51
|
Abdulkareem AF, Lee HH, Ahmadi M, Martinez LR. Fungal serotype-specific differences in bacterial-yeast interactions. Virulence 2016; 6:652-7. [PMID: 26132337 DOI: 10.1080/21505594.2015.1066962] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Cryptococcus neoformans (Cn) causes meningoencephalitis in immunocompromised individuals. This encapsulated fungus can be found interacting with environmental microbes in soil contaminated with pigeon excrement. Cn survival within polymicrobial and other challenging communities has been shown to affect the evolution of its virulence factors. We compared the survival of 10 serotype A and D strains after interaction with the soil bacterium, Acinetobacter baumannii (Ab). Although co-incubation with Ab stimulated virulence factors production by strains of both cryptococcal serotypes, on average, serotype A strains displayed significantly higher survival rate, number of metabolically active cells within biofilms, and capsular polysaccharide production and release than serotype D strains. Our findings suggest that interactions of Cn with other microorganisms influence the fungus' regulation and production of virulence factors, important elements needed for the successful colonization of the human host.
Collapse
Affiliation(s)
- Asan F Abdulkareem
- a Department of Biology ; Faculty of Sciences and Health ; Koya University , Koya-Erbil , Iraq
| | - Hiu Ham Lee
- b Department of Biomedical Sciences ; NYIT College of Osteopathic Medicine ; New York Institute of Technology , Old Westbury , NY USA
| | - Mohammed Ahmadi
- c Department of Biology ; Adelphi University , Garden City , NY USA
| | - Luis R Martinez
- b Department of Biomedical Sciences ; NYIT College of Osteopathic Medicine ; New York Institute of Technology , Old Westbury , NY USA
| |
Collapse
|
52
|
Reyneke B, Dobrowsky PH, Ndlovu T, Khan S, Khan W. EMA-qPCR to monitor the efficiency of a closed-coupled solar pasteurization system in reducing Legionella contamination of roof-harvested rainwater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 553:662-670. [PMID: 26990076 DOI: 10.1016/j.scitotenv.2016.02.108] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 02/12/2016] [Accepted: 02/15/2016] [Indexed: 06/05/2023]
Abstract
Solar pasteurization is effective in reducing the level of indicator organisms in stored rainwater to within drinking water standards. However, Legionella spp. were detected at temperatures exceeding the recommended pasteurization temperatures using polymerase chain reaction assays. The aim of the current study was thus to apply EMA quantitative polymerase chain reaction (EMA-qPCR) to determine whether the Legionella spp. detected were intact cells and therefore possibly viable at pasteurization temperatures >70°C. The BacTiter-Glo™ Microbial Cell Viability Assay was also used to detect the presence of ATP in the tested samples, as ATP indicates the presence of metabolically active cells. Chemical analysis also indicated that all anions and cations were within the respective drinking water guidelines, with the exception of iron (mean: 186.76 μg/L) and aluminium (mean: 188.13 μg/L), which were detected in the pasteurized tank water samples at levels exceeding recommended guidelines. The BacTiter-Glo™ Microbial Cell Viability Assay indicated the presence of viable cells for all pasteurized temperatures tested, with the percentage of ATP (in the form of relative light units) decreasing with increasing temperature [70-79°C (96.7%); 80- 89°C (99.2%); 90-95°C (99.7%)]. EMA-qPCR then indicated that while solar pasteurization significantly reduced (p<0.05) the genomic copy numbers of intact Legionella cells in the pasteurized tank water (~99%), no significant difference (p>0.05) in the mean copy numbers was detected with an increase in the pasteurization temperature, with 6 × 10(3) genomic copies/mL DNA sample obtained at 95°C. As intact Legionella cells were detected in the pasteurized tank water samples, quantitative microbial risk assessment studies need to be conducted to determine the potential health risk associated with using the water for domestic purposes.
Collapse
Affiliation(s)
- B Reyneke
- Department of Microbiology, Faculty of Science, University of Stellenbosch, Private Bag X1, Stellenbosch 7602, South Africa
| | - P H Dobrowsky
- Department of Microbiology, Faculty of Science, University of Stellenbosch, Private Bag X1, Stellenbosch 7602, South Africa
| | - T Ndlovu
- Department of Microbiology, Faculty of Science, University of Stellenbosch, Private Bag X1, Stellenbosch 7602, South Africa
| | - S Khan
- Department of Biomedical Sciences, Faculty of Health and Wellness Sciences, Cape Peninsula University of Technology, P.O. Box 1906, Bellville 7535, South Africa
| | - W Khan
- Department of Microbiology, Faculty of Science, University of Stellenbosch, Private Bag X1, Stellenbosch 7602, South Africa.
| |
Collapse
|
53
|
Kusić D, Rösch P, Popp J. Fast label-free detection of Legionella spp. in biofilms by applying immunomagnetic beads and Raman spectroscopy. Syst Appl Microbiol 2016; 39:132-40. [DOI: 10.1016/j.syapm.2016.01.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Revised: 01/18/2016] [Accepted: 01/21/2016] [Indexed: 11/29/2022]
|
54
|
Contamination of Hospital Water Supplies in Gilan, Iran, with Legionella pneumophila, Escherichia coli, and Pseudomonas aeruginosa. Interdiscip Perspect Infect Dis 2015; 2015:809842. [PMID: 26448745 PMCID: PMC4576014 DOI: 10.1155/2015/809842] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Revised: 08/23/2015] [Accepted: 08/26/2015] [Indexed: 11/17/2022] Open
Abstract
This study is designed to determine the contamination degree of hospital water supplies with Pseudomonas aeruginosa, Legionella pneumophila, and E. coli in Gilan, Iran. Samples were collected directly into sterile containers and concentrated by centrifuge. Half part of any sample transferred to yeast extract broth and the second part transferred to Trypticase Soy Broth and incubated for 3 days. DNA was extracted by using commercial kit. Four rounds of PCR were performed as follows: multiplex PCR for detecting Pseudomonas aeruginosa, Integron 1, and Metallo-β-lactamases gene; PCR for detecting Legionella pneumophila and mip gene separately; PCR for detecting E. coli; and another PCR for detecting whole bacterial presence. Contamination rates of cold, warm, and incubator water samples with P. aeruginosa, were 16.6%, 37.5%, and 6.8% consequently. Degrees of contamination with L. pneumophila were 3.3%, 9.3%, and 10.9% and with E. coli were zero, 6.2%, and zero. Total bacterial contamination of cold, warm, and incubator water samples was 93.3%, 84.4%, and 89.0% consequently. Metallo-β-lactamases gene was found in 20.0% of all samples. Contamination degree with P. aeruginosa was considerable and with L. pneumophila was moderate. Metallo-β-lactamases gene was found frequently indicating widespread multiple drug resistance bacteria. We suggest using new decontamination method based on nanotechnology.
Collapse
|
55
|
Mendis N, McBride P, Faucher SP. Short-Term and Long-Term Survival and Virulence of Legionella pneumophila in the Defined Freshwater Medium Fraquil. PLoS One 2015; 10:e0139277. [PMID: 26406895 PMCID: PMC4583229 DOI: 10.1371/journal.pone.0139277] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 09/09/2015] [Indexed: 12/03/2022] Open
Abstract
Legionella pneumophila (Lp) is the etiological agent responsible for Legionnaires’ disease, a potentially fatal pulmonary infection. Lp lives and multiplies inside protozoa in a variety of natural and man-made water systems prior to human infection. Fraquil, a defined freshwater medium, was used as a highly reproducible medium to study the behaviour of Lp in water. Adopting a reductionist approach, Fraquil was used to study the impact of temperature, pH and trace metal levels on the survival and subsequent intracellular multiplication of Lp in Acanthamoeba castellanii, a freshwater protozoan and a natural host of Legionella. We show that temperature has a significant impact on the short- and long-term survival of Lp, but that the bacterium retains intracellular multiplication potential for over six months in Fraquil. Moreover, incubation in Fraquil at pH 4.0 resulted in a rapid decline in colony forming units, but was not detrimental to intracellular multiplication. In contrast, variations in trace metal concentrations had no impact on either survival or intracellular multiplication in amoeba. Our data show that Lp is a resilient bacterium in the water environment, remaining infectious to host cells after six months under the nutrient-deprived conditions of Fraquil.
Collapse
Affiliation(s)
- Nilmini Mendis
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | - Peter McBride
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
| | - Sébastien P. Faucher
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University, Sainte-Anne-de-Bellevue, QC, Canada
- * E-mail:
| |
Collapse
|
56
|
Falkinham JO, Hilborn ED, Arduino MJ, Pruden A, Edwards MA. Epidemiology and Ecology of Opportunistic Premise Plumbing Pathogens: Legionella pneumophila, Mycobacterium avium, and Pseudomonas aeruginosa. ENVIRONMENTAL HEALTH PERSPECTIVES 2015; 123:749-58. [PMID: 25793551 PMCID: PMC4529011 DOI: 10.1289/ehp.1408692] [Citation(s) in RCA: 177] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Accepted: 03/17/2015] [Indexed: 05/11/2023]
Abstract
BACKGROUND Legionella pneumophila, Mycobacterium avium, and Pseudomonas aeruginosa are opportunistic premise plumbing pathogens (OPPPs) that persist and grow in household plumbing, habitats they share with humans. Infections caused by these OPPPs involve individuals with preexisting risk factors and frequently require hospitalization. OBJECTIVES The objectives of this report are to alert professionals of the impact of OPPPs, the fact that 30% of the population may be exposed to OPPPs, and the need to develop means to reduce OPPP exposure. We herein present a review of the epidemiology and ecology of these three bacterial OPPPs, specifically to identify common and unique features. METHODS A Water Research Foundation-sponsored workshop gathered experts from across the United States to review the characteristics of OPPPs, identify problems, and develop a list of research priorities to address critical knowledge gaps with respect to increasing OPPP-associated disease. DISCUSSION OPPPs share the common characteristics of disinfectant resistance and growth in biofilms in water distribution systems or premise plumbing. Thus, they share a number of habitats with humans (e.g., showers) that can lead to exposure and infection. The frequency of OPPP-infected individuals is rising and will likely continue to rise as the number of at-risk individuals is increasing. Improved reporting of OPPP disease and increased understanding of the genetic, physiologic, and structural characteristics governing the persistence and growth of OPPPs in drinking water distribution systems and premise plumbing is needed. CONCLUSIONS Because broadly effective community-level engineering interventions for the control of OPPPs have yet to be identified, and because the number of at-risk individuals will continue to rise, it is likely that OPPP-related infections will continue to increase. However, it is possible that individuals can take measures (e.g., raise hot water heater temperatures and filter water) to reduce home exposures.
Collapse
Affiliation(s)
- Joseph O Falkinham
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
| | | | | | | | | |
Collapse
|
57
|
Kottom TJ, Limper AH. Evidence for a Pneumocystis carinii Flo8-like transcription factor: insights into organism adhesion. Med Microbiol Immunol 2015. [PMID: 26215665 DOI: 10.1007/s00430-015-0428-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Pneumocystis carinii (Pc) adhesion to alveolar epithelial cells is well established and is thought to be a prerequisite for the initiation of Pneumocystis pneumonia. Pc binding events occur in part through the major Pc surface glycoprotein Msg, as well as an integrin-like molecule termed PcInt1. Recent data from the Pc sequencing project also demonstrate DNA sequences homologous to other genes important in Candida spp. binding to mammalian host cells, as well as organism binding to polystyrene surfaces and in biofilm formation. One of these genes, flo8, a transcription factor needed for downstream cAMP/PKA-pathway-mediated activation of the major adhesion/flocculin Flo11 in yeast, was cloned from a Pc cDNA library utilizing a partial sequence available in the Pc genome database. A CHEF blot of Pc genomic DNA yielded a single band providing evidence this gene is present in the organism. BLASTP analysis of the predicted protein demonstrated 41 % homology to the Saccharomyces cerevisiae Flo8. Northern blotting demonstrated greatest expression at pH 6.0-8.0, pH comparable to reported fungal biofilm milieu. Western blot and immunoprecipitation assays of PcFlo8 protein in isolated cyst and tropic life forms confirmed the presence of the cognate protein in these Pc life forms. Heterologous expression of Pcflo8 cDNA in flo8Δ-deficient yeast strains demonstrated that the Pcflo8 was able to restore yeast binding to polystyrene and invasive growth of yeast flo8Δ cells. Furthermore, Pcflo8 promoted yeast binding to HEK293 human epithelial cells, strengthening its functional classification as a Flo8 transcription factor. Taken together, these data suggest that PcFlo8 is expressed by Pc and may exert activity in organism adhesion and biofilm formation.
Collapse
Affiliation(s)
- Theodore J Kottom
- Thoracic Diseases Research Unit, Departments of Internal Medicine and Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, 8-24 Stabile, Rochester, MN, 55905, USA
| | - Andrew H Limper
- Thoracic Diseases Research Unit, Departments of Internal Medicine and Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, 8-24 Stabile, Rochester, MN, 55905, USA.
| |
Collapse
|
58
|
Spychała M, Sowińska A, Starzyk J, Masłowski A. Protozoa and metazoa relations to technological conditions of non-woven textile filters for wastewater treatment. ENVIRONMENTAL TECHNOLOGY 2015; 36:1865-1875. [PMID: 25704123 DOI: 10.1080/09593330.2015.1014863] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The objective of this study was a preliminary identification of basic groups of micro-organisms in the cross-sectional profile of geotextile filters for septic tank effluent (STE) treatment and their relations to technological conditions. Reactors with textile filters treating wastewater were investigated on a semi-technical scale. Filters were vertically situated and STE was filtered through them under hydrostatic pressure at a wastewater surface height of 7-20 cm. Filters were made of four layers of non-woven TS 20 geotextile of 0.9 mm thickness. Various groups of organisms were observed; the most abundant group comprised free-swimming and crawling ciliates, less abundant were stalked ciliates and the least numerous were nematodes. The individual counts of all groups of micro-organisms investigated during the study were variable according to time and space. The high abundance of Opercularia, a commonly observed genus of stalked ciliates, was related to the high efficiency of wastewater treatment and dissolved oxygen concentration of about 1.0 g/m3. Numbers of free-swimming and crawling ciliates had a tendency to decrease in relation to the depth of filter cross-sectional profile. The variability in counts of particular groups of organisms could be related to the local stress conditions. No correlation between identified organism count and total mass concentration in the cross-sectional filter profile was found.
Collapse
Affiliation(s)
- Marcin Spychała
- a Department of Hydraulic and Sanitary Engineering , Poznan University of Life Sciences , Piątkowska St. 94A, Poznań 60-649 , Poland
| | | | | | | |
Collapse
|
59
|
Abbott ZD, Yakhnin H, Babitzke P, Swanson MS. csrR, a Paralog and Direct Target of CsrA, Promotes Legionella pneumophila Resilience in Water. mBio 2015; 6:e00595. [PMID: 26060275 PMCID: PMC4471563 DOI: 10.1128/mbio.00595-15] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 05/08/2015] [Indexed: 02/05/2023] Open
Abstract
UNLABELLED Critical to microbial versatility is the capacity to express the cohort of genes that increase fitness in different environments. Legionella pneumophila occupies extensive ecological space that includes diverse protists, pond water, engineered water systems, and mammalian lung macrophages. One mechanism that equips this opportunistic pathogen to adapt to fluctuating conditions is a switch between replicative and transmissive cell types that is controlled by the broadly conserved regulatory protein CsrA. A striking feature of the legionellae surveyed is that each of 14 strains encodes 4 to 7 csrA-like genes, candidate regulators of distinct fitness traits. Here we focus on the one csrA paralog (lpg1593) that, like the canonical csrA, is conserved in all 14 strains surveyed. Phenotypic analysis revealed that long-term survival in tap water is promoted by the lpg1593 locus, which we name csrR (for "CsrA-similar protein for resilience"). As predicted by its GGA motif, csrR mRNA was bound directly by the canonical CsrA protein, as judged by electromobility shift and RNA-footprinting assays. Furthermore, CsrA repressed translation of csrR mRNA in vivo, as determined by analysis of csrR-gfp reporters, csrR mRNA stability in the presence and absence of csrA expression, and mutation of the CsrA binding site identified on the csrR mRNA. Thus, CsrA not only governs the transition from replication to transmission but also represses translation of its paralog csrR when nutrients are available. We propose that, during prolonged starvation, relief of CsrA repression permits CsrR protein to coordinate L. pneumophila's switch to a cell type that is resilient in water supplies. IMPORTANCE Persistence of L. pneumophila in water systems is a public health risk, and yet there is little understanding of the genetic determinants that equip this opportunistic pathogen to adapt to and survive in natural or engineered water systems. A potent regulator of this pathogen's intracellular life cycle is CsrA, a protein widely distributed among bacterial species that is understood quite well. Our finding that every sequenced L. pneumophila strain carries several csrA paralogs-including two common to all isolates--indicates that the legionellae exploit CsrA regulatory switches for multiple purposes. Our discovery that one paralog, CsrR, is a target of CsrA that enhances survival in water is an important step toward understanding colonization of the engineered environment by pathogenic L. pneumophila.
Collapse
Affiliation(s)
- Zachary D Abbott
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Helen Yakhnin
- Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, Pennsylvania State University, State College, Pennsylvania, USA
| | - Paul Babitzke
- Department of Biochemistry and Molecular Biology, Center for RNA Molecular Biology, Pennsylvania State University, State College, Pennsylvania, USA
| | - Michele S Swanson
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
60
|
Role of Extracellular Structures of Escherichia coli O157:H7 in Initial Attachment to Biotic and Abiotic Surfaces. Appl Environ Microbiol 2015; 81:4720-7. [PMID: 25956766 DOI: 10.1128/aem.00215-15] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Accepted: 04/27/2015] [Indexed: 11/20/2022] Open
Abstract
Infection by human pathogens through the consumption of fresh, minimally processed produce and solid plant-derived foods is a major concern of the U.S. and global food industries and of public health services. Enterohemorrhagic Escherichia coli O157:H7 is a frequent and potent foodborne pathogen that causes severe disease in humans. Biofilms formed by E. coli O157:H7 facilitate cross-contamination by sheltering pathogens and protecting them from cleaning and sanitation operations. The objective of this research was to determine the role that several surface structures of E. coli O157:H7 play in adherence to biotic and abiotic surfaces. A set of isogenic deletion mutants lacking major surface structures was generated. The mutant strains were inoculated onto fresh spinach and glass surfaces, and their capability to adhere was assessed by adherence assays and fluorescence microscopy methods. Our results showed that filament-deficient mutants bound to the spinach leaves and glass surfaces less strongly than the wild-type strain did. We mimicked the switch to the external environment-during which bacteria leave the host organism and adapt to lower ambient temperatures of cultivation or food processing-by decreasing the temperature from 37°C to 25°C and 4°C. We concluded that flagella and some other cell surface proteins are important factors in the process of initial attachment and in the establishment of biofilms. A better understanding of the specific roles of these structures in early stages of biofilm formation can help to prevent cross-contaminations and foodborne disease outbreaks.
Collapse
|
61
|
Okuno T, Tani K, Yamaguchi N, Nasu M. Expression of gyrB and 16S ribosomal RNA genes as indicators of growth and physiological activities of Legionella pneumophila. Biocontrol Sci 2015; 20:67-70. [PMID: 25817815 DOI: 10.4265/bio.20.67] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
To determine whether the DNA gyrase (gyrB) and 16S ribosomal RNA (16S rRNA) genes can be used as indicators of the biological activities of Legionella pneumophila, the expression levels were estimated. The ratio of mRNA/DNA in gyrB was 0.7 in mid log phase and decreased drastically after the log phase. For 16S rRNA, the ratio was highest in mid log phase (7.0×10(3)), and the value that was about 10% of that in the log phase was maintained for six days. The rRNA may be vital in the resting or active but nonculturable cells that are not growing but physiologically active. The expression levels of gyrB mRNA and 16S rRNA can be used as indicators of the growth activity and the physiological activity of L. pneumophila, respectively. Therefore, by measurement of these indicators, we can evaluate the activities of Legionella cells in various environments.
Collapse
Affiliation(s)
- Toshihiro Okuno
- Environmental Science and Microbiology, Graduate School of pharmaceutical Sciences, Osaka University
| | | | | | | |
Collapse
|
62
|
Sánchez-Busó L, Olmos MP, Camaró ML, Adrián F, Calafat JM, González-Candelas F. Phylogenetic analysis of environmental Legionella pneumophila isolates from an endemic area (Alcoy, Spain). INFECTION GENETICS AND EVOLUTION 2015; 30:45-54. [DOI: 10.1016/j.meegid.2014.12.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 12/02/2014] [Accepted: 12/06/2014] [Indexed: 12/20/2022]
|
63
|
Gião MS, Wilks SA, Keevil CW. Influence of copper surfaces on biofilm formation by Legionella pneumophila in potable water. Biometals 2015; 28:329-39. [PMID: 25686789 DOI: 10.1007/s10534-015-9835-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Accepted: 02/10/2015] [Indexed: 11/30/2022]
Abstract
Legionella pneumophila is a waterborne pathogen that can cause Legionnaires' disease, a fatal pneumonia, or Pontiac fever, a mild form of disease. Copper is an antimicrobial material used for thousands of years. Its incorporation in several surface materials to control the transmission of pathogens has been gaining importance in the past decade. In this work, the ability of copper to control the survival of L. pneumophila in biofilms was studied. For that, the incorporation of L. pneumophila in polymicrobial drinking water biofilms formed on copper, PVC and PEX, and L. pneumophila mono-species biofilms formed on copper and uPVC were studied by comparing cultivable and total numbers (quantified by peptide nucleic acid (PNA) hybridisation). L. pneumophila was never recovered by culture from heterotrophic biofilms; however, PNA-positive numbers were slightly higher in biofilms formed on copper (5.9 × 10(5) cells cm(-2)) than on PVC (2.8 × 10(5) cells cm(-2)) and PEX (1.7 × 10(5) cells cm(-2)). L. pneumophila mono-species biofilms grown on copper gave 6.9 × 10(5) cells cm(-2) for PNA-positive cells and 4.8 × 10(5) CFU cm(-2) for cultivable numbers, showing that copper is not directly effective in killing L. pneumophila. Therefore previous published studies showing inactivation of L. pneumophila by copper surfaces in potable water polymicrobial species biofilms must be carefully interpreted.
Collapse
Affiliation(s)
- M S Gião
- Environmental Healthcare Unit, Centre for Biological Sciences, Life Sciences Building, Highfield Campus, University of Southampton, Southampton, SO17 1BJ, UK,
| | | | | |
Collapse
|
64
|
Dos Santos VL, Veiga AA, Mendonça RS, Alves AL, Pagnin S, Santiago VMJ. Reuse of refinery's tertiary-treated wastewater in cooling towers: microbiological monitoring. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:2945-2955. [PMID: 25226836 DOI: 10.1007/s11356-014-3555-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Accepted: 09/03/2014] [Indexed: 06/03/2023]
Abstract
The study was planned to quantify the distribution of bacteria between bulk water and biofilm formed on different materials in an industrial scale cooling tower system of an oil refinery operating with clarified and chlorinated freshwater (CCW) or chlorinated tertiary effluent (TRW) as makeup water. The sessile and planktonic heterotrophic bacteria and Pseudomonas aeruginosa densities were significantly higher in the cooling tower supplied with clarified and chlorinated freshwater (CTCW) (p < 0.05). In the two towers, the biofilm density was higher on the surface of glass slides and stainless steel coupons than on the surface of carbon steel coupons. The average corrosion rates of carbon steel coupons (0.4-0.8 millimeters per year (mpy)) and densities of sessile (12-1.47 × 10(3) colony-forming unit (CFU) cm(-1)) and planktonic (0-2.36 × 10(3) CFU mL(-1)) microbiota remained below of the maximum values of reference used by water treatment companies as indicative of efficient microbial control. These data indicate that the strategies of the water treatment station (WTS) (free chlorine) and industrial wastewater treatment station (IWTS) followed by reverse electrodialysis system (RES) (free chlorine plus chloramine) were effective for the microbiological control of the two makeup water sources.
Collapse
Affiliation(s)
- Vera Lúcia Dos Santos
- Microbiology Department, Biological Sciences Institute, Universidade Federal de Minas Gerais, C.P. 486, Belo Horizonte, MG, 31270-901, Brazil,
| | | | | | | | | | | |
Collapse
|
65
|
Chidamba L, Korsten L. Pyrosequencing analysis of roof-harvested rainwater and river water used for domestic purposes in Luthengele village in the Eastern Cape Province of South Africa. ENVIRONMENTAL MONITORING AND ASSESSMENT 2015; 187:41. [PMID: 25637385 DOI: 10.1007/s10661-014-4237-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 12/17/2014] [Indexed: 06/04/2023]
Abstract
Pyrosequencing targeting the V1-V3 hypervariable of the 16S rDNA was used to investigate the bacterial diversity in river and roof-harvested rainwater (RHRW) used for potable purposes by rural households in Luthengele village in the Eastern Cape Province of South Africa. The phylum Proteobacteria dominated the data set (80.5 % of all reads), while 4.2 % of the reads could not be classified to any of the known phyla at a probability of 0.8 or higher (unclassified bacteria). At class level, the classes; Betaproteobacteria (50.4 % of all reads), Alphaproteobacteria (16.2 %), Verrucomicrobiae (6.6 %), Planctomycetacia (5.7 %), and Sphingobacteria (3 %) dominated the data set in all the samples. Although the class Verrucomicrobiae constituted 6.6 % of all sequences, 88.6 % of the sequences were from the river sample where the class represented 43.7 % of the observed sequences in the sample. The bacteria community structure clearly showed significant similarities between RHRW and differences with the river water control sample, suggesting different levels of contamination and environmental factors affecting the various water sources. Moreover, signatures of potential pathogens including Legionella, Acinetobacter, Pseudomonas, Clostridia, Chromobacterium, Yersinia, and Serratia were detected, and the proportions of Legionella were relatively higher suggesting a potential health risk to households using RHRW. This work provides guidance for prioritizing subsequent culturable and quantitative analysis to ensure that potentially significant pathogens are not left out of risk estimations.
Collapse
Affiliation(s)
- Lizyben Chidamba
- Department of Microbiology and Plant Pathology, University of Pretoria, Pretoria, 0002, South Africa,
| | | |
Collapse
|
66
|
Brûlet A, Nicolle MC, Giard M, Nicolini FE, Michallet M, Jarraud S, Etienne J, Vanhems P. Fatal NosocomialLegionella pneumophilaInfection Due to Exposure to Contaminated Water From a Washbasin in a Hematology Unit. Infect Control Hosp Epidemiol 2015; 29:1091-3. [DOI: 10.1086/591739] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
A fatal nosocomial infection withLegionella pneumophilaserogroup 5 occurred in a patient with leukemia. Isolates recovered from both the potable water supply and the patient showed an identical genomic profile. With no other exposure identified, the water from the washbasin was evidently the source of infection.
Collapse
|
67
|
Laganà P, Caruso G, Mazzù F, Caruso G, Parisi S, Santi Delia A. Brief Notes About Biofilms. SPRINGERBRIEFS IN MOLECULAR SCIENCE 2015. [DOI: 10.1007/978-3-319-20559-5_3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
68
|
Moore G, Stevenson D, Thompson KA, Parks S, Ngabo D, Bennett AM, Walker JT. Biofilm formation in an experimental water distribution system: the contamination of non-touch sensor taps and the implication for healthcare. BIOFOULING 2015; 31:677-687. [PMID: 26652665 DOI: 10.1080/08927014.2015.1089986] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Hospital tap water is a recognised source of Pseudomonas aeruginosa. U.K. guidance documents recommend measures to control/minimise the risk of P. aeruginosa in augmented care units but these are based on limited scientific evidence. An experimental water distribution system was designed to investigate colonisation of hospital tap components. P. aeruginosa was injected into 27 individual tap 'assemblies'. Taps were subsequently flushed twice daily and contamination levels monitored over two years. Tap assemblies were systematically dismantled and assessed microbiologically and the effect of removing potentially contaminated components was determined. P. aeruginosa was repeatedly recovered from the tap water at levels above the augmented care alert level. The organism was recovered from all dismantled solenoid valves with colonisation of the ethylene propylene diene monomer (EPDM) diaphragm confirmed by microscopy. Removing the solenoid valves reduced P. aeruginosa counts in the water to below detectable levels. This effect was immediate and sustained, implicating the solenoid diaphragm as the primary contamination source.
Collapse
Affiliation(s)
- Ginny Moore
- a Biosafety Investigation Unit , Public Health England , Salisbury , UK
| | - David Stevenson
- a Biosafety Investigation Unit , Public Health England , Salisbury , UK
| | | | - Simon Parks
- a Biosafety Investigation Unit , Public Health England , Salisbury , UK
| | - Didier Ngabo
- a Biosafety Investigation Unit , Public Health England , Salisbury , UK
| | - Allan M Bennett
- a Biosafety Investigation Unit , Public Health England , Salisbury , UK
| | - Jimmy T Walker
- a Biosafety Investigation Unit , Public Health England , Salisbury , UK
| |
Collapse
|
69
|
Mercante JW, Winchell JM. Current and emerging Legionella diagnostics for laboratory and outbreak investigations. Clin Microbiol Rev 2015; 28:95-133. [PMID: 25567224 PMCID: PMC4284297 DOI: 10.1128/cmr.00029-14] [Citation(s) in RCA: 223] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Legionnaires' disease (LD) is an often severe and potentially fatal form of bacterial pneumonia caused by an extensive list of Legionella species. These ubiquitous freshwater and soil inhabitants cause human respiratory disease when amplified in man-made water or cooling systems and their aerosols expose a susceptible population. Treatment of sporadic cases and rapid control of LD outbreaks benefit from swift diagnosis in concert with discriminatory bacterial typing for immediate epidemiological responses. Traditional culture and serology were instrumental in describing disease incidence early in its history; currently, diagnosis of LD relies almost solely on the urinary antigen test, which captures only the dominant species and serogroup, Legionella pneumophila serogroup 1 (Lp1). This has created a diagnostic "blind spot" for LD caused by non-Lp1 strains. This review focuses on historic, current, and emerging technologies that hold promise for increasing LD diagnostic efficiency and detection rates as part of a coherent testing regimen. The importance of cooperation between epidemiologists and laboratorians for a rapid outbreak response is also illustrated in field investigations conducted by the CDC with state and local authorities. Finally, challenges facing health care professionals, building managers, and the public health community in combating LD are highlighted, and potential solutions are discussed.
Collapse
Affiliation(s)
- Jeffrey W Mercante
- Pneumonia Response and Surveillance Laboratory, Respiratory Diseases Branch, U.S. Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Jonas M Winchell
- Pneumonia Response and Surveillance Laboratory, Respiratory Diseases Branch, U.S. Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| |
Collapse
|
70
|
Robertson P, Abdelhady H, Garduño RA. The many forms of a pleomorphic bacterial pathogen-the developmental network of Legionella pneumophila. Front Microbiol 2014; 5:670. [PMID: 25566200 PMCID: PMC4273665 DOI: 10.3389/fmicb.2014.00670] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 11/18/2014] [Indexed: 01/18/2023] Open
Abstract
Legionella pneumophila is a natural intracellular bacterial parasite of free-living freshwater protozoa and an accidental human pathogen that causes Legionnaires' disease. L. pneumophila differentiates, and does it in style. Recent experimental data on L. pneumophila's differentiation point at the existence of a complex network that involves many developmental forms. We intend readers to: (i) understand the biological relevance of L. pneumophila's forms found in freshwater and their potential to transmit Legionnaires' disease, and (ii) learn that the common depiction of L. pneumophila's differentiation as a biphasic developmental cycle that alternates between a replicative and a transmissive form is but an oversimplification of the actual process. Our specific objectives are to provide updates on the molecular factors that regulate L. pneumophila's differentiation (Section The Differentiation Process and Its Regulation), and describe the developmental network of L. pneumophila (Section Dissecting Lp's Developmental Network), which for clarity's sake we have dissected into five separate developmental cycles. Finally, since each developmental form seems to contribute differently to the human pathogenic process and the transmission of Legionnaires' disease, readers are presented with a challenge to develop novel methods to detect the various L. pneumophila forms present in water (Section Practical Implications), as a means to improve our assessment of risk and more effectively prevent legionellosis outbreaks.
Collapse
Affiliation(s)
- Peter Robertson
- Department of Microbiology and Immunology, Dalhousie University Halifax, NS, Canada
| | - Hany Abdelhady
- Department of Microbiology and Immunology, Dalhousie University Halifax, NS, Canada
| | - Rafael A Garduño
- Department of Microbiology and Immunology, Dalhousie University Halifax, NS, Canada ; Division of Infectious Diseases, Department of Medicine, Dalhousie University Halifax, NS, Canada
| |
Collapse
|
71
|
Douterelo I, Boxall JB, Deines P, Sekar R, Fish KE, Biggs CA. Methodological approaches for studying the microbial ecology of drinking water distribution systems. WATER RESEARCH 2014; 65:134-156. [PMID: 25105587 DOI: 10.1016/j.watres.2014.07.008] [Citation(s) in RCA: 130] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 06/08/2014] [Accepted: 07/04/2014] [Indexed: 06/03/2023]
Abstract
The study of the microbial ecology of drinking water distribution systems (DWDS) has traditionally been based on culturing organisms from bulk water samples. The development and application of molecular methods has supplied new tools for examining the microbial diversity and activity of environmental samples, yielding new insights into the microbial community and its diversity within these engineered ecosystems. In this review, the currently available methods and emerging approaches for characterising microbial communities, including both planktonic and biofilm ways of life, are critically evaluated. The study of biofilms is considered particularly important as it plays a critical role in the processes and interactions occurring at the pipe wall and bulk water interface. The advantages, limitations and usefulness of methods that can be used to detect and assess microbial abundance, community composition and function are discussed in a DWDS context. This review will assist hydraulic engineers and microbial ecologists in choosing the most appropriate tools to assess drinking water microbiology and related aspects.
Collapse
Affiliation(s)
- Isabel Douterelo
- Pennine Water Group, Department of Civil and Structural Engineering, The University of Sheffield, UK.
| | - Joby B Boxall
- Pennine Water Group, Department of Civil and Structural Engineering, The University of Sheffield, UK
| | - Peter Deines
- Institute of Natural and Mathematical Sciences, Massey University, New Zealand
| | - Raju Sekar
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, China
| | - Katherine E Fish
- Pennine Water Group, Department of Civil and Structural Engineering, The University of Sheffield, UK
| | - Catherine A Biggs
- Department of Chemical and Biological Engineering, The University of Sheffield, UK
| |
Collapse
|
72
|
Szabo J, Minamyer S. Decontamination of biological agents from drinking water infrastructure: a literature review and summary. ENVIRONMENT INTERNATIONAL 2014; 72:124-128. [PMID: 24548733 DOI: 10.1016/j.envint.2014.01.031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 01/27/2014] [Accepted: 01/30/2014] [Indexed: 06/03/2023]
Abstract
This report summarizes the current state of knowledge on the persistence of biological agents on drinking water infrastructure (such as pipes) along with information on decontamination should persistence occur. Decontamination options for drinking water infrastructure have been explored for some biological agents, but data gaps remain. Data on bacterial spore persistence on common water infrastructure materials such as iron and cement-mortar lined iron show that spores can be persistent for weeks after contamination. Decontamination data show that common disinfectants such as free chlorine have limited effectiveness. Decontamination results with germinant and alternate disinfectants such as chlorine dioxide are more promising. Persistence and decontamination data were collected on vegetative bacteria, such as coliforms, Legionella and Salmonella. Vegetative bacteria are less persistent than spores and more susceptible to disinfection, but the surfaces and water quality conditions in many studies were only marginally related to drinking water systems. However, results of real-world case studies on accidental contamination of water systems with E. coli and Salmonella contamination show that flushing and chlorination can help return a water system to service. Some viral persistence data were found, but decontamination data were lacking. Future research suggestions focus on expanding the available biological persistence data to other common infrastructure materials. Further exploration of non-traditional drinking water disinfectants is recommended for future studies.
Collapse
Affiliation(s)
- Jeff Szabo
- United States Environmental Protection Agency, National Homeland Security Research Center (NG-16), 26W. Martin Luther King Dr., Cincinnati, OH 45268, United States.
| | - Scott Minamyer
- United States Environmental Protection Agency, National Homeland Security Research Center (NG-16), 26W. Martin Luther King Dr., Cincinnati, OH 45268, United States
| |
Collapse
|
73
|
Gomes IB, Simões M, Simões LC. An overview on the reactors to study drinking water biofilms. WATER RESEARCH 2014; 62:63-87. [PMID: 24937357 DOI: 10.1016/j.watres.2014.05.039] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 05/21/2014] [Accepted: 05/22/2014] [Indexed: 06/03/2023]
Abstract
The development of biofilms in drinking water distribution systems (DWDS) can cause pipe degradation, changes in the water organoleptic properties but the main problem is related to the public health. Biofilms are the main responsible for the microbial presence in drinking water (DW) and can be reservoirs for pathogens. Therefore, the understanding of the mechanisms underlying biofilm formation and behavior is of utmost importance in order to create effective control strategies. As the study of biofilms in real DWDS is difficult, several devices have been developed. These devices allow biofilm formation under controlled conditions of physical (flow velocity, shear stress, temperature, type of pipe material, etc), chemical (type and amount of nutrients, type of disinfectant and residuals, organic and inorganic particles, ions, etc) and biological (composition of microbial community - type of microorganism and characteristics) parameters, ensuring that the operational conditions are similar as possible to the DWDS conditions in order to achieve results that can be applied to the real scenarios. The devices used in DW biofilm studies can be divided essentially in two groups, those usually applied in situ and the bench top laboratorial reactors. The selection of a device should be obviously in accordance with the aim of the study and its advantages and limitations should be evaluated to obtain reproducible results that can be transposed into the reality of the DWDS. The aim of this review is to provide an overview on the main reactors used in DW biofilm studies, describing their characteristics and applications, taking into account their main advantages and limitations.
Collapse
Affiliation(s)
- I B Gomes
- LEPABE, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal
| | - M Simões
- LEPABE, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal
| | - L C Simões
- LEPABE, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal; CEB - Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal.
| |
Collapse
|
74
|
Culotti A, Packman AI. Pseudomonas aeruginosa promotes Escherichia coli biofilm formation in nutrient-limited medium. PLoS One 2014; 9:e107186. [PMID: 25198725 PMCID: PMC4157881 DOI: 10.1371/journal.pone.0107186] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Accepted: 08/14/2014] [Indexed: 11/19/2022] Open
Abstract
Biofilms have been implicated as an important reservoir for pathogens and commensal enteric bacteria such as Escherichia coli in natural and engineered water systems. However, the processes that regulate the survival of E. coli in aquatic biofilms have not been thoroughly studied. We examined the effects of hydrodynamic shear and nutrient concentrations on E. coli colonization of pre-established Pseudomonas aeruginosa biofilms, co-inoculation of E. coli and P. aeruginosa biofilms, and P. aeruginosa colonization of pre-established E. coli biofilms. In nutritionally-limited R2A medium, E. coli dominated biofilms when co-inoculated with P. aeruginosa, and successfully colonized and overgrew pre-established P. aeruginosa biofilms. In more enriched media, P. aeruginosa formed larger clusters, but E. coli still extensively overgrew and colonized the interior of P. aeruginosa clusters. In mono-culture, E. coli formed sparse and discontinuous biofilms. After P. aeruginosa was introduced to these biofilms, E. coli growth increased substantially, resulting in patterns of biofilm colonization similar to those observed under other sequences of organism introduction, i.e., E. coli overgrew P. aeruginosa and colonized the interior of P. aeruginosa clusters. These results demonstrate that E. coli not only persists in aquatic biofilms under depleted nutritional conditions, but interactions with P. aeruginosa can greatly increase E. coli growth in biofilms under these experimental conditions.
Collapse
Affiliation(s)
- Alessandro Culotti
- Department of Civil and Environmental Engineering, McCormick School of Engineering, Northwestern University, Evanston, Illinois, United States of America
| | - Aaron I. Packman
- Department of Civil and Environmental Engineering, McCormick School of Engineering, Northwestern University, Evanston, Illinois, United States of America
- * E-mail:
| |
Collapse
|
75
|
Andreozzi E, Di Cesare A, Sabatini L, Chessa E, Sisti D, Rocchi M, Citterio B. Role of biofilm in protection of the replicative form of Legionella pneumophila. Curr Microbiol 2014; 69:769-74. [PMID: 25023637 DOI: 10.1007/s00284-014-0648-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2014] [Accepted: 05/14/2014] [Indexed: 11/25/2022]
Abstract
The dual nature of Legionella pneumophila enables its survival in free and intracellular environments and underpins its infection and spread mechanisms. Experiments using bacterial cultures and improved RTqPCR protocols were devised to gain fresh insights into the role of biofilm in protecting the replicative form of L. pneumophila. mip gene expression was used as a marker of virulence in sessile (biofilm-bound) and planktonic (free-floating) cells of L. pneumophila serotype 1 ATCC 33152. The ratio of mip gene expression to transcriptionally active Legionella cells increased both in sessile and free-floating cells demonstrating an up-regulation of mip gene under nutrient depletion. However, a different trend was observed between the two forms, in planktonic cells the mip gene expression/transcriptionally active Legionella cells increased until the end of the experiment, while in the biofilm such increase was observed at the end of the experiment. These findings suggest a possible association between the switch to the transmissive phase of Legionella and a mip up-regulation and a role for biofilm in preserving Legionella cells in replicative form. Moreover, it has been shown that improved RTqPCR protocols are valuable tools to explore bacterial virulence.
Collapse
Affiliation(s)
- Elisa Andreozzi
- Department of Biomolecular Sciences, Section of Toxicological, Hygienistic and Environmental Sciences, University of Urbino "Carlo Bo", Urbino, Italy
| | | | | | | | | | | | | |
Collapse
|
76
|
Vega LM, Alvarez PJ, McLean RJC. Bacterial signaling ecology and potential applications during aquatic biofilm construction. MICROBIAL ECOLOGY 2014; 68:24-34. [PMID: 24276538 DOI: 10.1007/s00248-013-0321-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 10/24/2013] [Indexed: 06/02/2023]
Abstract
In their natural environment, bacteria and other microorganisms typically grow as surface-adherent biofilm communities. Cell signal processes, including quorum signaling, are now recognized as being intimately involved in the development and function of biofilms. In contrast to their planktonic (unattached) counterparts, bacteria within biofilms are notoriously resistant to many traditional antimicrobial agents and so represent a major challenge in industry and medicine. Although biofilms impact many human activities, they actually represent an ancient mode of bacterial growth as shown in the fossil record. Consequently, many aquatic organisms have evolved strategies involving signal manipulation to control or co-exist with biofilms. Here, we review the chemical ecology of biofilms and propose mechanisms whereby signal manipulation can be used to promote or control biofilms.
Collapse
Affiliation(s)
- Leticia M Vega
- Department of Civil and Environmental Engineering, Rice University, Houston, TX, 77005, USA
| | | | | |
Collapse
|
77
|
Integrative conjugative element ICE-βox confers oxidative stress resistance to Legionella pneumophila in vitro and in macrophages. mBio 2014; 5:e01091-14. [PMID: 24781744 PMCID: PMC4010831 DOI: 10.1128/mbio.01091-14] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Integrative conjugative elements (ICEs) are mobile blocks of DNA that can contribute to bacterial evolution by self-directed transmission of advantageous traits. Here, we analyze the activity of a putative 65-kb ICE harbored by Legionella pneumophila using molecular genetics, conjugation assays, a phenotype microarray screen, and macrophage infections. The element transferred to a naive L. pneumophila strain, integrated site-specifically, and conferred increased resistance to oxacillin, penicillin, hydrogen peroxide, and bleach. Furthermore, the element increased survival of L. pneumophila within restrictive mouse macrophages. In particular, this ICE protects L. pneumophila from phagocyte oxidase activity, since mutation of the macrophage NADPH oxidase eliminated the fitness difference between strains that carried and those that lacked the mobile element. Renamed ICE-βox (for β-lactam antibiotics and oxidative stress), this transposable element is predicted to contribute to the emergence of L. pneumophila strains that are more fit in natural and engineered water systems and in macrophages. Bacteria evolve rapidly by acquiring new traits via horizontal gene transfer. Integrative conjugative elements (ICEs) are mobile blocks of DNA that encode the machinery necessary to spread among bacterial populations. ICEs transfer antibiotic resistance and other bacterial survival factors as cargo genes carried within the element. Here, we show that Legionella pneumophila, the causative agent of Legionnaires’ disease, carries ICE-βox, which enhances the resistance of this opportunistic pathogen to bleach and β-lactam antibiotics. Moreover, L. pneumophila strains encoding ICE-βox are more resistant to macrophages that carry phagocyte oxidase. Accordingly, ICE-βox is predicted to increase the fitness of L. pneumophila in natural and engineered waters and in humans. To our knowledge, this is the first description of an ICE that confers oxidative stress resistance to a nosocomial pathogen.
Collapse
|
78
|
Abstract
Legionella spp. are the causative agent of Legionnaire's disease and an opportunistic pathogen of significant public health concern. Identification and quantification from environmental sources is crucial for identifying outbreak origins and providing sufficient information for risk assessment and disease prevention. Currently there are a range of methods for Legionella spp. quantification from environmental sources, but the two most widely used and accepted are culture and real-time polymerase chain reaction (qPCR). This paper provides a review of these two methods and outlines their advantages and limitations. Studies from the last 10 years which have concurrently used culture and qPCR to quantify Legionella spp. from environmental sources have been compiled. 26/28 studies detected Legionella at a higher rate using qPCR compared to culture, whilst only one study detected equivalent levels of Legionella spp. using both qPCR and culture. Aggregating the environmental samples from all 28 studies, 2856/3967 (72%) tested positive for the presence of Legionella spp. using qPCR and 1331/3967 (34%) using culture. The lack of correlation between methods highlights the need to develop an acceptable standardized method for quantification that is sufficient for risk assessment and management of this human pathogen.
Collapse
Affiliation(s)
- Harriet Whiley
- a Department of Health and the Environment , Flinders University , Adelaide , Australia
| | - Michael Taylor
- a Department of Health and the Environment , Flinders University , Adelaide , Australia
| |
Collapse
|
79
|
Narciso-da-Rocha C, Vaz-Moreira I, Manaia CM. Genotypic diversity and antibiotic resistance in Sphingomonadaceae isolated from hospital tap water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 466-467:127-135. [PMID: 23892027 DOI: 10.1016/j.scitotenv.2013.06.109] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Revised: 06/26/2013] [Accepted: 06/26/2013] [Indexed: 06/02/2023]
Abstract
The aim of this study was to infer about the modes and extent of dispersion of Sphingomonadaceae via tap water. Sphingomonadaceae isolated from tap water samples in different places of a hospital were compared, based on intra-species genetic variability and antibiotic resistance phenotypes. These isolates were also compared with others isolated before from houses and dental chairs, served by the same municipal water supply system. Sphingomonadaceae from hospital tap water comprised members of the genera Sphingomonas, Sphingobium, Novosphingobium and Blastomonas. In general, distinct genotypes of Sphingomonadaceae were detected in different hospital areas and in tap water outside the hospital, suggesting these bacteria are not persistent or widespread in the urban water distribution system. Possible intrinsic antibiotic resistance, observed in most or all members of the family or of a genus, was observed for colistin in Sphingomonadaceae, aminoglycosides in the genus Blastomonas and beta-lactams in the genus Sphingobium. Possible acquired resistance phenotypes, not common to all members of a given species, comprised fluoroquinolones, cephalosporins and sulphonamides. Although the potential of Sphingomonadaceae as opportunistic pathogens may be low, the capacity of these bacteria to thrive in water supply systems, combined with the intrinsic or acquired antibiotic resistance, may raise the risk associated with their occurrence in hospital tap water.
Collapse
Affiliation(s)
- Carlos Narciso-da-Rocha
- CBQF - Centro de Biotecnologia e Química Fina - Laboratório Associado, Escola Superior de Biotecnologia, Universidade Católica Portuguesa/Porto, Rua Dr. António Bernardino Almeida, Porto 4200-072, Portugal
| | | | | |
Collapse
|
80
|
Abdel-Nour M, Duncan C, Low DE, Guyard C. Biofilms: the stronghold of Legionella pneumophila. Int J Mol Sci 2013; 14:21660-75. [PMID: 24185913 PMCID: PMC3856027 DOI: 10.3390/ijms141121660] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 09/07/2013] [Accepted: 10/14/2013] [Indexed: 11/28/2022] Open
Abstract
Legionellosis is mostly caused by Legionella pneumophila and is defined as a severe respiratory illness with a case fatality rate ranging from 5% to 80%. L. pneumophila is ubiquitous in natural and anthropogenic water systems. L. pneumophila is transmitted by inhalation of contaminated aerosols produced by a variety of devices. While L. pneumophila replicates within environmental protozoa, colonization and persistence in its natural environment are also mediated by biofilm formation and colonization within multispecies microbial communities. There is now evidence that some legionellosis outbreaks are correlated with the presence of biofilms. Thus, preventing biofilm formation appears as one of the strategies to reduce water system contamination. However, we lack information about the chemical and biophysical conditions, as well as the molecular mechanisms that allow the production of biofilms by L. pneumophila. Here, we discuss the molecular basis of biofilm formation by L. pneumophila and the roles of other microbial species in L. pneumophila biofilm colonization. In addition, we discuss the protective roles of biofilms against current L. pneumophila sanitation strategies along with the initial data available on the regulation of L. pneumophila biofilm formation.
Collapse
Affiliation(s)
- Mena Abdel-Nour
- Ontario Agency for Health Protection and Promotion (OAHPP), Toronto, ON M9P 3T1, Canada; E-Mails: (M.A.-N.); (C.D.)
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Carla Duncan
- Ontario Agency for Health Protection and Promotion (OAHPP), Toronto, ON M9P 3T1, Canada; E-Mails: (M.A.-N.); (C.D.)
| | - Donald E. Low
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Cyril Guyard
- Ontario Agency for Health Protection and Promotion (OAHPP), Toronto, ON M9P 3T1, Canada; E-Mails: (M.A.-N.); (C.D.)
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +1-416-880-1339; Fax: +1-416-235-6281
| |
Collapse
|
81
|
Bigot R, Bertaux J, Frere J, Berjeaud JM. Intra-amoeba multiplication induces chemotaxis and biofilm colonization and formation for Legionella. PLoS One 2013; 8:e77875. [PMID: 24205008 PMCID: PMC3812023 DOI: 10.1371/journal.pone.0077875] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 09/13/2013] [Indexed: 11/19/2022] Open
Abstract
Legionella pneumophila, a facultative intracellular bacterium, is the causative agent of legionellosis. In the environment this pathogenic bacterium colonizes the biofilms as well as amoebae, which provide a rich environment for the replication of Legionella. When seeded on pre-formed biofilms, L. pneumophila was able to establish and survive and was only found at the surface of the biofilms. Different phenotypes were observed when the L. pneumophila, used to implement pre-formed biofilms or to form mono-species biofilms, were cultivated in a laboratory culture broth or had grown intracellulary within the amoeba. Indeed, the bacteria, which developed within the amoeba, formed clusters when deposited on a solid surface. Moreover, our results demonstrate that multiplication inside the amoeba increased the capacity of L. pneumophila to produce polysaccharides and therefore enhanced its capacity to establish biofilms. Finally, it was shown that the clusters formed by L. pneumophila were probably related to the secretion of a chemotaxis molecular agent.
Collapse
Affiliation(s)
- Renaud Bigot
- Equipe Microbiologie de l’Eau, Ecologie & Biologie des Interactions, Centre national de la recherche scientifique UMR 7267, Université de Poitiers, Poitiers, France
| | - Joanne Bertaux
- Equipe Ecologie Evolution Symbiose, Ecologie and Biologie des Interactions, Centre national de la recherche scientifique UMR 7267, Université de Poitiers, Poitiers, France
| | - Jacques Frere
- Equipe Microbiologie de l’Eau, Ecologie & Biologie des Interactions, Centre national de la recherche scientifique UMR 7267, Université de Poitiers, Poitiers, France
| | - Jean-Marc Berjeaud
- Equipe Microbiologie de l’Eau, Ecologie & Biologie des Interactions, Centre national de la recherche scientifique UMR 7267, Université de Poitiers, Poitiers, France
- * E-mail:
| |
Collapse
|
82
|
Wang S, Huang J, Yang Y, Hui Y, Ge Y, Larssen T, Yu G, Deng S, Wang B, Harman C. First report of a Chinese PFOS alternative overlooked for 30 years: its toxicity, persistence, and presence in the environment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:10117-28. [PMID: 23952109 DOI: 10.1021/es402455r] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
This is the first report on the environmental occurrence of a chlorinated polyfluorinated ether sulfonate (locally called F-53B, C8ClF16O4SK). It has been widely applied as a mist suppressant by the chrome plating industry in China for decades but has evaded the attention of environmental research and regulation. In this study, F-53B was found in high concentrations (43-78 and 65-112 μg/L for the effluent and influent, respectively) in wastewater from the chrome plating industry in the city of Wenzhou, China. F-53B was not successfully removed by the wastewater treatments in place. Consequently, it was detected in surface water that receives the treated wastewater at similar levels to PFOS (ca. 10-50 ng/L) and the concentration decreased with the increasing distance from the wastewater discharge point along the river. Initial data presented here suggest that F-53B is moderately toxic (Zebrafish LC50-96 h 15.5 mg/L) and is as resistant to degradation as PFOS. While current usage is limited to the chrome plating industry, the increasing demand for PFOS alternatives in other sectors may result in expanded usage. Collectively, the results of this work call for future assessments on the effects of this overlooked contaminant and its presence and fate in the environment.
Collapse
Affiliation(s)
- Siwen Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control (SKJLESPC), School of Environment, POPs Research Centre, Tsinghua University , Beijing 100084, P.R. China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
83
|
Al-Bana BH, Haddad MT, Garduño RA. Stationary phase and mature infectious forms of Legionella pneumophila produce distinct viable but non-culturable cells. Environ Microbiol 2013; 16:382-95. [PMID: 23968544 DOI: 10.1111/1462-2920.12219] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2013] [Revised: 07/15/2013] [Accepted: 07/15/2013] [Indexed: 11/28/2022]
Abstract
Legionella pneumophila is an intracellular bacterial parasite of freshwater protozoa and an accidental waterborne human pathogen. L. pneumophila is highly pleomorphic showing several forms that differentiate within its developmental cycle. In water, L. pneumophila produces viable but non-culturable cells (VBNCCs), which remain largely uncharacterized. We produced VBNCCs from two developmental forms of L. pneumophila [stationary phase forms (SPFs) and mature infectious forms (MIFs)] in two water microcosms [double-deionized (dd) and tap water] at 45°C. In contrast with SPFs, MIFs upheld a robust ultrastructure and high viability in the two water microcosms. In dd-water, MIFs and SPFs lost their culturability faster than in tap water and did not consume their poly-β-hydroxybutyrate inclusions. Resuscitation in Acanthamoeba castellani was only possible for VBNCCs produced from SPFs in tap water. Addition of salts to dd-water prolonged L. pneumophila culturability to tap water levels, suggesting that L. pneumophila requires ions to maintain its readiness to resume growth. VBNCCs resisted detergent lysis and digestion in the ciliate Tetrahymena, except for VBNCCs produced from SPFs in dd-water. L. pneumophila VBNCCs thus show distinct traits according to its originating developmental form and the surrounding water microcosm.
Collapse
Affiliation(s)
- Badii H Al-Bana
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | | |
Collapse
|
84
|
McLean JS, Lombardo MJ, Badger JH, Edlund A, Novotny M, Yee-Greenbaum J, Vyahhi N, Hall AP, Yang Y, Dupont CL, Ziegler MG, Chitsaz H, Allen AE, Yooseph S, Tesler G, Pevzner PA, Friedman RM, Nealson KH, Venter JC, Lasken RS. Candidate phylum TM6 genome recovered from a hospital sink biofilm provides genomic insights into this uncultivated phylum. Proc Natl Acad Sci U S A 2013; 110:E2390-9. [PMID: 23754396 PMCID: PMC3696752 DOI: 10.1073/pnas.1219809110] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The "dark matter of life" describes microbes and even entire divisions of bacterial phyla that have evaded cultivation and have yet to be sequenced. We present a genome from the globally distributed but elusive candidate phylum TM6 and uncover its metabolic potential. TM6 was detected in a biofilm from a sink drain within a hospital restroom by analyzing cells using a highly automated single-cell genomics platform. We developed an approach for increasing throughput and effectively improving the likelihood of sampling rare events based on forming small random pools of single-flow-sorted cells, amplifying their DNA by multiple displacement amplification and sequencing all cells in the pool, creating a "mini-metagenome." A recently developed single-cell assembler, SPAdes, in combination with contig binning methods, allowed the reconstruction of genomes from these mini-metagenomes. A total of 1.07 Mb was recovered in seven contigs for this member of TM6 (JCVI TM6SC1), estimated to represent 90% of its genome. High nucleotide identity between a total of three TM6 genome drafts generated from pools that were independently captured, amplified, and assembled provided strong confirmation of a correct genomic sequence. TM6 is likely a Gram-negative organism and possibly a symbiont of an unknown host (nonfree living) in part based on its small genome, low-GC content, and lack of biosynthesis pathways for most amino acids and vitamins. Phylogenomic analysis of conserved single-copy genes confirms that TM6SC1 is a deeply branching phylum.
Collapse
Affiliation(s)
- Jeffrey S McLean
- Microbial and Environmental Genomics, J. Craig Venter Institute, San Diego, CA 92121, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
85
|
Zhang W, Sileika T, Packman AI. Effects of fluid flow conditions on interactions between species in biofilms. FEMS Microbiol Ecol 2013; 84:344-54. [PMID: 23278485 PMCID: PMC3622810 DOI: 10.1111/1574-6941.12066] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2012] [Revised: 11/25/2012] [Accepted: 12/13/2012] [Indexed: 11/27/2022] Open
Abstract
Most microorganisms live in complex communities, where they interact both synergistically and competitively. To explore the relationship between environmental heterogeneity and the spatial structure of well-defined biofilms, single- and mixed-species biofilms of Pseudomonas aeruginosa PAO1 and Flavobacterium sp. CDC-65 was grown in a planar flow cell under highly controlled flow gradients. Both organisms behaved differently in mixed cultures than in single-species cultures due to inter-species interactions, and these interactions were significantly affected by external flow conditions. Pseudomonas and Flavobacterium showed a competitive relationship under slow inflow conditions, where the supply of growth medium was limited. Under such competitive conditions, the faster- specific growth rate of Flavobacterium allowed it to secure access to favorable regions of the biofilm by overgrowing Pseudomonas. In contrast, Pseudomonas was restricted to nutritionally depleted habitat near the base of the biofilm, and its growth was significantly inhibited. Conversely, under higher inflow conditions providing greater influx of growth medium, both organisms accumulated greater biomass in mixed biofilms than in single-species biofilms. Spatial segregation of the two organisms within the biofilms contributed to enhanced overall exploitation of available nutrients and substrates, while morphological changes favored better adherence to the surface under high hydrodynamic shear. These results indicate that synergy and competition in biofilms vary with flow conditions. Limited resource replenishment favors competition under low-flow conditions, while high flow reduces competition and favors synergy by providing greater resources and simultaneously imposing increased hydrodynamic shear that makes it more difficult to accumulate biomass on the surface. Ecological interactions that produce mechanically stronger and more robust biofilms will support more extensive growth on surfaces subject to high hydrodynamic shear, but these interactions are difficult to predict from observations of the behavior of individual organisms.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL, 60208
| | - Tadas Sileika
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL, 60208
| | - Aaron I. Packman
- Department of Civil and Environmental Engineering, Northwestern University, Evanston, IL, 60208
| |
Collapse
|
86
|
Preferential colonization and release of Legionella pneumophila from mature drinking water biofilms grown on copper versus unplasticized polyvinylchloride coupons. Int J Hyg Environ Health 2013; 217:219-25. [PMID: 23706882 DOI: 10.1016/j.ijheh.2013.04.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 04/08/2013] [Accepted: 04/22/2013] [Indexed: 11/23/2022]
Abstract
Legionella occurrence in premise drinking water (DW) systems contributes to legionellosis outbreaks, especially in the presence of suitable protozoan hosts. This study examined L. pneumophila behavior within DW biofilms grown on copper (Cu) and unplasticized polyvinylchloride (uPVC) surfaces in the presence of Acanthamoeba polyphaga. One year-old DW biofilms were established within six CDC biofilm reactors: three each containing Cu or uPVC coupons. Biofilms were then inoculated with L. pneumophila (uPVC-Lp and Cu-Lp), or L. pneumophila and A. polyphaga (uPVC-Lp/Ap and Cu-Lp/Ap) and compared to sterile water inoculated controls (uPVC- and Cu-Control) over a 4 month period. L. pneumophila appeared more persistent by qPCR within Cu biofilms in the presence of A. polyphaga compared to uPVC biofilms with or without A. polyphaga, but maintained their cultivability in uPVC biofilms compared to Cu biofilms. Also, persistent shedding of L. pneumophila cells (assayed by qPCR) in the effluent water implied colonization of L. pneumophila within Cu-coupon reactors compared to no detection from uPVC-coupon reactor effluent 14 days after inoculation. Hence, L. pneumophila appeared to colonize Cu surfaces more effectively and may be shed from the biofilms at a greater frequency and duration compared to L. pneumophila colonized uPVC surfaces with host amoebae playing a role in L. pneumophila persistence within Cu biofilms.
Collapse
|
87
|
Genome of the pathogen Porphyromonas gingivalis recovered from a biofilm in a hospital sink using a high-throughput single-cell genomics platform. Genome Res 2013; 23:867-77. [PMID: 23564253 PMCID: PMC3638142 DOI: 10.1101/gr.150433.112] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Although biofilms have been shown to be reservoirs of pathogens, our knowledge of the microbial diversity in biofilms within critical areas, such as health care facilities, is limited. Available methods for pathogen identification and strain typing have some inherent restrictions. In particular, culturing will yield only a fraction of the species present, PCR of virulence or marker genes is mainly focused on a handful of known species, and shotgun metagenomics is limited in the ability to detect strain variations. In this study, we present a single-cell genome sequencing approach to address these limitations and demonstrate it by specifically targeting bacterial cells within a complex biofilm from a hospital bathroom sink drain. A newly developed, automated platform was used to generate genomic DNA by the multiple displacement amplification (MDA) technique from hundreds of single cells in parallel. MDA reactions were screened and classified by 16S rRNA gene PCR sequence, which revealed a broad range of bacteria covering 25 different genera representing environmental species, human commensals, and opportunistic human pathogens. Here we focus on the recovery of a nearly complete genome representing a novel strain of the periodontal pathogen Porphyromonas gingivalis (P. gingivalis JCVI SC001) using the single-cell assembly tool SPAdes. Single-cell genomics is becoming an accepted method to capture novel genomes, primarily in the marine and soil environments. Here we show for the first time that it also enables comparative genomic analysis of strain variation in a pathogen captured from complex biofilm samples in a healthcare facility.
Collapse
|
88
|
Garcia A, Goñi P, Cieloszyk J, Fernandez MT, Calvo-Beguería L, Rubio E, Fillat MF, Peleato ML, Clavel A. Identification of free-living amoebae and amoeba-associated bacteria from reservoirs and water treatment plants by molecular techniques. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:3132-3140. [PMID: 23444840 DOI: 10.1021/es400160k] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The occurrence of free-living amoebae (FLA) was investigated in 83 water samples from reservoirs and water treatment plants, with culture positive in 64 of them (77.1%). Polymerase chain reaction (PCR) of partial 18S rRNA gene and ITS region was performed in order to identify amoeba isolates, and the presence of Legionella pneumophila , Mycobacterium spp., Pseudomonas spp., and Microcystis aeruginosa was investigated in 43 isolates of amoebae by multiplex PCR. Of the isolated amoebae, 31 were Acanthamoeba spp., 21 were Hartmannella vermiformis, 13 were Naegleria spp., and one was Vanella spp. T2, T4, and T5 genotypes of Acanthamoeba have been identified, and T4 isolates were grouped into five subgenotypes and graphically represented with a Weblog application. Inside amoebae, L. pneumophila was detected in 13.9% (6/43) of the isolates, and Pseudomonas spp. and Mycobacterium spp. were detected in 32.6% (14/43) and 41.9% (18/43), respectively. No statistical correlation was demonstrated between FLA isolation and seasonality, but the presence of intracellular bacteria was associated with warm water temperatures, and also the intracellular presence of Mycobacterium spp. and Pseudomonas spp. were associated. These results highlight the importance of amoebae in natural waters as reservoirs of potential pathogens and its possible role in the spread of bacterial genera with interest in public and environmental health.
Collapse
Affiliation(s)
- Alicia Garcia
- Area of Parasitology and §Area of Biomedicine and Public Health Biostatistics, Department of Microbiology, Preventive Medicine and Public Health, Faculty of Medicine, University of Zaragoza, 50009 Zaragoza, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
89
|
Auld RR, Myre M, Mykytczuk NCS, Leduc LG, Merritt TJS. Characterization of the microbial acid mine drainage microbial community using culturing and direct sequencing techniques. J Microbiol Methods 2013; 93:108-15. [PMID: 23485423 DOI: 10.1016/j.mimet.2013.01.023] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Revised: 01/09/2013] [Accepted: 01/09/2013] [Indexed: 11/17/2022]
Abstract
We characterized the bacterial community from an AMD tailings pond using both classical culturing and modern direct sequencing techniques and compared the two methods. Acid mine drainage (AMD) is produced by the environmental and microbial oxidation of minerals dissolved from mining waste. Surprisingly, we know little about the microbial communities associated with AMD, despite the fundamental ecological roles of these organisms and large-scale economic impact of these waste sites. AMD microbial communities have classically been characterized by laboratory culturing-based techniques and more recently by direct sequencing of marker gene sequences, primarily the 16S rRNA gene. In our comparison of the techniques, we find that their results are complementary, overall indicating very similar community structure with similar dominant species, but with each method identifying some species that were missed by the other. We were able to culture the majority of species that our direct sequencing results indicated were present, primarily species within the Acidithiobacillus and Acidiphilium genera, although estimates of relative species abundance were only obtained from direct sequencing. Interestingly, our culture-based methods recovered four species that had been overlooked from our sequencing results because of the rarity of the marker gene sequences, likely members of the rare biosphere. Further, direct sequencing indicated that a single genus, completely missed in our culture-based study, Legionella, was a dominant member of the microbial community. Our results suggest that while either method does a reasonable job of identifying the dominant members of the AMD microbial community, together the methods combine to give a more complete picture of the true diversity of this environment.
Collapse
Affiliation(s)
- Ryan R Auld
- Department of Chemistry & Biochemistry, Laurentian University, Canada
| | | | | | | | | |
Collapse
|
90
|
Messi P, Bargellini A, Anacarso I, Marchesi I, de Niederhäusern S, Bondi M. Protozoa and human macrophages infection by Legionella pneumophila environmental strains belonging to different serogroups. Arch Microbiol 2013; 195:89-96. [PMID: 23135482 DOI: 10.1007/s00203-012-0851-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 10/11/2012] [Accepted: 10/29/2012] [Indexed: 12/01/2022]
Abstract
Three Legionella pneumophila strains isolated from municipal hot tap water during a multicentric Italian survey and belonging to serogroups 1, 6, 9 and the reference strain Philadelphia-1 were studied to determine the intracellular replication capability and the cytopathogenicity in human monocyte cell line U937 and in an Acanthamoeba polyphaga strain. Our results show that both serogroups 1 and Philadelphia-1 were able to multiply into macrophages inducing cytopathogenicity, while serogroup 6 and ever more serogroup 9 were less efficient in leading to death of the infected macrophages. Both serogroups 1 and 6 displayed a quite good capability of intracellular replication in A. polyphaga, although serogroup 1 was less cytopathogenic than serogroup 6. Serogroup 9, like Philadelphia-1 strain, showed a reduced efficiency of infection and replication and a low cytopathogenicity towards the protozoan. Our study suggests that bacterial pathogenesis is linked to the difference in the virulence expression of L. pneumophila serogroups in both hosts, as demonstrated by the fact that only L. pneumophila serogroup 1 shows the contextual expression of the two virulence traits. Serogroup 6 proves to be a good candidate as pathogen since it shows a good capacity for intracellular replication in protozoan.
Collapse
Affiliation(s)
- Patrizia Messi
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 287, 41125 Modena, Italy.
| | | | | | | | | | | |
Collapse
|
91
|
Douterelo I, Sharpe RL, Boxall JB. Influence of hydraulic regimes on bacterial community structure and composition in an experimental drinking water distribution system. WATER RESEARCH 2013. [PMID: 23182667 DOI: 10.1016/j.watres.2012.09.053] [Citation(s) in RCA: 164] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Microbial biofilms formed on the inner-pipe surfaces of drinking water distribution systems (DWDS) can alter drinking water quality, particularly if they are mechanically detached from the pipe wall to the bulk water, such as due to changes in hydraulic conditions. Results are presented here from applying 454 pyrosequencing of the 16S ribosomal RNA (rRNA) gene to investigate the influence of different hydrological regimes on bacterial community structure and to study the potential mobilisation of material from the pipe walls to the network using a full scale, temperature-controlled experimental pipeline facility accurately representative of live DWDS. Analysis of pyrosequencing and water physico-chemical data showed that habitat type (water vs. biofilm) and hydraulic conditions influenced bacterial community structure and composition in our experimental DWDS. Bacterial community composition clearly differed between biofilms and bulk water samples. Gammaproteobacteria and Betaproteobacteria were the most abundant phyla in biofilms while Alphaproteobacteria was predominant in bulk water samples. This suggests that bacteria inhabiting biofilms, predominantly species belonging to genera Pseudomonas, Zooglea and Janthinobacterium, have an enhanced ability to express extracellular polymeric substances to adhere to surfaces and to favour co-aggregation between cells than those found in the bulk water. Highest species richness and diversity were detected in 28 days old biofilms with this being accentuated at highly varied flow conditions. Flushing altered the pipe-wall bacterial community structure but did not completely remove bacteria from the pipe walls, particularly under highly varied flow conditions, suggesting that under these conditions more compact biofilms were generated. This research brings new knowledge regarding the influence of different hydraulic regimes on the composition and structure of bacterial communities within DWDS and the implication that this might have on drinking water quality.
Collapse
Affiliation(s)
- I Douterelo
- Pennine Water Group, Department of Civil and Structural Engineering, Mappin Street, University of Sheffield, Sheffield S1 3JD, UK.
| | | | | |
Collapse
|
92
|
Gea-Izquierdo E, Loza-Murguia MG. Calidad del agua y Salud: Las biopelículas y Legionella. JOURNAL OF THE SELVA ANDINA RESEARCH SOCIETY 2013. [DOI: 10.36610/j.jsars.2012.030200112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
93
|
Stewart CR, Muthye V, Cianciotto NP. Legionella pneumophila persists within biofilms formed by Klebsiella pneumoniae, Flavobacterium sp., and Pseudomonas fluorescens under dynamic flow conditions. PLoS One 2012; 7:e50560. [PMID: 23185637 PMCID: PMC3503961 DOI: 10.1371/journal.pone.0050560] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2012] [Accepted: 10/23/2012] [Indexed: 11/18/2022] Open
Abstract
Legionella pneumophila, the agent of Legionnaires' disease pneumonia, is transmitted to humans following the inhalation of contaminated water droplets. In aquatic systems, L. pneumophila survives much of time within multi-organismal biofilms. Therefore, we examined the ability of L. pneumophila (clinical isolate 130 b) to persist within biofilms formed by various types of aquatic bacteria, using a bioreactor with flow, steel surfaces, and low-nutrient conditions. L. pneumophila was able to intercalate into and persist within a biofilm formed by Klebsiella pneumoniae, Flavobacterium sp. or Pseudomonas fluorescens. The levels of L. pneumophila within these biofilms were as much as 4 × 10(4) CFU per cm(2) of steel coupon and lasted for at least 12 days. These data document that K. pneumoniae, Flavobacterium sp., and P. fluorescens can promote the presence of L. pneumophila in dynamic biofilms. In contrast to these results, L. pneumophila 130 b did not persist within a biofilm formed by Pseudomonas aeruginosa, confirming that some bacteria are permissive for Legionella colonization whereas others are antagonistic. In addition to colonizing certain mono-species biofilms, L. pneumophila 130 b persisted within a two-species biofilm formed by K. pneumoniae and Flavobacterium sp. Interestingly, the legionellae were also able to colonize a two-species biofilm formed by K. pneumoniae and P. aeruginosa, demonstrating that a species that is permissive for L. pneumophila can override the inhibitory effect(s) of a non-permissive species.
Collapse
Affiliation(s)
- Catherine R. Stewart
- Department of Microbiology and Immunology, Northwestern University Medical School, Chicago, Illinois, United States of America
| | - Viraj Muthye
- Department of Microbiology and Immunology, Northwestern University Medical School, Chicago, Illinois, United States of America
| | - Nicholas P. Cianciotto
- Department of Microbiology and Immunology, Northwestern University Medical School, Chicago, Illinois, United States of America
| |
Collapse
|
94
|
Hygienic Design and Microbial Control of Refrigeration and Air Conditioning Systems for Food Processing and Packaging Plants. FOOD ENGINEERING REVIEWS 2012. [DOI: 10.1007/s12393-012-9060-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
95
|
Zhang M, Liu W, Nie X, Li C, Gu J, Zhang C. Molecular analysis of bacterial communities in biofilms of a drinking water clearwell. Microbes Environ 2012; 27:443-8. [PMID: 23059725 PMCID: PMC4103552 DOI: 10.1264/jsme2.me12035] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Microbial community structures in biofilms of a clearwell in a drinking water supply system in Beijing, China were examined by clone library, terminal restriction fragment length polymorphism (T-RFLP) and 454 pyrosequencing of the amplified 16S rRNA gene. Six biofilm samples (designated R1–R6) collected from six locations (upper and lower sites of the inlet, middle and outlet) of the clearwell revealed similar bacterial patterns by T-RFLP analysis. With respect to the dominant groups, the phylotypes detected by clone library and T-RFLP generally matched each other. A total of 9,543 reads were obtained from samples located at the lower inlet and the lower outlet sites by pyrosequencing. The bacterial diversity of the two samples was compared at phylum and genus levels. Alphaproteobacteria dominated the communities in both samples and the genus of Sphingomonas constituted 75.1%–99.6% of this phylum. A high level of Sphingomonas sp. was first observed in the drinking water biofilms with 0.6–1.0 mg L−1 of chlorine residual. Disinfectant-resistant microorganisms deserve special attention in drinking water management. This study provides novel insights into the microbial populations in drinking water systems and highlights the important role of Sphingomonas species in biofilm formation.
Collapse
Affiliation(s)
- Minglu Zhang
- School of Environment, Tsinghua University, Haidian District, Beijing, 100084, China
| | | | | | | | | | | |
Collapse
|
96
|
Farhat M, Moletta-Denat M, Frère J, Onillon S, Trouilhé MC, Robine E. Effects of disinfection on Legionella spp., eukarya, and biofilms in a hot water system. Appl Environ Microbiol 2012; 78:6850-8. [PMID: 22820326 PMCID: PMC3457500 DOI: 10.1128/aem.00831-12] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2012] [Accepted: 07/10/2012] [Indexed: 11/20/2022] Open
Abstract
Legionella species are frequently detected in hot water systems, attached to the surface as a biofilm. In this work, the dynamics of Legionella spp. and diverse bacteria and eukarya associated together in the biofilm, coming from a pilot scale 1 system simulating a real hot water system, were investigated throughout 6 months after two successive heat shock treatments followed by three successive chemical treatments. Community structure was assessed by a fingerprint technique, single-strand conformation polymorphism (SSCP). In addition, the diversity and dynamics of Legionella and eukarya were investigated by small-subunit (SSU) ribosomal cloning and sequencing. Our results showed that pathogenic Legionella species remained after the heat shock and chemical treatments (Legionella pneumophila and Legionella anisa, respectively). The biofilm was not removed, and the bacterial community structure was transitorily affected by the treatments. Moreover, several amoebae had been detected in the biofilm before treatments (Thecamoebae sp., Vannella sp., and Hartmanella vermiformis) and after the first heat shock treatment, but only H. vermiformis remained. However, another protozoan affiliated with Alveolata, which is known as a host cell for Legionella, dominated the eukaryal species after the second heat shock and chemical treatment tests. Therefore, effective Legionella disinfection may be dependent on the elimination of these important microbial components. We suggest that eradicating Legionella in hot water networks requires better study of bacterial and eukaryal species associated with Legionella in biofilms.
Collapse
Affiliation(s)
- Maha Farhat
- Université Paris-Est, Centre Scientifique et Technique du Bâtiment, Département Energie Santé Environnement, Division Santé, Laboratoire de Recherche et d'Innovation pour l'Hygiène des Bâtiments, Marne-la-Vallée, France.
| | | | | | | | | | | |
Collapse
|
97
|
Mallegol J, Duncan C, Prashar A, So J, Low DE, Terebeznik M, Guyard C. Essential roles and regulation of the Legionella pneumophila collagen-like adhesin during biofilm formation. PLoS One 2012; 7:e46462. [PMID: 23029523 PMCID: PMC3460888 DOI: 10.1371/journal.pone.0046462] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Accepted: 08/31/2012] [Indexed: 11/19/2022] Open
Abstract
Legionellosis is mostly caused by Legionella pneumophila (Lp) and is defined by a severe respiratory illness with a case fatality rate ranging from 5 to 80%. In a previous study, we showed that a glycosaminoglycan (GAG)-binding adhesin of Lp, named Lcl, is produced during legionellosis and is unique to the L. pneumophila species. Importantly, a mutant depleted in Lcl (Δlpg2644) is impaired in adhesion to GAGs and epithelial cells and in biofilm formation. Here, we examine the molecular function(s) of Lcl and the transcriptional regulation of its encoding gene during different stages of the biofilm development. We show that the collagen repeats and the C-terminal domains of Lcl are crucial for the production of biofilm. We present evidence that Lcl is involved in the early step of surface attachment but also in intercellular interactions. Furthermore, we address the relationship between Lcl gene regulation during biofilm formation and quorum sensing (QS). In a static biofilm assay, we show that Lcl is differentially regulated during growth phases and biofilm formation. Moreover, we show that the transcriptional regulation of lpg2644, mediated by a prototype of QS signaling homoserine lactone (3OC12-HSL), may play a role during the biofilm development. Thus, transcriptional down-regulation of lpg2644 may facilitate the dispersion of Lp to reinitiate biofilm colonization on a distal surface.
Collapse
Affiliation(s)
- Julia Mallegol
- Ontario Agency for Health Protection and Promotion (OAHPP), Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Carla Duncan
- Ontario Agency for Health Protection and Promotion (OAHPP), Toronto, Ontario, Canada
| | - Akriti Prashar
- Cells and System Biology and Department of Biological Sciences, University of Toronto at Scarborough, Toronto, Ontario, Canada
| | - Jannice So
- Ontario Agency for Health Protection and Promotion (OAHPP), Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Donald E. Low
- Ontario Agency for Health Protection and Promotion (OAHPP), Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Mauricio Terebeznik
- Cells and System Biology and Department of Biological Sciences, University of Toronto at Scarborough, Toronto, Ontario, Canada
| | - Cyril Guyard
- Ontario Agency for Health Protection and Promotion (OAHPP), Toronto, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Mount Sinai Hospital, Toronto, Ontario, Canada
| |
Collapse
|
98
|
Influence of temperature and surface kind on biofilm formation by Staphylococcus aureus from food-contact surfaces and sensitivity to sanitizers. Food Control 2012. [DOI: 10.1016/j.foodcont.2011.11.030] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
99
|
Abreu Acosta N, Rodríguez Gómez LE, Alvarez Díaz M. Effect of oxygen injection in a reclaimed wastewater pipeline on the microbiological quality of water. ENVIRONMENTAL TECHNOLOGY 2012; 33:497-505. [PMID: 22629622 DOI: 10.1080/09593330.2011.581312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
In this work the influence of oxygen injection on the inactivation of microbiological indicators during reclaimed wastewater transportation was studied. Experiments were carried out in a completely filled gravity pipe (62 km long), at two different periods of the year and with three different oxygen doses (7, 15 and 30 mg L(-1)). Microbiological parameters studied were faecal coliforms, Escherichia coli, enterococci and somatic coliphages. As a consequence of the oxygen injection, a significant inactivation of the microbiological parameters was observed during the aerobic stretch of the pipe. Later, once the oxygen had been consumed, inactivation stopped and even a slight regrowth of the microbial population took place. Inactivations were within the range of 0.6-1.0 log10 units, in most cases. No significant differences between inactivations for the different microbiological parameters were found, except for the somatic coliphages. A relationship between the inactivation degree and oxygen dose and organic matter content was observed. The biofilm played an important role in the inactivation process. The injection of oxygen contributes to improving the microbiological quality of reclaimed wastewater during its transport by pipelines, helping to diminish the subsequent on-site disinfection requirements.
Collapse
Affiliation(s)
- N Abreu Acosta
- INFULAB S.L. Mencey Romén 7, 38530, Candelaria, Tenerife, Spain
| | | | | |
Collapse
|
100
|
Biyela PT, Ryu H, Brown A, Alum A, Abbaszadegan M, Rittmann BE. Distribution systems as reservoirs ofNaegleria fowleriand other amoebae. ACTA ACUST UNITED AC 2012. [DOI: 10.5942/jawwa.2012.104.0007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Affiliation(s)
- Precious T. Biyela
- Department of Civil Engineering and Applied Mechanics; McGill University; Montreal Quebec
- Swette Center for Environmental Biotechnology; Biodesign Institute at Arizona State University; Tempe Ariz
| | - Hodon Ryu
- NSF Water & Environmental Technology Center at School of Sustainable Engineering and the Built Environment; Arizona State University; Tempe Ariz
| | - Albert Brown
- Environmental Technology Management Program; Arizona State University; Mesa Ariz
| | - Absar Alum
- NSF Water & Environmental Technology Center at School of Sustainable Engineering and the Built Environment; Arizona State University; Tempe Ariz
| | - Morteza Abbaszadegan
- NSF Water & Environmental Technology Center at School of Sustainable Engineering and the Built Environment; Arizona State University; Tempe Ariz
| | - Bruce E. Rittmann
- Swette Center for Environmental Biotechnology; Biodesign Institute at Arizona State University; Tempe Ariz
| |
Collapse
|