51
|
The XPB Subunit of the TFIIH Complex Plays a Critical Role in HIV-1 Transcription and XPB Inhibition by Spironolactone Prevents HIV-1 Reactivation from Latency. J Virol 2021; 95:JVI.01247-20. [PMID: 33239456 PMCID: PMC7851559 DOI: 10.1128/jvi.01247-20] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
HIV transcription requires assembly of cellular transcription factors at the HIV-1promoter. The TFIIH general transcription factor facilitates transcription initiation by opening the DNA strands around the transcription start site and phosphorylating the C-terminal domain for RNA polymerase II (RNAPII) for activation. Spironolactone (SP), an FDA approved aldosterone antagonist, triggers the proteasomal degradation of the XPB subunit of TFIIH, and concurrently suppresses acute HIV infection in vitro Here we investigated SP as a possible block-and-lock agent for a functional cure aimed at the transcriptional silencing of the viral reservoir. The long-term activity of SP was investigated in primary and cell line models of HIV-1 latency and reactivation. We show that SP rapidly inhibits HIV-1 transcription by reducing RNAPII recruitment to the HIV-1 genome. shRNA knockdown of XPB confirmed XPB degradation as the mechanism of action. Unfortunately, long-term pre-treatment with SP does not result in epigenetic suppression of HIV upon SP treatment interruption, since virus rapidly rebounds when XPB reemerges; however, SP alone without ART maintains the transcriptional suppression. Importantly, SP inhibits HIV reactivation from latency in both cell line models and resting CD4+T cells isolated from aviremic infected individuals upon cell stimulation with latency reversing agents. Furthermore, long-term treatment with concentrations of SP that potently degrade XPB does not lead to global dysregulation of cellular mRNA expression. Overall, these results suggest that XPB plays a key role in HIV transcriptional regulation and XPB degradation by SP strengthens the potential of HIV transcriptional inhibitors in block-and-lock HIV cure approaches.IMPORTANCE Antiretroviral therapy (ART) effectively reduces an individual's HIV loads to below the detection limit, nevertheless rapid viral rebound immediately ensues upon treatment interruption. Furthermore, virally suppressed individuals experience chronic immune activation from ongoing low-level virus expression. Thus, the importance of identifying novel therapeutics to explore in block-and-lock HIV functional cure approaches, aimed at the transcriptional and epigenetic silencing of the viral reservoir to block reactivation from latency. We investigated the potential of repurposing the FDA-approved spironolactone (SP), as one such drug. SP treatment rapidly degrades a host transcription factor subunit, XPB, inhibiting HIV transcription and blocking reactivation from latency. Long-term SP treatment does not affect cellular viability, cell cycle progression or global cellular transcription. SP alone blocks HIV transcription in the absence of ART but does not delay rebound upon drug removal as XPB rapidly reemerges. This study highlights XPB as a novel drug target in block-and-lock therapeutic approaches.
Collapse
|
52
|
Unsunnidhal L, Wasito R, Nugraha Setyawan EM, Kusumawati A. Potential of Nanoparticles Chitosan for Delivery pcDNA3.1-tat. BIO WEB OF CONFERENCES 2021. [DOI: 10.1051/bioconf/20214107004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The development of Jembrana disease vaccine is importance to prevent the loss of Bali cattle industry in Indonesia. This study aims to prepare a Jembrana DNA vaccine. The data Tat protein sequences gained from NCBI and the consensus process has been finished by the MultAlign program, and then Cloning of the pcDNA3.1-tat has been successfully performed on E. coli DH5α and confirmed by PCR, restriction analysis and sequencing. The propagated plasmids were prepared as DNA-chitosan complex and physiochemical characterized using Particle Size Analyzer. Complex with a 1:2 (wt/wt) ratio of DNA and chitosan have a mean diameter of 268.5 nm and zeta potential +25.1 mV and the value of Cytotoxicity Assay 80-90% as compared to the untreated cells that used as negative control, so it can be concluded that nanoparticles chitosan has good potential as a carrier agent for pcDNA3.1-tat.
Collapse
|
53
|
Taylor JP, Armitage LH, Aldridge DL, Cash MN, Wallet MA. Harmine enhances the activity of the HIV-1 latency-reversing agents ingenol A and SAHA. Biol Open 2020; 9:bio.052969. [PMID: 33234703 PMCID: PMC7774897 DOI: 10.1242/bio.052969] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Infection with human immunodeficiency virus 1 (HIV-1) remains incurable because long-lived, latently-infected cells persist during prolonged antiretroviral therapy. Attempts to pharmacologically reactivate and purge the latent reservoir with latency reactivating agents (LRAs) such as protein kinase C (PKC) agonists (e.g. ingenol A) or histone deacetylase (HDAC) inhibitors (e.g. SAHA) have shown promising but incomplete efficacy. Using the J-Lat T cell model of HIV latency, we found that the plant-derived compound harmine enhanced the efficacy of existing PKC agonist LRAs in reactivating latently-infected cells. Treatment with harmine increased not only the number of reactivated cells but also increased HIV transcription and protein expression on a per-cell basis. Importantly, we observed a synergistic effect when harmine was used in combination with ingenol A and the HDAC inhibitor SAHA. An investigation into the mechanism revealed that harmine, when used with LRAs, increased the activity of NFκB, MAPK p38, and ERK1/2. Harmine treatment also resulted in reduced expression of HEXIM1, a negative regulator of transcriptional elongation. Thus, harmine enhanced the effects of LRAs by increasing the availability of transcription factors needed for HIV reactivation and promoting transcriptional elongation. Combination therapies with harmine and LRAs could benefit patients by achieving deeper reactivation of the latent pool of HIV provirus.
Collapse
Affiliation(s)
- Jared P Taylor
- Department of Pathology, Immunology & Laboratory Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Lucas H Armitage
- Department of Pathology, Immunology & Laboratory Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Daniel L Aldridge
- Department of Pathology, Immunology & Laboratory Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Melanie N Cash
- Department of Pathology, Immunology & Laboratory Medicine, University of Florida, Gainesville, FL 32610, USA
| | - Mark A Wallet
- Department of Pathology, Immunology & Laboratory Medicine, University of Florida, Gainesville, FL 32610, USA
| |
Collapse
|
54
|
Ventura JD. Human Immunodeficiency Virus 1 (HIV-1): Viral Latency, the Reservoir, and the Cure. THE YALE JOURNAL OF BIOLOGY AND MEDICINE 2020; 93:549-560. [PMID: 33005119 PMCID: PMC7513431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
An estimated 37 million people globally suffer from Human Immunodeficiency Virus-1 (HIV-1) infection with 1.7 million newly acquired infections occurring on average each year. Although crucial advances in combined antiretroviral therapy (ART) over the last two decades have transformed an HIV-1 diagnosis into a tolerable and controlled condition, enabling over 20 million people living with HIV-1 to enjoy healthy and productive lives, no cure or vaccine yet exists. Developing a successful cure strategy will require a firm understanding of how viral latency is established and how a persistent and long-lived latent is generated. The latent reservoir remains the primary obstacle for cure development and most putative cure strategies proposed fundamentally address its eradication or permanent suppression.
Collapse
Affiliation(s)
- John D. Ventura
- To whom all correspondence should be addressed:
Dr. John D. Ventura, . ORCID iD:
https://orcid.org/0000-0002-4373-3242.
| |
Collapse
|
55
|
Proulx J, Borgmann K, Park IW. Post-translational modifications inducing proteasomal degradation to counter HIV-1 infection. Virus Res 2020; 289:198142. [PMID: 32882242 DOI: 10.1016/j.virusres.2020.198142] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 08/20/2020] [Accepted: 08/21/2020] [Indexed: 12/14/2022]
Abstract
Post-translational modifications (PTMs) are integral to regulating a wide variety of cellular processes in eukaryotic cells, such as regulation of protein stability, alteration of celluar location, protein activity modulation, and regulation of protein interactions. HIV-1, like other eukaryotic viruses, and its infected host exploit the proteasomal degradation system for their respective proliferation and survival, using various PTMs, including but not limited to ubiquitination, SUMOylation, NEDDylation, interferon-stimulated gene (ISG)ylation. Essentially all viral proteins within the virions -- and in the HIV-1-infected cells -- interact with their cellular counterparts for this degradation, utilizing ubiquitin (Ub), and the Ub-like (Ubl) modifiers less frequently, to eliminate the involved proteins throughout the virus life cycle, from the entry step to release of the assembled virus particles. Such interplay is pivotal for, on the one hand, the cell to restrict proliferation of the infecting virus, and on the other, for molecular counteraction by the virus to overcome this cellular protein-imposed restriction. Recent reports indicate that not only viral/cellular proteins but also viral/viral protein interactions play vital roles in regulating viral protein stability. We hence give an overview of the molecular processes of PTMs involved in proteasomal degradation of the viral and cellular proteins, and the viral/viral and viral/cellular protein interplay in restriction and competition for HIV-1 vs. host cell survival. Insights in this realm could open new avenues for developing therapeutics against HIV-1 via targeting specific steps of the proteasome degradation pathway during the HIV-1 life cycle.
Collapse
Affiliation(s)
- Jessica Proulx
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, 76107, United States
| | - Kathleen Borgmann
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, 76107, United States
| | - In-Woo Park
- Microbiology, Immunology, and Genetics, University of North Texas Health Science Center, Fort Worth, TX, 76107, United States.
| |
Collapse
|
56
|
Zhao X, Bodo J, Chen R, Durkin L, Souers AJ, Phillips DC, Hsi ED. Inhibition of cyclin-dependent kinase 9 synergistically enhances venetoclax activity in mantle cell lymphoma. EJHAEM 2020; 1:161-169. [PMID: 35847704 PMCID: PMC9176003 DOI: 10.1002/jha2.48] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 06/12/2020] [Accepted: 06/15/2020] [Indexed: 11/24/2022]
Abstract
Mantle cell lymphoma (MCL) is an aggressive and largely incurable subtype of non-Hodgkin's lymphoma. Venetoclax has demonstrated efficacy in MCL patients with relapsed or refractory disease, however response is variable and less durable than CLL. This may be the result of co-expression of other anti-apoptotic proteins such as MCL-1, which is associated with both intrinsic and acquired resistance to venetoclax in B-cell malignancies. One strategy for neutralizing MCL-1 and other short-lived survival factors is to inhibit CDK9, which plays a key role in transcription. Here, we report the response of MCL cell lines and primary patient samples to the combination of venetoclax and novel CDK9 inhibitors. Primary samples represented de novo patients and relapsed disease, including relapse after ibrutinib failure. Despite the diverse responses to each single agent, possibly due to variable expression of the BCL-2 family members, venetoclax plus CDK9 inhibitors synergistically induced apoptosis in MCL cells. The synergistic effect was also confirmed via venetoclax plus a direct MCL-1 inhibitor. Murine xenograft studies demonstrated potent in vivo efficacy of venetoclax plus CDK9 inhibitor that was superior to each agent alone. Together, this study supports clinical investigation of this combination in MCL, including in patients who have progressed on ibrutinib.
Collapse
Affiliation(s)
- Xiaoxian Zhao
- Department of Laboratory MedicineRobert J. Tomsich Pathology and Laboratory Medicine InstituteCleveland ClinicClevelandOhioUSA
| | - Juraj Bodo
- Department of Laboratory MedicineRobert J. Tomsich Pathology and Laboratory Medicine InstituteCleveland ClinicClevelandOhioUSA
| | - Ruoying Chen
- Department of Laboratory MedicineRobert J. Tomsich Pathology and Laboratory Medicine InstituteCleveland ClinicClevelandOhioUSA
| | - Lisa Durkin
- Department of Laboratory MedicineRobert J. Tomsich Pathology and Laboratory Medicine InstituteCleveland ClinicClevelandOhioUSA
| | | | | | - Eric D. Hsi
- Department of Laboratory MedicineRobert J. Tomsich Pathology and Laboratory Medicine InstituteCleveland ClinicClevelandOhioUSA
| |
Collapse
|
57
|
Eyvazi S, Hejazi MS, Kahroba H, Abasi M, Zamiri RE, Tarhriz V. CDK9 as an Appealing Target for Therapeutic Interventions. Curr Drug Targets 2020; 20:453-464. [PMID: 30362418 DOI: 10.2174/1389450119666181026152221] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 10/15/2018] [Accepted: 10/16/2018] [Indexed: 02/05/2023]
Abstract
Cyclin Dependent Kinase 9 (CDK9) as a serine/threonine kinase belongs to a great number of CDKs. CDK9 is the main core of PTEF-b complex and phosphorylates RNA polymerase (RNAP) II besides other transcription factors which regulate gene transcription elongation in numerous physiological processes. Multi-functional nature of CDK9 in diverse cellular pathways proposes that it is as an appealing target. In this review, we summarized the recent findings on the molecular interaction of CDK9 with critical participant molecules to modulate their activity in various diseases. Furthermore, the presented review provides a rationale supporting the use of CDK9 as a therapeutic target in clinical developments for crucial diseases; particularly cancers will be reviewed.
Collapse
Affiliation(s)
- Shirin Eyvazi
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.,Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Saeid Hejazi
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.,Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Homan Kahroba
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Molecular Medicine, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mozghan Abasi
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.,Cellular and Molecular Biology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Eghdam Zamiri
- Faculty of medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahideh Tarhriz
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
58
|
Shukla A, Ramirez NGP, D’Orso I. HIV-1 Proviral Transcription and Latency in the New Era. Viruses 2020; 12:v12050555. [PMID: 32443452 PMCID: PMC7291205 DOI: 10.3390/v12050555] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 05/06/2020] [Accepted: 05/12/2020] [Indexed: 12/11/2022] Open
Abstract
Three decades of extensive work in the HIV field have revealed key viral and host cell factors controlling proviral transcription. Various models of transcriptional regulation have emerged based on the collective information from in vitro assays and work in both immortalized and primary cell-based models. Here, we provide a recount of the past and current literature, highlight key regulatory aspects, and further describe potential limitations of previous studies. We particularly delve into critical steps of HIV gene expression including the role of the integration site, nucleosome positioning and epigenomics, and the transition from initiation to pausing and pause release. We also discuss open questions in the field concerning the generality of previous regulatory models to the control of HIV transcription in patients under suppressive therapy, including the role of the heterogeneous integration landscape, clonal expansion, and bottlenecks to eradicate viral persistence. Finally, we propose that building upon previous discoveries and improved or yet-to-be discovered technologies will unravel molecular mechanisms of latency establishment and reactivation in a “new era”.
Collapse
|
59
|
Basu S, Nandy A, Biswas D. Keeping RNA polymerase II on the run: Functions of MLL fusion partners in transcriptional regulation. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2020; 1863:194563. [PMID: 32348849 DOI: 10.1016/j.bbagrm.2020.194563] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 01/13/2020] [Accepted: 04/13/2020] [Indexed: 12/21/2022]
Abstract
Since the identification of key MLL fusion partners as transcription elongation factors regulating expression of HOX cluster genes during hematopoiesis, extensive work from the last decade has resulted in significant progress in our overall mechanistic understanding of role of MLL fusion partner proteins in transcriptional regulation of diverse set of genes beyond just the HOX cluster. In this review, we are going to detail overall understanding of role of MLL fusion partner proteins in transcriptional regulation and thus provide mechanistic insights into possible MLL fusion protein-mediated transcriptional misregulation leading to aberrant hematopoiesis and leukemogenesis.
Collapse
Affiliation(s)
- Subham Basu
- Laboratory of Transcription Biology, Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata 32, India
| | - Arijit Nandy
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Debabrata Biswas
- Laboratory of Transcription Biology, Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, 4, Raja S. C. Mullick Road, Kolkata 32, India.
| |
Collapse
|
60
|
Khan N, Chen X, Geiger JD. Role of Divalent Cations in HIV-1 Replication and Pathogenicity. Viruses 2020; 12:E471. [PMID: 32326317 PMCID: PMC7232465 DOI: 10.3390/v12040471] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 04/09/2020] [Accepted: 04/18/2020] [Indexed: 12/22/2022] Open
Abstract
Divalent cations are essential for life and are fundamentally important coordinators of cellular metabolism, cell growth, host-pathogen interactions, and cell death. Specifically, for human immunodeficiency virus type-1 (HIV-1), divalent cations are required for interactions between viral and host factors that govern HIV-1 replication and pathogenicity. Homeostatic regulation of divalent cations' levels and actions appear to change as HIV-1 infection progresses and as changes occur between HIV-1 and the host. In people living with HIV-1, dietary supplementation with divalent cations may increase HIV-1 replication, whereas cation chelation may suppress HIV-1 replication and decrease disease progression. Here, we review literature on the roles of zinc (Zn2+), iron (Fe2+), manganese (Mn2+), magnesium (Mg2+), selenium (Se2+), and copper (Cu2+) in HIV-1 replication and pathogenicity, as well as evidence that divalent cation levels and actions may be targeted therapeutically in people living with HIV-1.
Collapse
Affiliation(s)
| | | | - Jonathan D. Geiger
- Department of Biomedical Sciences, University of North Dakota School of Medicine and Health Sciences, Grand Forks, ND 58203, USA; (N.K.); (X.C.)
| |
Collapse
|
61
|
A Quantitative Genetic Interaction Map of HIV Infection. Mol Cell 2020; 78:197-209.e7. [PMID: 32084337 DOI: 10.1016/j.molcel.2020.02.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 01/10/2020] [Accepted: 02/02/2020] [Indexed: 12/16/2022]
Abstract
We have developed a platform for quantitative genetic interaction mapping using viral infectivity as a functional readout and constructed a viral host-dependency epistasis map (vE-MAP) of 356 human genes linked to HIV function, comprising >63,000 pairwise genetic perturbations. The vE-MAP provides an expansive view of the genetic dependencies underlying HIV infection and can be used to identify drug targets and study viral mutations. We found that the RNA deadenylase complex, CNOT, is a central player in the vE-MAP and show that knockout of CNOT1, 10, and 11 suppressed HIV infection in primary T cells by upregulating innate immunity pathways. This phenotype was rescued by deletion of IRF7, a transcription factor regulating interferon-stimulated genes, revealing a previously unrecognized host signaling pathway involved in HIV infection. The vE-MAP represents a generic platform that can be used to study the global effects of how different pathogens hijack and rewire the host during infection.
Collapse
|
62
|
P-TEFb as A Promising Therapeutic Target. Molecules 2020; 25:molecules25040838. [PMID: 32075058 PMCID: PMC7070488 DOI: 10.3390/molecules25040838] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Revised: 02/06/2020] [Accepted: 02/07/2020] [Indexed: 01/19/2023] Open
Abstract
The positive transcription elongation factor b (P-TEFb) was first identified as a general factor that stimulates transcription elongation by RNA polymerase II (RNAPII), but soon afterwards it turned out to be an essential cellular co-factor of human immunodeficiency virus (HIV) transcription mediated by viral Tat proteins. Studies on the mechanisms of Tat-dependent HIV transcription have led to radical advances in our knowledge regarding the mechanism of eukaryotic transcription, including the discoveries that P-TEFb-mediated elongation control of cellular transcription is a main regulatory step of gene expression in eukaryotes, and deregulation of P-TEFb activity plays critical roles in many human diseases and conditions in addition to HIV/AIDS. P-TEFb is now recognized as an attractive and promising therapeutic target for inflammation/autoimmune diseases, cardiac hypertrophy, cancer, infectious diseases, etc. In this review article, I will summarize our knowledge about basic P-TEFb functions, the regulatory mechanism of P-TEFb-dependent transcription, P-TEFb’s involvement in biological processes and diseases, and current approaches to manipulating P-TEFb functions for the treatment of these diseases.
Collapse
|
63
|
Vansant G, Bruggemans A, Janssens J, Debyser Z. Block-And-Lock Strategies to Cure HIV Infection. Viruses 2020; 12:E84. [PMID: 31936859 PMCID: PMC7019976 DOI: 10.3390/v12010084] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 01/07/2020] [Accepted: 01/09/2020] [Indexed: 12/12/2022] Open
Abstract
Today HIV infection cannot be cured due to the presence of a reservoir of latently infected cells inducing a viral rebound upon treatment interruption. Hence, the latent reservoir is considered as the major barrier for an HIV cure. So far, efforts to completely eradicate the reservoir via a shock-and-kill approach have proven difficult and unsuccessful. Therefore, more research has been done recently on an alternative block-and-lock functional cure strategy. In contrast to the shock-and-kill strategy that aims to eradicate the entire reservoir, block-and-lock aims to permanently silence all proviruses, even after treatment interruption. HIV silencing can be achieved by targeting different factors of the transcription machinery. In this review, we first describe the underlying mechanisms of HIV transcription and silencing. Next, we give an overview of the different block-and-lock strategies under investigation.
Collapse
Affiliation(s)
- Gerlinde Vansant
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, Katholieke Universiteit, Leuven, 3000 Flanders, Belgium
| | - Anne Bruggemans
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, Katholieke Universiteit, Leuven, 3000 Flanders, Belgium
| | - Julie Janssens
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, Katholieke Universiteit, Leuven, 3000 Flanders, Belgium
| | - Zeger Debyser
- Laboratory for Molecular Virology and Gene Therapy, Department of Pharmaceutical and Pharmacological Sciences, Katholieke Universiteit, Leuven, 3000 Flanders, Belgium
| |
Collapse
|
64
|
Lee DJ, Zeidner JF. Cyclin-dependent kinase (CDK) 9 and 4/6 inhibitors in acute myeloid leukemia (AML): a promising therapeutic approach. Expert Opin Investig Drugs 2019; 28:989-1001. [PMID: 31612739 DOI: 10.1080/13543784.2019.1678583] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Introduction: Despite advancements over the last 2 years, outcomes for acute myeloid leukemia (AML) are poor; however, a greater comprehension of disease mechanisms has driven the investigation of new targeted treatments. Cyclin-dependent kinases (CDKs) regulate cell cycle progression, transcription and DNA repair, and are aberrantly expressed in AML. Targeting the CDK pathway is an emerging promising therapeutic strategy in AML.Areas covered: We describe the rationale for targeting CDK9 and CDK4/6, the ongoing preclinical and clinical trials and the potential of these inhibitors in AML. Our analysis included an extensive literature search via the Pubmed database and clinicaltrials.gov (March to August, 2019).Expert opinion: While CDK4/6 inhibitors are early in development for AML, CDK9 inhibition with alvocidib has encouraging clinical activity in newly diagnosed and relapsed/refractory AML. Preclinical data suggests that leukemic MCL-1 dependence may predict response to alvocidib. Moreover, MCL-1 plays a key role in resistance to BCL-2 inhibition with venetoclax. Investigational strategies of concomitant BCL-2 and CDK9 inhibition represent a promising therapeutic platform for AML. Furthermore, preclinical data suggests that CDK4/6 inhibition has selective activity in patients with KMT2A-rearrangements and FLT3 mutations. Incorporation of CDK9 and 4/6 inhibitors into the existing therapeutic armamentarium may improve outcomes in AML.
Collapse
Affiliation(s)
- Daniel J Lee
- Department of Medicine, Division of Hematology/Oncology, Columbia University Irving Medical Center, New York, NY, USA
| | - Joshua F Zeidner
- Department of Medicine, Division of Hematology/Oncology, University of North Carolina, Lineberger Comprehensive Cancer Center, Chapel Hill, NC, USA
| |
Collapse
|
65
|
Zhao L, Liu M, Ouyang J, Zhu Z, Geng W, Dong J, Xiong Y, Wang S, Zhang X, Qiao Y, Ding H, Sun H, Liang G, Shang H, Han X. The Per-1 Short Isoform Inhibits de novo HIV-1 Transcription in Resting CD4+ T-cells. Curr HIV Res 2019; 16:384-395. [PMID: 30774045 PMCID: PMC6446521 DOI: 10.2174/1570162x17666190218145048] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 02/02/2019] [Accepted: 02/11/2019] [Indexed: 12/24/2022]
Abstract
Background: Understanding of the restriction of HIV-1 transcription in resting CD4+ T-cells is critical to find a cure for AIDS. Although many negative factors causing HIV-1 transcription blockage in resting CD4+ T-cells have been found, there are still unknown mechanisms to explore. Objective: To explore the mechanism for the suppression of de novo HIV-1 transcription in resting CD4+ T-cells. Methods: In this study, a short isoform of Per-1 expression plasmid was transfected into 293T cells with or without Tat's presence to identify Per-1 as a negative regulator for HIV-1 transcription. Silenc-ing of Per-1 was conducted in resting CD4+ T-cells or monocyte-derived macrophages (MDMs) to evaluate the antiviral activity of Per-1. Additionally, we analyzed the correlation between Per-1 expres-sion and viral loads in vivo, and silenced Per-1 by siRNA technology to investigate the potential anti-HIV-1 roles of Per-1 in vivo in untreated HIV-1-infected individuals. Results: We found that short isoform Per-1 can restrict HIV-1 replication and Tat ameliorates this in-hibitory effect. Silencing of Per-1 could upregulate HIV-1 transcription both in resting CD4+ T-cells and MDMs. Moreover, Per-1 expression is inversely correlated with viral loads in Rapid progressors (RPs) in vivo. Conclusion: These data together suggest that Per-1 is a novel negative regulator of HIV-1 transcrip-tion. This restrictive activity of Per-1 to HIV-1 replication may contribute to HIV-1 latency in resting CD4+ T-cells.
Collapse
Affiliation(s)
- Li Zhao
- Key Laboratory of AIDS Immunology of National Health and Family Planning Commission, Department of Laboratory Medicine, Shenyang, China
| | - Mei Liu
- Key Laboratory of AIDS Immunology of National Health and Family Planning Commission, Department of Laboratory Medicine, Shenyang, China
| | - Jiayue Ouyang
- Key Laboratory of AIDS Immunology of National Health and Family Planning Commission, Department of Laboratory Medicine, Shenyang, China
| | - Zheming Zhu
- Key Laboratory of AIDS Immunology of National Health and Family Planning Commission, Department of Laboratory Medicine, Shenyang, China
| | - Wenqing Geng
- Key Laboratory of AIDS Immunology of National Health and Family Planning Commission, Department of Laboratory Medicine, Shenyang, China
| | - Jinxiu Dong
- Key Laboratory of AIDS Immunology of National Health and Family Planning Commission, Department of Laboratory Medicine, Shenyang, China
| | - Ying Xiong
- Key Laboratory of AIDS Immunology of National Health and Family Planning Commission, Department of Laboratory Medicine, Shenyang, China
| | - Shumei Wang
- Key Laboratory of AIDS Immunology of National Health and Family Planning Commission, Department of Laboratory Medicine, Shenyang, China
| | - Xiaowei Zhang
- The Core Laboratory for Public Health Science and Practice, The First Affiliated Hospital, China Medical University, Shenyang, China
| | - Ying Qiao
- The Core Laboratory for Public Health Science and Practice, The First Affiliated Hospital, China Medical University, Shenyang, China
| | - Haibo Ding
- Key Laboratory of AIDS Immunology of National Health and Family Planning Commission, Department of Laboratory Medicine, Shenyang, China
| | - Hong Sun
- Key Laboratory of AIDS Immunology of National Health and Family Planning Commission, Department of Laboratory Medicine, Shenyang, China
| | - Guoxin Liang
- Key Laboratory of AIDS Immunology of National Health and Family Planning Commission, Department of Laboratory Medicine, Shenyang, China
| | - Hong Shang
- Key Laboratory of AIDS Immunology of National Health and Family Planning Commission, Department of Laboratory Medicine, Shenyang, China
| | - Xiaoxu Han
- Key Laboratory of AIDS Immunology of National Health and Family Planning Commission, Department of Laboratory Medicine, Shenyang, China
| |
Collapse
|
66
|
Organization and regulation of gene transcription. Nature 2019; 573:45-54. [PMID: 31462772 DOI: 10.1038/s41586-019-1517-4] [Citation(s) in RCA: 440] [Impact Index Per Article: 73.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 07/30/2019] [Indexed: 12/18/2022]
Abstract
The regulated transcription of genes determines cell identity and function. Recent structural studies have elucidated mechanisms that govern the regulation of transcription by RNA polymerases during the initiation and elongation phases. Microscopy studies have revealed that transcription involves the condensation of factors in the cell nucleus. A model is emerging for the transcription of protein-coding genes in which distinct transient condensates form at gene promoters and in gene bodies to concentrate the factors required for transcription initiation and elongation, respectively. The transcribing enzyme RNA polymerase II may shuttle between these condensates in a phosphorylation-dependent manner. Molecular principles are being defined that rationalize transcriptional organization and regulation, and that will guide future investigations.
Collapse
|
67
|
The hunt for RNA polymerase II elongation factors: a historical perspective. Nat Struct Mol Biol 2019; 26:771-776. [PMID: 31439940 DOI: 10.1038/s41594-019-0283-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 07/18/2019] [Indexed: 02/07/2023]
Abstract
The discovery of the three eukaryotic nuclear RNA polymerases paved the way for serious biochemical investigations of eukaryotic transcription and the identification of eukaryotic transcription factors. Here we describe this adventure from our vantage point, with a focus on the hunt for factors that regulate elongation by RNA polymerase II.
Collapse
|
68
|
Dellino GI, Palluzzi F, Chiariello AM, Piccioni R, Bianco S, Furia L, De Conti G, Bouwman BAM, Melloni G, Guido D, Giacò L, Luzi L, Cittaro D, Faretta M, Nicodemi M, Crosetto N, Pelicci PG. Release of paused RNA polymerase II at specific loci favors DNA double-strand-break formation and promotes cancer translocations. Nat Genet 2019; 51:1011-1023. [PMID: 31110352 DOI: 10.1038/s41588-019-0421-z] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 04/12/2019] [Indexed: 01/05/2023]
Abstract
It is not clear how spontaneous DNA double-strand breaks (DSBs) form and are processed in normal cells, and whether they predispose to cancer-associated translocations. We show that DSBs in normal mammary cells form upon release of paused RNA polymerase II (Pol II) at promoters, 5' splice sites and active enhancers, and are processed by end-joining in the absence of a canonical DNA-damage response. Logistic and causal-association models showed that Pol II pausing at long genes is the main predictor and determinant of DSBs. Damaged introns with paused Pol II-pS5, TOP2B and XRCC4 are enriched in translocation breakpoints, and map at topologically associating domain boundary-flanking regions showing high interaction frequencies with distal loci. Thus, in unperturbed growth conditions, release of paused Pol II at specific loci and chromatin territories favors DSB formation, leading to chromosomal translocations.
Collapse
Affiliation(s)
- Gaetano Ivan Dellino
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy. .,Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy.
| | - Fernando Palluzzi
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy.,Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
| | - Andrea Maria Chiariello
- Department of Physics, University of Naples Federico II, and INFN Complesso di Monte Sant'Angelo, Naples, Italy
| | - Rossana Piccioni
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Simona Bianco
- Department of Physics, University of Naples Federico II, and INFN Complesso di Monte Sant'Angelo, Naples, Italy
| | - Laura Furia
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Giulia De Conti
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Britta A M Bouwman
- Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Giorgio Melloni
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy.,Department of Biomedical Informatics, Harvard Medical School, Boston, MA, USA
| | - Davide Guido
- Neurology, Public Health and Disability Unit, Foundation IRCCS Neurological Institute Carlo Besta, Milan, Italy
| | - Luciano Giacò
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Lucilla Luzi
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Davide Cittaro
- Center for Translational Genomics and Bioinformatics, IRCCS San Raffaele Hospital, Milan, Italy
| | - Mario Faretta
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Mario Nicodemi
- Department of Physics, University of Naples Federico II, and INFN Complesso di Monte Sant'Angelo, Naples, Italy.,Berlin Institute of Health, MDC-Berlin, Berlin, Germany
| | - Nicola Crosetto
- Science for Life Laboratory, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Pier Giuseppe Pelicci
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy. .,Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy.
| |
Collapse
|
69
|
Chavali SS, Bonn-Breach R, Wedekind JE. Face-time with TAR: Portraits of an HIV-1 RNA with diverse modes of effector recognition relevant for drug discovery. J Biol Chem 2019; 294:9326-9341. [PMID: 31080171 DOI: 10.1074/jbc.rev119.006860] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Small molecules and short peptides that potently and selectively bind RNA are rare, making the molecular structures of these complexes highly exceptional. Accordingly, several recent investigations have provided unprecedented structural insights into how peptides and proteins recognize the HIV-1 transactivation response (TAR) element, a 59-nucleotide-long, noncoding RNA segment in the 5' long terminal repeat region of viral transcripts. Here, we offer an integrated perspective on these advances by describing earlier progress on TAR binding to small molecules, and by drawing parallels to recent successes in the identification of compounds that target the hepatitis C virus internal ribosome entry site (IRES) and the flavin-mononucleotide riboswitch. We relate this work to recent progress that pinpoints specific determinants of TAR recognition by: (i) viral Tat proteins, (ii) an innovative lab-evolved TAR-binding protein, and (iii) an ultrahigh-affinity cyclic peptide. New structural details are used to model the TAR-Tat-super-elongation complex (SEC) that is essential for efficient viral transcription and represents a focal point for antiviral drug design. A key prediction is that the Tat transactivation domain makes modest contacts with the TAR apical loop, whereas its arginine-rich motif spans the entire length of the TAR major groove. This expansive interface has significant implications for drug discovery and design, and it further suggests that future lab-evolved proteins could be deployed to discover steric restriction points that block Tat-mediated recruitment of the host SEC to HIV-1 TAR.
Collapse
Affiliation(s)
- Sai Shashank Chavali
- From the Department of Biochemistry and Biophysics, Center for RNA Biology, and Center for AIDS Research, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| | - Rachel Bonn-Breach
- From the Department of Biochemistry and Biophysics, Center for RNA Biology, and Center for AIDS Research, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| | - Joseph E Wedekind
- From the Department of Biochemistry and Biophysics, Center for RNA Biology, and Center for AIDS Research, University of Rochester School of Medicine and Dentistry, Rochester, New York 14642
| |
Collapse
|
70
|
Mediouni S, Kessing CF, Jablonski JA, Thenin-Houssier S, Clementz M, Kovach MD, Mousseau G, de Vera IMS, Li C, Kojetin DJ, Evans DT, Valente ST. The Tat inhibitor didehydro-cortistatin A suppresses SIV replication and reactivation. FASEB J 2019; 33:8280-8293. [PMID: 31021670 DOI: 10.1096/fj.201801165r] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The HIV-1 transactivation protein (Tat) binds the HIV mRNA transactivation responsive element (TAR), regulating transcription and reactivation from latency. Drugs against Tat are unfortunately not clinically available. We reported that didehydro-cortistatin A (dCA) inhibits HIV-1 Tat activity. In human CD4+ T cells isolated from aviremic individuals and in the humanized mouse model of latency, combining dCA with antiretroviral therapy accelerates HIV-1 suppression and delays viral rebound upon treatment interruption. This drug class is amenable to block-and-lock functional cure approaches, aimed at a durable state of latency. Simian immunodeficiency virus (SIV) infection of rhesus macaques (RhMs) is the best-characterized model for AIDS research. Here, we demonstrate, using in vitro and cell-based assays, that dCA directly binds to SIV Tat's basic domain. dCA specifically inhibits SIV Tat binding to TAR, but not a Tat-Rev fusion protein, which activates transcription when Rev binds to its cognate RNA binding site replacing the apical region of TAR. Tat-TAR inhibition results in loss of RNA polymerase II recruitment to the SIV promoter. Importantly, dCA potently inhibits SIV reactivation from latently infected Hut78 cells and from primary CD4+ T cells explanted from SIVmac239-infected RhMs. In sum, dCA's remarkable breadth of activity encourages SIV-infected RhM use for dCA preclinical evaluation.-Mediouni, S., Kessing, C. F., Jablonski, J. A., Thenin-Houssier, S., Clementz, M., Kovach, M. D., Mousseau, G., de Vera, I.M.S., Li, C., Kojetin, D. J., Evans, D. T., Valente, S. T. The Tat inhibitor didehydro-cortistatin A suppresses SIV replication and reactivation.
Collapse
Affiliation(s)
- Sonia Mediouni
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, Florida, USA
| | - Cari F Kessing
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, Florida, USA
| | - Joseph A Jablonski
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, Florida, USA
| | - Suzie Thenin-Houssier
- Institute of Human Genetics (IGH), CNRS-University of Montpelier, Montpelier, France
| | - Mark Clementz
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, Florida, USA
| | - Melia D Kovach
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, Florida, USA
| | - Guillaume Mousseau
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, Florida, USA
| | - Ian Mitchelle S de Vera
- Department of Pharmacology and Physiology, St. Louis University School of Medicine, St. Louis, Missouri, USA
| | - Chuan Li
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, Florida, USA
| | - Douglas J Kojetin
- Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, Florida, USA
| | - David T Evans
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Susana T Valente
- Department of Immunology and Microbiology, The Scripps Research Institute, Jupiter, Florida, USA
| |
Collapse
|
71
|
Bridbord K, Weymouth KH, Puderbaugh A, Wolfman C, Belter CW, Breman JG, Kilmarx PH. Fifty Years of Supporting Global Health Research at the NIH Fogarty International Center. Ann Glob Health 2019; 85:43. [PMID: 30896131 PMCID: PMC6634470 DOI: 10.5334/aogh.2432] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
For 50 years, the Fogarty International Center (FIC) has built research capacity particularly in low and middle-income countries responding to national and global public health priorities. Established in 1968 in honor of U.S. Congressman John E. Fogarty, FIC is one of 27 Institutes and Centers at the U.S. National Institutes of Health (NIH). Initially created in response to the HIV/AIDS pandemic in the 1980s and emerging infectious diseases in the 1990s, the Center provided training for approximately 6,000 health scientists from more than 100 countries including 1,000 from the U.S. Current programs are catalytic, addressing national and international institutional capacity strengthening in HIV and other infectious diseases, environmental and occupational health, research ethics, brain disorders, trauma and injury and other non-communicable diseases, tobacco, health systems implementation research, and medical education. Since 1988, FIC provided over $1.5 billion in extramural grants leveraging its relatively modest $50 million extramural budget by $20-$30 million annually. FIC-trained scientists and public health leaders led key studies about malaria vaccines and AIDS prevention trials, became directors of national HIV/AIDS programs, and achieved leadership positions such as Minister of Health. Between 2009 and 2015, FIC cited-papers averaged approximately 1.1% of the NIH total, in comparison to the FIC budget, which averaged only 0.22% of the NIH budget. While maintaining strong commitments to respond to global health threats caused by communicable diseases, FIC is training the next generation of global health researchers focusing on chronic diseases, implementation science and epidemic modeling needed to predict and help contain future global pandemics.
Collapse
Affiliation(s)
- Kenneth Bridbord
- National Institutes of Health (NIH), Fogarty International Center, Bethesda, Maryland.
| | | | | | | | | | | | | |
Collapse
|
72
|
Kurnaeva MA, Sheval EV, Musinova YR, Vassetzky YS. Tat basic domain: A "Swiss army knife" of HIV-1 Tat? Rev Med Virol 2019; 29:e2031. [PMID: 30609200 DOI: 10.1002/rmv.2031] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 12/05/2018] [Accepted: 12/06/2018] [Indexed: 01/16/2023]
Abstract
Tat (transactivator of transcription) regulates transcription from the HIV provirus. It plays a crucial role in disease progression, supporting efficient replication of the viral genome. Tat also modulates many functions in the host genome via its interaction with chromatin and proteins. Many of the functions of Tat are associated with its basic domain rich in arginine and lysine residues. It is still unknown why the basic domain exhibits so many diverse functions. However, the highly charged basic domain, coupled with the overall structural flexibility of Tat protein itself, makes the basic domain a key player in binding to or associating with cellular and viral components. In addition, the basic domain undergoes diverse posttranslational modifications, which further expand and modulate its functions. Here, we review the current knowledge of Tat basic domain and its versatile role in the interaction between the virus and the host cell.
Collapse
Affiliation(s)
- Margarita A Kurnaeva
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | - Eugene V Sheval
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia.,Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia.,LIA 1066 LFR2O French-Russian Joint Cancer Research Laboratory, CNRS, Villejuif, France
| | - Yana R Musinova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia.,LIA 1066 LFR2O French-Russian Joint Cancer Research Laboratory, CNRS, Villejuif, France.,Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| | - Yegor S Vassetzky
- LIA 1066 LFR2O French-Russian Joint Cancer Research Laboratory, CNRS, Villejuif, France.,Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia.,Nuclear Organization and Pathologies, CNRS, UMR8126, Université Paris-Sud, Institut Gustave Roussy, Villejuif, France
| |
Collapse
|
73
|
Kunihara T, Hayashi Y, Arai M. Conformational diversity in the intrinsically disordered HIV-1 Tat protein induced by zinc and pH. Biochem Biophys Res Commun 2018; 509:564-569. [PMID: 30600181 DOI: 10.1016/j.bbrc.2018.12.126] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Revised: 12/15/2018] [Accepted: 12/17/2018] [Indexed: 11/30/2022]
Abstract
Human immunodeficiency virus type-1 (HIV-1) transactivator of transcription (Tat) is an intrinsically disordered protein that exerts multiple functions, including activation of HIV-1 replication and induction of T-cell apoptosis and cytokine secretion via zinc binding and cellular uptake by endocytosis. However, the effects of zinc and endosomal low pH on the structure of isolated Tat protein are poorly understood. Here, we purified a monomeric zinc-bound Tat and studied its structure and acid denaturation by circular dichroism, NMR, and small-angle X-ray scattering. We found that at pH 7, the zinc-bound Tat was in a pre-molten globule state; it exhibited largely disordered conformations with residual helices and was slightly more compact than the fully unfolded states that were observed at pH 4 or in the zinc-free form. Moreover, acid-induced unfolding transitions in secondary structure and molecular size occurred at different pH ranges, indicating the presence of an expanded and helical intermediate at pH ∼6. Taken together, the extent of structural disorder in the intrinsically disordered Tat protein is highly sensitive to zinc and pH, suggesting that zinc binding and pH affect Tat structures and thereby control the versatile functions of Tat.
Collapse
Affiliation(s)
- Tomoko Kunihara
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo, 153-8902, Japan
| | - Yuuki Hayashi
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo, 153-8902, Japan
| | - Munehito Arai
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo, 153-8902, Japan; Department of Physics, Graduate School of Science, The University of Tokyo, 3-8-1 Komaba, Meguro, Tokyo, 153-8902, Japan.
| |
Collapse
|
74
|
Shah PS, Link N, Jang GM, Sharp PP, Zhu T, Swaney DL, Johnson JR, Von Dollen J, Ramage HR, Satkamp L, Newton B, Hüttenhain R, Petit MJ, Baum T, Everitt A, Laufman O, Tassetto M, Shales M, Stevenson E, Iglesias GN, Shokat L, Tripathi S, Balasubramaniam V, Webb LG, Aguirre S, Willsey AJ, Garcia-Sastre A, Pollard KS, Cherry S, Gamarnik AV, Marazzi I, Taunton J, Fernandez-Sesma A, Bellen HJ, Andino R, Krogan NJ. Comparative Flavivirus-Host Protein Interaction Mapping Reveals Mechanisms of Dengue and Zika Virus Pathogenesis. Cell 2018; 175:1931-1945.e18. [PMID: 30550790 PMCID: PMC6474419 DOI: 10.1016/j.cell.2018.11.028] [Citation(s) in RCA: 242] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 11/10/2018] [Accepted: 11/19/2018] [Indexed: 01/03/2023]
Abstract
Mosquito-borne flaviviruses, including dengue virus (DENV) and Zika virus (ZIKV), are a growing public health concern. Systems-level analysis of how flaviviruses hijack cellular processes through virus-host protein-protein interactions (PPIs) provides information about their replication and pathogenic mechanisms. We used affinity purification-mass spectrometry (AP-MS) to compare flavivirus-host interactions for two viruses (DENV and ZIKV) in two hosts (human and mosquito). Conserved virus-host PPIs revealed that the flavivirus NS5 protein suppresses interferon stimulated genes by inhibiting recruitment of the transcription complex PAF1C and that chemical modulation of SEC61 inhibits DENV and ZIKV replication in human and mosquito cells. Finally, we identified a ZIKV-specific interaction between NS4A and ANKLE2, a gene linked to hereditary microcephaly, and showed that ZIKV NS4A causes microcephaly in Drosophila in an ANKLE2-dependent manner. Thus, comparative flavivirus-host PPI mapping provides biological insights and, when coupled with in vivo models, can be used to unravel pathogenic mechanisms.
Collapse
Affiliation(s)
- Priya S Shah
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA; Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA, USA; Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA; The J. David Gladstone Institutes, San Francisco, CA, USA
| | - Nichole Link
- Department of Molecular and Human Genetics, and Program in Developmental Biology, Baylor College of Medicine, Houston, TX, USA; Jan and Dan Duncan Neurological Research Institute, Houston, TX, USA; Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX, USA
| | - Gwendolyn M Jang
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA; Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA; The J. David Gladstone Institutes, San Francisco, CA, USA
| | - Phillip P Sharp
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA
| | - Tongtong Zhu
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Danielle L Swaney
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA; Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA; The J. David Gladstone Institutes, San Francisco, CA, USA
| | - Jeffrey R Johnson
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA; Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA; The J. David Gladstone Institutes, San Francisco, CA, USA
| | - John Von Dollen
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA; Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA; The J. David Gladstone Institutes, San Francisco, CA, USA
| | - Holly R Ramage
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Laura Satkamp
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA; Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA; The J. David Gladstone Institutes, San Francisco, CA, USA
| | - Billy Newton
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA; Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA; The J. David Gladstone Institutes, San Francisco, CA, USA
| | - Ruth Hüttenhain
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA; Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA; The J. David Gladstone Institutes, San Francisco, CA, USA
| | - Marine J Petit
- Department of Chemical Engineering, Department of Microbiology and Molecular Genetics, University of California Davis, Davis, CA, USA
| | - Tierney Baum
- Institute for Neurodegenerative Diseases, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Amanda Everitt
- Institute for Neurodegenerative Diseases, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Orly Laufman
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA, USA
| | - Michel Tassetto
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA, USA
| | - Michael Shales
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA; Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA; The J. David Gladstone Institutes, San Francisco, CA, USA
| | - Erica Stevenson
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA; Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA; The J. David Gladstone Institutes, San Francisco, CA, USA
| | | | - Leila Shokat
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA; Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA; The J. David Gladstone Institutes, San Francisco, CA, USA
| | - Shashank Tripathi
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Vinod Balasubramaniam
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Selangor, Malaysia
| | - Laurence G Webb
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sebastian Aguirre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - A Jeremy Willsey
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA; Institute for Neurodegenerative Diseases, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA; Department of Psychiatry, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Adolfo Garcia-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Katherine S Pollard
- Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA; The J. David Gladstone Institutes, San Francisco, CA, USA; Department of Epidemiology and Biostatistics, Institute for Human Genetics, and Institute for Computational Health Sciences, University of California San Francisco, San Francisco, CA, USA; Chan-Zuckerberg Biohub, San Francisco, CA, USA
| | - Sara Cherry
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Ivan Marazzi
- Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jack Taunton
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA; Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA
| | - Ana Fernandez-Sesma
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Medicine, Division of Infectious Diseases, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Hugo J Bellen
- Department of Molecular and Human Genetics, and Program in Developmental Biology, Baylor College of Medicine, Houston, TX, USA; Jan and Dan Duncan Neurological Research Institute, Houston, TX, USA; Howard Hughes Medical Institute, Baylor College of Medicine, Houston, TX, USA.
| | - Raul Andino
- Department of Microbiology and Immunology, University of California San Francisco, San Francisco, CA, USA.
| | - Nevan J Krogan
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA, USA; Quantitative Biosciences Institute (QBI), University of California San Francisco, San Francisco, CA, USA; The J. David Gladstone Institutes, San Francisco, CA, USA.
| |
Collapse
|
75
|
Xu J, Xu S, Fang Y, Chen T, Xie X, Lu W. Cyclin-dependent kinase 9 promotes cervical cancer development via AKT2/p53 pathway. IUBMB Life 2018; 71:347-356. [PMID: 30536701 DOI: 10.1002/iub.1983] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 10/27/2018] [Accepted: 11/12/2018] [Indexed: 12/24/2022]
Abstract
Aberrant activation of cyclin-dependent kinase 9 (CDK9) is widespread in human cancers. However, the underlying mechanisms of CDK9 activation and the therapeutic potential of CDK9 inhibition in cervical cancer remain largely unknown. Here, we report that CDK9 is gradually upregulated during cervical lesion progression and regulated by HPV16 E6. CDK9 levels are highly correlated with FIGO stage, pathological grade, deep-stromal invasion, tumor size, and lymph nodes metastasis. Knockdown of CDK9 by specific siRNA inhibits cervical cancer cell proliferation in vitro, as well as tumorigenesis in vivo. CDK9 inhibition causes a significant decreased AKT2 and increased p53 protein expression revealing novel CDK9-regulatory mechanisms. Overexpression of AKT2 rescued the suppressive effects caused by CDK9 knockdown, suggesting that AKT2 induction is essential for CDK9-induced transformation. Moreover, CDK9 expression was positively correlated with AKT2 and negatively correlated with p53 in cervical cancer tissues with HPV16 infection. Our findings demonstrate for the first time that CDK9 acts as a proto-oncogene in cervical cancer, modulating cell proliferation and apoptosis through AKT2/p53 pathway. Therefore, our data provide novel mechanistic insights into the role of CDK9 in cervical cancer development. © 2018 IUBMB Life, 71(3):347-356, 2019.
Collapse
Affiliation(s)
- Junfen Xu
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shanshan Xu
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yifeng Fang
- Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Tingting Chen
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xing Xie
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Weiguo Lu
- Department of Gynecologic Oncology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Center of Uterine Cancer Diagnosis & Therapy of Zhejiang Province, Hangzhou, Zhejiang, China
| |
Collapse
|
76
|
Abstract
Studies of RNA Polymerase II (Pol II) transcription of the HIV-1 genome are of clinical interest, as the insight gained may lead to strategies to selectively reactivate latent viruses in patients in whom viral replication is suppressed by antiviral drugs. Such a targeted reactivation may contribute to a functional cure of infection. This review discusses five Cyclin-dependent kinases - CDK7, CDK9, CDK11, CDK2, and CDK8 - involved in transcription and processing of HIV-1 RNA. CDK7 is required for Pol II promoter clearance of reactivated viruses; CDK7 also functions as an activating kinase for CDK9 when resting CD4+ T cells harboring latent HIV-1 are activated. CDK9 is targeted by the viral Tat protein and is essential for productive Pol II elongation of the HIV-1 genome. CDK11 is associated with the TREX/THOC complex and it functions in the 3' end processing and polyadenylation of HIV-1 transcripts. CDK2 phosphorylates Tat and CDK9 and this stimulates Tat activation of Pol II transcription. CDK8 may stimulate Pol II transcription of the HIV-1 genome through co-recruitment with NF-κB to the viral promoter. Some notable open questions are discussed concerning the roles of these CDKs in HIV-1 replication and viral latency.
Collapse
Affiliation(s)
- Andrew P Rice
- a Department of Molecular Virology and Microbiology , Baylor College of Medicine , Houston , TX , USA
| |
Collapse
|
77
|
Abstract
The fact that many cancer types display transcriptional addiction driven by dysregulation of oncogenic enhancers and transcription factors has led to increased interest in a group of protein kinases, known as transcriptional cyclin dependent kinases (tCDKs), as potential therapeutic targets. Despite early reservations about targeting a process that is essential to healthy cell types, there is now evidence that targeting tCDKs could provide enough therapeutic window to be effective in the clinic. Here, we discuss recent developments in this field, with an emphasis on highly-selective inhibitors and the challenges to be addressed before these inhibitors could be used for therapeutic purposes. Abbreviations: CAK: CDK-activating kinase;CDK: cyclin-dependent kinase;CMGC group: CDK-, MAPK-, GSK3-, and CLK-like;CTD: C-terminal repeat domain of the RPB1 subunit of RNA polymerase II;DRB: 5,6-dichloro-1-β-D-ribofuranosylbenzimidazole;mCRPC: metastatic castration-resistant prostate cancer;NSCLC: non-small cell lung cancer;P-TEFb: positive elongation factor b;RNAPII: RNA polymerase II;S2: serine-2 of CTD repeats;S5: serine-5 of CTD repeats;S7: serine-7 of CTD repeats;SEC: super elongation complex;tCDK: transcriptional cyclin-dependent kinase;TNBC: triple-negative breast cancer
Collapse
Affiliation(s)
- Matthew D Galbraith
- a Linda Crnic Institute for Down Syndrome, School of Medicine , University of Colorado Anschutz Medical Campus , Aurora , CO , USA.,b Department of Pharmacology, School of Medicine , University of Colorado Anschutz Medical Campus , Aurora , CO , USA
| | - Heather Bender
- a Linda Crnic Institute for Down Syndrome, School of Medicine , University of Colorado Anschutz Medical Campus , Aurora , CO , USA.,b Department of Pharmacology, School of Medicine , University of Colorado Anschutz Medical Campus , Aurora , CO , USA
| | - Joaquín M Espinosa
- a Linda Crnic Institute for Down Syndrome, School of Medicine , University of Colorado Anschutz Medical Campus , Aurora , CO , USA.,b Department of Pharmacology, School of Medicine , University of Colorado Anschutz Medical Campus , Aurora , CO , USA.,c Department of Molecular, Cellular and Developmental Biology , University of Colorado Boulder , Boulder , CO , USA
| |
Collapse
|
78
|
Krischuns T, Günl F, Henschel L, Binder M, Willemsen J, Schloer S, Rescher U, Gerlt V, Zimmer G, Nordhoff C, Ludwig S, Brunotte L. Phosphorylation of TRIM28 Enhances the Expression of IFN-β and Proinflammatory Cytokines During HPAIV Infection of Human Lung Epithelial Cells. Front Immunol 2018; 9:2229. [PMID: 30323812 PMCID: PMC6172303 DOI: 10.3389/fimmu.2018.02229] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 09/07/2018] [Indexed: 01/28/2023] Open
Abstract
Human infection with highly pathogenic avian influenza viruses (HPAIV) is often associated with severe tissue damage due to hyperinduction of interferons and proinflammatory cytokines. The reasons for this excessive cytokine expression are still incompletely understood, which has hampered the development of efficient immunomodulatory treatment options. The host protein TRIM28 associates to the promoter regions of over 13,000 genes and is recognized as a genomic corepressor and negative immune regulator. TRIM28 corepressor activity is regulated by post-translational modifications, specifically phosphorylation of S473, which modulates binding of TRIM28 to the heterochromatin-binding protein HP1. Here, we identified TRIM28 as a key immune regulator leading to increased IFN-β and proinflammatory cytokine levels during infection with HPAIV. Using influenza A virus strains of the subtype H1N1 as well as HPAIV of subtypes H7N7, H7N9, and H5N1, we could demonstrate that strain-specific phosphorylation of TRIM28 S473 is induced by a signaling cascade constituted of PKR, p38 MAPK, and MSK1 in response to RIG-I independent sensing of viral RNA. Furthermore, using chemical inhibitors as well as knockout cell lines, our results suggest that phosphorylation of S473 facilitates a functional switch leading to increased levels of IFN-β, IL-6, and IL-8. In summary, we have identified TRIM28 as a critical factor controlling excessive expression of type I IFNs as well as proinflammatory cytokines during infection with H5N1, H7N7, and H7N9 HPAIV. In addition, our data indicate a novel mechanism of PKR-mediated IFN-β expression, which could lay the ground for novel treatment options aiming at rebalancing dysregulated immune responses during severe HPAIV infection.
Collapse
Affiliation(s)
- Tim Krischuns
- Institute of Virology Muenster, Westfaelische Wilhelms-University Muenster, Muenster, Germany
- Cluster of Excellence “Cells in Motion”, Westfaelische Wilhelms-University Muenster, Muenster, Germany
| | - Franziska Günl
- Institute of Virology Muenster, Westfaelische Wilhelms-University Muenster, Muenster, Germany
- Cluster of Excellence “Cells in Motion”, Westfaelische Wilhelms-University Muenster, Muenster, Germany
| | - Lea Henschel
- Institute of Virology Muenster, Westfaelische Wilhelms-University Muenster, Muenster, Germany
- Cluster of Excellence “Cells in Motion”, Westfaelische Wilhelms-University Muenster, Muenster, Germany
| | - Marco Binder
- Research Group “Dynamics of Early Viral Infection and the Innate Antiviral Response”, Division Virus-Associated Carcinogenesis (F170), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Joschka Willemsen
- Research Group “Dynamics of Early Viral Infection and the Innate Antiviral Response”, Division Virus-Associated Carcinogenesis (F170), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sebastian Schloer
- Cluster of Excellence “Cells in Motion”, Westfaelische Wilhelms-University Muenster, Muenster, Germany
- Center for Molecular Biology of Inflammation, Institute of Medical Biochemistry, Westfaelische Wilhelms-University Muenster, Muenster, Germany
| | - Ursula Rescher
- Cluster of Excellence “Cells in Motion”, Westfaelische Wilhelms-University Muenster, Muenster, Germany
- Center for Molecular Biology of Inflammation, Institute of Medical Biochemistry, Westfaelische Wilhelms-University Muenster, Muenster, Germany
| | - Vanessa Gerlt
- Institute of Virology Muenster, Westfaelische Wilhelms-University Muenster, Muenster, Germany
- Cluster of Excellence “Cells in Motion”, Westfaelische Wilhelms-University Muenster, Muenster, Germany
| | - Gert Zimmer
- Institute of Virology and Immunology (IVI), Bern, Switzerland
- Department of Infectious Diseases and Pathobiology (DIP), Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Carolin Nordhoff
- Institute of Virology Muenster, Westfaelische Wilhelms-University Muenster, Muenster, Germany
- Cluster of Excellence “Cells in Motion”, Westfaelische Wilhelms-University Muenster, Muenster, Germany
| | - Stephan Ludwig
- Institute of Virology Muenster, Westfaelische Wilhelms-University Muenster, Muenster, Germany
- Cluster of Excellence “Cells in Motion”, Westfaelische Wilhelms-University Muenster, Muenster, Germany
| | - Linda Brunotte
- Institute of Virology Muenster, Westfaelische Wilhelms-University Muenster, Muenster, Germany
- Cluster of Excellence “Cells in Motion”, Westfaelische Wilhelms-University Muenster, Muenster, Germany
| |
Collapse
|
79
|
Roebuck KA, Saifuddin M. Regulation of HIV-1 transcription. Gene Expr 2018; 8:67-84. [PMID: 10551796 PMCID: PMC6157391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2023]
Abstract
Human immunodeficiency virus type-1 (HIV-1) is a highly pathogenic lentivirus that requires transcription of its provirus genome for completion of the viral life cycle and the production of progeny virions. Since the first genetic analysis of HIV-1 in 1985, much has been learned about the transcriptional regulation of the HIV-1 genome in infected cells. It has been demonstrated that HIV-1 transcription depends on a varied and complex interaction of host cell transcription factors with the viral long terminal repeat (LTR) promoter. The regulatory elements within the LTR interact with constitutive and inducible transcription factors to direct the assembly of a stable transcription complex that stimulates multiple rounds of transcription by RNA polymerase II (RNAPII). However, the majority of these transcripts terminate prematurely in the absence of the virally encoded trans-activator protein Tat, which stimulates HIV-1 transcription elongation by interacting with a stem-loop RNA element (TAR) formed at the extreme 5' end of all viral transcripts. The Tat-TAR interaction recruits a cellular kinase into the initiation-elongation complex that alters the elongation properties of RNAPII during its transit through TAR. This review summarizes our current knowledge and understanding of the regulation of HIV-1 transcription in infected cells and highlights the important contributions human lentivirus gene regulation has made to our general understanding of the transcription process.
Collapse
Affiliation(s)
- K A Roebuck
- Department of Immunology/Microbiology, Rush Presbyterian St. Luke's Medical Center, Chicago, IL 60612, USA.
| | | |
Collapse
|
80
|
Machado Andrade V, Stevenson M. Host and Viral Factors Influencing Interplay between the Macrophage and HIV-1. J Neuroimmune Pharmacol 2018; 14:33-43. [PMID: 29995208 DOI: 10.1007/s11481-018-9795-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 06/26/2018] [Indexed: 12/29/2022]
Abstract
HIV-1 persists in cellular reservoirs that cannot be eliminated by antiretroviral therapy (ART). The major reservoir in infected individuals on effective ART is composed of resting memory CD4+ T cells that harbor proviral cDNA, and undergo a state of latency in which viral gene expression is minimal to absent. The CD4+ T cell reservoir has been extensively characterized. However, other HIV-1-permissive cells may contribute to HIV-1 persistence. Lentiviruses have a long recognized association with macrophages. However, the role, if any, played by macrophages in HIV-1 persistence is not well understood. Macrophages are resistant to cell death upon HIV-1 infection, and can survive for long periods of time, making them ideal host cells in which the virus might persist. Studying macrophages is challenging, as these cells reside in nearly all tissues. Moreover, detecting viral DNA or RNA in macrophages does not necessarily indicate that these cells will produce replication-competent viral particles. Currently, the gold standard assay to detect cellular reservoirs is the ex vivo quantitative viral outgrowth assay (QVOA), which requires a patient blood draw. However, macrophages reside deep within tissues that are inaccessible in living subjects, such as the central nervous system (CNS). Therefore, tools other than QVOA must be developed to identify cellular reservoirs that reside in the tissues. In this review, we will focus on the main aspects involved in HIV-1 persistence, including the molecular mechanisms of viral evasion, the main cell types responsible for harboring persistent HIV-1 and the tissue compartments that are likely to be reservoirs for HIV-1.
Collapse
Affiliation(s)
- Viviane Machado Andrade
- Molecular Cell and Developmental Biology, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA.
| | - Mario Stevenson
- Division of Infectious Diseases, Department of Medicine, Miller School of Medicine, University of Miami, Miami, FL, 33136, USA
| |
Collapse
|
81
|
Rice AP. The HIV-1 Tat Protein: Mechanism of Action and Target for HIV-1 Cure Strategies. Curr Pharm Des 2018; 23:4098-4102. [PMID: 28677507 DOI: 10.2174/1381612823666170704130635] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 06/12/2017] [Accepted: 06/20/2017] [Indexed: 02/07/2023]
Abstract
The general mechanism involved in Tat activation of RNA Polymerase II (RNAP II) elongation of the integrated HIV-1 was elucidated over 20 years ago. This mechanism involves Tat binding to the TAR RNA element that forms at the 5' end of viral transcripts and recruiting a general RNAP II elongation factor termed as PTEFb. This elongation factor consists of CDK9 and Cyclin T1, and when recruited by Tat to TAR RNA, CDK9 was proposed to phosphorylate the carboxyl terminal domain of RNAP II and thereby activate elongation. Research in the past two decades has shown that the mechanism of Tat action is considerably more complicated than this simple model. In metabolically active cells, CDK9 and Cyclin T1 are now known to be largely sequestered in a RNA-protein complex termed the 7SK RNP. CDK9 and Cyclin T1 are released from the 7SK RNP by mechanisms not yet fully elucidated and along with Tat, bind to TAR RNA and orchestrate the assembly of a Super Elongation Complex (SEC) containing several additional proteins. CDK9 in the SEC then phosphorylates multiple substrates in the RNAP II complex to activate elongation. Importantly for therapeutic strategies, CDK9 and Cyclin T1 functions are down-regulated in resting CD4+ T cells that harbor latent HIV-1, and their up-regulation is required for reactivation of latent virus. Current strategies for a functional cure of HIV-1 infection therefore are likely to require development of latency reversal agents that up-regulate CDK9 and Cyclin T1 function in resting CD4+ T cells.
Collapse
Affiliation(s)
- Andrew P Rice
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas 77030. United States
| |
Collapse
|
82
|
Abstract
BACKGROUND The viral transactivator Tat protein is a key modulator of HIV-1 replication, as it regulates transcriptional elongation from the integrated proviral genome. Tat recruits the human transcription elongation factor b, and other host proteins, such as the super elongation complex, to activate the cellular RNA polymerase II, normally stalled shortly after transcription initiation at the HIV promoter. By means of a complex set of interactions with host cellular factors, Tat determines the fate of viral activity within the infected cell. The virus will either actively replicate to promote dissemination in blood and tissues, or become dormant mostly in memory CD4+ T cells, as part of a small but long-living latent reservoir, the main obstacle for HIV eradication. OBJECTIVE In this review, we summarize recent advances in the understanding of the multi-step mechanism that regulates Tat-mediated HIV-1 transcription and RNA polymerase II release, to promote viral transcription elongation. Early events of the human transcription elongation factor b release from the inhibitory 7SK small nuclear ribonucleoprotein complex and its recruitment to the HIV promoter will be discussed. Specific roles of the super elongation complex subunits during transcription elongation, and insight on recently identified cellular factors and mechanisms regulating HIV latency will be detailed. CONCLUSION Understanding the complexity of HIV transcriptional regulation by host factors may open the door for development of novel strategies to eradicate the resilient latent reservoir.
Collapse
Affiliation(s)
- Guillaume Mousseau
- The Scripps Research Institute, Department of Immunology and Microbiology, 130 Scripps Way, Jupiter, FL 33458. United States
| | - Susana T Valente
- The Scripps Research Institute, Department of Immunology and Microbiology, 130 Scripps Way, Jupiter, FL 33458. United States
| |
Collapse
|
83
|
Sengupta S, Siliciano RF. Targeting the Latent Reservoir for HIV-1. Immunity 2018; 48:872-895. [PMID: 29768175 PMCID: PMC6196732 DOI: 10.1016/j.immuni.2018.04.030] [Citation(s) in RCA: 256] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 04/26/2018] [Accepted: 04/26/2018] [Indexed: 02/07/2023]
Abstract
Antiretroviral therapy can effectively block HIV-1 replication and prevent or reverse immunodeficiency in HIV-1-infected individuals. However, viral replication resumes within weeks of treatment interruption. The major barrier to a cure is a small pool of resting memory CD4+ T cells that harbor latent HIV-1 proviruses. This latent reservoir is now the focus of an intense international research effort. We describe how the reservoir is established, challenges involved in eliminating it, and pharmacologic and immunologic strategies for targeting this reservoir. The development of a successful cure strategy will most likely require understanding the mechanisms that maintain HIV-1 proviruses in a latent state and pathways that drive the proliferation of infected cells, which slows reservoir decay. In addition, a cure will require the development of effective immunologic approaches to eliminating infected cells. There is renewed optimism about the prospect of a cure, and the interventions discussed here could pave the way.
Collapse
Affiliation(s)
- Srona Sengupta
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Graduate Program in Immunology and Medical Scientist Training Program, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Robert F Siliciano
- Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA; Howard Hughes Medical Institute, Baltimore, MD 21205, USA.
| |
Collapse
|
84
|
Meltzer B, Dabbagh D, Guo J, Kashanchi F, Tyagi M, Wu Y. Tat controls transcriptional persistence of unintegrated HIV genome in primary human macrophages. Virology 2018; 518:241-252. [PMID: 29549786 DOI: 10.1016/j.virol.2018.03.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 03/06/2018] [Accepted: 03/07/2018] [Indexed: 01/31/2023]
Abstract
In HIV infected macrophages, a large population of viral genomes persists as the unintegrated form (uDNA) that is transcriptionally active. However, how this transcriptional activity is controlled remains unclear. In this report, we investigated whether Tat, the viral transactivator of transcription, is involved in uDNA transcription. We demonstrate that de novo Tat activity is generated from uDNA, and this uDNA-derived Tat (uTat) transactivates the uDNA LTR. In addition, uTat is required for the transcriptional persistence of uDNA that is assembled into repressive episomal minichromatin. In the absence of uTat, uDNA minichromatin is gradually silenced, but remains highly inducible by HDAC inhibitors (HDACi). Therefore, functionally, uTat antagonizes uDNA minichromatin repression to maintain persistent viral transcription in macrophages. uTat-mediated viral persistence may establish a viral reservoir in macrophages where uDNA were found to persist.
Collapse
Affiliation(s)
- Beatrix Meltzer
- National Center for Biodefense and Infectious Diseases, George Mason University, Manassas, USA
| | - Deemah Dabbagh
- National Center for Biodefense and Infectious Diseases, George Mason University, Manassas, USA
| | - Jia Guo
- National Center for Biodefense and Infectious Diseases, George Mason University, Manassas, USA
| | - Fatah Kashanchi
- Laboratory of Molecular Virology, George Mason University, Manassas, USA
| | - Mudit Tyagi
- National Center for Biodefense and Infectious Diseases, George Mason University, Manassas, USA
| | - Yuntao Wu
- National Center for Biodefense and Infectious Diseases, George Mason University, Manassas, USA.
| |
Collapse
|
85
|
Boffo S, Damato A, Alfano L, Giordano A. CDK9 inhibitors in acute myeloid leukemia. J Exp Clin Cancer Res 2018; 37:36. [PMID: 29471852 PMCID: PMC5824552 DOI: 10.1186/s13046-018-0704-8] [Citation(s) in RCA: 118] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Accepted: 02/12/2018] [Indexed: 02/07/2023] Open
Abstract
Current treatment for acute myeloid leukemia (AML) is less than optimal, but increased understanding of disease pathobiology and genomics has led to clinical investigation of novel targeted therapies and rational combinations. Targeting the cyclin-dependent kinase 9 (CDK9) pathway, which is dysregulated in AML, is an attractive approach. Inhibition of CDK9 leads to downregulation of cell survival genes regulated by super enhancers such as MCL-1, MYC, and cyclin D1. As CDK9 inhibitors are nonselective, predictive biomarkers that may help identify patients most likely to respond to CDK9 inhibitors are now being utilized, with the goal of improving efficacy and safety.
Collapse
Affiliation(s)
- Silvia Boffo
- Sbarro Institute for Cancer Research and Molecular Medicine, Department of Biology, Temple University, 1900 N. 12th St., Room 431, Philadelphia, PA 19122-6017 USA
| | - Angela Damato
- Sbarro Institute for Cancer Research and Molecular Medicine, Department of Biology, Temple University, 1900 N. 12th St., Room 431, Philadelphia, PA 19122-6017 USA
- Medical Oncology Unit, Clinical Cancer Centre, IRCCS–Arcispedale S. Maria Nuova, Reggio Emilia, Italy
| | - Luigi Alfano
- Oncology Research Center of Mercogliano (CROM), Istituto Nazionale Per Lo Studio E La Cura Dei Tumori “Fondazione Giovanni Pascale”, IRCCS, Naples, Italy
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine, Department of Biology, Temple University, 1900 N. 12th St., Room 431, Philadelphia, PA 19122-6017 USA
- Department of Medicine, Surgery, and Neuroscience, University of Siena, Siena, Italy
| |
Collapse
|
86
|
Painter MM, Zaikos TD, Collins KL. Quiescence Promotes Latent HIV Infection and Resistance to Reactivation from Latency with Histone Deacetylase Inhibitors. J Virol 2017; 91:e01080-17. [PMID: 29021396 PMCID: PMC5709582 DOI: 10.1128/jvi.01080-17] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 10/02/2017] [Indexed: 12/28/2022] Open
Abstract
Human immunodeficiency virus type 1 (HIV-1) establishes transcriptionally silent latent infections in resting memory T cells and hematopoietic stem and progenitor cells (HSPCs), which allows the virus to persist in infected individuals despite antiretroviral therapy. Developing in vitro models of HIV-1 latency that recapitulate the characteristics of latently infected cells in vivo is crucial to identifying and developing effective latency-reversing therapies. HSPCs exist in a quiescent state in vivo, and quiescence is correlated with latent infections in T cells. However, current models for culturing HSPCs and for infecting T cells in vitro require that the cells be maintained in an actively proliferating state. Here we describe a novel culture system in which primary human HSPCs cultured under hypothermic conditions are maintained in a quiescent state. We show that these quiescent HSPCs are susceptible to predominantly latent infection with HIV-1, while actively proliferating and differentiating HSPCs obtain predominantly active infections. Furthermore, we demonstrate that the most primitive quiescent HSPCs are more resistant to spontaneous reactivation from latency than more differentiated HSPCs and that quiescent HSPCs are resistant to reactivation by histone deacetylase inhibitors or P-TEFb activation but are susceptible to reactivation by protein kinase C (PKC) agonists. We also demonstrate that inhibition of HSP90, a known regulator of HIV transcription, recapitulates the quiescence and latency phenotypes of hypothermia, suggesting that hypothermia and HSP90 inhibition may regulate these processes by similar mechanisms. In summary, these studies describe a novel model for studying HIV-1 latency in human primary cells maintained in a quiescent state.IMPORTANCE Human immunodeficiency virus type 1 (HIV-1) establishes a persistent infection for which there remains no feasible cure. Current approaches are unable to clear the virus despite decades of therapy due to the existence of latent reservoirs of integrated HIV-1, which can reactivate and contribute to viral rebound following treatment interruption. Previous clinical attempts to reactivate the latent reservoirs in an individual so that they can be eliminated by the immune response or viral cytopathic effect have failed, indicating the need for a better understanding of the processes regulating HIV-1 latency. Here we characterize a novel in vitro model of HIV-1 latency in primary hematopoietic stem and progenitor cells isolated from human cord blood that may better recapitulate the behavior of latently infected cells in vivo This model can be used to study mechanisms regulating latency and potential therapeutic approaches to reactivate latent infections in quiescent cells.
Collapse
Affiliation(s)
- Mark M Painter
- Graduate Program in Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | - Thomas D Zaikos
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
| | - Kathleen L Collins
- Graduate Program in Immunology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Microbiology and Immunology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
87
|
A Cas9 Ribonucleoprotein Platform for Functional Genetic Studies of HIV-Host Interactions in Primary Human T Cells. Cell Rep 2017; 17:1438-1452. [PMID: 27783955 DOI: 10.1016/j.celrep.2016.09.080] [Citation(s) in RCA: 139] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 07/28/2016] [Accepted: 09/22/2016] [Indexed: 12/26/2022] Open
Abstract
New genetic tools are needed to understand the functional interactions between HIV and human host factors in primary cells. We recently developed a method to edit the genome of primary CD4+ T cells by electroporation of CRISPR/Cas9 ribonucleoproteins (RNPs). Here, we adapted this methodology to a high-throughput platform for the efficient, arrayed editing of candidate host factors. CXCR4 or CCR5 knockout cells generated with this method are resistant to HIV infection in a tropism-dependent manner, whereas knockout of LEDGF or TNPO3 results in a tropism-independent reduction in infection. CRISPR/Cas9 RNPs can furthermore edit multiple genes simultaneously, enabling studies of interactions among multiple host and viral factors. Finally, in an arrayed screen of 45 genes associated with HIV integrase, we identified several candidate dependency/restriction factors, demonstrating the power of this approach as a discovery platform. This technology should accelerate target validation for pharmaceutical and cell-based therapies to cure HIV infection.
Collapse
|
88
|
Brogie JE, Price DH. Reconstitution of a functional 7SK snRNP. Nucleic Acids Res 2017; 45:6864-6880. [PMID: 28431135 PMCID: PMC5499737 DOI: 10.1093/nar/gkx262] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2017] [Accepted: 04/11/2017] [Indexed: 01/29/2023] Open
Abstract
The 7SK small nuclear ribonucleoprotein (snRNP) plays a central role in RNA polymerase II elongation control by regulating the availability of active P-TEFb. We optimized conditions for analyzing 7SK RNA by SHAPE and demonstrated a hysteretic effect of magnesium on 7SK folding dynamics including a 7SK GAUC motif switch. We also found evidence that the 5΄ end pairs alternatively with two different regions of 7SK giving rise to open and closed forms that dictate the state of the 7SK motif. We then used recombinant P-TEFb, HEXIM1, LARP7 and MEPCE to reconstruct a functional 7SK snRNP in vitro. Stably associated P-TEFb was highly inhibited, but could still be released and activated by HIV-1 Tat. Notably, P-TEFb association with both in vitro-reconstituted and cellular snRNPs led to similar changes in SHAPE reactivities, confirming that 7SK undergoes a P-TEFb-dependent structural change. We determined that the xRRM of LARP7 binds to the 3΄ stem loop of 7SK and inhibits the methyltransferase activity of MEPCE through a C-terminal MEPCE interaction domain (MID). Inhibition of MEPCE is dependent on the structure of the 3΄ stem loop and the closed form of 7SK RNA. This study provides important insights into intramolecular interactions within the 7SK snRNP.
Collapse
Affiliation(s)
- John E Brogie
- Biochemistry Department, University of Iowa, Iowa City, IA 52242, USA
| | - David H Price
- Biochemistry Department, University of Iowa, Iowa City, IA 52242, USA
| |
Collapse
|
89
|
Hussain A, Verma CK, Chouhan U. Identification of novel inhibitors against Cyclin Dependent Kinase 9/Cyclin T1 complex as: Anti cancer agent. Saudi J Biol Sci 2017; 24:1229-1242. [PMID: 28855816 PMCID: PMC5562455 DOI: 10.1016/j.sjbs.2015.10.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 10/05/2015] [Accepted: 10/07/2015] [Indexed: 12/20/2022] Open
Abstract
Cell cycle consists of different types of phases, transition from G1, S, G2, M. Inhibition of associated CDKs like CDK9/Cyclin T1 complex, which are indirectly involved in the Cell cycle progression in the form of transcription elongation, reduces diverse diseases such as Cardiac Hypertrophy, Alzheimer’s, Cancer, AIDS and Inflammation. Glide tool of the Schrodinger software has been used for performing Structure Based Virtual Screening and Docking against Drug Bank and MDPI database. The best hits were identified which go and bind in the active site of the target where ATP binds for the activity. The ADMET, MM-GBSA and DFT analysis is also done for the same. Compound 4-{4-[4-(3-aminopropoxy)phenyl]-1H-pyrazol-5-yl}-6-chlorobenzene-1,3-diol (DB08045) was found to be more potent, novel and selective as an inhibitor. Hopefully compound (DB08045) could be used as an anti-cancer agent for the treatment of life-threatening diseases.
Collapse
Key Words
- ATP, adenosine triphosphate
- CDK
- CDK9, Cyclin Dependent Kinase 9
- CTD, carboxy terminal domain
- Cancer
- Cell cycle
- DFT, density functional theory
- Drug Bank
- HOMO, high occupied molecular orbital
- LUMO, lowest unoccupied molecular orbital
- MDPI
- MDPI, molecular diversity preservation international
- MW, molecular weight
- P-TEFB, positive transcription elongation factor B
- Potent
- SBVS, structure based virtual screening
Collapse
Affiliation(s)
- Afzal Hussain
- Department of Bioinformatics, MANIT, Bhopal, M.P. 462003, India
| | | | - Usha Chouhan
- Department of Bioinformatics, MANIT, Bhopal, M.P. 462003, India
| |
Collapse
|
90
|
Medina-Moreno S, Dowling TC, Zapata JC, Le NM, Sausville E, Bryant J, Redfield RR, Heredia A. Targeting of CDK9 with indirubin 3'-monoxime safely and durably reduces HIV viremia in chronically infected humanized mice. PLoS One 2017; 12:e0183425. [PMID: 28817720 PMCID: PMC5560554 DOI: 10.1371/journal.pone.0183425] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Accepted: 08/03/2017] [Indexed: 12/12/2022] Open
Abstract
Successful propagation of HIV in the human host requires entry into a permissive cell, reverse transcription of viral RNA, integration into the human genome, transcription of the integrated provirus, and assembly/release of new virus particles. Currently, there are antiretrovirals against each of these viral steps, except for provirus transcription. An inhibitor of HIV transcription could both increase potency of treatment and suppress drug-resistant strains. Cellular cyclin-dependent kinase 9 (CDK9) serves as a cofactor for the HIV Tat protein and is required for effective transcription of the provirus. Previous studies have shown that the CDK9 inhibitor Indirubin 3’-monoxime (IM) inhibits HIV transcription in vitro and in short-term in vivo studies of HIV acute infection in humanized mice (PBMC-NSG model), suggesting a therapeutic potential. The objective of this study is to evaluate the toxicity, pharmacokinetics and long-term antiviral activity of IM during chronic HIV infection in humanized mice (HSC-NSG model). We show that IM concentrations above EC50 values are rapidly achieved and sustained for > 3 h in plasma, and that non-toxic concentrations durably reduce HIV RNA levels. In addition, IM enhanced the antiviral activity of antiretrovirals from the reverse transcriptase, protease and integrase inhibitor classes in in vitro infectivity assays. In summary, IM may enhance current antiretroviral treatments and could help achieve a “functional cure” in HIV patients by preventing expression of proviruses.
Collapse
Affiliation(s)
- Sandra Medina-Moreno
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Thomas C. Dowling
- Department of Pharmaceutical Sciences, Ferris State University, Grand Rapids, Michigan, United States of America
| | - Juan C. Zapata
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Nhut M. Le
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Edward Sausville
- Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Joseph Bryant
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Robert R. Redfield
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Alonso Heredia
- Institute of Human Virology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
91
|
Paparidis NFDS, Durvale MC, Canduri F. The emerging picture of CDK9/P-TEFb: more than 20 years of advances since PITALRE. MOLECULAR BIOSYSTEMS 2017; 13:246-276. [PMID: 27833949 DOI: 10.1039/c6mb00387g] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
CDK9 is a prominent member of the transcriptional CDKs subfamily, a group of kinases whose function is to control the primary steps of mRNA synthesis and processing by eukaryotic RNA polymerase II. As a cyclin-dependent kinase, CDK9 activation in vivo depends upon its association with T-type cyclins to assemble the positive transcription elongation factor (P-TEFb). Although CDK9/P-TEFb phosphorylates the C-terminal domain of RNAP II in the same positions targeted by CDK7 (TFIIH) and CDK8 (Mediator), the former does not participate in the transcription initiation, but rather plays a unique role by driving the polymerase to productive elongation. In addition to RNAP II CTD, the negative transcription elongation factors DSIF and NELF also represent major CDK9 substrates, whose phosphorylation is required to overcome the proximal pause of the polymerase. CDK9 is recruited to specific genes through proteins that interact with both P-TEFb and distinct elements in DNA, RNA or chromatin, where it modulates the activity of individual RNAP II transcription complexes. The regulation of CDK9 function is an intricate network that includes post-translational modifications (phosphorylation/dephosphorylation and acetylation/deacetylation of key residues) as well as the association of P-TEFb with various proteins that can stimulate or inhibit its kinase activity. Several cases of CDK9 deregulation have been linked to important human diseases, including various types of cancer and also AIDS (due to its essential role in HIV replication). Not only HIV, but also many other human viruses have been shown to depend strongly on CDK9 activity to be transcribed within host cells. This review summarizes the main advances made on CDK9/P-TEFb field in more than 20 years, introducing the structural, functional and genetic aspects that have been elucidated ever since.
Collapse
Affiliation(s)
- Nikolas Ferreira Dos Santos Paparidis
- Department of Chemistry and Molecular Physics, Institute of Chemistry of Sao Carlos, Sao Paulo University, Av. Trabalhador Sãocarlense, 400, Zip Code 780, 13560-970, São Carlos-SP, Brazil.
| | - Maxwell Castro Durvale
- Department of Biochemistry, Institute of Chemistry, Sao Paulo University, Av. Prof. Lineu Prestes, 748, 05508-000, Butantã - São Paulo - SP, Brazil
| | - Fernanda Canduri
- Department of Chemistry and Molecular Physics, Institute of Chemistry of Sao Carlos, Sao Paulo University, Av. Trabalhador Sãocarlense, 400, Zip Code 780, 13560-970, São Carlos-SP, Brazil.
| |
Collapse
|
92
|
Margolis DM, Archin NM. Proviral Latency, Persistent Human Immunodeficiency Virus Infection, and the Development of Latency Reversing Agents. J Infect Dis 2017; 215:S111-S118. [PMID: 28520964 DOI: 10.1093/infdis/jiw618] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Quiescent proviral genomes that persist during human immunodeficiency virus type 1 (HIV-1) infection despite effective antiretroviral therapy (ART) can fuel rebound viremia after ART interruption and is a central obstacle to the cure of HIV infection. The induction of quiescent provirus is the goal of a new class of potential therapeutics, latency reversing agents (LRAs). The discovery, development, and testing of HIV LRAs is a key part of current efforts to develop latency reversal and viral clearance strategies to eradicate established HIV infection. The development of LRAs is burdened by many uncertainties that make drug discovery difficult. The biology of HIV latency is complex and incompletely understood. Potential targets for LRAs are host factors, and the potential toxicities of host-directed therapies in individuals that are otherwise clinically stable may be unacceptable. Assays to measure latency reversal and assess the effectiveness of potential therapeutics are complex and incompletely validated. Despite these obstacles, novel LRAs are under development and beginning to enter combination testing with viral clearance strategies. It is hoped that the steady advances in the development of LRAs now being paired with emerging immunotherapeutics to clear persistently infected cells will soon allow measurable clinical advances toward an HIV cure.
Collapse
Affiliation(s)
- David M Margolis
- UNC HIV Cure Center.,Department of Medicine, and.,Department of Microbiology & Immunology, University of North Carolina at Chapel Hill School of Medicine ; and.,Department of Epidemiology, University of North Carolina at Chapel Hill School of Public Health
| | | |
Collapse
|
93
|
Yang H, Basquin D, Pauli D, Oliver B. Drosophila melanogaster positive transcriptional elongation factors regulate metabolic and sex-biased expression in adults. BMC Genomics 2017; 18:384. [PMID: 28521739 PMCID: PMC5436443 DOI: 10.1186/s12864-017-3755-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 05/03/2017] [Indexed: 11/22/2022] Open
Abstract
Background Transcriptional elongation is a generic function, but is also regulated to allow rapid transcription responses. Following relatively long initiation and promoter clearance, RNA polymerase II can pause and then rapidly elongate following recruitment of positive elongation factors. Multiple elongation complexes exist, but the role of specific components in adult Drosophila is underexplored. Results We conducted RNA-seq experiments to analyze the effect of RNAi knockdown of Suppressor of Triplolethal and lilliputian. We similarly analyzed the effect of expressing a dominant negative Cyclin-dependent kinase 9 allele. We observed that almost half of the genes expressed in adults showed reduced expression, supporting a broad role for the three tested genes in steady-state transcript abundance. Expression profiles following lilliputian and Suppressor of Triplolethal RNAi were nearly identical raising the possibility that they are obligatory co-factors. Genes showing reduced expression due to these RNAi treatments were short and enriched for genes encoding metabolic or enzymatic functions. The dominant-negative Cyclin-dependent kinase 9 profiles showed both overlapping and specific differential expression, suggesting involvement in multiple complexes. We also observed hundreds of genes with sex-biased differential expression following treatment. Conclusion Transcriptional profiles suggest that Lilliputian and Suppressor of Triplolethal are obligatory cofactors in the adult and that they can also function with Cyclin-dependent kinase 9 at a subset of loci. Our results suggest that transcriptional elongation control is especially important for rapidly expressed genes to support digestion and metabolism, many of which have sex-biased function. Electronic supplementary material The online version of this article (doi:10.1186/s12864-017-3755-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Haiwang Yang
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 50 South Drive, Bethesda, MD, 20892, USA.
| | - Denis Basquin
- Department of Genetics & Evolution, Sciences III, University of Geneva, Boulevard d'Yvoy 4, CH 1205, Geneva, Switzerland
| | - Daniel Pauli
- Department of Genetics & Evolution, Sciences III, University of Geneva, Boulevard d'Yvoy 4, CH 1205, Geneva, Switzerland
| | - Brian Oliver
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 50 South Drive, Bethesda, MD, 20892, USA
| |
Collapse
|
94
|
Ronsard L, Ganguli N, Singh VK, Mohankumar K, Rai T, Sridharan S, Pajaniradje S, Kumar B, Rai D, Chaudhuri S, Coumar MS, Ramachandran VG, Banerjea AC. Impact of Genetic Variations in HIV-1 Tat on LTR-Mediated Transcription via TAR RNA Interaction. Front Microbiol 2017; 8:706. [PMID: 28484443 PMCID: PMC5399533 DOI: 10.3389/fmicb.2017.00706] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Accepted: 04/05/2017] [Indexed: 01/10/2023] Open
Abstract
HIV-1 evades host defense through mutations and recombination events, generating numerous variants in an infected patient. These variants with an undiminished virulence can multiply rapidly in order to progress to AIDS. One of the targets to intervene in HIV-1 replication is the trans-activator of transcription (Tat), a major regulatory protein that transactivates the long terminal repeat promoter through its interaction with trans-activation response (TAR) RNA. In this study, HIV-1 infected patients (n = 120) from North India revealed Ser46Phe (20%) and Ser61Arg (2%) mutations in the Tat variants with a strong interaction toward TAR leading to enhanced transactivation activities. Molecular dynamics simulation data verified that the variants with this mutation had a higher binding affinity for TAR than both the wild-type Tat and other variants that lacked Ser46Phe and Ser61Arg. Other mutations in Tat conferred varying affinities for TAR interaction leading to differential transactivation abilities. This is the first report from North India with a clinical validation of CD4 counts to demonstrate the influence of Tat genetic variations affecting the stability of Tat and its interaction with TAR. This study highlights the co-evolution pattern of Tat and predominant nucleotides for Tat activity, facilitating the identification of genetic determinants for the attenuation of viral gene expression.
Collapse
Affiliation(s)
- Larance Ronsard
- Laboratory of Virology, National Institute of ImmunologyDelhi, India.,Department of Microbiology, University College of Medical Sciences and Guru Teg Bahadur HospitalDelhi, India
| | - Nilanjana Ganguli
- Laboratory of Virology, National Institute of ImmunologyDelhi, India
| | - Vivek K Singh
- Centre for Bioinformatics, School of Life Sciences, Pondicherry UniversityPondicherry, India
| | - Kumaravel Mohankumar
- Department of Biochemistry and Molecular Biology, Pondicherry UniversityPondicherry, India.,Department of Veterinary Physiology and Pharmacology, Texas A&M University, College StationTX, USA
| | - Tripti Rai
- Department of Gastroenterology and Human Nutrition, All India Institute of Medical SciencesDelhi, India
| | - Subhashree Sridharan
- Department of Biochemistry and Molecular Biology, Pondicherry UniversityPondicherry, India.,Department of Symptom Research, The University of Texas MD Anderson Cancer Center, HoustonTX, USA
| | - Sankar Pajaniradje
- Department of Biochemistry and Molecular Biology, Pondicherry UniversityPondicherry, India
| | - Binod Kumar
- Department of Microbiology and Immunology, Rosalind Franklin University of Medicine and Science, ChicagoIL, USA
| | - Devesh Rai
- Department of Microbiology, All India Institute of Medical SciencesDelhi, India
| | - Suhnrita Chaudhuri
- Department of Neurological Surgery, Northwestern University, ChicagoIL, USA
| | - Mohane S Coumar
- Centre for Bioinformatics, School of Life Sciences, Pondicherry UniversityPondicherry, India
| | | | - Akhil C Banerjea
- Laboratory of Virology, National Institute of ImmunologyDelhi, India
| |
Collapse
|
95
|
Asamitsu K, Hirokawa T, Okamoto T. MD simulation of the Tat/Cyclin T1/CDK9 complex revealing the hidden catalytic cavity within the CDK9 molecule upon Tat binding. PLoS One 2017; 12:e0171727. [PMID: 28178316 PMCID: PMC5298246 DOI: 10.1371/journal.pone.0171727] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 01/24/2017] [Indexed: 02/02/2023] Open
Abstract
In this study, we applied molecular dynamics (MD) simulation to analyze the dynamic behavior of the Tat/CycT1/CDK9 tri-molecular complex and revealed the structural changes of P-TEFb upon Tat binding. We found that Tat could deliberately change the local flexibility of CycT1. Although the structural coordinates of the H1 and H2 helices did not substantially change, H1', H2', and H3' exhibited significant changes en masse. Consequently, the CycT1 residues involved in Tat binding, namely Tat-recognition residues (TRRs), lost their flexibility with the addition of Tat to P-TEFb. In addition, we clarified the structural variation of CDK9 in complex with CycT1 in the presence or absence of Tat. Interestingly, Tat addition significantly reduced the structural variability of the T-loop, thus consolidating the structural integrity of P-TEFb. Finally, we deciphered the formation of the hidden catalytic cavity of CDK9 upon Tat binding. MD simulation revealed that the PITALRE signature sequence of CDK9 flips the inactive kinase cavity of CDK9 into the active form by connecting with Thr186, which is crucial for its activity, thus presumably recruiting the substrate peptide such as the C-terminal domain of RNA pol II. These findings provide vital information for the development of effective novel anti-HIV drugs with CDK9 catalytic activity as the target.
Collapse
Grants
- Ministry of Education, Culture, Sports, Science, and Technology "The Platform Project for Supporting Drug Discovery and Life Science Research (Platform for Drug Discovery, Informatics, and Structural Life Science)"
- Ministry of Education, Culture, Sports, Science, and Technology
- Asahi Grass Foundation
- Japan Agency for Medical Research and Development
- Junwakai Foundation
Collapse
Affiliation(s)
- Kaori Asamitsu
- Department of Molecular and Cellular Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan
| | - Takatsugu Hirokawa
- Molecular Profiling Research Center for Drug Discovery (molprof), National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan
- Division of Biomedical Science, Faculty of Medicine, University of Tsukuba, Tsukuba, Ibaraki, Japan
- * E-mail: (TH); (TO)
| | - Takashi Okamoto
- Department of Molecular and Cellular Biology, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi, Japan
- * E-mail: (TH); (TO)
| |
Collapse
|
96
|
Peddi SR, Sivan SK, Manga V. Molecular dynamics and MM/GBSA-integrated protocol probing the correlation between biological activities and binding free energies of HIV-1 TAR RNA inhibitors. J Biomol Struct Dyn 2017; 36:486-503. [PMID: 28081678 DOI: 10.1080/07391102.2017.1281762] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The interaction of HIV-1 transactivator protein Tat with its cognate transactivation response (TAR) RNA has emerged as a promising target for developing antiviral compounds and treating HIV infection, since it is a crucial step for efficient transcription and replication. In the present study, molecular dynamics (MD) simulations and MM/GBSA calculations have been performed on a series of neamine derivatives in order to estimate appropriate MD simulation time for acceptable correlation between ΔGbind and experimental pIC50 values. Initially, all inhibitors were docked into the active site of HIV-1 TAR RNA. Later to explore various conformations and examine the docking results, MD simulations were carried out. Finally, binding free energies were calculated using MM/GBSA method and were correlated with experimental pIC50 values at different time scales (0-1 to 0-10 ns). From this study, it is clear that in case of neamine derivatives as simulation time increased the correlation between binding free energy and experimental pIC50 values increased correspondingly. Therefore, the binding energies which can be interpreted at longer simulation times can be used to predict the bioactivity of new neamine derivatives. Moreover, in this work, we have identified some plausible critical nucleotide interactions with neamine derivatives that are responsible for potent inhibitory activity. Furthermore, we also provide some insights into a new class of oxadiazole-based back bone cyclic peptides designed by incorporating the structural features of neamine derivatives. On the whole, this approach can provide a valuable guidance for designing new potent inhibitors and modify the existing compounds targeting HIV-1 TAR RNA.
Collapse
Affiliation(s)
- Saikiran Reddy Peddi
- a Molecular Modeling and Medicinal Chemistry Group, Department of Chemistry , University College of Science, Osmania University , Hyderabad 500 007 , Telangana , India
| | - Sree Kanth Sivan
- b Department of Chemistry , Nizam College, Osmania University , Hyderabad 500 001 , Telangana , India
| | - Vijjulatha Manga
- a Molecular Modeling and Medicinal Chemistry Group, Department of Chemistry , University College of Science, Osmania University , Hyderabad 500 007 , Telangana , India
| |
Collapse
|
97
|
Siliciano JD, Siliciano RF. Assays to Measure Latency, Reservoirs, and Reactivation. Curr Top Microbiol Immunol 2017; 417:23-41. [PMID: 29071475 DOI: 10.1007/82_2017_75] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
HIV-1 persists even in patients who are successfully treated with combination antiretroviral therapy. The major barrier to cure is a small pool of latently infected resting CD4+ T cells carrying an integrated copy of the viral genome that is not expressed while the cells remain in a resting state. Targeting this latent reservoir is a major focus of HIV-1 cure research, and the development of a rapid and scalable assay for the reservoir is a rate-limiting step in the search for a cure. The most commonly used assays are standard PCR assays targeting conserved regions of the HIV-1 genome. However, because the vast majority of HIV-1 proviruses are defective, such assays may not accurately capture changes in the minor subset of proviruses that are replication-competent and that pose a barrier to cure. On the other hand, the viral outgrowth assay that was used to initially define the latent reservoir may underestimate reservoir size because not all replication-competent proviruses are induced by a single round of T cell activation in this assay. Therefore, this assay is best regarded as a definitive minimal estimate of reservoir size. The best approach may be to measure all of the proviruses with the potential to cause viral rebound. A variety of novel assays have recently been described. Ultimately, the assay that best predicts time to viral rebound will be the most useful to the cure effort.
Collapse
Affiliation(s)
- Janet D Siliciano
- Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Robert F Siliciano
- Johns Hopkins University School of Medicine, Howard Hughes Medical Institute, Baltimore, MD, 21205, USA.
| |
Collapse
|
98
|
Abstract
CDK9 is a protein in constant development in cancer therapy. Herein we present an overview of the enzyme as a target for cancer therapy. We provide data on its characteristics and mechanism of action. In recent years, CDK9 inhibitors that have been designed with molecular modeling have demonstrated good antitumoral activity in vitro. Clinical studies of the drugs flavopiridol, dinaciclib, seliciclib, SNS-032 and RGB-286638 used as CDK9 inhibitors are also reviewed, with their additional targets and their relative IC50 values. Unfortunately, treatment with these drugs remains unsuccessful and involves many adverse effects. We could conclude that there are many small molecules that bind to CDK9, but their lack of selectivity against other CDKs do not allow them to get to the clinical use. However, drug designers currently have the tools needed to improve the selectivity of CDK9 inhibitors and to make successful treatment available to patients.
Collapse
Affiliation(s)
- Fatima Morales
- a Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University , Philadelphia , PA , USA
| | - Antonio Giordano
- a Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University , Philadelphia , PA , USA.,b Department of Medicine , Surgery and Neuroscience, University of Siena , Siena , Italy
| |
Collapse
|
99
|
Hacker KE, Fahey CC, Shinsky SA, Chiang YCJ, DiFiore JV, Jha DK, Vo AH, Shavit JA, Davis IJ, Strahl BD, Rathmell WK. Structure/Function Analysis of Recurrent Mutations in SETD2 Protein Reveals a Critical and Conserved Role for a SET Domain Residue in Maintaining Protein Stability and Histone H3 Lys-36 Trimethylation. J Biol Chem 2016; 291:21283-21295. [PMID: 27528607 PMCID: PMC5076534 DOI: 10.1074/jbc.m116.739375] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Revised: 08/10/2016] [Indexed: 11/06/2022] Open
Abstract
The yeast Set2 histone methyltransferase is a critical enzyme that plays a number of key roles in gene transcription and DNA repair. Recently, the human homologue, SETD2, was found to be recurrently mutated in a significant percentage of renal cell carcinomas, raising the possibility that the activity of SETD2 is tumor-suppressive. Using budding yeast and human cell line model systems, we examined the functional significance of two evolutionarily conserved residues in SETD2 that are recurrently mutated in human cancers. Whereas one of these mutations (R2510H), located in the Set2 Rpb1 interaction domain, did not result in an observable defect in SETD2 enzymatic function, a second mutation in the catalytic domain of this enzyme (R1625C) resulted in a complete loss of histone H3 Lys-36 trimethylation (H3K36me3). This mutant showed unchanged thermal stability as compared with the wild type protein but diminished binding to the histone H3 tail. Surprisingly, mutation of the conserved residue in Set2 (R195C) similarly resulted in a complete loss of H3K36me3 but did not affect dimethylated histone H3 Lys-36 (H3K36me2) or functions associated with H3K36me2 in yeast. Collectively, these data imply a critical role for Arg-1625 in maintaining the protein interaction with H3 and specific H3K36me3 function of this enzyme, which is conserved from yeast to humans. They also may provide a refined biochemical explanation for how H3K36me3 loss leads to genomic instability and cancer.
Collapse
Affiliation(s)
- Kathryn E Hacker
- From the Department of Genetics, Curriculum in Genetics and Molecular Biology, the Lineberger Comprehensive Cancer Center, and
| | - Catherine C Fahey
- From the Department of Genetics, Curriculum in Genetics and Molecular Biology, the Lineberger Comprehensive Cancer Center, and
| | - Stephen A Shinsky
- the Lineberger Comprehensive Cancer Center, and the Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599
| | | | - Julia V DiFiore
- From the Department of Genetics, Curriculum in Genetics and Molecular Biology, the Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Deepak Kumar Jha
- the Lineberger Comprehensive Cancer Center, and the Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Andy H Vo
- the Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, Michigan 48109
| | - Jordan A Shavit
- the Department of Pediatrics and Communicable Diseases, University of Michigan, Ann Arbor, Michigan 48109
| | - Ian J Davis
- From the Department of Genetics, Curriculum in Genetics and Molecular Biology, the Lineberger Comprehensive Cancer Center, and the Department of Pediatrics, University of North Carolina, Chapel Hill, North Carolina 27514, and
| | - Brian D Strahl
- From the Department of Genetics, Curriculum in Genetics and Molecular Biology, the Lineberger Comprehensive Cancer Center, and the Department of Biochemistry and Biophysics, University of North Carolina, Chapel Hill, North Carolina 27599,
| | - W Kimryn Rathmell
- From the Department of Genetics, Curriculum in Genetics and Molecular Biology, the Lineberger Comprehensive Cancer Center, and the Division of Hematology and Oncology, Department of Cancer Biology, Vanderbilt-Ingram Cancer Center, Nashville, Tennessee 37232
| |
Collapse
|
100
|
Li J, Chen C, Ma X, Geng G, Liu B, Zhang Y, Zhang S, Zhong F, Liu C, Yin Y, Cai W, Zhang H. Long noncoding RNA NRON contributes to HIV-1 latency by specifically inducing tat protein degradation. Nat Commun 2016; 7:11730. [PMID: 27291871 PMCID: PMC4909936 DOI: 10.1038/ncomms11730] [Citation(s) in RCA: 137] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 04/25/2016] [Indexed: 12/31/2022] Open
Abstract
Long noncoding RNAs (lncRNAs) play multiple key regulatory roles in various cellular pathways. However, their functions in HIV-1 latent infection remain largely unknown. Here we show that a lncRNA named NRON, which is highly expressed in resting CD4(+) T lymphocytes, could be involved in HIV-1 latency by specifically inducing Tat protein degradation. Our results suggest that NRON lncRNA potently suppresses the viral transcription by decreasing the cellular abundance of viral transactivator protein Tat. NRON directly links Tat to the ubiquitin/proteasome components including CUL4B and PSMD11, thus facilitating Tat degradation. Depletion of NRON, especially in combination with a histone deacetylase (HDAC) inhibitor, significantly reactivates the viral production from the HIV-1-latently infected primary CD4(+) T lymphocytes. Our data indicate that lncRNAs play a role in HIV-1 latency and their manipulation could be a novel approach for developing latency-reversing agents.
Collapse
Affiliation(s)
- Jun Li
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Cancan Chen
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Xiancai Ma
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Guannan Geng
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Bingfeng Liu
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Yijun Zhang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Shaoyang Zhang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Fudi Zhong
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Chao Liu
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Yue Yin
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Weiping Cai
- Department of Infectious Diseases, Guangzhou 8th People's Hospital, Guangzhou, Guangdong 510060, China
| | - Hui Zhang
- Institute of Human Virology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China.,Key Laboratory of Tropical Disease Control of Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| |
Collapse
|