51
|
Chen LS, Bloom AJ, Baker TB, Smith SS, Piper ME, Martinez M, Saccone N, Hatsukami D, Goate A, Bierut L. Pharmacotherapy effects on smoking cessation vary with nicotine metabolism gene (CYP2A6). Addiction 2014; 109:128-137. [PMID: 24033696 PMCID: PMC3946972 DOI: 10.1111/add.12353] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 06/27/2013] [Accepted: 09/03/2013] [Indexed: 01/06/2023]
Abstract
BACKGROUND AND AIMS Evidence suggests that both the nicotinic receptor α5 subunit (CHRNA5) and Cytochrome P450 2A6 (CYP2A6) genotypes influence smoking cessation success and response to pharmacotherapy. We examine the effect of CYP2A6 genotype on smoking cessation success and response to cessation pharmacotherapy, and combine these effects with those of CHRNA5 genotypes. DESIGN Placebo-controlled randomized smoking cessation trial. SETTING Ambulatory care facility in Wisconsin, USA. PARTICIPANTS Smokers (n = 709) of European ancestry were randomized to placebo, bupropion, nicotine replacement therapy or combined bupropion and nicotine replacement therapy. MEASUREMENTS Survival analysis was used to model time to relapse using nicotine metabolism derived from CYP2A6 genotype-based estimates. Slow metabolism is defined as the lowest quartile of estimated metabolic function. FINDINGS CYP2A6-defined nicotine metabolic function moderated the effect of smoking cessation pharmacotherapy on smoking relapse over 90 days [hazard ratio (HR) = 2.81, 95% confidence interval (CI) = 1.32-5.99, P = 0.0075], with pharmacotherapy significantly slowing relapse in fast (HR = 0.39, 95% CI = 0.28-0.55, P = 1.97 × 10(-8)), but not slow metabolizers (HR = 1.09, 95% CI = 0.55-2.17, P = 0.80). Further, only the effect of nicotine replacement, and not bupropion, varies with CYP2A6-defined metabolic function. The effect of nicotine replacement on continuous abstinence is moderated by the combined genetic risks from CYP2A6 and CHRNA5 (Wald = 7.44, d.f. = 1, P = 0.0064). CONCLUSIONS Nicotine replacement therapy is effective among individuals with fast, but not slow, CYP2A6-defined nicotine metabolism. The effect of bupropion on relapse likelihood is unlikely to be affected by nicotine metabolism as estimated from CYP2A6 genotype. The variation in treatment responses among smokers with genes may guide future personalized smoking cessation interventions.
Collapse
Affiliation(s)
- Li-Shiun Chen
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110
| | - A. Joseph Bloom
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110
| | - Timothy B. Baker
- Tobacco Research and Intervention, University of Wisconsin, School of Medicine, Madison, WI53711
| | - Stevens S. Smith
- Tobacco Research and Intervention, University of Wisconsin, School of Medicine, Madison, WI53711
| | - Megan E. Piper
- Tobacco Research and Intervention, University of Wisconsin, School of Medicine, Madison, WI53711
| | - Maribel Martinez
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110
| | - Nancy Saccone
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110
| | - Dorothy Hatsukami
- Department of Psychiatry, University of Minnesota, Minneapolis, MN 55455
| | - Alison Goate
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110
| | - Laura Bierut
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO 63110
| |
Collapse
|
52
|
Bloom AJ, Martinez M, Chen LS, Bierut LJ, Murphy SE, Goate A. CYP2B6 non-coding variation associated with smoking cessation is also associated with differences in allelic expression, splicing, and nicotine metabolism independent of common amino-acid changes. PLoS One 2013; 8:e79700. [PMID: 24260284 PMCID: PMC3829832 DOI: 10.1371/journal.pone.0079700] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 10/04/2013] [Indexed: 11/23/2022] Open
Abstract
The Cytochrome P450 2B6 (CYP2B6) enzyme makes a small contribution to hepatic nicotine metabolism relative to CYP2A6, but CYP2B6 is the primary enzyme responsible for metabolism of the smoking cessation drug bupropion. Using CYP2A6 genotype as a covariate, we find that a non-coding polymorphism in CYP2B6 previously associated with smoking cessation (rs8109525) is also significantly associated with nicotine metabolism. The association is independent of the well-studied non-synonymous variants rs3211371, rs3745274, and rs2279343 (CYP2B6*5 and *6). Expression studies demonstrate that rs8109525 is also associated with differences in CYP2B6 mRNA expression in liver biopsy samples. Splicing assays demonstrate that specific splice forms of CYP2B6 are associated with haplotypes defined by variants including rs3745274 and rs8109525. These results indicate differences in mRNA expression and splicing as potential molecular mechanisms by which non-coding variation in CYP2B6 may affect enzymatic activity leading to differences in metabolism and smoking cessation.
Collapse
Affiliation(s)
- A. Joseph Bloom
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * E-mail:
| | - Maribel Martinez
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Li-Shiun Chen
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Laura J. Bierut
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Sharon E. Murphy
- Department of Biochemistry Molecular Biology and BioPhysics, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Alison Goate
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri, United States of America
| |
Collapse
|
53
|
Bloom AJ, Baker TB, Chen LS, Breslau N, Hatsukami D, Bierut LJ, Goate A. Variants in two adjacent genes, EGLN2 and CYP2A6, influence smoking behavior related to disease risk via different mechanisms. Hum Mol Genet 2013; 23:555-61. [PMID: 24045616 DOI: 10.1093/hmg/ddt432] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Genome-wide significant associations with cigarettes per day (CPD) and risk for lung cancer and chronic obstructive pulmonary disease (COPD) were previously reported in a region of 19q13, including CYP2A6 (nicotine metabolism enzyme) and EGLN2 (hypoxia response). The associated single nucleotide polymorphisms (SNPs) were assumed to be proxies for functional variation in CYP2A6. Here, we demonstrate that when CYP2A6 and EGLN2 genotypes are analyzed together, the key EGLN2 variant, rs3733829, is not associated with nicotine metabolism independent of CYP2A6, but is nevertheless independently associated with CPD, and with breath carbon monoxide (CO), a phenotype associated with cigarette consumption and relevant to hypoxia. SNPs in EGLN2 are also associated with nicotine dependence and with smoking efficiency (CO/CPD). These results indicate a previously unappreciated novel mechanism behind genome-wide significant associations with cigarette consumption and disease risk unrelated to nicotine metabolism.
Collapse
Affiliation(s)
- A Joseph Bloom
- Department of Psychiatry, Washington University School of Medicine, St. Louis, MO, USA
| | | | | | | | | | | | | |
Collapse
|
54
|
Murphy SE, Wickham KM, Lindgren BR, Spector LG, Joseph A. Cotinine and trans 3'-hydroxycotinine in dried blood spots as biomarkers of tobacco exposure and nicotine metabolism. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2013; 23:513-8. [PMID: 23443235 PMCID: PMC4048618 DOI: 10.1038/jes.2013.7] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Accepted: 12/18/2012] [Indexed: 05/03/2023]
Abstract
Tobacco use is the major preventable cause of premature death in the United States. Second-hand smoke (SHS) exposure also contributes to a number of premature deaths as well as other negative health outcomes. An accurate assessment of tobacco smoke exposure is critical to understanding these disease processes. The plasma concentration of cotinine, the primary metabolite of nicotine, is widely accepted as a quantitative measure of tobacco and SHS exposure. However, it is not always feasible to collect plasma. Dried blood spots (DBS), which are collected routinely from newborns and often from young children for lead screening, provide an alternative sampling method. We have developed a quantitative high throughput liquid chromatography tandem mass spectrometry method for the analysis of cotinine in DBS. The limit of quantitation was 0.3 ng/g (~ 0.2 ng/ml plasma). Cotinine levels in DBS from 83 smokers and 99 non-smokers exposed to SHS were determined. Plasma cotinine concentrations in these subjects ranged from <0.02 to 443 ng/ml. Cotinine was detected in DBS from 157 subjects, and the correlation between cotinine in plasma and DBS was excellent, 0.992 (P<0.001). We also determined the ratio of trans 3'-hydroxycotinine to cotinine, a measure of nicotine metabolism, in DBS from smokers. This ratio in DBS was well correlated with the ratio in plasma, 0.94 (P<0.001). In a small study, we confirmed the feasibility of using extant DBS collected for lead screening to assess SHS exposure in children.
Collapse
Affiliation(s)
- Sharon E Murphy
- Department of Biochemistry Molecular Biology and Biophysics, University of Minnesota, Minneapolis, Minnesota 55455, USA.
| | | | | | | | | |
Collapse
|
55
|
Joseph A, Murphy S, Thomas J, Okuyemi KS, Hatsukami D, Wang Q, Briggs A, Doyle B, Winickoff JP. A pilot study of concurrent lead and cotinine screening for childhood tobacco smoke exposure: effect on parental smoking. Am J Health Promot 2013; 28:316-20. [PMID: 23971524 DOI: 10.4278/ajhp.120912-arb-445] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
PURPOSE To investigate whether a biomarker screening approach for tobacco smoke exposure (TSE) conducted concurrently with lead screening at well-child visits would increase parental smoking cessation and implementation of home smoking restrictions. DESIGN Observational, quasi-experimental. SETTING Pediatric clinic in Minneapolis, Minnesota. SUBJECTS Eighty parents who smoked and their children presenting for well-child visits. INTERVENTION Children in the intervention group had serum cotinine measured with lead screening. Laboratory results were sent to providers and parents and a counselor proactively contacted parents to offer an eight-session telephone intervention to help parents stop smoking. The comparison group, a historical control, received usual care. MEASURES Parental smoking, engagement in tobacco treatment, and home and car smoking policies 8 weeks later. ANALYSIS Mean/standard deviation for continuous data or frequency/percentage for categorical data. RESULTS Eighty-four percent of eligible parents agreed to have their child tested for TSE along with lead testing. Measurable cotinine was identified in 93% of children. More parents in the intervention group received tobacco treatment than in the comparison group (74% vs. 0%) and more parents reported 7-day point-prevalent abstinence from smoking at 8 weeks (29% vs. 3%). CONCLUSION These data demonstrate the feasibility of adding cotinine measurement to routine well-child lead screening to document TSE in small children. Data suggest providing this information to parents increases engagement in tobacco treatment and prompts smoking cessation.
Collapse
|
56
|
A compensatory effect upon splicing results in normal function of the CYP2A6*14 allele. Pharmacogenet Genomics 2013; 23:107-16. [PMID: 23292114 DOI: 10.1097/fpc.0b013e32835caf7d] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
A synonymous variant in the first exon of CYP2A6, rs1137115 (51G>A), defines the common reference allele CYP2A6*1A, and is associated with lower mRNA expression and slower in-vivo nicotine metabolism. Another common allele, CYP2A6*14, differs from CYP2A6*1A by a single variant, rs28399435 (86G>A, S29N). However, CYP2A6*14 shows in-vivo activity comparable with that of full-function alleles, and significantly higher than CYP2A6*1A. rs1137115A is predicted to create an exonic splicing suppressor site overlapping an exonic splicing enhancer (ESE) site in the first exon of CYP2A6, whereas rs28399435A is predicted to strengthen another adjacent ESE, potentially compensating for rs1137115A. Using an allelic expression assay to assess cDNAs produced from rs1137115 heterozygous liver biopsy samples, lower expression of the CYP2A6*1A allele is confirmed while CYP2A6*14 expression is found to be indistinguishable from that of rs1137115G alleles. Quantitative PCR assays to determine the relative abundance of spliced and unspliced or partially spliced CYP2A6 mRNAs in liver biopsy samples show that *1A/*1A homozygotes have a significantly lower ratio, due to both a reduction in spliced forms and an increase in unspliced or partially spliced CYP2A6. These results show the importance of common genetic variants that effect exonic splicing suppressor and ESEs to explain human variation regarding clinically-relevant phenotypes.
Collapse
|
57
|
Effects upon in-vivo nicotine metabolism reveal functional variation in FMO3 associated with cigarette consumption. Pharmacogenet Genomics 2013; 23:62-8. [PMID: 23211429 DOI: 10.1097/fpc.0b013e32835c3b48] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Flavin-containing monooxygenases (FMO) catalyze the metabolism of nucleophilic heteroatom-containing drugs and xenobiotics, including nicotine. Rare mutations in FMO3 are responsible for defective N-oxidation of dietary trimethylamine leading to trimethylaminuria, and common genetic variation in FMO3 has been linked to interindividual variability in metabolic function that may be substrate specific. METHODS A genetic model of CYP2A6 function is used as a covariate to reveal functional polymorphism in FMO3 that indirectly influences the ratio of deuterated nicotine metabolized to cotinine following oral administration. The association is tested between FMO3 haplotype and cigarette consumption in a set of nicotine-dependent smokers. RESULTS FMO3 haplotype, based on all common coding variants in Europeans, significantly predicts nicotine metabolism and accounts for ∼2% of variance in the apparent percent of nicotine metabolized to cotinine. The metabolic ratio is not associated with FMO2 haplotype or an FMO1 expression quantitative trait locus. Cross-validation demonstrates calculated FMO3 haplotype parameters to be robust and significantly improve the predictive nicotine metabolism model over CYP2A6 genotype alone. Functional classes of FMO3 haplotypes, as determined by their influence on nicotine metabolism to cotinine, are also significantly associated with cigarettes per day in nicotine-dependent European Americans (n=1025, P=0.04), and significantly interact (P=0.016) with CYP2A6 genotype to predict cigarettes per day. CONCLUSION These findings suggest that common polymorphisms in FMO3 influence nicotine clearance and that these genetic variants in turn influence cigarette consumption.
Collapse
|
58
|
PharmGKB summary: very important pharmacogene information for cytochrome P-450, family 2, subfamily A, polypeptide 6. Pharmacogenet Genomics 2013; 22:695-708. [PMID: 22547082 DOI: 10.1097/fpc.0b013e3283540217] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
59
|
Petros WP, Younis IR, Ford JN, Weed SA. Effects of tobacco smoking and nicotine on cancer treatment. Pharmacotherapy 2013; 32:920-31. [PMID: 23033231 DOI: 10.1002/j.1875-9114.2012.01117] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A substantial number of the world's population continues to smoke tobacco, even in the setting of a cancer diagnosis. Studies have shown that patients with cancer who have a history of smoking have a worse prognosis than nonsmokers. Modulation of several physiologic processes involved in drug disposition has been associated with long-term exposure to tobacco smoke. The most common of these processes can be categorized into the effects of smoking on cytochrome P450-mediated metabolism, glucuronidation, and protein binding. Perturbation in the pharmacokinetics of anticancer drugs could result in clinically significant consequences, as these drugs are among the most toxic, but potentially beneficial, pharmaceuticals prescribed. Unfortunately, the effect of tobacco smoking on drug disposition has been explored for only a few marketed anticancer drugs; thus, little prescribing information is available to guide clinicians on the vast majority of these agents. The carcinogenic properties of several compounds found in tobacco smoke have been well studied; however, relatively little attention has been given to the effects of nicotine itself on cancer growth. Data that identify nicotine's effect on cancer cell apoptosis, tumor angiogenesis, invasion, and metastasis are emerging. The implications of these data are still unclear but may lead to important questions regarding approaches to smoking cessation in patients with cancer.
Collapse
Affiliation(s)
- William P Petros
- School of Pharmacy, West Virginia University, Morgantown, West Virginia 26506, USA.
| | | | | | | |
Collapse
|
60
|
Djordjevic N, Carrillo JA, van den Broek MP, Kishikawa J, Roh HK, Bertilsson L, Aklillu E. Comparisons of CYP2A6 Genotype and Enzyme Activity between Swedes and Koreans. Drug Metab Pharmacokinet 2013; 28:93-7. [DOI: 10.2133/dmpk.dmpk-12-rg-029] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
61
|
Harari O, Wang JC, Bucholz K, Edenberg HJ, Heath A, Martin NG, Pergadia ML, Montgomery G, Schrage A, Bierut LJ, Madden PF, Goate AM. Pathway analysis of smoking quantity in multiple GWAS identifies cholinergic and sensory pathways. PLoS One 2012; 7:e50913. [PMID: 23227220 PMCID: PMC3515482 DOI: 10.1371/journal.pone.0050913] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2012] [Accepted: 10/25/2012] [Indexed: 11/25/2022] Open
Abstract
Cigarette smoking is a common addiction that increases the risk for many diseases, including lung cancer and chronic obstructive pulmonary disease. Genome-wide association studies (GWAS) have successfully identified and validated several susceptibility loci for nicotine consumption and dependence. However, the trait variance explained by these genes is only a small fraction of the estimated genetic risk. Pathway analysis complements single marker methods by including biological knowledge into the evaluation of GWAS, under the assumption that causal variants lie in functionally related genes, enabling the evaluation of a broad range of signals. Our approach to the identification of pathways enriched for multiple genes associated with smoking quantity includes the analysis of two studies and the replication of common findings in a third dataset. This study identified pathways for the cholinergic receptors, which included SNPs known to be genome-wide significant; as well as novel pathways, such as genes involved in the sensory perception of smell, that do not contain any single SNP that achieves that stringent threshold.
Collapse
Affiliation(s)
- Oscar Harari
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Jen-Chyong Wang
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Kathleen Bucholz
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Howard J. Edenberg
- Department of Biochemistry and Molecular Biology, School of Medicine, Indiana University, Indianapolis, Indiana, United States of America
| | - Andrew Heath
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Nicholas G. Martin
- Genetic Epidemiology, Queensland Institute of Medical Research, Brisbane, Australia
| | - Michele L. Pergadia
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Grant Montgomery
- Molecular Epidemology, Queensland Institute of Medical Research, Brisbane, Australia
| | - Andrew Schrage
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Laura J. Bierut
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Pamela F. Madden
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Alison M. Goate
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
62
|
von Weymarn LB, Retzlaff C, Murphy SE. CYP2A6- and CYP2A13-catalyzed metabolism of the nicotine Δ5'(1')iminium ion. J Pharmacol Exp Ther 2012; 343:307-15. [PMID: 22869927 PMCID: PMC3477218 DOI: 10.1124/jpet.112.195255] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 08/02/2012] [Indexed: 11/22/2022] Open
Abstract
Nicotine, the major addictive agent in tobacco, is metabolized primarily by CYP2A6-catalyzed oxidation. The product of this reaction, 5'-hydroxynicotine, is in equilibrium with the nicotine Δ5'(1')iminium ion and is further metabolized to cotinine. We reported previously that both CYP2A6 and the closely related extrahepatic enzyme CYP2A13 were inactivated during nicotine metabolism; however, inactivation occurred after metabolism was complete. This led to the hypothesis that oxidation of a nicotine metabolite, possibly the nicotine Δ5'(1')iminium ion, was responsible for generating the inactivating species. In the studies presented here, we confirm that the nicotine Δ5'(1')iminium ion is an inactivator of both CYP2A6 and CYP2A13, and inactivation depends on time, concentration, and the presence of NADPH. Inactivation was not reversible and was accompanied by a parallel loss in spectrally active protein, as measured by reduced CO spectra. These data are consistent with the characterization of the nicotine Δ5'(1')iminium ion as a mechanism-based inactivator of both CYP2A13 and CYP2A6. We also confirm that both CYP2A6 and CYP2A13 catalyze the metabolism of the nicotine Δ5'(1')iminium ion to cotinine and provide evidence that both enzymes catalyze the sequential metabolism of the nicotine Δ5'(1')iminium ion. That is, a fraction of the cotinine formed may not be released from the enzyme before further oxidation to 3'-hydroxycotinine.
Collapse
Affiliation(s)
- Linda B von Weymarn
- Department of Biochemistry, Molecular Biology, and Biophysics, Masonic Cancer Center, University of Minnesota, Mayo Mail Code 806, 420 Delaware Street SE, Minneapolis, MN 55455, USA
| | | | | |
Collapse
|
63
|
Liang Q, Sarkar M. Intra- and inter-individual variability in urinary nicotine excretion and plasma cotinine in adult cigarette smokers. Regul Toxicol Pharmacol 2012; 64:388-93. [PMID: 23000417 DOI: 10.1016/j.yrtph.2012.09.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Revised: 09/10/2012] [Accepted: 09/12/2012] [Indexed: 11/16/2022]
Abstract
Urinary nicotine equivalents (NE) and plasma cotinine are widely used as a biomarker for exposure to tobacco products, but there is limited information on intra- and inter-individual variability in the literature. Data were gathered from 13 randomized controlled clinical studies sponsored by Philip Morris USA, with study durations between 2 and 8 days for the short term (ST) and 3-12 months for the long term (LT) studies. Coefficients of variation (CV) were compared and a linear mixed model was used to partition the total study variability into inter- and intra-individual variability. In the ST and LT studies respectively, the root-mean-square (RMS) intra-individual CV was 19% and 29% for NE (mg/24 h); 19% and 33% for NE (mg/cig) and 13% and 22% for plasma cotinine. The RSM inter-individual CV was 38% and 38% for NE (mg/24h), 25% and 32% for NE (mg/cig) and 38% and 37% for plasma cotinine, in ST and LT study, respectively. Intra-individual CV was smaller in ST studies than in LT studies, and was significantly less than inter-individual CV in ST studies. Daily cigarette consumption alone could not explain all the variability in NE and plasma cotinine. The variability estimates could be used for clinical study design of clinical and developing regulatory guidance.
Collapse
Affiliation(s)
- Qiwei Liang
- Altria Client Services, Richmond, VA 23219, USA.
| | | |
Collapse
|
64
|
Abstract
A large segment of the population suffers from addiction to alcohol, smoking, or illicit drugs. Not only do substance abuse and addiction pose a threat to health, but the consequences of addiction also impose a social and economic burden on families, communities, and nations. Genome-wide linkage and association studies have been used for addiction research with varying degrees of success. The most well-established genetic factors associated with alcohol dependence are in the genes encoding alcohol dehydrogenase (ADH), which oxidizes alcohol to acetaldehyde, and aldehyde dehydrogenase (ALDH2), which oxidizes acetaldehyde to acetate. Recently emerging genetic studies have linked variants in the genes encoding the α3, α5, and β4 nicotinic acetylcholine receptor subunits to smoking risk. However, the influence of these well-established genetic variants accounts for only a small portion of the heritability of alcohol and nicotine addiction, and it is likely that there are both common and rare risk variants yet to be identified. Newly developed DNA sequencing technologies could potentially advance the detection of rare variants with a larger impact on addiction risk.
Collapse
Affiliation(s)
- Jen-Chyong Wang
- Department of Psychiatry, School of Medicine, Washington University in St. Louis, St. Louis, MO 63110, USA.
| | | | | |
Collapse
|
65
|
Bloom AJ, Harari O, Martinez M, Madden PAF, Martin NG, Montgomery GW, Rice JP, Murphy SE, Bierut LJ, Goate A. Use of a predictive model derived from in vivo endophenotype measurements to demonstrate associations with a complex locus, CYP2A6. Hum Mol Genet 2012; 21:3050-62. [PMID: 22451501 DOI: 10.1093/hmg/dds114] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
This study demonstrates a novel approach to test associations between highly heterogeneous genetic loci and complex phenotypes. Previous investigations of the relationship between Cytochrome P450 2A6 (CYP2A6) genotype and smoking phenotypes made comparisons by dividing subjects into broad categories based on assumptions that simplify the range of function of different CYP2A6 alleles, their numerous possible diplotype combinations and non-additive allele effects. A predictive model that translates CYP2A6 diplotype into a single continuous variable was previously derived from an in vivo metabolism experiment in 189 European Americans. Here, we apply this model to assess associations between genotype, inferred nicotine metabolism and smoking behaviors in larger samples without direct nicotine metabolism measurements. CYP2A6 genotype is not associated with nicotine dependence, as defined by the Fagerström Test of Nicotine Dependence, demonstrating that cigarettes smoked per day (CPD) and nicotine dependence have distinct genetic correlates. The predicted metric is significantly associated with CPD among African Americans and European American dependent smokers. Individual slow metabolizing genotypes are associated with lower CPD, but the predicted metric is the best predictor of CPD. Furthermore, optimizing the predictive model by including additional CYP2A6 alleles improves the fit of the model in an independent data set and provides a novel method of predicting the functional impact of alleles without direct metabolism measurements. Lastly, comprehensive genotyping and in vivo metabolism data are used to demonstrate that genome-wide significant associations between CPD and single nucleotide polymorphisms are the result of synthetic associations.
Collapse
Affiliation(s)
- A Joseph Bloom
- Department of Psychiatry, Washington University School of Medicine, 660 South Euclid, Saint Louis, MO 63119, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Gold AB, Lerman C. Pharmacogenetics of smoking cessation: role of nicotine target and metabolism genes. Hum Genet 2012; 131:10.1007/s00439-012-1143-9. [PMID: 22290489 PMCID: PMC3864572 DOI: 10.1007/s00439-012-1143-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Accepted: 01/19/2012] [Indexed: 11/24/2022]
Abstract
Many smokers attempt to quit smoking but few are successful in the long term. The heritability of nicotine addiction and smoking relapse have been documented, and research is focused on identifying specific genetic influences on the ability to quit smoking and response to specific medications. Research in genetically modified cell lines and mice has identified nicotine acetylcholine receptor subtypes that mediate the pharmacological and behavioral effects of nicotine sensitivity and withdrawal. Human genetic association studies have identified single nucleotide polymorphisms (SNPs) in genes encoding nicotine acetylcholine receptor subunits and nicotine metabolizing enzymes that influence smoking cessation phenotypes. There is initial promising evidence for a role in smoking cessation for SNPs in the β2 and α5/α3/β4 nAChR subunit genes; however, effects are small and not consistently replicated. There are reproducible and clinically significant associations of genotypic and phenotypic measures of CYP2A6 enzyme activity and nicotine metabolic rate with smoking cessation as well as response to nicotine replacement therapies and bupropion. Prospective clinical trials to identify associations of genetic variants and gene-gene interactions on smoking cessation are needed to generate the evidence base for both medication development and targeted therapy approaches based on genotype.
Collapse
Affiliation(s)
- Allison B. Gold
- Center for Interdisciplinary Research on Nicotine Addiction, University of Pennsylvania, 3535 Market Street, Suite 4100, Philadelphia, PA 19104, USA
| | - Caryn Lerman
- Center for Interdisciplinary Research on Nicotine Addiction, University of Pennsylvania, 3535 Market Street, Suite 4100, Philadelphia, PA 19104, USA
| |
Collapse
|
67
|
Abstract
To thrive in any given environment, mobile creatures must be able to learn from the outcomes of both successful and disappointing events. To learn from success, the brain relies on signals originating in the ventral tegmental area and substantia nigra that result in increased release of dopamine in the striatum. Recently, it was shown that to learn from disappointment the brain relies on signals originating in the lateral habenula, which indirectly inhibit dopaminergic activity. The habenula is a small brain region that has been shown in mice to be critical for the appearance of nicotine withdrawal symptoms. The nicotinic acetylcholine receptor subunits expressed in the medial habenula are necessary to observe withdrawal symptoms in mice, and blocking nicotinic activity in the medial habenula only is sufficient to precipitate withdrawal in dependent mice. In addition, recent genome wide association studies have shown that in humans, genetic variants in the same nicotinic receptor subunits are at least partially responsible for the genetic predisposition to become a smoker. The habenula is linked not only to nicotine, but also to the effects of several other drugs. We postulate that the continuous use of drugs of abuse results in habenular hyperactivity as a compensatory mechanism for artificially elevated dopamine release. Drug withdrawal would then result in non-compensated habenular hyperactivity, and could be thought of as a state of continuous disappointment (or a negative emotional state), driving repeated drug use. We believe that drugs that alter habenular activity may be effective therapies against tobacco smoke and drug addiction in general.
Collapse
Affiliation(s)
- Philip R Baldwin
- Department of Neuroscience, Baylor College of Medicine, One Baylor Plaza, Houston TX 77030, USA
| | | | | |
Collapse
|
68
|
Zienolddiny S, Skaug V. Single nucleotide polymorphisms as susceptibility, prognostic, and therapeutic markers of nonsmall cell lung cancer. LUNG CANCER (AUCKLAND, N.Z.) 2011; 3:1-14. [PMID: 28210120 PMCID: PMC5312489 DOI: 10.2147/lctt.s13256] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Lung cancer is a major public health problem throughout the world. Among the most frequent cancer types (prostate, breast, colorectal, stomach, lung), lung cancer is the leading cause of cancer-related deaths worldwide. Among the two major subtypes of small cell lung cancer and nonsmall cell lung cancer (NSCLC), 85% of tumors belong to the NSCLC histological types. Small cell lung cancer is associated with the shortest survival time. Although tobacco smoking has been recognized as the major risk factor for lung cancer, there is a great interindividual and interethnic difference in risk of developing lung cancer given exposure to similar environmental and lifestyle factors. This may indicate that in addition to chemical and environmental factors, genetic variations in the genome may contribute to risk modification. A common type of genetic variation in the genome, known as single nucleotide polymorphism, has been found to be associated with susceptibility to lung cancer. Interestingly, many of these polymorphisms are found in the genes that regulate major pathways of carcinogen metabolism (cytochrome P450 genes), detoxification (glutathione S-transferases), adduct removal (DNA repair genes), cell growth/apoptosis (TP53/MDM2), the immune system (cytokines/chemokines), and membrane receptors (nicotinic acetylcholine and dopaminergic receptors). Some of these polymorphisms have been shown to alter the level of mRNA, and protein structure and function. In addition to being susceptibility markers, several of these polymorphisms are emerging to be important for response to chemotherapy/radiotherapy and survival of patients. Therefore, it is hypothesized that single nucleotide polymorphisms will be valuable genetic markers in individual-based prognosis and therapy in future. Here we will review some of the most important single nucleotide polymorphisms in the metabolic pathways that may modulate susceptibility, prognosis, and therapy in NSCLC.
Collapse
Affiliation(s)
- Shanbeh Zienolddiny
- Section for Toxicology and Biological Work Environment, National Institute of Occupational Health, Oslo, Norway
| | - Vidar Skaug
- Section for Toxicology and Biological Work Environment, National Institute of Occupational Health, Oslo, Norway
| |
Collapse
|
69
|
Cho MH, Castaldi PJ, Wan ES, Siedlinski M, Hersh CP, Demeo DL, Himes BE, Sylvia JS, Klanderman BJ, Ziniti JP, Lange C, Litonjua AA, Sparrow D, Regan EA, Make BJ, Hokanson JE, Murray T, Hetmanski JB, Pillai SG, Kong X, Anderson WH, Tal-Singer R, Lomas DA, Coxson HO, Edwards LD, MacNee W, Vestbo J, Yates JC, Agusti A, Calverley PMA, Celli B, Crim C, Rennard S, Wouters E, Bakke P, Gulsvik A, Crapo JD, Beaty TH, Silverman EK. A genome-wide association study of COPD identifies a susceptibility locus on chromosome 19q13. Hum Mol Genet 2011; 21:947-57. [PMID: 22080838 DOI: 10.1093/hmg/ddr524] [Citation(s) in RCA: 185] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The genetic risk factors for chronic obstructive pulmonary disease (COPD) are still largely unknown. To date, genome-wide association studies (GWASs) of limited size have identified several novel risk loci for COPD at CHRNA3/CHRNA5/IREB2, HHIP and FAM13A; additional loci may be identified through larger studies. We performed a GWAS using a total of 3499 cases and 1922 control subjects from four cohorts: the Evaluation of COPD Longitudinally to Identify Predictive Surrogate Endpoints (ECLIPSE); the Normative Aging Study (NAS) and National Emphysema Treatment Trial (NETT); Bergen, Norway (GenKOLS); and the COPDGene study. Genotyping was performed on Illumina platforms with additional markers imputed using 1000 Genomes data; results were summarized using fixed-effect meta-analysis. We identified a new genome-wide significant locus on chromosome 19q13 (rs7937, OR = 0.74, P = 2.9 × 10(-9)). Genotyping this single nucleotide polymorphism (SNP) and another nearby SNP in linkage disequilibrium (rs2604894) in 2859 subjects from the family-based International COPD Genetics Network study (ICGN) demonstrated supportive evidence for association for COPD (P = 0.28 and 0.11 for rs7937 and rs2604894), pre-bronchodilator FEV(1) (P = 0.08 and 0.04) and severe (GOLD 3&4) COPD (P = 0.09 and 0.017). This region includes RAB4B, EGLN2, MIA and CYP2A6, and has previously been identified in association with cigarette smoking behavior.
Collapse
Affiliation(s)
- Michael H Cho
- Channing Laboratory, Brigham & Women’s Hospital, Boston, MA 02115, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
70
|
Murphy SE, von Weymarn LB, Schutten MM, Kassie F, Modiano JF. Chronic nicotine consumption does not influence 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone-induced lung tumorigenesis. Cancer Prev Res (Phila) 2011; 4:1752-60. [PMID: 22027684 DOI: 10.1158/1940-6207.capr-11-0366] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Nicotine replacement therapy is often used to maintain smoking cessation. However, concerns exist about the safety of long-term nicotine replacement therapy use in ex-smokers and its concurrent use in smokers. In this study, we determined the effect of nicotine administration on 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK)-induced lung tumors in A/J mice. Female mice were administered a single dose of NNK (10 μmol) and 0.44 μmol/mL nicotine in the drinking water. Nicotine was administered 2 weeks prior to NNK, 44 weeks after NNK, throughout the experiment, or without NNK treatment. The average weekly consumption of nicotine-containing water was 15 ± 3 mL per mouse, resulting in an estimated daily nicotine dose of 0.9 μmol (0.15 mg) per mouse. Nicotine administration alone for 46 weeks did not increase lung tumor multiplicity (0.32 ± 0.1 vs. 0.53 ± 0.1 tumors per mouse). Lung tumor multiplicity in NNK-treated mice was 18.4 ± 4.5 and was not different for mice consuming nicotine before or after NNK administration, 21.9 ± 5.3 and 20.0 ± 5.4 tumors per mouse, respectively. Lung tumor multiplicity in animals consuming nicotine both before and after NNK administration was 20.4 ± 5.4. Tumor size and progression of adenomas to carcinomas was also not affected by nicotine consumption. In addition, nicotine consumption had no effect on the level of O(6)-methylguanine in the lung of NNK-treated mice. These negative findings in a commonly used model of human lung carcinogenesis should lead us to question the interpretation of the many in vitro studies that find that nicotine stimulates cancer cell growth.
Collapse
Affiliation(s)
- Sharon E Murphy
- Department of Biochemistry Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA.
| | | | | | | | | |
Collapse
|