51
|
Kamase K, Taguchi M, Ikari A, Endo S, Matsunaga T. 9,10-Phenanthrenequinone provokes dysfunction of brain endothelial barrier through down-regulating expression of claudin-5. Toxicology 2021; 461:152896. [PMID: 34391839 DOI: 10.1016/j.tox.2021.152896] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/07/2021] [Accepted: 08/09/2021] [Indexed: 10/20/2022]
Abstract
Chronic exposure to diesel exhaust particle (DEP) is considered to provoke dysfunction of the blood-brain barrier, but the detailed molecular mechanism remains unclear. In this study, we investigated the toxic effects of five DEP components against human vascular cells and found that, among them, 9,10-phenanthrenequinone (9,10-PQ), a major tricyclic quinone in DEP, most potently elicits the cellular toxicities. Additionally, treatment with 9,10-PQ at its cytolethal concentrations (more than 2 μM) facilitated the production of reactive oxygen species (ROS), caspase activation, and DNA fragmentation in human brain microvascular endothelial (HBME) cells, inferring that high concentrations of 9,10-PQ elicit the cell apoptosis through the ROS-dependent mechanism. Measurement of trans-endothelial electrical resistance and paracellular permeability showed that treatment with sublethal concentrations (less than 1 μM) of 9,10-PQ elevates permeability across HBME cell monolayer. Immunofluorescence observation and Western blotting analysis also revealed that the 9,10-PQ treatment remarkably down-regulated the intercellular localization and expression of claudin-5 (CLDN5), a tight junctional protein that plays a key role in function of the blood-brain barrier, and the down-regulation was markedly recovered by pretreatment with a proteasome inhibitor Z-Leu-Leu-Leu-CHO. This result may indicate that sublethal concentrations of 9,10-PQ facilitate the dysfunction of the endothelial cell barrier through lowering in the expression and proteasomal proteolysis of CLDN5. The treatment with 9,10-PQ promoted nitric oxide (NO) production presumably through the induction of inducible NO synthase. In addition, the 9,10-PQ-mediated down-regulation of CLDN5 was ameliorated and deteriorated by pretreating with a scavenger and donor, respectively, of NO. Similarly to the 9,10-PQ treatment, treatment with a donor of peroxynitrite, a highly reactive oxidant formed by the reaction of NO and superoxide anion, resulted in the marked reduction of CLDN5 expression and elevation of 26S proteasome-based proteolytic activities. Thus, it is suggested that the formation of NO and peroxynitrite participates in the mechanism of brain endothelial cell barrier dysfunction elicited by 9,10-PQ.
Collapse
Affiliation(s)
- Kyoko Kamase
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu, 501-1196, Japan
| | - Maki Taguchi
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu, 501-1196, Japan
| | - Akira Ikari
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu, 501-1196, Japan
| | - Satoshi Endo
- Laboratory of Biochemistry, Gifu Pharmaceutical University, Gifu, 501-1196, Japan
| | - Toshiyuki Matsunaga
- Education Center of Green Pharmaceutical Sciences, Gifu Pharmaceutical University, Gifu, 502-8585, Japan.
| |
Collapse
|
52
|
Botto L, Bulbarelli A, Lonati E, Cazzaniga E, Tassotti M, Mena P, Del Rio D, Palestini P. Study of the Antioxidant Effects of Coffee Phenolic Metabolites on C6 Glioma Cells Exposed to Diesel Exhaust Particles. Antioxidants (Basel) 2021; 10:antiox10081169. [PMID: 34439417 PMCID: PMC8388867 DOI: 10.3390/antiox10081169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/12/2021] [Accepted: 07/19/2021] [Indexed: 01/17/2023] Open
Abstract
The contributing role of environmental factors to the development of neurodegenerative diseases has become increasingly evident. Here, we report that exposure of C6 glioma cells to diesel exhaust particles (DEPs), a major constituent of urban air pollution, causes intracellular reactive oxygen species (ROS) production. In this scenario, we suggest employing the possible protective role that coffee phenolic metabolites may have. Coffee is a commonly consumed hot beverage and a major contributor to the dietary intake of (poly) phenols. Taking into account physiological concentrations, we analysed the effects of two different coffee phenolic metabolites mixes consisting of compounds derived from bacterial metabolization reactions or phase II conjugations, as well as caffeic acid. The results showed that these mixes were able to counteract DEP-induced oxidative stress. The cellular components mediating the downregulation of ROS included extracellular signal-regulated kinase 1/2 (ERK1/2), nuclear factor erythroid 2-related factor 2 (Nrf2), heme oxygenase-1 (HO-1), and uncoupling protein 2 (UCP2). Contrary to coffee phenolic metabolites, the treatment with N-acetylcysteine (NAC), a known antioxidant, was found to be ineffective in preventing the DEP exposure oxidant effect. These results revealed that coffee phenolic metabolites could be promising candidates to protect against some adverse health effects of daily exposure to air pollution.
Collapse
Affiliation(s)
- Laura Botto
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (L.B.); (A.B.); (E.L.); (E.C.)
| | - Alessandra Bulbarelli
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (L.B.); (A.B.); (E.L.); (E.C.)
- POLARIS Centre, University of Milano-Bicocca, 20126 Milano, Italy
- Bicocca Center of Science and Technology for Food, University of Milano-Bicocca, Piazza della Scienza, 2, 20126 Milano, Italy
| | - Elena Lonati
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (L.B.); (A.B.); (E.L.); (E.C.)
- Bicocca Center of Science and Technology for Food, University of Milano-Bicocca, Piazza della Scienza, 2, 20126 Milano, Italy
| | - Emanuela Cazzaniga
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (L.B.); (A.B.); (E.L.); (E.C.)
- Bicocca Center of Science and Technology for Food, University of Milano-Bicocca, Piazza della Scienza, 2, 20126 Milano, Italy
| | - Michele Tassotti
- Human Nutrition Unit, Department of Food and Drug, University of Parma, 43121 Parma, Italy; (M.T.); (P.M.); (D.D.R.)
| | - Pedro Mena
- Human Nutrition Unit, Department of Food and Drug, University of Parma, 43121 Parma, Italy; (M.T.); (P.M.); (D.D.R.)
| | - Daniele Del Rio
- Human Nutrition Unit, Department of Food and Drug, University of Parma, 43121 Parma, Italy; (M.T.); (P.M.); (D.D.R.)
- School of Advanced Studies on Food and Nutrition, University of Parma, 43121 Parma, Italy
| | - Paola Palestini
- School of Medicine and Surgery, University of Milano-Bicocca, 20900 Monza, Italy; (L.B.); (A.B.); (E.L.); (E.C.)
- POLARIS Centre, University of Milano-Bicocca, 20126 Milano, Italy
- Bicocca Center of Science and Technology for Food, University of Milano-Bicocca, Piazza della Scienza, 2, 20126 Milano, Italy
- Correspondence:
| |
Collapse
|
53
|
Rhew SH, Kravchenko J, Lyerly HK. Exposure to low-dose ambient fine particulate matter PM2.5 and Alzheimer's disease, non-Alzheimer's dementia, and Parkinson's disease in North Carolina. PLoS One 2021; 16:e0253253. [PMID: 34242242 PMCID: PMC8270415 DOI: 10.1371/journal.pone.0253253] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 06/01/2021] [Indexed: 01/09/2023] Open
Abstract
Alzheimer's disease (AD), non-AD dementia, and Parkinson's disease (PD) are increasingly common in older adults, yet all risk factors for their onset are not fully understood. Consequently, environmental exposures, including air pollution, have been hypothesized to contribute to the etiology of neurodegeneration. Because persistently elevated rates of AD mortality in the southern Piedmont area of North Carolina (NC) have been documented, we studied mortality and hospital admissions for AD, non-AD dementia, and PD in residential populations aged 65+ with long-term exposures to elevated levels of ambient air particulate matter 2.5 (PM2.5) exceeding the World Health Organization (WHO) air quality standards (≥10μg/m3). Health data were obtained from the State Center for Health Statistics and the Healthcare Cost and Utilization Project. PM2.5 levels were obtained from the MODIS/MISR and SeaWiFS datafiles. Residents in the Study group of elevated air particulate matter (87 zip codes with PM2.5≥10μg/m3) were compared to the residents in the Control group with low levels of air particulate matter (81 zip codes with PM2.5≤7.61μg/m3), and were found to have higher age-adjusted rates of mortality and hospital admissions for AD, non-AD dementia, and PD, including a most pronounced increase in AD mortality (323/100,000 vs. 257/100,000, respectively). After adjustment for multiple co-factors, the risk of death (odds ratio, or OR) from AD in the Study group (OR = 1.35, 95%CI[1.24-1.48]) was significantly higher than ORs of non-AD dementia or PD (OR = 0.97, 95%CI[0.90-1.04] and OR = 1.13, 95%CI[0.92-1.31]). The OR of hospital admissions was significantly increased only for AD as a primary case of hospitalization (OR = 1.54, 95%CI[1.31-1.82]). Conclusion: NC residents aged 65+ with long-term exposures to ambient PM2.5 levels exceeding the WHO standard had significantly increased risks of death and hospital admissions for AD. The effects for non-AD dementia and PD were less pronounced.
Collapse
Affiliation(s)
- Sung Han Rhew
- Memory Keepers Medical Discovery Team, University of Minnesota Medical School, Duluth, Minnesota, United States of America
| | - Julia Kravchenko
- Environmental Health Scholars Program, Division of Surgical Sciences, Department of Surgery, Duke University School of Medicine, Durham, North Carolina, United States of America
| | - H. Kim Lyerly
- Environmental Health Scholars Program, Division of Surgical Sciences, Department of Surgery, Duke University School of Medicine, Durham, North Carolina, United States of America
- Department of Pathology, Duke University School of Medicine, Durham, North Carolina, United States of America
| |
Collapse
|
54
|
Smoking and Neuropsychiatric Disease-Associations and Underlying Mechanisms. Int J Mol Sci 2021; 22:ijms22147272. [PMID: 34298890 PMCID: PMC8304236 DOI: 10.3390/ijms22147272] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/28/2021] [Accepted: 07/03/2021] [Indexed: 01/02/2023] Open
Abstract
Despite extensive efforts to combat cigarette smoking/tobacco use, it still remains a leading cause of global morbidity and mortality, killing more than eight million people each year. While tobacco smoking is a major risk factor for non-communicable diseases related to the four main groups—cardiovascular disease, cancer, chronic lung disease, and diabetes—its impact on neuropsychiatric risk is rather elusive. The aim of this review article is to emphasize the importance of smoking as a potential risk factor for neuropsychiatric disease and to identify central pathophysiological mechanisms that may contribute to this relationship. There is strong evidence from epidemiological and experimental studies indicating that smoking may increase the risk of various neuropsychiatric diseases, such as dementia/cognitive decline, schizophrenia/psychosis, depression, anxiety disorder, and suicidal behavior induced by structural and functional alterations of the central nervous system, mainly centered on inflammatory and oxidative stress pathways. From a public health perspective, preventive measures and policies designed to counteract the global epidemic of smoking should necessarily include warnings and actions that address the risk of neuropsychiatric disease.
Collapse
|
55
|
Bernal-Meléndez E, Callebert J, Bouillaud P, Persuy MA, Olivier B, Badonnel K, Chavatte-Palmer P, Baly C, Schroeder H. Dopaminergic and serotonergic changes in rabbit fetal brain upon repeated gestational exposure to diesel engine exhaust. Arch Toxicol 2021; 95:3085-3099. [PMID: 34189592 DOI: 10.1007/s00204-021-03110-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 06/17/2021] [Indexed: 11/29/2022]
Abstract
Limited studies in humans and in animal models have investigated the neurotoxic risks related to a gestational exposure to diesel exhaust particles (DEP) on the embryonic brain, especially those regarding monoaminergic systems linked to neurocognitive disorders. We previously showed that exposure to DEP alters monoaminergic neurotransmission in fetal olfactory bulbs and modifies tissue morphology along with behavioral consequences at birth in a rabbit model. Given the anatomical and functional connections between olfactory and central brain structures, we further characterized their impacts in brain regions associated with monoaminergic neurotransmission. At gestational day 28 (GD28), fetal rabbit brains were collected from dams exposed by nose-only to either a clean air or filtered DEP for 2 h/day, 5 days/week, from GD3 to GD27. HPLC dosage and histochemical analyses of the main monoaminergic systems, i.e., dopamine (DA), noradrenaline (NA), and serotonin (5-HT) and their metabolites were conducted in microdissected fetal brain regions. DEP exposure increased the level of DA and decreased the dopaminergic metabolites ratios in the prefrontal cortex (PFC), together with sex-specific alterations in the hippocampus (Hp). In addition, HVA level was increased in the temporal cortex (TCx). Serotonin and 5-HIAA levels were decreased in the fetal Hp. However, DEP exposure did not significantly modify NA levels, tyrosine hydroxylase, tryptophan hydroxylase or AChE enzymatic activity in fetal brain. Exposure to DEP during fetal life results in dopaminergic and serotonergic changes in critical brain regions that might lead to detrimental potential short-term neural disturbances as precursors of long-term neurocognitive consequences.
Collapse
Affiliation(s)
- Estefania Bernal-Meléndez
- NeuroBiologie de l'Olfaction, INRA, Université Paris-Saclay, 78350, Jouy-en-Josas, France.,CALBINOTOX, EA7488, Université de Lorraine, Vandœuvre-lès-Nancy, France
| | - Jacques Callebert
- Service de Biochimie et Biologie Moléculaire, Hôpital Lariboisière, Paris, France
| | | | - Marie-Annick Persuy
- NeuroBiologie de l'Olfaction, INRA, Université Paris-Saclay, 78350, Jouy-en-Josas, France.,Université Paris-Saclay, UVSQ, INRAE, INRAE, BREED UR1198, Bat. 230, Domaine de Vilvert, 78350, Jouy-en-Josas, France
| | - Benoit Olivier
- CALBINOTOX, EA7488, Université de Lorraine, Vandœuvre-lès-Nancy, France
| | - Karine Badonnel
- NeuroBiologie de l'Olfaction, INRA, Université Paris-Saclay, 78350, Jouy-en-Josas, France.,Université Paris-Saclay, UVSQ, INRAE, INRAE, BREED UR1198, Bat. 230, Domaine de Vilvert, 78350, Jouy-en-Josas, France
| | - Pascale Chavatte-Palmer
- Université Paris-Saclay, UVSQ, INRAE, INRAE, BREED UR1198, Bat. 230, Domaine de Vilvert, 78350, Jouy-en-Josas, France
| | - Christine Baly
- NeuroBiologie de l'Olfaction, INRA, Université Paris-Saclay, 78350, Jouy-en-Josas, France. .,Université Paris-Saclay, UVSQ, INRAE, INRAE, BREED UR1198, Bat. 230, Domaine de Vilvert, 78350, Jouy-en-Josas, France.
| | - Henri Schroeder
- CALBINOTOX, EA7488, Université de Lorraine, Vandœuvre-lès-Nancy, France.
| |
Collapse
|
56
|
Barnhill LM, Khuansuwan S, Juarez D, Murata H, Araujo JA, Bronstein JM. Diesel Exhaust Extract Exposure Induces Neuronal Toxicity by Disrupting Autophagy. Toxicol Sci 2021; 176:193-202. [PMID: 32298450 DOI: 10.1093/toxsci/kfaa055] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The vast majority of neurodegenerative disease cannot be attributed to genetic causes alone and as a result, there is significant interest in identifying environmental modifiers of disease risk. Epidemiological studies have supported an association between long-term exposure to air pollutants and disease risk. Here, we investigate the mechanisms by which diesel exhaust, a major component of air pollution, induces neurotoxicity. Using a zebrafish model, we found that exposure to diesel exhaust particulate extract caused behavioral deficits and a significant decrease in neuron number. The neurotoxicity was due, at least in part, to reduced autophagic flux, which is a major pathway implicated in neurodegeneration. This neuron loss occurred alongside an increase in aggregation-prone neuronal protein. Additionally, the neurotoxicity induced by diesel exhaust particulate extract in zebrafish was mitigated by co-treatment with the autophagy-inducing drug nilotinib. This study links environmental exposure to altered proteostasis in an in vivo model system. These results shed light on why long-term exposure to traffic-related air pollution increases neurodegenerative disease risk and open up new avenues for exploring therapies to mitigate environmental exposures and promote neuroprotection.
Collapse
Affiliation(s)
| | | | | | | | - Jesus A Araujo
- Molecular Toxicology IDP.,Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California 90095
| | | |
Collapse
|
57
|
Marazziti D, Cianconi P, Mucci F, Foresi L, Chiarantini I, Della Vecchia A. Climate change, environment pollution, COVID-19 pandemic and mental health. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 773:145182. [PMID: 33940721 PMCID: PMC7825818 DOI: 10.1016/j.scitotenv.2021.145182] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/10/2021] [Accepted: 01/11/2021] [Indexed: 05/06/2023]
Abstract
Converging data would indicate the existence of possible relationships between climate change, environmental pollution and epidemics/pandemics, such as the current one due to SARS-CoV-2 virus. Each of these phenomena has been supposed to provoke detrimental effects on mental health. Therefore, the purpose of this paper was to review the available scientific literature on these variables in order to suggest and comment on their eventual synergistic effects on mental health. The available literature report that climate change, air pollution and COVID-19 pandemic might influence mental health, with disturbances ranging from mild negative emotional responses to full-blown psychiatric conditions, specifically, anxiety and depression, stress/trauma-related disorders, and substance abuse. The most vulnerable groups include elderly, children, women, people with pre-existing health problems especially mental illnesses, subjects taking some types of medication including psychotropic drugs, individuals with low socio-economic status, and immigrants. It is evident that COVID-19 pandemic uncovers all the fragility and weakness of our ecosystem, and inability to protect ourselves from pollutants. Again, it underlines our faults and neglect towards disasters deriving from climate change or pollution, or the consequences of human activities irrespective of natural habitats and constantly increasing the probability of spillover of viruses from animals to humans. In conclusion, the psychological/psychiatric consequences of COVID-19 pandemic, that currently seem unavoidable, represent a sharp cue of our misconception and indifference towards the links between our behaviour and their influence on the "health" of our planet and of ourselves. It is time to move towards a deeper understanding of these relationships, not only for our survival, but for the maintenance of that balance among man, animals and environment at the basis of life in earth, otherwise there will be no future.
Collapse
Affiliation(s)
- Donatella Marazziti
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa, Italy; UniCamillus - Saint Camillus University of Health Sciences, Rome, Italy
| | - Paolo Cianconi
- Institute of Psychiatry, Department of Neurosciences, Catholic University, Rome, Italy
| | - Federico Mucci
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Italy; Department of Psychiatry, North-Western Tuscany Region, NHS Local Health Unit, Italy
| | - Lara Foresi
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa, Italy
| | - Ilaria Chiarantini
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa, Italy
| | - Alessandra Della Vecchia
- Department of Clinical and Experimental Medicine, Section of Psychiatry, University of Pisa, Italy.
| |
Collapse
|
58
|
Zheng T, Zhang Z. Activated microglia facilitate the transmission of α-synuclein in Parkinson's disease. Neurochem Int 2021; 148:105094. [PMID: 34097990 DOI: 10.1016/j.neuint.2021.105094] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 05/23/2021] [Accepted: 05/31/2021] [Indexed: 01/31/2023]
Abstract
Parkinson's disease (PD) is characterized by the loss of dopaminergic neurons in the substantia nigra pars compacta and abnormal aggregates of α-synuclein protein called Lewy bodies. To date, there is no drug that can definitely slow down or stop the progression of this disease. The discovery of the cell-to-cell transmission of pathologic α-synuclein seeds offers the possibility to explore novel treatment strategies to prevent the spread of α-synuclein, with the purpose of slowing down the progression of PD in its tracks. Although recent studies have made tremendous progress in understanding how α-synuclein spreads throughout the brain, neuroinflammation seems to play a crucial role in the development of α-synuclein pathology in PD. The activation of microglia, one of the hallmarks of the neuroinflammatory process, is suggested to influence the neuron-to-neuron transmission of α-synuclein. This review summarizes how activated microglia facilitate this process, and focuses on the following mechanisms including the activation of microglia in PD, the reduced ability of activated microglia to clear α-synuclein and increased migratory capacity of microglia in PD, as well as the cooperation between microglia and exosomes in mediating α-synuclein release and propagation. In conclusion, this article help collate information on microglia in-relation to PD.
Collapse
Affiliation(s)
- Tingting Zheng
- Department of Neurology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), 54 Youdian Road, Hangzhou 310006, China
| | - Zhengxiang Zhang
- Department of Neurology, The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Traditional Chinese Medicine), 54 Youdian Road, Hangzhou 310006, China.
| |
Collapse
|
59
|
Ehsanifar M, Jafari AJ, Montazeri Z, Kalantari RR, Gholami M, Ashtarinezhad A. Learning and memory disorders related to hippocampal inflammation following exposure to air pollution. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2021; 19:261-272. [PMID: 34150234 PMCID: PMC8172730 DOI: 10.1007/s40201-020-00600-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 12/14/2020] [Indexed: 05/26/2023]
Abstract
It has been demonstrated that sub-chronic exposure to air pollution containing nanoscale (˂100 nm) diesel exhaust particles (DEPs) may lead to excessive oxidative stress and neuro-inflammation in adult male mice. Hereby, we investigated the effects of DEPs on hippocampus-dependent spatial learning and neuro-inflammation and memory-related gene expression in male mice. In this study, we divided 48 adult NMRI male mice into control group VS. three exposure groups. Mice were exposed to 300-350 μg/m3 DEPs for 2, 5, and 7 h daily for 12 weeks. The Morris Water Maze (MWM) and Elevated Plus Maze device were used to examine anxiety, spatial memory and learning, respectively. The mRNAs expression of pro-inflammatory cytokines, N-methyl-D-aspartate (NMDA) receptor subunits, and glutaminase were studied in hippocampus (HI) by real-time RT-PCR. Besides, malondialdehyde (MDA) tests were used to determine the state of oxidative stress. After 5 and 7 h. of DEPs exposure, mRNA expression of NR2A and NR3B IL1α, IL1β, TNFα, NMDA receptor subunits and MDA levels increased significantly (P < 0.05). Also, DEPs exposed mice for 2, 5, and 7 h. showed diminished entrance into open arms with short time spent there. Indeed, 5 and 7 h/day exposed mice required a longer time to reach the hidden platform. Sub-chronic exposure to DEPs increased oxidative stress markers, neuroinflammation, anxiety, impaired spatial learning and memory.
Collapse
Affiliation(s)
- Mojtaba Ehsanifar
- Anatomical Sciences Research Center, Kashan University of Medical Sciences, Kashan, Iran
- Research Center for Environmental Health Technology and department of Environmental Health Engineering, School of public health, Iran University of Medical Sciences, Tehran, Iran
| | - Ahmad Jonidi Jafari
- Research Center for Environmental Health Technology and department of Environmental Health Engineering, School of public health, Iran University of Medical Sciences, Tehran, Iran
| | - Zeinab Montazeri
- Institute of Endocrinology and Metabolism Research and Training Center, Iran University of Medical Sciences, Tehran, Iran
| | - Roshanak Rezaei Kalantari
- Research Center for Environmental Health Technology and department of Environmental Health Engineering, School of public health, Iran University of Medical Sciences, Tehran, Iran
| | - Mitra Gholami
- Research Center for Environmental Health Technology and department of Environmental Health Engineering, School of public health, Iran University of Medical Sciences, Tehran, Iran
| | - Azadeh Ashtarinezhad
- Department of Occupational health engineering, School of public health, Iran University of medical sciences, Tehran, Iran
| |
Collapse
|
60
|
Sarkar S. Mechanism of Gene-Environment Interactions Driving Glial Activation in Parkinson's Diseases. Curr Environ Health Rep 2021; 8:203-211. [PMID: 34043217 DOI: 10.1007/s40572-021-00320-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/21/2021] [Indexed: 11/24/2022]
Abstract
PURPOSE OF REVIEW Parkinson's disease (PD) is the most prevalent motor disorder and is characterized by loss of dopaminergic neurons in the substantia nigra pars compacta (SNpc) region of the brain. Though the pathology of PD is well established, the cause of this neuronal loss is not well understood. Approximately 90% of PD cases are sporadic, and the environment plays a significant role in disease pathogenesis. The etiology of PD is highly complex, with neuroinflammation being one of the most critical factors implicated in PD. However, the signaling mechanisms underlying neuroinflammation and its interaction with environmental factors are unclear. RECENT FINDINGS Astroglia and microglia are the two principal cells that play an essential role in maintaining neuronal health in many ways, including through immunological means. Exposure to environmental stressors from various sources affects these glial cells leading to chronic and sustained inflammation. Recent epidemiological studies have identified an interaction among environmental factors and glial genes in Parkinson's disease. Mechanistic studies have shown that exposure to pesticides like rotenone and paraquat, neurotoxic metals like manganese and lead, and even diesel exhaust fumes induce glial activation by regulating various key inflammatory pathways, including the inflammasomes, NOX pathways, and others. This review aims to discuss the recent advances in understanding the mechanism of glial induction in response to environmental stressors and discuss the potential role of gene-environment interaction in driving glial activation.
Collapse
Affiliation(s)
- Souvarish Sarkar
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA, 02115, USA.
| |
Collapse
|
61
|
Aquino GV, Dabi A, Odom GJ, Zhang F, Bruce ED. Evaluating the endothelial-microglial interaction and comprehensive inflammatory marker profiles under acute exposure to ultrafine diesel exhaust particles in vitro. Toxicology 2021; 454:152748. [PMID: 33727093 DOI: 10.1016/j.tox.2021.152748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 03/04/2021] [Accepted: 03/07/2021] [Indexed: 10/21/2022]
Abstract
Exposure to combustion-derived particulate matter (PM) such as diesel exhaust particles (DEP) is a public health concern because people in urban areas are continuously exposed, and once inhaled, fine and ultrafine DEP may reach the brain. The blood-brain barrier (BBB) endothelial cells (EC) and the perivascular microglia protect the brain from circulating pathogens and neurotoxic molecules like DEP. While the BBB-microglial interaction is critical for maintaining homeostasis, no study has previously evaluated the endothelial-microglial interaction nor comprehensively characterized these cells' inflammatory marker profiles under ultrafine DEP exposures in vitro. Therefore, the goal of this study was to investigate the in vitro rat EC-microglial co-culture under acute (24 h.) exposure to ultrafine DEP (0.002-20 μg/mL), by evaluating key mechanisms associated with PM toxicity: lactate dehydrogenase (LDH) leakage, reactive oxygen species (ROS) generation, cell metabolic activity (CMA) changes, and production of 27 inflammatory markers. These parameters were also evaluated in rat microglial and endothelial monocultures to determine whether the EC-microglial co-culture responded differently than the cerebrovasculature and microglia alone. While results indicated that ultrafine DEP exposure caused concentration-dependent increases in LDH leakage and ROS production in all groups, as expected, exposure also caused mixed responses in CMA and atypical cytokine/chemokine profiles in all groups, which was not expected. The inflammation assay results further suggested that the microglia were not classically activated under this exposure scenario, despite previous in vitro studies showing microglial activation (priming) at similar concentrations of ultrafine DEP. Additionally, compared to the cerebrovasculature alone, the EC-microglia interaction in the co-culture did not appear to cause changes in any parameter save in pro-inflammatory marker production, where the interaction appeared to cause an overall downregulation in cytokine/chemokine levels after ultrafine DEP exposure. Finally, to our knowledge, this is the first study to evaluate the influence of microglia on the BBB's ultrafine DEP-induced cytotoxic and inflammatory responses, which are heavily implicated in the pathogenesis of PM-related cerebrovascular dysfunction and neurodegeneration.
Collapse
Affiliation(s)
- Grace V Aquino
- Department of Environmental Science, Baylor University, 101 Bagby Ave., Waco, TX, 76706, USA
| | - Amjad Dabi
- Department of Environmental Science, Baylor University, 101 Bagby Ave., Waco, TX, 76706, USA
| | - Gabriel J Odom
- Department of Biostatistics Stempel College of Public Health, Florida International University, 11200 SW 8(th)Street, AHC4-470, Miami, FL, 33199, USA; Department of Public Health Sciences, University of Miami Miller School of Medicine, The University of Miami, 1600 NW 10th Ave. 1140, Miami, FL, 33136, USA
| | - Fan Zhang
- Department of Environmental Science, Baylor University, 101 Bagby Ave., Waco, TX, 76706, USA
| | - Erica D Bruce
- Department of Environmental Science, Baylor University, 101 Bagby Ave., Waco, TX, 76706, USA.
| |
Collapse
|
62
|
Morris RH, Counsell SJ, McGonnell IM, Thornton C. Early life exposure to air pollution impacts neuronal and glial cell function leading to impaired neurodevelopment. Bioessays 2021; 43:e2000288. [PMID: 33751627 DOI: 10.1002/bies.202000288] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/19/2021] [Accepted: 02/23/2021] [Indexed: 11/06/2022]
Abstract
The World Health Organisation recently listed air pollution as the most significant threat to human health. Air pollution comprises particulate matter (PM), metals, black carbon and gases such as ozone (O3 ), nitrogen dioxide (NO2 ) and carbon monoxide (CO). In addition to respiratory and cardiovascular disease, PM exposure is linked with increased risk of neurodegeneration as well as neurodevelopmental impairments. Critically, studies suggest that PM crosses the placenta, making direct in utero exposure a reality. Rodent models reveal that neuroinflammation, neurotransmitter imbalance and oxidative stress are triggered following gestational/early life exposure to PM, and may be exacerbated by concomitant mitochondrial dysfunction. Gestational PM exposure (potentiated by mitochondrial impairment in the metabolically active neonatal brain) not only impacts neurodevelopment but may sensitise the brain to subsequent cognitive impairment. Having reviewed this field, we conclude that strategies are urgently required to reduce exposure to PM during this sensitive developmental period.
Collapse
Affiliation(s)
- Rebecca H Morris
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK
| | - Serena J Counsell
- Department of Perinatal Imaging and Health, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| | - Imelda M McGonnell
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK
| | - Claire Thornton
- Department of Comparative Biomedical Sciences, Royal Veterinary College, London, UK.,Department of Perinatal Imaging and Health, School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
| |
Collapse
|
63
|
Park SK, Kang JY, Kim JM, Kim HJ, Heo HJ. Ecklonia cava Attenuates PM 2.5-Induced Cognitive Decline through Mitochondrial Activation and Anti-Inflammatory Effect. Mar Drugs 2021; 19:131. [PMID: 33673531 PMCID: PMC7997322 DOI: 10.3390/md19030131] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 02/20/2021] [Accepted: 02/24/2021] [Indexed: 11/17/2022] Open
Abstract
To evaluate the effects of Ecklonia cava (E. cava) on ambient-pollution-induced neurotoxicity, we used a mouse model exposed to particulate matter smaller than 2.5 µm in aerodynamic diameter (PM2.5). The intake of water extract from E. cava (WEE) effectively prevented the learning and memory decline. After a behavioral test, the toll-like receptor (TLR)-4-initiated inflammatory response was confirmed by PM2.5 exposure in the lung and brain tissues, and the WEE was regulated through the inhibition of nuclear factor-kappa B (NF-κB)/inflammasome formation signaling pathway and pro-inflammatory cytokines (IL-6 and IFN-γ). The WEE also effectively improved the PM2.5-induced oxidative damage of the lungs and brain through the inhibition of malondialdehyde (MDA) production and the activation of mitochondrial activity (mitochondrial ROS content, mitochondria membrane potential (MMP), adenosine triphosphate (ATP) content, and mitochondria-mediated apoptotic molecules). In particular, the WEE regulated the cognition-related proteins (a decreased amyloid precursor protein (APP) and p-Tau, and an increased brain-derived neurotrophic factor (BDNF)) associated with PM2.5-induced cognitive dysfunction. Additionally, the WEE prevented the inactivation of acetylcholine (ACh) synthesis and release as a neurotransmitter by regulating the acetylcholinesterase (AChE) activity, choline acetyltransferase (ChAT), and ACh receptor (AChR)-α3 in the brain tissue. The bioactive compounds of the WEE were detected as the polysaccharide (average Mw; 160.13 kDa) and phenolic compounds including 2'-phloroeckol.
Collapse
Affiliation(s)
| | | | | | | | - Ho Jin Heo
- Division of Applied Life Science (BK21), Institute of Agriculture and Life Science, Gyeongsang National University, Jinju 52828, Korea; (S.K.P.); (J.Y.K.); (J.M.K.); (H.-J.K.)
| |
Collapse
|
64
|
Shabani S. A mechanistic view on the neurotoxic effects of air pollution on central nervous system: risk for autism and neurodegenerative diseases. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:6349-6373. [PMID: 33398761 DOI: 10.1007/s11356-020-11620-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 11/09/2020] [Indexed: 06/12/2023]
Abstract
Many reports have shown a strong association between exposure to neurotoxic air pollutants like heavy metal and particulate matter (PM) as an active participant and neurological disorders. While the effects of these toxic pollutants on cardiopulmonary morbidity have principally been studied, growing evidence has shown that exposure to polluted air is associated with memory impairment, communication deficits, and anxiety/depression among all ages. So, these toxic pollutants in the environment increase the risk of neurodegenerative disease, ischemia, and autism spectrum disorders (ASD). The precise mechanisms in which air pollutants lead to communicative inability, social inability, and declined cognition have remained unknown. Various animal model studies show that amyloid precursor protein (APP), processing, oxidant/antioxidant balance, and inflammation pathways change following the exposure to constituents of polluted air. In the present review study, we collect the probable molecular mechanisms of deleterious CNS effects in response to various air pollutants.
Collapse
Affiliation(s)
- Sahreh Shabani
- Medical Plants Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.
| |
Collapse
|
65
|
Kim JY, Kim JH, Kim YD, Seo JH. High Vulnerability of Oligodendrocytes to Oxidative Stress Induced by Ultrafine Urban Particles. Antioxidants (Basel) 2020; 10:antiox10010004. [PMID: 33375107 PMCID: PMC7822157 DOI: 10.3390/antiox10010004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 12/14/2020] [Accepted: 12/18/2020] [Indexed: 01/29/2023] Open
Abstract
Oligodendrocytes, myelin-forming cells in the brain, are vulnerable to oxidative stress. Recent work indicates that air pollution causes demyelinating diseases such as multiple sclerosis. However, little is known about the mechanism of toxicity of ultrafine particulate matters (PMs) to oligodendrocytes. Here, we aimed to determine whether oligodendrocyte precursor cells (OPCs) and mature oligodendrocytes (mOLs) are more vulnerable to ultrafine urban PMs (uf-UPs) than other types of brain cells and damage to adult OPCs and mOLs in the mouse brain exposed to uf-UPs. For in vitro experiments, following exposure to various concentrations (2, 20, and 200 μg/mL) of uf-UPs, we measured survival rates, the amount of reactive oxygen species (ROS), and the total antioxidant capacities (TACs) of brain cells isolated from neonatal Sprague-Dawley rats. For animal experiments, after a four-week exposure to a uf-UP suspension (20 μL, 0.4 mg/mL), we enumerated the number of damaged cells and typed damaged cells in the white matter of the cerebellum of uf-UP-exposed mice. MTT assays and Hoechst staining demonstrated that OPCs and mOLs were more vulnerable to uf-UP-induced damage than astrocytes and cortical neurons at 2, 20, and 200 μg/mL of uf-UPs examined in this study (p < 0.05). Damage to OPCs and mOLs depended on uf-UP concentration. DCF assays and DHE staining indicated that the amount of ROS generated in OPCs and mOLs was significantly higher than in other brain cell types (p < 0.05). In contrast, TAC values in OPCs and mOLs were significantly lower than those of other brain cell types (p < 0.05). Fluoro-Jade B (FJB)-positive cells in the cerebellar white matter of the uf-UP-exposed group were significantly greater in number relative to the control group. Double immunofluorescence indicated that FJB-positive cells are NG2-positive adult OPCs and carbon anhydrase II-positive mOLs. Taken together, our findings suggest that oxidative stress induced by uf-UPs in the brain impairs adult OPCs and mOLs, causing demyelination and reducing the capacity for remyelination.
Collapse
Affiliation(s)
- Ji Young Kim
- Department of Anatomy, Chungbuk National University College of Medicine, Cheongju 28644, Korea;
| | - Jin-Hee Kim
- Department of Biomedical Laboratory Science, College of Health Science, Cheongju University, Cheongju 28503, Korea;
| | - Yong-Dae Kim
- Department of Preventive Medicine, Chungbuk National University College of Medicine, Cheongju 28644, Korea
- Chungbuk Regional Cancer Center, Chungbuk National University Hospital, Cheongju 28644, Korea
- Correspondence: (Y.-D.K.); (J.H.S.); Tel.: +82-43-261-2845 (Y.-D.K.); +82-43-261-2866 (J.H.S.)
| | - Je Hoon Seo
- Department of Anatomy, Chungbuk National University College of Medicine, Cheongju 28644, Korea;
- Correspondence: (Y.-D.K.); (J.H.S.); Tel.: +82-43-261-2845 (Y.-D.K.); +82-43-261-2866 (J.H.S.)
| |
Collapse
|
66
|
Hussain Z, Thu HE, Elsayed I, Abourehab MAS, Khan S, Sohail M, Sarfraz RM, Farooq MA. Nano-scaled materials may induce severe neurotoxicity upon chronic exposure to brain tissues: A critical appraisal and recent updates on predisposing factors, underlying mechanism, and future prospects. J Control Release 2020; 328:873-894. [PMID: 33137366 DOI: 10.1016/j.jconrel.2020.10.053] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/25/2020] [Accepted: 10/26/2020] [Indexed: 01/09/2023]
Abstract
Owing to their tremendous potential, the inference of nano-scaled materials has revolutionized many fields including the medicine and health, particularly for development of various types of targeted drug delivery devices for early prognosis and successful treatment of various diseases, including the brain disorders. Owing to their unique characteristic features, a variety of nanomaterials (particularly, ultra-fine particles (UFPs) have shown tremendous success in achieving the prognostic and therapeutic goals for early prognosis and treatment of various brain maladies such as Alzheimer's disease, Parkinson's disease, brain lymphomas, and other ailments. However, serious attention is needful due to innumerable after-effects of the nanomaterials. Despite their immense contribution in optimizing the prognostic and therapeutic modalities, biological interaction of nanomaterials with various body tissues may produce severe nanotoxicity of different organs including the heart, liver, kidney, lungs, immune system, gastro-intestinal system, skin as well as nervous system. However, in this review, we have primarily focused on nanomaterials-induced neurotoxicity of the brain. Following their translocation into different regions of the brain, nanomaterials may induce neurotoxicity through multiple mechanisms including the oxidative stress, DNA damage, lysosomal dysfunction, inflammatory cascade, apoptosis, genotoxicity, and ultimately necrosis of neuronal cells. Our findings indicated that rigorous toxicological evaluations must be carried out prior to clinical translation of nanomaterials-based formulations to avoid serious neurotoxic complications, which may further lead to develop various neuro-degenerative disorders.
Collapse
Affiliation(s)
- Zahid Hussain
- Department of Pharmaceutics and Pharmaceutical Technology, College of Pharmacy, University of Sharjah, Sharjah 27272, United Arab Emirates; Research Institute for Medical and Health Sciences (SIMHR), University of Sharjah, Sharjah 27272, United Arab Emirates
| | - Hnin Ei Thu
- Innoscience Research Sdn. Bhd., Suites B-5-7, Level 5, Skypark@ One City, Jalan Ust 25/1, Subang Jaya 47650, Selangor, Malaysia; Department of Pharmacology, Faculty of Medicine, Lincoln University College, Selangor, Malaysia.
| | - Ibrahim Elsayed
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Egypt; Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy & Thumbay Research Institute for Precision Medicine Gulf Medical University, United Arab Emirates
| | - Mohammed A S Abourehab
- Department of Pharmaceutics, Faculty of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia; Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Shahzeb Khan
- Division of Molecular Pharmaceutics and Drug Delivery, College of Pharmacy, The University of Texas, 2409 West University Avenue, PHR 4.116, Austin TX78712, USA; Department of Pharmacy, University of Malakand, Dir Lower, Chakdara, KPK, Pakistan
| | - Mohammad Sohail
- Department of Pharmacy, COMSATS University Islamabad, Abbottabad Campus, Abbottabad 22010, Pakistan
| | | | - Muhammad Asim Farooq
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu 211198, People's Republic of China
| |
Collapse
|
67
|
Yu Y, Haan M, Paul KC, Mayeda ER, Jerrett M, Wu J, Lee E, Su J, Shih IF, Inoue K, Ritz BR. Metabolic dysfunction modifies the influence of traffic-related air pollution and noise exposure on late-life dementia and cognitive impairment: A cohort study of older Mexican-Americans. Environ Epidemiol 2020; 4:e122. [PMID: 33778355 PMCID: PMC7941776 DOI: 10.1097/ee9.0000000000000122] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 10/28/2020] [Indexed: 12/24/2022] Open
Abstract
Supplemental Digital Content is available in the text. Cognitive impairment has been linked to traffic-related air pollution and noise exposure as well as to metabolic syndrome or some of its individual components. Here, we investigate whether the presence of metabolic dysfunction modifies associations between air pollution or noise exposures and incident dementia or cognitive impairment without dementia (CIND).
Collapse
Affiliation(s)
- Yu Yu
- Department of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, California
| | - Mary Haan
- Department of Epidemiology & Biostatistics, UCSF, San Francisco, California
| | - Kimberly C Paul
- Department of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, California
| | - Elizabeth Rose Mayeda
- Department of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, California
| | - Michael Jerrett
- Department of Environmental Health Science, UCLA Fielding School of Public Health, Los Angeles, California
| | - Jun Wu
- Program in Public Health, Susan and Henry Samueli College of Health Sciences, UCI, Irvine, California
| | - Eunice Lee
- Division of Environmental Health Science, UCB School of Public Health, Berkeley, California
| | - Jason Su
- Division of Environmental Health Science, UCB School of Public Health, Berkeley, California
| | - I-Fan Shih
- Department of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, California
| | - Kosuke Inoue
- Department of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, California
| | - Beate R Ritz
- Department of Epidemiology, UCLA Fielding School of Public Health, Los Angeles, California.,Department of Environmental Health Science, UCLA Fielding School of Public Health, Los Angeles, California.,Department of Neurology, David Geffen School of Medicine, Los Angeles, California
| |
Collapse
|
68
|
Greve HJ, Mumaw CL, Messenger EJ, Kodavanti PRS, Royland JL, Kodavanti UP, Block ML. Diesel exhaust impairs TREM2 to dysregulate neuroinflammation. J Neuroinflammation 2020; 17:351. [PMID: 33222683 PMCID: PMC7682066 DOI: 10.1186/s12974-020-02017-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 10/29/2020] [Indexed: 01/07/2023] Open
Abstract
Background Air pollution has been linked to neurodegenerative diseases, including Alzheimer’s disease (AD), and the underlying neuroimmune mechanisms remain poorly understood. TREM2 is a myeloid cell membrane receptor that is a key regulator of disease-associated microglia (DAM) cells, where loss-of-function TREM2 mutations are associated with an increased risk of AD. At present, the basic function of TREM2 in neuroinflammation is a point of controversy. Further, the impact of air pollution on TREM2 and the DAM phenotype is largely unknown. Using diesel exhaust (DE) as a model of urban air pollution exposure, we sought to address its impact on TREM2 expression, the DAM phenotype, the association of microglia with the neurovasculature, and the role of TREM2 in DE-induced neuroinflammation. Methods WYK rats were exposed for 4 weeks to DE (0, 50, 150, 500 μg/m3) by inhalation. DE particles (DEP) were administered intratracheally once (600 μg/mouse) or 8 times (100 μg/mouse) across 28 days to male mice (Trem2+/+, Trem2−/−, PHOX+/+, and PHOX−/−). Results Rats exposed to DE exhibited inverted-U patterns of Trem2 mRNA expression in the hippocampus and frontal cortex, while TREM2 protein was globally diminished, indicating impaired TREM2 expression. Analysis of DAM markers Cx3Cr1, Lyz2, and Lpl in the frontal cortex and hippocampus showed inverted-U patterns of expression as well, supporting dysregulation of the DAM phenotype. Further, microglial-vessel association decreased with DE inhalation in a dose-dependent manner. Mechanistically, intratracheal administration of DEP increased Tnf (TNFα), Ncf1 (p47PHOX), and Ncf2 (p67PHOX) mRNA expression in only Trem2+/+ mice, where Il1b (IL-1β) expression was elevated in only Trem2−/− mice, emphasizing an important role for TREM2 in DEP-induced neuroinflammation. Conclusions Collectively, these findings reveal a novel role for TREM2 in how air pollution regulates neuroinflammation and provides much needed insight into the potential mechanisms linking urban air pollution to AD. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-020-02017-7.
Collapse
Affiliation(s)
- Hendrik J Greve
- Department of Pharmacology and Toxicology, The Stark Neurosciences Research Institute, Indiana University School of Medicine, 320 West 15th Street, NB 214D, Indianapolis, IN, 46202, USA
| | - Christen L Mumaw
- Department of Pharmacology and Toxicology, The Stark Neurosciences Research Institute, Indiana University School of Medicine, 320 West 15th Street, NB 214D, Indianapolis, IN, 46202, USA
| | - Evan J Messenger
- Department of Pharmacology and Toxicology, The Stark Neurosciences Research Institute, Indiana University School of Medicine, 320 West 15th Street, NB 214D, Indianapolis, IN, 46202, USA
| | - Prasada R S Kodavanti
- Neurological and Endocrine Toxicology Branch, Public Health and Integrated Toxicology Division, Center for Public Health and Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Joyce L Royland
- Integrated Systems Toxicology Division, National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Urmila P Kodavanti
- Cardiopulmonary and Immunotoxicology Branch, Public Health and Integrated Toxicology Division, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Michelle L Block
- Department of Pharmacology and Toxicology, The Stark Neurosciences Research Institute, Indiana University School of Medicine, 320 West 15th Street, NB 214D, Indianapolis, IN, 46202, USA.
| |
Collapse
|
69
|
Andrade-Oliva MDLA, Escamilla-Sánchez J, Debray-García Y, Morales-Rubio RA, González-Pantoja R, Uribe-Ramírez M, Amador-Muñoz O, Díaz-Godoy RV, De Vizcaya-Ruiz A, Arias-Montaño JA. In vitro exposure to ambient fine and ultrafine particles alters dopamine uptake and release, and D 2 receptor affinity and signaling. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2020; 80:103484. [PMID: 32942001 DOI: 10.1016/j.etap.2020.103484] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 08/20/2020] [Accepted: 08/25/2020] [Indexed: 06/11/2023]
Abstract
The exposure to environmental pollutants, such as fine and ultrafine particles (FP and UFP), has been associated with increased risk for Parkinson's disease, depression and schizophrenia, disorders related to altered dopaminergic transmission. The striatum, a neuronal nucleus with extensive dopaminergic afferents, is a target site for particle toxicity, which results in oxidative stress, inflammation, astrocyte activation and modifications in dopamine content and D2 receptor (D2R) density. In this study we assessed the in vitro effect of the exposure to FP and UFP on dopaminergic transmission, by evaluating [3H]-dopamine uptake and release by rat striatal isolated nerve terminals (synaptosomes), as well as modifications in the affinity and signaling of native and cloned D2Rs. FP and UFP collected from the air of Mexico City inhibited [3H]-dopamine uptake and increased depolarization-evoked [3H]-dopamine release in striatal synaptosomes. FP and UFP also enhanced D2R affinity for dopamine in membranes from either rat striatum or CHO-K1 cells transfected with the long isoform of the human D2R (hD2LR)2LR). In CHO-K1-hD2L In CHO-K1-hD2LR cells or striatal slices, FP and UFP increased the potency of dopamine or the D2R agonist quinpirole, respectively, to inhibit forskolin-induced cAMP formation. The effects were concentration-dependent, with UFP being more potent than FP. These results indicate that FP and UFP directly affect dopaminergic transmission.
Collapse
Affiliation(s)
- María-de-Los-Angeles Andrade-Oliva
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados (Cinvestav) del IPN, Av. IPN 2508, Zacatenco, 07360, Ciudad de México, Mexico
| | - Juan Escamilla-Sánchez
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados (Cinvestav) del IPN, Av. IPN 2508, Zacatenco, 07360, Ciudad de México, Mexico
| | - Yazmín Debray-García
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados (Cinvestav) del IPN, Av. IPN 2508, Zacatenco, 07360, Ciudad de México, Mexico; Departamento de Investigación en Inmunología y Medicina Ambiental, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Calzada de Tlalpan 4502, 14080, Ciudad de México, Mexico
| | - Russell A Morales-Rubio
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados (Cinvestav) del IPN, Av. IPN 2508, Zacatenco, 07360, Ciudad de México, Mexico
| | - Raúl González-Pantoja
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados (Cinvestav) del IPN, Av. IPN 2508, Zacatenco, 07360, Ciudad de México, Mexico
| | - Marisela Uribe-Ramírez
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados (Cinvestav) del IPN, Av. IPN 2508, Zacatenco, 07360, Ciudad de México, Mexico
| | - Omar Amador-Muñoz
- Centro de Ciencias de la Atmósfera, Universidad Nacional Autónoma de México, Investigación Científica s/n, Ciudad Universitaria, Coyoacán, 04510, Ciudad de México, Mexico
| | - Raúl V Díaz-Godoy
- Instituto Nacional de Investigaciones Nucleares, Carretera México Toluca s/n, La Marquesa, 52750, Ocoyoacac, Estado de México, Mexico
| | - Andrea De Vizcaya-Ruiz
- Departamento de Toxicología, Centro de Investigación y de Estudios Avanzados (Cinvestav) del IPN, Av. IPN 2508, Zacatenco, 07360, Ciudad de México, Mexico
| | - José-Antonio Arias-Montaño
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados (Cinvestav) del IPN, Av. IPN 2508, Zacatenco, 07360, Ciudad de México, Mexico.
| |
Collapse
|
70
|
Cserbik D, Chen JC, McConnell R, Berhane K, Sowell ER, Schwartz J, Hackman DA, Kan E, Fan CC, Herting MM. Fine particulate matter exposure during childhood relates to hemispheric-specific differences in brain structure. ENVIRONMENT INTERNATIONAL 2020; 143:105933. [PMID: 32659528 PMCID: PMC7708513 DOI: 10.1016/j.envint.2020.105933] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 06/23/2020] [Accepted: 06/26/2020] [Indexed: 05/21/2023]
Abstract
BACKGROUND Emerging findings have increased concern that exposure to fine particulate matter air pollution (aerodynamic diameter ≤ 2.5 μm; PM2.5) may be neurotoxic, even at lower levels of exposure. Yet, additional studies are needed to determine if exposure to current PM2.5 levels may be linked to hemispheric and regional patterns of brain development in children across the United States. OBJECTIVES We examined the cross-sectional associations between geocoded measures of concurrent annual average outdoor PM2.5 exposure, regional- and hemisphere-specific differences in brain morphometry and cognition in 10,343 9- and 10- year-old children. METHODS High-resolution structural T1-weighted brain magnetic resonance imaging (MRI) and NIH Toolbox measures of cognition were collected from children at ages 9-10 years. FreeSurfer was used to quantify cortical surface area, cortical thickness, as well as subcortical and cerebellum volumes in each hemisphere. PM2.5 concentrations were estimated using an ensemble-based model approach and assigned to each child's primary residential address collected at the study visit. We used mixed-effects models to examine regional- and hemispheric- effects of PM2.5 exposure on brain estimates and cognition after considering nesting of participants by familial relationships and study site, adjustment for socio-demographic factors and multiple comparisons. RESULTS Annual residential PM2.5 exposure (7.63 ± 1.57 µg/m3) was associated with hemispheric specific differences in gray matter across cortical regions of the frontal, parietal, temporal and occipital lobes as well as subcortical and cerebellum brain regions. There were hemispheric-specific associations between PM2.5 exposures and cortical surface area in 9/31 regions; cortical thickness in 22/27 regions; and volumes of the thalamus, pallidum, and nucleus accumbens. We found neither significant associations between PM2.5 and task performance on individual measures of neurocognition nor evidence that sex moderated the observed associations. DISCUSSION Even at relatively low-levels, current PM2.5 exposure across the U.S. may be an important environmental factor influencing patterns of structural brain development in childhood. Prospective follow-up of this cohort will help determine how current levels of PM2.5 exposure may affect brain development and subsequent risk for cognitive and emotional problems across adolescence.
Collapse
Affiliation(s)
- Dora Cserbik
- Department of Preventive Medicine, Keck School of Medicine of University of Southern California, Los Angeles, CA 90063, USA
| | - Jiu-Chiuan Chen
- Department of Preventive Medicine, Keck School of Medicine of University of Southern California, Los Angeles, CA 90063, USA; Department of Neurology, Keck School of Medicine of University of Southern California, Los Angeles, CA 90063, USA
| | - Rob McConnell
- Department of Preventive Medicine, Keck School of Medicine of University of Southern California, Los Angeles, CA 90063, USA
| | - Kiros Berhane
- Department of Biostatistics, Mailman School of Public Health, Columbia University, New York, NY 10032, USA
| | - Elizabeth R Sowell
- Department of Pediatrics, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA; Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
| | - Joel Schwartz
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Daniel A Hackman
- USC Suzanne Dworak-Peck School of Social Work, University of Southern California, Los Angeles, CA 90089, USA
| | - Eric Kan
- Children's Hospital Los Angeles, Los Angeles, CA 90027, USA
| | - Chun C Fan
- Center for Human Development, University of California, San Diego, La Jolla, CA 92093, USA
| | - Megan M Herting
- Department of Preventive Medicine, Keck School of Medicine of University of Southern California, Los Angeles, CA 90063, USA; Children's Hospital Los Angeles, Los Angeles, CA 90027, USA.
| |
Collapse
|
71
|
Kim RE, Shin CY, Han SH, Kwon KJ. Astaxanthin Suppresses PM2.5-Induced Neuroinflammation by Regulating Akt Phosphorylation in BV-2 Microglial Cells. Int J Mol Sci 2020; 21:ijms21197227. [PMID: 33008094 PMCID: PMC7582569 DOI: 10.3390/ijms21197227] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 12/11/2022] Open
Abstract
Air pollution has become one of the most serious issues for human health and has been shown to be particularly concerning for neural and cognitive health. Recent studies suggest that fine particulate matter of less than 2.5 (PM2.5), common in air pollution, can reach the brain, potentially resulting in the development and acceleration of various neurological disorders including Alzheimer’s disease, Parkinson’s disease, and other forms of dementia, but the underlying pathological mechanisms are not clear. Astaxanthin is a red-colored phytonutrient carotenoid that has been known for anti-inflammatory and neuroprotective effects. In this study, we demonstrated that exposure to PM2.5 increases the neuroinflammation, the expression of proinflammatory M1, and disease-associated microglia (DAM) signature markers in microglial cells, and that treatment with astaxanthin can prevent the neurotoxic effects of this exposure through anti-inflammatory properties. Diesel particulate matter (Sigma-Aldrich) was used as a fine particulate matter 2.5 in the present study. Cultured rat glial cells and BV-2 microglial cells were treated with various concentrations of PM2.5, and then the expression of various inflammatory mediators and signaling pathways were measured using qRT-PCR and Western blot. Astaxanthin was then added and assayed as above to evaluate its effects on microglial changes, inflammation, and toxicity induced by PM2.5. PM2.5 increased the production of nitric oxide and reactive oxygen species and upregulated the transcription of various proinflammatory markers including Interleukin-1β (IL-1β), Interleukin-6 (IL-6), Tumor necrosis factor α (TNFα), inducible nitric oxide synthase (iNOS), triggering receptor expressed on myeloid cells 2 (TREM2), Toll-like receptor 2/4 (TLR2/4), and cyclooxygenase-2 (COX-2) in BV-2 microglial cells. However, the mRNA expression of IL-10 and arginase-1 decreased following PM2.5 treatment. PM2.5 treatment increased c-Jun N-terminal kinases (JNK) phosphorylation and decreased Akt phosphorylation. Astaxanthin attenuated these PM2.5-induced responses, reducing transcription of the proinflammatory markers iNOS and heme oxygenase-1 (HO-1), which prevented neuronal cell death. Our results indicate that PM2.5 exposure reformulates microglia via proinflammatory M1 and DAM phenotype, leading to neurotoxicity, and the fact that astaxanthin treatment can prevent neurotoxicity by inhibiting transition to the proinflammatory M1 and DAM phenotypes. These results demonstrate that PM2.5 exposure can induce brain damage through the change of proinflammatory M1 and DAM signatures in the microglial cells, as well as the fact that astaxanthin can have a potential beneficial effect on PM2.5 exposure of the brain.
Collapse
Affiliation(s)
- Ryeong-Eun Kim
- Department of Neuroscience, School of Medicine, Konkuk University, Seoul 05029, Korea; (R.-E.K.); (S.-H.H.)
| | - Chan Young Shin
- Department of Pharmacology, School of Medicine, Konkuk University, Seoul 05029, Korea;
| | - Seol-Heui Han
- Department of Neuroscience, School of Medicine, Konkuk University, Seoul 05029, Korea; (R.-E.K.); (S.-H.H.)
- Department of Neurology, Konkuk Hospital Medical Center, 120-1 Neungdong-ro, Gwangjin-Gu, Seoul 05030, Korea
| | - Kyoung Ja Kwon
- Department of Neuroscience, School of Medicine, Konkuk University, Seoul 05029, Korea; (R.-E.K.); (S.-H.H.)
- Department of Neurology, Konkuk Hospital Medical Center, 120-1 Neungdong-ro, Gwangjin-Gu, Seoul 05030, Korea
- Correspondence: ; Tel.: +82-2-454-5630; Fax: +82-2030-7899
| |
Collapse
|
72
|
Tsai SS, Chiu YW, Weng YH, Yang CY. Association between ozone air pollution levels and hospitalizations for depression in Taipei: a time-stratified case-crossover study. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2020; 83:596-603. [PMID: 32757744 DOI: 10.1080/15287394.2020.1801544] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Epidemiologic studies reported an association between exposure to ambient air pollutants and increased mortality rate attributed to suicide and suicide attempts. The investigation sought to determine whether there is an association between short-term ambient ozone (O3) level exposure and daily hospital admissions for depression in Taipei from 2009 to 2013 using a time-stratified case-crossover design. In our single-pollutant model (with no adjustment for other pollutants), the % increase in daily hospital admissions for depression was 12% on warm days and 30% on cool days, per interquartile range (IQR) rise in O3 levels, respectively. Ozone levels were significantly correlated with daily number of depression admissions both on warm and cool days. In our two-pollutant models, O3 levels remained significant after adjusting for other air pollutants, including particulate matter (PM10, PM2.5), sulfur dioxide (SO2), nitrogen dioxide (NO2), and carbon monoxide (CO) both on warm and cool days. Although O3 levels tended to be higher on warm days, admissions for depression were higher on cool days, suggesting that the relationship between O3 concentrations and depression may be affected by temperature. Further study is needed to better understand these findings.
Collapse
Affiliation(s)
- Shang-Shyue Tsai
- Department of Healthcare Administration, I-Shou University , Kaohsiung, Taiwan
| | - Ya-Wen Chiu
- Global Health and Development, College of Public Health, Taipei Medical University , Taipei, Taiwan
| | - Yi-Hao Weng
- Division of Neonatology, Department of Pediatrics, Chang Gung Memorial Hospital, Chang Gung University College of Medicine , Taipei, Taiwan
| | - Chun-Yuh Yang
- Department of Public Health, College of Health Sciences, Kaohsiung Medical University , Kaohsiung, Taiwan
- National Institute of Environmental Health Sciences, National Health Research Institute , Miaoli, Taiwan
| |
Collapse
|
73
|
Zhang P, Zhou X. Health and economic impacts of particulate matter pollution on hospital admissions for mental disorders in Chengdu, Southwestern China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 733:139114. [PMID: 32447079 DOI: 10.1016/j.scitotenv.2020.139114] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 04/11/2020] [Accepted: 04/27/2020] [Indexed: 04/14/2023]
Abstract
The evidence for adverse effects of ambient particulate matter (PM) pollution on mental disorders (MDs) is limited, especially in developing countries. This study aimed to quantify both PM related health impacts and corresponding economic loses for overall and specific MDs in southwestern China. Data regarding 134,292 hospital admissions for MDs were collected from local Compulsory Medical Insurance Database in 2013-2017. A generalized additive model (GAM) was applied to estimate the exposure-response effects of PM pollution on hospital admissions for MDs. And the cost of illness method (COI) was adopted to further assess corresponding hospitalization costs and productivity loses. It was showed that PM pollution was significantly related to hospital admissions for overall and specific MDs. Each 10 μg/m3 increase in concentrations of PM10 (particles with an aerodynamic diameters ≤10 μm), PM2.5 (≤ 2.5 μm) and PMc (2.5 μm < c < 10 μm) at the cumulative lag03 day would be responsible for 3.25% (95%CI: 2.34-4.16%), 6.38% (95%CI: 4.79-7.97%), and 3.81% (95%CI: 2.13-5.50%) increments in daily hospital admissions for MDs, respectively. Stronger associations were observed in males, cool season and people over 45 years. During the study period, PM pollution brought 1453.18 million Yuan economic losses for overall MDs, accounting for 0.026% of local GDP. This study suggested that short-term exposure to PM pollution, especially to PM2.5, was associated with increased hospital admissions for MDs in southwestern China. In addition, potential benefits of lowering PM concentrations are considerable.
Collapse
Affiliation(s)
- Pei Zhang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xiaoyuan Zhou
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
74
|
Chen X, Guo J, Huang Y, Liu S, Huang Y, Zhang Z, Zhang F, Lu Z, Li F, Zheng JC, Ding W. Urban airborne PM 2.5-activated microglia mediate neurotoxicity through glutaminase-containing extracellular vesicles in olfactory bulb. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 264:114716. [PMID: 32559876 PMCID: PMC7364855 DOI: 10.1016/j.envpol.2020.114716] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/30/2020] [Accepted: 04/30/2020] [Indexed: 05/23/2023]
Abstract
Emerging evidence has showed that exposure to airborne particulate matter (PM) with an aerodynamic diameter less than 2.5 μm (PM2.5) is associated with neurodegeneration. Our previous studies in vitro found that PM2.5 exposure causes primary neurons damage through activating microglia. However, the molecular mechanism of microglia-mediated neurotoxicity remains to elucidate. In this study, five groups (N = 13 or 10) of six-week-old male C57BL/6 mice were daily exposed to PM2.5 (0.1 or 1 mg/kg/day body weight), Chelex-treated PM2.5 (1 mg/kg/day body weight), PM2.5 (1 mg/kg/day body weight) plus CB-839 (glutaminase inhibitor), or deionized water by intranasal instillation for 28 days, respectively. Compared with the control groups, We found that PM2.5 triggered reactive oxygen species (ROS) generation and microglia activation evidenced by significant increase of ionized calcium binding adaptor molecule-1 (IBa-1) staining in the mouse olfactory bulbs (OB). Data from transmission electron microscope (TEM) images and Western blot analysis showed that PM2.5 significantly increased extracellular vesicles (EVs) release from OB or murine microglial line BV2 cells, and glutaminase C (GAC) expression and glutamate generation in isolated OB and BV2 cells. However, treatment with N-acetylcysteine (NAC) or CB-839 significantly diminished the number of EVs and the expression of GAC and abolished PM2.5-induced neurotoxicity. These findings provide new insights that PM2.5 induces oxidative stress and microglia activation through its metal contents and glutaminase-containing EVs in OBs, which may serve as a potential pathway/mechanism of excessive glutamate generation in PM2.5-induced neurotoxicity.
Collapse
Affiliation(s)
- Xiaoyu Chen
- Laboratory of Environment and Health, College of Life Sciences, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Jing Guo
- Laboratory of Environment and Health, College of Life Sciences, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Yunlong Huang
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, China; Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, United States
| | - Shan Liu
- Laboratory of Environment and Health, College of Life Sciences, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Ying Huang
- Laboratory of Environment and Health, College of Life Sciences, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Zezhong Zhang
- Laboratory of Environment and Health, College of Life Sciences, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Fang Zhang
- Laboratory of Environment and Health, College of Life Sciences, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Zhongbing Lu
- Laboratory of Environment and Health, College of Life Sciences, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Fang Li
- Laboratory of Environment and Health, College of Life Sciences, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Jialin C Zheng
- Center for Translational Neurodegeneration and Regenerative Therapy, Shanghai Tenth People's Hospital Affiliated to Tongji University School of Medicine, Shanghai, China; Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198, United States
| | - Wenjun Ding
- Laboratory of Environment and Health, College of Life Sciences, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China.
| |
Collapse
|
75
|
Shi JQ, Wang BR, Jiang T, Gao L, Zhang YD, Xu J. NLRP3 Inflammasome: A Potential Therapeutic Target in Fine Particulate Matter-Induced Neuroinflammation in Alzheimer's Disease. J Alzheimers Dis 2020; 77:923-934. [PMID: 32804134 DOI: 10.3233/jad-200359] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
As one of the most harmful air pollutants, fine particulate matter (PM2.5) has been implicated as a risk factor for multiple diseases, which has generated widespread public concern. Accordingly, a growing literature links PM2.5 exposure with Alzheimer's disease (AD). A critical gap in our understanding of the adverse effects of PM2.5 on AD is the mechanism triggered by PM2.5 that contributes to disease progression. Recent evidence has demonstrated that PM2.5 can activate NLRP3 inflammasome-mediated neuroinflammation. In this review, we highlight the novel evidence between PM2.5 exposure and AD incidence, which is collected and summarized from neuropathological, epidemiological, and neuroimaging studies to in-depth deciphering molecular mechanisms. First, neuropathological, epidemiological, and neuroimaging studies will be summarized. Then, the transport pathway for central nervous system delivery of PM2.5 will be presented. Finally, the role of NLRP3 inflammasome-mediated neuroinflammation in PM2.5 induced-effects on AD will be recapitulated.
Collapse
Affiliation(s)
- Jian-Quan Shi
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, People's Republic of China
| | - Bian-Rong Wang
- Department of Neurology, Geriatric Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, People's Republic of China
| | - Teng Jiang
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, People's Republic of China
| | - Li Gao
- Department of Neurology, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, People's Republic of China
| | - Ying-Dong Zhang
- Department of Neurology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu Province, People's Republic of China
| | - Jun Xu
- Department of Cognitive Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, People's Republic of China
| |
Collapse
|
76
|
Hou L, Zhang L, Hong JS, Zhang D, Zhao J, Wang Q. Nicotinamide Adenine Dinucleotide Phosphate Oxidase and Neurodegenerative Diseases: Mechanisms and Therapy. Antioxid Redox Signal 2020; 33:374-393. [PMID: 31968994 DOI: 10.1089/ars.2019.8014] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Significance: The growing incidence of neurodegenerative diseases significantly impacts the individuals who suffer from these disorders and is a major health concern globally. Although the specific mechanisms of neurodegenerative diseases are still far from being acknowledged, it is becoming clear that oxidative stress and neuroinflammation are critical contributing factors to the progression of neurodegeneration. Thus, it is conceivable that the inhibition of oxidative stress and neuroinflammation may represent promising therapeutic targets for the treatment of neurodegenerative diseases. Recent Advances: Recently, the strategy for neurodegenerative disease therapy has shifted from the use of antioxidants and conventional anti-inflammatory targets to upstream mediators due to the failure of most antioxidants and nonsteroidal anti-inflammatory drugs in clinical trials. Nicotinamide adenine dinucleotide phosphate oxidases (NOXs), a family of superoxide-producing enzyme complexes, have been identified as an upstream factor that controls both oxidative stress and neuroinflammation. Genetic inactivation or pharmacological inhibition of NOX enzymes displays potent neuroprotective effects in a broad spectrum of neurodegenerative disease models. Critical Issues: The detailed mechanisms of how NOX enzymes regulate oxidative stress and neuroinflammation still remain unclear. Moreover, the currently available inhibitors of NOX enzymes exhibit nonspecificity, off-target effects, unsuitable pharmacokinetic properties, and even high toxicity, markedly limiting their potential clinical applications. Future Directions: This review provides novel insights into the roles of NOXs in neurodegenerative pharmacology, and indicates the types of NOX enzyme inhibitors that should be identified and developed as candidates for future applications, which might reveal novel neurodegenerative disease therapies based on NOXs.
Collapse
Affiliation(s)
- Liyan Hou
- Institute of Toxicology, School of Public Health, Dalian Medical University, Dalian, China.,National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, China
| | - Lin Zhang
- Academy of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Jau-Shyong Hong
- Neuropharmacology Section, Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina
| | - Dan Zhang
- State Key Laboratory of Natural Products and Functions, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jie Zhao
- National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, China
| | - Qingshan Wang
- Institute of Toxicology, School of Public Health, Dalian Medical University, Dalian, China.,National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, China
| |
Collapse
|
77
|
Gu X, Guo T, Si Y, Wang J, Zhang W, Deng F, Chen L, Wei C, Lin S, Guo X, Wu S. Association Between Ambient Air Pollution and Daily Hospital Admissions for Depression in 75 Chinese Cities. Am J Psychiatry 2020; 177:735-743. [PMID: 32312109 DOI: 10.1176/appi.ajp.2020.19070748] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
OBJECTIVE Although the association between ambient air pollution and risk of depression has been investigated in several epidemiological studies, the evidence is still lacking for hospital admissions for depression, which indicates a more severe form of depressive episode. The authors used national morbidity data to investigate the association between short-term exposure to ambient air pollution and daily hospital admissions for depression. METHODS Using data from the Chinese national medical insurance databases for urban populations, the authors conducted a two-stage time-series analysis to investigate the associations of short-term exposure to major ambient air pollutants-fine particles (PM2.5), inhalable particles (PM10), nitrogen dioxide (NO2), sulfur dioxide (SO2), ozone (O3), and carbon monoxide (CO)-and daily hospital admission risk for depression in 75 Chinese cities during the period 2013-2017. RESULTS The authors identified 111,620 hospital admissions for depression in 75 cities. In the single-pollutant models, the effect estimates of all included air pollutants, with the exception of O3, were significant at several lags within 7 days. For example, 10 μg/m3 increases in PM2.5, PM10, and NO2 at lag01 were associated with increases of 0.52% (95% CI=0.03, 1.01), 0.41% (95% CI=0.05, 0.78), and 1.78% (95% CI=0.73, 2.83), respectively, in daily hospital admissions for depression. Subgroup, sensitivity, and two-pollutant model analyses highlighted the robustness of the effect estimates for NO2. CONCLUSIONS The study results suggest that short-term exposure to ambient air pollution is associated with an increased risk of daily hospital admission for depression in the general urban population in China, which may have important implications for improving mental wellness among the public.
Collapse
Affiliation(s)
- Xuelin Gu
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing (Gu, T. Guo, Deng, X. Guo, Wu); Beijing HealthCom Data Technology Co., Beijing (Si, Wang, Chen, Wei); Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing (Si); Department of Environmental Health Sciences, University at Albany, State University of New York, Rensselaer (Zhang, Lin); and Key Laboratory of Molecular Cardiovascular Sciences (Peking University), Ministry of Education, Beijing (Wu)
| | - Tongjun Guo
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing (Gu, T. Guo, Deng, X. Guo, Wu); Beijing HealthCom Data Technology Co., Beijing (Si, Wang, Chen, Wei); Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing (Si); Department of Environmental Health Sciences, University at Albany, State University of New York, Rensselaer (Zhang, Lin); and Key Laboratory of Molecular Cardiovascular Sciences (Peking University), Ministry of Education, Beijing (Wu)
| | - Yaqin Si
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing (Gu, T. Guo, Deng, X. Guo, Wu); Beijing HealthCom Data Technology Co., Beijing (Si, Wang, Chen, Wei); Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing (Si); Department of Environmental Health Sciences, University at Albany, State University of New York, Rensselaer (Zhang, Lin); and Key Laboratory of Molecular Cardiovascular Sciences (Peking University), Ministry of Education, Beijing (Wu)
| | - Jinxi Wang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing (Gu, T. Guo, Deng, X. Guo, Wu); Beijing HealthCom Data Technology Co., Beijing (Si, Wang, Chen, Wei); Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing (Si); Department of Environmental Health Sciences, University at Albany, State University of New York, Rensselaer (Zhang, Lin); and Key Laboratory of Molecular Cardiovascular Sciences (Peking University), Ministry of Education, Beijing (Wu)
| | - Wangjian Zhang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing (Gu, T. Guo, Deng, X. Guo, Wu); Beijing HealthCom Data Technology Co., Beijing (Si, Wang, Chen, Wei); Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing (Si); Department of Environmental Health Sciences, University at Albany, State University of New York, Rensselaer (Zhang, Lin); and Key Laboratory of Molecular Cardiovascular Sciences (Peking University), Ministry of Education, Beijing (Wu)
| | - Furong Deng
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing (Gu, T. Guo, Deng, X. Guo, Wu); Beijing HealthCom Data Technology Co., Beijing (Si, Wang, Chen, Wei); Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing (Si); Department of Environmental Health Sciences, University at Albany, State University of New York, Rensselaer (Zhang, Lin); and Key Laboratory of Molecular Cardiovascular Sciences (Peking University), Ministry of Education, Beijing (Wu)
| | - Libo Chen
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing (Gu, T. Guo, Deng, X. Guo, Wu); Beijing HealthCom Data Technology Co., Beijing (Si, Wang, Chen, Wei); Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing (Si); Department of Environmental Health Sciences, University at Albany, State University of New York, Rensselaer (Zhang, Lin); and Key Laboratory of Molecular Cardiovascular Sciences (Peking University), Ministry of Education, Beijing (Wu)
| | - Chen Wei
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing (Gu, T. Guo, Deng, X. Guo, Wu); Beijing HealthCom Data Technology Co., Beijing (Si, Wang, Chen, Wei); Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing (Si); Department of Environmental Health Sciences, University at Albany, State University of New York, Rensselaer (Zhang, Lin); and Key Laboratory of Molecular Cardiovascular Sciences (Peking University), Ministry of Education, Beijing (Wu)
| | - Shao Lin
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing (Gu, T. Guo, Deng, X. Guo, Wu); Beijing HealthCom Data Technology Co., Beijing (Si, Wang, Chen, Wei); Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing (Si); Department of Environmental Health Sciences, University at Albany, State University of New York, Rensselaer (Zhang, Lin); and Key Laboratory of Molecular Cardiovascular Sciences (Peking University), Ministry of Education, Beijing (Wu)
| | - Xinbiao Guo
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing (Gu, T. Guo, Deng, X. Guo, Wu); Beijing HealthCom Data Technology Co., Beijing (Si, Wang, Chen, Wei); Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing (Si); Department of Environmental Health Sciences, University at Albany, State University of New York, Rensselaer (Zhang, Lin); and Key Laboratory of Molecular Cardiovascular Sciences (Peking University), Ministry of Education, Beijing (Wu)
| | - Shaowei Wu
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing (Gu, T. Guo, Deng, X. Guo, Wu); Beijing HealthCom Data Technology Co., Beijing (Si, Wang, Chen, Wei); Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing (Si); Department of Environmental Health Sciences, University at Albany, State University of New York, Rensselaer (Zhang, Lin); and Key Laboratory of Molecular Cardiovascular Sciences (Peking University), Ministry of Education, Beijing (Wu)
| |
Collapse
|
78
|
Milton LA, White AR. The potential impact of bushfire smoke on brain health. Neurochem Int 2020; 139:104796. [PMID: 32650032 DOI: 10.1016/j.neuint.2020.104796] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/20/2020] [Accepted: 06/22/2020] [Indexed: 11/26/2022]
Abstract
Smoke from bushfires (also known as wildfires or forest fires) has blanketed large regions of Australia during the southern hemisphere summer of 2019/2020, potentially endangering residents who breathe the polluted air. While such air pollution is known to cause respiratory irritation and damage, its effect on the brain is not well described. In this review, we aim to outline the potentially damaging effects of bushfire smoke on brain health. We also describe the composition of air pollution, including ambient particulate matter (PM) and bushfire PM, before covering the general health effects of each. The investigated entry routes for ambient PM and postulated entry routes for bushfire PM are discussed, along with epidemiological and experimental evidence of the effect of both PMs in the brain. It appears that bushfire PM may be more toxic than ambient PM, and that it may enter the brain through extrapulmonary or olfactory routes to cause inflammation and oxidative stress. Ultimately, this review highlights the desperate requirement of greater research into the effects of bushfire PM on brain health.
Collapse
Affiliation(s)
- Laura A Milton
- Mental Health Program, Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Herston, Queensland, 4006, Australia
| | - Anthony R White
- Mental Health Program, Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Herston, Queensland, 4006, Australia.
| |
Collapse
|
79
|
Hahad O, Lelieveld J, Birklein F, Lieb K, Daiber A, Münzel T. Ambient Air Pollution Increases the Risk of Cerebrovascular and Neuropsychiatric Disorders through Induction of Inflammation and Oxidative Stress. Int J Mol Sci 2020; 21:ijms21124306. [PMID: 32560306 PMCID: PMC7352229 DOI: 10.3390/ijms21124306] [Citation(s) in RCA: 227] [Impact Index Per Article: 45.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/09/2020] [Accepted: 06/10/2020] [Indexed: 02/07/2023] Open
Abstract
Exposure to ambient air pollution is a well-established determinant of health and disease. The Lancet Commission on pollution and health concludes that air pollution is the leading environmental cause of global disease and premature death. Indeed, there is a growing body of evidence that links air pollution not only to adverse cardiorespiratory effects but also to increased risk of cerebrovascular and neuropsychiatric disorders. Despite being a relatively new area of investigation, overall, there is mounting recent evidence showing that exposure to multiple air pollutants, in particular to fine particles, may affect the central nervous system (CNS) and brain health, thereby contributing to increased risk of stroke, dementia, Parkinson's disease, cognitive dysfunction, neurodevelopmental disorders, depression and other related conditions. The underlying molecular mechanisms of susceptibility and disease remain largely elusive. However, emerging evidence suggests inflammation and oxidative stress to be crucial factors in the pathogenesis of air pollution-induced disorders, driven by the enhanced production of proinflammatory mediators and reactive oxygen species in response to exposure to various air pollutants. From a public health perspective, mitigation measures are urgent to reduce the burden of disease and premature mortality from ambient air pollution.
Collapse
Affiliation(s)
- Omar Hahad
- Center for Cardiology–Cardiology I, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany;
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, 55131 Mainz, Germany
| | - Jos Lelieveld
- Atmospheric Chemistry Department, Max Planck Institute for Chemistry, 55128 Mainz, Germany;
- Climate and Atmosphere Research Center, The Cyprus Institute, Nicosia 1645, Cyprus
| | - Frank Birklein
- Department of Neurology, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany;
| | - Klaus Lieb
- Department of Psychiatry and Psychotherapy, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany;
- Leibniz Institute for Resilience Research, 55122 Mainz, Germany
| | - Andreas Daiber
- Center for Cardiology–Cardiology I, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany;
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, 55131 Mainz, Germany
- Correspondence: (A.D.); (T.M.); Tel.: +49-(0)6131-176280 (A.D.); +49-(0)6131-177251 (T.M.)
| | - Thomas Münzel
- Center for Cardiology–Cardiology I, University Medical Center of the Johannes Gutenberg-University Mainz, 55131 Mainz, Germany;
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine-Main, 55131 Mainz, Germany
- Correspondence: (A.D.); (T.M.); Tel.: +49-(0)6131-176280 (A.D.); +49-(0)6131-177251 (T.M.)
| |
Collapse
|
80
|
Gómez-Budia M, Konttinen H, Saveleva L, Korhonen P, Jalava PI, Kanninen KM, Malm T. Glial smog: Interplay between air pollution and astrocyte-microglia interactions. Neurochem Int 2020; 136:104715. [DOI: 10.1016/j.neuint.2020.104715] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/05/2020] [Accepted: 03/06/2020] [Indexed: 12/15/2022]
|
81
|
Costa LG, Cole TB, Dao K, Chang YC, Coburn J, Garrick JM. Effects of air pollution on the nervous system and its possible role in neurodevelopmental and neurodegenerative disorders. Pharmacol Ther 2020; 210:107523. [PMID: 32165138 PMCID: PMC7245732 DOI: 10.1016/j.pharmthera.2020.107523] [Citation(s) in RCA: 244] [Impact Index Per Article: 48.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 02/25/2020] [Indexed: 02/06/2023]
Abstract
Recent extensive evidence indicates that air pollution, in addition to causing respiratory and cardiovascular diseases, may also negatively affect the brain and contribute to central nervous system diseases. Air pollution is comprised of ambient particulate matter (PM) of different sizes, gases, organic compounds, and metals. An important contributor to PM is represented by traffic-related air pollution, mostly ascribed to diesel exhaust (DE). Epidemiological and animal studies have shown that exposure to air pollution may be associated with multiple adverse effects on the central nervous system. In addition to a variety of behavioral abnormalities, the most prominent effects caused by air pollution are oxidative stress and neuro-inflammation, which are seen in both humans and animals, and are supported by in vitro studies. Among factors which can affect neurotoxic outcomes, age is considered most relevant. Human and animal studies suggest that air pollution may cause developmental neurotoxicity, and may contribute to the etiology of neurodevelopmental disorders, including autism spectrum disorder. In addition, air pollution exposure has been associated with increased expression of markers of neurodegenerative disease pathologies, such as alpha-synuclein or beta-amyloid, and may thus contribute to the etiopathogenesis of neurodegenerative diseases, particularly Alzheimer's disease and Parkinson's disease.
Collapse
Affiliation(s)
- Lucio G Costa
- Dept. of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA; Dept. of Medicine & Surgery, University of Parma, Italy.
| | - Toby B Cole
- Dept. of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA; Center on Human Development and Disability, University of Washington, Seattle, WA, USA
| | - Khoi Dao
- Dept. of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Yu-Chi Chang
- Dept. of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Jacki Coburn
- Dept. of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| | - Jacqueline M Garrick
- Dept. of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA, USA
| |
Collapse
|
82
|
Crous-Bou M, Gascon M, Gispert JD, Cirach M, Sánchez-Benavides G, Falcon C, Arenaza-Urquijo EM, Gotsens X, Fauria K, Sunyer J, Nieuwenhuijsen MJ, Luis Molinuevo J. Impact of urban environmental exposures on cognitive performance and brain structure of healthy individuals at risk for Alzheimer's dementia. ENVIRONMENT INTERNATIONAL 2020; 138:105546. [PMID: 32151419 DOI: 10.1016/j.envint.2020.105546] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 01/31/2020] [Accepted: 02/03/2020] [Indexed: 05/07/2023]
Abstract
BACKGROUND Air quality might contribute to incidence of dementia-related disorders, including Alzheimer's dementia (AD). The aim of our study is to evaluate the effect of urban environmental exposures (including exposure to air pollution, noise and green space) on cognitive performance and brain structure of cognitively unimpaired individuals at risk for AD. PARTICIPANTS AND METHODS The ALFA (ALzheimer and FAmilies) study is a prospective cohort of middle-age, cognitively unimpaired subjects, many of them offspring of AD patients. Cognitive performance was measured by the administration of episodic memory and executive function tests (N = 958). Structural brain imaging was performed in a subsample of participants to obtain morphological information of brain areas, specially focused on cortical thickness, known to be affected by AD (N = 228). Land Use Regression models were used to estimate residential exposure to air pollutants. The daily average noise level at the street nearest to each participant's residential address was obtained from noise maps. For each participant residential green exposure indicators, such as surrounding greenness or amount of green, were generated. General linear models were conducted to assess the association between environmental exposures, cognitive performance and brain structure in a cross-sectional analysis. RESULTS No significant associations were observed between urban environmental exposures and the cognitive composite (p > 0.1). Higher exposure to air pollutants, but not noise, was associated with lower cortical thickness in brain regions known to be affected by AD, especially NO2 (β = -16.4; p = 0.05) and PM10 (β = -5.34; p = 0.05). On the other hand, increasing greenness indicators was associated with greater thickness in these same areas (β = 0.08; p = 0.03). CONCLUSION In cognitively unimpaired adults with increased risk for AD, increased exposure to air pollution was suggested to be associated with greater global atrophy and reduced volume and thickness in specific brain areas known to be affected in AD, thus suggesting a potential link between environmental exposures and cerebral vulnerability to AD. Although more research in the field is needed, air pollution reduction is crucial for decreasing the burden of age-related disorders.
Collapse
Affiliation(s)
- Marta Crous-Bou
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain; CIBER Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain; IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA.
| | - Mireia Gascon
- Universitat Pompeu Fabra (UPF), Barcelona, Spain; ISGlobal, Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
| | - Juan Domingo Gispert
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain; IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Bioingeniería, Biomateriales y Nanomedicina, Madrid, Spain
| | - Marta Cirach
- Universitat Pompeu Fabra (UPF), Barcelona, Spain; ISGlobal, Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
| | - Gonzalo Sánchez-Benavides
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain; CIBER Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain; IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Carles Falcon
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain; IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain; CIBER Bioingeniería, Biomateriales y Nanomedicina, Madrid, Spain
| | - Eider M Arenaza-Urquijo
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain; CIBER Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain; IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Xavier Gotsens
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain
| | - Karine Fauria
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain; CIBER Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Jordi Sunyer
- Universitat Pompeu Fabra (UPF), Barcelona, Spain; ISGlobal, Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
| | - Mark J Nieuwenhuijsen
- Universitat Pompeu Fabra (UPF), Barcelona, Spain; ISGlobal, Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
| | - José Luis Molinuevo
- Barcelonaβeta Brain Research Center (BBRC), Pasqual Maragall Foundation, Barcelona, Spain; CIBER Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain; IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain.
| |
Collapse
|
83
|
Wang L, Gong X, Liu Y, Du T, Zhang Z, Zhang T, Wang X. CD200 maintains the region-specific phenotype of microglia in the midbrain and its role in Parkinson's disease. Glia 2020; 68:1874-1890. [PMID: 32112601 DOI: 10.1002/glia.23811] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 01/23/2020] [Accepted: 02/18/2020] [Indexed: 12/21/2022]
Abstract
Microglia are a specialized population of tissue macrophages in the mammalian brain. Microglial phenotype is tightly regulated by local environmental factors, although little is known about these factors and their region-preferred roles in regulating local neuroinflammatory responses. We hypothesized that microglia in different brain regions respond differently to neuroinflammatory stimulation and that CD200, an anti-inflammatory protein mainly originated from neurons, acts as a local cue inhibiting microglia activation in the midbrain. We utilized a CD200-deficient mouse line to analyze the phenotypic role of CD200 in the regulation of normal neuron-microglia homeostasis in the midbrain and in the dopaminergic degeneration in an α-synuclein overexpression model of PD. We found that systemic administration of an endotoxin lipopolysaccharide induced a region-preferred change in CD200 expression in the midbrain. Similarly, CD200-/- mice showed a regional preference in an enhancement of microglia activation and baseline inflammatory levels in the midbrain and dopamine neuron loss in the substantia nigra (SN). In a mouse model of Parkinson's disease (PD) induced by rAAV-hSYN injection into the SN, CD200-/- mice showed more dopamine neuron loss in the SN than wild type mice. Activation of CD200 receptors with a CD200 fusion protein alleviated the neuroinflammation and neuronal death in the SN of PD mice. These findings demonstrate that CD200 is essential for the midbrain homeostasis and acts as a critical local regulator in controlling microglial properties related to the PD pathogenesis.
Collapse
Affiliation(s)
- Le Wang
- Department of Neurobiology, Center of Parkinson Disease Beijing Institute for Brain Disorders, Beijing Key Laboratory on Parkinson Disease, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, China
| | - Xiaoli Gong
- Department of Physiology and Pathophysiology, Capital Medical University, Beijing, China
| | - Yang Liu
- Department of Neurobiology, Center of Parkinson Disease Beijing Institute for Brain Disorders, Beijing Key Laboratory on Parkinson Disease, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, China
| | - Tianshu Du
- Department of Neurobiology, Center of Parkinson Disease Beijing Institute for Brain Disorders, Beijing Key Laboratory on Parkinson Disease, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, China
| | - Zhen Zhang
- Department of Neurobiology, Center of Parkinson Disease Beijing Institute for Brain Disorders, Beijing Key Laboratory on Parkinson Disease, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, China
| | - Ting Zhang
- Department of Neurobiology, Center of Parkinson Disease Beijing Institute for Brain Disorders, Beijing Key Laboratory on Parkinson Disease, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, China
| | - Xiaomin Wang
- Department of Neurobiology, Center of Parkinson Disease Beijing Institute for Brain Disorders, Beijing Key Laboratory on Parkinson Disease, Key Laboratory for Neurodegenerative Disease of the Ministry of Education, Beijing Key Laboratory of Neural Regeneration and Repair, Capital Medical University, Beijing, China
| |
Collapse
|
84
|
Chua SYL, Khawaja AP, Morgan J, Strouthidis N, Reisman C, Dick AD, Khaw PT, Patel PJ, Foster PJ. The Relationship Between Ambient Atmospheric Fine Particulate Matter (PM2.5) and Glaucoma in a Large Community Cohort. Invest Ophthalmol Vis Sci 2020; 60:4915-4923. [PMID: 31764948 DOI: 10.1167/iovs.19-28346] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose Glaucoma is more common in urban populations than in others. Ninety percent of the world's population are exposed to air pollution above World Health Organization (WHO) recommended limits. Few studies have examined the association between air pollution and glaucoma. Methods Questionnaire data, ophthalmic measures, and ambient residential area air quality data for 111,370 UK Biobank participants were analyzed. Particulate matter with an aerodynamic diameter < 2.5 μm (PM2.5) was selected as the air quality exposure of interest. Eye measures included self-reported glaucoma, intraocular pressure (IOP), and average thickness of macular ganglion cell-inner plexiform layer (GCIPL) across nine Early Treatment Diabetic Retinopathy Study (ETDRS) retinal subfields as obtained from spectral-domain optical coherence tomography. We examined the associations of PM2.5 concentration with self-reported glaucoma, IOP, and GCIPL. Results Participants resident in areas with higher PM2.5 concentration were more likely to report a diagnosis of glaucoma (odds ratio = 1.06, 95% confidence interval [CI] = 1.01-1.12, per interquartile range [IQR] increase P = 0.02). Higher PM2.5 concentration was also associated with thinner GCIPL (β = -0.56 μm, 95% CI = -0.63 to -0.49, per IQR increase, P = 1.2 × 10-53). A dose-response relationship was observed between higher levels of PM2.5 and thinner GCIPL (P < 0.001). There was no clinically relevant relationship between PM2.5 concentration and IOP. Conclusions Greater exposure to PM2.5 is associated with both self-reported glaucoma and adverse structural characteristics of the disease. The absence of an association between PM2.5 and IOP suggests the relationship may occur through a non-pressure-dependent mechanism, possibly neurotoxic and/or vascular effects.
Collapse
Affiliation(s)
- Sharon Y L Chua
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital National Health Service Foundation Trust & UCL Institute of Ophthalmology, London, United Kingdom.,UCL Institute of Ophthalmology, University College London, London, United Kingdom
| | - Anthony P Khawaja
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital National Health Service Foundation Trust & UCL Institute of Ophthalmology, London, United Kingdom.,UCL Institute of Ophthalmology, University College London, London, United Kingdom
| | - James Morgan
- School of Optometry & Vision Sciences, Cardiff University, Cardiff, Wales, United Kingdom
| | - Nicholas Strouthidis
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital National Health Service Foundation Trust & UCL Institute of Ophthalmology, London, United Kingdom
| | - Charles Reisman
- Topcon Healthcare Solutions Research & Development, Oakland, New Jersey, United States
| | - Andrew D Dick
- UCL Institute of Ophthalmology, University College London, London, United Kingdom.,Bristol Medical School Translational Health Sciences, University of Bristol, Bristol, United Kingdom
| | - Peng T Khaw
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital National Health Service Foundation Trust & UCL Institute of Ophthalmology, London, United Kingdom.,UCL Institute of Ophthalmology, University College London, London, United Kingdom
| | - Praveen J Patel
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital National Health Service Foundation Trust & UCL Institute of Ophthalmology, London, United Kingdom
| | - Paul J Foster
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital National Health Service Foundation Trust & UCL Institute of Ophthalmology, London, United Kingdom.,UCL Institute of Ophthalmology, University College London, London, United Kingdom
| | | |
Collapse
|
85
|
Fan SJ, Heinrich J, Bloom MS, Zhao TY, Shi TX, Feng WR, Sun Y, Shen JC, Yang ZC, Yang BY, Dong GH. Ambient air pollution and depression: A systematic review with meta-analysis up to 2019. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 701:134721. [PMID: 31715478 DOI: 10.1016/j.scitotenv.2019.134721] [Citation(s) in RCA: 167] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Revised: 09/27/2019] [Accepted: 09/27/2019] [Indexed: 05/22/2023]
Abstract
Although epidemiological studies have evaluated the associations of ambient air pollution with depression, the results remained mixed. To clarify the nature of the association, we performed a comprehensive systematic review and meta-analysis with the Inverse Variance Heterogeneity (IVhet) model to estimate the effect of ambient air pollution on depression. Three English and four Chinese databases were searched for epidemiologic studies investigating associations of ambient particulate (diameter ≤ 2.5 μm (PM2.5), ≤10 μm (PM10)) and gaseous (nitric oxide (NO), nitrogen dioxide (NO2), carbon monoxide (CO), sulfur dioxide (SO2) and ozone (O3)) air pollutants with depression. Odds ratios (OR) and corresponding 95% confidence intervals (CI) were calculated to evaluate the strength of the associations. We identified 22 eligible studies from 10 countries of the world. Under the IVhet model, per 10 µg/m3 increase in long-term exposure to PM2.5 (OR: 1.12, 95% CI: 0.97-1.29, I2: 51.6), PM10 (OR: 1.04, 95% CI: 0.88-1.25, I2: 85.7), and NO2 (OR: 1.05, 95% CI: 0.83-1.34, I2: 83.6), as well as short-term exposure to PM2.5 (OR: 1.01, 95% CI: 0.99-1.04, I2: 51.6), PM10 (OR: 1.01, 95% CI: 0.98-1.04, I2: 86.7), SO2 (OR: 1.03, 95% CI: 0.99-1.07, I2: 71.2), and O3 (OR: 1.01, 95% CI: 0.99-1.03, I2: 82.2) was not significantly associated with depression. However, we observed significant association between short-term NO2 exposure (per 10 µg/m3 increase) and depression (OR: 1.02, 95% CI: 1.00-1.04, I2: 65.4). However, the heterogeneity was high for all of the pooled estimates, which reduced credibility of the cumulative evidence. Additionally, publication bias was detected for six of eight meta-estimates. In conclusion, short-term exposure to NO2, but not other air pollutants, was significantly associated with depression. Given the limitations, a larger meta-analysis incorporating future well-designed longitudinal studies, and investigations into potential biologic mechanisms, will be necessary for a more definitive result.
Collapse
Affiliation(s)
- Shu-Jun Fan
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China
| | - Joachim Heinrich
- Institute and Clinic for Occupational, Social and Environmental Medicine, University Hospital, LMU Munich, Ziemssenstraβe 1, 80336 Munich, Germany; Comprehensive Pneumology Center Munich, German Center for Lung Research, Ziessenstaβe 1, 80336 Munich, Germany; Allergy and Lung Health Unit, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, Australia
| | - Michael S Bloom
- Departments of Environmental Health Sciences and Epidemiology and Biostatics, University at Albany, State University of New York, Rensselaer, NY 12144, USA
| | - Tian-Yu Zhao
- Institute and Clinic for Occupational, Social and Environmental Medicine, University Hospital, LMU Munich, Ziemssenstraβe 1, 80336 Munich, Germany; Comprehensive Pneumology Center Munich, German Center for Lung Research, Ziessenstaβe 1, 80336 Munich, Germany; Institute of Epidemiology, Helmholtz Zentrum München - German Research Center for Environmental Health, Neuherberg 85764, Germany
| | - Tong-Xing Shi
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China
| | - Wen-Ru Feng
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China
| | - Yi Sun
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China
| | - Ji-Chuan Shen
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China
| | - Zhi-Cong Yang
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China.
| | - Bo-Yi Yang
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Guangdong Provincial Engineering Technology Research Center of Environmental and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| | - Guang-Hui Dong
- Guangzhou Key Laboratory of Environmental Pollution and Health Risk Assessment, Guangdong Provincial Engineering Technology Research Center of Environmental and Health Risk Assessment, Department of Occupational and Environmental Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
86
|
Air Pollution and Dementia. Dement Neurocogn Disord 2020; 18:109-112. [PMID: 31942169 PMCID: PMC6946615 DOI: 10.12779/dnd.2019.18.4.109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 12/17/2019] [Accepted: 12/22/2019] [Indexed: 01/11/2023] Open
|
87
|
Salvi A, Liu H, Salim S. Involvement of oxidative stress and mitochondrial mechanisms in air pollution-related neurobiological impairments. Neurobiol Stress 2019; 12:100205. [PMID: 32258254 PMCID: PMC7109516 DOI: 10.1016/j.ynstr.2019.100205] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 12/13/2019] [Indexed: 12/16/2022] Open
Abstract
Background Vehicle exhaust emissions are known to be significant contributors to physical and psychological stress. Vehicle exhaust-induced stress and associated respiratory and cardiovascular complications are well-known, but the impact of this stress on the brain is unclear. Simulated vehicle exhaust exposure (SVEE) in rats causes behavioral and cognitive deficits. In the present study, the underlying mechanisms were examined. Our postulation is that SVEE, a simulation of physiologically relevant concentrations of pro-oxidants (0.04% carbon dioxide, 0.9 ppm nitrogen dioxide, 3 ppm carbon monoxide) creates a toxic stress environment in the brain that results in an imbalance between production of reactive oxygen species and the counteracting antioxidant mechanisms. This impairs mitochondrial function in the high bioenergetic demand areas of the brain including the hippocampus (HIP), amygdala (AMY) and the prefrontal cortex (PFC), disrupting neuronal network, and causing behavioral deficits. Mitochondria-targeted antioxidant Mito-Q protects against these impairments. Methods Sprague Dawley rats were provided with Mito-Q (250 μM) in drinking water for 4 weeks followed by SVEE 5 h/day for 2 weeks, followed by behavioral and biochemical assessments. Results SVEE resulted in anxiety- and depression-like behavior, accompanied with increased oxidative stress, diminished antioxidant response and mitochondrial impairment reflected from electron transport chain (ETC) disruption, reduced oxygen consumption, low adenosine tri-phosphate (ATP) synthesis and an alteration in the mitochondrial biochemical dynamics assessed via protein expression profiles of mitochondrial fission marker, dynamin-related protein-1 and fusion markers, mitofusin-1/2 in the HIP, AMY and the PFC. Mito-Q treatment prevented SVEE-induced behavioral deficits, attenuated rise in oxidative stress and also prevented SVEE-induced mitochondrial impairment. Conclusion This study demonstrates a causal mechanism mediating SVEE-induced behavioral deficits in rats. We further established that SVEE is a toxicological stressor that induces oxidative stress and results in mitochondrial impairment, which by disrupting neural circuitry impairs cognitive and behavioral functions. Simulated vehicle exhaust exposure is a source of toxicological stress. Prolonged exposure leads to behavioral deficits and elevated oxidative stress. Oxidative stress elevation triggers mitochondrial impairment in the brain. Mito-Q prevents exhaust-associated behavioral and biochemical alterations.
Collapse
Affiliation(s)
- Ankita Salvi
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, 77204, USA
| | - Hesong Liu
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, 77204, USA
| | - Samina Salim
- Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, TX, 77204, USA
| |
Collapse
|
88
|
Herting MM, Younan D, Campbell CE, Chen JC. Outdoor Air Pollution and Brain Structure and Function From Across Childhood to Young Adulthood: A Methodological Review of Brain MRI Studies. Front Public Health 2019; 7:332. [PMID: 31867298 PMCID: PMC6908886 DOI: 10.3389/fpubh.2019.00332] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 10/25/2019] [Indexed: 12/19/2022] Open
Abstract
Outdoor air pollution has been recognized as a novel environmental neurotoxin. Studies have begun to use brain Magnetic Resonance Imaging (MRI) to investigate how air pollution may adversely impact developing brains. A systematic review was conducted to evaluate and synthesize the reported evidence from MRI studies on how early-life exposure to outdoor air pollution affects neurodevelopment. Using PubMed and Web of Knowledge, we conducted a systematic search, followed by structural review of original articles with individual-level exposure data and that met other inclusion criteria. Six studies were identified, each sampled from 3 cohorts of children in Spain, The Netherlands, and the United States. All studies included a one-time assessment of brain MRI when children were 6–12 years old. Air pollutants from traffic and/or regional sources, including polycyclic aromatic hydrocarbons (PAHs), nitrogen dioxide, elemental carbon, particulate matter (<2.5 or <10 μm), and copper, were estimated prenatally (n = 1), during childhood (n = 3), or both (n = 2), using personal monitoring and urinary biomarkers (n = 1), air sampling at schools (n = 4), or a land-use regression (LUR) modeling based on residences (n = 2). Associations between exposure and brain were noted, including: smaller white matter surface area (n = 1) and microstructure (n = 1); region-specific patterns of cortical thinness (n = 1) and smaller volumes and/or less density within the caudate (n = 3); altered resting-state functional connectivity (n = 2) and brain activity to sensory stimuli (n = 1). Preliminary findings suggest that outdoor air pollutants may impact MRI brain structure and function, but limitations highlight that the design of future air pollution-neuroimaging studies needs to incorporate a developmental neurosciences perspective, considering the exposure timing, age of study population, and the most appropriate neurodevelopmental milestones.
Collapse
Affiliation(s)
- Megan M Herting
- Department of Preventive Medicine, Keck School of Medicine of University of Southern California, Los Angeles, CA, United States.,Department of Pediatrics, Children's Hospital Los Angeles, Los Angeles, CA, United States
| | - Diana Younan
- Department of Preventive Medicine, Keck School of Medicine of University of Southern California, Los Angeles, CA, United States
| | - Claire E Campbell
- Department of Preventive Medicine, Keck School of Medicine of University of Southern California, Los Angeles, CA, United States
| | - Jiu-Chiuan Chen
- Department of Preventive Medicine, Keck School of Medicine of University of Southern California, Los Angeles, CA, United States.,Department of Neurology, Keck School of Medicine of University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
89
|
Alvarez-Carbonell D, Ye F, Ramanath N, Garcia-Mesa Y, Knapp PE, Hauser KF, Karn J. Cross-talk between microglia and neurons regulates HIV latency. PLoS Pathog 2019; 15:e1008249. [PMID: 31887215 PMCID: PMC6953890 DOI: 10.1371/journal.ppat.1008249] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 01/10/2020] [Accepted: 12/01/2019] [Indexed: 12/30/2022] Open
Abstract
Despite effective antiretroviral therapy (ART), HIV-associated neurocognitive disorders (HAND) are found in nearly one-third of patients. Using a cellular co-culture system including neurons and human microglia infected with HIV (hμglia/HIV), we investigated the hypothesis that HIV-dependent neurological degeneration results from the periodic emergence of HIV from latency within microglial cells in response to neuronal damage or inflammatory signals. When a clonal hμglia/HIV population (HC69) expressing HIV, or HIV infected human primary and iPSC-derived microglial cells, were cultured for a short-term (24 h) with healthy neurons, HIV was silenced. The neuron-dependent induction of latency in HC69 cells was recapitulated using induced pluripotent stem cell (iPSC)-derived GABAergic cortical (iCort) and dopaminergic (iDopaNer), but not motor (iMotorNer), neurons. By contrast, damaged neurons induce HIV expression in latently infected microglial cells. After 48-72 h co-culture, low levels of HIV expression appear to damage neurons, which further enhances HIV expression. There was a marked reduction in intact dendrites staining for microtubule associated protein 2 (MAP2) in the neurons exposed to HIV-expressing microglial cells, indicating extensive dendritic pruning. To model neurotoxicity induced by methamphetamine (METH), we treated cells with nM levels of METH and suboptimal levels of poly (I:C), a TLR3 agonist that mimics the effects of the circulating bacterial rRNA found in HIV infected patients. This combination of agents potently induced HIV expression, with the METH effect mediated by the σ1 receptor (σ1R). In co-cultures of HC69 cells with iCort neurons, the combination of METH and poly(I:C) induced HIV expression and dendritic damage beyond levels seen using either agent alone, Thus, our results demonstrate that the cross-talk between healthy neurons and microglia modulates HIV expression, while HIV expression impairs this intrinsic molecular mechanism resulting in the excessive and uncontrolled stimulation of microglia-mediated neurotoxicity.
Collapse
Affiliation(s)
- David Alvarez-Carbonell
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Fengchun Ye
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Nirmala Ramanath
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Yoelvis Garcia-Mesa
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Pamela E. Knapp
- Departments of Pharmacology and Toxicology and Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, United States of America
| | - Kurt F. Hauser
- Departments of Pharmacology and Toxicology and Anatomy and Neurobiology, Virginia Commonwealth University School of Medicine, Richmond, Virginia, United States of America
| | - Jonathan Karn
- Department of Molecular Biology and Microbiology, Case Western Reserve University, Cleveland, Ohio, United States of America
| |
Collapse
|
90
|
Jew K, Herr D, Wong C, Kennell A, Morris-Schaffer K, Oberdörster G, O'Banion MK, Cory-Slechta DA, Elder A. Selective memory and behavioral alterations after ambient ultrafine particulate matter exposure in aged 3xTgAD Alzheimer's disease mice. Part Fibre Toxicol 2019; 16:45. [PMID: 31771615 PMCID: PMC6878709 DOI: 10.1186/s12989-019-0323-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 09/25/2019] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND A growing body of epidemiological literature indicates that particulate matter (PM) air pollution exposure is associated with elevated Alzheimer's disease (AD) risk and may exacerbate AD-related cognitive decline. Of concern is exposure to the ultrafine PM (UFP) fraction (≤100 nm), which deposits efficiently throughout the respiratory tract, has higher rates of translocation to secondary organs, like brain, and may induce inflammatory changes. We, therefore, hypothesize that exposure to UFPs will exacerbate cognitive deficits in a mouse model of AD. The present study assessed alterations in learning and memory behaviors in aged (12.5 months) male 3xTgAD and non-transgenic mice following a 2-week exposure (4-h/day, 4 days/week) to concentrated ambient UFPs using the Harvard ultrafine concentrated ambient particle system (HUCAPS) or filtered air. Beginning one month following exposure, locomotor activity, spatial learning and memory, short-term recognition memory, appetitive motivation, and olfactory discrimination were assessed. RESULTS No effects on locomotor activity were found following HUCAPS exposure (number concentration, 1 × 104-4.7 × 105 particles/cm3; mass concentration, 29-132 μg/m3). HUCAPS-exposed mice, independent of AD background, showed a significantly decreased spatial learning, mediated through reference memory deficits, as well as short-term memory deficits in novel object recognition testing. AD mice displayed diminished spatial working memory, potentially a result of olfactory deficits, and short-term memory. AD background modulated HUCAPS-induced changes on appetitive motivation and olfactory discrimination, specifically enhancing olfactory discrimination in NTg mice. Modeling variation in appetitive motivation as a covariate in spatial learning and memory, however, did not support the conclusion that differences in motivation significantly underlie changes in spatial learning and memory. CONCLUSIONS A short-term inhalation exposure of aged mice to ambient UFPs at human-relevant concentrations resulted in protracted (testing spanning 1-6.5 months post-exposure) adverse effects on multiple memory domains (reference and short-term memory) independent of AD background. Impairments in learning and memory were present when accounting for potential covariates like motivational changes and locomotor activity. These results highlight the need for further research into the potential mechanisms underlying the cognitive effects of UFP exposure in adulthood.
Collapse
Affiliation(s)
- Katrina Jew
- Department of Environmental Medicine, University of Rochester School of Medicine & Dentistry, Rochester, NY, 14642, USA
| | - Denise Herr
- Department of Environmental Medicine, University of Rochester School of Medicine & Dentistry, Rochester, NY, 14642, USA
| | - Candace Wong
- Department of Environmental Medicine, University of Rochester School of Medicine & Dentistry, Rochester, NY, 14642, USA
| | - Andrea Kennell
- Department of Environmental Medicine, University of Rochester School of Medicine & Dentistry, Rochester, NY, 14642, USA
| | - Keith Morris-Schaffer
- Department of Environmental Medicine, University of Rochester School of Medicine & Dentistry, Rochester, NY, 14642, USA
| | - Günter Oberdörster
- Department of Environmental Medicine, University of Rochester School of Medicine & Dentistry, Rochester, NY, 14642, USA
| | - M Kerry O'Banion
- Department of Neuroscience and Del Monte Neuroscience Institute, University of Rochester School of Medicine & Dentistry, Rochester, NY, 14642, USA
- Department of Neurology, University of Rochester School of Medicine & Dentistry, Rochester, NY, 14642, USA
| | - Deborah A Cory-Slechta
- Department of Environmental Medicine, University of Rochester School of Medicine & Dentistry, Rochester, NY, 14642, USA
| | - Alison Elder
- Department of Environmental Medicine, University of Rochester School of Medicine & Dentistry, Rochester, NY, 14642, USA.
| |
Collapse
|
91
|
Sarasamma S, Audira G, Samikannu P, Juniardi S, Siregar P, Hao E, Chen JR, Hsiao CD. Behavioral Impairments and Oxidative Stress in the Brain, Muscle, and Gill Caused by Chronic Exposure of C 70 Nanoparticles on Adult Zebrafish. Int J Mol Sci 2019; 20:E5795. [PMID: 31752171 PMCID: PMC6888079 DOI: 10.3390/ijms20225795] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/13/2019] [Accepted: 11/13/2019] [Indexed: 02/06/2023] Open
Abstract
There is an imperative need to develop efficient whole-animal-based testing assays to determine the potential toxicity of engineered nanomaterials. While previous studies have demonstrated toxicity in lung and skin cells after C70 nanoparticles (NPs) exposure, the potential detrimental role of C70 NPs in neurobehavior is largely unaddressed. Here, we evaluated the chronic effects of C70 NPs exposure on behavior and alterations in biochemical responses in adult zebrafish. Two different exposure doses were used for this experiment: low dose (0.5 ppm) and high dose (1.5 ppm). Behavioral tests were performed after two weeks of exposure of C70 NPs. We found decreased locomotion, exploration, mirror biting, social interaction, and shoaling activities, as well as anxiety elevation and circadian rhythm locomotor activity impairment after ~2 weeks in the C70 NP-exposed fish. The results of biochemical assays reveal that following exposure of zebrafish to 1.5 ppm of C70 NPs, the activity of superoxide dismutase (SOD) in the brain and muscle tissues increased significantly. In addition, the concentration of reactive oxygen species (ROS) also increased from 2.95 ± 0.12 U/ug to 8.46 ± 0.25 U/ug and from 0.90 ± 0.03 U/ug to 3.53 ± 0.64 U/ug in the muscle and brain tissues, respectively. Furthermore, an increased level of cortisol was also observed in muscle and brain tissues, ranging from 17.95 ± 0.90 pg/ug to 23.95 ± 0.66 pg/ug and from 3.47 ± 0.13 pg/ug to 4.91 ± 0.51 pg/ug, respectively. Increment of Hif1-α level was also observed in both tissues. The elevation was ranging from 11.65 ± 0.54 pg/ug to 18.45 ± 1.00 pg/ug in the muscle tissue and from 4.26 ± 0.11 pg/ug to 6.86 ± 0.37 pg/ug in the brain tissue. Moreover, the content of DNA damage and inflammatory markers such as ssDNA, TNF-α, and IL-1β were also increased substantially in the brain tissues. Significant changes in several biomarker levels, including catalase and malondialdehyde (MDA), were also observed in the gill tissues. Finally, we used a neurophenomic approach with a particular focus on environmental influences, which can also be easily adapted for other aquatic fish species, to assess the toxicity of metal and carbon-based nanoparticles. In summary, this is the first study to illustrate the adult zebrafish toxicity and the alterations in several neurobehavior parameters after zebrafish exposure to environmentally relevant amounts of C70 NPs.
Collapse
Affiliation(s)
- Sreeja Sarasamma
- Department of Chemistry, Chung Yuan Christian University, Chung-Li 32023, Taiwan; (S.S.); (G.A.); (P.S.)
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li 32023, Taiwan; (S.J.); (P.S.)
| | - Gilbert Audira
- Department of Chemistry, Chung Yuan Christian University, Chung-Li 32023, Taiwan; (S.S.); (G.A.); (P.S.)
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li 32023, Taiwan; (S.J.); (P.S.)
| | - Prabu Samikannu
- Department of Chemistry, Chung Yuan Christian University, Chung-Li 32023, Taiwan; (S.S.); (G.A.); (P.S.)
| | - Stevhen Juniardi
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li 32023, Taiwan; (S.J.); (P.S.)
| | - Petrus Siregar
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li 32023, Taiwan; (S.J.); (P.S.)
| | - Erwei Hao
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning 530200, China
- Guangxi Collaborative Innovation Center for Research on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Jung-Ren Chen
- Department of Biological Science & Technology College of Medicine, I-Shou University, Kaohsiung 82445, Taiwan
| | - Chung-Der Hsiao
- Department of Chemistry, Chung Yuan Christian University, Chung-Li 32023, Taiwan; (S.S.); (G.A.); (P.S.)
- Department of Bioscience Technology, Chung Yuan Christian University, Chung-Li 32023, Taiwan; (S.J.); (P.S.)
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning 530200, China
- Guangxi Collaborative Innovation Center for Research on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning 530200, China
- Center for Biomedical Technology, Chung Yuan Christian University, Chung-Li 32023, Taiwan
- Center for Nanotechnology, Chung Yuan Christian University, Chung-Li 32023, Taiwan
| |
Collapse
|
92
|
Rai SN, Zahra W, Singh SS, Birla H, Keswani C, Dilnashin H, Rathore AS, Singh R, Singh RK, Singh SP. Anti-inflammatory Activity of Ursolic Acid in MPTP-Induced Parkinsonian Mouse Model. Neurotox Res 2019; 36:452-462. [PMID: 31016688 DOI: 10.1007/s12640-019-00038-6] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 03/26/2019] [Accepted: 03/29/2019] [Indexed: 12/21/2022]
Abstract
Neuroinflammation plays an important role in the progression of Parkinson's disease (PD) and hence may represent a target for treatment. The drugs used currently for PD only provide symptomatic relief and have adverse effects in addition to their inability in preventing degeneration of neurons. Flavonoids show potent antioxidant and anti-inflammatory activities which is very valuable for the health of human beings. Thus, in the present study, we have tried to explore the anti-inflammatory activity of orally given ursolic acid (UA) (25 mg/kg bwt), a pentacyclic triterpenoid in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-intoxicated mouse model. Significant severe oxidative stress and biochemical alterations have been seen in Parkinsonian mice after MPTP intoxication. Whereas, UA administration has significantly rescued the harmful consequence of MPTP intoxication. Ionized calcium-binding adaptor molecule 1 (Iba1), tumor necrosis factor-alpha (TNF-α), and nuclear transcription factor-κB (NF-κB) were seen to be altered in the substantia nigra pars compacta (SNpc) of MPTP-intoxicated mice through immunohistochemical studies. The changes in the expression level of these parameters primarily suggest increased inflammatory responses in MPTP-intoxicated mice as compared with the control. However, UA have significantly reduced these inflammatory parameters (Iba1 and TNF-α) along with transcription factor NF-κB, which regulates these inflammatory parameters and thus have inhibited MPTP-induced neuroinflammation. The immunoreactivity of tyrosine hydroxylase (TH) was considerably increased by UA treatment in the SNpc of Parkinsonian mice. The neuroinflammation and neurodegeneration along with impairments in biochemical and behavioral parameters were found to be reversed on treatment with UA. Thus, UA has shown potent anti-inflammatory activity by preventing the degeneration of dopaminergic neurons from MPTP-induced Parkinsonian mice.
Collapse
Affiliation(s)
- Sachchida Nand Rai
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Walia Zahra
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Saumitra Sen Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Hareram Birla
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Chetan Keswani
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Hagera Dilnashin
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Aaina Singh Rathore
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Rajan Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Rakesh K Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Surya Pratap Singh
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
93
|
Use of Dithiothreitol Assay to Evaluate the Oxidative Potential of Atmospheric Aerosols. ATMOSPHERE 2019. [DOI: 10.3390/atmos10100571] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Oxidative potential (OP) has been proposed as a useful descriptor for the ability of particulate matter (PM) to generate reactive oxygen species (ROS) and consequently induce oxidative stress in biological systems, which has been recognized as one of the most important mechanisms responsible for PM toxicity. The dithiothreitol (DTT) assay is one of the most frequently used techniques to quantify OP because it is low-cost, easy-to-operate, and has high repeatability. With two thiol groups, DTT has been used as a surrogate of biological sulfurs that can be oxidized when exposed to ROS. Within the DTT measurement matrix, OP is defined as the DTT consumption rate. Often, the DTT consumption can be attributed to the presence of transition metals and quinones in PM as they can catalyze the oxidation of DTT through catalytic redox reactions. However, the DTT consumption by non-catalytic PM components has not been fully investigated. In addition, weak correlations between DTT consumption, ROS generation, and cellular responses have been observed in several studies, which also reveal the knowledge gaps between DTT-based OP measurements and their implication on health effects. In this review, we critically assessed the current challenges and limitations of DTT measurement, highlighted the understudied DTT consumption mechanisms, elaborated the necessity to understand both PM-bound and PM-induced ROS, and concluded with research needs to bridge the existing knowledge gaps.
Collapse
|
94
|
Fernandes MJS, Carletti CO, Sierra de Araújo LF, Santos RC, Reis J. Respiratory gases, air pollution and epilepsy. Rev Neurol (Paris) 2019; 175:604-613. [PMID: 31519304 DOI: 10.1016/j.neurol.2019.07.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/21/2019] [Accepted: 07/23/2019] [Indexed: 12/29/2022]
Abstract
A growing number of studies have shown that exposure to air pollutants such as particulate matter and gases can cause cardiovascular, neurodegenerative and psychiatric diseases. The severity of the changes depends on several factors such as exposure time, age and gender. Inflammation has been considered as one of the main factors associated with the generation of these diseases. Here we present some cellular mechanisms activated by air pollution that may represent risk factors for epilepsy and drug resistance associated to epilepsy.
Collapse
Affiliation(s)
- M J S Fernandes
- Department of Neurology and Neurosurgery, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil.
| | - C O Carletti
- Department of Neurology and Neurosurgery, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - L F Sierra de Araújo
- Department of Neurology and Neurosurgery, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - R C Santos
- Department of Neurology and Neurosurgery, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - J Reis
- Service de Neurologie, Centre Hospitalier Universitaire, Hôpital de Hautepierre, 1, avenue Molière, 67200 Strasbourg, France
| |
Collapse
|
95
|
Šimić G, Španić E, Langer Horvat L, Hof PR. Blood-brain barrier and innate immunity in the pathogenesis of Alzheimer's disease. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2019; 168:99-145. [PMID: 31699331 DOI: 10.1016/bs.pmbts.2019.06.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The pathogenesis of Alzheimer's disease (AD) is only partly understood. This is the probable reason why significant efforts to treat or prevent AD have been unsuccessful. In fact, as of April 2019, there have been 2094 studies registered for AD on the clinicaltrials.gov U.S. National Library of Science web page, of which only a few are still ongoing. In AD, abnormal accumulation of amyloid and tau proteins in the brain are thought to begin 10-20 years before the onset of overt symptoms, suggesting that interventions designed to prevent pathological amyloid and tau accumulation may be more effective than attempting to reverse a pathology once it is established. However, to be successful, such early interventions need to be selectively administered to individuals who will likely develop the disease long before the symptoms occur. Therefore, it is critical to identify early biomarkers that are strongly predictive of AD. Currently, patients are diagnosed on the basis of a variety of clinical scales, neuropsychological tests, imaging and laboratory modalities, but definitive diagnosis can be made only by postmortem assessment of underlying neuropathology. People suffering from AD thus may be misdiagnosed clinically with other primary causes of dementia, and vice versa, thereby also reducing the power of clinical trials. The amyloid cascade hypothesis fits well for the familial cases of AD with known mutations, but is not sufficient to explain sporadic, late-onset AD (LOAD) that accounts for over 95% of all cases. Since the earliest descriptions of AD there have been neuropathological features described other than amyloid plaques (AP) and neurofibrillary tangles (NFT), most notably gliosis and neuroinflammation. However, it is only recently that genetic and experimental studies have implicated microglial dysfunction as a causal factor for AD, as opposed to a merely biological response of its accumulation around AP. Additionally, many studies have suggested the importance of changes in blood-brain barrier (BBB) permeability in the pathogenesis of AD. Here we suggest how these less investigated aspects of the disease that have gained increased attention in recent years may contribute mechanistically to the development of lesions and symptoms of AD.
Collapse
Affiliation(s)
- Goran Šimić
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia.
| | - Ena Španić
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Lea Langer Horvat
- Department of Neuroscience, Croatian Institute for Brain Research, University of Zagreb School of Medicine, Zagreb, Croatia
| | - Patrick R Hof
- Nash Family Department of Neuroscience, Friedman Brain Institute, Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
96
|
Ha S, Yeung E, Bell E, Insaf T, Ghassabian A, Bell G, Muscatiello N, Mendola P. Prenatal and early life exposures to ambient air pollution and development. ENVIRONMENTAL RESEARCH 2019; 174:170-175. [PMID: 30979514 PMCID: PMC6541527 DOI: 10.1016/j.envres.2019.03.064] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 03/15/2019] [Accepted: 03/25/2019] [Indexed: 05/25/2023]
Abstract
BACKGROUND Residential proximity to major roadways, and prenatal exposures to particulate matter <2.5 μm (PM2.5) and ozone (O3) are linked to poor fetal outcomes but their relationship with childhood development is unclear. OBJECTIVES We investigated whether proximity to major roadways, or prenatal and early-life exposures to PM2.5 and O3 increase the risk of early developmental delays. STUDY DESIGN Prospective cohort. SETTINGS New York State excluding New York City. PARTICIPANTS 4089 singletons and 1016 twins born between 2008 and 2010. EXPOSURES Proximity to major roadway was calculated using road network data from the NY Department of Transportation. Concentrations of PM2.5 and O3 estimated by the Environmental Protection Agency Downscaler models were spatiotemporally linked to each child's prenatal and early-life addresses incorporating residential history, and locations of maternal work and day-care. OUTCOMES Parents reported their children's development at ages 8, 12, 18, 24, 30 and 36 months in five domains using the Ages and Stages Questionnaire. Generalized mixed models estimated the relative risk (RR) and 95% CI for failing any developmental domain per 10 units increase in PM2.5 and O3, and for those living <1000 m away from a major roadway compared to those living further. Models adjusted for potential confounders. RESULTS Compared to those >1000 m away from a major roadway, those resided 50-100 m [RR: 2.12 (1.00-4.52)] and 100-500 m [RR: 2.07 (1.02-4.22)] away had twice the risk of failing the communication domain. Prenatal exposures to both PM2.5 and ozone during various pregnancy windows had weak but significant associations with failing any developmental domain with effects ranging from 1.6% to 2.7% for a 10 μg/m3 increase in PM2.5 and 0.7%-1.7% for a 10 ppb increase in ozone. Average daily postnatal ozone exposure was positively associated with failing the overall screening by 8 months [3.3% (1.1%-5.5%)], 12 months [17.7% (10.4%-25.5%)], and 30 months [7.6%, (1.3%-14.3%)]. Findings were mixed for postnatal PM2.5 exposures. CONCLUSIONS In this prospective cohort study, proximity to major roadway and prenatal/early-life exposures to PM2.5 and O3 were associated with developmental delays. While awaiting larger studies with personal air pollution assessment, efforts to minimize air pollution exposures during critical developmental windows may be warranted.
Collapse
Affiliation(s)
- Sandie Ha
- Department of Public Health, School of Social Sciences, Humanities and Arts, Health Sciences Research Institute, University of California, Merced, CA, USA.
| | - Edwina Yeung
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, USA
| | - Erin Bell
- Department of Environmental Health Sciences, School of Public Health, University at Albany, NY, USA; Department of Epidemiology and Biostatistics, School of Public Health, University at Albany, NY, USA
| | - Tabassum Insaf
- Department of Epidemiology and Biostatistics, School of Public Health, University at Albany, NY, USA; Center for Environmental Health, New York State Department of Health, Albany, NY, USA
| | - Akhgar Ghassabian
- Departments of Pediatrics, Population Health, and Environmental Medicine, New York University School of Medicine, USA
| | - Griffith Bell
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, USA; Ariadne Labs, Brigham and Women's Hospital, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Neil Muscatiello
- Center for Environmental Health, New York State Department of Health, Albany, NY, USA
| | - Pauline Mendola
- Epidemiology Branch, Division of Intramural Population Health Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD, USA
| |
Collapse
|
97
|
de Prado Bert P, Mercader EMH, Pujol J, Sunyer J, Mortamais M. The Effects of Air Pollution on the Brain: a Review of Studies Interfacing Environmental Epidemiology and Neuroimaging. Curr Environ Health Rep 2019; 5:351-364. [PMID: 30008171 PMCID: PMC6132565 DOI: 10.1007/s40572-018-0209-9] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Purpose of Review An emerging body of evidence has raised concern regarding the potentially harmful effects of inhaled pollutants on the central nervous system during the last decade. In the general population, traffic-related air pollution (TRAP) exposure has been associated with adverse effects on cognitive, behavior, and psychomotor development in children, and with cognitive decline and higher risk of dementia in the elderly. Recently, studies have interfaced environmental epidemiology with magnetic resonance imaging to investigate in vivo the effects of TRAP on the human brain. The aim of this systematic review was to describe and synthesize the findings from these studies. The bibliographic search was carried out in PubMed with ad hoc keywords. Recent Findings The selected studies revealed that cerebral white matter, cortical gray matter, and basal ganglia might be the targets of TRAP. The detected brain damages could be involved in cognition changes. Summary The effect of TRAP on cognition appears to be biologically plausible. Interfacing environmental epidemiology and neuroimaging is an emerging field with room for improvement. Future studies, together with inputs from experimental findings, should provide more relevant and detailed knowledge about the nature of the relationship between TRAP exposure and cognitive, behavior, and psychomotor disorders observed in the general population.
Collapse
Affiliation(s)
| | | | - Jesus Pujol
- MRI Research Unit, Department of Radiology, Hospital del Mar, Barcelona, Spain
- Centro Investigación Biomédica en Red de Salud Mental, CIBERSAM G21, Barcelona, Spain
| | - Jordi Sunyer
- Pompeu Fabra University, Barcelona, Catalonia, Spain
- ISGLOBAL, Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Institut Hospital del Mar d'Investigacions Mèdiques-Parc de Salut Mar, Barcelona, Catalonia, Spain
| | - Marion Mortamais
- Pompeu Fabra University, Barcelona, Catalonia, Spain.
- ISGLOBAL, Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain.
- Consortium for Biomedical Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain.
| |
Collapse
|
98
|
Lee H, Kang JM, Myung W, Choi J, Lee C, Na DL, Kim SY, Lee JH, Han SH, Choi SH, Kim SY, Cho SJ, Yeon BK, Kim DK, Lewis M, Lee EM, Kim CT, Kim H. Exposure to ambient fine particles and neuropsychiatric symptoms in cognitive disorder: A repeated measure analysis from the CREDOS (Clinical Research Center for Dementia of South Korea) study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 668:411-418. [PMID: 30852217 DOI: 10.1016/j.scitotenv.2019.02.447] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Revised: 02/27/2019] [Accepted: 02/28/2019] [Indexed: 06/09/2023]
Abstract
There is a growing concern that air pollution, especially those particles <2.5 μm (PM2.5), could increase the risk of cognitive impairment and mental disorders. However, the relationship between ambient PM2.5 and neuropsychiatric symptoms in people with cognitive impairment is still undetermined. This longitudinal study included 645 pairs of cognitively impaired subjects, who had not changed residence within Seoul, and their caregivers from the Clinical Research Center for Dementia of South Korea study cohort between September 2005 and June 2010 (1763 days). Neuropsychiatric symptoms were measured by the Korean version of the Neuropsychiatry Inventory, and caregiver burden was examined by the Neuropsychiatry Inventory Caregiver Distress Scale at the first and second visits at the outpatient clinic. District-specific PM2.5 concentrations were constructed over 1 month to 1 year prior to each visit. A log-linear regression using generalized estimating equations to account for repeated measures was used to assess the relationship between PM2.5 exposure and neuropsychiatric symptoms or caregiver burden. Aggravated neuropsychiatric symptoms were associated with exposure to high PM2.5 levels (adjusted percent change: 16.7% [95% confidence interval (CI), 5.0-29.7] per 8.3 μg/m3 increase in 1-month moving averages). Increased caregiver burden was associated with high PM2.5 exposures only in caregivers for patients with Alzheimer's disease (adjusted percent change: 29.0% [95% CI, 8.1-53.9] per 8.3 μg/m3 increase in 1-month moving averages). The present results indicate that PM2.5 exposure is associated with aggravated neuropsychiatric symptoms and increased caregiver burden in subjects with cognitive impairment. The findings in this study suggest that the role of air pollution deserves great consideration in the aging population with cognitive impairment.
Collapse
Affiliation(s)
- Hyewon Lee
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Bundang-gu, Seongnam-si, Gyeonggi-do 13619, Republic of Korea; Institute of Health and Environment, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Jae Myeong Kang
- Department of Psychiatry, Gil Medical Center, Gachon University College of Medicine, Incheon 21565, Republic of Korea
| | - Woojae Myung
- Department of Neuropsychiatry, Seoul National University Bundang Hospital, Bundang-gu, Seongnam-si, Gyeonggi-do 13619, Republic of Korea.
| | - Junbae Choi
- Department of Psychiatry, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
| | - Chunsoo Lee
- Department of Psychiatry, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
| | - Duk L Na
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
| | - Seong Yoon Kim
- Department of Psychiatry, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Jae-Hong Lee
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Republic of Korea
| | - Seol-Heui Han
- Department of Neurology, Konkuk University School of Medicine, Seoul 05030, Republic of Korea
| | - Seong Hye Choi
- Department of Neurology, Inha University School of Medicine, Incheon 22332, Republic of Korea
| | - Sang Yun Kim
- Department of Neurology, Seoul National University Bundang Hospital, Bundang-gu, Seongnam-si, Gyeonggi-do 13619, Republic of Korea
| | - Seong-Jin Cho
- Department of Psychiatry, Gil Medical Center, Gachon University College of Medicine, Incheon 21565, Republic of Korea
| | - Byeong Kil Yeon
- Department of Psychiatry, Gil Medical Center, Gachon University College of Medicine, Incheon 21565, Republic of Korea
| | - Doh Kwan Kim
- Department of Psychiatry, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea
| | - Matthew Lewis
- The Department of General Practice, Melbourne Medical School, The University of Melbourne, Victoria 3010, Australia
| | - Eun-Mi Lee
- Department of Health Science, Dongduk Women's University, 04620, Republic of Korea
| | - Clara Tammy Kim
- Institute of Life and Death Studies, Hallym University, Chuncheon, Gangwon-do, Republic of Korea
| | - Ho Kim
- Institute of Health and Environment, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea; Department of Public Health Sciences, Graduate School of Public Health, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
| |
Collapse
|
99
|
Newbury JB, Arseneault L, Beevers S, Kitwiroon N, Roberts S, Pariante CM, Kelly FJ, Fisher HL. Association of Air Pollution Exposure With Psychotic Experiences During Adolescence. JAMA Psychiatry 2019; 76:614-623. [PMID: 30916743 PMCID: PMC6499472 DOI: 10.1001/jamapsychiatry.2019.0056] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
IMPORTANCE Urbanicity is a well-established risk factor for clinical (eg, schizophrenia) and subclinical (eg, hearing voices and paranoia) expressions of psychosis. To our knowledge, no studies have examined the association of air pollution with adolescent psychotic experiences, despite air pollution being a major environmental problem in cities. OBJECTIVES To examine the association between exposure to air pollution and adolescent psychotic experiences and test whether exposure mediates the association between urban residency and adolescent psychotic experiences. DESIGN, SETTING, AND PARTICIPANTS The Environmental-Risk Longitudinal Twin Study is a population-based cohort study of 2232 children born during the period from January 1, 1994, through December 4, 1995, in England and Wales and followed up from birth through 18 years of age. The cohort represents the geographic and socioeconomic composition of UK households. Of the original cohort, 2066 (92.6%) participated in assessments at 18 years of age, of whom 2063 (99.9%) provided data on psychotic experiences. Generation of the pollution data was completed on October 4, 2017, and data were analyzed from May 4 to November 21, 2018. EXPOSURES High-resolution annualized estimates of exposure to 4 air pollutants-nitrogen dioxide (NO2), nitrogen oxides (NOx), and particulate matter with aerodynamic diameters of less than 2.5 (PM2.5) and less than 10 μm (PM10)-were modeled for 2012 and linked to the home addresses of the sample plus 2 commonly visited locations when the participants were 18 years old. MAIN OUTCOMES AND MEASURES At 18 years of age, participants were privately interviewed regarding adolescent psychotic experiences. Urbanicity was estimated using 2011 census data. RESULTS Among the 2063 participants who provided data on psychotic experiences, sex was evenly distributed (52.5% female). Six hundred twenty-three participants (30.2%) had at least 1 psychotic experience from 12 to 18 years of age. Psychotic experiences were significantly more common among adolescents with the highest (top quartile) level of annual exposure to NO2 (odds ratio [OR], 1.71; 95% CI, 1.28-2.28), NOx (OR, 1.72; 95% CI, 1.30-2.29), and PM2.5 (OR, 1.45; 95% CI, 1.11-1.90). Together NO2 and NOx statistically explained 60% of the association between urbanicity and adolescent psychotic experiences. No evidence of confounding by family socioeconomic status, family psychiatric history, maternal psychosis, childhood psychotic symptoms, adolescent smoking and substance dependence, or neighborhood socioeconomic status, crime, and social conditions occurred. CONCLUSIONS AND RELEVANCE In this study, air pollution exposure-particularly NO2 and NOx-was associated with increased odds of adolescent psychotic experiences, which partly explained the association between urban residency and adolescent psychotic experiences. Biological (eg, neuroinflammation) and psychosocial (eg, stress) mechanisms are plausible.
Collapse
Affiliation(s)
- Joanne B. Newbury
- King’s College London, Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, London, United Kingdom
| | - Louise Arseneault
- King’s College London, Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, London, United Kingdom
| | - Sean Beevers
- King’s College London, Environmental Research Group, MRC-PHE (Medical Research Council–Public Health England) Centre for Environment and Health, London, United Kingdom
| | - Nutthida Kitwiroon
- King’s College London, Environmental Research Group, MRC-PHE (Medical Research Council–Public Health England) Centre for Environment and Health, London, United Kingdom
| | - Susanna Roberts
- King’s College London, Department of Psychology, Institute of Psychiatry, Psychology and Neuroscience, London, United Kingdom
| | - Carmine M. Pariante
- King’s College London, Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, London, United Kingdom
| | - Frank J. Kelly
- King’s College London, Environmental Research Group, MRC-PHE (Medical Research Council–Public Health England) Centre for Environment and Health, London, United Kingdom
| | - Helen L. Fisher
- King’s College London, Social, Genetic & Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, London, United Kingdom
| |
Collapse
|
100
|
Subhramanyam CS, Wang C, Hu Q, Dheen ST. Microglia-mediated neuroinflammation in neurodegenerative diseases. Semin Cell Dev Biol 2019; 94:112-120. [PMID: 31077796 DOI: 10.1016/j.semcdb.2019.05.004] [Citation(s) in RCA: 580] [Impact Index Per Article: 96.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 05/07/2019] [Accepted: 05/07/2019] [Indexed: 12/11/2022]
Abstract
Microglia, being the resident immune cells of the central nervous system, play an important role in maintaining tissue homeostasis and contributes towards brain development under normal conditions. However, when there is a neuronal injury or other insult, depending on the type and magnitude of stimuli, microglia will be activated to secrete either proinflammatory factors that enhance cytotoxicity or anti-inflammatory neuroprotective factors that assist in wound healing and tissue repair. Excessive microglial activation damages the surrounding healthy neural tissue, and the factors secreted by the dead or dying neurons in turn exacerbate the chronic activation of microglia, causing progressive loss of neurons. It is the case observed in many neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, Huntington's disease and amyotrophic lateral sclerosis. This review gives a detailed account of the microglia-mediated neuroinflammation in various neurodegenerative diseases. Hence, resolving chronic inflammation mediated by microglia bears great promise as a novel treatment strategy to reduce neuronal damage and to foster a permissive environment for further regeneration effort.
Collapse
Affiliation(s)
| | - Cheng Wang
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, 4 Medical Drive, 117594, Singapore
| | - Qidong Hu
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, 4 Medical Drive, 117594, Singapore.
| | - S Thameem Dheen
- Department of Anatomy, Yong Loo Lin School of Medicine, National University of Singapore, 4 Medical Drive, 117594, Singapore.
| |
Collapse
|