Primarily cultured SCs were exposed to different conditions and the effect of puerarin on cell viability was determined by MTT assays. Intracellular reactive oxygen species (ROS) generation and mitochondrial transmembrane potential were detected by flow cytometry analysis. Apoptosis was confirmed by the Annexin V-FITC/PI and TUNEL method. Quantitative real-time reverse transcriptase polymerase chain reaction was performed to analyze the expression levels of bax and bcl-2. Western blot was performed to analyze the expression levels of some important transcription factors and proteins. The results showed that incubating SCs with intermittent high glucose for 48 h decreased cell viability and increased the number of apoptotic cells whereas treating with puerarin protected SCs against glucose fluctuation-induced cell damage. Further study demonstrated that puerarin suppressed activation of apoptosis-related proteins including PARP and caspase-3, downregulation of bcl-2, and upregulation of intracellular distribution of bax from cytosol to mitochondria, which was induced by glucose fluctuation. Moreover, puerarin inhibited the elevation of intracellular ROS and mitochondrial depolarization induced by glucose fluctuation. These results suggest that puerarin may protect SCs against glucose fluctuation-induced cell injury through inhibiting apoptosis as well as oxidative stress.
Collapse
Affiliation(s)
- Bing Xue
- Department of Endocrinology, General Hospital of Shenyang Military Region, 83 Wenhua Rd, Shenyang, 110016, Liaoning, China
| | - Lin Wang
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yantaxi Rd, Xi'an, 710061, Shanxi, China
| | - Zhe Zhang
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yantaxi Rd, Xi'an, 710061, Shanxi, China
| | - Rui Wang
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yantaxi Rd, Xi'an, 710061, Shanxi, China
| | - Xin-Xin Xia
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yantaxi Rd, Xi'an, 710061, Shanxi, China
| | - Ping-Ping Han
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yantaxi Rd, Xi'an, 710061, Shanxi, China
| | - Li-Jun Cao
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yantaxi Rd, Xi'an, 710061, Shanxi, China
| | - Yong-Hui Liu
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yantaxi Rd, Xi'an, 710061, Shanxi, China
| | - Lian-Qing Sun
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yantaxi Rd, Xi'an, 710061, Shanxi, China.
| |
Collapse
|
60
|
Langford MP, Redens TB, Harris NR, Lee S, Jain SK, Reddy S, McVie R. Plasma Levels of Cell-Free Apoptotic DNA Ladders and Gamma-Glutamyltranspeptidase (GGT) in Diabetic Children. Exp Biol Med (Maywood) 2016; 232:1160-9. [PMID: 17895524 DOI: 10.3181/0701-rm-13] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The plasma levels of apoptotic DNA ladders (i.e., apoptosemia) and γ-glutamyltranspeptidase (GGT) in diabetic outpatients and rats were investigated. Apoptotic DNA ladders were detected in plasma from 26.8% of type 1 (T1) and 18.5% of type 2 (T2) diabetic children 1–20 years of age, 25.7% of hospitalized children and 35.7% of adult RA outpatients, but in only 3.5% of adult pre-op patients. Plasma from 7.7% of young streptozotocin-induced diabetic but not control rats contained apoptotic DNA ladders. Apoptosemia was detected more often in male T1 (31%) and T2 (30.8%) diabetic outpatients than in female T1 (20.8%) and T2 (15.4%) diabetic outpatients. GGT in apoptosemic plasma was significantly higher than in nonapoptosemic plasma from T1 ( P = 0.001) but not T2 diabetic children. The highest amounts of apoptotic DNA were detected most often in diabetic children ≥14 years of age. In vitro study results suggest that cell-free apoptotic DNA ladders appear prior to an increase in GGT activity in serum from human blood incubated at 37°C. The results suggest that 24.7% of plasma samples from diabetic children contained apoptotic DNA ladders, the incidence and amounts of apoptotic DNA ladders were higher in the older diabetic children, and GGT was elevated in apoptosemic T1 diabetic children ( P = 0.01). The results indicate that “silent” apoptosemia occurs in T1 and T2 diabetic children and suggest elevated GGT in diabetic children could be due to release from apoptotic cells.
Collapse
Affiliation(s)
- Marlyn P Langford
- Department of Ophthalmology, Louisiana State University Health Sciences Center, Shreveport, Louisiana 71130-3932, USA.
| | | | | | | | | | | | | |
Collapse
|
61
|
A new class of fast-response and highly selective fluorescent probes for visualizing peroxynitrite in live cells, subcellular organelles, and kidney tissue of diabetic rats. Biomaterials 2016; 107:33-43. [DOI: 10.1016/j.biomaterials.2016.08.032] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 08/15/2016] [Accepted: 08/18/2016] [Indexed: 11/23/2022]
|
62
|
Garud MS, Kulkarni YA. Eugenol ameliorates renal damage in streptozotocin-induced diabetic rats. FLAVOUR FRAG J 2016. [DOI: 10.1002/ffj.3357] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
63
|
Tian YM, Guan Y, Li N, Ma HJ, Zhang L, Wang S, Zhang Y. Chronic intermittent hypobaric hypoxia ameliorates diabetic nephropathy through enhancing HIF1 signaling in rats. Diabetes Res Clin Pract 2016; 118:90-7. [PMID: 27351799 DOI: 10.1016/j.diabres.2016.06.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 04/13/2016] [Accepted: 06/05/2016] [Indexed: 12/23/2022]
Abstract
AIM Our previous study demonstrated that chronic intermittent hypobaric hypoxia (CIHH) had anti-diabetes effect. The present study was to explore the renal protective effect of CIHH in diabetic rats. METHODS Sprague-Dawley rats were randomly divided into three groups: diabetes mellitus group (DM, induced by high-fat diet combined with low-dose streptozotocin), diabetes plus CIHH treatment group (DM+CIHH, simulated 5000-m altitude, 6h per day for 28days, after diabetes model confirmed) and control group (CON). Systolic arterial blood pressure (SAP), blood biochemicals, urinary albumin, and histopathology of kidney were determined. The superoxide dismutase (SOD) activity, malondialdehyde (MDA) level, protein levels of hypoxia induced factors (HIFs) and transforming growth factor β1 (TGF-β1) in kidney were assayed. RESULTS The increased SAP, urinary albumin, hyperplasia of glomerular, fibrosis in mesangial and glomerular, and abnormal lipid metabolism in diabetic rats were ameliorated by CIHH treatment. And decreased superoxide dismutase (SOD) activity and increased malondialdehyde (MDA) level in diabetic kidney were reversed in CIHH-treated DM rats. In addition up-regulated TGF-β1 and down-regulated HIF1α in diabetic kidney returned back to normal level in CIHH-treated DM rats. CONCLUSIONS These data demonstrated for the first time that CIHH had protective effects against the early stage damage of diabetic nephropathy through activating HIF1 signaling, improving anti-oxidation and inhibiting TGF-β1 signaling in diabetic rats.
Collapse
Affiliation(s)
- Yan-Ming Tian
- Department of Physiology, Hebei Medical University, Shijiazhuang 050017, PR China; Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, Shijiazhuang 050000, PR China
| | - Yue Guan
- Department of Physiology, Hebei Medical University, Shijiazhuang 050017, PR China; Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, Shijiazhuang 050000, PR China
| | - Na Li
- Department of Physiology, Medical College, Hebei University, Baoding 071000, PR China
| | - Hui-Jie Ma
- Department of Physiology, Hebei Medical University, Shijiazhuang 050017, PR China; Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, Shijiazhuang 050000, PR China
| | - Li Zhang
- Department of Cardiology, Bethune International Peace Hospital, Shijiazhuang 050082, PR China
| | - Sheng Wang
- Department of Physiology, Hebei Medical University, Shijiazhuang 050017, PR China; Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, Shijiazhuang 050000, PR China
| | - Yi Zhang
- Department of Physiology, Hebei Medical University, Shijiazhuang 050017, PR China; Hebei Collaborative Innovation Center for Cardio-cerebrovascular Disease, Shijiazhuang 050000, PR China.
| |
Collapse
|
64
|
Kajiwara M, Masuda S. Role of mTOR Inhibitors in Kidney Disease. Int J Mol Sci 2016; 17:ijms17060975. [PMID: 27338360 PMCID: PMC4926507 DOI: 10.3390/ijms17060975] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 06/13/2016] [Accepted: 06/16/2016] [Indexed: 02/06/2023] Open
Abstract
The first compound that inhibited the mammalian target of rapamycin (mTOR), sirolimus (rapamycin) was discovered in the 1970s as a soil bacterium metabolite collected on Easter Island (Rapa Nui). Because sirolimus showed antiproliferative activity, researchers investigated its molecular target and identified the TOR1 and TOR2. The mTOR consists of mTOR complex 1 (mTORC1) and mTORC2. Rapalogues including sirolimus, everolimus, and temsirolimus exert their effect mainly on mTORC1, whereas their inhibitory effect on mTORC2 is mild. To obtain compounds with more potent antiproliferative effects, ATP-competitive inhibitors of mTOR targeting both mTORC1 and mTORC2 have been developed and tested in clinical trials as anticancer drugs. Currently, mTOR inhibitors are used as anticancer drugs against several solid tumors, and immunosuppressive agents for transplantation of various organs. This review discusses the role of mTOR inhibitors in renal disease with a particular focus on renal cancer, diabetic nephropathy, and kidney transplantation.
Collapse
Affiliation(s)
- Moto Kajiwara
- Department of Pharmacy, Kyushu University Hospital, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| | - Satohiro Masuda
- Department of Pharmacy, Kyushu University Hospital, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| |
Collapse
|
65
|
Demirtas L, Turkmen K, Kandemir FM, Ozkaraca M, Kucukler S, Gürbüzel M, Comaklı S. The possible role of interleukin-33 as a new player in the pathogenesis of contrast-induced nephropathy in diabetic rats. Ren Fail 2016; 38:952-60. [PMID: 27055881 DOI: 10.3109/0886022x.2016.1165034] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
INTRODUCTION Patients with diabetic kidney disease (DKD) are more prone to contrast-induced nephropathy (CN). Apoptosis and autophagy were found to be essential in the pathogenesis of DKD. Interleukin-33 (IL-33) is a cytokine, but its role in DKD and CN is unknown. As IL-33 is modulated by apoptosis, we aimed to determine the relationship between IL-33 apoptosis and autophagy in DKD with CN. MATERIALS AND METHODS Thirty male Sprague-Dawley rats were enrolled and randomly allocated into three groups. The first group was comprised of healthy rats (HRs), whereas the other two groups were made up of diabetic rats (DRs) and diabetic rats with CN (DRs + CN). All groups except the HRs received 50 mg/kg/day of streptozotocin (STZ). The DRs + CN group was induced by administering 1.5 mg/kg of intravenous radiocontrast dye on the 35th day. RESULTS We observed increased IL-33 in the kidney tissue following induction of CN in the DRs. The DRs showed moderate immunopositivity, and the DRs + CN showed severe immunopositivity for caspase-3, cleaved caspase-3, caspase-8, caspase-9, LC3B, and Beclin-1 in tubular cells and glomeruli. The DRs also showed moderate immunopositivity in tubular cells, and the DRs + CN group showed severe immunopositivity for IL-33 in tubular cells. Increased caspase-3 was found in both glomeruli and tubuli; however, we could not demonstrate IL-33 in glomeruli. This could be secondary to inactivation of IL-33 via increased caspase-3 activity. CONCLUSION The release of IL-33 from necrotic cells might induce autophagy, which can further balance the effects of increased apoptosis secondary to CN in DKD.
Collapse
Affiliation(s)
- Levent Demirtas
- a Department of Internal Medicine, Faculty of Medicine , Erzincan University , Erzincan , Turkey
| | - Kultigin Turkmen
- b Division of Nephrology, Department of Internal Medicine, Meram School of Medicine , Necmettin Erbakan University , Konya , Turkey
| | - Fatih Mehmet Kandemir
- c Department of Biochemistry, Faculty of Veterinary , Ataturk University , Erzurum , Turkey
| | - Mustafa Ozkaraca
- d Department of Pathology, Faculty of Veterinary , Ataturk University , Erzurum , Turkey
| | - Sefa Kucukler
- c Department of Biochemistry, Faculty of Veterinary , Ataturk University , Erzurum , Turkey
| | - Mehmet Gürbüzel
- e Department of Medical Biology, Faculty of Medicine , Erzincan University , Turkey , Erzincan
| | - Selim Comaklı
- d Department of Pathology, Faculty of Veterinary , Ataturk University , Erzurum , Turkey
| |
Collapse
|
66
|
Sun L, Dutta RK, Xie P, Kanwar YS. myo-Inositol Oxygenase Overexpression Accentuates Generation of Reactive Oxygen Species and Exacerbates Cellular Injury following High Glucose Ambience: A NEW MECHANISM RELEVANT TO THE PATHOGENESIS OF DIABETIC NEPHROPATHY. J Biol Chem 2016; 291:5688-5707. [PMID: 26792859 DOI: 10.1074/jbc.m115.669952] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Indexed: 01/23/2023] Open
Abstract
Diabetic nephropathy (DN) is characterized by perturbations in metabolic/cellular signaling pathways with generation of reactive oxygen species (ROS). The ROS are regarded as a common denominator of various pathways, and they inflict injury on renal glomerular cells. Recent studies indicate that tubular pathobiology also plays a role in the progression of DN. However, the mechanism(s) for how high (25 mm) glucose (HG) ambience induces tubular damage remains enigmatic. myo-Inositol oxygenase (MIOX) is a tubular enzyme that catabolizes myo-inositol to d-glucuronate via the glucuronate-xylulose (G-X) pathway. In this study, we demonstrated that G-X pathway enzymes are expressed in the kidney, and MIOX expression/bioactivity was up-regulated under HG ambience in LLC-PK1 cells, a tubular cell line. We further investigated whether MIOX overexpression leads to accentuation of tubulo-interstitial injury, as gauged by some of the parameters relevant to the progression of DN. Under HG ambience, MIOX overexpression accentuated redox imbalance, perturbed NAD(+)/NADH ratios, increased ROS generation, depleted reduced glutathione, reduced GSH/GSSG ratio, and enhanced adaptive changes in the profile of the antioxidant defense system. These changes were also accompanied by mitochondrial dysfunctions, DNA damage and induction of apoptosis, accentuated activity of profibrogenic cytokine, and expression of fibronectin, the latter two being the major hallmarks of DN. These perturbations were largely blocked by various ROS inhibitors (Mito Q, diphenyleneiodonium chloride, and N-acetylcysteine) and MIOX/NOX4 siRNA. In conclusion, this study highlights a novel mechanism where MIOX under HG ambience exacerbates renal injury during the progression of diabetic nephropathy following the generation of excessive ROS via an unexplored G-X pathway.
Collapse
Affiliation(s)
- Lin Sun
- From the Department of Nephrology and Renal Institute, 2nd Xiangya Hospital, Central South University, Changsha, Hunan 410011, China and
| | - Rajesh K Dutta
- the Departments of Pathology and Medicine, Northwestern University, Chicago, Illinois 60611
| | - Ping Xie
- the Departments of Pathology and Medicine, Northwestern University, Chicago, Illinois 60611
| | - Yashpal S Kanwar
- the Departments of Pathology and Medicine, Northwestern University, Chicago, Illinois 60611.
| |
Collapse
|
67
|
Murillo AG, Fernandez ML. Potential of Dietary Non-Provitamin A Carotenoids in the Prevention and Treatment of Diabetic Microvascular Complications. Adv Nutr 2016; 7:14-24. [PMID: 26773012 PMCID: PMC4717886 DOI: 10.3945/an.115.009803] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Diabetes is a chronic metabolic disease that affects a substantial part of the population around the world. Whether type I or type II, this disease has serious macro- and microvascular complications that constitute the primary cause of death in diabetic patients. Microvascular complications include diabetic retinopathy, nephropathy, and neuropathy. Although these complications are clinically and etiologically diverse, they share a common factor: glucose-induced damage. In the progression of diabetic complications, oxidative stress, inflammation, and the formation of glycation end products play an important role. Previous studies have shown that a healthy diet is vital in preventing these complications; in particular, the intake of antioxidants has been studied for their potential effect in ameliorating hyperglycemic injuries. Carotenoids are lipid-soluble pigments synthesized by plants, bacteria, and some kinds of algae that are responsible for the yellow, red, and orange colors in food. These compounds are part of the antioxidant machinery in plants and have also shown their efficacy in quenching free radicals, scavenging reactive oxygen species, modulating gene expression, and reducing inflammation in vitro and in vivo, showing that they can potentially be used as part of a preventive strategy for metabolic disorders, including diabetes and its related complications. This review highlights the potential protective effects of 4 non-provitamin A carotenoids--lutein, zeaxanthin, lycopene, and astaxanthin--in the development and progression of diabetic microvascular complications.
Collapse
|
68
|
Liu F, Du J, Song D, Xu M, Sun G. A sensitive fluorescent sensor for the detection of endogenous hydroxyl radicals in living cells and bacteria and direct imaging with respect to its ecotoxicity in living zebra fish. Chem Commun (Camb) 2016; 52:4636-9. [DOI: 10.1039/c5cc10658c] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
MPT-Cy2exhibited excellent selectivity and sensitivity toward ˙OH over other ROS and showed a high potential for the imaging of endogenous ˙OH in living cells and various types of bacteria.
Collapse
Affiliation(s)
- Fei Liu
- State Key Laboratory of Applied Microbiology Southern China
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application
- Guangdong Institute of Microbiology
- Guangzhou 510070
- P. R. China
| | - Juan Du
- State Key Laboratory of Applied Microbiology Southern China
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application
- Guangdong Institute of Microbiology
- Guangzhou 510070
- P. R. China
| | - Da Song
- State Key Laboratory of Applied Microbiology Southern China
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application
- Guangdong Institute of Microbiology
- Guangzhou 510070
- P. R. China
| | - Meiying Xu
- State Key Laboratory of Applied Microbiology Southern China
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application
- Guangdong Institute of Microbiology
- Guangzhou 510070
- P. R. China
| | - Guoping Sun
- State Key Laboratory of Applied Microbiology Southern China
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application
- Guangdong Institute of Microbiology
- Guangzhou 510070
- P. R. China
| |
Collapse
|
69
|
Aminoguanidine treatment increased NOX2 response in diabetic rats: Improved phagocytosis and killing of Candida albicans by neutrophils. Eur J Pharmacol 2015; 772:83-91. [PMID: 26724393 DOI: 10.1016/j.ejphar.2015.12.044] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 12/22/2015] [Accepted: 12/23/2015] [Indexed: 11/21/2022]
Abstract
In this study, we show that aminoguanidine (AMG), an inhibitor of protein glycation, increases the NOX2 (phagocyte NADPH oxidase) response and microbicidal activity by neutrophils, regardless of diabetic status. The non-enzymatic glycation of proteins, yielding irreversible advanced glycation end products (AGEs), is involved in the development of diabetes complications, including alterations of signaling pathways and the generation of reactive oxygen species by phagocytes. The phagocytes produce ROS (reactive oxygen species) through activation of the NOX2 complex, which generates superoxide. The purpose of this study was to evaluate the effect of hyperglycemia and the glycation of proteins on the NOX2 activity of neutrophils and its implications for cellular physiology, with a focus on the microbicidal activity of these cells. We treated diabetic rats with AMG and evaluated neutrophil ROS generation and Candida albicans killing ability. We observed a large increase in the microbicidal activity of peritoneal neutrophils from AMG-treated rats. The increase was independent of diabetic status and myeloperoxidase activity. Collectively, our results suggest that AMG has an immunomodulator role that triggers an increase in the microbicidal response of neutrophils mainly related to reactive oxygen species production by NOX2.
Collapse
|
70
|
Güçlü A, Erken HA, Erken G, Dodurga Y, Yay A, Özçoban Ö, Şimşek H, Akçılar A, Koçak FE. The effects of ozone therapy on caspase pathways, TNF-α, and HIF-1α in diabetic nephropathy. Int Urol Nephrol 2015; 48:441-50. [PMID: 26614261 DOI: 10.1007/s11255-015-1169-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 11/17/2015] [Indexed: 12/11/2022]
Abstract
BACKGROUND Accelerated apoptosis plays a vital role in the development of diabetic vascular complications. Ozone may attenuate diabetic nephropathy by means of decreased apoptosis-related genes. The aim of our study was to investigate the effect of ozone therapy on streptozotocin-induced diabetic nephropathy in rats. Also the histopathological changes in diabetic kidney tissue with ozone treatment were evaluated. METHODS The rats were randomly divided into six groups (n = 7): control (C), ozone (O), diabetic (D), ozone-treated diabetic (DO), insulin-treated diabetic (DI), and ozone- and insulin-treated diabetic (DOI). D, DI, and DOI groups were induced by a single intraperitoneal injection of streptozotocin. Ozone was given to the O, DO, and DOI groups. Group DI and DOI received subcutaneous (SC) insulin (3 IU). All animals received daily treatment for 6 weeks. RESULTS Expressions of caspase-1-3-9, HIF-1α, and TNF-α genes were significantly higher in D group compared to C group (p < 0.05 for all). Ozone treatment resulted in significant decrease in the expressions of these genes in diabetic kidney tissue compared to both C and D group (p < 0.05 for all). Caspase-1-3-9, HIF-1α, and TNF-α gene expressions were found to be lower in DOI group compared to C group (p < 0.05 for all). Also adding ozone treatment to insulin therapy resulted in more significantly decrease in the expressions of these genes in diabetic tissue compared to only insulin-treated diabetic group (p < 0.05 for all). Regarding histological changes, ozone treatment resulted in decrease in the renal corpuscular inflammation and normal kidney morphology was observed. Both insulin and ozone therapies apparently improved kidney histological findings with less degenerated tubules and less inflammation of renal corpuscle compared to D, DO, and DI groups. CONCLUSION Ozone therapy decreases the expressions of apoptotic genes in diabetic kidney tissue and improves the histopathological changes.
Collapse
Affiliation(s)
- Aydın Güçlü
- Department of Nephrology, Faculty of Medicine, Ahi Evran University, Kırşehir, Turkey.
| | - Haydar Ali Erken
- Department of Physiology, Faculty of Medicine, Balikesir University, Balikesir, Turkey
| | - Gülten Erken
- Department of Physiology, Faculty of Medicine, Balikesir University, Balikesir, Turkey
| | - Yavuz Dodurga
- Department of Medical Biology, Pamukkale University School of Medicine, Denizli, Turkey
| | - Arzu Yay
- Department of Histology and Embryology, Erciyes University School of Medicine, Kayseri, Turkey
| | - Özge Özçoban
- Department of Histology and Embryology, Erciyes University School of Medicine, Kayseri, Turkey
| | - Hasan Şimşek
- Department of Physiology, Faculty of Medicine, Dumlupınar University, Kutahya, Turkey
| | - Aydın Akçılar
- Experimental Research Unit, Faculty of Medicine, Dumlupınar University, Kutahya, Turkey
| | - Fatma Emel Koçak
- Department of Biochemistry, Faculty of Medicine, Dumlupınar University, Kutahya, Turkey
| |
Collapse
|
71
|
Lee ES, Kim HM, Kang JS, Lee EY, Yadav D, Kwon MH, Kim YM, Kim HS, Chung CH. Oleanolic acid and N-acetylcysteine ameliorate diabetic nephropathy through reduction of oxidative stress and endoplasmic reticulum stress in a type 2 diabetic rat model. Nephrol Dial Transplant 2015; 31:391-400. [PMID: 26567248 DOI: 10.1093/ndt/gfv377] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2015] [Accepted: 10/08/2015] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Hyperglycemia-induced endoplasmic reticulum (ER) stress and oxidative stress could be causes of renal fibrosis in diabetes. Oleanolic acid (OA) naturally occurs in fruits and vegetables. It has anti-inflammatory, antihyperlipidemic and antioxidant effects. N-acetylcysteine (NAC) is a precursor of glutathione, which has a strong antioxidant effect in the body. In this study, we investigated the therapeutic effects of OA and NAC in diabetic nephropathy (DN). METHODS Otsuka Long-Evans Tokushima Fatty rats were treated with OA (100 mg/kg/day) or NAC (300 mg/kg/day) for 20 weeks by oral gavage. RESULTS The OA or NAC administration increased blood insulin secretion and superoxide dismutase levels, and decreased triglycerides and urinary albumin/creatinine levels. In the kidney, the damaged renal structure recovered with OA or NAC administration, through an increase in nephrin and endothelial selective adhesion molecules and a decrease in transforming growth factor-β/p-smad2/3 and ER stress. Reactive oxygen species and ER stress were increased by high glucose and ER stress inducers in cultured mesangial cells, and these levels recovered with OA (5.0 μM) or NAC (2.5 mM) treatment. CONCLUSION The findings in this study suggest that OA and NAC have therapeutic effects for DN through an antioxidant effect and ER stress reduction.
Collapse
Affiliation(s)
- Eun Soo Lee
- Department of Internal Medicine, Yonsei University Wonju College of Medicine, 162 Ilsan-Dong, Wonju, Gangwon-Do 220-701, Republic of Korea
| | - Hong Min Kim
- Department of Internal Medicine, Yonsei University Wonju College of Medicine, 162 Ilsan-Dong, Wonju, Gangwon-Do 220-701, Republic of Korea
| | - Jeong Suk Kang
- Department of Internal Medicine, Soonchunhyang University Cheonan Hospital, Cheonan 330-721, Republic of Korea
| | - Eun Young Lee
- Department of Internal Medicine, Soonchunhyang University Cheonan Hospital, Cheonan 330-721, Republic of Korea
| | - Dhananjay Yadav
- Department of Internal Medicine, Yonsei University Wonju College of Medicine, 162 Ilsan-Dong, Wonju, Gangwon-Do 220-701, Republic of Korea
| | - Mi-Hye Kwon
- Department of Internal Medicine, Yonsei University Wonju College of Medicine, 162 Ilsan-Dong, Wonju, Gangwon-Do 220-701, Republic of Korea
| | - You Mi Kim
- Department of Internal Medicine, Yonsei University Wonju College of Medicine, 162 Ilsan-Dong, Wonju, Gangwon-Do 220-701, Republic of Korea
| | - Hyeon Soo Kim
- Department of Anatomy, Korea University College of Medicine, Seoul 136-701, Republic of Korea
| | - Choon Hee Chung
- Department of Internal Medicine, Yonsei University Wonju College of Medicine, 162 Ilsan-Dong, Wonju, Gangwon-Do 220-701, Republic of Korea
| |
Collapse
|
72
|
Zhou L, Xu DY, Sha WG, Shen L, Lu GY, Yin X, Wang MJ. High glucose induces renal tubular epithelial injury via Sirt1/NF-kappaB/microR-29/Keap1 signal pathway. J Transl Med 2015; 13:352. [PMID: 26552447 PMCID: PMC4640239 DOI: 10.1186/s12967-015-0710-y] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 10/23/2015] [Indexed: 11/10/2022] Open
Abstract
Objective Diabetic nephropathy (DN) is a serious complication that commonly confronted by diabetic patients. A common theory for the pathogenesis of this renal dysfunction in diabetes is cell injury, inflammation as well as oxidative stress. In this content, the detailed molecular mechanism underlying high glucose induced renal tubular epithelial injury was elaborated. Methods An in vivo rat model of diabetes by injecting streptozotocin (STZ) and an in vitro high glucose incubated renal tubular epithelial cell (HK-2) model were used. Expression levels of Keap1, nuclear Nrf2 and p65 were determined by western blotting. Level of microR-29 (miR-29) was assessed using quantitative RT-PCR. Combination
of p65 and miR-29 promotor was assessed using chromatin immunoprecipitation. Keap1 3′-UTR activity was detected using luciferase reporter gene assay. Cell viability was determined using MTT assay. Results In diabetic rat, miR-29 was downregulated and its expression is negatively correlated with both of serum creatinine and creatinine clearance. In high glucose incubated HK-2 cell, deacetylases activity of Sirt1 was attenuated that leads to decreased activity of nuclear factor kappa B (NF-κB). NF-κB was demonstrated to regulate miR-29 expression by directly binding to its promotor. The data of luciferase assay showed that miR-29 directly targets to Keap1 mRNA. While high glucose induced down regulation of miR-29 contributed to enhancement of Keap1 expression that finally reduced Nrf2 content by ubiquitinating Nrf2. Additionally, overexpression of miR-29 effectively relieved high glucose-reduced cell viability. Conclusion High glucose induces renal tubular epithelial injury via Sirt1/NF-κB/microR-29/Keap1 signal pathway. Electronic supplementary material The online version of this article (doi:10.1186/s12967-015-0710-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ling Zhou
- Department of Nephrology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
| | - De-Yu Xu
- Department of Nephrology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
| | - Wen-Gang Sha
- Department of Nephrology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
| | - Lei Shen
- Department of Nephrology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
| | - Guo-Yuan Lu
- Department of Nephrology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
| | - Xia Yin
- Department of Endocrinology, The First Affiliated Hospital of Soochow University, Suzhou, 215006, China.
| | - Ming-Jun Wang
- Department of Rheumatology, The First Affiliated Hospital of Soochow University, 188 shizi Rd., Suzhou, 215006, People's Republic of China.
| |
Collapse
|
73
|
Xue B, Sun L, Li X, Wang X, Zhang Y, Mu Y, Liang L. Ginsenoside Rb1 relieves glucose fluctuation-induced oxidative stress and apoptosis in Schwann cells. Neural Regen Res 2014; 7:2340-6. [PMID: 25538758 PMCID: PMC4268738 DOI: 10.3969/j.issn.1673-5374.2012.30.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Accepted: 08/30/2012] [Indexed: 12/27/2022] Open
Abstract
Cultured Schwann cells were treated with 5.6 mM and 50 mM glucose alternating every 8 hours to simulate intermittent high glucose. The present study analyzed the neuroprotective effects of 1, 10 and 100 μM ginsenoside Rb1 on oxidative damage and apoptosis in Schwann cells induced by intermittent high glucose. Flow cytometry demonstrated that ginsenoside Rb1 reduced intermittent high glucose-mediated reactive oxygen species production. Enzyme linked immunosorbent assay showed that 8-hydroxy-2-deoxy guanosine levels in Schwann cells decreased following ginsenoside Rb1 treatment. Quantitative real-time reverse transcription-PCR and western blot assay results revealed that ginsenoside Rb1 inhibited intermittent high glucose-upregulated Bax expression, but antagonized intermittent high glucose-downregulated Bcl-2 expression in Schwann cells. These effects were most pronounced with 100 μM ginsenoside Rb1. These results indicate that ginsenoside Rb1 inhibits intermittent high glucose-induced oxidative stress and apoptosis in Schwann cells.
Collapse
Affiliation(s)
- Bing Xue
- Department of Endocrinology, Chinese PLA General Hospital, Beijing 100853, China
| | - Lianqing Sun
- Department of Endocrinology, Chinese PLA General Hospital, Beijing 100853, China
| | - Xiaojin Li
- Department of Endocrinology, Chinese PLA General Hospital, Beijing 100853, China
| | - Xuan Wang
- Department of Endocrinology, Chinese PLA General Hospital, Beijing 100853, China
| | - Ying Zhang
- Department of Endocrinology, General Hospital of Shenyang Military Region, Shenyang 110016, Liaoning Province, China
| | - Yiming Mu
- Department of Endocrinology, Chinese PLA General Hospital, Beijing 100853, China
| | - Linlang Liang
- Department of Endocrinology, General Hospital of Shenyang Military Region, Shenyang 110016, Liaoning Province, China
| |
Collapse
|
74
|
Wu Y, Xue B, Li X, Liu H. Puerarin prevents high glucose-induced apoptosis of Schwann cells by inhibiting oxidative stress. Neural Regen Res 2014; 7:2583-91. [PMID: 25368634 PMCID: PMC4200725 DOI: 10.3969/j.issn.1673-5374.2012.33.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2012] [Accepted: 10/16/2012] [Indexed: 11/18/2022] Open
Abstract
Oxidative stress may be the unifying factor for the injury caused by hyperglycemia in diabetic peripheral neuropathy. Puerarin is the major isoflavonoid derived from Radix puerariae and has been shown to be effective in increasing superoxide dismutase activity. This study sought to investigate the neuroprotective effect of puerarin on high glucose-induced oxidative stress and Schwann cell apoptosis in vitro. Intracellular reactive oxygen radicals and mitochondrial transmembrane potential were detected by flow cytometry analysis. Apoptosis was confirmed by TUNEL and oxidative stress was monitored using an enzyme-linked immunosorbent assay for the DNA marker 8-hydroxy-2-deoxyguanosine. The expression levels of bax and bcl-2 were analyzed by quantitative real-time reverse transcriptase-PCR, while protein expression of cleaved caspase-3 and -9 were analyzed by means of western blotting. Results suggested that puerarin treatment inhibited high glucose-induced oxidative stress, mitochondrial depolarization and apoptosis in a dose-dependent manner. Furthermore, puerarin treatment downregulated Bax expression, upregulated bcl-2 expression and attenuated the activation of caspase-3 and -9. Overall, our results indicated that puerarin antagonized high glucose-induced oxidative stress and apoptosis in Schwann cells.
Collapse
Affiliation(s)
- Yingying Wu
- Institute of Stomatology, Chinese PLA General Hospital, Beijing 100853, China
| | - Bing Xue
- Department of Endocrinology, General Hospital of Shenyang Military Region, Shenyang 110016, Liaoning Province, China
| | - Xiaojin Li
- Department of Endocrinology, Chinese PLA General Hospital, Beijing 100853, China
| | - Hongchen Liu
- Institute of Stomatology, Chinese PLA General Hospital, Beijing 100853, China
| |
Collapse
|
75
|
AbdElmonem Elbassuoni E. Incretin attenuates diabetes-induced damage in rat cardiac tissue. J Physiol Sci 2014; 64:357-64. [PMID: 25011640 PMCID: PMC10717745 DOI: 10.1007/s12576-014-0327-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2014] [Accepted: 06/18/2014] [Indexed: 12/25/2022]
Abstract
Glucagon-like peptide-1 (GLP-1), as a member of the incretin family, has a role in glucose homeostasis, its receptors distributed throughout the body, including the heart. The aim was to investigate cardiac lesions following diabetes induction, and the potential effect of GLP-1 on this type of lesions and the molecular mechanism driving this activity. Adult male rats were classified into: normal, diabetic, 4-week high-dose exenatide-treated diabetic rats, 4-week low-dose exenatide-treated diabetic rats, and 1-week exenatide-treated diabetic rats. The following parameters were measured: in blood: glucose, insulin, lactate dehydrogenase (LDH), total creatine kinase (CK), creatine kinase MB isoenzyme (CK-MB), and CK-MB relative index; in cardiac tissue: lipid peroxide (LPO) and some antioxidant enzymes. The untreated diabetic group displayed significant increases in blood level of glucose, LDH, and CK-MB, and cardiac tissue LPO, and a significant decrease in cardiac tissue antioxidant enzymes. GLP-1 supplementation in diabetic rats definitely decreased the hyperglycemia and abolished the detrimental effects of diabetes on the cardiac tissue. The effect of GLP-1 on blood glucose and on the heart also appeared after a short supplementation period (1 week). It can be concluded that GLP-1 has beneficial effects on diabetes-induced oxidative cardiac tissue damage, most probably via its antioxidant effect directly acting on cardiac tissue and independent of its hypoglycemic effect.
Collapse
|
76
|
Lim AI, Chan LYY, Tang SCW, Lai KN, Leung JCK. Albumin and glycated albumin activate KIM-1 release in tubular epithelial cells through distinct kinetics and mechanisms. Inflamm Res 2014; 63:831-9. [DOI: 10.1007/s00011-014-0757-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 07/05/2014] [Accepted: 07/08/2014] [Indexed: 01/06/2023] Open
|
77
|
Chen XL, Tang WX, Tang XH, Qin W, Gong M. Downregulation of uncoupling protein-2 by genipin exacerbates diabetes-induced kidney proximal tubular cells apoptosis. Ren Fail 2014; 36:1298-303. [PMID: 24964191 DOI: 10.3109/0886022x.2014.930650] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Renal tubular epithelial cell injury is a major pathological event that contributes to the development of diabetic kidney disease (DKD). Uncoupling protein-2 (UCP2), a mitochondrial membrane protein, has been reported to participate in the regulation of reactive oxygen species (ROS) generation, which contributes to tubular cell apoptosis induced by hyperglycemia. In this study, we found that genipin, a UCP2 inhibitor, dramatically boosted oxidative stress, attenuated antioxidative capacity, and exacerbated cell apoptosis accompanied with caspase-3 activation in rat renal proximal tubular cells (NRK-52E) incubated with high glucose. The present study results suggest that manipulation of UCP2 could be important in the prevention of oxidative stress damage in renal tubular epithelial cells induced by hyperglycemia in vitro.
Collapse
Affiliation(s)
- Xiao-lei Chen
- Department of Nephrology, West China Hospital, Sichuan University , Chengdu , China and
| | | | | | | | | |
Collapse
|
78
|
Hyperglycemia, a neglected factor during cancer progression. BIOMED RESEARCH INTERNATIONAL 2014; 2014:461917. [PMID: 24864247 PMCID: PMC4016871 DOI: 10.1155/2014/461917] [Citation(s) in RCA: 154] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 02/17/2014] [Accepted: 02/17/2014] [Indexed: 12/11/2022]
Abstract
Recent evidence from large cohort studies suggests that there exists a higher cancer incidence in people with type 2 diabetes (DM2). However, to date, the potential reasons for this association remain unclear. Hyperglycemia, the most important feature of diabetes, may be responsible for the excess glucose supply for these glucose-hungry cells, and it contributes to apoptosis resistance, oncogenesis, and tumor cell resistance to chemotherapy. Considering associations between diabetes and malignancies, the effect of hyperglycemia on cancer progression in cancer patients with abnormal blood glucose should not be neglected. In this paper, we describe the role that hyperglycemia plays in cancer progression and treatment and illustrate that hyperglycemia may contribute to a more malignant phenotype of cancer cells and lead to drug resistance. Therefore, controlling hyperglycemia may have important therapeutic implications in cancer patients.
Collapse
|
79
|
Yin D, Yin J, Yang Y, Chen S, Gao X. Renoprotection of Danshen Injection on streptozotocin-induced diabetic rats, associated with tubular function and structure. JOURNAL OF ETHNOPHARMACOLOGY 2013; 151:667-674. [PMID: 24269771 DOI: 10.1016/j.jep.2013.11.025] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2012] [Revised: 11/11/2013] [Accepted: 11/13/2013] [Indexed: 06/02/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Danshen Injection, the aqueous extracts of Radix Salvia miltiorrhiza (S. miltiorrhiza), is one of the most commonly used traditional Chinese herbs in chronic renal failure treatment. In present study, the mechanism of the renoprotective effect of Danshen Injection was analyzed on streptozocin (STZ)-induced diabetic rats. MATERIALS AND METHODS Diabetic experimental model was established in male Sprague-Dawley (SD) rats by intraperitoneal injection of STZ. Rats with blood glucose concentration of higher than 300 mg/dl were intraperitoneally administered with Danshen Injection at a dose of 0.78 ml/kgday. The blood glucose, 24h urinary protein excretion, serum creatinine (sCr), blood urea nitrogen (BUN), advanced glycation end products (AGEs), lipid peroxide (LPO), antioxidant enzyme of superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px), transforming growth factor-β1 (TGF-β1), and histomorphological changes in kidney of diabetic rats were analyzed during the course of Danshen Injection administration, as well as the tubular function index of albumin reabsorption of fluorescein isothiocyanate labeled bovine serum albumin (FITC-BSA). RESULTS The intraperitoneal administration of Danshen Injection could ameliorate the physiological dysfunctions of increased 24h urinary protein excretion((48.21 ± 8.04)%), sCr((39.4 ± 3.7)%), and BUN((43.37 ± 6.74)%), alleviate the ultrastructural abnormalities of hypertrophy, matrix expansion, and fibrosis in glomerulus, decrease the TGF-β1 expression, AGEs and LPO accumulation, and increase the activity of SOD and GSH-Px in kidney of diabetic rats, but did not significantly influence the blood glucose. Besides these, the Danshen Injection administration also partly restored the decrease of megalin expression in tubules and reabsorptive function of FITC-BSA, in diabetic rats. CONCLUSION The renoprotection of Danshen Injection on diabetic rats was associated with the preservation of tubular function and structure from the hyperglycemia induced toxicities of inappropriate cytokines secretion, oxidative stress, advanced glycation stress, and megalin expression deletion.
Collapse
Affiliation(s)
- Dengke Yin
- School of Pharmacy, Anhui University of Traditional Chinese Medicine, Hefei, Anhui 230031, China; State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 210009, China; Anhui Provincial key laboratory for Chinese Medicine Research and Development, Hefei, Anhui 230038, China
| | - Juanjuan Yin
- School of Pharmacy, Anhui University of Traditional Chinese Medicine, Hefei, Anhui 230031, China; Anhui Provincial key laboratory for Chinese Medicine Research and Development, Hefei, Anhui 230038, China
| | - Ye Yang
- School of Pharmacy, Anhui University of Traditional Chinese Medicine, Hefei, Anhui 230031, China; Anhui Provincial key laboratory for Chinese Medicine Research and Development, Hefei, Anhui 230038, China.
| | - Song Chen
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| | - Xiangdong Gao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 210009, China.
| |
Collapse
|
80
|
20-HETE and EETs in diabetic nephropathy: a novel mechanistic pathway. PLoS One 2013; 8:e70029. [PMID: 23936373 PMCID: PMC3732284 DOI: 10.1371/journal.pone.0070029] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 06/19/2013] [Indexed: 11/20/2022] Open
Abstract
Diabetic nephropathy (DN), a major complication of diabetes, is characterized by hypertrophy, extracellular matrix accumulation, fibrosis and proteinuria leading to loss of renal function. Hypertrophy is a major factor inducing proximal tubular epithelial cells injury. However, the mechanisms leading to tubular injury is not well defined. In our study, we show that exposure of rats proximal tubular epithelial cells to high glucose (HG) resulted in increased extracellular matrix accumulation and hypertrophy. HG treatment increased ROS production and was associated with alteration in CYPs 4A and 2C11 expression concomitant with alteration in 20-HETE and EETs formation. HG-induced tubular injury were blocked by HET0016, an inhibitor of CYPs 4A. In contrast, inhibition of EETs promoted the effects of HG on cultured proximal tubular cells. Our results also show that alteration in CYPs 4A and 2C expression and 20HETE and EETs formation regulates the activation of the mTOR/p70S6Kinase pathway, known to play a major role in the development of DN. In conclusion, we show that hyperglycemia in diabetes has a significant effect on the expression of Arachidonic Acid (AA)-metabolizing CYPs, manifested by increased AA metabolism, and might thus alter kidney function through alteration of type and amount of AA metabolites.
Collapse
|
81
|
Fortenberry JD, Paden ML, Goldstein SL. Acute kidney injury in children: an update on diagnosis and treatment. Pediatr Clin North Am 2013; 60:669-88. [PMID: 23639662 DOI: 10.1016/j.pcl.2013.02.006] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The concept and definition of acute kidney injury (AKI) in adults and children has undergone significant change in recent years. Biomarker assessment is aiding in description, defining and understanding timing of AKI. AKI demonstrates unique characteristics in association with sepsis and septic shock, organ dysfunction, and fluid overload. Treatment remains problematic, but growing experience with pediatric continuous renal replacement therapies has improved the delivery of care in children. Increasingly, continuous renal replacement therapy is provided in combination with other extracorporeal technologies, and approaches are advancing to improve combined therapy use.
Collapse
Affiliation(s)
- James D Fortenberry
- Critical Care Division, Department of Pediatrics, Emory University School of Medicine, Children's Healthcare of Atlanta at Egleston, Atlanta, GA 30322, USA.
| | | | | |
Collapse
|
82
|
Shi Y, Lo CS, Chenier I, Maachi H, Filep JG, Ingelfinger JR, Zhang SL, Chan JSD. Overexpression of catalase prevents hypertension and tubulointerstitial fibrosis and normalization of renal angiotensin-converting enzyme-2 expression in Akita mice. Am J Physiol Renal Physiol 2013; 304:F1335-46. [PMID: 23552863 DOI: 10.1152/ajprenal.00405.2012] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
We investigated the relationship among oxidative stress, hypertension, renal injury, and angiotensin-converting enzyme-2 (ACE2) expression in type 1 diabetic Akita mice. Blood glucose, blood pressure, and albuminuria were monitored for up to 5 mo in adult male Akita and Akita catalase (Cat) transgenic (Tg) mice specifically overexpressing Cat, a key antioxidant enzyme in their renal proximal tubular cells (RPTCs). Same-age non-Akita littermates and Cat-Tg mice served as controls. In separate studies, adult male Akita mice (14 wk) were treated with ANG 1-7 (500 μg·kg⁻¹·day⁻¹ sc) ± A-779, an antagonist of the Mas receptor (10 mg·kg⁻¹·day⁻¹ sc), and euthanized at the age of 18 wk. The left kidneys were processed for histology and apoptosis studies. Renal proximal tubules were isolated from the right kidneys to assess protein and gene expression. Urinary angiotensinogen (AGT), angiotensin II (ANG II), and ANG 1-7 were quantified by specific ELISAs. Overexpression of Cat attenuated renal oxidative stress; prevented hypertension; normalized RPTC ACE2 expression and urinary ANG 1-7 levels (both were low in Akita mice); ameliorated glomerular filtration rate, albuminuria, kidney hypertrophy, tubulointerstitial fibrosis, and tubular apoptosis; and suppressed profibrotic and proapoptotic gene expression in RPTCs of Akita Cat-Tg mice compared with Akita mice. Furthermore, daily administration of ANG 1-7 normalized systemic hypertension in Akita mice, which was reversed by A-779. These data demonstrate that Cat overexpression prevents hypertension and progression of nephropathy and highlight the importance of intrarenal oxidative stress and ACE2 expression contributing to hypertension and renal injury in diabetes.
Collapse
Affiliation(s)
- Yixuan Shi
- Université de Montréal, Centre de Recherche, Centre Hospitalier de l'Université de Montréal (CRCHUM), Hôtel-Dieu Hospital, Montreal, Quebec, Canada
| | | | | | | | | | | | | | | |
Collapse
|
83
|
Atochina-Vasserman EN, Biktasova A, Abramova E, Cheng DS, Polosukhin VV, Tanjore H, Takahashi S, Sonoda H, Foye L, Venkov C, Ryzhov SV, Novitskiy S, Shlonimskaya N, Ikeda M, Blackwell TS, Lawson WE, Gow AJ, Harris RC, Dikov MM, Tchekneva EE. Aquaporin 11 insufficiency modulates kidney susceptibility to oxidative stress. Am J Physiol Renal Physiol 2013; 304:F1295-307. [PMID: 23486012 DOI: 10.1152/ajprenal.00344.2012] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Aquaporin 11 (AQP11) is a newly described member of the protein family of transport channels. AQP11 associates with the endoplasmic reticulum (ER) and is highly expressed in proximal tubular epithelial cells in the kidney. Previously, we identified and characterized a recessive mutation of the highly conserved Cys227 to Ser227 in mouse AQP11 that caused proximal tubule (PT) injury and kidney failure in mutant mice. The current study revealed induction of ER stress, unfolded protein response, and apoptosis as molecular mechanisms of this PT injury. Cys227Ser mutation interfered with maintenance of AQP11 oligomeric structure. AQP11 is abundantly expressed in the S1 PT segment, a site of major renal glucose flux, and Aqp11 mutant mice developed PT-specific mitochondrial injury. Glucose increased AQP11 protein expression in wild-type kidney and upregulation of AQP11 expression by glucose in vitro was prevented by phlorizin, an inhibitor of sodium-dependent glucose transport across PT. Total AQP11 levels in heterozygotes were higher than in wild-type mice but were not further increased in response to glucose. In Aqp11 insufficient PT cells, glucose potentiated increases in reactive oxygen species (ROS) production. ROS production was also elevated in Aqp11 mutation carriers. Phenotypically normal mice heterozygous for the Aqp11 mutation repeatedly treated with glucose showed increased blood urea nitrogen levels that were prevented by the antioxidant sulforaphane or by phlorizin. Our results indicate an important role for AQP11 to prevent glucose-induced oxidative stress in proximal tubules.
Collapse
Affiliation(s)
- Elena N Atochina-Vasserman
- Division of Pulmonary, Allergy, and Critical Care Medicine, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
84
|
Park CH, Lee SL, Okamoto T, Tanaka T, Yokozawa T. Rokumi-jio-gan-Containing Prescriptions Attenuate Oxidative Stress, Inflammation, and Apoptosis in the Remnant Kidney. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2012; 2012:587902. [PMID: 23243456 PMCID: PMC3518768 DOI: 10.1155/2012/587902] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 10/09/2012] [Accepted: 10/12/2012] [Indexed: 02/07/2023]
Abstract
Two Rokumi-jio-gan-containing prescriptions (Hachimi-jio-gan and Bakumi-jio-gan) were selected to examine their actions in nephrectomized rats. Each prescription was given orally to rats for 10 weeks after the excision of five-sixths of their kidney volumes, and its effect was compared with non-nephrectomized and normal rats. Rats given Hachimi-jio-gan and Bakumi-jio-gan showed an improvement of renal functional parameters such as serum urea nitrogen, creatinine, creatinine clearance, and urinary protein. The nephrectomized rats exhibited the up-regulation of nicotinamide adenine dinucleotide phosphate oxidase subunits, c-Jun N-terminal kinase (JNK), phosphor-JNK, c-Jun, transforming growth factor-β(1), nuclear factor-kappa B, cyclooxygenase-2, inducible nitric oxide synthase, monocyte chemotactic protein-1, intracellular adhesion molecule-1, Bax, cytochrome c, and caspase-3, and down-regulation of NF-E2-related factor 2, heme oxygenase-1, and survivin; however, Bakumi-jio-gan administration acts as a regulator in inflammatory reactions caused by oxidative stress in renal failure. Moreover, the JNK pathway and apoptosis-related protein expressions, Bax, caspase-3, and survivin, were ameliorated to the normal levels by Hachimi-jio-gan administration. The development of renal lesions, glomerular sclerosis, tubulointerstitial damage, and arteriolar sclerotic lesions, estimated by histopathological evaluation and scoring, was strong in the groups administered Hachimi-jio-gan rather than Bakumi-jio-gan. This study suggests that Rokumi-jio-gan-containing prescriptions play a protective role in the progression of renal failure.
Collapse
Affiliation(s)
- Chan Hum Park
- Institute of Natural Medicine, University of Toyama, Toyama 930-0194, Japan
| | - Sul Lim Lee
- Institute of Natural Medicine, University of Toyama, Toyama 930-0194, Japan
| | - Takuya Okamoto
- Institute of Natural Medicine, University of Toyama, Toyama 930-0194, Japan
- Chinese Medicine and Health Food Department, Iskra Industry Co., Ltd., Tokyo 103-0027, Japan
| | - Takashi Tanaka
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki 852-8521, Japan
| | - Takako Yokozawa
- Institute of Natural Medicine, University of Toyama, Toyama 930-0194, Japan
- Organization for Promotion of Regional Collaboration, University of Toyama, Toyama 930-8555, Japan
| |
Collapse
|
85
|
Koçkara A, Kayataş M. Renal cell apoptosis and new treatment options in sepsis-induced acute kidney injury. Ren Fail 2012. [PMID: 23181751 DOI: 10.3109/0886022x.2012.744040] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Sepsis is a common and important cause of mortality in critically ill patients. Acute kidney injury (AKI) is one of the most important factors determining morbidity and mortality in the prognosis of sepsis. Recent studies have indicated that the pathogenetic mechanism in septic AKI is totally different from that in non-septic AKI. Our understanding of sepsis-associated AKI pathophysiology is shifting from renal vasoconstriction, ischemia, and acute tubular necrosis to heterogeneous vasodilation, hyperemia, and acute tubular apoptosis. Especially, apoptosis is gradually gaining importance in the understanding of the development of renal injury. The frequency of renal tubular apoptosis on biopsies of septic patients has been pointed out in recently published studies. Apoptosis can be triggered by ischemia, exogen toxins, or endogen mediators. It has been shown in some animal models that hyperglycemia, which is common in critically ill patients, causes apoptosis in renal tubular cells. New treatment options have emerged in the light of recent findings. Ghrelin that inhibits pro-inflammatory cytokines, caspase inhibitors that block the apoptotic pathway, and suppression of anti-inflammatory reactions are under study. Among the existing methods of treatment, usage of arginine, which is a vasopressor agent, ventilation with a low tidal volume, and hemofiltration methods cleaning toxic mediators from the circulation should be considered in the first place. Hyperglycemia treatment is of major importance, since, besides its anti-inflammatory effect, it has a protective role on the kidney. Regarding pathogenesis, rates of morbidity and mortality are aimed to be reduced through the new agents of therapy that have been studied on.
Collapse
Affiliation(s)
- Ayşe Koçkara
- Department of Nephrology, Cumhuriyet University Medical School, Sivas, Turkey
| | | |
Collapse
|
86
|
Díaz-Flores M, Angeles-Mejia S, Baiza-Gutman LA, Medina-Navarro R, Hernández-Saavedra D, Ortega-Camarillo C, Roman-Ramos R, Cruz M, Alarcon-Aguilar FJ. Effect of an aqueous extract of Cucurbita ficifolia Bouché on the glutathione redox cycle in mice with STZ-induced diabetes. JOURNAL OF ETHNOPHARMACOLOGY 2012; 144:101-108. [PMID: 22960550 DOI: 10.1016/j.jep.2012.08.036] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Revised: 08/12/2012] [Accepted: 08/25/2012] [Indexed: 06/01/2023]
Abstract
ETHNOPHARMACOLOGICAL IMPORTANCE Cucurbita ficifolia is used in Mexican traditional medicine as an anti-diabetic and anti-inflammatory agent and its actions can be mediated by antioxidant mechanisms. Disturbance in the homeostasis of glutathione has been implicated in the etiology and progression of diabetes mellitus and its complications. MATERIAL AND METHODS It was evaluated, the effect of an aqueous extract of Cucurbita ficifolia on glycemia, plasma lipid peroxidation; as well as levels of reduced (GSH) and oxidized (GSSG) glutathione and activities of enzymes involved in glutathione redox cycle: glutathione peroxidase (GPx) and glutathione reductase (GR) in liver, pancreas, kidney and heart homogenates of streptozotocin-induced diabetic mice. RESULTS Increased blood glucose and lipid peroxidation, together with decreased of GSH concentration, GSH/GSSG ratio and its redox potential (E(h)), and enhanced activity of GPx and GR in liver, pancreas and kidney were the salient features observed in diabetic mice. Administration of the aqueous extract of Cucurbita ficifolia to diabetic mice for 30 days, used at a dose of 200 mg/kg, resulted in a significant reduction in glycemia, polydipsia, hyperphagia and plasma lipid peroxidation. Moreover, GSH was increased in liver, pancreas and kidney, and GSSG was reduced in liver, pancreas and heart, therefore GSH/GSSG ratio and its E(h) were restored. Also, the activities involved in the glutathione cycle were decreased, reaching similar values to controls. CONCLUSIONS An aqueous extract of Cucurbita ficifolia with hypoglycemic action, improve GSH redox state, increasing glutathione pool, GSH, GSH/GSSG ratio and its E(h), mechanism that can explain, at least in part, its antioxidant properties, supporting its use as an alternative treatment for the control of diabetes mellitus, and prevent the induction of complications by oxidative stress.
Collapse
Affiliation(s)
- M Díaz-Flores
- Unidad de Investigación Médica en Bioquímica, Hospital de Especialidades, Centro Médico Nacional Siglo XXI, IMSS, México, México.
| | | | | | | | | | | | | | | | | |
Collapse
|
87
|
Sun LQ, Chen YY, Wang X, Li XJ, Xue B, Qu L, Zhang TT, Mu YM, Lu JM. The protective effect of Alpha lipoic acid on Schwann cells exposed to constant or intermittent high glucose. Biochem Pharmacol 2012; 84:961-73. [DOI: 10.1016/j.bcp.2012.07.005] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 07/02/2012] [Accepted: 07/05/2012] [Indexed: 12/27/2022]
|
88
|
Omara EA, Nada SA, Farrag ARH, Sharaf WM, El-Toumy SA. Therapeutic effect of Acacia nilotica pods extract on streptozotocin induced diabetic nephropathy in rat. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2012; 19:1059-1067. [PMID: 22884305 DOI: 10.1016/j.phymed.2012.07.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2012] [Revised: 05/22/2012] [Accepted: 07/10/2012] [Indexed: 06/01/2023]
Abstract
The aim of the present study was to examine the effect of aqueous methanol extract (150 and 300 mg/kg body weight) of Acacia nilotica pods in streptozotocin-induced diabetic rats for 60 days, and its biochemical, histopathological and histochemical study in the kidney tissues. Diabetic rats exhibited hyperglycemia, elevated of serum urea and creatinine. Significant increase in lipid peroxidation (LPO), superoxide dismutase (SOD) and reduced glutathione (GSH) was observed in diabetic kidney. Histopathological examination revealed infiltration of the lymphocytes in the interstitial spaces, glomerular hypertrophy, basement membrane thickening and tubular necrosis with loss of their brush border in some of the proximal convoluted tubules in diabetic rats. Acacia nilotica extract lowered blood glucose levels, restored serum urea and creatinine. In addition, Acacia nilotica extract attenuated the adverse effect of diabetes on LPO, SOD and GSH activity. Treatment with Acacia nilotica was found to almost restore the normal histopathological architecture of kidney of streptozotocin-induced diabetic rats. However, glomerular size and damaged area showed ameliorative effect after treatment with the extract. In conclusion, the antioxidant and antihyperglycemic properties of Acacia nilotica extract may offer a potential therapeutic source for the treatment of diabetes.
Collapse
Affiliation(s)
- Enayat A Omara
- Pathology Department, National Research Center, 12622 Dokki, Cairo, Egypt.
| | | | | | | | | |
Collapse
|
89
|
Hyperglycemia induced down-regulation of renal P-glycoprotein expression. Eur J Pharmacol 2012; 690:42-50. [DOI: 10.1016/j.ejphar.2012.06.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Revised: 05/31/2012] [Accepted: 06/09/2012] [Indexed: 11/20/2022]
|
90
|
Shupik MA, Vanin AF, Alessenko AV. Interaction of the nitric oxide signaling system with the sphingomyelin cycle and peroxidation on transmission of toxic signal of tumor necrosis factor-α in ischemia-reperfusion. BIOCHEMISTRY (MOSCOW) 2012; 76:1197-209. [PMID: 22117546 DOI: 10.1134/s0006297911110010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
This review discusses the functional role of nitric oxide in ischemia-reperfusion injury and mechanisms of signal transduction of apoptosis, which accompanies ischemic damage to organs and tissues. On induction of apoptosis an interaction is observed of the nitric oxide signaling system with the sphingomyelin cycle, which is a source of a proapoptotic agent ceramide. Evidence is presented of an interaction of the sphingomyelin cycle enzymes and ceramide with nitric oxide and enzymes synthesizing nitric oxide. The role of a proinflammatory cytokine TNF-α in apoptosis and ischemia-reperfusion and mechanisms of its cytotoxic action, which involve nitric oxide, the sphingomyelin cycle, and lipid peroxidation are discussed. A comprehensive study of these signaling systems provides insight into the molecular mechanism of apoptosis during ischemia and allows us to consider new approaches for treatment of diseases associated with the activation of apoptosis.
Collapse
Affiliation(s)
- M A Shupik
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia
| | | | | |
Collapse
|
91
|
Kumar S, Kain V, Sitasawad SL. High glucose-induced Ca2+ overload and oxidative stress contribute to apoptosis of cardiac cells through mitochondrial dependent and independent pathways. Biochim Biophys Acta Gen Subj 2012; 1820:907-20. [PMID: 22402252 DOI: 10.1016/j.bbagen.2012.02.010] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Revised: 02/02/2012] [Accepted: 02/18/2012] [Indexed: 12/15/2022]
Abstract
BACKGROUND Cardiac cell apoptosis is the initiating factor of cardiac complications especially diabetic cardiomyopathy. Mitochondria are susceptible to the damaging effects of elevated glucose condition. Calcium overload and oxidative insult are the two mutually non-exclusive phenomena suggested to cause cardiac dysfunction. Here, we examined the effect of high-glucose induced calcium overload in calpain-1 mediated cardiac apoptosis in an in vitro setting. METHODS H9c2, rat ventricular myoblast cell line was treated with elevated glucose condition and the cellular consequences were studied. Intracellular calcium trafficking, ROS generation, calpain-1 activation and caspase-12 and caspase-9 pathway were studied using flow cytometry, confocal microscopy and Western blot analysis. RESULTS High-glucose treatment resulted in increased intracellular calcium ([Ca2+]i) which was mobilized to the mitochondria. Concomitant intra-mitochondrial calcium ([Ca2+]m) increase resulted in enhanced reactive oxygen and nitrogen species generation. These events led to mitochondrial dysfunction and apoptosis. Cardiomyocyte death exhibited several classical markers of apoptosis, including activation of caspases, appearance of annexin V on the outer plasma membrane, increased population of cells with sub-G0/G1 DNA content and nuclear condensation. Key findings include elucidation of cell signaling mechanism of high-glucose induced calcium-dependent cysteine protease calpain-1 activation, which triggers non-conventional caspases as alternate mode of cell death. CONCLUSION This information increases the understanding of cardiac cell death under hyperglycemic condition and can possibly be extended for designing new therapeutic strategies for diabetic cardiomyopathy. GENERAL SIGNIFICANCE The novel findings of the study reveal that high glucose induces apoptosis by both mitochondria-dependent and independent pathways via concomitant rise in intracellular calcium.
Collapse
Affiliation(s)
- Sandeep Kumar
- National Centre for Cell Science, Pune University, Maharashtra, India
| | | | | |
Collapse
|
92
|
Lau GJ, Godin N, Maachi H, Lo CS, Wu SJ, Zhu JX, Brezniceanu ML, Chénier I, Fragasso-Marquis J, Lattouf JB, Ethier J, Filep JG, Ingelfinger JR, Nair V, Kretzler M, Cohen CD, Zhang SL, Chan JS. Bcl-2-modifying factor induces renal proximal tubular cell apoptosis in diabetic mice. Diabetes 2012; 61:474-84. [PMID: 22210314 PMCID: PMC3266424 DOI: 10.2337/db11-0141] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
This study investigated the mechanisms underlying tubular apoptosis in diabetes by identifying proapoptotic genes that are differentially upregulated by reactive oxygen species in renal proximal tubular cells (RPTCs) in models of diabetes. Total RNAs isolated from renal proximal tubules (RPTs) of 20-week-old heterozygous db/m+, db/db, and db/db catalase (CAT)-transgenic (Tg) mice were used for DNA chip microarray analysis. Real-time quantitative PCR assays, immunohistochemistry, and mice rendered diabetic with streptozotocin were used to validate the proapoptotic gene expression in RPTs. Cultured rat RPTCs were used to confirm the apoptotic activity and regulation of proapoptotic gene expression. Additionally, studies in kidney tissues from patients with and without diabetes were used to confirm enhanced proapoptotic gene expression in RPTs. Bcl-2-modifying factor (Bmf) was differentially upregulated (P<0.01) in RPTs of db/db mice compared with db/m+ and db/db CAT-Tg mice and in RPTs of streptozotocin-induced diabetic mice in which insulin reversed this finding. In vitro, Bmf cDNA overexpression in rat RPTCs coimmunoprecipated with Bcl-2, enhanced caspase-3 activity, and promoted apoptosis. High glucose (25 mmol/L) induced Bmf mRNA expression in RPTCs, whereas rotenone, catalase, diphenylene iodinium, and apocynin decreased it. Knockdown of Bmf with small interfering RNA reduced high glucose-induced apoptosis in RPTCs. More important, enhanced Bmf expression was detected in RPTs of kidneys from patients with diabetes. These data demonstrate differential upregulation of Bmf in diabetic RPTs and suggest a potential role for Bmf in regulating RPTC apoptosis and tubular atrophy in diabetes.
Collapse
Affiliation(s)
- Garnet J. Lau
- Centre de recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Hôtel-Dieu Hospital, Université de Montréal, Montreal, Quebec, Canada
| | - Nicolas Godin
- Centre de recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Hôtel-Dieu Hospital, Université de Montréal, Montreal, Quebec, Canada
| | - Hasna Maachi
- Centre de recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Hôtel-Dieu Hospital, Université de Montréal, Montreal, Quebec, Canada
| | - Chao-Sheng Lo
- Centre de recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Hôtel-Dieu Hospital, Université de Montréal, Montreal, Quebec, Canada
| | - Shyh-Jong Wu
- Centre de recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Hôtel-Dieu Hospital, Université de Montréal, Montreal, Quebec, Canada
| | - Jian-Xin Zhu
- Centre de recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Hôtel-Dieu Hospital, Université de Montréal, Montreal, Quebec, Canada
| | - Marie-Luise Brezniceanu
- Centre de recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Hôtel-Dieu Hospital, Université de Montréal, Montreal, Quebec, Canada
| | - Isabelle Chénier
- Centre de recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Hôtel-Dieu Hospital, Université de Montréal, Montreal, Quebec, Canada
| | - Joelle Fragasso-Marquis
- Centre de recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Hôtel-Dieu Hospital, Université de Montréal, Montreal, Quebec, Canada
| | - Jean-Baptiste Lattouf
- Centre de recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Hôtel-Dieu Hospital, Université de Montréal, Montreal, Quebec, Canada
| | - Jean Ethier
- Centre de recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Hôtel-Dieu Hospital, Université de Montréal, Montreal, Quebec, Canada
| | - Janos G. Filep
- Research Centre, Maisonneuve-Rosemont Hospital, Montreal, Quebec, Canada
| | - Julie R. Ingelfinger
- Pediatric Nephrology Unit, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts
| | - Viji Nair
- Nephrology/Internal Medicine, Center for Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan
| | - Matthias Kretzler
- Nephrology/Internal Medicine, Center for Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan
| | - Clemens D. Cohen
- Division of Nephrology, Institute of Physiology, University Hospital of Zurich, University of Zurich, Zurich, Switzerland
| | - Shao-Ling Zhang
- Centre de recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Hôtel-Dieu Hospital, Université de Montréal, Montreal, Quebec, Canada
| | - John S.D. Chan
- Centre de recherche du Centre hospitalier de l’Université de Montréal (CRCHUM), Hôtel-Dieu Hospital, Université de Montréal, Montreal, Quebec, Canada
- Corresponding author: John S.D. Chan,
| |
Collapse
|
93
|
Sun LQ, Xue B, Li XJ, Wang X, Qu L, Zhang TT, Zhao J, Wang BA, Zou XM, Mu YM, Lu JM. Inhibitory effects of Salvianolic acid B on apoptosis of Schwann cells and its mechanism induced by intermittent high glucose. Life Sci 2012; 90:99-108. [DOI: 10.1016/j.lfs.2011.10.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2011] [Revised: 09/12/2011] [Accepted: 10/05/2011] [Indexed: 01/22/2023]
|
94
|
|
95
|
Nakamura N. Reduced aldehyde dehydrogenase activity and arginine vasopressin receptor 2 expression in the kidneys of male TALLYHO/JngJ mice of prediabetic age. Endocrine 2011; 40:379-85. [PMID: 21879339 DOI: 10.1007/s12020-011-9528-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Accepted: 07/27/2011] [Indexed: 10/17/2022]
Abstract
The TALLYHO/JngJ (TH) mouse is a novel polygenic model of type 2 diabetes and exhibits obesity, hyperglycemia (males), hyperinsulinemia, hyperlipidemia, and enlarged pancreatic islets. Since the kidney is damaged by hyperglycemia in other animal models, the present study aimed to determine the kidney phenotype of TH mice using immunoblot and histological analyses of the kidneys of 6-week-old (prediabetic) and 16-week-old TH mice. Interestingly, even 6-week-old male TH mice showed significant increases in kidney weight, compared to C57BL/B6 (B6) mice. Cuboidal parietal epithelium was observed in the Bowman's capsule in male TH mice at the prediabetic age. Water accumulated inside the kidneys of male TH mice in an age-dependent manner, but not in B6 mice. Since Swr/J mice are reported to develop diabetes insipidus and share 86.8% genotype homology with TH mice, the expression level of arginine vasopressin receptor 2 (AVPR2), a candidate protein for diabetes insipidus, was examined and determined to be significantly reduced in the kidneys of prediabetic male TH mice, compared to B6 mice. Aldehyde dehydrogenase (ALDH) activity in the kidneys of prediabetic male TH mice was significantly lower than that in age-matched male B6 mice, while there were no differences between female TH and B6 mice. These results suggest that the kidney phenotype of prediabetic TH mice occurs only in males, accompanied by a reduction in ALDH activity and AVPR2 expression. The kidney phenotype of male TH mice at a prediabetic age becomes evident before the onset of diabetes.
Collapse
Affiliation(s)
- Noriko Nakamura
- Department of Pharmacology, Physiology and Toxicology, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA.
| |
Collapse
|
96
|
Erythropoietin Attenuates Apoptosis After Ischemia-Reperfusion–Induced Renal Injury in Transiently Hyperglycemic Wister Rats. Transplant Proc 2011; 43:3618-21. [DOI: 10.1016/j.transproceed.2011.10.049] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2011] [Accepted: 10/12/2011] [Indexed: 11/18/2022]
|
97
|
Velagapudi C, Bhandari BS, Abboud-Werner S, Simone S, Abboud HE, Habib SL. The tuberin/mTOR pathway promotes apoptosis of tubular epithelial cells in diabetes. J Am Soc Nephrol 2011; 22:262-73. [PMID: 21289215 DOI: 10.1681/asn.2010040352] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Apoptosis contributes to the development of diabetic nephropathy, but the mechanism by which high glucose (HG) induces apoptosis is not fully understood. Because the tuberin/mTOR pathway can modulate apoptosis, we studied the role of this pathway in apoptosis in type I diabetes and in cultured proximal tubular epithelial (PTE) cells exposed to HG. Compared with control rats, diabetic rats had more apoptotic cells in the kidney cortex. Induction of diabetes also increased phosphorylation of tuberin in association with mTOR activation (measured by p70S6K phosphorylation), inactivation of Bcl-2, increased cytosolic cytochrome c expression, activation of caspase 3, and cleavage of PARP; insulin treatment prevented these changes. In vitro, exposure of PTE cells to HG increased phosphorylation of tuberin and p70S6K, phosphorylation of Bcl-2, expression of cytosolic cytochrome c, and caspase 3 activity. High glucose induced translocation of the caspase substrate YY1 from the cytoplasm to the nucleus and enhanced cleavage of PARP. Pretreatment the cells with the mTOR inhibitor rapamycin reduced the number of apoptotic cells induced by HG and the downstream effects of mTOR activation noted above. Furthermore, gene silencing of tuberin with siRNA decreased cleavage of PARP. These data show that the tuberin/mTOR pathway promotes apoptosis of tubular epithelial cells in diabetes, mediated in part by cleavage of PARP by YY1.
Collapse
Affiliation(s)
- Chakradhar Velagapudi
- The University of Texas Health Science Center, Department of Medicine-MSC 7882, 7703 Floyd Curl Drive, San Antonio, TX 78229, USA.
| | | | | | | | | | | |
Collapse
|
98
|
Ganea GM, Kolic PE, El-Zahab B, Warner IM. Ratiometric coumarin-neutral red (CONER) nanoprobe for detection of hydroxyl radicals. Anal Chem 2011; 83:2576-81. [PMID: 21384843 DOI: 10.1021/ac102874x] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Excessive production of reactive oxygen species can lead to alteration of cellular functions responsible for many diseases including cardiovascular diseases, neurodegenerative diseases, cancer, and aging. Hydroxyl radical is a short-lived radical which is considered very aggressive due to its high reactivity toward biological molecules. In this study, a COumarin-NEutral Red (CONER) nanoprobe was developed for detection of hydroxyl radical based on the ratiometric fluorescence signal between 7-hydroxy coumarin 3-carboxylic acid and neutral red dyes. Biocompatible poly lactide-co-glycolide (PLGA) nanoparticles containing encapsulated neutral red were produced using a coumarin 3-carboxylic acid conjugated poly(sodium N-undecylenyl-Nε-lysinate) (C3C-poly-Nε-SUK) as moiety reactive to hydroxyl radicals. The response of the CONER nanoprobe was dependent on various parameters such as reaction time and nanoparticle concentration. The probe was selective for hydroxyl radicals as compared with other reactive oxygen species including O(2)(•-), H(2)O(2), (1)O(2), and OCl(-). Furthermore, the CONER nanoprobe was used to detect hydroxyl radicals in vitro using viable breast cancer cells exposed to oxidative stress. The results suggest that this nanoprobe represents a promising approach for detection of hydroxyl radicals in biological systems.
Collapse
Affiliation(s)
- Gabriela M Ganea
- Department of Chemistry, Louisiana State University, 434 Choppin Hall, Baton Rouge, Lousiana 70803, USA
| | | | | | | |
Collapse
|
99
|
Abstract
Diabetic nephropathy is a major microvascular complication of diabetes mellitus and the most common cause of end-stage renal disease worldwide. The treatment costs of diabetes mellitus and its complications represent a huge burden on health-care expenditures, creating a major need to identify modifiable factors concerned in the pathogenesis and progression of diabetic nephropathy. Chronic hyperglycemia remains the primary cause of the metabolic, biochemical and vascular abnormalities in diabetic nephropathy. Promotion of excessive oxidative stress in the vascular and cellular milieu results in endothelial cell dysfunction, which is one of the earliest and most pivotal metabolic consequences of chronic hyperglycemia. These derangements are caused by excessive production of advanced glycation end products and free radicals and by the subjugation of antioxidants and antioxidant mechanisms. An increased understanding of the role of oxidative stress in diabetic nephropathy has lead to the exploration of a number of therapeutic strategies, the success of which has so far been limited. However, judicious and timely use of current therapies to maintain good glycemic control, adequate blood pressure and lipid levels, along with lifestyle measures such as regular exercise, optimization of diet and smoking cessation, may help to reduce oxidative stress and endothelial cell dysfunction and retard the progression of diabetic nephropathy until more definitive therapies become available.
Collapse
|
100
|
Kim HJ, Sato T, Rodríguez-Iturbe B, Vaziri ND. Role of intrarenal angiotensin system activation, oxidative stress, inflammation, and impaired nuclear factor-erythroid-2-related factor 2 activity in the progression of focal glomerulosclerosis. J Pharmacol Exp Ther 2011; 337:583-90. [PMID: 21357516 DOI: 10.1124/jpet.110.175828] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The Imai rat is a model of spontaneous focal glomerulosclerosis, which leads to heavy proteinuria, hyperlipidemia, hypertension, and progressive renal failure. Treatment with AT1 blockers (ARBs) ameliorates proteinuria, hyperlipidemia, and nephropathy in this model. Progression of renal disease in 5/6 nephrectomized rats is associated with activation of the intrarenal angiotensin system, up-regulation of the oxidative, inflammatory, and fibrogenic pathways, and impaired activity of nuclear factor-erythroid-2-related factor 2 (Nrf2), the master regulator of genes encoding antioxidant molecules. We hypothesized that progressive nephropathy in the Imai rat is accompanied by oxidative stress, inflammation, and impaired Nrf2 activation and that amelioration of nephropathy with AT1 receptor blockade in this model may be associated with the reversal of these abnormalities. Ten-week-old Imai rats were randomized to the ARB-treated (olmesartan, 10 mg/kg/day for 24 weeks) or vehicle-treated groups. Sprague-Dawley rats served as controls. At 34 weeks of age Imai rats showed heavy proteinuria, hypoalbuminemia, hypertension, azotemia, glomerulosclerosis, tubulointerstitial inflammation, increased angiotensin II expressing cell population, up-regulations of AT1 receptor, AT2 receptor, NAD(P)H oxidase, and inflammatory mediators, activation of nuclear factor-κB and reduction of Nrf2 activity and expression of its downstream gene products in the renal cortex. ARB therapy prevented nephropathy, suppressed oxidative stress and inflammation, and restored Nrf2 activation and expression of the antioxidant enzymes. Thus progressive focal glomerulosclerosis in the Imai rats is associated with oxidative stress, inflammation, and impaired Nrf2 activation. These abnormalities are accompanied by activation of intrarenal angiotensin system and can be prevented by ARB administration.
Collapse
Affiliation(s)
- Hyun Ju Kim
- World Institute of Kimchi, Korea Food Research Institute, Gyeonggi-do, Republic of Korea
| | | | | | | |
Collapse
|