51
|
Truyens M, De Ruyck E, Gonzales GB, Bos S, Laukens D, De Vos M. Prevalence of Fatigue and Unrecognized Depression in Patients with Inflammatory Bowel Disease in Remission under Immunosuppressants and Biologicals. J Clin Med 2021; 10:jcm10184107. [PMID: 34575218 PMCID: PMC8471955 DOI: 10.3390/jcm10184107] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/03/2021] [Accepted: 09/07/2021] [Indexed: 11/29/2022] Open
Abstract
Background: Although highly prevalent among inflammatory bowel disease (IBD) patients, fatigue remains an unmet clinical need. The aim was to describe the prevalence of fatigue in an IBD population in remission and identify factors associated with fatigue. Methods: IBD patients in clinical and biochemical remission under treatment with immunomodulators or biologicals were included. Fatigue, physical tiredness and depression were assessed using the fatigue Visual Analogue Scale (fVAS), the Shortened Fatigue Questionnaire (SFQ) and the Quick Inventory of Depressive Symptomatology-Self Report (QIDS-SR), respectively. Relevant clinical and biochemical parameters were included in regression analyses to identify factors associated with physical fatigue. Results: In total, 157 IBD patients were included. Up to 45.9% of patients reported fatigue, physical tiredness was observed in 51% and depression in 10.8%. The majority of patients with subclinical depression were fatigued. Female sex (OR = 4.17 [1.55–6.78], p = 0.002) was independently associated with physical fatigue. Transferrin saturation (OR = −0.11 [−0.22–−0.007], p = 0.037) and treatment with adalimumab (compared to infliximab, OR = −3.65 [−7.21–−0.08], p = 0.045) entailed a lower risk of fatigue. Conclusion: Fatigue is observed in about half of IBD patients in remission and can be a symptom of underlying undetected depression. Sex, transferrin saturation and medication were identified as independent risk factors.
Collapse
Affiliation(s)
- Marie Truyens
- IBD Research Unit, Department of Internal Medicine and Pediatrics, Ghent University, 9000 Ghent, Belgium; (M.T.); (S.B.); (M.D.V.)
- VIB Center for Inflammation Research, 9052 Ghent, Belgium
- Department of Gastroenterology, University Hospital Ghent, 9000 Ghent, Belgium
| | - Elodie De Ruyck
- Department of Gastroenterology, AZ Nikolaas, 9100 Sint-Niklaas, Belgium;
| | - Gerard Bryan Gonzales
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, 6700 WE Wageningen, The Netherlands;
| | - Simon Bos
- IBD Research Unit, Department of Internal Medicine and Pediatrics, Ghent University, 9000 Ghent, Belgium; (M.T.); (S.B.); (M.D.V.)
- VIB Center for Inflammation Research, 9052 Ghent, Belgium
| | - Debby Laukens
- IBD Research Unit, Department of Internal Medicine and Pediatrics, Ghent University, 9000 Ghent, Belgium; (M.T.); (S.B.); (M.D.V.)
- VIB Center for Inflammation Research, 9052 Ghent, Belgium
- Correspondence:
| | - Martine De Vos
- IBD Research Unit, Department of Internal Medicine and Pediatrics, Ghent University, 9000 Ghent, Belgium; (M.T.); (S.B.); (M.D.V.)
| |
Collapse
|
52
|
Du H, Liang L, Li J, Xiong Q, Yu X, Yu H. Lipocalin-2 Alleviates LPS-Induced Inflammation Through Alteration of Macrophage Properties. J Inflamm Res 2021; 14:4189-4203. [PMID: 34471375 PMCID: PMC8405166 DOI: 10.2147/jir.s328916] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Accepted: 08/13/2021] [Indexed: 01/02/2023] Open
Abstract
Purpose Lipocalin-2 (Lcn2) is an acute-phase protein and elevated in several inflammatory diseases. This study aimed to determine whether Lcn2 alleviates inflammation and explore the underlying cellular mechanisms. Methods C57BL/6 Lcn2-deficient (Lcn2−/-) male mice were intraperitoneally injected with lipopolysaccharide (LPS) to build systemic inflammation model. The inflammatory processes were investigated. The morphology of villi was measured by scanning electron microscopy (SEM). The levels of inflammatory factors were detected by ELISA and qPCR analysis. The production of Lcn2 was determined with immunofluorescence staining by confocal microscope. The molecular mechanism of Lcn2 in bone marrow-derived macrophages (BMDMs) was analyzed by mass spectrometry (MS)-based quantitative proteomic analysis. Results Compared to wild-type (WT) mice injected with LPS, Lcn2−/- mice injected with LPS showed increased inflammatory damage in jejunum and ileum, and significantly elevated the levels of multiple pro-inflammatory cytokines. After determining that Lcn2 was mainly located in the cytoplasm of macrophages, we isolated BMDMs from Lcn2−/- mice to evaluate their function. During LPS challenge, transcripts of pro-inflammatory cytokines were all significantly increased in BMDMs from Lcn2−/- mice, while those of anti-inflammatory cytokines were significantly decreased when compared with the cytokines in BMDMs from WT mice. A label-free relative quantitation proteomics analysis showed that LPS-treated BMDMs from Lcn2−/- mice had elevated levels of pro-inflammatory pathways, but reduced phagocytosis and autophagy when compared with LPS-treated BMDMs from WT mice. Conclusion These findings demonstrated that Lcn2 was a potent protective factor in response to systemic inflammation and might be an indispensable factor for macrophage functions.
Collapse
Affiliation(s)
- Huahua Du
- MoE Key Laboratory of Molecular Animal Nutrition, College of Animal Science, Zhejiang University, Zhejiang, 310058, People's Republic of China
| | - Li Liang
- MoE Key Laboratory of Molecular Animal Nutrition, College of Animal Science, Zhejiang University, Zhejiang, 310058, People's Republic of China
| | - Jiahui Li
- MoE Key Laboratory of Molecular Animal Nutrition, College of Animal Science, Zhejiang University, Zhejiang, 310058, People's Republic of China
| | - Qingqing Xiong
- MoE Key Laboratory of Molecular Animal Nutrition, College of Animal Science, Zhejiang University, Zhejiang, 310058, People's Republic of China
| | - Xin Yu
- Department of Anesthesia, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Zhejiang, 310016, People's Republic of China
| | - Hong Yu
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Zhejiang, 310016, People's Republic of China
| |
Collapse
|
53
|
Dekens DW, Eisel ULM, Gouweleeuw L, Schoemaker RG, De Deyn PP, Naudé PJW. Lipocalin 2 as a link between ageing, risk factor conditions and age-related brain diseases. Ageing Res Rev 2021; 70:101414. [PMID: 34325073 DOI: 10.1016/j.arr.2021.101414] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 12/12/2022]
Abstract
Chronic (neuro)inflammation plays an important role in many age-related central nervous system (CNS) diseases, including Alzheimer's disease, Parkinson's disease and vascular dementia. Inflammation also characterizes many conditions that form a risk factor for these CNS disorders, such as physical inactivity, obesity and cardiovascular disease. Lipocalin 2 (Lcn2) is an inflammatory protein shown to be involved in different age-related CNS diseases, as well as risk factor conditions thereof. Lcn2 expression is increased in the periphery and the brain in different age-related CNS diseases and also their risk factor conditions. Experimental studies indicate that Lcn2 contributes to various neuropathophysiological processes of age-related CNS diseases, including exacerbated neuroinflammation, cell death and iron dysregulation, which may negatively impact cognitive function. We hypothesize that increased Lcn2 levels as a result of age-related risk factor conditions may sensitize the brain and increase the risk to develop age-related CNS diseases. In this review we first provide a comprehensive overview of the known functions of Lcn2, and its effects in the CNS. Subsequently, this review explores Lcn2 as a potential (neuro)inflammatory link between different risk factor conditions and the development of age-related CNS disorders. Altogether, evidence convincingly indicates Lcn2 as a key constituent in ageing and age-related brain diseases.
Collapse
Affiliation(s)
- Doortje W Dekens
- Department of Neurology and Alzheimer Center Groningen, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands; Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, the Netherlands
| | - Ulrich L M Eisel
- Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, the Netherlands
| | - Leonie Gouweleeuw
- Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, the Netherlands
| | - Regien G Schoemaker
- Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, the Netherlands
| | - Peter P De Deyn
- Department of Neurology and Alzheimer Center Groningen, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands; Laboratory of Neurochemistry and Behaviour, Biobank, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - Petrus J W Naudé
- Department of Neurology and Alzheimer Center Groningen, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands; Department of Molecular Neurobiology, Groningen Institute for Evolutionary Life Sciences (GELIFES), University of Groningen, Groningen, the Netherlands; Department of Psychiatry and Mental Health and Neuroscience Institute, Brain Behaviour Unit, University of Cape Town, Cape Town, South Africa.
| |
Collapse
|
54
|
Lipocalin 2 as a Putative Modulator of Local Inflammatory Processes in the Spinal Cord and Component of Organ Cross talk After Spinal Cord Injury. Mol Neurobiol 2021; 58:5907-5919. [PMID: 34417948 DOI: 10.1007/s12035-021-02530-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 08/09/2021] [Indexed: 10/20/2022]
Abstract
Lipocalin 2 (LCN2), an immunomodulator, regulates various cellular processes such as iron transport and defense against bacterial infection. Under pathological conditions, LCN2 promotes neuroinflammation via the recruitment and activation of immune cells and glia, particularly microglia and astrocytes. Although it seems to have a negative influence on the functional outcome in spinal cord injury (SCI), the extent of its involvement in SCI and the underlying mechanisms are not yet fully known. In this study, using a SCI contusion mouse model, we first investigated the expression pattern of Lcn2 in different parts of the CNS (spinal cord and brain) and in the liver and its concentration in blood serum. Interestingly, we could note a significant increase in LCN2 throughout the whole spinal cord, in the brain, liver, and blood serum. This demonstrates the diversity of its possible sites of action in SCI. Furthermore, genetic deficiency of Lcn2 (Lcn2-/-) significantly reduced certain aspects of gliosis in the SCI-mice. Taken together, our studies provide first valuable hints, suggesting that LCN2 is involved in the local and systemic effects post SCI, and might modulate the impairment of different peripheral organs after injury.
Collapse
|
55
|
Weng YC, Huang YT, Chiang IC, Tsai PJ, Su YW, Chou WH. Lipocalin-2 mediates the rejection of neural transplants. FASEB J 2021; 35:e21317. [PMID: 33421207 DOI: 10.1096/fj.202001018r] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 11/19/2020] [Accepted: 12/14/2020] [Indexed: 12/29/2022]
Abstract
Lipocalin-2 (LCN2) has been implicated in promoting apoptosis and neuroinflammation in neurological disorders; however, its role in neural transplantation remains unknown. In this study, we cultured and differentiated Lund human mesencephalic (LUHMES) cells into human dopaminergic-like neurons and found that LCN2 mRNA was progressively induced in mouse brain after the intrastriatal transplantation of human dopaminergic-like neurons. The induction of LCN2 protein was detected in a subset of astrocytes and neutrophils infiltrating the core of the engrafted sites, but not in neurons and microglia. LCN2-immunoreactive astrocytes within the engrafted sites expressed lower levels of A1 and A2 astrocytic markers. Recruitment of microglia, neutrophils, and monocytes after transplantation was attenuated in LCN2 deficiency mice. The expression of M2 microglial markers was significantly elevated and survival of engrafted neurons was markedly improved after transplantation in LCN2 deficiency mice. Brain type organic cation transporter (BOCT), the cell surface receptor for LCN2, was induced in dopaminergic-like neurons after differentiation, and treatment with recombinant LCN2 protein directly induced apoptosis in dopaminergic-like neurons in a dose-dependent manner. Our results, therefore, suggested that LCN2 is a neurotoxic factor for the engrafted neurons and a modulator of neuroinflammation. LCN2 inhibition may be useful in reducing rejection after neural transplantation.
Collapse
Affiliation(s)
- Yi-Chinn Weng
- Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli, Taiwan
| | - Yu-Ting Huang
- Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli, Taiwan
| | - I-Chen Chiang
- Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli, Taiwan
| | - Pei-Ju Tsai
- Immunology Research Center, National Health Research Institutes, Miaoli, Taiwan
| | - Yu-Wen Su
- Immunology Research Center, National Health Research Institutes, Miaoli, Taiwan
| | - Wen-Hai Chou
- Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli, Taiwan
| |
Collapse
|
56
|
Dong R, Huang R, Wang J, Liu H, Xu Z. Effects of Microglial Activation and Polarization on Brain Injury After Stroke. Front Neurol 2021; 12:620948. [PMID: 34276530 PMCID: PMC8280287 DOI: 10.3389/fneur.2021.620948] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 05/03/2021] [Indexed: 12/12/2022] Open
Abstract
Stroke is one of the most common causes of death worldwide. The subsequent development of neuroinflammation and brain edema dramatically increases the risks associated with stroke, leading to a substantial increase in mortality. Although considerable progress has been made in improving cerebral perfusion in the acute phase of stroke, effective treatment options for the subacute and chronic phases associated with cerebral infarction are limited. Microglia, the innate immune cells of the central nervous system (CNS), can be activated and polarized to take on different phenotypes in response to stimulations associated with stroke, including pro-inflammatory and anti-inflammatory phenotypes, which affect the prognosis of stroke. Therefore, investigation of the activation and polarizing mechanisms of microglia plays a critical role in treating stroke. The aim of this article was to investigate the significance of microglial phenotype regulation in stroke treatment by summarizing the activation, polarizing mechanisms, and general microglia characteristics.
Collapse
Affiliation(s)
- Rui Dong
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Renxuan Huang
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jiaoqi Wang
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Hongyu Liu
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Zhongxin Xu
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
57
|
Ma L, Gholam Azad M, Dharmasivam M, Richardson V, Quinn RJ, Feng Y, Pountney DL, Tonissen KF, Mellick GD, Yanatori I, Richardson DR. Parkinson's disease: Alterations in iron and redox biology as a key to unlock therapeutic strategies. Redox Biol 2021; 41:101896. [PMID: 33799121 PMCID: PMC8044696 DOI: 10.1016/j.redox.2021.101896] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 02/05/2021] [Accepted: 02/09/2021] [Indexed: 12/13/2022] Open
Abstract
A plethora of studies indicate that iron metabolism is dysregulated in Parkinson's disease (PD). The literature reveals well-documented alterations consistent with established dogma, but also intriguing paradoxical observations requiring mechanistic dissection. An important fact is the iron loading in dopaminergic neurons of the substantia nigra pars compacta (SNpc), which are the cells primarily affected in PD. Assessment of these changes reveal increased expression of proteins critical for iron uptake, namely transferrin receptor 1 and the divalent metal transporter 1 (DMT1), and decreased expression of the iron exporter, ferroportin-1 (FPN1). Consistent with this is the activation of iron regulator protein (IRP) RNA-binding activity, which is an important regulator of iron homeostasis, with its activation indicating cytosolic iron deficiency. In fact, IRPs bind to iron-responsive elements (IREs) in the 3ꞌ untranslated region (UTR) of certain mRNAs to stabilize their half-life, while binding to the 5ꞌ UTR prevents translation. Iron loading of dopaminergic neurons in PD may occur through these mechanisms, leading to increased neuronal iron and iron-mediated reactive oxygen species (ROS) generation. The "gold standard" histological marker of PD, Lewy bodies, are mainly composed of α-synuclein, the expression of which is markedly increased in PD. Of note, an atypical IRE exists in the α-synuclein 5ꞌ UTR that may explain its up-regulation by increased iron. This dysregulation could be impacted by the unique autonomous pacemaking of dopaminergic neurons of the SNpc that engages L-type Ca+2 channels, which imparts a bioenergetic energy deficit and mitochondrial redox stress. This dysfunction could then drive alterations in iron trafficking that attempt to rescue energy deficits such as the increased iron uptake to provide iron for key electron transport proteins. Considering the increased iron-loading in PD brains, therapies utilizing limited iron chelation have shown success. Greater therapeutic advancements should be possible once the exact molecular pathways of iron processing are dissected.
Collapse
Affiliation(s)
- L Ma
- School of Environment and Science, Griffith University Nathan, Brisbane, Queensland, Australia; Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland, Australia
| | - M Gholam Azad
- School of Environment and Science, Griffith University Nathan, Brisbane, Queensland, Australia; Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland, Australia; Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland, Australia
| | - M Dharmasivam
- School of Environment and Science, Griffith University Nathan, Brisbane, Queensland, Australia; Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland, Australia; Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland, Australia
| | - V Richardson
- School of Environment and Science, Griffith University Nathan, Brisbane, Queensland, Australia; Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland, Australia; Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland, Australia
| | - R J Quinn
- Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland, Australia
| | - Y Feng
- School of Environment and Science, Griffith University Nathan, Brisbane, Queensland, Australia; Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland, Australia
| | - D L Pountney
- School of Medical Science, Griffith University, Gold Coast, Queensland, Australia
| | - K F Tonissen
- School of Environment and Science, Griffith University Nathan, Brisbane, Queensland, Australia; Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland, Australia
| | - G D Mellick
- School of Environment and Science, Griffith University Nathan, Brisbane, Queensland, Australia; Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland, Australia
| | - I Yanatori
- Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan
| | - D R Richardson
- School of Environment and Science, Griffith University Nathan, Brisbane, Queensland, Australia; Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland, Australia; Centre for Cancer Cell Biology and Drug Discovery, Griffith Institute for Drug Discovery, Griffith University, Nathan, Brisbane, Queensland, Australia; Department of Pathology and Biological Responses, Nagoya University Graduate School of Medicine, Nagoya, 466-8550, Japan.
| |
Collapse
|
58
|
Analysis of Astroglial Secretomic Profile in the Mecp2-Deficient Male Mouse Model of Rett Syndrome. Int J Mol Sci 2021; 22:ijms22094316. [PMID: 33919253 PMCID: PMC8122273 DOI: 10.3390/ijms22094316] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/09/2021] [Accepted: 04/16/2021] [Indexed: 02/08/2023] Open
Abstract
Mutations in the X-linked MECP2 gene are responsible for Rett syndrome (RTT), a severe neurological disorder. MECP2 is a transcriptional modulator that finely regulates the expression of many genes, specifically in the central nervous system. Several studies have functionally linked the loss of MECP2 in astrocytes to the appearance and progression of the RTT phenotype in a non-cell autonomous manner and mechanisms are still unknown. Here, we used primary astroglial cells from Mecp2-deficient (KO) pups to identify deregulated secreted proteins. Using a differential quantitative proteomic analysis, twenty-nine proteins have been identified and four were confirmed by Western blotting with new samples as significantly deregulated. To further verify the functional relevance of these proteins in RTT, we tested their effects on the dendritic morphology of primary cortical neurons from Mecp2 KO mice that are known to display shorter dendritic processes. Using Sholl analysis, we found that incubation with Lcn2 or Lgals3 for 48 h was able to significantly increase the dendritic arborization of Mecp2 KO neurons. To our knowledge, this study, through secretomic analysis, is the first to identify astroglial secreted proteins involved in the neuronal RTT phenotype in vitro, which could open new therapeutic avenues for the treatment of Rett syndrome.
Collapse
|
59
|
Bhusal A, Lee WH, Suk K. Lipocalin-2 in Diabetic Complications of the Nervous System: Physiology, Pathology, and Beyond. Front Physiol 2021; 12:638112. [PMID: 33613327 PMCID: PMC7892766 DOI: 10.3389/fphys.2021.638112] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Accepted: 01/19/2021] [Indexed: 01/04/2023] Open
Abstract
Lipocalin-2 (LCN2) is a 25 kDa secreted protein that belongs to the family of lipocalins, a group of transporters of small hydrophobic molecules such as iron, fatty acids, steroids, and lipopolysaccharide in circulation. LCN2 was previously found to be involved in iron delivery, pointing toward a potential role for LCN2 in immunity. This idea was further validated when LCN2 was found to limit bacterial growth during infections in mice by sequestering iron-laden siderophores. Recently, LCN2 was also identified as a critical regulator of energy metabolism, glucose and lipid homeostasis, and insulin function. Furthermore, studies using Lcn2 knockout mice suggest an important role for LCN2 in several biobehavioral responses, including cognition, emotion, anxiety, and feeding behavior. Owing to its expression and influence on multiple metabolic and neurological functions, there has emerged a great deal of interest in the study of relationships between LCN2 and neurometabolic complications. Thorough investigation has demonstrated that LCN2 is involved in several neurodegenerative diseases, while more recent studies have shown that LCN2 is also instrumental for the progression of diabetic complications like encephalopathy and peripheral neuropathy. Preliminary findings have shown that LCN2 is also a promising drug target and diagnostic marker for the treatment of neuropathic complications from diabetes. In particular, future translational research related to LCN2, such as the development of small-molecule inhibitors or neutralizing antibodies against LCN2, appears essential for exploring its potential as a therapeutic target.
Collapse
Affiliation(s)
- Anup Bhusal
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, South Korea.,BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, South Korea
| | - Won-Ha Lee
- School of Life Sciences, BK21 FOUR KNU Creative BioResearch Group, Kyungpook National University, Daegu, South Korea
| | - Kyoungho Suk
- Department of Pharmacology, School of Medicine, Kyungpook National University, Daegu, South Korea.,BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, School of Medicine, Kyungpook National University, Daegu, South Korea.,Brain Science and Engineering Institute, Kyungpook National University, Daegu, South Korea
| |
Collapse
|
60
|
Liu JA, Yu J, Cheung CW. Immune Actions on the Peripheral Nervous System in Pain. Int J Mol Sci 2021; 22:ijms22031448. [PMID: 33535595 PMCID: PMC7867183 DOI: 10.3390/ijms22031448] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 01/27/2021] [Accepted: 01/28/2021] [Indexed: 02/07/2023] Open
Abstract
Pain can be induced by tissue injuries, diseases and infections. The interactions between the peripheral nervous system (PNS) and immune system are primary actions in pain sensitizations. In response to stimuli, nociceptors release various mediators from their terminals that potently activate and recruit immune cells, whereas infiltrated immune cells further promote sensitization of nociceptors and the transition from acute to chronic pain by producing cytokines, chemokines, lipid mediators and growth factors. Immune cells not only play roles in pain production but also contribute to PNS repair and pain resolution by secreting anti-inflammatory or analgesic effectors. Here, we discuss the distinct roles of four major types of immune cells (monocyte/macrophage, neutrophil, mast cell, and T cell) acting on the PNS during pain process. Integration of this current knowledge will enhance our understanding of cellular changes and molecular mechanisms underlying pain pathogenies, providing insights for developing new therapeutic strategies.
Collapse
Affiliation(s)
- Jessica Aijia Liu
- Correspondence: (J.A.L.); (C.W.C.); Tel.: +852-2255-3303 (J.A.L. & C.W.C.); Fax: +852-2855-1654 (J.A.L. & C.W.C.)
| | | | - Chi Wai Cheung
- Correspondence: (J.A.L.); (C.W.C.); Tel.: +852-2255-3303 (J.A.L. & C.W.C.); Fax: +852-2855-1654 (J.A.L. & C.W.C.)
| |
Collapse
|
61
|
Su SB, Qin SY, Xian XL, Huang FF, Huang QL, ZhangDi HJ, Jiang HX. Interleukin-22 regulating Kupffer cell polarization through STAT3/Erk/Akt crosstalk pathways to extenuate liver fibrosis. Life Sci 2021; 264:118677. [PMID: 33129875 DOI: 10.1016/j.lfs.2020.118677] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/14/2020] [Accepted: 10/24/2020] [Indexed: 12/19/2022]
Abstract
AIMS Interleukin (IL)-22 activates multiple signaling pathways to exert anti-inflammatory effects, but few studies have examined whether and how IL-22 may shift macrophage polarization between M1 (pro-inflammatory) and M2 (anti-inflammatory) states and thereby influence the progression of hepatic fibrosis. MAIN METHODS Utilized CCl4 to induce liver fibrosis in mice, detected the role of IL-22 in inhibiting liver fibrosis by regulating Kupffer cells (KCs) polarization in vivo and in vitro. U937 cells were used to confirm the mechanism of IL-22 regulating macrophage polarization via the STAT3/Erk/Akt pathways. Human liver specimens were collected to verify the correlation between the levels of IL-22 and KCs during liver fibrogenesis. KEY FINDINGS During CCl4-induced liver fibrosis progression in mice, adding exogenous IL-22 significantly inhibited pro-fibrogenic and macrophage phenotype-altering factors secreted by M1-KCs, and it increased the number of M2-KCs. In co-cultures of hepatic stellate cells and KCs from mice treated with IL-22, a high M2/M1-KCs ratio inhibited collagen production and stellate cell activation. These results suggest that IL-22 can increase the ratio of M2-KCs to M1-KCs and thereby attenuate the progression of liver fibrosis. Mechanistic studies in vitro showed that IL-22 promoted polarization of lipopolysaccharide-treated U937 macrophages from M1 to M2. The cytokine exerted these effects by activating the STAT3 pathway while suppressing Erk1/2 and Akt pathways. Furthermore, immunofluorescent staining in human liver specimens confirmed that IL-22 levels positively correlated with the number of M2-KCs during liver fibrogenesis. SIGNIFICANCE IL-22 regulates the STAT3/Erk/Akt to increase the M2/M1-KCs ratio and thereby slow liver fibrogenesis.
Collapse
Affiliation(s)
- Si-Biao Su
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Province, China
| | - Shan-Yu Qin
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Province, China
| | - Xiao-Long Xian
- Graduate School of Guangxi Medical University, Nanning 530021, Guangxi Province, China
| | - Fei-Fei Huang
- Graduate School of Guangxi Medical University, Nanning 530021, Guangxi Province, China
| | - Qiu-Lan Huang
- Graduate School of Guangxi Medical University, Nanning 530021, Guangxi Province, China
| | - Han-Jing ZhangDi
- Graduate School of Guangxi Medical University, Nanning 530021, Guangxi Province, China
| | - Hai-Xing Jiang
- Department of Gastroenterology, The First Affiliated Hospital of Guangxi Medical University, Nanning 530021, Guangxi Province, China.
| |
Collapse
|
62
|
Jin Z, Kim KE, Shin HJ, Jeong EA, Park KA, Lee JY, An HS, Choi EB, Jeong JH, Kwak W, Roh GS. Hippocampal Lipocalin 2 Is Associated With Neuroinflammation and Iron-Related Oxidative Stress in ob/ob Mice. J Neuropathol Exp Neurol 2020; 79:530-541. [PMID: 32296847 DOI: 10.1093/jnen/nlaa017] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Revised: 01/08/2020] [Accepted: 02/14/2020] [Indexed: 12/21/2022] Open
Abstract
Obesity causes brain injuries with inflammatory and structural changes, leading to neurodegeneration. Although increased circulating lipocalin 2 (LCN2) level has been implicated in neurodegenerative diseases, the precise mechanism of neurodegeneration in obesity is not clear. Here, we investigated whether LCN2-mediated signaling promotes neurodegeneration in the hippocampus of leptin-deficient ob/ob mice, which are characterized by obesity, insulin resistance, systemic inflammation, and neuroinflammation. In particular, there was significant upregulation of both LCN2 and matrix metalloproteinase 9 levels from serum and hippocampus in ob/ob mice. Using RNA-seq analysis, we found that neurodegeneration- sortilin-related receptor 1 (Sorl1) and brain-derived neurotrophic factor (Bdnf) genes were significantly reduced in the hippocampus of ob/ob mice. We additionally found that the endosome-related WD repeat and FYVE-domain-containing 1 (Wdfy1) gene were upregulated in ob/ob mice. In particular, iron overload-related mitochondrial ferritin and nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) proteins were increased in the hippocampus of ob/ob. Thus, these findings indicate that iron-binding protein LCN2-mediated oxidative stress promotes neurodegeneration in ob/ob mice.
Collapse
Affiliation(s)
- Zhen Jin
- Department of Anatomy and Convergence Medical Science, College of Medicine, Institute of Health Sciences, Bio Anti-aging Medical Research Center, Gyeongsang National University, Jinju-si, Gyeongnam, Republic of Korea (ZJ, KEK, HJS, EAJ, K-AP, JYL, HSA, EBC, JHJ, WK, GSR)
| | - Kyung Eun Kim
- Department of Anatomy and Convergence Medical Science, College of Medicine, Institute of Health Sciences, Bio Anti-aging Medical Research Center, Gyeongsang National University, Jinju-si, Gyeongnam, Republic of Korea (ZJ, KEK, HJS, EAJ, K-AP, JYL, HSA, EBC, JHJ, WK, GSR)
| | - Hyun Joo Shin
- Department of Anatomy and Convergence Medical Science, College of Medicine, Institute of Health Sciences, Bio Anti-aging Medical Research Center, Gyeongsang National University, Jinju-si, Gyeongnam, Republic of Korea (ZJ, KEK, HJS, EAJ, K-AP, JYL, HSA, EBC, JHJ, WK, GSR)
| | - Eun Ae Jeong
- Department of Anatomy and Convergence Medical Science, College of Medicine, Institute of Health Sciences, Bio Anti-aging Medical Research Center, Gyeongsang National University, Jinju-si, Gyeongnam, Republic of Korea (ZJ, KEK, HJS, EAJ, K-AP, JYL, HSA, EBC, JHJ, WK, GSR)
| | - Kyung-Ah Park
- Department of Anatomy and Convergence Medical Science, College of Medicine, Institute of Health Sciences, Bio Anti-aging Medical Research Center, Gyeongsang National University, Jinju-si, Gyeongnam, Republic of Korea (ZJ, KEK, HJS, EAJ, K-AP, JYL, HSA, EBC, JHJ, WK, GSR)
| | - Jong Youl Lee
- Department of Anatomy and Convergence Medical Science, College of Medicine, Institute of Health Sciences, Bio Anti-aging Medical Research Center, Gyeongsang National University, Jinju-si, Gyeongnam, Republic of Korea (ZJ, KEK, HJS, EAJ, K-AP, JYL, HSA, EBC, JHJ, WK, GSR)
| | - Hyeong Seok An
- Department of Anatomy and Convergence Medical Science, College of Medicine, Institute of Health Sciences, Bio Anti-aging Medical Research Center, Gyeongsang National University, Jinju-si, Gyeongnam, Republic of Korea (ZJ, KEK, HJS, EAJ, K-AP, JYL, HSA, EBC, JHJ, WK, GSR)
| | - Eun Bee Choi
- Department of Anatomy and Convergence Medical Science, College of Medicine, Institute of Health Sciences, Bio Anti-aging Medical Research Center, Gyeongsang National University, Jinju-si, Gyeongnam, Republic of Korea (ZJ, KEK, HJS, EAJ, K-AP, JYL, HSA, EBC, JHJ, WK, GSR)
| | - Jae Hun Jeong
- Department of Anatomy and Convergence Medical Science, College of Medicine, Institute of Health Sciences, Bio Anti-aging Medical Research Center, Gyeongsang National University, Jinju-si, Gyeongnam, Republic of Korea (ZJ, KEK, HJS, EAJ, K-AP, JYL, HSA, EBC, JHJ, WK, GSR)
| | - Woori Kwak
- Department of Anatomy and Convergence Medical Science, College of Medicine, Institute of Health Sciences, Bio Anti-aging Medical Research Center, Gyeongsang National University, Jinju-si, Gyeongnam, Republic of Korea (ZJ, KEK, HJS, EAJ, K-AP, JYL, HSA, EBC, JHJ, WK, GSR).,C&K Genomics, Inc., Seoul, Republic of Korea
| | - Gu Seob Roh
- Department of Anatomy and Convergence Medical Science, College of Medicine, Institute of Health Sciences, Bio Anti-aging Medical Research Center, Gyeongsang National University, Jinju-si, Gyeongnam, Republic of Korea (ZJ, KEK, HJS, EAJ, K-AP, JYL, HSA, EBC, JHJ, WK, GSR)
| |
Collapse
|
63
|
Inflammatory factors and amyloid β-induced microglial polarization promote inflammatory crosstalk with astrocytes. Aging (Albany NY) 2020; 12:22538-22549. [PMID: 33196457 PMCID: PMC7746366 DOI: 10.18632/aging.103663] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 06/17/2020] [Indexed: 02/06/2023]
Abstract
The immunological responses are a key pathological factor in Alzheimer's disease (AD). We hypothesized that microglial polarization alters microglia-astrocyte immune interactions in AD. M1 and M2 microglia were isolated from primary rat microglia and were confirmed to secrete pro-inflammatory and anti-inflammatory factors, respectively. Primary rat astrocytes were co-cultured with M1 or M2 microglial medium. M1 microglial medium increased astrocyte production of pro-inflammatory factors (interleukin [IL]-1β, tumor necrosis factor α and IL-6), while M2 microglial medium enhanced astrocyte production of anti-inflammatory factors (IL-4 and IL-10). To analyze the crosstalk between microglia and astrocytes after microglial polarization specifically in AD, we co-cultured astrocytes with medium from microglia treated with amyloid-β (Aβ) alone or in combination with other inflammatory substances. Aβ alone and Aβ combined with lipopolysaccharide/interferon-γ induced pro-inflammatory activity in M1 microglia and astrocytes, whereas IL-4/IL-13 inhibited Aβ-induced pro-inflammatory activity. Nuclear factor κB p65 was upregulated in M1 microglia and pro-inflammatory astrocytes, while Stat6 was upregulated in M2 microglia and anti-inflammatory astrocytes. These results provide direct evidence that microglial polarization governs communication between microglia and astrocytes, and that AD debris alters this crosstalk.
Collapse
|
64
|
Liao X, Yang J, Wang H, Li Y. Microglia mediated neuroinflammation in autism spectrum disorder. J Psychiatr Res 2020; 130:167-176. [PMID: 32823050 DOI: 10.1016/j.jpsychires.2020.07.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 06/09/2020] [Accepted: 07/15/2020] [Indexed: 12/14/2022]
Abstract
BACKGROUND Although the precise pathophysiologies underlying autism spectrum disorder (ASD) has not yet been fully clarified, growing evidence supports the involvement of neuroinflammation in the pathogenesis of this disorder, with microglia being particular relevance in the pathophysiologic processes. OBJECTIVE The present review aimed to systematically characterize existing literature regarding the role of microglia mediated neuroinflammation in the etiology of ASD. METHODS A systematic search was conducted for records indexed within Pubmed, EMBASE, or Web of Science to identify potentially eligible publications. Study selection and data extraction were performed by two authors, and the discrepancies in each step were settled through discussions. RESULTS A total of 14 studies comprising 1007 subjects met the eligibility criteria for this review, including 8 immunohistochemistry (IHC) studies, 5 genetic analysis studies, and 1 positron emission tomography (PET) studies. Although small in quantity, the included studies collectively pointed to a role of microglia mediated neuroinflammation in the pathogenesis of ASD. CONCLUSION Findings generated from this review consistently supported the involvement of neuroinflammation in the development of ASD, confirmed by the activation of microglia in different brain regions, involving increased cell number or cell density, morphological alterations, and phenotypic shifts.
Collapse
Affiliation(s)
- Xiaoli Liao
- Xiangya Nursing School, Central South University, Changsha, Hunan, China
| | - Jiaxin Yang
- Xiangya Nursing School, Central South University, Changsha, Hunan, China
| | - Huaqin Wang
- Clinical Nursing Teaching and Research Section, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yamin Li
- Clinical Nursing Teaching and Research Section, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
65
|
Czapski GA, Zhao Y, Lukiw WJ, Strosznajder JB. Acute Systemic Inflammatory Response Alters Transcription Profile of Genes Related to Immune Response and Ca 2+ Homeostasis in Hippocampus; Relevance to Neurodegenerative Disorders. Int J Mol Sci 2020; 21:ijms21217838. [PMID: 33105802 PMCID: PMC7660108 DOI: 10.3390/ijms21217838] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/13/2020] [Accepted: 10/19/2020] [Indexed: 12/22/2022] Open
Abstract
Acute systemic inflammatory response (SIR) triggers an alteration in the transcription of brain genes related to neuroinflammation, oxidative stress and cells death. These changes are also characteristic for Alzheimer’s disease (AD) neuropathology. Our aim was to evaluate gene expression patterns in the mouse hippocampus (MH) by using microarray technology 12 and 96 h after SIR evoked by lipopolysaccharide (LPS). The results were compared with microarray analysis of human postmortem hippocampal AD tissues. It was found that 12 h after LPS administration the expression of 231 genes in MH was significantly altered (FC > 2.0); however, after 96 h only the S100a8 gene encoding calgranulin A was activated (FC = 2.9). Gene ontology enrichment analysis demonstrated the alteration of gene expression related mostly to the immune-response including the gene Lcn2 for Lipocalin 2 (FC = 237.8), involved in glia neurotoxicity. The expression of genes coding proteins involved in epigenetic regulation, histone deacetylases (Hdac4,5,8,9,11) and bromo- and extraterminal domain protein Brd3 were downregulated; however, Brd2 was found to be upregulated. Remarkably, the significant increase in expression of Lcn2, S100a8, S100a9 and also Saa3 and Ch25h, was found in AD brains suggesting that early changes of immune-response genes evoked by mild SIR could be crucial in AD pathogenesis.
Collapse
Affiliation(s)
- Grzegorz A. Czapski
- Department of Cellular Signalling, Mossakowski Medical Research Centre Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland
- Correspondence: (G.A.C.); (J.B.S.); Tel.: +48-22-6086-600 (G.A.C.); +48-22-6086-414 (J.B.S.)
| | - Yuhai Zhao
- LSU Neuroscience Center, Louisiana State University Health Science Center (LSU-HSC), New Orleans, LA 70112, USA; (Y.Z.); (W.J.L.)
- Department of Cell Biology and Anatomy, LSU-HSC, New Orleans, LA 70112, USA
| | - Walter J. Lukiw
- LSU Neuroscience Center, Louisiana State University Health Science Center (LSU-HSC), New Orleans, LA 70112, USA; (Y.Z.); (W.J.L.)
- Department of Ophthalmology, LSU-HSC, New Orleans, LA 70112, USA
- Department of Neurology, LSU-HSC, New Orleans, LA 70112, USA
| | - Joanna B. Strosznajder
- Department of Cellular Signalling, Mossakowski Medical Research Centre Polish Academy of Sciences, Pawińskiego 5, 02-106 Warsaw, Poland
- Correspondence: (G.A.C.); (J.B.S.); Tel.: +48-22-6086-600 (G.A.C.); +48-22-6086-414 (J.B.S.)
| |
Collapse
|
66
|
Ojeda-Juárez D, Shah R, Fields JA, Harahap-Carrillo I, Koury J, Maung R, Gelman BB, Baaten BJ, Roberts AJ, Kaul M. Lipocalin-2 mediates HIV-1 induced neuronal injury and behavioral deficits by overriding CCR5-dependent protection. Brain Behav Immun 2020; 89:184-199. [PMID: 32534984 PMCID: PMC8153086 DOI: 10.1016/j.bbi.2020.06.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/29/2020] [Accepted: 06/07/2020] [Indexed: 01/27/2023] Open
Abstract
People living with HIV (PLWH) continue to develop HIV-associated neurocognitive disorders despite combination anti-retroviral therapy. Lipocalin-2 (LCN2) is an acute phase protein that has been implicated in neurodegeneration and is upregulated in a transgenic mouse model of HIV-associated brain injury. Here we show that LCN2 is significantly upregulated in neocortex of a subset of HIV-infected individuals with brain pathology and correlates with viral load in CSF and pro-viral DNA in neocortex. However, the question if LCN2 contributes to HIV-associated neurotoxicity or is part of a protective host response required further investigation. We found that the knockout of LCN2 in transgenic mice expressing HIVgp120 in the brain (HIVgp120tg) abrogates behavioral impairment, ameliorates neuronal damage, and reduces microglial activation in association with an increase of the neuroprotective CCR5 ligand CCL4. In vitro experiments show that LCN2 neurotoxicity also depends on microglia and p38 MAPK activity. Genetic ablation of CCR5 in LCN2-deficient HIVgp120tg mice restores neuropathology, suggesting that LCN2 overrides neuroprotection mediated by CCR5 and its chemokine ligands. RNA expression of 168 genes involved in neurotransmission reveals that neuronal injury and protection are each associated with genotype- and sex-specific patterns affecting common neural gene networks. In conclusion, our study identifies LCN2 as a novel factor in HIV-associated brain injury involving CCR5, p38 MAPK and microglia. Furthermore, the mechanistic interaction between LCN2 and CCR5 may serve as a diagnostic and therapeutic target in HIV patients at risk of developing brain pathology and neurocognitive impairment.
Collapse
Affiliation(s)
- Daniel Ojeda-Juárez
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, 900 University Ave, Riverside, CA 92521, USA; Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA.
| | - Rohan Shah
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, 900 University Ave, Riverside, CA 92521, USA.
| | - Jerel Adam Fields
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA.
| | - Indira Harahap-Carrillo
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, 900 University Ave, Riverside, CA, 92521, USA
| | - Jeffrey Koury
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, 900 University Ave, Riverside, CA 92521, USA.
| | - Ricky Maung
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, 900 University Ave, Riverside, CA 92521, USA.
| | - Benjamin B. Gelman
- Department of Pathology, University of Texas Medical Branch, 301 University Blvd, 77555-0419 Galveston, TX USA,Department of Neuroscience and Cell Biology, University of Texas Medical Branch, 301 University Blvd, 77555-0419 Galveston, TX USA
| | - Bas J. Baaten
- Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA, 92037, USA
| | - Amanda J. Roberts
- Animal Models Core, The Scripps Research Institute, 10550 N. Torrey Pines Rd, MB-P300, La Jolla, CA 92037, USA
| | - Marcus Kaul
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, 900 University Ave, Riverside, CA 92521, USA; Infectious and Inflammatory Disease Center, Sanford Burnham Prebys Medical Discovery Institute, 10901 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
67
|
Wang H, Zhang C, Yang LE, Yang Z. Hederagenin Modulates M1 Microglial Inflammatory Responses and Neurite Outgrowth. Nat Prod Commun 2020. [DOI: 10.1177/1934578x20946252] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Alzheimer’s disease (AD) is a progressive neurodegenerative disorder. Neurite atrophy and synaptic loss initiate the onset of neuronal death, while the activated M1 microglia-induced neuroinflammatory microenvironment inhibits neurite regeneration and exacerbates neuronal loss. Thus, optimizing the brain microenvironment using small compounds through suppressing activated M1 microglia and promoting neurite regrowth might be an effective therapeutic strategy for AD. We found that hederagenin (HED), a naturally occurring triterpene compound, inhibited lipopolysaccharide-induced nitric oxide generation and downregulated expression of proinflammatory cytokines, such as tumor necrosis factor-α, interleukin-1β (IL-1β), and IL-6. Further investigation of primary microglia confirmed that HED inhibited Iba-1 positive M1 microglia. However, no changes were seen in CD206 positive M2 microglia polarization. HED remarkably suppressed phosphorylated nuclear factor kappa-light-chain-enhancer of activated B cells subunit p65 signaling. In addition, HED ameliorated Aβ25-35-induced neuritic atrophy and neuronal death. Therefore, HED might be a therapeutic candidate for AD.
Collapse
Affiliation(s)
- Hua Wang
- Department of Pharmacy, The Second Hospital of Shandong University, Jinan, P. R. China
| | - Cai Zhang
- Department of Nutrition and Marine Drugs, College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Ocean University, Zhanjiang, P. R. China
| | - Long-en Yang
- Department of Nutrition and Marine Drugs, College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Ocean University, Zhanjiang, P. R. China
| | - Zhiyou Yang
- Department of Nutrition and Marine Drugs, College of Food Science and Technology, Guangdong Provincial Key Laboratory of Aquatic Product Processing and Safety, Guangdong Ocean University, Zhanjiang, P. R. China
- Department of Neuropharmacology, Shenzhen Institute of Guangdong Ocean University, Shenzhen, P. R. China
| |
Collapse
|
68
|
Chistyakov DV, Gavrish GE, Goriainov SV, Chistyakov VV, Astakhova AA, Azbukina NV, Sergeeva MG. Oxylipin Profiles as Functional Characteristics of Acute Inflammatory Responses in Astrocytes Pre-Treated with IL-4, IL-10, or LPS. Int J Mol Sci 2020; 21:ijms21051780. [PMID: 32150861 PMCID: PMC7084882 DOI: 10.3390/ijms21051780] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/01/2020] [Accepted: 03/03/2020] [Indexed: 12/14/2022] Open
Abstract
Functional phenotypes, which cells can acquire depending on the microenvironment, are currently the focus of investigations into new anti-inflammatory therapeutic approaches. Glial cells, microglia, and astrocytes are major participants in neuroinflammation, but their roles differ, as microglia are cells of mesodermal origin, while astrocytes are cells of ectodermal origin. The inflammatory phenotype of cells can be modulated by ω-6- and ω-3-polyunsaturated fatty acid-derived oxylipins, although data on changes in oxylipin profiles in different cell adaptations to pro- and anti-inflammatory stimuli are scarce. Our study aimed to compare UPLC-MS/MS-measured oxylipin profiles in various rat astrocyte adaptation states. We used cells treated for 24 h with lipopolysaccharide (LPS) for classical pro-inflammatory adaptation and with interleukin 4 (IL-4) or 10 (IL-10) for alternative anti-inflammatory adaptation, with the resulting phenotypes characterized by quantitative real-time PCR (RT-PCR). We also tested long-term, low-concentration LPS treatment (endotoxin treatment) as a model of astrocyte adaptations. The functional response of astrocytes was estimated by acute (4 h) LPS-induced cell reactivity, measured by gene expression markers and oxylipin synthesis. We discovered that, as well as gene markers, oxylipin profiles can serve as markers of pro- (A1-like) or anti-inflammatory (A2-like) adaptations. We observed predominant involvement of ω-6 polyunsaturated fatty acid (PUFA) and the cyclooxygenase branch for classical (LPS) pro-inflammatory adaptations and ω-3 PUFA and the lipoxygenase branch for alternative (IL-4) anti-inflammatory adaptations. Treatment with IL-4, but not IL-10, primes the ability of astrocytes to activate the innate immunity signaling pathways in response to LPS. Endotoxin-treated astrocytes provide an alternative anti-inflammatory adaptation, which makes cells less sensitive to acute LPS stimulation than the IL-4 induced adaptation. Taken together, the data reveal that oxylipin profiles associate with different states of polarization to generate a pro-inflammatory or anti-inflammatory phenotype. This association manifests itself both in native cells and in their responses to a pro-inflammatory stimulus.
Collapse
Affiliation(s)
- Dmitry V. Chistyakov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia; (A.A.A.); (M.G.S.)
- Correspondence: ; Tel.: +7-495-939-4332
| | - Gleb E. Gavrish
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia; (G.E.G.); (N.V.A.)
| | - Sergei V. Goriainov
- SREC PFUR Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia; (S.V.G.); (V.V.C.)
| | - Viktor V. Chistyakov
- SREC PFUR Peoples’ Friendship University of Russia (RUDN University), 117198 Moscow, Russia; (S.V.G.); (V.V.C.)
| | - Alina A. Astakhova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia; (A.A.A.); (M.G.S.)
| | - Nadezda V. Azbukina
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119234 Moscow, Russia; (G.E.G.); (N.V.A.)
| | - Marina G. Sergeeva
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia; (A.A.A.); (M.G.S.)
| |
Collapse
|
69
|
Lipocalin-2 exerts pro-atherosclerotic effects as evidenced by in vitro and in vivo experiments. Heart Vessels 2020; 35:1012-1024. [PMID: 31960147 DOI: 10.1007/s00380-020-01556-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 01/10/2020] [Indexed: 02/08/2023]
Abstract
Lipocalin-2 (LCN2), a multiple bioactive hormone particularly expressed in adipose tissue, neutrophils, and macrophages, is known to exhibit anti-microbial effect, increase inflammatory cytokine levels, and maintain glucose homeostasis. Serum LCN2 level is positively correlated with the severity of coronary artery disease. However, it still remains unknown whether LCN2 affects atherogenesis. We assessed the effects of LCN2 on the inflammatory response and monocyte adhesion in human umbilical vein endothelial cells (HUVECs), inflammatory phenotype and foam cell formation in THP1 monocyte-derived macrophages, and migration and proliferation of human aortic smooth muscle cells (HASMCs) in vitro and aortic lesions in Apoe-/- mice in vivo. LCN2 and its receptor, low-density lipoprotein (LDL)-related protein-2, were expressed in THP1 monocytes, macrophages, HASMCs, and HUVECs. LCN2 significantly enhanced THP1 monocyte adhesion to HUVECs accompanied with upregulation of intercellular adhesion molecule-1, vascular cell adhesion molecule-1, and E-selectin associated with nuclear factor-κB (NF-κB) upregulation in HUVECs. LCN2 significantly increased HUVEC proliferation and oxidized LDL-induced foam cell formation in THP1 monocyte-derived macrophages. LCN2 significantly increased the inflammatory M1 phenotype associated with NF-κB upregulation during differentiation of THP1 monocytes into macrophages. In HASMCs, LCN2 significantly promoted the migration and collagen-1 expression without inducing proliferation, which are associated with increased protein expression of phosphoinositide 3-kinase and phosphorylation of Akt, extracellular signal-regulated kinase, c-jun-N-terminal kinase, and NF-κB. Chronic LCN2 infusion into Apoe-/- mice significantly accelerated the development of aortic atherosclerotic lesions, with increased intraplaque monocyte/macrophage infiltration and pentraxin-3 and collagen-1 expressions. Our results suggested that LCN2 accelerates the development of atherosclerosis. Thus, LCN2 could serve as a novel therapeutic target for atherosclerotic diseases.
Collapse
|
70
|
Ye X, Zhu M, Che X, Wang H, Liang XJ, Wu C, Xue X, Yang J. Lipopolysaccharide induces neuroinflammation in microglia by activating the MTOR pathway and downregulating Vps34 to inhibit autophagosome formation. J Neuroinflammation 2020; 17:18. [PMID: 31926553 PMCID: PMC6954631 DOI: 10.1186/s12974-019-1644-8] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 11/18/2019] [Indexed: 01/06/2023] Open
Abstract
Background Microglial activation is a prominent feature of neuroinflammation, which is present in almost all neurodegenerative diseases. While an initial inflammatory response mediated by microglia is considered to be protective, excessive pro-inflammatory response of microglia contributes to the pathogenesis of neurodegeneration. Although autophagy is involved in the suppression of inflammation, its role and mechanism in microglia are unclear. Methods In the present study, we studied the mechanism by which lipopolysaccharide (LPS) affects microglial autophagy and the effects of autophagy on the production of pro-inflammatory factors in microglial cells by western blotting, immunocytochemistry, transfection, transmission electron microscopy (TEM), and real-time PCR. In a mouse model of neuroinflammation, generated by intraventricular injection of LPS (5 μg/animal), we induced autophagy by rapamycin injection and investigated the effects of enhanced autophagy on microglial activation by enzyme-linked immunosorbent assay (ELISA) and immunohistochemistry. Results We found that autophagic flux was suppressed in LPS-stimulated N9 microglial cells, as evidenced by decreased expression of the autophagy marker LC3-II (lipidated form of MAP1LC3), as well as increased levels of the autophagy adaptor protein SQSTM1. LPS significantly decreased Vps34 expression in N9 microglial cells by activating the PI3KI/AKT/MTOR pathway without affecting the levels of lysosome-associated proteins and enzymes. More importantly, overexpression of Vps34 significantly enhanced the autophagic flux and decreased the accumulation of SQSTM1 in LPS-stimulated N9 microglial cells. Moreover, our results revealed that an LPS-induced reduction in the level of Vps34 prevented the maturation of omegasomes to phagophores. Furthermore, LPS-induced neuroinflammation was significantly ameliorated by treatment with the autophagy inducer rapamycin both in vitro and in vivo. Conclusions These data reveal that LPS-induced neuroinflammation in N9 microglial cells is associated with the inhibition of autophagic flux through the activation of the PI3KI/AKT/MTOR pathway, while enhanced microglial autophagy downregulates LPS-induced neuroinflammation. Thus, this study suggests that promoting the early stages of autophagy might be a potential therapeutic approach for neuroinflammation-associated diseases.
Collapse
Affiliation(s)
- Xiaoxia Ye
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Mingming Zhu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Xiaohang Che
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Huiyang Wang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Xing-Jie Liang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology of China, Beijing, People's Republic of China
| | - Chunfu Wu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Xue Xue
- State Key Laboratory of Medicinal Chemical Biology and College of Pharmacy, Nankai University, Tianjin, 300071, People's Republic of China.
| | - Jingyu Yang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China.
| |
Collapse
|
71
|
Vichaya EG, Gross PS, Estrada DJ, Cole SW, Grossberg AJ, Evans SE, Tuvim MJ, Dickey BF, Dantzer R. Lipocalin-2 is dispensable in inflammation-induced sickness and depression-like behavior. Psychopharmacology (Berl) 2019; 236:2975-2982. [PMID: 30806746 PMCID: PMC6710168 DOI: 10.1007/s00213-019-05190-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 02/04/2019] [Indexed: 12/27/2022]
Abstract
RATIONALE While the relationship between inflammation and depression is well-established, the molecular mechanisms mediating this relationship remain unclear. RNA sequencing analysis comparing brains of vehicle- and lipopolysaccharide-treated mice revealed LCN2 among the most dysregulated genes. As LCN2 is known to be an important regulator of the immune response to bacterial infection, we investigated its role in the behavioral response to lipopolysaccharide. OBJECTIVE To explore the role of LCN2 in modulating behavior following lipopolysaccharide administration using wild type (WT) and lcn2-/- mice. METHODS Using a within-subjects design, mice were treated with 0.33 mg/kg liposaccharide (LPS) and vehicle. Primary outcome measures included body weight, food consumption, voluntary wheel running, sucrose preference, and the tail suspension test. To evaluate the inflammatory response, 1 week later, mice were re-administered either vehicle or LPS and terminated at 6 h. RESULTS While lcn2-/- mice had increased baseline food consumption and body weight, they showed a pattern of reduced food consumption and weight loss similar to WT mice in response to LPS. WT and lcn2-/- mice both recovered voluntary activity on the fourth day following LPS. LPS induced equivalent reductions in sucrose preference and TST immobility in the WT and lcn2-/- mice. Finally, there were no significant effects of genotype on inflammatory markers. CONCLUSIONS Our data demonstrate that lcn2 is dispensable for sterile inflammation-induced sickness and depression-like behavior. Specifically, lcn2-/- mice displayed sickness and immobility in the tail suspension test comparable to that of WT mice both in terms of intensity and duration.
Collapse
Affiliation(s)
- Elisabeth G Vichaya
- Department of Symptom Research, Division of Internal Medicine, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 384, Houston, TX, 77030, USA.
| | - Phillip S Gross
- Department of Symptom Research, Division of Internal Medicine, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 384, Houston, TX, 77030, USA
| | - Darlene J Estrada
- Department of Symptom Research, Division of Internal Medicine, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 384, Houston, TX, 77030, USA
| | - Steve W Cole
- Departments of Medicine and Psychiatry & Biobehavioral Sciences, Jonsson Comprehensive Cancer Center and Norman Cousins Center, UCLA School of Medicine, Los Angeles, CA, USA
| | - Aaron J Grossberg
- Department of Radiation Medicine, School of Medicine, Oregon Health & Sciences University, Portland, OR, USA
| | - Scott E Evans
- Department of Pulmonary Medicine, Division of Internal Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michael J Tuvim
- Department of Pulmonary Medicine, Division of Internal Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Burton F Dickey
- Department of Pulmonary Medicine, Division of Internal Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Robert Dantzer
- Department of Symptom Research, Division of Internal Medicine, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd, Unit 384, Houston, TX, 77030, USA
| |
Collapse
|
72
|
Platycodigenin as Potential Drug Candidate for Alzheimer's Disease via Modulating Microglial Polarization and Neurite Regeneration. Molecules 2019; 24:molecules24183207. [PMID: 31487775 PMCID: PMC6767002 DOI: 10.3390/molecules24183207] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 09/02/2019] [Accepted: 09/03/2019] [Indexed: 12/31/2022] Open
Abstract
Neuroinflammatory microenvironment, regulating neurite regrowth and neuronal survival, plays a critical role in Alzheimer’s disease (AD). During neuroinflammation, microglia are activated, inducing the release of inflammatory or anti-inflammatory factors depending on their polarization into classical M1 microglia or alternative M2 phenotype. Therefore, optimizing brain microenvironment by small molecule-targeted microglia polarization and promoting neurite regeneration might be a potential therapeutic strategy for AD. In this study, we found platycodigenin, a naturally occurring triterpenoid, promoted M2 polarization and inhibited M1 polarization in lipopolysaccharide (LPS)-stimulated BV2 and primary microglia. Platycodigenin downregulated pro-inflammatory molecules such as interleukin (IL)-1β, tumor necrosis factor (TNF)-α, IL-6 and nitric oxide (NO), while upregulated anti-inflammatory cytokine IL-10. Further investigation confirmed that platycodigenin inhibited cyclooxygenase-2 (Cox2) positive M1 but increased Ym1/2 positive M2 microglial polarization in primary microglia. In addition, platycodigenin significantly decreased LPS-induced the hyperphosphorylation of mitogen-activated protein kinase (MAPK) p38 and nuclear factor-κB (NF-κB) p65 subunits. Furthermore, the inactivation of peroxisome proliferators-activated receptor γ (PPARγ) induced by LPS was completely ameliorated by platycodigenin. Platycodigenin also promoted neurite regeneration and neuronal survival after Aβ treatment in primary cortical neurons. Taken together, our study for the first time clarified that platycodigenin effectively ameliorated LPS-induced inflammation and Aβ-induced neurite atrophy and neuronal death.
Collapse
|
73
|
Sailuotong Capsule Prevents the Cerebral Ischaemia-Induced Neuroinflammation and Impairment of Recognition Memory through Inhibition of LCN2 Expression. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:8416105. [PMID: 31565154 PMCID: PMC6745154 DOI: 10.1155/2019/8416105] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 03/27/2019] [Accepted: 05/04/2019] [Indexed: 12/13/2022]
Abstract
Background Astrogliosis can result in astrocytes with hypertrophic morphology after injury, indicated by extended processes and swollen cell bodies. Lipocalin-2 (LCN2), a secreted glycoprotein belonging to the lipocalin superfamily, has been reported to play a detrimental role in ischaemic brains and neurodegenerative diseases. Sailuotong (SLT) capsule is a standardized three-herb preparation composed of ginseng, ginkgo, and saffron for the treatment of vascular dementia. Although recent clinical trials have demonstrated the beneficial effect of SLT on vascular dementia, its potential cellular mechanism has not been fully explored. Methods Male adult Sprague-Dawley (SD) rats were subjected to microsphere-embolized cerebral ischaemia. Immunostaining and Western blotting were performed to assess astrocytic reaction. Human astrocytes exposed to oxygen-glucose deprivation (OGD) were used to elucidate the effects of SLT-induced inflammation and astrocytic reaction. Results A memory recovery effect was found to be associated with the cerebral ischaemia-induced expression of inflammatory proteins and the suppression of LCN2 expression in the brain. Additionally, SLT reduced the astrocytic reaction, LCN2 expression, and the phosphorylation of STAT3 and JAK2. For in vitro experiments, OGD-induced expression of inflammation and LCN2 was also decreased in human astrocyte by the SLT treatment. Moreover, LCN2 overexpression significantly enhanced the above effects. SLT downregulated these effects that were enhanced by LCN2 overexpression. Conclusions SLT mediates neuroinflammation, thereby protecting against ischaemic brain injury by inhibiting astrogliosis and suppressing neuroinflammation via the LCN2-JAK2/STAT3 pathway, providing a new idea for the treatment strategy of ischaemic stroke.
Collapse
|
74
|
Park KA, Jin Z, An HS, Lee JY, Jeong EA, Choi EB, Kim KE, Shin HJ, Lee JE, Roh GS. Effects of caloric restriction on the expression of lipocalin-2 and its receptor in the brown adipose tissue of high-fat diet-fed mice. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2019; 23:335-344. [PMID: 31496871 PMCID: PMC6717793 DOI: 10.4196/kjpp.2019.23.5.335] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 06/25/2019] [Accepted: 07/09/2019] [Indexed: 01/15/2023]
Abstract
Obesity causes inflammation and impairs thermogenic functions in brown adipose tissue (BAT). The adipokine lipocalin 2 (LCN2) has been implicated in inflammation and obesity. Herein, we investigated the protective effects of caloric restriction (CR) on LCN2-mediated inflammation and oxidative stress in the BAT of high-fat diet (HFD)-fed mice. Mice were fed a HFD for 20 weeks and then either continued on the HFD or subjected to CR for the next 12 weeks. CR led to the browning of the white fat-like phenotype in HFD-fed mice. Increased expressions of LCN2 and its receptor in the BAT of HFD-fed mice were significantly attenuated by CR. Additionally, HFD+CR-fed mice had fewer neutrophils and macrophages expressing LCN2 and iron-positive cells than HFD-fed mice. Further, oxidative stress and mitochondrial fission induced by a HFD were also significantly attenuated by CR. Our findings indicate that the protective effects of CR on inflammation and oxidative stress in the BAT of obese mice may be associated with regulation of LCN2.
Collapse
Affiliation(s)
- Kyung-Ah Park
- Department of Anatomy and Convergence Medical Science, Bio Anti-Aging Medical Research Center, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Korea
| | - Zhen Jin
- Department of Anatomy and Convergence Medical Science, Bio Anti-Aging Medical Research Center, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Korea
| | - Hyeong Seok An
- Department of Anatomy and Convergence Medical Science, Bio Anti-Aging Medical Research Center, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Korea
| | - Jong Youl Lee
- Department of Anatomy and Convergence Medical Science, Bio Anti-Aging Medical Research Center, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Korea
| | - Eun Ae Jeong
- Department of Anatomy and Convergence Medical Science, Bio Anti-Aging Medical Research Center, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Korea
| | - Eun Bee Choi
- Department of Anatomy and Convergence Medical Science, Bio Anti-Aging Medical Research Center, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Korea
| | - Kyung Eun Kim
- Department of Anatomy and Convergence Medical Science, Bio Anti-Aging Medical Research Center, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Korea
| | - Hyun Joo Shin
- Department of Anatomy and Convergence Medical Science, Bio Anti-Aging Medical Research Center, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Korea
| | - Jung Eun Lee
- Department of Thoracic and Cardiovascular Surgery, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Korea
| | - Gu Seob Roh
- Department of Anatomy and Convergence Medical Science, Bio Anti-Aging Medical Research Center, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Korea
| |
Collapse
|
75
|
The Association of Immune Markers with Cognitive Performance in South African HIV-Positive Patients. J Neuroimmune Pharmacol 2019; 14:679-687. [PMID: 31388873 DOI: 10.1007/s11481-019-09870-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 07/28/2019] [Indexed: 10/26/2022]
Abstract
Dysregulated expression of neuro-immune markers has previously been linked to HIV-associated neurocognitive impairment. We undertook an exploratory approach in a HIV clade-C cohort, investigating the association between eight immune markers and neurocognitive performance in 99 HIV+ and 51 HIV- participants. Markers were selected on preliminary and putative evidence of their link to key neuro-immune functions. Cognitive performance was established using a battery of tests sensitive to HIV-associated neurocognitive impairment, with domain-based scores utilized in analysis. The markers Thymidine phosphorylase (TYMP) and Neutrophil gelatinase-associated lipocalin (NGAL) were significantly higher while Matrix Metalloproteinase (MMP)9 was significantly lower in HIV+ participants. Our results further showed that in the HIV+ group, worse psychomotor processing speed was associated with higher TYMP and NGAL levels and worse motor function was associated with higher NGAL levels. Future studies should explore the underlying mechanisms of these markers in HIV-associated neurocognitive impairment. Graphical Abstract The association of peripheral immune markers with neurocognitive performance in South African HIV-positive patients.
Collapse
|
76
|
Lu F, Inoue K, Kato J, Minamishima S, Morisaki H. Functions and regulation of lipocalin-2 in gut-origin sepsis: a narrative review. CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2019; 23:269. [PMID: 31375129 PMCID: PMC6679544 DOI: 10.1186/s13054-019-2550-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 07/22/2019] [Indexed: 12/14/2022]
Abstract
Lipocalin-2 (Lcn2), an innate immune protein, has come to be recognized for its roles in iron homeostasis, infection, and inflammation. In this narrative review, we provide a comprehensive description based on currently available evidence of the clinical implications of Lcn2 and its therapeutic potency in gut-origin sepsis. Lcn2 appears to mitigate gut barrier injury via maintaining homeostasis of the microbiota and exerting antioxidant strategy, as well as by deactivating macrophages and inducing immune cell apoptosis to terminate systemic hyper-inflammation. We propose that development of a therapeutic strategy targeting lipocalin-2 could be highly promising in the management of gut-origin sepsis.
Collapse
Affiliation(s)
- Fanglin Lu
- Keio University Graduate School of Medicine Doctoral Programs, Tokyo, Japan.,Department of Anesthesiology, Keio University School of Medicine, 35 Shinanoamchi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Kei Inoue
- Department of Anesthesiology, Keio University School of Medicine, 35 Shinanoamchi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Jungo Kato
- Department of Anesthesiology, Keio University School of Medicine, 35 Shinanoamchi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Shizuka Minamishima
- Department of Anesthesiology, Keio University School of Medicine, 35 Shinanoamchi, Shinjuku-ku, Tokyo, 160-8582, Japan
| | - Hiroshi Morisaki
- Department of Anesthesiology, Keio University School of Medicine, 35 Shinanoamchi, Shinjuku-ku, Tokyo, 160-8582, Japan.
| |
Collapse
|
77
|
Chang F, Wang Y, Liu P, Peng J, Han GH, Ding X, Wei S, Gao G, Huang K. Role of macrophages in peripheral nerve injury and repair. Neural Regen Res 2019; 14:1335. [DOI: https:/doi.org/10.4103/1673-5374.253510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025] Open
|
78
|
Pivotal role of innate myeloid cells in cerebral post-ischemic sterile inflammation. Semin Immunopathol 2018; 40:523-538. [PMID: 30206661 DOI: 10.1007/s00281-018-0707-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Accepted: 09/04/2018] [Indexed: 12/17/2022]
Abstract
Inflammatory responses play a multifaceted role in regulating both disability and recovery after ischemic brain injury. In the acute phase of ischemic stroke, resident microglia elicit rapid inflammatory responses by the ischemic milieu. After disruption of the blood-brain barrier, peripheral-derived neutrophils and mononuclear phagocytes infiltrate into the ischemic brain. These infiltrating myeloid cells are activated by the endogenous alarming molecules released from dying brain cells. Inflammation after ischemic stroke thus typically consists of sterile inflammation triggered by innate immunity, which exacerbates the pathologies of ischemic stroke and worsens neurological prognosis. Infiltrating immune cells sustain the post-ischemic inflammation for several days; after this period, however, these cells take on a repairing function, phagocytosing inflammatory mediators and cellular debris. This time-specific polarization of immune cells in the ischemic brain is a potential novel therapeutic target. In this review, we summarize the current understanding of the phase-dependent role of innate myeloid cells in ischemic stroke and discuss the cellular and molecular mechanisms of their inflammatory or repairing polarization from a therapeutic perspective.
Collapse
|
79
|
Li R, Liu W, Yin J, Chen Y, Guo S, Fan H, Li X, Zhang X, He X, Duan C. TSG-6 attenuates inflammation-induced brain injury via modulation of microglial polarization in SAH rats through the SOCS3/STAT3 pathway. J Neuroinflammation 2018; 15:231. [PMID: 30126439 PMCID: PMC6102893 DOI: 10.1186/s12974-018-1279-1] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 08/13/2018] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND An acute and drastic inflammatory response characterized by the production of inflammatory mediators is followed by stroke, including SAH. Overactivation of microglia parallels an excessive inflammatory response and worsened brain damage. Previous studies indicate that TSG-6 has potent immunomodulatory and anti-inflammatory properties. This study aimed to evaluate the effects of TSG-6 in modulating immune reaction and microglial phenotype shift after experimental SAH. METHODS The SAH model was established by endovascular puncture method for Sprague-Dawley rats (weighing 280-320 g). Recombinant human protein and specific siRNAs for TSG-6 were exploited in vivo. Brain injury was assessed by neurologic scores, brain water content, and Fluoro-Jade C (FJC) staining. Microglia phenotypic status was evaluated and determined by Western immunoblotting, quantitative real-time polymerase chain reaction (qPCR) analyses, flow cytometry, and immunofluorescence labeling. RESULTS SAH induced significant inflammation, and M1-dominated microglia polarization increased expression of TSG-6 and neurological dysfunction in rats. rh-TSG-6 significantly ameliorated brain injury, decreased proinflammatory mediators, and skewed microglia towards a more anti-inflammatory property 24-h after SAH. While knockdown of TSG-6 further induced detrimental effects of microglia accompanied with more neurological deficits, the anti-inflammation effects of rh-TSG-6 were associated with microglia phenotypic shift by regulating the level of SOCS3/STAT3 axis. CONCLUSIONS TSG-6 exerted neuroprotection against SAH-induced EBI in rats, mediated in part by skewing the balance of microglial response towards a protective phenotype, thereby preventing excessive tissue damage and improving functional outcomes. Our findings revealed the role of TSG-6 in modulating microglial response partially involved in the SOCS3/STAT3 pathway and TSG-6 may be a promising therapeutic target for the treatment of brain injury following SAH.
Collapse
Affiliation(s)
- Ran Li
- Department of Neurosurgery, Zhujiang Hospital, The National Key Clinical Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Southern Medical University, Guangzhou, 510282, China
| | - Wenchao Liu
- Department of Neurosurgery, Zhujiang Hospital, The National Key Clinical Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Southern Medical University, Guangzhou, 510282, China
| | - Jian Yin
- Department of Neurosurgery, Zhujiang Hospital, The National Key Clinical Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Southern Medical University, Guangzhou, 510282, China
| | - Yunchang Chen
- Department of Neurosurgery, Zhujiang Hospital, The National Key Clinical Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Southern Medical University, Guangzhou, 510282, China
| | - Shenquan Guo
- Department of Neurosurgery, Zhujiang Hospital, The National Key Clinical Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Southern Medical University, Guangzhou, 510282, China
| | - Haiyan Fan
- Department of Neurosurgery, Zhujiang Hospital, The National Key Clinical Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Southern Medical University, Guangzhou, 510282, China
| | - Xifeng Li
- Department of Neurosurgery, Zhujiang Hospital, The National Key Clinical Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Southern Medical University, Guangzhou, 510282, China
| | - Xin Zhang
- Department of Neurosurgery, Zhujiang Hospital, The National Key Clinical Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Southern Medical University, Guangzhou, 510282, China
| | - Xuying He
- Department of Neurosurgery, Zhujiang Hospital, The National Key Clinical Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Southern Medical University, Guangzhou, 510282, China
| | - Chuanzhi Duan
- Department of Neurosurgery, Zhujiang Hospital, The National Key Clinical Specialty, The Neurosurgery Institute of Guangdong Province, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration, Southern Medical University, Guangzhou, 510282, China.
| |
Collapse
|
80
|
Marques S, van Bruggen D, Vanichkina DP, Floriddia EM, Munguba H, Väremo L, Giacomello S, Falcão AM, Meijer M, Björklund ÅK, Hjerling-Leffler J, Taft RJ, Castelo-Branco G. Transcriptional Convergence of Oligodendrocyte Lineage Progenitors during Development. Dev Cell 2018; 46:504-517.e7. [PMID: 30078729 PMCID: PMC6104814 DOI: 10.1016/j.devcel.2018.07.005] [Citation(s) in RCA: 185] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Revised: 05/23/2018] [Accepted: 07/03/2018] [Indexed: 01/31/2023]
Abstract
Pdgfra+ oligodendrocyte precursor cells (OPCs) arise in distinct specification waves during embryogenesis in the central nervous system (CNS). It is unclear whether there is a correlation between these waves and different oligodendrocyte (OL) states at adult stages. Here, we present bulk and single-cell transcriptomics resources providing insights on how transitions between these states occur. We found that post-natal OPCs from brain and spinal cord present similar transcriptional signatures. Moreover, post-natal OPC progeny of E13.5 Pdgfra+ cells present electrophysiological and transcriptional profiles similar to OPCs derived from subsequent specification waves, indicating that Pdgfra+ pre-OPCs rewire their transcriptional network during development. Single-cell RNA-seq and lineage tracing indicates that a subset of E13.5 Pdgfra+ cells originates cells of the pericyte lineage. Thus, our results indicate that embryonic Pdgfra+ cells in the CNS give rise to distinct post-natal cell lineages, including OPCs with convergent transcriptional profiles in different CNS regions. OPCs arising from different parts of the CNS are highly similar to one another Pre-OPCs converge into similar transcriptional and electrophysiological OPC states E13.5 Pdgfra+ cells give rise mainly to OPCs in the post-natal CNS E13.5 Pdgfra+ cells also give rise to cells of the pericyte lineage
Collapse
Affiliation(s)
- Sueli Marques
- Laboratory of Molecular Neurobiology, Department Medical Biochemistry and Biophysics, Biomedicum, Karolinska Institutet, Stockholm 17177, Sweden
| | - David van Bruggen
- Laboratory of Molecular Neurobiology, Department Medical Biochemistry and Biophysics, Biomedicum, Karolinska Institutet, Stockholm 17177, Sweden
| | - Darya Pavlovna Vanichkina
- Gene and Stem Cell Therapy Program, Centenary Institute, University of Sydney, Camperdown, NSW 2050, Australia; Institute for Molecular Bioscience, University of Queensland, St Lucia, QLD 4067, Australia
| | - Elisa Mariagrazia Floriddia
- Laboratory of Molecular Neurobiology, Department Medical Biochemistry and Biophysics, Biomedicum, Karolinska Institutet, Stockholm 17177, Sweden
| | - Hermany Munguba
- Laboratory of Molecular Neurobiology, Department Medical Biochemistry and Biophysics, Biomedicum, Karolinska Institutet, Stockholm 17177, Sweden
| | - Leif Väremo
- Science for Life Laboratory, Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, Göteborg 412 96, Sweden
| | - Stefania Giacomello
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Box 1031, 17121 Solna, Sweden
| | - Ana Mendanha Falcão
- Laboratory of Molecular Neurobiology, Department Medical Biochemistry and Biophysics, Biomedicum, Karolinska Institutet, Stockholm 17177, Sweden
| | - Mandy Meijer
- Laboratory of Molecular Neurobiology, Department Medical Biochemistry and Biophysics, Biomedicum, Karolinska Institutet, Stockholm 17177, Sweden
| | - Åsa Kristina Björklund
- Science for Life Laboratory, Department of Cell and Molecular Biology, Uppsala University, Husargatan 3, 75237 Uppsala, Sweden
| | - Jens Hjerling-Leffler
- Laboratory of Molecular Neurobiology, Department Medical Biochemistry and Biophysics, Biomedicum, Karolinska Institutet, Stockholm 17177, Sweden
| | - Ryan James Taft
- Institute for Molecular Bioscience, University of Queensland, St Lucia, QLD 4067, Australia; Illumina, Inc., San Diego, CA 92122, USA
| | - Gonçalo Castelo-Branco
- Laboratory of Molecular Neurobiology, Department Medical Biochemistry and Biophysics, Biomedicum, Karolinska Institutet, Stockholm 17177, Sweden.
| |
Collapse
|
81
|
Förstner P, Rehman R, Anastasiadou S, Haffner-Luntzer M, Sinske D, Ignatius A, Roselli F, Knöll B. Neuroinflammation after Traumatic Brain Injury Is Enhanced in Activating Transcription Factor 3 Mutant Mice. J Neurotrauma 2018; 35:2317-2329. [PMID: 29463176 DOI: 10.1089/neu.2017.5593] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Traumatic brain injury (TBI) induces a neuroinflammatory response resulting in astrocyte and microglia activation at the lesion site. This involves upregulation of neuroinflammatory genes, including chemokines and interleukins. However, so far, there is lack of knowledge on transcription factors (TFs) modulating this TBI-associated gene expression response. Herein, we analyzed activating transcription factor 3 (ATF3), a TF encoding a regeneration-associated gene (RAG) predominantly studied in peripheral nervous system (PNS) injury. ATF3 contributes to PNS axon regeneration and was shown before to regulate inflammatory processes in other injury models. In contrast to PNS injury, data on ATF3 in central nervous system (CNS) injury are sparse. We used Atf3 mouse mutants and a closed-head weight-drop-based TBI model in adult mice to target the rostrolateral cortex resulting in moderate injury severity. Post-TBI, ATF3 was upregulated already at early time points (i.e,. 1-4 h) post-injury in the brain. Mortality and weight loss upon TBI were slightly elevated in Atf3 mutants. ATF3 deficiency enhanced TBI-induced paresis and hematoma formation, suggesting that ATF3 limits these injury outcomes in wild-type mice. Next, we analyzed TBI-associated RAG and inflammatory gene expression in the cortical impact area. In contrast to the PNS, only some RAGs (Atf3, Timp1, and Sprr1a) were induced by TBI, and, surprisingly, some RAG encoding neuropeptides were downregulated. Notably, we identified ATF3 as TF-regulating proneuroinflammatory gene expression, including CCL and CXCL chemokines (Ccl2, Ccl3, Ccl4, and Cxcl1) and lipocalin. In Atf3 mutant mice, mRNA abundance was further enhanced upon TBI compared to wild-type mice, suggesting immune gene repression by wild-type ATF3. In accord, more immune cells were present in the lesion area of ATF3-deficient mice. Overall, we identified ATF3 as a new TF-mediating TBI-associated CNS inflammatory responses.
Collapse
Affiliation(s)
- Philip Förstner
- 1 Institute of Physiological Chemistry, Ulm University , Ulm, Germany
| | - Rida Rehman
- 2 Department of Neurology, Ulm University , Ulm, Germany .,3 Department of Biomedical Engineering and Sciences (BMES), School of Mechanical and Manufacturing Engineering (SMME), National University of Sciences and Technology (NUST) , H-12, Islamabad, Pakistan
| | | | - Melanie Haffner-Luntzer
- 4 Institute of Orthopaedic Research and Biomechanics, Center for Trauma Research Ulm, University of Ulm , Ulm, Germany
| | - Daniela Sinske
- 1 Institute of Physiological Chemistry, Ulm University , Ulm, Germany
| | - Anita Ignatius
- 4 Institute of Orthopaedic Research and Biomechanics, Center for Trauma Research Ulm, University of Ulm , Ulm, Germany
| | | | - Bernd Knöll
- 1 Institute of Physiological Chemistry, Ulm University , Ulm, Germany
| |
Collapse
|
82
|
Liu YW, Li S, Dai SS. Neutrophils in traumatic brain injury (TBI): friend or foe? J Neuroinflammation 2018; 15:146. [PMID: 29776443 PMCID: PMC5960133 DOI: 10.1186/s12974-018-1173-x] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 04/23/2018] [Indexed: 12/26/2022] Open
Abstract
Our knowledge of the pathophysiology about traumatic brain injury (TBI) is still limited. Neutrophils, as the most abundant leukocytes in circulation and the first-line transmigrated immune cells at the sites of injury, are highly involved in the initiation, development, and recovery of TBI. Nonetheless, our understanding about neutrophils in TBI is obsolete, and mounting evidences from recent studies have challenged the conventional views. This review summarizes what is known about the relationships between neutrophils and pathophysiology of TBI. In addition, discussions are made on the complex roles as well as the controversial views of neutrophils in TBI.
Collapse
Affiliation(s)
- Yang-Wuyue Liu
- Department of Biochemistry and Molecular Biology, Army Medical University, Chongqing, 400038, People's Republic of China.,Center for Pharmacogenetics, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania, 15261, USA
| | - Song Li
- Center for Pharmacogenetics, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania, 15261, USA
| | - Shuang-Shuang Dai
- Department of Biochemistry and Molecular Biology, Army Medical University, Chongqing, 400038, People's Republic of China. .,Molecular Biology Center, State Key Laboratory of Trauma, Burn, and Combined Injury, Daping Hospital, Army Medical University, Chongqing, 400042, People's Republic of China.
| |
Collapse
|
83
|
More than a simple biomarker: the role of NGAL in cardiovascular and renal diseases. Clin Sci (Lond) 2018; 132:909-923. [PMID: 29739822 DOI: 10.1042/cs20171592] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 03/05/2018] [Accepted: 04/04/2018] [Indexed: 12/15/2022]
Abstract
Neutrophil gelatinase-associated lipocalin (NGAL) is a small circulating protein that is highly modulated in a wide variety of pathological situations, making it a useful biomarker of various disease states. It is one of the best markers of acute kidney injury, as it is rapidly released after tubular damage. However, a growing body of evidence highlights an important role for NGAL beyond that of a biomarker of renal dysfunction. Indeed, numerous studies have demonstrated a role for NGAL in both cardiovascular and renal diseases. In the present review, we summarize current knowledge concerning the involvement of NGAL in cardiovascular and renal diseases and discuss the various mechanisms underlying its pathological implications.
Collapse
|
84
|
Jin Z, Jung Y, Yi CO, Lee JY, Jeong EA, Lee JE, Park KJ, Kwon OY, Lim BH, Choi NC, Roh GS. Atorvastatin pretreatment attenuates kainic acid-induced hippocampal neuronal death via regulation of lipocalin-2-associated neuroinflammation. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2018; 22:301-309. [PMID: 29719452 PMCID: PMC5928343 DOI: 10.4196/kjpp.2018.22.3.301] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 12/31/2017] [Accepted: 02/07/2018] [Indexed: 11/15/2022]
Abstract
Statins mediate vascular protection and reduce the prevalence of cardiovascular diseases. Recent work indicates that statins have anticonvulsive effects in the brain; however, little is known about the precise mechanism for its protective effect in kainic acid (KA)-induced seizures. Here, we investigated the protective effects of atorvastatin pretreatment on KA-induced neuroinflammation and hippocampal cell death. Mice were treated via intragastric administration of atorvastatin for 7 days, injected with KA, and then sacrificed after 24 h. We observed that atorvastatin pretreatment reduced KA-induced seizure activity, hippocampal cell death, and neuroinflammation. Atorvastatin pretreatment also inhibited KA-induced lipocalin-2 expression in the hippocampus and attenuated KA-induced hippocampal cyclooxygenase-2 expression and glial activation. Moreover, AKT phosphorylation in KA-treated hippocampus was inhibited by atorvastatin pretreatment. These findings suggest that atorvastatin pretreatment may protect hippocampal neurons during seizures by controlling lipocalin-2-associated neuroinflammation.
Collapse
Affiliation(s)
- Zhen Jin
- Department of Anatomy and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Korea
| | - Yohan Jung
- Department of Neurology, Changwon Fatima Hospital, Changwon 51394, Korea
| | - Chin-Ok Yi
- Department of Anatomy and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Korea
| | - Jong Youl Lee
- Department of Anatomy and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Korea
| | - Eun Ae Jeong
- Department of Anatomy and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Korea
| | - Jung Eun Lee
- Department of Thoracic and Cardiovascular Surgery, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Korea
| | - Ki-Jong Park
- Department of Neurology, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Korea
| | - Oh-Young Kwon
- Department of Neurology, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Korea
| | - Byeong Hoon Lim
- Department of Neurology, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Korea
| | - Nack-Cheon Choi
- Department of Neurology, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Korea
| | - Gu Seob Roh
- Department of Anatomy and Convergence Medical Science, Institute of Health Sciences, College of Medicine, Gyeongsang National University, Jinju 52727, Korea
| |
Collapse
|
85
|
Dekens DW, Naudé PJW, Engelborghs S, Vermeiren Y, Van Dam D, Oude Voshaar RC, Eisel ULM, De Deyn PP. Neutrophil Gelatinase-Associated Lipocalin and its Receptors in Alzheimer's Disease (AD) Brain Regions: Differential Findings in AD with and without Depression. J Alzheimers Dis 2018; 55:763-776. [PMID: 27716662 PMCID: PMC5147520 DOI: 10.3233/jad-160330] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Co-existing depression worsens Alzheimer’s disease (AD) pathology. Neutrophil gelatinase-associated lipocalin (NGAL) is a newly identified (neuro)inflammatory mediator in the pathophysiologies of both AD and depression. This study aimed to compare NGAL levels in healthy controls, AD without depression (AD–D), and AD with co-existing depression (AD+D) patients. Protein levels of NGAL and its receptors, 24p3R and megalin, were assessed in nine brain regions from healthy controls (n = 19), AD–D (n = 19), and AD+D (n = 21) patients. NGAL levels in AD–D patients were significantly increased in brain regions commonly associated with AD. In the hippocampus, NGAL levels were even further increased in AD+D subjects. Unexpectedly, NGAL levels in the prefrontal cortex of AD+D patients were comparable to those in controls. Megalin levels were increased in BA11 and amygdala of AD+D patients, while no changes in 24p3R were detected. These findings indicate significant differences in neuroimmunological regulation between AD patients with and without co-existing depression. Considering its known effects, elevated NGAL levels might actively promote neuropathological processes in AD with and without depression.
Collapse
Affiliation(s)
- Doortje W Dekens
- Department of Neurology and Alzheimer Research Center, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Department of Molecular Neurobiology, University of Groningen, Groningen, The Netherlands
| | - Petrus J W Naudé
- Department of Neurology and Alzheimer Research Center, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Department of Molecular Neurobiology, University of Groningen, Groningen, The Netherlands
| | - Sebastiaan Engelborghs
- Department of Neurology and Memory Clinic, Hospital Network Antwerp (ZNA), Antwerp, Belgium.,Laboratory of Neurochemistry and Behavior, Biobank, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - Yannick Vermeiren
- Department of Neurology and Alzheimer Research Center, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Laboratory of Neurochemistry and Behavior, Biobank, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - Debby Van Dam
- Department of Neurology and Alzheimer Research Center, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Laboratory of Neurochemistry and Behavior, Biobank, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| | - Richard C Oude Voshaar
- University Center of Psychiatry & Interdisciplinary Center of Psychopathology of Emotion Regulation, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Ulrich L M Eisel
- Department of Molecular Neurobiology, University of Groningen, Groningen, The Netherlands.,University Center of Psychiatry & Interdisciplinary Center of Psychopathology of Emotion Regulation, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Peter P De Deyn
- Department of Neurology and Alzheimer Research Center, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.,Department of Neurology and Memory Clinic, Hospital Network Antwerp (ZNA), Antwerp, Belgium.,Laboratory of Neurochemistry and Behavior, Biobank, Institute Born-Bunge, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
86
|
Kang SS, Ren Y, Liu CC, Kurti A, Baker KE, Bu G, Asmann Y, Fryer JD. Lipocalin-2 protects the brain during inflammatory conditions. Mol Psychiatry 2018; 23:344-350. [PMID: 28070126 PMCID: PMC5503822 DOI: 10.1038/mp.2016.243] [Citation(s) in RCA: 116] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 10/04/2016] [Accepted: 10/17/2016] [Indexed: 02/07/2023]
Abstract
Sepsis is a prevalent health issue that can lead to central nervous system (CNS) inflammation with long-term behavioral and cognitive alterations. Using unbiased proteomic profiling of over 100 different cytokines, we found that Lipocalin-2 (LCN2) was the most substantially elevated protein in the CNS after peripheral administration of lipopolysaccharide (LPS). To determine whether the high level of LCN2 in the CNS is protective or deleterious, we challenged Lcn2-/- mice with peripheral LPS and determined effects on behavior and neuroinflammation. At a time corresponding to peak LCN2 induction in wild-type (WT) mice injected with LPS, Lcn2-/- mice challenged with LPS had exacerbated levels of pro-inflammatory cytokines and exhibited significantly worsened behavioral phenotypes. To determine the extent of global inflammatory changes dependent upon LCN2, we performed an RNAseq transcriptomic analysis. Compared with WT mice injected with LPS, Lcn2-/- mice injected with LPS had unique transcriptional profiles and significantly elevated levels of multiple pro-inflammatory molecules. Several LCN2-dependent pathways were revealed with this analysis including, cytokine and chemokine signaling, nucleotide-binding oligomerization domain-like receptor signaling and Janus kinase-signal transducer and activator of transcription signaling. These findings demonstrate that LCN2 serves as a potent protective factor in the CNS in response to systemic inflammation and may be a potential candidate for limiting sepsis-related CNS sequelae.
Collapse
Affiliation(s)
- S S Kang
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Y Ren
- Department of Health Sciences Research, Mayo Clinic, Jacksonville, FL, USA
| | - C-C Liu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - A Kurti
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - K E Baker
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - G Bu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA,Neurobiology of Disease Graduate Program, Mayo Clinic College of Medicine, Jacksonville, FL, USA
| | - Y Asmann
- Department of Health Sciences Research, Mayo Clinic, Jacksonville, FL, USA
| | - J D Fryer
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA,Neurobiology of Disease Graduate Program, Mayo Clinic College of Medicine, Jacksonville, FL, USA,Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224, USA. E-mail:
| |
Collapse
|
87
|
Xu H, Wang Y, Song N, Wang J, Jiang H, Xie J. New Progress on the Role of Glia in Iron Metabolism and Iron-Induced Degeneration of Dopamine Neurons in Parkinson's Disease. Front Mol Neurosci 2018; 10:455. [PMID: 29403352 PMCID: PMC5780449 DOI: 10.3389/fnmol.2017.00455] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Accepted: 12/26/2017] [Indexed: 12/26/2022] Open
Abstract
It is now increasingly appreciated that glial cells play a critical role in the regulation of iron homeostasis. Impairment of these properties might lead to dysfunction of iron metabolism and neurodegeneration of neurons. We have previously shown that dysfunction of glia could cause iron deposit and enhance iron-induced degeneration of dopamine (DA) neurons in Parkinson’s disease (PD). There also has been a substantial growth of knowledge regarding the iron metabolism of glia and their effects on iron accumulation and degeneration of DA neurons in PD in recent years. Here, we attempt to describe the role of iron metabolism of glia and the effect of glia on iron accumulation and degeneration of DA neurons in the substantia nigra of PD. This could provide evidence to reveal the mechanisms underlying nigral iron accumulation of DA neurons in PD and provide the basis for discovering new potential therapeutic targets for PD.
Collapse
Affiliation(s)
- Huamin Xu
- Collaborative Innovation Center for Brain Science, Department of Physiology, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, Medical College of Qingdao University, Qingdao, China
| | - Youcui Wang
- Collaborative Innovation Center for Brain Science, Department of Physiology, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, Medical College of Qingdao University, Qingdao, China
| | - Ning Song
- Collaborative Innovation Center for Brain Science, Department of Physiology, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, Medical College of Qingdao University, Qingdao, China
| | - Jun Wang
- Collaborative Innovation Center for Brain Science, Department of Physiology, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, Medical College of Qingdao University, Qingdao, China
| | - Hong Jiang
- Collaborative Innovation Center for Brain Science, Department of Physiology, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, Medical College of Qingdao University, Qingdao, China
| | - Junxia Xie
- Collaborative Innovation Center for Brain Science, Department of Physiology, Shandong Provincial Collaborative Innovation Center for Neurodegenerative Disorders, Key Laboratory of Pathogenesis and Prevention of Neurological Disorders and State Key Disciplines: Physiology, Medical College of Qingdao University, Qingdao, China
| |
Collapse
|
88
|
Song J, Kim OY. Perspectives in Lipocalin-2: Emerging Biomarker for Medical Diagnosis and Prognosis for Alzheimer's Disease. Clin Nutr Res 2018; 7:1-10. [PMID: 29423384 PMCID: PMC5796918 DOI: 10.7762/cnr.2018.7.1.1] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 10/16/2017] [Accepted: 01/08/2018] [Indexed: 01/23/2023] Open
Abstract
Lipocalin-2 (LCN2), a secreted glycoprotein belonging to the lipocalin superfamily was reported to participate in various biological processes including cell migration, cell survival, inflammatory responses, and insulin sensitivity. LCN2 is expressed in the multiple tissues such as kidney, liver, uterus, and bone marrow. The receptors for LCN2 were additionally found in microglia, astrocytes, epithelial cells, and neurons, but the role of LCN2 in the central nervous system (CNS) has not been fully understood yet. Recently, in vitro, in vivo, and clinical studies reported the association between LCN2 and the risk of Alzheimer's disease (AD). Here, we reviewed the significant evidences showing that LCN2 contributes to the onset and progression of AD. It may suggest that the manipulation of LCN2 in the CNS would be a crucial target for regulation of the pathogenesis and risk of AD.
Collapse
Affiliation(s)
- Juhyun Song
- Department of Anatomy, Chonnam National University Medical School, Gwangju 61469, Korea.,Human Life Research Center, Dong-A University, Busan 49315, Korea
| | - Oh Yoen Kim
- Human Life Research Center, Dong-A University, Busan 49315, Korea.,Department of Food Science and Nutrition, Brain Busan 21 Project, Dong-A University, Busan 49315, Korea
| |
Collapse
|
89
|
Jha MK, Kim JH, Song GJ, Lee WH, Lee IK, Lee HW, An SSA, Kim S, Suk K. Functional dissection of astrocyte-secreted proteins: Implications in brain health and diseases. Prog Neurobiol 2017; 162:37-69. [PMID: 29247683 DOI: 10.1016/j.pneurobio.2017.12.003] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 10/23/2017] [Accepted: 12/08/2017] [Indexed: 02/07/2023]
Abstract
Astrocytes, which are homeostatic cells of the central nervous system (CNS), display remarkable heterogeneity in their morphology and function. Besides their physical and metabolic support to neurons, astrocytes modulate the blood-brain barrier, regulate CNS synaptogenesis, guide axon pathfinding, maintain brain homeostasis, affect neuronal development and plasticity, and contribute to diverse neuropathologies via secreted proteins. The identification of astrocytic proteome and secretome profiles has provided new insights into the maintenance of neuronal health and survival, the pathogenesis of brain injury, and neurodegeneration. Recent advances in proteomics research have provided an excellent catalog of astrocyte-secreted proteins. This review categorizes astrocyte-secreted proteins and discusses evidence that astrocytes play a crucial role in neuronal activity and brain function. An in-depth understanding of astrocyte-secreted proteins and their pathways is pivotal for the development of novel strategies for restoring brain homeostasis, limiting brain injury/inflammation, counteracting neurodegeneration, and obtaining functional recovery.
Collapse
Affiliation(s)
- Mithilesh Kumar Jha
- Department of Pharmacology, Brain Science and Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University School of Medicine, Daegu, Republic of Korea; Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Jong-Heon Kim
- Department of Pharmacology, Brain Science and Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Gyun Jee Song
- Department of Pharmacology, Brain Science and Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Won-Ha Lee
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, Daegu, Republic of Korea
| | - In-Kyu Lee
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Ho-Won Lee
- Department of Neurology, Brain Science and Engineering Institute, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Seong Soo A An
- Department of BioNano Technology, Gachon University, Gyeonggi-do, Republic of Korea
| | - SangYun Kim
- Department of Neurology, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Gyeonggi-do, Republic of Korea
| | - Kyoungho Suk
- Department of Pharmacology, Brain Science and Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University School of Medicine, Daegu, Republic of Korea.
| |
Collapse
|
90
|
Spleen-derived lipocalin-2 in the portal vein regulates Kupffer cells activation and attenuates the development of liver fibrosis in mice. J Transl Med 2017; 97:890-902. [PMID: 28504685 DOI: 10.1038/labinvest.2017.44] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 03/25/2017] [Accepted: 03/31/2017] [Indexed: 12/16/2022] Open
Abstract
The liver has an immune tolerance against gut-derived products from the portal vein (PV). A disruption of the gut-liver axis leads to liver injury and fibrosis. The spleen is connected to the PV and regulates immune functions. However, possible splenic effects on liver fibrosis development are unclear. Lipocalin-2 (Lcn2) is an antimicrobial protein that regulates macrophage activation. To clarify the role of the spleen in liver fibrosis development, we induced liver fibrosis in mice after splenectomy, and investigated liver fibrosis development. Liver fibrosis resulted in significantly increased splenic Lcn2 levels, but all other measured cytokine levels were unchanged. Splenectomized mice showed enhanced liver fibrosis and inflammation accompanied by significantly decreased Lcn2 levels in PV. Lipopolysaccharide-stimulated primary Kupffer cells, resident liver macrophages, which were treated with recombinant Lcn2 (rLcn2) produced less tumor necrosis factor-α and Ccl2 and the activation of hepatic stellate cells, the effector cells for collagen production in the liver, was suppressed by co-culture with rLcn2-treated Kupffer cells. In addition, the involvement of gut-derived products in splenectomized mice was evaluated by gut sterilization. Interestingly, gut sterilization blocked the effect of splenectomy on liver fibrosis development. In conclusion, spleen deficiency accelerated liver fibrosis development and decreased PV Lcn2 levels. The mechanism of splenic protection against liver fibrosis development may involve the splenic Lcn2, triggered by gut-derived products that enter the liver through the PV, regulates Kupffer cells activated by the gut-liver axis. Thus, the splenic Lcn2 may have an important role in regulating the immune tolerance of the liver in liver fibrosis development.
Collapse
|
91
|
Kim JH, Ko PW, Lee HW, Jeong JY, Lee MG, Kim JH, Lee WH, Yu R, Oh WJ, Suk K. Astrocyte-derived lipocalin-2 mediates hippocampal damage and cognitive deficits in experimental models of vascular dementia. Glia 2017; 65:1471-1490. [DOI: 10.1002/glia.23174] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 05/10/2017] [Accepted: 05/11/2017] [Indexed: 02/06/2023]
Affiliation(s)
- Jae-Hong Kim
- Department of Pharmacology; Kyungpook National University we of Medicine; Daegu Republic of Korea
- BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Sciences; Kyungpook National University School of Medicine; Daegu Republic of Korea
| | - Pan-Woo Ko
- Department of Neurology; Kyungpook National University School of Medicine; Daegu Republic of Korea
- Brain Science & Engineering Institute; Kyungpook National University; Daegu Republic of Korea
| | - Ho-Won Lee
- Department of Neurology; Kyungpook National University School of Medicine; Daegu Republic of Korea
- Brain Science & Engineering Institute; Kyungpook National University; Daegu Republic of Korea
| | - Ji-Young Jeong
- Department of Pharmacology; Kyungpook National University we of Medicine; Daegu Republic of Korea
| | - Maan-Gee Lee
- Department of Pharmacology; Kyungpook National University we of Medicine; Daegu Republic of Korea
- Brain Science & Engineering Institute; Kyungpook National University; Daegu Republic of Korea
| | - Jong-Heon Kim
- Department of Pharmacology; Kyungpook National University we of Medicine; Daegu Republic of Korea
- Brain Science & Engineering Institute; Kyungpook National University; Daegu Republic of Korea
- BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Sciences; Kyungpook National University School of Medicine; Daegu Republic of Korea
| | - Won-Ha Lee
- Department of Genetic Engineering; Kyungpook National University; Daegu Republic of Korea
| | - Ri Yu
- Korea Brain Research Institute; Daegu Republic of Korea
| | - Won-Jong Oh
- Korea Brain Research Institute; Daegu Republic of Korea
| | - Kyoungho Suk
- Department of Pharmacology; Kyungpook National University we of Medicine; Daegu Republic of Korea
- Brain Science & Engineering Institute; Kyungpook National University; Daegu Republic of Korea
- BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Sciences; Kyungpook National University School of Medicine; Daegu Republic of Korea
| |
Collapse
|
92
|
Liu YL, Chen WT, Lin YY, Lu PH, Hsieh SL, Cheng IHJ. Amelioration of amyloid-β-induced deficits by DcR3 in an Alzheimer's disease model. Mol Neurodegener 2017; 12:30. [PMID: 28438208 PMCID: PMC5402663 DOI: 10.1186/s13024-017-0173-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Accepted: 04/07/2017] [Indexed: 12/03/2022] Open
Abstract
Background Microglia mediate amyloid-beta peptide (Aβ)-induced neuroinflammation, which is one of the key events in the pathogenesis of Alzheimer’s disease (AD). Decoy receptor 3 (DcR3)/TNFRSF6B is a pleiotropic immunomodulator that promotes macrophage differentiation toward the M2 anti-inflammatory phenotype. Based on its role as an immunosupressor, we examined whether DcR3 could alleviate neuroinflammation and AD-like deficits in the central nervous system. Method We crossed human APP transgenic mice (line J20) with human DcR3 transgenic mice to generate wild-type, APP, DcR3, and APP/DcR3 mice for pathological analysis. The Morris water maze, fear conditioning test, open-field, and elevated-plus maze were used to access their cognitive behavioral changes. Furthermore, the pathological and immune profiles were examined by immunostaining, ELISA, Q-PCR, and IP. In vitro assays were designed to examine DcR3-mediated innate cytokine profile alteration and the potential protective mechanism. Results We reported that DcR3 ameliorates hippocampus-dependent memory deficits and reduces amyloid plaque deposition in APP transgenic mouse. The protective mechanism of DcR3 mediates through interacting with heparan sulfate proteoglycans and activating IL-4+YM1+ M2a-like microglia that reduces Aβ-induced proinflammatory cytokines and promotes phagocytosis ability of microglia. Conclusion The neuroprotective effect of DcR3 is mediated via modulating microglia activation into anti-inflammatory M2a phenotype, and upregulating DcR3 expression in the brain may be a potential therapeutic approach for AD. Electronic supplementary material The online version of this article (doi:10.1186/s13024-017-0173-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yi-Ling Liu
- Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan
| | - Wei-Ting Chen
- Brain Research Center, National Yang-Ming University, Taipei, Taiwan
| | - Yu-Yi Lin
- Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan
| | - Po-Hung Lu
- Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan
| | - Shie-Liang Hsieh
- Genomics Research Center, Academia Sinica, Taipei, Taiwan. .,Institute of Clinical Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan. .,Institute of Microbiology and Immunology, National Yang-Ming University, Taipei, Taiwan. .,Department of Medical Research and Education, Taipei Veterans General Hospital, Taipei, Taiwan.
| | - Irene Han-Juo Cheng
- Institute of Brain Science, National Yang-Ming University, Taipei, Taiwan. .,Brain Research Center, National Yang-Ming University, Taipei, Taiwan. .,Infection and Immunity Research Center, National Yang-Ming University, Taipei, Taiwan.
| |
Collapse
|
93
|
Zhao SC, Ma LS, Chu ZH, Xu H, Wu WQ, Liu F. Regulation of microglial activation in stroke. Acta Pharmacol Sin 2017; 38:445-458. [PMID: 28260801 DOI: 10.1038/aps.2016.162] [Citation(s) in RCA: 283] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Accepted: 11/06/2016] [Indexed: 12/16/2022]
Abstract
When ischemic stroke occurs, oxygen and energy depletion triggers a cascade of events, including inflammatory responses, glutamate excitotoxicity, oxidative stress, and apoptosis that result in a profound brain injury. The inflammatory response contributes to secondary neuronal damage, which exerts a substantial impact on both acute ischemic injury and the chronic recovery of the brain function. Microglia are the resident immune cells in the brain that constantly monitor brain microenvironment under normal conditions. Once ischemia occurs, microglia are activated to produce both detrimental and neuroprotective mediators, and the balance of the two counteracting mediators determines the fate of injured neurons. The activation of microglia is defined as either classic (M1) or alternative (M2): M1 microglia secrete pro-inflammatory cytokines (TNFα, IL-23, IL-1β, IL-12, etc) and exacerbate neuronal injury, whereas the M2 phenotype promotes anti-inflammatory responses that are reparative. It has important translational value to regulate M1/M2 microglial activation to minimize the detrimental effects and/or maximize the protective role. Here, we discuss various regulators of microglia/macrophage activation and the interaction between microglia and neurons in the context of ischemic stroke.
Collapse
|
94
|
T Lymphocytes and Inflammatory Mediators in the Interplay between Brain and Blood in Alzheimer's Disease: Potential Pools of New Biomarkers. J Immunol Res 2017; 2017:4626540. [PMID: 28293644 PMCID: PMC5331319 DOI: 10.1155/2017/4626540] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 12/22/2016] [Accepted: 01/23/2017] [Indexed: 02/07/2023] Open
Abstract
Alzheimer's disease (AD) is a chronic neurodegenerative disorder and the main cause of dementia. The disease is among the leading medical concerns of the modern world, because only symptomatic therapies are available, and no reliable, easily accessible biomarkers exist for AD detection and monitoring. Therefore extensive research is conducted to elucidate the mechanisms of AD pathogenesis, which seems to be heterogeneous and multifactorial. Recently much attention has been given to the neuroinflammation and activation of glial cells in the AD brain. Reports also highlighted the proinflammatory role of T lymphocytes infiltrating the AD brain. However, in AD molecular and cellular alterations involving T cells and immune mediators occur not only in the brain, but also in the blood and the cerebrospinal fluid (CSF). Here we review alterations concerning T lymphocytes and related immune mediators in the AD brain, CSF, and blood and the mechanisms by which peripheral T cells cross the blood brain barrier and the blood-CSF barrier. This knowledge is relevant for better AD therapies and for identification of novel biomarkers for improved AD diagnostics in the blood and the CSF. The data will be reviewed with the special emphasis on possibilities for development of AD biomarkers.
Collapse
|
95
|
Lattke M, Reichel SN, Magnutzki A, Abaei A, Rasche V, Walther P, Calado DP, Ferger B, Wirth T, Baumann B. Transient IKK2 activation in astrocytes initiates selective non-cell-autonomous neurodegeneration. Mol Neurodegener 2017; 12:16. [PMID: 28193238 PMCID: PMC5307695 DOI: 10.1186/s13024-017-0157-0] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 02/09/2017] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Neuroinflammation is associated with a wide range of neurodegenerative disorders, however the specific contribution to individual disease pathogenesis and selective neuronal cell death is not well understood. Inflammatory cerebellar ataxias are neurodegenerative diseases occurring in various autoimmune/inflammatory conditions, e.g. paraneoplastic syndromes. However, how inflammatory insults can cause selective cerebellar neurodegeneration in the context of these diseases remains open, and appropriate animal models are lacking. A key regulator of neuroinflammatory processes is the NF-κB signalling pathway, which is activated by the IκB kinase 2 (IKK2) in response to various pathological conditions. Importantly, its activation is sufficient to initiate neuroinflammation on its own. METHODS To investigate the contribution of IKK/NF-κB-mediated neuroinflammation to neurodegeneration, we established conditional mouse models of cerebellar neuroinflammation, which depend either on the tetracycline-regulated expression of IKK2 in astrocytes or Cre-recombination based IKK2 activation in Bergmann glia. RESULTS We demonstrate that IKK2 activation for a limited time interval in astrocytes is sufficient to induce neuroinflammation, astrogliosis and loss of Purkinje neurons, resembling the pathogenesis of inflammatory cerebellar ataxias. We identified IKK2-driven irreversible dysfunction of Bergmann glia as critical pathogenic event resulting in Purkinje cell loss. This was independent of Lipocalin 2, an acute phase protein secreted by reactive astrocytes and well known to mediate neurotoxicity. Instead, downregulation of the glutamate transporters EAAT1 and EAAT2 and ultrastructural alterations suggest an excitotoxic mechanism of Purkinje cell degeneration. CONCLUSIONS Our results suggest a novel pathogenic mechanism how diverse inflammatory insults can cause inflammation/autoimmune-associated cerebellar ataxias. Disease-mediated elevation of danger signals like TLR ligands and inflammatory cytokines in the cerebellum activates IKK2/NF-κB signalling in astrocytes, which as a consequence triggers astrogliosis-like activation of Bergmann glia and subsequent non-cell-autonomous Purkinje cell degeneration. Notably, the identified hit and run mechanism indicates only an early window for therapeutic interventions.
Collapse
Affiliation(s)
- Michael Lattke
- Institute of Physiological Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
- Neural Stem Cell Biology Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT UK
| | - Stephanie N. Reichel
- Institute of Physiological Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Alexander Magnutzki
- Institute of Physiological Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Alireza Abaei
- Core Facility Small Animal MRI, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Volker Rasche
- Core Facility Small Animal MRI, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Paul Walther
- Central Facility for Electron Microscopy, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Dinis P. Calado
- Immunity and Cancer Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT UK
| | - Boris Ferger
- CNS Diseases Research, Boehringer Ingelheim Pharma GmbH & Co. KG, Birkendorfer Str. 65, 88397 Biberach an der Riss, Germany
| | - Thomas Wirth
- Institute of Physiological Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Bernd Baumann
- Institute of Physiological Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| |
Collapse
|
96
|
Overview of Traumatic Brain Injury: An Immunological Context. Brain Sci 2017; 7:brainsci7010011. [PMID: 28124982 PMCID: PMC5297300 DOI: 10.3390/brainsci7010011] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 01/13/2017] [Accepted: 01/13/2017] [Indexed: 12/20/2022] Open
Abstract
Traumatic brain injury (TBI) afflicts people of all ages and genders, and the severity of injury ranges from concussion/mild TBI to severe TBI. Across all spectrums, TBI has wide-ranging, and variable symptomology and outcomes. Treatment options are lacking for the early neuropathology associated with TBIs and for the chronic neuropathological and neurobehavioral deficits. Inflammation and neuroinflammation appear to be major mediators of TBI outcomes. These systems are being intensively studies using animal models and human translational studies, in the hopes of understanding the mechanisms of TBI, and developing therapeutic strategies to improve the outcomes of the millions of people impacted by TBIs each year. This manuscript provides an overview of the epidemiology and outcomes of TBI, and presents data obtained from animal and human studies focusing on an inflammatory and immunological context. Such a context is timely, as recent studies blur the traditional understanding of an “immune-privileged” central nervous system. In presenting the evidence for specific, adaptive immune response after TBI, it is hoped that future studies will be interpreted using a broader perspective that includes the contributions of the peripheral immune system, to central nervous system disorders, notably TBI and post-traumatic syndromes.
Collapse
|
97
|
Smith MR, Burman P, Sadahiro M, Kidd BA, Dudley JT, Morishita H. Integrative Analysis of Disease Signatures Shows Inflammation Disrupts Juvenile Experience-Dependent Cortical Plasticity. eNeuro 2016; 3:ENEURO.0240-16.2016. [PMID: 28101530 PMCID: PMC5241709 DOI: 10.1523/eneuro.0240-16.2016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 11/01/2016] [Accepted: 11/12/2016] [Indexed: 01/04/2023] Open
Abstract
Throughout childhood and adolescence, periods of heightened neuroplasticity are critical for the development of healthy brain function and behavior. Given the high prevalence of neurodevelopmental disorders, such as autism, identifying disruptors of developmental plasticity represents an essential step for developing strategies for prevention and intervention. Applying a novel computational approach that systematically assessed connections between 436 transcriptional signatures of disease and multiple signatures of neuroplasticity, we identified inflammation as a common pathological process central to a diverse set of diseases predicted to dysregulate plasticity signatures. We tested the hypothesis that inflammation disrupts developmental cortical plasticity in vivo using the mouse ocular dominance model of experience-dependent plasticity in primary visual cortex. We found that the administration of systemic lipopolysaccharide suppressed plasticity during juvenile critical period with accompanying transcriptional changes in a particular set of molecular regulators within primary visual cortex. These findings suggest that inflammation may have unrecognized adverse consequences on the postnatal developmental trajectory and indicate that treating inflammation may reduce the burden of neurodevelopmental disorders.
Collapse
Affiliation(s)
- Milo R. Smith
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York 10029
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York 10029
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, New York 10029
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029
- Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York 10029
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Poromendro Burman
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York 10029
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York 10029
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, New York 10029
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Masato Sadahiro
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York 10029
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York 10029
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, New York 10029
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Brian A. Kidd
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029
- Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Joel T. Dudley
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York 10029
- Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| | - Hirofumi Morishita
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York 10029
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, New York 10029
- Department of Ophthalmology, Icahn School of Medicine at Mount Sinai, New York, New York 10029
- Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029
| |
Collapse
|
98
|
Mumaw CL, Surace M, Levesque S, Kodavanti UP, Kodavanti PRS, Royland JE, Block ML. Atypical microglial response to biodiesel exhaust in healthy and hypertensive rats. Neurotoxicology 2016; 59:155-163. [PMID: 27777102 DOI: 10.1016/j.neuro.2016.10.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 10/19/2016] [Accepted: 10/20/2016] [Indexed: 11/26/2022]
Abstract
Accumulating evidence suggests a deleterious role for urban air pollution in central nervous system (CNS) diseases and neurodevelopmental disorders. Microglia, the resident innate immune cells and sentinels in the brain, are a common source of neuroinflammation and are implicated in air pollution-induced CNS effects. While renewable energy, such as soy-based biofuel, is of increasing public interest, there is little information on how soy biofuel may affect the brain, especially in people with preexisting disease conditions. To address this, male spontaneously hypertensive rats (SHR) and normotensive Wistar Kyoto (WKY) rats were exposed to 100% Soy-based Biodiesel Exhaust (100SBDE; 0, 50, 150 and 500μg/m3) by inhalation, 4h/day for 4 weeks (5 days/week). Ionized calcium-binding adapter molecule-1 (IBA-1) staining of microglia in the substantia nigra revealed significant changes in morphology with 100SBDE exposure in rats from both genotypes, where SHR were less sensitive. Aconitase activity was inhibited in the frontal cortex and cerebellum of WKY rats exposed to 100SBDE. No consistent changes occurred in pro-inflammatory cytokine expression, nitrated protein, or arginase1 expression in brain regions from either rat strain exposed to 100SBDE. However, while IBA-1 mRNA expression was not modified, CX3CR1 mRNA expression was lower in the striatum of 100SBDE exposed rats regardless of genotype, suggesting a downregulation of the fractalkine receptor on microglia in this brain region. Together, these data indicate that while microglia are detecting and responding to 100SBDE exposure with changes in morphology, there is reduced expression of CX3CR1 regardless of genetic background and the activation response is atypical without traditional inflammatory markers of M1 or M2 activation in the brain.
Collapse
Affiliation(s)
- Christen L Mumaw
- Department of Anatomy and Cell Biology, The Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Michael Surace
- Department of Biochemistry & Molecular Biology, Virginia Commonwealth University Medical Campus, Richmond, VA 23298, USA
| | - Shannon Levesque
- Department of Anatomy and Neurobiology, Virginia Commonwealth University Medical Campus, Richmond, VA 23298, USA
| | - Urmila P Kodavanti
- Environmental Public Health Division, National Health and Environmental Effects Research Laboratory, ORD, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, USA
| | - Prasada Rao S Kodavanti
- Toxicity Assessment Division, National Health and Environmental Effects Research Laboratory, ORD, U.S. Environmental Protection Agency, Research Triangle Park, NC 27711, USA
| | - Joyce E Royland
- Integrated Systems Toxicology Division, National Health and Environmental Effects Research Laboratory, ORD, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, USA
| | - Michelle L Block
- Department of Anatomy and Cell Biology, The Stark Neuroscience Research Institute, Indiana University School of Medicine, Indianapolis, IN 46202, USA.
| |
Collapse
|
99
|
Song GJ, Kim J, Kim JH, Song S, Park H, Zhang ZY, Suk K. Comparative Analysis of Protein Tyrosine Phosphatases Regulating Microglial Activation. Exp Neurobiol 2016; 25:252-261. [PMID: 27790059 PMCID: PMC5081471 DOI: 10.5607/en.2016.25.5.252] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 08/21/2016] [Accepted: 08/25/2016] [Indexed: 01/20/2023] Open
Abstract
Protein tyrosine phosphatases (PTPs) are key regulatory factors in inflammatory signaling pathways. Although PTPs have been extensively studied, little is known about their role in neuroinflammation. In the present study, we examined the expression of 6 different PTPs (PTP1B, TC-PTP, SHP2, MEG2, LYP, and RPTPβ) and their role in glial activation and neuroinflammation. All PTPs were expressed in brain and glia. The expression of PTP1B, SHP2, and LYP was enhanced in the inflamed brain. The expression of PTP1B, TC-PTP, and LYP was increased after treating microglia cells with lipopolysaccharide (LPS). To examine the role of PTPs in microglial activation and neuroinflammation, we used specific pharmacological inhibitors of PTPs. Inhibition of PTP1B, TC-PTP, SHP2, LYP, and RPTPβ suppressed nitric oxide production in LPS-treated microglial cells in a dose-dependent manner. Furthermore, intracerebroventricular injection of PTP1B, TC-PTP, SHP2, and RPTPβ inhibitors downregulated microglial activation in an LPS-induced neuroinflammation model. Our results indicate that multiple PTPs are involved in regulating microglial activation and neuroinflammation, with different expression patterns and specific functions. Thus, PTP inhibitors can be exploited for therapeutic modulation of microglial activation in neuroinflammatory diseases.
Collapse
Affiliation(s)
- Gyun Jee Song
- Department of Pharmacology, Brain Science & Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University School of Medicine, Daegu 41944, Korea
| | - Jaehong Kim
- Department of Pharmacology, Brain Science & Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University School of Medicine, Daegu 41944, Korea
| | - Jong-Heon Kim
- Department of Pharmacology, Brain Science & Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University School of Medicine, Daegu 41944, Korea
| | - Seungeun Song
- Department of Pharmacology, Brain Science & Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University School of Medicine, Daegu 41944, Korea
| | - Hana Park
- Department of Pharmacology, Brain Science & Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University School of Medicine, Daegu 41944, Korea
| | - Zhong-Yin Zhang
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, IN 47907, USA
| | - Kyoungho Suk
- Department of Pharmacology, Brain Science & Engineering Institute, BK21 Plus KNU Biomedical Convergence Program, Kyungpook National University School of Medicine, Daegu 41944, Korea
| |
Collapse
|
100
|
Suk K. Lipocalin-2 as a therapeutic target for brain injury: An astrocentric perspective. Prog Neurobiol 2016; 144:158-72. [DOI: 10.1016/j.pneurobio.2016.08.001] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 06/18/2016] [Accepted: 08/03/2016] [Indexed: 12/31/2022]
|