51
|
Wang J, Karime C, Majeed U, Starr JS, Borad MJ, Babiker HM. Targeting Leukemia Inhibitory Factor in Pancreatic Adenocarcinoma. Expert Opin Investig Drugs 2023:1-13. [PMID: 37092893 DOI: 10.1080/13543784.2023.2206558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023]
Abstract
INTRODUCTION Leukemia Inhibitory Factor (LIF) is a member of the interleukin-6 (IL-6) cytokine family. Known to induce differentiation of myeloid leukemia cells, evidence has accumulated supporting its role in cancer evolution though regulating cell differentiation, renewal, and survival. LIF has recently emerged as a biomarker and therapeutic target for pancreatic ductal adenocarcinoma (PDAC). The first-in-human clinical trial has shown promising safety profile and has suggested a potential role for LIF inhibitor in combination regimen. AREAS COVERED Herein, we summarize, discuss, and give an expert opinion on the role of LIF in PDAC promotion, and its potential role as a biomarker and target of anti-cancer therapy. We conducted an exhaustive PubMed search for English-language articles published from January 1, 1970, to August 1, 2022. EXPERT OPINION PDAC carries a devastating prognosis for patients, highlighting the need for advancing drug development. The results of the phase 1 trial with MSC-1 demonstrated tolerability and safety but modest efficacy. Future research should focus on investigating LIF targets in combination with current standard-of-care chemotherapy and immunotherapy can be a promising approach. Further, larger multicenter clinical trials are needed to define the use of LIF as a new biomarker in PDAC patients.
Collapse
Affiliation(s)
- Jing Wang
- Department of Medicine, Mayo Clinic, Jacksonville, Florida, USA
| | | | - Umair Majeed
- Department of Medicine, Division of Hematology Oncology, Mayo Clinic, Jacksonville, Florida, USA
| | - Jason S Starr
- Department of Medicine, Division of Hematology Oncology, Mayo Clinic, Jacksonville, Florida, USA
| | - Mitesh J Borad
- Department of Medicine, Division of Hematology Oncology, Mayo Clinic, Phoenix, Arizona USA
| | - Hani M Babiker
- Department of Medicine, Division of Hematology Oncology, Mayo Clinic, Jacksonville, Florida, USA
| |
Collapse
|
52
|
Cao L, Wang R, Liu G, Zhang Y, Thorne RF, Zhang XD, Li J, Xia Y, Guo L, Shao F, Gu H, Wu M. Glycolytic Pfkp acts as a Lin41 protein kinase to promote endodermal differentiation of embryonic stem cells. EMBO Rep 2023; 24:e55683. [PMID: 36660859 PMCID: PMC9986826 DOI: 10.15252/embr.202255683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 12/21/2022] [Accepted: 01/03/2023] [Indexed: 01/21/2023] Open
Abstract
Unveiling the principles governing embryonic stem cell (ESC) differentiation into specific lineages is critical for understanding embryonic development and for stem cell applications in regenerative medicine. Here, we establish an intersection between LIF-Stat3 signaling that is essential for maintaining murine (m) ESCs pluripotency, and the glycolytic enzyme, the platelet isoform of phosphofructokinase (Pfkp). In the pluripotent state, Stat3 transcriptionally suppresses Pfkp in mESCs while manipulating the cells to lift this repression results in differentiation towards the ectodermal lineage. Pfkp exhibits substrate specificity changes to act as a protein kinase, catalyzing serine phosphorylation of the developmental regulator Lin41. Such phosphorylation stabilizes Lin41 by impeding its autoubiquitination and proteasomal degradation, permitting Lin41-mediated binding and destabilization of mRNAs encoding ectodermal specification markers to favor the expression of endodermal specification genes. This provides new insights into the wiring of pluripotency-differentiation circuitry where Pfkp plays a role in germ layer specification during mESC differentiation.
Collapse
Affiliation(s)
- Leixi Cao
- Translational Research Institute, Henan Provincial People's Hospital, Academy of Medical ScienceZhengzhou UniversityZhengzhouChina
| | - Ruijie Wang
- Translational Research Institute, Henan Provincial People's Hospital, Academy of Medical ScienceZhengzhou UniversityZhengzhouChina
| | - Guangzhi Liu
- Translational Research Institute, Henan Provincial People's Hospital, Academy of Medical ScienceZhengzhou UniversityZhengzhouChina
| | - Yuwei Zhang
- Translational Research Institute, Henan Provincial People's Hospital, Academy of Medical ScienceZhengzhou UniversityZhengzhouChina
| | - Rick Francis Thorne
- Translational Research Institute, Henan Provincial People's Hospital, Academy of Medical ScienceZhengzhou UniversityZhengzhouChina
- School of Biomedical Sciences & PharmacyUniversity of NewcastleNewcastleNSWAustralia
| | - Xu Dong Zhang
- Translational Research Institute, Henan Provincial People's Hospital, Academy of Medical ScienceZhengzhou UniversityZhengzhouChina
- School of Environmental & Life SciencesUniversity of NewcastleNewcastleNSWAustralia
| | - Jinming Li
- Translational Research Institute, Henan Provincial People's Hospital, Academy of Medical ScienceZhengzhou UniversityZhengzhouChina
| | - Yang Xia
- Department of Immunology, School of Basic Medical SciencesAnhui Medical UniversityHefeiChina
| | - Lili Guo
- Department of Immunology, School of Basic Medical SciencesAnhui Medical UniversityHefeiChina
| | - Fengmin Shao
- Translational Research Institute, Henan Provincial People's Hospital, Academy of Medical ScienceZhengzhou UniversityZhengzhouChina
| | - Hao Gu
- Department of Immunology, School of Basic Medical SciencesAnhui Medical UniversityHefeiChina
| | - Mian Wu
- Translational Research Institute, Henan Provincial People's Hospital, Academy of Medical ScienceZhengzhou UniversityZhengzhouChina
- School of Clinical MedicineHenan UniversityZhengzhouChina
- CAS Centre for Excellence in Molecular Cell Sciencethe First Affiliated Hospital of University of Science and Technology of ChinaHefeiChina
| |
Collapse
|
53
|
Ye Y, Zhang S, Gao L, Zhu Y, Zhang J. Deciphering Hierarchical Chromatin Domains and Preference of Genomic Position Forming Boundaries in Single Mouse Embryonic Stem Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205162. [PMID: 36658736 PMCID: PMC10015865 DOI: 10.1002/advs.202205162] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/15/2022] [Indexed: 06/17/2023]
Abstract
The exploration of single-cell 3D genome maps reveals that chromatin domains are indeed physical structures presenting in single cells, and domain boundaries vary from cell to cell. However, systematic analysis of the association between regulatory factor binding and elements and the formation of chromatin domains in single cells has not yet emerged. To this end, a hierarchical chromatin domain structure identification algorithm (named as HiCS) is first developed from individual single-cell Hi-C maps, with superior performance in both accuracy and efficiency. The results suggest that in addition to the known CTCF-cohesin complex, Polycomb, TrxG, pluripotent protein families, and other multiple factors also contribute to shaping chromatin domain boundaries in single embryonic stem cells. Different cooperation patterns of these regulatory factors drive genomic position categories with differential preferences forming boundaries, and the most extensive six types of retrotransposons are differentially distributed in these genomic position categories with preferential localization. The above results suggest that these different retrotransposons within genomic regions interplay with regulatory factors navigating the preference of genomic positions forming boundaries, driving the formation of higher-order chromatin structures, and thus regulating cell functions in single mouse embryonic stem cells.
Collapse
Affiliation(s)
- Yusen Ye
- School of Computer Science and TechnologyXidian UniversityXi'anShaanxi710071P. R. China
| | - Shihua Zhang
- NCMISCEMSRCSDSAcademy of Mathematics and Systems ScienceChinese Academy of SciencesBeijing100190P. R. China
- School of Mathematical SciencesUniversity of Chinese Academy of SciencesBeijing100049P. R. China
- Center for Excellence in Animal Evolution and GeneticsChinese Academy of SciencesKunming650223P. R. China
| | - Lin Gao
- School of Computer Science and TechnologyXidian UniversityXi'anShaanxi710071P. R. China
| | - Yuqing Zhu
- Center for Stem Cell and Translational MedicineSchool of Life SciencesAnhui UniversityHefeiAnhui230601P. R. China
| | - Jin Zhang
- Center for Stem Cell and Regenerative MedicineDepartment of Basic Medical Sciences, and Bone Marrow Transplantation Center of the First Affiliated HospitalZhejiang University School of MedicineHangzhouZhejiang310003P. R. China
- Zhejiang Laboratory for Systems and Precision MedicineZhejiang University Medical CenterHangzhouZhejiang311121P. R. China
- Institute of HematologyZhejiang UniversityHangzhouZhejiang310058P. R. China
- Center of Gene/Cell Engineering and Genome MedicineHangzhouZhejiang310058P. R. China
| |
Collapse
|
54
|
Wang Y, Liu C, Qiao X, Han X, Liu ZP. PKI: A bioinformatics method of quantifying the importance of nodes in gene regulatory network via a pseudo knockout index. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194911. [PMID: 36804477 DOI: 10.1016/j.bbagrm.2023.194911] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 01/09/2023] [Accepted: 01/30/2023] [Indexed: 02/18/2023]
Abstract
BACKGROUND Gene regulatory network (GRN) is a model that characterizes the complex relationships between genes and thereby provides an informatics environment to measure the importance of nodes. The evaluation of important nodes in a GRN can effectively refer to their functional implications severing as key players in particular biological processes, such as master regulator and driver gene. Currently, it is mainly based on network topological parameters and focuses only on evaluating a single node individually. However, genes and products play their functions by interacting with each other. It is worth noting that the effects of gene combinations in GRN are not simply additive. Key combinations discovery is of significance in revealing gene sets with important functions. Recently, with the development of single-cell RNA-sequencing (scRNA-seq) technology, we can quantify gene expression profiles of individual cells that provide the potential to identify crucial nodes in gene regulations regarding specific condition, e.g., stem cell differentiation. RESULTS In this paper, we propose a bioinformatics method, called Pseudo Knockout Importance (PKI), to quantify the importance of node and node sets in a specific GRN structure using time-course scRNA-seq data. First, we construct ordinary differential equations to approach the gene regulations during cell differentiation. Then we design gene pseudo knockout experiments and define PKI score evaluation criteria based on the coefficient of determination. The importance of nodes can be described as the influence on the ODE system of removing variables. For key gene combinations, PKI is derived as a combinatorial optimization problem of quantifying the in silico gene knockout effects. CONCLUSIONS Here, we focus our analyses on the specific GRN of embryonic stem cells with time series gene expression profile. To verify the effectiveness and advantage of PKI method, we compare its node importance rankings with other twelve kinds of centrality-based methods, such as degree and Latora closeness. For key node combinations, we compare the results with the method based on minimum dominant set. Moreover, the famous combinations of transcription factors in induced pluripotent stem cell are also employed to verify the vital gene combinations identified by PKI. These results demonstrate the reliability and superiority of the proposed method.
Collapse
Affiliation(s)
- Yijuan Wang
- Department of Biomedical Engineering, School of Control Science and Engineering, Shandong University, Jinan, Shandong 250061, China
| | - Chao Liu
- Department of Orthodontics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Xu Qiao
- Department of Biomedical Engineering, School of Control Science and Engineering, Shandong University, Jinan, Shandong 250061, China
| | - Xianhua Han
- Faculty of Science, Yamaguchi University, Yamaguchi 753-8511, Japan
| | - Zhi-Ping Liu
- Department of Biomedical Engineering, School of Control Science and Engineering, Shandong University, Jinan, Shandong 250061, China.
| |
Collapse
|
55
|
Nakadai T, Shimada M, Ito K, Cevher MA, Chu CS, Kumegawa K, Maruyama R, Malik S, Roeder RG. Two target gene activation pathways for orphan ERR nuclear receptors. Cell Res 2023; 33:165-183. [PMID: 36646760 PMCID: PMC9892517 DOI: 10.1038/s41422-022-00774-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 12/02/2022] [Indexed: 01/18/2023] Open
Abstract
Estrogen-related receptors (ERRα/β/γ) are orphan nuclear receptors that function in energy-demanding physiological processes, as well as in development and stem cell maintenance, but mechanisms underlying target gene activation by ERRs are largely unknown. Here, reconstituted biochemical assays that manifest ERR-dependent transcription have revealed two complementary mechanisms. On DNA templates, ERRs activate transcription with just the normal complement of general initiation factors through an interaction of the ERR DNA-binding domain with the p52 subunit of initiation factor TFIIH. On chromatin templates, activation by ERRs is dependent on AF2 domain interactions with the cell-specific coactivator PGC-1α, which in turn recruits the ubiquitous p300 and MED1/Mediator coactivators. This role of PGC-1α may also be fulfilled by other AF2-interacting coactivators like NCOA3, which is shown to recruit Mediator selectively to ERRβ and ERRγ. Importantly, combined genetic and RNA-seq analyses establish that both the TFIIH and the AF2 interaction-dependent pathways are essential for ERRβ/γ-selective gene expression and pluripotency maintenance in embryonic stem cells in which NCOA3 is a critical coactivator.
Collapse
Affiliation(s)
- Tomoyoshi Nakadai
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY, USA
- Project for Cancer Epigenomics, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Miho Shimada
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY, USA
- Department of Molecular Biology, Yokohama City University Graduate School of Medical Science, Yokohama, Japan
| | - Keiichi Ito
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY, USA
| | - Murat Alper Cevher
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY, USA
- Department of Molecular Biology and Genetics, Bilkent University, Ankara, Turkey
| | - Chi-Shuen Chu
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY, USA
| | - Kohei Kumegawa
- Cancer Cell Diversity Project, NEXT-Ganken Program, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Reo Maruyama
- Project for Cancer Epigenomics, Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | - Sohail Malik
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY, USA
| | - Robert G Roeder
- Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
56
|
A single cell-based computational platform to identify chemical compounds targeting desired sets of transcription factors for cellular conversion. Stem Cell Reports 2023; 18:131-144. [PMID: 36400030 PMCID: PMC9859931 DOI: 10.1016/j.stemcr.2022.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 10/18/2022] [Accepted: 10/19/2022] [Indexed: 11/18/2022] Open
Abstract
Cellular conversion can be induced by perturbing a handful of key transcription factors (TFs). Replacement of direct manipulation of key TFs with chemical compounds offers a less laborious and safer strategy to drive cellular conversion for regenerative medicine. Nevertheless, identifying optimal chemical compounds currently requires large-scale screening of chemical libraries, which is resource intensive. Existing computational methods aim at predicting cell conversion TFs, but there are no methods for identifying chemical compounds targeting these TFs. Here, we develop a single cell-based platform (SiPer) to systematically prioritize chemical compounds targeting desired TFs to guide cellular conversions. SiPer integrates a large compendium of chemical perturbations on non-cancer cells with a network model and predicted known and novel chemical compounds in diverse cell conversion examples. Importantly, we applied SiPer to develop a highly efficient protocol for human hepatic maturation. Overall, SiPer provides a valuable resource to efficiently identify chemical compounds for cell conversion.
Collapse
|
57
|
Kraunsoe S, Azami T, Pei Y, Martello G, Jones K, Boroviak T, Nichols J. Requirement for STAT3 and its target, TFCP2L1, in self-renewal of naïve pluripotent stem cells in vivo and in vitro. Biol Open 2023; 12:bio059650. [PMID: 36504370 PMCID: PMC9884119 DOI: 10.1242/bio.059650] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 12/02/2022] [Indexed: 12/14/2022] Open
Abstract
We previously demonstrated gradual loss of epiblast during diapause in embryos lacking components of the LIF/IL6 receptor. Here, we explore the requirement for the downstream signalling transducer andactivator of transcription STAT3 and its target, TFCP2L1, in maintenance of naïve pluripotency. Unlike conventional markers, such as NANOG, which remains high in epiblast until implantation, both STAT3 and TFCP2L1 proteins decline during blastocyst expansion, but intensify in the embryonic region after induction of diapause, as observed visually and confirmed using our image-analysis pipeline, consistent with our previous transcriptional expression data. Embryos lacking STAT3 or TFCP2L1 underwent catastrophic loss of most of the inner cell mass during the first few days of diapause, indicating involvement of signals in addition to LIF/IL6 for sustaining naïve pluripotency in vivo. By blocking MEK/ERK signalling from the morula stage, we could derive embryonic stem cells with high efficiency from STAT3 null embryos, but not those lacking TFCP2L1, suggesting a hitherto unknown additional role for this essential STAT3 target in transition from embryo to embryonic stem cells in vitro. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Sophie Kraunsoe
- Wellcome Trust – Medical Research Council Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge CB2 0AW, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Tennis Court Road, Cambridge CB2 3EG, UK
- Department of Biology, University of Padua, Padova 35121, Italy
| | - Takuya Azami
- Wellcome Trust – Medical Research Council Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge CB2 0AW, UK
| | - Yihan Pei
- Wellcome Trust – Medical Research Council Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge CB2 0AW, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Tennis Court Road, Cambridge CB2 3EG, UK
| | | | - Kenneth Jones
- Wellcome Trust – Medical Research Council Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge CB2 0AW, UK
| | - Thorsten Boroviak
- Department of Physiology, Development and Neuroscience, University of Cambridge, Tennis Court Road, Cambridge CB2 3EG, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| | - Jennifer Nichols
- Wellcome Trust – Medical Research Council Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre, Puddicombe Way, Cambridge CB2 0AW, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Tennis Court Road, Cambridge CB2 3EG, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| |
Collapse
|
58
|
Abstract
The methyltransferase-like (METTL) family is a diverse group of methyltransferases that can methylate nucleotides, proteins, and small molecules. Despite this diverse array of substrates, they all share a characteristic seven-beta-strand catalytic domain, and recent evidence suggests many also share an important role in stem cell biology. The most well characterized family members METTL3 and METTL14 dimerize to form an N6-methyladenosine (m6A) RNA methyltransferase with established roles in cancer progression. However, new mouse models indicate that METTL3/METTL14 are also important for embryonic stem cell (ESC) development and postnatal hematopoietic and neural stem cell self-renewal and differentiation. METTL1, METTL5, METTL6, METTL8, and METTL17 also have recently identified roles in ESC pluripotency and differentiation, while METTL11A/11B, METTL4, METTL7A, and METTL22 have been shown to play roles in neural, mesenchymal, bone, and hematopoietic stem cell development, respectively. Additionally, a variety of other METTL family members are translational regulators, a role that could place them as important players in the transition from stem cell quiescence to differentiation. Here we will summarize what is known about the role of METTL proteins in stem cell differentiation and highlight the connection between their growing importance in development and their established roles in oncogenesis.
Collapse
Affiliation(s)
- John G Tooley
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, 955 Main St., Buffalo, NY, 14203, USA
| | - James P Catlin
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, 955 Main St., Buffalo, NY, 14203, USA
| | - Christine E Schaner Tooley
- Department of Biochemistry, Jacobs School of Medicine and Biomedical Sciences, State University of New York at Buffalo, 955 Main St., Buffalo, NY, 14203, USA.
| |
Collapse
|
59
|
Xu L, Chen Z, Wang Y, Li Y, Wang Z, Li F, Xi X. Polyphyllin VII as a Potential Drug for Targeting Stemness in Hepatocellular Cancer via STAT3 Signaling. Curr Cancer Drug Targets 2023; 23:325-331. [PMID: 36284387 DOI: 10.2174/1568009623666221024103834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 09/07/2022] [Accepted: 09/13/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND At present, the treatment of hepatocellular carcinoma (HCC) is disturbed by the treatment failure and recurrence caused by the residual liver cancer stem cells (CSCs). Therefore, drugs targeting HCC CSCs should be able to effectively eliminate HCC and prevent its recurrence. In this study, we demonstrated the effect of Polyphyllin VII (PP7) on HCC CSCs and explored their potential mechanism. METHODS HepG2 and Huh7 cells were used to analyze the antitumor activity of PP7 by quantifying cell growth and metastasis as well as to study the effect on stemness. RESULTS Our results demonstrated that PP7 promoted apoptosis and significantly inhibited proliferation and migration of both HepG2 and Huh7 cells. PP7 also inhibited tumor spheroid formation and induced significant changes in the expression of stemness markers (CD133 and OCT-4). These effects of PP7 were mediated by STAT3 signaling. CONCLUSION PP7 can effectively suppress tumor initiation, growth, and metastasis and inhibit stemness through regulation of STAT3 signaling pathway in liver cancer cells. Our data would add more evidence to further clarify the therapeutic effect of PP7 against HCC.
Collapse
Affiliation(s)
- Liuhang Xu
- Department of Immunology, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, No. 30 Renmin Nanlu, Shiyan City, Hubei Province 442000, P.R. China
| | - Ziqi Chen
- Department of Immunology, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, No. 30 Renmin Nanlu, Shiyan City, Hubei Province 442000, P.R. China
| | - Yangbin Wang
- Department of Immunology, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, No. 30 Renmin Nanlu, Shiyan City, Hubei Province 442000, P.R. China
| | - Yulin Li
- Department of Immunology, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, No. 30 Renmin Nanlu, Shiyan City, Hubei Province 442000, P.R. China
| | - Zhongyu Wang
- Department of Immunology, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, No. 30 Renmin Nanlu, Shiyan City, Hubei Province 442000, P.R. China
| | - Fangzhou Li
- Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Shiyan, No. 30 Renmin Nanlu, Shiyan City, Hubei Province 442000, P.R. China
| | - Xueyan Xi
- Department of Immunology, Institute of Basic Medical Sciences, Hubei University of Medicine, Shiyan, No. 30 Renmin Nanlu, Shiyan City, Hubei Province 442000, P.R. China.,Renmin Hospital, Hubei University of Medicine, Shiyan, No. 30 Renmin Nanlu, Shiyan City, Hubei Province 442000, P.R. China.,Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, No. 30 Renmin Nanlu, Shiyan City, Hubei Province 442000, P.R. China
| |
Collapse
|
60
|
Wakabayashi Y, Miyatsuka T, Miura M, Himuro M, Taguchi T, Iida H, Nishida Y, Fujitani Y, Watada H. STAT3 suppression and β-cell ablation enhance α-to-β reprogramming mediated by Pdx1. Sci Rep 2022; 12:21419. [PMID: 36496541 PMCID: PMC9741642 DOI: 10.1038/s41598-022-25941-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 12/07/2022] [Indexed: 12/13/2022] Open
Abstract
As diabetes results from the absolute or relative deficiency of insulin secretion from pancreatic β cells, possible methods to efficiently generate surrogate β cells have attracted a lot of efforts. To date, insulin-producing cells have been generated from various differentiated cell types in the pancreas, such as acinar cells and α cells, by inducing defined transcription factors, such as PDX1 and MAFA, yet it is still challenging as to how surrogate β cells can be efficiently generated for establishing future regenerative therapies for diabetes. In this study, we demonstrated that the exogenous expression of PDX1 activated STAT3 in α cells in vitro, and STAT3-null PDX1-expressing α cells in vivo resulted in efficient induction of α-to-β reprogramming, accompanied by the emergence of α-cell-derived insulin-producing cells with silenced glucagon expression. Whereas β-cell ablation by alloxan administration significantly increased the number of α-cell-derived insulin-producing cells by PDX1, STAT3 suppression resulted in no further increase in β-cell neogenesis after β-cell ablation. Thus, STAT3 modulation and β-cell ablation nonadditively enhance α-to-β reprogramming induced by PDX1, which may lead to the establishment of cell therapies for curing diabetes.
Collapse
Affiliation(s)
- Yuka Wakabayashi
- grid.258269.20000 0004 1762 2738Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Takeshi Miyatsuka
- grid.258269.20000 0004 1762 2738Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan ,grid.410786.c0000 0000 9206 2938Department of Endocrinology, Diabetes and Metabolism, Kitasato University School of Medicine, 1-15-1 Kitazato, Minami-Ku, Sagamihara, Kanagawa 252-0374 Japan
| | - Masaki Miura
- grid.258269.20000 0004 1762 2738Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Miwa Himuro
- grid.258269.20000 0004 1762 2738Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Tomomi Taguchi
- grid.410786.c0000 0000 9206 2938Department of Endocrinology, Diabetes and Metabolism, Kitasato University School of Medicine, 1-15-1 Kitazato, Minami-Ku, Sagamihara, Kanagawa 252-0374 Japan
| | - Hitoshi Iida
- grid.258269.20000 0004 1762 2738Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yuya Nishida
- grid.258269.20000 0004 1762 2738Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yoshio Fujitani
- grid.256642.10000 0000 9269 4097Laboratory of Developmental Biology & Metabolism, Institute for Molecular & Cellular Regulation, Gunma University, Gunma, Japan
| | - Hirotaka Watada
- grid.258269.20000 0004 1762 2738Department of Metabolism and Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan ,grid.258269.20000 0004 1762 2738Center for Identification of Diabetic Therapeutic Targets, Juntendo University Graduate School of Medicine, Tokyo, Japan ,grid.258269.20000 0004 1762 2738Center for Therapeutic Innovations in Diabetes, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
61
|
Guo F, Huang Y, Fernando T, Shi Y. Altered Molecular Pathways and Biomarkers of Endometrial Receptivity in Infertile Women with Polycystic Ovary Syndrome. Reprod Sci 2022; 29:3335-3345. [PMID: 35006579 DOI: 10.1007/s43032-022-00845-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 12/31/2021] [Indexed: 12/14/2022]
Abstract
Anovulation is the most prominent cause of infertility in polycystic ovary syndrome (PCOS) patients. Although ovulation can be corrected pharmacologically, the number of pregnancies remains low. Even if excellent embryos are transferred by IVF, it does not change the high miscarriage rate of PCOS patients. These facts collectively indicate that there is a disorder of endometrial development and receptivity to the embryo in PCOS patients, including the decrease of receptive ability, inhibition of embryo adhesion, undersupply of energy, poor blood perfusion, and pro-inflammatory status in the endometrium. However, it has never received the same attention as ovulatory dysfunction. Here we list some alternations of endometrial receptivity in women with PCOS, discuss the underlying intricate mechanisms, and try to find out the possible therapeutic targets, which may bring new perspectives to those who are able to provide high-quality embryos.
Collapse
Affiliation(s)
- Fei Guo
- Department of Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, 200011, China
| | - Yufan Huang
- Department of Pharmacy, Mindong Hospital, Fujian Medical University, Ningde, 355000, Fujian, China
| | - Taniya Fernando
- Department of Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, 200011, China
| | - Yingli Shi
- Department of Gynecology, Hospital of Obstetrics and Gynecology, Fudan University, Shanghai, 200011, China.
| |
Collapse
|
62
|
Meharwade T, Joumier L, Parisotto M, Malleshaiah M. Single-cell mass cytometry analysis reveals stem cell heterogeneity. Methods 2022; 208:9-18. [DOI: 10.1016/j.ymeth.2022.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/24/2022] [Accepted: 09/29/2022] [Indexed: 11/06/2022] Open
|
63
|
Keniry A, Jansz N, Hickey PF, Breslin KA, Iminitoff M, Beck T, Gouil Q, Ritchie ME, Blewitt ME. A method for stabilising the XX karyotype in female mESC cultures. Development 2022; 149:285125. [PMID: 36355065 PMCID: PMC10112917 DOI: 10.1242/dev.200845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 10/30/2022] [Indexed: 11/12/2022]
Abstract
Female mouse embryonic stem cells (mESCs) present differently from male mESCs in several fundamental ways; however, complications with their in vitro culture have resulted in an under-representation of female mESCs in the literature. Recent studies show that the second X chromosome in female, and more specifically the transcriptional activity from both of these chromosomes due to absent X chromosome inactivation, sets female and male mESCs apart. To avoid this undesirable state, female mESCs in culture preferentially adopt an XO karyotype, with this adaption leading to loss of their unique properties in favour of a state that is near indistinguishable from male mESCs. If female pluripotency is to be studied effectively in this system, it is crucial that high-quality cultures of XX mESCs are available. Here, we report a method for better maintaining XX female mESCs in culture that also stabilises the male karyotype and makes study of female-specific pluripotency more feasible.
Collapse
Affiliation(s)
- Andrew Keniry
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia.,The Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Natasha Jansz
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia.,The Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Peter F Hickey
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia.,The Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Kelsey A Breslin
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia
| | - Megan Iminitoff
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia.,The Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Tamara Beck
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia
| | - Quentin Gouil
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia.,The Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Matthew E Ritchie
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia.,The Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Marnie E Blewitt
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Australia.,The Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| |
Collapse
|
64
|
Pladevall-Morera D, Zylicz JJ. Chromatin as a sensor of metabolic changes during early development. Front Cell Dev Biol 2022; 10:1014498. [PMID: 36299478 PMCID: PMC9588933 DOI: 10.3389/fcell.2022.1014498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 09/13/2022] [Indexed: 11/13/2022] Open
Abstract
Cellular metabolism is a complex network of biochemical reactions fueling development with energy and biomass; however, it can also shape the cellular epigenome. Indeed, some intermediates of metabolic reactions exert a non-canonical function by acting as co-factors, substrates or inhibitors of chromatin modifying enzymes. Therefore, fluctuating availability of such molecules has the potential to regulate the epigenetic landscape. Thanks to this functional coupling, chromatin can act as a sensor of metabolic changes and thus impact cell fate. Growing evidence suggest that both metabolic and epigenetic reprogramming are crucial for ensuring a successful embryo development from the zygote until gastrulation. In this review, we provide an overview of the complex relationship between metabolism and epigenetics in regulating the early stages of mammalian embryo development. We report on recent breakthroughs in uncovering the non-canonical functions of metabolism especially when re-localized to the nucleus. In addition, we identify the challenges and outline future perspectives to advance the novel field of epi-metabolomics especially in the context of early development.
Collapse
Affiliation(s)
| | - Jan J. Zylicz
- Novo Nordisk Foundation Center for Stem Cell Medicine, reNEW, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
65
|
Li Y, Yang Z, Li X, Yu Y, Li X, Chen P, Li B, Wang X, Ye SD. Prdm14 promotes mouse ESC self-renewal and PGCLC specification through enhancement of Stat3 activity. iScience 2022; 25:105293. [PMID: 36300005 PMCID: PMC9589213 DOI: 10.1016/j.isci.2022.105293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 07/13/2022] [Accepted: 10/03/2022] [Indexed: 11/30/2022] Open
Abstract
Prdm14 plays an important role in the maintenance of mouse embryonic stem cell (mESC) pluripotency and the specification of primordial germ cells (PGCs). However, the mechanism downstream of Prdm14 is still not fully understood. Here, using high-throughput sequencing, chromatin immunoprecipitation, and luciferase reporter assays, we show that Prdm14 directly binds to the promoter of Socs3 and represses its transcription to increase the phosphorylation level of Stat3 protein, a critical downstream effector of LIF. Therefore, ectopic expression of Socs3 is able to decrease the ability of Prdm14 to promote mouse mESC self-renewal and PGC-like cell generation. As expected, similar phenotypes were observed in Prdm14-transfected mESCs after knockdown of Stat3 transcripts or treatment with a pan-inhibitor of JAKs, positive modulators of the LIF/Stat3 signaling pathway. These data will facilitate a better understanding of the regulatory network governing ESC identity and germ cell development.
Collapse
Affiliation(s)
- Yuting Li
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, Anhui 230601, China
| | - Ziqiong Yang
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, Anhui 230601, China
| | - Xiangfen Li
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, Anhui 230601, China
| | - Yang Yu
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, Anhui 230601, China
| | - Xiaofeng Li
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, Anhui 230601, China
| | - Peng Chen
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, Anhui 230601, China
| | - Bing Li
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, Anhui 230601, China
| | - Xiaoxiao Wang
- Core Facility Center, The First Affiliated Hospital of USTC (Anhui Provincial Hospital), Hefei, Anhui 230001, China
- Corresponding author
| | - Shou-Dong Ye
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, Anhui 230601, China
- Corresponding author
| |
Collapse
|
66
|
Endoh M, Niwa H. Stepwise pluripotency transitions in mouse stem cells. EMBO Rep 2022; 23:e55010. [PMID: 35903955 PMCID: PMC9442314 DOI: 10.15252/embr.202255010] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/13/2022] [Accepted: 07/01/2022] [Indexed: 07/31/2023] Open
Abstract
Pluripotent cells in mouse embryos, which first emerge in the inner cell mass of the blastocyst, undergo gradual transition marked by changes in gene expression, developmental potential, polarity, and morphology as they develop from the pre-implantation until post-implantation gastrula stage. Recent studies of cultured mouse pluripotent stem cells (PSCs) have clarified the presence of intermediate pluripotent stages between the naïve pluripotent state represented by embryonic stem cells (ESCs-equivalent to the pre-implantation epiblast) and the primed pluripotent state represented by epiblast stem cells (EpiSCs-equivalent to the late post-implantation gastrula epiblast). In this review, we discuss these recent findings in light of our knowledge on peri-implantation mouse development and consider the implications of these new PSCs to understand their temporal sequence and the feasibility of using them as model system for pluripotency.
Collapse
Affiliation(s)
- Mitsuhiro Endoh
- Department of Pluripotent Stem Cell Biology, Institute of Molecular Embryology and Genetics (IMEG)Kumamoto UniversityKumamotoJapan
| | - Hitoshi Niwa
- Department of Pluripotent Stem Cell Biology, Institute of Molecular Embryology and Genetics (IMEG)Kumamoto UniversityKumamotoJapan
| |
Collapse
|
67
|
Zhang B, Feng J. Mouse embryonic stem cells require multiple amino acids. Exp Biol Med (Maywood) 2022; 247:1379-1387. [PMID: 35611795 PMCID: PMC9442457 DOI: 10.1177/15353702221096059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 04/05/2022] [Indexed: 02/03/2023] Open
Abstract
Previous studies suggest that mouse embryonic stem cells (mESCs) have a unique requirement for threonine when cultured in serum and leukemia inhibitory factor (LIF). Here, we replicated the experiments and found that the growth of mESCs (E14 and AB2.2) in serum/LIF was significantly attenuated by the individual absence of multiple amino acids. When mESCs were maintained in naïve pluripotency by the MEK inhibitor, GSK3 inhibitor (2i), and LIF, their growth was significantly affected by the lack of any one of the nine essential amino acids or some non-essential amino acids. There was no unique requirement for threonine in both culture conditions. This study shows that, like many other cells, mESCs do not have any special requirements for amino acids.
Collapse
Affiliation(s)
- Boyang Zhang
- Department of Physiology and Biophysics, The State
University of New York at Buffalo, Buffalo, NY 14203, USA
| | - Jian Feng
- Department of Physiology and Biophysics, The State
University of New York at Buffalo, Buffalo, NY 14203, USA
| |
Collapse
|
68
|
Chen G, Yin S, Zeng H, Li H, Wan X. Regulation of Embryonic Stem Cell Self-Renewal. LIFE (BASEL, SWITZERLAND) 2022; 12:life12081151. [PMID: 36013330 PMCID: PMC9410528 DOI: 10.3390/life12081151] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/12/2022] [Accepted: 07/21/2022] [Indexed: 11/16/2022]
Abstract
Embryonic stem cells (ESCs) are a type of cells capable of self-renewal and multi-directional differentiation. The self-renewal of ESCs is regulated by factors including signaling pathway proteins, transcription factors, epigenetic regulators, cytokines, and small molecular compounds. Similarly, non-coding RNAs, small RNAs, and microRNAs (miRNAs) also play an important role in the process. Functionally, the core transcription factors interact with helper transcription factors to activate the expression of genes that contribute to maintaining pluripotency, while suppressing the expression of differentiation-related genes. Additionally, cytokines such as leukemia suppressor factor (LIF) stimulate downstream signaling pathways and promote self-renewal of ESCs. Particularly, LIF binds to its receptor (LIFR/gp130) to trigger the downstream Jak-Stat3 signaling pathway. BMP4 activates the downstream pathway and acts in combination with Jak-Stat3 to promote pluripotency of ESCs in the absence of serum. In addition, activation of the Wnt-FDZ signaling pathway has been observed to facilitate the self-renewal of ESCs. Small molecule modulator proteins of the pathway mentioned above are widely used in in vitro culture of stem cells. Multiple epigenetic regulators are involved in the maintenance of ESCs self-renewal, making the epigenetic status of ESCs a crucial factor in this process. Similarly, non-coding RNAs and cellular energetics have been described to promote the maintenance of the ESC's self-renewal. These factors regulate the self-renewal and differentiation of ESCs by forming signaling networks. This review focused on the role of major transcription factors, signaling pathways, small molecular compounds, epigenetic regulators, non-coding RNAs, and cellular energetics in ESC's self-renewal.
Collapse
Affiliation(s)
- Guofang Chen
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, China;
- Correspondence: (G.C.); (H.L.); (X.W.); Tel./Fax: +86-021-20261000 (ext. 1379) (G.C.)
| | - Shasha Yin
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, China;
| | - Hongliang Zeng
- Institute of Chinese Materia Medica, Hunan Academy of Chinese Medicine, Changsha 410013, China;
| | - Haisen Li
- School of Medicine, Wayne State University, Detroit, MI 48201, USA
- Correspondence: (G.C.); (H.L.); (X.W.); Tel./Fax: +86-021-20261000 (ext. 1379) (G.C.)
| | - Xiaoping Wan
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai 201204, China;
- Correspondence: (G.C.); (H.L.); (X.W.); Tel./Fax: +86-021-20261000 (ext. 1379) (G.C.)
| |
Collapse
|
69
|
Kim SM, Kwon EJ, Kim YJ, Go YH, Oh JY, Park S, Do JT, Kim KT, Cha HJ. Dichotomous role of Shp2 for naïve and primed pluripotency maintenance in embryonic stem cells. Stem Cell Res Ther 2022; 13:329. [PMID: 35850773 PMCID: PMC9290224 DOI: 10.1186/s13287-022-02976-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 06/17/2022] [Indexed: 11/13/2022] Open
Abstract
Background The requirement of the Mek1 inhibitor (iMek1) during naïve pluripotency maintenance results from the activation of the Mek1-Erk1/2 (Mek/Erk) signaling pathway upon leukemia inhibitory factor (LIF) stimulation. Methods Through a meta-analysis of previous genome-wide screening for negative regulators of naïve pluripotency, Ptpn11 (encoding the Shp2 protein, which serves both as a tyrosine phosphatase and putative adapter), was predicted as one of the key factors for the negative modulation of naïve pluripotency through LIF-dependent Jak/Stat3 signaling. Using an isogenic pair of naïve and primed mouse embryonic stem cells (mESCs), we demonstrated the differential role of Shp2 in naïve and primed pluripotency. Results Loss of Shp2 increased naïve pluripotency by promoting Jak/Stat3 signaling and disturbed in vivo differentiation potential. In sharp contrast, Shp2 depletion significantly impeded the self-renewal of ESCs under primed culture conditions, which was concurrent with a reduction in Mek/Erk signaling. Similarly, upon treatment with an allosteric Shp2 inhibitor (iShp2), the cells sustained Stat3 phosphorylation and decoupled Mek/Erk signaling, thus iShp2 can replace the use of iMek1 for maintenance of naïve ESCs. Conclusions Taken together, our findings highlight the differential roles of Shp2 in naïve and primed pluripotency and propose the usage of iShp2 instead of iMek1 for the efficient maintenance and establishment of naïve pluripotency. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-02976-z.
Collapse
Affiliation(s)
- Seong-Min Kim
- College of Pharmacy, Seoul National University, 1 Gwanak-ro Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Eun-Ji Kwon
- College of Pharmacy, Seoul National University, 1 Gwanak-ro Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Yun-Jeong Kim
- College of Pharmacy, Seoul National University, 1 Gwanak-ro Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Young-Hyun Go
- Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea
| | - Ji-Young Oh
- College of Pharmacy, Seoul National University, 1 Gwanak-ro Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Seokwoo Park
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, South Korea
| | - Jeong Tae Do
- Department of Stem Cell and Regenerative Biology, College of Animal Bioscience and Technology, Konkuk University, Seoul, Republic of Korea
| | - Keun-Tae Kim
- College of Pharmacy, Seoul National University, 1 Gwanak-ro Gwanak-gu, Seoul, 08826, Republic of Korea. .,Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea.
| | - Hyuk-Jin Cha
- College of Pharmacy, Seoul National University, 1 Gwanak-ro Gwanak-gu, Seoul, 08826, Republic of Korea. .,Research Institute of Pharmaceutical Sciences, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
70
|
Potential to Eradicate Cancer Stemness by Targeting Cell Surface GRP78. Biomolecules 2022; 12:biom12070941. [PMID: 35883497 PMCID: PMC9313351 DOI: 10.3390/biom12070941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 06/29/2022] [Accepted: 07/03/2022] [Indexed: 01/27/2023] Open
Abstract
Cancer stemness is proposed to be the main cause of metastasis and tumor relapse after conventional therapy due to the main properties of cancer stem cells. These include unlimited self-renewal, the low percentage in a cell population, asymmetric/symmetric cell division, and the hypothetical different nature for absorbing external substances. As the mechanism of how cancer stemness is maintained remains unknown, further investigation into the basic features of cancer stemness is required. Many articles demonstrated that glucose-regulated protein 78 (GRP78) plays a key role in cancer stemness, suggesting that this molecule is feasible for targeting cancer stem cells. This review summarizes the history of finding cancer stem cells, as well as the functions of GRP78 in cancer stemness, for discussing the possibility of targeting GRP78 to eradicate cancer stemness.
Collapse
|
71
|
Yuan Y, Li K, Teng F, Wang W, Zhou B, Zhou X, Lin J, Ye X, Deng Y, Liu W, Luo S, Zhang P, Liu D, Zheng M, Li J, Lu Y, Zhang H. Leukemia inhibitory factor protects against liver steatosis in nonalcoholic fatty liver disease patients and obese mice. J Biol Chem 2022; 298:101946. [PMID: 35447114 PMCID: PMC9123280 DOI: 10.1016/j.jbc.2022.101946] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 03/26/2022] [Accepted: 03/28/2022] [Indexed: 01/27/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is one of the most common chronic liver diseases worldwide. However, the molecular mechanisms that promote dysregulation of hepatic triglyceride metabolism and lead to NAFLD are poorly understood, and effective treatments are limited. Leukemia inhibitory factor (LIF) is a member of the interleukin-6 cytokine family and has been shown to regulate a variety of physiological processes, although its role in hepatic triglyceride metabolism remains unknown. In the present study, we measured circulating LIF levels by ELISA in 214 patients with biopsy-diagnosed NAFLD as well as 314 normal control patients. We further investigated the potential role and mechanism of LIF on hepatic lipid metabolism in obese mice. We found that circulating LIF levels correlated with the severity of liver steatosis. Patients with ballooning, fibrosis, lobular inflammation, and abnormally elevated liver injury markers alanine transaminase and aspartate aminotransferase also had higher levels of serum LIF than control patients. Furthermore, animal studies showed that white adipose tissue-derived LIF could ameliorate liver steatosis through activation of hepatic LIF receptor signaling pathways. Together, our results suggested that targeting LIF-LIF receptor signaling might be a promising strategy for treating NAFLD.
Collapse
Affiliation(s)
- Youwen Yuan
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Kangli Li
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Fei Teng
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Weiwei Wang
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Bing Zhou
- The Key Laboratory of Metabolism and Molecular Medicine, the Ministry of Education, Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xuan Zhou
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jiayang Lin
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xueru Ye
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yajuan Deng
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Wenhui Liu
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Shenjian Luo
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Peizhen Zhang
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Deying Liu
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Minghua Zheng
- MAFLD Research Center, Department of Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Diagnosis and Treatment for The Development of Chronic Liver Disease, Zhejiang Province, Wenzhou, Zhejiang, China
| | - Jin Li
- Division of Endocrinology, Department of Medicine, Shanxi Medical University affiliated Second Hospital, Taiyuan, China
| | - Yan Lu
- The Key Laboratory of Metabolism and Molecular Medicine, the Ministry of Education, Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Huijie Zhang
- Department of Endocrinology and Metabolism, Nanfang Hospital, Southern Medical University, Guangzhou, China; Guangdong Provincial Key Laboratory of Shock and Microcirculation, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
72
|
Sukparangsi W, Thongphakdee A, Intarapat S. Avian Embryonic Culture: A Perspective of In Ovo to Ex Ovo and In Vitro Studies. Front Physiol 2022; 13:903491. [PMID: 35651873 PMCID: PMC9150135 DOI: 10.3389/fphys.2022.903491] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 04/12/2022] [Indexed: 11/13/2022] Open
Abstract
The avian embryos growing outside the natural eggshell (ex ovo) were observed since the early 19th century, and since then chick embryonic structures have revealed reaching an in-depth view of external and internal anatomy, enabling us to understand conserved vertebrate development. However, the internal environment within an eggshell (in ovo) would still be the ideal place to perform various experiments to understand the nature of avian development and to apply other biotechnology techniques. With the advent of genetic manipulation and cell culture techniques, avian embryonic parts were dissected for explant culture to eventually generate expandable cell lines (in vitro cell culture). The expansion of embryonic cells allowed us to unravel the transcriptional network for understanding pluripotency and differentiation mechanism in the embryos and in combination with stem cell technology facilitated the applications of avian culture to the next levels in transgenesis and wildlife conservation. In this review, we provide a panoramic view of the relationship among different cultivation platforms from in ovo studies to ex ovo as well as in vitro culture of cell lines with recent advances in the stem cell fields.
Collapse
Affiliation(s)
- Woranop Sukparangsi
- Department of Biology, Faculty of Science, Burapha University, Chon Buri, Thailand
| | - Ampika Thongphakdee
- Wildlife Reproductive Innovation Center, Research Department, Bureau of Conservation and Research, Zoological Park Organization of Thailand Under the Royal Patronage of H.M. the King, Bangkok, Thailand
| | - Sittipon Intarapat
- Department of Anatomy, Faculty of Science, Mahidol University, Bangkok, Thailand
- *Correspondence: Sittipon Intarapat,
| |
Collapse
|
73
|
Lewin TD, Fouladi-Nashta AA, Holland PWH. PRD-class homeobox genes in bovine early embryos: function, evolution and overlapping roles. Mol Biol Evol 2022; 39:6581424. [PMID: 35512670 PMCID: PMC9117796 DOI: 10.1093/molbev/msac098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Eutherian Totipotent Cell Homeobox (ETCHbox) genes are mammalian-specific PRD-class homeobox genes with conserved expression in the preimplantation embryo but fast-evolving and highly divergent sequences. Here, we exploit an ectopic expression approach to examine the role of bovine ETCHbox genes and show that ARGFX and LEUTX homeodomain proteins upregulate genes normally expressed in the blastocyst; the identities of the regulated genes suggest that, in vivo, the ETCHbox genes play a role in coordinating the physical formation of the blastocyst structure. Both genes also downregulate genes expressed earlier during development and genes associated with an undifferentiated cell state, possibly via the JAK/STAT pathway. We find evidence that bovine ARGFX and LEUTX have overlapping functions, in contrast to their antagonistic roles in humans. Finally, we characterize a mutant bovine ARGFX allele which eliminates the homeodomain and show that homozygous mutants are viable. These data support the hypothesis of functional overlap between ETCHbox genes within a species, roles for ETCHbox genes in blastocyst formation and the change of their functions over evolutionary time.
Collapse
Affiliation(s)
- Thomas D Lewin
- Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3SZ, UK
| | - Ali A Fouladi-Nashta
- Comparative Biomedical Sciences Department, Royal Veterinary College, Hawkshead Campus, North Mymms, Hatfield, Hertfordshire, AL9 7TA, UK
| | - Peter W H Holland
- Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford, OX1 3SZ, UK
| |
Collapse
|
74
|
Tsume-Kajioka M, Kimura-Yoshida C, Mochida K, Ueda Y, Matsuo I. BET proteins are essential for the specification and maintenance of the epiblast lineage in mouse preimplantation embryos. BMC Biol 2022; 20:64. [PMID: 35264162 PMCID: PMC8905768 DOI: 10.1186/s12915-022-01251-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 02/09/2022] [Indexed: 11/23/2022] Open
Abstract
Background During mammalian preimplantation development, as the fertilized egg develops and differentiates, three cell lineages become specified: trophectoderm (TE), epiblast, and primitive endoderm (PrE). Through two steps of cell fate decisions, 16-cell blastomeres develop into TE and an inner cell mass (ICM), and thereafter, the latter differentiates into pluripotent epiblast and PrE. Although bromodomain and extra-terminal domain (BET) proteins, such as BRD4, are necessary for the transcriptional activation of genes involved in the maintenance of mouse embryonic stem cells by occupying their enhancers, their roles in the development of mouse preimplantation are unknown. Results To evaluate the effect of BET protein deficiency on cell lineage formation, we cultured preimplantation embryos in the presence of JQ1, which blocks the binding of BET bromodomains to acetylated-histones. We found BET inhibition blocked the transcriptional activation of genes, such as Nanog, Otx2, and Sox2, important for the formation of the epiblast lineage in blastocysts. Expression studies with lineage-specific markers in morulae and blastocysts revealed BET proteins were essential for the specification and maintenance of the epiblast lineage but were dispensable for the formation of primarily extraembryonic TE and PrE lineages. Additional Ingenuity Pathway Analysis and expression studies with a transcriptionally active form of signal transducer and activator of the transcription 3 (STAT3) suggested BET-dependent activation was partly associated with the STAT3-dependent pathway to maintain the epiblast lineage. To identify BET proteins involved in the formation of the epiblast lineage, we analyzed mutant embryos deficient in Brd4, Brd2, and double mutants. Abolishment of NANOG-positive epiblast cells was only evident in Brd4/Brd2 double-deficient morulae. Thus, the phenotype of JQ1-treated embryos is reproduced not by a Brd4- or Brd2-single deficiency, but only Brd4/Brd2-double deficiency, demonstrating the redundant roles of BRD2 and BRD4 in the specification of the epiblast lineage. Conclusions BET proteins are essential to the specification and maintenance of the epiblast lineage by activating lineage-specific core transcription factors during mouse preimplantation development. Among BET proteins, BRD4 plays a central role and BRD2 a complementary role in the specification and maintenance of epiblast lineages. Additionally, BET-dependent maintenance of the epiblast lineage may be partly associated with the STAT3-dependent pathway. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01251-0.
Collapse
Affiliation(s)
- Mami Tsume-Kajioka
- Department of Molecular Embryology, Research Institute, Osaka Women's and Children's Hospital, Osaka Prefectural Hospital Organization, 840, Murodo-cho, Izumi, Osaka, 594-1101, Japan
| | - Chiharu Kimura-Yoshida
- Department of Molecular Embryology, Research Institute, Osaka Women's and Children's Hospital, Osaka Prefectural Hospital Organization, 840, Murodo-cho, Izumi, Osaka, 594-1101, Japan
| | - Kyoko Mochida
- Department of Molecular Embryology, Research Institute, Osaka Women's and Children's Hospital, Osaka Prefectural Hospital Organization, 840, Murodo-cho, Izumi, Osaka, 594-1101, Japan
| | - Yoko Ueda
- Department of Molecular Embryology, Research Institute, Osaka Women's and Children's Hospital, Osaka Prefectural Hospital Organization, 840, Murodo-cho, Izumi, Osaka, 594-1101, Japan
| | - Isao Matsuo
- Department of Molecular Embryology, Research Institute, Osaka Women's and Children's Hospital, Osaka Prefectural Hospital Organization, 840, Murodo-cho, Izumi, Osaka, 594-1101, Japan. .,Department of Pediatric and Neonatal-Perinatal Research, Osaka Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
75
|
Pedone E, Failli M, Gambardella G, De Cegli R, La Regina A, di Bernardo D, Marucci L. β-catenin perturbations control differentiation programs in mouse embryonic stem cells. iScience 2022; 25:103756. [PMID: 35128356 PMCID: PMC8804270 DOI: 10.1016/j.isci.2022.103756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 11/09/2021] [Accepted: 01/07/2022] [Indexed: 11/06/2022] Open
Abstract
The Wnt/β-catenin pathway is involved in development, cancer, and embryonic stem cell (ESC) maintenance; its dual role in stem cell self-renewal and differentiation is still controversial. Here, by applying an in vitro system enabling inducible gene expression control, we report that moderate induction of transcriptionally active exogenous β-catenin in β-catenin null mouse ESCs promotes epiblast-like cell (EpiLC) derivation in vitro. Instead, in wild-type cells, moderate chemical pre-activation of the Wnt/β-catenin pathway promotes EpiLC in vitro derivation. Finally, we suggest that moderate β-catenin levels in β-catenin null mouse ESCs favor early stem cell commitment toward mesoderm if the exogenous protein is induced only in the “ground state” of pluripotency condition, or endoderm if the induction is maintained during the differentiation. Overall, our results confirm previous findings about the role of β-catenin in pluripotency and differentiation, while indicating a role for its doses in promoting specific differentiation programs. Moderate β-catenin levels promote EpiLCs derivation in vitro Chemical pre-activation of the Wnt pathway enhances ESC-EpiLC transition β-catenin overexpression tips the balance between mesoderm and endoderm Cell fate is influenced by the extent of β-catenin induction
Collapse
|
76
|
Zhang Y, Wang J, Ruan Y, Yang Y, Cheng Y, Wang F, Zhang C, Xu Y, Liu L, Yu M, Ren B, Wang J, Zhao B, Yang R, Xiong J, Wang J, Zhang J, Jian R, Liu Y, Tian Y. Genome-wide CRISPR screen identifies Puf60 as a novel stemness gene of mouse Embryonic Stem Cells. Stem Cells Dev 2022; 31:132-142. [PMID: 35019759 DOI: 10.1089/scd.2021.0309] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The mechanisms underlying self-renewal of embryonic stem cells (ESCs) hold great value in the clinical translation of stem cell biology and regenerative medicine research. To study the mechanisms in ESC self-renewal, screening and identification of key genes maintaining ESC self-renewal were performed by a genome-wide CRISPR-Cas9 knockout virus library. The mouse ESC R1 were infected with CRISPR-Cas9 knockout virus library and cultured for 14 days. The variation of sgRNA ratio was analyzed by high-throughput sequencing, followed by bioinformatics analysis to profile the altered genes. Our results showed 1375 genes with increased sgRNA ratio were found to be mainly involved in signal transduction, cell differentiation and cell apoptosis; 2929 genes with decreased sgRNA ratio were mainly involved in cell cycle regulation, RNA splicing, and biological metabolic processes. We further confirmed our screen specificity by confirming Puf60, U2af2, Wdr75 and Usp16 as novel positive regulators in mESC self-renewal. Meanwhile, further analysis showed the relevance between Puf60 expression and tumor. In conclusion, our study screened key genes maintaining ESC self-renewal and successful identified Puf60, U2af2, Wdr75 and Usp16 as novel positive regulators in mESC self-renewal, which provided theoretical basis and research clues for a better understanding of ESC self-renewal regulation.
Collapse
Affiliation(s)
- Yue Zhang
- Army Medical University, 12525, Southwest Hospital/Southwest Eye Hospital, 30# Gaotanyan St., Shapingba District, Chongqing 400038, China, Chongqing, China, 400038;
| | - Jiaqi Wang
- Army Medical University, 12525, Institude of Immunulogy PLA & Department of Immunology, Army Medical University, Chongqing 400038, China, Chongqing, China;
| | - Yan Ruan
- Army Medical University, 12525, Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, Chongqing, China;
| | - Yi Yang
- Army Medical University, 12525, Experimental Center of Basic Medicine, College of Basic Medical Sciences, Chongqing, China;
| | - Yuda Cheng
- Army Medical University, 12525, Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, Chongqing, China;
| | - Fengsheng Wang
- Army Medical University, 12525, Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, Chongqing, China;
| | - Chen Zhang
- Army Medical University, 12525, Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, Chongqing, China;
| | - Yixiao Xu
- Army Medical University, 12525, Southwest Hospital/Southwest Eye Hospital, Chongqing, China;
| | - Lianlian Liu
- Army Medical University, 12525, Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, Chongqing, China;
| | - Meng Yu
- Army Medical University, 12525, Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, Chongqing, China;
| | - Bangqi Ren
- Army Medical University, 12525, Southwest Hospital/Southwest Eye Hospital, Chongqing, China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China;
| | - Jiangjun Wang
- Army Medical University, 12525, Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, Chongqing, China;
| | - Binyu Zhao
- Army Medical University, 12525, Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, Chongqing, China;
| | - Ran Yang
- Army Medical University, 12525, Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, Chongqing, China;
| | - Jiaxiang Xiong
- Army Medical University, 12525, Experimental Center of Basic Medicine, College of Basic Medical Sciences, Chongqing, China;
| | - Jiali Wang
- Army Medical University, 12525, Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, Army Medical University, Chongqing, China;
| | - Junlei Zhang
- Army Medical University, 12525, Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, Army Medical University, Chongqing, China;
| | - Rui Jian
- Army Medical University, 12525, Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology,, Chongqing, China;
| | - Yong Liu
- Army Medical University, 12525, Southwest Hospital/Southwest Eye Hospital, Chongqing, China;
| | - Yanping Tian
- Army Medical University, 12525, Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology,, Chongqing, China;
| |
Collapse
|
77
|
Wooten S, Smith KN. Long non-coding RNA OIP5-AS1 (Cyrano): A context-specific regulator of normal and disease processes. Clin Transl Med 2022; 12:e706. [PMID: 35040588 PMCID: PMC8764876 DOI: 10.1002/ctm2.706] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 12/21/2021] [Accepted: 12/29/2021] [Indexed: 12/17/2022] Open
Abstract
Long non-coding (lnc) RNAs have been implicated in a plethora of normal biological functions, and have also emerged as key molecules in various disease processes. OIP5-AS1, also commonly known by the alias Cyrano, is a lncRNA that displays broad expression across multiple tissues, with significant enrichment in particular contexts including within the nervous system and skeletal muscle. Thus far, this multifaceted lncRNA has been found to have regulatory functions in normal cellular processes including cell proliferation and survival, as well as in the development and progression of a myriad disease states. These widespread effects on normal and disease states have been found to be mediated through context-specific intermolecular interactions with dozens of miRNAs and proteins identified to date. This review explores recent studies to highlight OIP5-AS1's contextual yet pleiotropic roles in normal homeostatic functions as well as disease oetiology and progression, which may influence its utility in the generation of future theranostics.
Collapse
Affiliation(s)
- Serena Wooten
- Department of GeneticsUniversity of North Carolina at Chapel HillNorth CarolinaUSA
| | - Keriayn N. Smith
- Department of GeneticsUniversity of North Carolina at Chapel HillNorth CarolinaUSA
| |
Collapse
|
78
|
Glaser LV, Steiger M, Fuchs A, van Bömmel A, Einfeldt E, Chung HR, Vingron M, Meijsing SH. Assessing genome-wide dynamic changes in enhancer activity during early mESC differentiation by FAIRE-STARR-seq. Nucleic Acids Res 2021; 49:12178-12195. [PMID: 34850108 PMCID: PMC8643627 DOI: 10.1093/nar/gkab1100] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 10/14/2021] [Accepted: 10/22/2021] [Indexed: 11/18/2022] Open
Abstract
Embryonic stem cells (ESCs) can differentiate into any given cell type and therefore represent a versatile model to study the link between gene regulation and differentiation. To quantitatively assess the dynamics of enhancer activity during the early stages of murine ESC differentiation, we analyzed accessible genomic regions using STARR-seq, a massively parallel reporter assay. This resulted in a genome-wide quantitative map of active mESC enhancers, in pluripotency and during the early stages of differentiation. We find that only a minority of accessible regions is active and that such regions are enriched near promoters, characterized by specific chromatin marks, enriched for distinct sequence motifs, and modeling shows that active regions can be predicted from sequence alone. Regions that change their activity upon retinoic acid-induced differentiation are more prevalent at distal intergenic regions when compared to constitutively active enhancers. Further, analysis of differentially active enhancers verified the contribution of individual TF motifs toward activity and inducibility as well as their role in regulating endogenous genes. Notably, the activity of retinoic acid receptor alpha (RARα) occupied regions can either increase or decrease upon the addition of its ligand, retinoic acid, with the direction of the change correlating with spacing and orientation of the RARα consensus motif and the co-occurrence of additional sequence motifs. Together, our genome-wide enhancer activity map elucidates features associated with enhancer activity levels, identifies regulatory regions disregarded by computational prediction tools, and provides a resource for future studies into regulatory elements in mESCs.
Collapse
Affiliation(s)
- Laura V Glaser
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Mara Steiger
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Alisa Fuchs
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
- The Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, 10115 Berlin, Germany
| | - Alena van Bömmel
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Edda Einfeldt
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Ho-Ryun Chung
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
- Institute for Medical Bioinformatics and Biostatistics, Philipps University of Marburg, 35037 Marburg, Germany
| | - Martin Vingron
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Sebastiaan H Meijsing
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
- Max Planck Unit for the Science of Pathogens, 10117 Berlin, Germany
| |
Collapse
|
79
|
Chevreau R, Ghazale H, Ripoll C, Chalfouh C, Delarue Q, Hemonnot-Girard AL, Mamaeva D, Hirbec H, Rothhut B, Wahane S, Perrin FE, Noristani HN, Guerout N, Hugnot JP. RNA Profiling of Mouse Ependymal Cells after Spinal Cord Injury Identifies the Oncostatin Pathway as a Potential Key Regulator of Spinal Cord Stem Cell Fate. Cells 2021; 10:cells10123332. [PMID: 34943841 PMCID: PMC8699053 DOI: 10.3390/cells10123332] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/30/2021] [Accepted: 11/05/2021] [Indexed: 01/31/2023] Open
Abstract
Ependymal cells reside in the adult spinal cord and display stem cell properties in vitro. They proliferate after spinal cord injury and produce neurons in lower vertebrates but predominantly astrocytes in mammals. The mechanisms underlying this glial-biased differentiation remain ill-defined. We addressed this issue by generating a molecular resource through RNA profiling of ependymal cells before and after injury. We found that these cells activate STAT3 and ERK/MAPK signaling post injury and downregulate cilia-associated genes and FOXJ1, a central transcription factor in ciliogenesis. Conversely, they upregulate 510 genes, seven of them more than 20-fold, namely Crym, Ecm1, Ifi202b, Nupr1, Rbp1, Thbs2 and Osmr—the receptor for oncostatin, a microglia-specific cytokine which too is strongly upregulated after injury. We studied the regulation and role of Osmr using neurospheres derived from the adult spinal cord. We found that oncostatin induced strong Osmr and p-STAT3 expression in these cells which is associated with reduction of proliferation and promotion of astrocytic versus oligodendrocytic differentiation. Microglial cells are apposed to ependymal cells in vivo and co-culture experiments showed that these cells upregulate Osmr in neurosphere cultures. Collectively, these results support the notion that microglial cells and Osmr/Oncostatin pathway may regulate the astrocytic fate of ependymal cells in spinal cord injury.
Collapse
Affiliation(s)
- Robert Chevreau
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34295 Montpellier, France; (R.C.); (H.G.); (C.R.); (A.L.H.-G.); (H.H.); (B.R.)
| | - Hussein Ghazale
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34295 Montpellier, France; (R.C.); (H.G.); (C.R.); (A.L.H.-G.); (H.H.); (B.R.)
| | - Chantal Ripoll
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34295 Montpellier, France; (R.C.); (H.G.); (C.R.); (A.L.H.-G.); (H.H.); (B.R.)
| | - Chaima Chalfouh
- EA3830 GRHV, Institute for Research and Innovation in Biomedicine (IRIB), Normandie Université, UNIROUEN, 76000 Rouen, France; (C.C.); (Q.D.); (N.G.)
| | - Quentin Delarue
- EA3830 GRHV, Institute for Research and Innovation in Biomedicine (IRIB), Normandie Université, UNIROUEN, 76000 Rouen, France; (C.C.); (Q.D.); (N.G.)
| | - Anne Laure Hemonnot-Girard
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34295 Montpellier, France; (R.C.); (H.G.); (C.R.); (A.L.H.-G.); (H.H.); (B.R.)
| | - Daria Mamaeva
- Institut des Neurosciences de Montpellier, Université de Montpellier, INSERM, 34295 Montpellier, France;
| | - Helene Hirbec
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34295 Montpellier, France; (R.C.); (H.G.); (C.R.); (A.L.H.-G.); (H.H.); (B.R.)
| | - Bernard Rothhut
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34295 Montpellier, France; (R.C.); (H.G.); (C.R.); (A.L.H.-G.); (H.H.); (B.R.)
| | - Shalaka Wahane
- Departments of Neurobiology and Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA;
| | - Florence Evelyne Perrin
- Department of Biology, University of Montpellier, INSERM MMDN, EPHE, 34295 Montpellier, France;
- Institut Universitaire de France (IUF), 75231 Paris, France
| | - Harun Najib Noristani
- Shriners Hospitals Pediatric Research Center and Center for Neural Repair, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA;
| | - Nicolas Guerout
- EA3830 GRHV, Institute for Research and Innovation in Biomedicine (IRIB), Normandie Université, UNIROUEN, 76000 Rouen, France; (C.C.); (Q.D.); (N.G.)
| | - Jean Philippe Hugnot
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, 34295 Montpellier, France; (R.C.); (H.G.); (C.R.); (A.L.H.-G.); (H.H.); (B.R.)
- Correspondence:
| |
Collapse
|
80
|
Miyauchi K, Ki S, Ukai M, Suzuki Y, Inoue K, Suda W, Matsui T, Ito Y, Honda K, Koseki H, Ohara O, Tanaka RJ, Okada-Hatakeyama M, Kubo M. Essential Role of STAT3 Signaling in Hair Follicle Homeostasis. Front Immunol 2021; 12:663177. [PMID: 34867936 PMCID: PMC8635990 DOI: 10.3389/fimmu.2021.663177] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 10/25/2021] [Indexed: 12/13/2022] Open
Abstract
Dominant-negative mutations associated with signal transducer and activator of transcription 3 (STAT3) signaling, which controls epithelial proliferation in various tissues, lead to atopic dermatitis in hyper IgE syndrome. This dermatitis is thought to be attributed to defects in STAT3 signaling in type 17 helper T cell specification. However, the role of STAT3 signaling in skin epithelial cells remains unclear. We found that STAT3 signaling in keratinocytes is required to maintain skin homeostasis by negatively controlling the expression of hair follicle-specific keratin genes. These expression patterns correlated with the onset of dermatitis, which was observed in specific pathogen-free conditions but not in germ-free conditions, suggesting the involvement of Toll-like receptor-mediated inflammatory responses. Thus, our study suggests that STAT3-dependent gene expression in keratinocytes plays a critical role in maintaining the homeostasis of skin, which is constantly exposed to microorganisms.
Collapse
Affiliation(s)
- Kosuke Miyauchi
- Laboratory for Cytokine Regulation, Center for Integrative Medical Science (IMS), RIKEN Yokohama Institute, Yokohama, Japan
| | - Sewon Ki
- Laboratory for Cytokine Regulation, Center for Integrative Medical Science (IMS), RIKEN Yokohama Institute, Yokohama, Japan
| | - Masao Ukai
- Laboratory for Integrated Cellular Systems, Center for Integrative Medical Science (IMS), RIKEN Yokohama Institute, Yokohama, Japan
- Graduate School of Medical Life Sciences, Yokohama City University, Yokohama, Japan
| | - Yoshie Suzuki
- Laboratory for Cytokine Regulation, Center for Integrative Medical Science (IMS), RIKEN Yokohama Institute, Yokohama, Japan
| | - Kentaro Inoue
- Laboratory for Integrated Cellular Systems, Center for Integrative Medical Science (IMS), RIKEN Yokohama Institute, Yokohama, Japan
- Department of Computer Science and Systems Engineering, Faculty of Engineering, University of Miyazaki, Miyazaki-shi, Japan
| | - Wataru Suda
- Laboratory for Microbiome science, Center for Integrative Medical Science (IMS), RIKEN Yokohama Institute, Yokohama, Japan
- Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Takeshi Matsui
- Laboratory for Evolutionary Cell Biology of the Skin, School of Bioscience and Biotechnology, Tokyo University of Technology, Hachioji, Japan
| | - Yoshihiro Ito
- Laboratory for Gut Homeostasis, Center for Integrative Medical Science (IMS), RIKEN Yokohama Institute, Yokohama, Japan
| | - Kenya Honda
- Laboratory for Gut Homeostasis, Center for Integrative Medical Science (IMS), RIKEN Yokohama Institute, Yokohama, Japan
- Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan
| | - Haruhiko Koseki
- Disease Biology Group, RIKEN Medical Sciences Innovation Hub Program, Kanagawa, Japan
- Laboratory for Developmental Genetics, Center for Integrative Medical Science (IMS), RIKEN Yokohama Institute, Yokohama, Japan
| | - Osamu Ohara
- Laboratory for Integrative Genomics, Center for Integrative Medical Science (IMS), RIKEN Yokohama Institute, Yokohama, Japan
- Department of Applied Genomics, Kazusa DNA Research Institute, Kisarazu, Japan
| | - Reiko J. Tanaka
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Mariko Okada-Hatakeyama
- Laboratory for Integrated Cellular Systems, Center for Integrative Medical Science (IMS), RIKEN Yokohama Institute, Yokohama, Japan
- Graduate School of Medical Life Sciences, Yokohama City University, Yokohama, Japan
- Institute for Protein Research, Osaka University, Suita-shi, Japan
| | - Masato Kubo
- Laboratory for Cytokine Regulation, Center for Integrative Medical Science (IMS), RIKEN Yokohama Institute, Yokohama, Japan
- Division of Molecular Pathology, Research Institute for Biomedical Science, Tokyo University of Science, Noda-shi, Japan
- *Correspondence: Masato Kubo,
| |
Collapse
|
81
|
Zhang Y, Ding H, Wang X, Wang X, Wan S, Xu A, Gan R, Ye SD. MK2 promotes Tfcp2l1 degradation via β-TrCP ubiquitin ligase to regulate mouse embryonic stem cell self-renewal. Cell Rep 2021; 37:109949. [PMID: 34731635 DOI: 10.1016/j.celrep.2021.109949] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 08/31/2021] [Accepted: 10/14/2021] [Indexed: 10/19/2022] Open
Abstract
Tfcp2l1 can maintain mouse embryonic stem cell (mESC) self-renewal. However, it remains unknown how Tfcp2l1 protein stability is regulated. Here, we demonstrate that β-transducin repeat-containing protein (β-TrCP) targets Tfcp2l1 for ubiquitination and degradation in a mitogen-activated protein kinase (MAPK)-activated protein kinase 2 (MK2)-dependent manner. Specifically, β-TrCP1 and β-TrCP2 recognize and ubiquitylate Tfcp2l1 through the canonical β-TrCP-binding motif DSGDNS, in which the serine residues have been phosphorylated by MK2. Point mutation of serine-to-alanine residues reduces β-TrCP-mediated ubiquitylation and enhances the ability of Tfcp2l1 to promote mESC self-renewal while repressing the speciation of the endoderm, mesoderm, and trophectoderm. Similarly, inhibition of MK2 reduces the association of Tfcp2l1 with β-TrCP1 and increases the self-renewal-promoting effects of Tfcp2l1, whereas overexpression of MK2 or β-TrCP genes decreases Tfcp2l1 protein levels and induces mESC differentiation. Collectively, our study reveals a posttranslational modification of Tfcp2l1 that will expand our understanding of the regulatory network of stem cell pluripotency.
Collapse
Affiliation(s)
- Yan Zhang
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, Anhui 230601, China
| | - Huiwen Ding
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, Anhui 230601, China
| | - Xiaoxiao Wang
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Xin Wang
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, Anhui 230601, China
| | - Shengpeng Wan
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, Anhui 230601, China
| | - Anchun Xu
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, Anhui 230601, China
| | - Ruoyi Gan
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, Anhui 230601, China
| | - Shou-Dong Ye
- Center for Stem Cell and Translational Medicine, School of Life Sciences, Anhui University, Hefei, Anhui 230601, China; Institute of Physical Science and Information Technology, Anhui University, Hefei, Anhui 230601, China.
| |
Collapse
|
82
|
Elkenani M, Mohamed BA. Murine Embryonic Stem Cell Culture, Self-Renewal, and Differentiation. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2021; 2520:265-273. [PMID: 34724189 DOI: 10.1007/7651_2021_447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Embryonic stem cells (ESCs), derived from the inner cell mass of the blastocyst, can proliferate indefinitely in vitro (self-renewal) and can differentiate into cells of all three germ layers (pluripotency). These unique properties make them exceptionally valuable in basic science and clinical researches, including cell replacement therapies, drug discovery, and regenerative medicine. Mouse ESCs represent an important model system for studying gene function during development and disease.ESCs culture is time-consuming, laborious, and costly. Suboptimal ESCs culture conditions can alter their identity, pluripotency, and their compatibility with downstream differentiation protocols. In this chapter, we provide a general guideline for murine ESCs culture on murine fibroblast feeder layers. Moreover, we describe protocols for maintenance of ESCs pluripotency and induction of ESCs differentiation.
Collapse
Affiliation(s)
- Manar Elkenani
- Department of Cardiology and Pneumology, Heart Centre, University Medical Centre Göttingen, Göttingen, Germany.,DZHK (German Centre for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany.,Institute of Human Genetics, University Medical Centre Göttingen, Göttingen, Germany
| | - Belal A Mohamed
- Department of Cardiology and Pneumology, Heart Centre, University Medical Centre Göttingen, Göttingen, Germany. .,DZHK (German Centre for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany.
| |
Collapse
|
83
|
Park JA, Park S, Park HB, Han MK, Lee Y. MUC1-C Contributes to the Maintenance of Human Embryonic Stem Cells and Promotes Somatic Cell Reprogramming. Stem Cells Dev 2021; 30:1082-1091. [PMID: 34514853 DOI: 10.1089/scd.2021.0185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Mucin 1 (MUC1) is a transmembrane glycoprotein overexpressed in several cancer cells in which it regulates cell surface properties, tumor invasion, and cell death. Recently, we reported that MUC1-C, the C-terminal subunit of MUC1, is involved in the growth of mouse embryonic stem (ES) cells. However, the functional significance of MUC1-C in human ES cells remains unclear. In this study, we investigated the expression and function of MUC1-C in human ES cells. Based on reverse transcription-polymerase chain reaction, western blotting, and confocal microscopy following immunostaining, undifferentiated human ES cells expressed MUC1-C and the expression level decreased during differentiation. Inhibition of MUC1-C, by the peptide inhibitor GO201 that targets the cytoplasmic domain of MUC1-C (MUC1-CD), reduced cell proliferation and OCT4 protein expression, and promoted cell death. Moreover, the inhibition of MUC1-C increased the intracellular reactive oxygen species (ROS) levels and downregulated expression of glycolysis-related enzymes. These findings indicate that expression and function of MUC1-C are required for stem cell properties involved in cell proliferation, maintenance of pluripotency and optimal ROS levels, and a high glycolytic flux in human ES cells. In addition, forced overexpression of MUC1-CD increased the efficiency of reprogramming from fibroblast cells to induced pluripotent stem cells, suggesting that MUC1-C expression can contribute to the reprogramming process.
Collapse
Affiliation(s)
- Jeong-A Park
- Biotechnology Research Institute, College of Natural Sciences, Chungbuk National University, Cheongju, Republic of Korea
| | - Sangkyu Park
- Biotechnology Research Institute, College of Natural Sciences, Chungbuk National University, Cheongju, Republic of Korea
| | - Han-Bum Park
- Department of Biochemistry, College of Natural Sciences, Chungbuk National University, Cheongju, Republic of Korea
| | - Myung-Kwan Han
- Department of Microbiology, Jeonbuk National University Medical School, Jeonju, Republic of Korea
| | - Younghee Lee
- Biotechnology Research Institute, College of Natural Sciences, Chungbuk National University, Cheongju, Republic of Korea.,Department of Biochemistry, College of Natural Sciences, Chungbuk National University, Cheongju, Republic of Korea
| |
Collapse
|
84
|
Fukui Y, Hirota Y, Saito-Fujita T, Aikawa S, Hiraoka T, Kaku T, Hirata T, Akaeda S, Matsuo M, Shimizu-Hirota R, Takeda N, Ikawa M, Osuga Y. Uterine Epithelial LIF Receptors Contribute to Implantation Chamber Formation in Blastocyst Attachment. Endocrinology 2021; 162:6353290. [PMID: 34402888 DOI: 10.1210/endocr/bqab169] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Indexed: 12/28/2022]
Abstract
Recent studies have demonstrated that the formation of an implantation chamber composed of a uterine crypt, an implantation-competent blastocyst, and uterine glands is a critical step in blastocyst implantation in mice. Leukemia inhibitory factor (LIF) activates signal transducer and activator of transcription 3 (STAT3) precursors via uterine LIF receptors (LIFRs), allowing successful blastocyst implantation. Our recent study revealed that the role of epithelial STAT3 is different from that of stromal STAT3. However, both are essential for blastocyst attachment, suggesting the different roles of epithelial and stromal LIFR in blastocyst implantation. However, how epithelial and stromal LIFR regulate the blastocyst implantation process remains unclear. To investigate the roles of LIFR in the uterine epithelium and stroma, we generated Lifr-floxed/lactoferrin (Ltf)-iCre (Lifr eKO) and Lifr-floxed/antimüllerian hormone receptor type 2 (Amhr2)-Cre (Lifr sKO) mice with deleted epithelial and stromal LIFR, respectively. Surprisingly, fertility and blastocyst implantation in the Lifr sKO mice were normal despite stromal STAT3 inactivation. In contrast, blastocyst attachment failed, and no implantation chambers were formed in the Lifr eKO mice with epithelial inactivation of STAT3. In addition, normal responsiveness to ovarian hormones was observed in the peri-implantation uteri of the Lifr eKO mice. These results indicate that the epithelial LIFR-STAT3 pathway initiates the formation of implantation chambers, leading to complete blastocyst attachment, and that stromal STAT3 regulates blastocyst attachment without stromal LIFR control. Thus, uterine epithelial LIFR is critical to implantation chamber formation and blastocyst attachment.
Collapse
Affiliation(s)
- Yamato Fukui
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Yasushi Hirota
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Tomoko Saito-Fujita
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Shizu Aikawa
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Takehiro Hiraoka
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Tetsuaki Kaku
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Tomoyuki Hirata
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Shun Akaeda
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Mitsunori Matsuo
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| | - Ryoko Shimizu-Hirota
- Department of Internal Medicine, Center for Preventive Medicine, School of Medicine, Keio University, Tokyo 160-8582, Japan
| | - Norihiko Takeda
- Center for Molecular Medicine, Jichi Medical University, Shimotsuke, Tochigi 329-0498, Japan
| | - Masahito Ikawa
- Research Institute for Microbial Diseases, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yutaka Osuga
- Department of Obstetrics and Gynecology, Graduate School of Medicine, The University of Tokyo, Tokyo 113-8655, Japan
| |
Collapse
|
85
|
Xu Y, Wang X, Yu M, Ruan Y, Zhang J, Tian Y, Xiong J, Liu L, Cheng Y, Yang Y, Ren B, Chen G, Zhang Y, Zhao B, Wang J, Wang J, Jian R, Liu Y, Wang J. Identification, subcellular localization, and functional comparison of novel Yap splicing isoforms in mouse embryonic stem cells. IUBMB Life 2021; 73:1432-1445. [PMID: 34687583 DOI: 10.1002/iub.2571] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 10/11/2021] [Indexed: 11/06/2022]
Abstract
Hippo signaling pathway is involved in many biological processes including the fate decision of embryonic stem cells (ESCs). Yes-associated protein (Yap) function as a key effector of Hippo pathway, but its role in ESCs is still controversial. So far, only two isoforms of Yap have been identified and they have both overlapping and distinct functions. Here, we identify six novel isoforms of mouse Yap, bringing the total number of isoforms to eight. According to the differences in the first exon, they are divided into two subtypes (a and b). Isoform-a and isoform-b exhibit different subcellular localizations. Moreover, isoform-a can fully reverse the impaired self-renewal phenotype induced by Yap knockout (KO). Upon overexpression, isoform-a moderately promotes mESCs self-renewal and markedly delays differentiation. On the contrary, no significant pro-self-renewal phenotype is observed when isoform-b overexpressed in wildtype (WT) mESCs or re-expressed in Yap KO cell lines. These finding not only help to clarify the role of Yap in mESCs, but also lay the foundation for advancing functional researches of Yap in other processes.
Collapse
Affiliation(s)
- Yixiao Xu
- Southwest Hospital/Southwest Eye Hospital, Army Medical University, Chongqing, China.,Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, Army Medical University, Chongqing, China
| | - Xueyue Wang
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, Army Medical University, Chongqing, China.,Department of Pediatrics, The General Hospital of PLA Tibet Military Area Command, Lhasa, China
| | - Meng Yu
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, Army Medical University, Chongqing, China.,Joint Surgery Center, Southwest Hospital, Army Medical University, Chongqing, China
| | - Yan Ruan
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, Army Medical University, Chongqing, China
| | - Junlei Zhang
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, Army Medical University, Chongqing, China
| | - Yanping Tian
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, Army Medical University, Chongqing, China
| | - Jiaxiang Xiong
- Experimental Center of Basic Medicine, College of Basic Medical Sciences, Army Medical University, Chongqing, China
| | - Lianlian Liu
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, Army Medical University, Chongqing, China
| | - Yuda Cheng
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, Army Medical University, Chongqing, China
| | - Yi Yang
- Experimental Center of Basic Medicine, College of Basic Medical Sciences, Army Medical University, Chongqing, China
| | - Bangqi Ren
- Southwest Hospital/Southwest Eye Hospital, Army Medical University, Chongqing, China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
| | - Guangxing Chen
- Joint Surgery Center, Southwest Hospital, Army Medical University, Chongqing, China
| | - Yue Zhang
- Southwest Hospital/Southwest Eye Hospital, Army Medical University, Chongqing, China.,Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, Army Medical University, Chongqing, China
| | - Binyu Zhao
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, Army Medical University, Chongqing, China.,Department of Physiology, Army Medical University, Chongqing, China
| | - Jiaqi Wang
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, Army Medical University, Chongqing, China.,Institute of Immunology PLA and Department of Immunology, Army Medical University, Chongqing, China
| | - Jiangjun Wang
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, Army Medical University, Chongqing, China.,Department of Cell Biology, College of Basic Medicine, Army Medical University, Chongqing, China
| | - Rui Jian
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, Army Medical University, Chongqing, China
| | - Yong Liu
- Southwest Hospital/Southwest Eye Hospital, Army Medical University, Chongqing, China.,Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing, China
| | - Jiali Wang
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, Army Medical University, Chongqing, China
| |
Collapse
|
86
|
Labouesse C, Tan BX, Agley CC, Hofer M, Winkel AK, Stirparo GG, Stuart HT, Verstreken CM, Mulas C, Mansfield W, Bertone P, Franze K, Silva JCR, Chalut KJ. StemBond hydrogels control the mechanical microenvironment for pluripotent stem cells. Nat Commun 2021; 12:6132. [PMID: 34675200 PMCID: PMC8531294 DOI: 10.1038/s41467-021-26236-5] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 09/22/2021] [Indexed: 12/12/2022] Open
Abstract
Studies of mechanical signalling are typically performed by comparing cells cultured on soft and stiff hydrogel-based substrates. However, it is challenging to independently and robustly control both substrate stiffness and extracellular matrix tethering to substrates, making matrix tethering a potentially confounding variable in mechanical signalling investigations. Moreover, unstable matrix tethering can lead to poor cell attachment and weak engagement of cell adhesions. To address this, we developed StemBond hydrogels, a hydrogel in which matrix tethering is robust and can be varied independently of stiffness. We validate StemBond hydrogels by showing that they provide an optimal system for culturing mouse and human pluripotent stem cells. We further show how soft StemBond hydrogels modulate stem cell function, partly through stiffness-sensitive ERK signalling. Our findings underline how substrate mechanics impact mechanosensitive signalling pathways regulating self-renewal and differentiation, indicating that optimising the complete mechanical microenvironment will offer greater control over stem cell fate specification.
Collapse
Affiliation(s)
- Céline Labouesse
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, UK
| | - Bao Xiu Tan
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, UK
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, CB3 0HE, UK
| | - Chibeza C Agley
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, UK
| | - Moritz Hofer
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, UK
| | - Alexander K Winkel
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3DY, UK
| | - Giuliano G Stirparo
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, UK
| | - Hannah T Stuart
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, UK
| | - Christophe M Verstreken
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, UK
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, CB3 0HE, UK
| | - Carla Mulas
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, UK
| | - William Mansfield
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, UK
| | - Paul Bertone
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, UK
- Department of Medicine, Alpert Medical School, Brown University, Providence, IR, USA
| | - Kristian Franze
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3DY, UK
- Institute of Medical Physics, Friedrich-Alexander University Erlangen-Nuremberg, 91052, Erlangen, Germany
- Max-Planck-Zentrum für Physik und Medizin, 91054, Erlangen, Germany
| | - José C R Silva
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, UK.
- Center for Cell Lineage and Atlas, Guangzhou Laboratory, Guangzhou International Bio Island, 510005, Guangzhou, Guangdong Province, China.
| | - Kevin J Chalut
- Wellcome-MRC Cambridge Stem Cell Institute, University of Cambridge, Puddicombe Way, Cambridge, CB2 0AW, UK.
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, CB3 0HE, UK.
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge, CB2 3DY, UK.
| |
Collapse
|
87
|
Pillai VV, Koganti PP, Kei TG, Gurung S, Butler WR, Selvaraj V. Efficient induction and sustenance of pluripotent stem cells from bovine somatic cells. Biol Open 2021; 10:272681. [PMID: 34719702 PMCID: PMC8565620 DOI: 10.1242/bio.058756] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 09/14/2021] [Indexed: 12/13/2022] Open
Abstract
Although derivation of naïve bovine embryonic stem cells is unachieved, the possibility for generation of bovine induced pluripotent stem cells (biPSCs) has been generally reported. However, attempts to sustain biPSCs by promoting self-renewal have not been successful. Methods established for maintaining murine and human induced pluripotent stem cells (iPSCs) do not support self-renewal of iPSCs for any bovid species. In this study, we examined methods to enhance complete reprogramming and concurrently investigated signaling relevant to pluripotency of the bovine blastocyst inner cell mass (ICM). First, we identified that forced expression of SV40 large T antigen together with the reprogramming genes (OCT4, SOX2, KLF4 and MYC) substantially enhanced the reprogramming efficacy of bovine fibroblasts to biPSCs. Second, we uncovered that TGFβ signaling is actively perturbed in the ICM. Inhibition of ALK4/5/7 to block TGFβ/activin/nodal signaling together with GSK3β and MEK1/2 supported robust in vitro self-renewal of naïve biPSCs with unvarying colony morphology, steady expansion, expected pluripotency gene expression and committed differentiation plasticity. Core similarities between biPSCs and stem cells of the 16-cell-stage bovine embryo indicated a stable ground state of pluripotency; this allowed us to reliably gain predictive understanding of signaling in bovine pluripotency using systems biology approaches. Beyond defining a high-fidelity platform for advancing biPSC-based biotechnologies that have not been previously practicable, these findings also represent a significant step towards understanding corollaries and divergent aspects of bovine pluripotency. This article has an associated First Person interview with the joint first authors of the paper. Summary: Pluripotency reprogramming by overcoming the stable epigenome of bovine cells, and uncovering precise early embryo self-renewal mechanisms enables sustenance and expansion of authentic induced pluripotent stem cells in vitro.
Collapse
Affiliation(s)
- Viju Vijayan Pillai
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY14853, USA
| | - Prasanthi P Koganti
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY14853, USA
| | - Tiffany G Kei
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY14853, USA
| | - Shailesh Gurung
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY14853, USA
| | - W Ronald Butler
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY14853, USA
| | - Vimal Selvaraj
- Department of Animal Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY14853, USA
| |
Collapse
|
88
|
Su Y, Wang L, Fan Z, Liu Y, Zhu J, Kaback D, Oudiz J, Patrick T, Yee SP, Tian X(C, Polejaeva I, Tang Y. Establishment of Bovine-Induced Pluripotent Stem Cells. Int J Mol Sci 2021; 22:ijms221910489. [PMID: 34638830 PMCID: PMC8508593 DOI: 10.3390/ijms221910489] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/04/2021] [Accepted: 09/24/2021] [Indexed: 11/22/2022] Open
Abstract
Pluripotent stem cells (PSCs) have been successfully developed in many species. However, the establishment of bovine-induced pluripotent stem cells (biPSCs) has been challenging. Here we report the generation of biPSCs from bovine mesenchymal stem cells (bMSCs) by overexpression of lysine-specific demethylase 4A (KDM4A) and the other reprogramming factors OCT4, SOX2, KLF4, cMYC, LIN28, and NANOG (KdOSKMLN). These biPSCs exhibited silenced transgene expression at passage 10, and had prolonged self-renewal capacity for over 70 passages. The biPSCs have flat, primed-like PSC colony morphology in combined media of knockout serum replacement (KSR) and mTeSR, but switched to dome-shaped, naïve-like PSC colony morphology in mTeSR medium and 2i/LIF with single cell colonization capacity. These cells have comparable proliferation rate to the reported primed- or naïve-state human PSCs, with three-germ layer differentiation capacity and normal karyotype. Transcriptome analysis revealed a high similarity of biPSCs to reported bovine embryonic stem cells (ESCs) and embryos. The naïve-like biPSCs can be incorporated into mouse embryos, with the extended capacity of integration into extra-embryonic tissues. Finally, at least 24.5% cloning efficiency could be obtained in nuclear transfer (NT) experiment using late passage biPSCs as nuclear donors. Our report represents a significant advance in the establishment of bovine PSCs.
Collapse
Affiliation(s)
- Yue Su
- Department of Animal Science, Institute of Systems Genetics, University of Connecticut, Storrs, CT 06268, USA; (Y.S.); (L.W.); (J.Z.); (J.O.); (X.T.)
| | - Ling Wang
- Department of Animal Science, Institute of Systems Genetics, University of Connecticut, Storrs, CT 06268, USA; (Y.S.); (L.W.); (J.Z.); (J.O.); (X.T.)
| | - Zhiqiang Fan
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT 84322, USA; (Z.F.); (Y.L.); (T.P.)
| | - Ying Liu
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT 84322, USA; (Z.F.); (Y.L.); (T.P.)
| | - Jiaqi Zhu
- Department of Animal Science, Institute of Systems Genetics, University of Connecticut, Storrs, CT 06268, USA; (Y.S.); (L.W.); (J.Z.); (J.O.); (X.T.)
| | - Deborah Kaback
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06030, USA; (D.K.); (S.P.Y.)
| | - Julia Oudiz
- Department of Animal Science, Institute of Systems Genetics, University of Connecticut, Storrs, CT 06268, USA; (Y.S.); (L.W.); (J.Z.); (J.O.); (X.T.)
| | - Tayler Patrick
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT 84322, USA; (Z.F.); (Y.L.); (T.P.)
| | - Siu Pok Yee
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06030, USA; (D.K.); (S.P.Y.)
| | - Xiuchun (Cindy) Tian
- Department of Animal Science, Institute of Systems Genetics, University of Connecticut, Storrs, CT 06268, USA; (Y.S.); (L.W.); (J.Z.); (J.O.); (X.T.)
| | - Irina Polejaeva
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT 84322, USA; (Z.F.); (Y.L.); (T.P.)
- Correspondence: (I.P.); (Y.T.)
| | - Young Tang
- Department of Animal Science, Institute of Systems Genetics, University of Connecticut, Storrs, CT 06268, USA; (Y.S.); (L.W.); (J.Z.); (J.O.); (X.T.)
- Correspondence: (I.P.); (Y.T.)
| |
Collapse
|
89
|
Pereckova J, Pekarova M, Szamecova N, Hoferova Z, Kamarytova K, Falk M, Perecko T. Nitro-Oleic Acid Inhibits Stemness Maintenance and Enhances Neural Differentiation of Mouse Embryonic Stem Cells via STAT3 Signaling. Int J Mol Sci 2021; 22:ijms22189981. [PMID: 34576143 PMCID: PMC8468660 DOI: 10.3390/ijms22189981] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/19/2021] [Accepted: 09/12/2021] [Indexed: 12/15/2022] Open
Abstract
Nitro-oleic acid (NO2-OA), pluripotent cell-signaling mediator, was recently described as a modulator of the signal transducer and activator of transcription 3 (STAT3) activity. In our study, we discovered new aspects of NO2-OA involvement in the regulation of stem cell pluripotency and differentiation. Murine embryonic stem cells (mESC) or mESC-derived embryoid bodies (EBs) were exposed to NO2-OA or oleic acid (OA) for selected time periods. Our results showed that NO2-OA but not OA caused the loss of pluripotency of mESC cultivated in leukemia inhibitory factor (LIF) rich medium via the decrease of pluripotency markers (NANOG, sex-determining region Y-box 1 transcription factor (SOX2), and octamer-binding transcription factor 4 (OCT4)). The effects of NO2-OA on mESC correlated with reduced phosphorylation of STAT3. Subsequent differentiation led to an increase of the ectodermal marker orthodenticle homolog 2 (Otx2). Similarly, treatment of mESC-derived EBs by NO2-OA resulted in the up-regulation of both neural markers Nestin and β-Tubulin class III (Tubb3). Interestingly, the expression of cardiac-specific genes and beating of EBs were significantly decreased. In conclusion, NO2-OA is able to modulate pluripotency of mESC via the regulation of STAT3 phosphorylation. Further, it attenuates cardiac differentiation on the one hand, and on the other hand, it directs mESC into neural fate.
Collapse
Affiliation(s)
- Jana Pereckova
- Institute of Biophysics of the Czech Academy of Sciences, Department of Cell Biology and Radiobiology, Kralovopolska 135, 612 65 Brno, Czech Republic; (M.P.); (N.S.); (Z.H.); (K.K.); (M.F.); (T.P.)
- Correspondence:
| | - Michaela Pekarova
- Institute of Biophysics of the Czech Academy of Sciences, Department of Cell Biology and Radiobiology, Kralovopolska 135, 612 65 Brno, Czech Republic; (M.P.); (N.S.); (Z.H.); (K.K.); (M.F.); (T.P.)
| | - Nikoletta Szamecova
- Institute of Biophysics of the Czech Academy of Sciences, Department of Cell Biology and Radiobiology, Kralovopolska 135, 612 65 Brno, Czech Republic; (M.P.); (N.S.); (Z.H.); (K.K.); (M.F.); (T.P.)
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Zuzana Hoferova
- Institute of Biophysics of the Czech Academy of Sciences, Department of Cell Biology and Radiobiology, Kralovopolska 135, 612 65 Brno, Czech Republic; (M.P.); (N.S.); (Z.H.); (K.K.); (M.F.); (T.P.)
| | - Kristyna Kamarytova
- Institute of Biophysics of the Czech Academy of Sciences, Department of Cell Biology and Radiobiology, Kralovopolska 135, 612 65 Brno, Czech Republic; (M.P.); (N.S.); (Z.H.); (K.K.); (M.F.); (T.P.)
- Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| | - Martin Falk
- Institute of Biophysics of the Czech Academy of Sciences, Department of Cell Biology and Radiobiology, Kralovopolska 135, 612 65 Brno, Czech Republic; (M.P.); (N.S.); (Z.H.); (K.K.); (M.F.); (T.P.)
| | - Tomas Perecko
- Institute of Biophysics of the Czech Academy of Sciences, Department of Cell Biology and Radiobiology, Kralovopolska 135, 612 65 Brno, Czech Republic; (M.P.); (N.S.); (Z.H.); (K.K.); (M.F.); (T.P.)
| |
Collapse
|
90
|
Christianson J, Oxford JT, Jorcyk CL. Emerging Perspectives on Leukemia Inhibitory Factor and its Receptor in Cancer. Front Oncol 2021; 11:693724. [PMID: 34395259 PMCID: PMC8358831 DOI: 10.3389/fonc.2021.693724] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Accepted: 07/13/2021] [Indexed: 12/26/2022] Open
Abstract
Tumorigenesis and metastasis have deep connections to inflammation and inflammatory cytokines, but the mechanisms underlying these relationships are poorly understood. Leukemia Inhibitory Factor (LIF) and its receptor (LIFR), part of the interleukin-6 (IL-6) cytokine family, make up one such ill-defined piece of the puzzle connecting inflammation to cancer. Although other members of the IL-6 family have been shown to be involved in the metastasis of multiple types of cancer, the role of LIF and LIFR has been challenging to determine. Described by others in the past as enigmatic and paradoxical, LIF and LIFR are expressed in a diverse array of cells in the body, and the narrative surrounding them in cancer-related processes has been vague, and at times even contradictory. Despite this, recent insights into their functional roles in cancer have highlighted interesting patterns that may allude to a broader understanding of LIF and LIFR within tumor growth and metastasis. This review will discuss in depth the signaling pathways activated by LIF and LIFR specifically in the context of cancer-the purpose being to summarize recent literature concerning the downstream effects of LIF/LIFR signaling in a variety of cancer-related circumstances in an effort to begin teasing out the intricate web of contradictions that have made this pair so challenging to define.
Collapse
Affiliation(s)
- Joe Christianson
- Department of Biological Sciences, Boise State University, Boise, ID, United States
- Biomolecular Sciences Program, Boise State University, Boise, ID, United States
| | - Julia Thom Oxford
- Department of Biological Sciences, Boise State University, Boise, ID, United States
- Biomolecular Sciences Program, Boise State University, Boise, ID, United States
| | - Cheryl L. Jorcyk
- Department of Biological Sciences, Boise State University, Boise, ID, United States
- Biomolecular Sciences Program, Boise State University, Boise, ID, United States
| |
Collapse
|
91
|
Francia M, Stortz M, Echegaray CV, Oses C, Verneri P, Petrone MV, Toro A, Waisman A, Miriuka S, Cosentino MS, Levi V, Guberman A. SUMO conjugation susceptibility of Akt/protein kinase B affects the expression of the pluripotency transcription factor Nanog in embryonic stem cells. PLoS One 2021; 16:e0254447. [PMID: 34242346 PMCID: PMC8270172 DOI: 10.1371/journal.pone.0254447] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 06/27/2021] [Indexed: 12/24/2022] Open
Abstract
Akt/PKB is a kinase involved in the regulation of a wide variety of cell processes. Its activity is modulated by diverse post-translational modifications (PTMs). Particularly, conjugation of the small ubiquitin-related modifier (SUMO) to this kinase impacts on multiple cellular functions, such as proliferation and splicing. In embryonic stem (ES) cells, this kinase is key for pluripotency maintenance. Among other functions, Akt is known to promote the expression of Nanog, a central pluripotency transcription factor (TF). However, the relevance of this specific PTM of Akt has not been previously analyzed in this context. In this work, we study the effect of Akt1 variants with differential SUMOylation susceptibility on the expression of Nanog. Our results demonstrate that both, the Akt1 capability of being modified by SUMO conjugation and a functional SUMO conjugase activity are required to induce Nanog gene expression. Likewise, we found that the common oncogenic E17K Akt1 mutant affected Nanog expression in ES cells also in a SUMOylatability dependent manner. Interestingly, this outcome takes places in ES cells but not in a non-pluripotent heterologous system, suggesting the presence of a crucial factor for this induction in ES cells. Remarkably, the two major candidate factors to mediate this induction, GSK3-β and Tbx3, are non-essential players of this effect, suggesting a complex mechanism probably involving non-canonical pathways. Furthermore, we found that Akt1 subcellular distribution does not depend on its SUMOylatability, indicating that Akt localization has no influence on the effect on Nanog, and that besides the membrane localization of E17K Akt mutant, SUMOylation is also required for its hyperactivity. Our results highlight the impact of SUMO conjugation in the function of a kinase relevant for a plethora of cellular processes, including the control of a key pluripotency TF.
Collapse
Affiliation(s)
- Marcos Francia
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN, CONICET-UBA), Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Martin Stortz
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN, CONICET-UBA), Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Camila Vazquez Echegaray
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN, CONICET-UBA), Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Camila Oses
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN, CONICET-UBA), Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Paula Verneri
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN, CONICET-UBA), Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - María Victoria Petrone
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN, CONICET-UBA), Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Ayelen Toro
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN, CONICET-UBA), Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Ariel Waisman
- Laboratorio de Investigación Aplicada a las Neurociencias Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia (LIAN, FLENI-CONICET), Escobar, Provincia de Buenos Aires, Argentina
| | - Santiago Miriuka
- Laboratorio de Investigación Aplicada a las Neurociencias Fundación para la Lucha contra las Enfermedades Neurológicas de la Infancia (LIAN, FLENI-CONICET), Escobar, Provincia de Buenos Aires, Argentina
| | - María Soledad Cosentino
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN, CONICET-UBA), Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Valeria Levi
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN, CONICET-UBA), Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Alejandra Guberman
- Instituto de Química Biológica de la Facultad de Ciencias Exactas y Naturales (IQUIBICEN, CONICET-UBA), Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
- Departamento de Fisiología y Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
92
|
Kim K, Park S, Kim H, Min S, Ku S, Seo J, Roh S. Enterococcus faecium L-15 Extract Enhances the Self-Renewal and Proliferation of Mouse Skin-Derived Precursor Cells. Probiotics Antimicrob Proteins 2021; 12:1492-1501. [PMID: 32162154 DOI: 10.1007/s12602-020-09635-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Lactic acid bacteria (LAB) in the gastrointestinal tract have beneficial health effects. LAB activate the proliferation of intestinal stem cells and speed the recovery of damaged intestinal cells, but little is known about effect of LAB on other adult stem cells. In this study, a cell-free extract of Enterococcus faecium L-15 (L15) was exposed to mouse skin-derived precursor cells (SKPs), and the changes in characteristics associated with proliferation and self-renewal capacity were investigated. L15 increased the size of the spheres and the proliferation rate of SKPs. Cell cycle analysis revealed that cells in the S-phase increased after treatment with L15. In the L15-treated group, the total number of spheres significantly increased. The expression level of pluripotency marker genes also increased, while the mesenchymal lineage-related differentiation marker genes significantly decreased in the L15-treated group. The PI3K/Akt signaling pathway was activated by L15 in SKPs. These results indicate that L15 enhances proliferation and self-renewal of SKPs and may be used as a supplement for stem cell maintenance or application of stem cell therapy. This is the first report to investigate the functional effects of E. faecium on the proliferation and self-renewal capacity of SKPs.
Collapse
Affiliation(s)
- Kichul Kim
- Cellular Reprogramming and Embryo Biotechnology Laboratory, Dental Research Institute, BK21, Seoul National University School of Dentistry, Seoul, 08826, South Korea
| | - Sangkyu Park
- Cellular Reprogramming and Embryo Biotechnology Laboratory, Dental Research Institute, BK21, Seoul National University School of Dentistry, Seoul, 08826, South Korea.,Biomedical Research Institute, Neoregen Biotech Co., Ltd., Gyeonggi-do, 16614, South Korea
| | - Hyewon Kim
- Cellular Reprogramming and Embryo Biotechnology Laboratory, Dental Research Institute, BK21, Seoul National University School of Dentistry, Seoul, 08826, South Korea
| | - Sol Min
- Cellular Reprogramming and Embryo Biotechnology Laboratory, Dental Research Institute, BK21, Seoul National University School of Dentistry, Seoul, 08826, South Korea
| | - Seockmo Ku
- Fermentation Science Program, School of Agriculture, College of Basic and Applied Sciences, Middle Tennessee State University, Murfreesboro, TN, 37132, USA
| | - Jeongmin Seo
- Cellular Reprogramming and Embryo Biotechnology Laboratory, Dental Research Institute, BK21, Seoul National University School of Dentistry, Seoul, 08826, South Korea. .,Biomedical Research Institute, Neoregen Biotech Co., Ltd., Gyeonggi-do, 16614, South Korea.
| | - Sangho Roh
- Cellular Reprogramming and Embryo Biotechnology Laboratory, Dental Research Institute, BK21, Seoul National University School of Dentistry, Seoul, 08826, South Korea.
| |
Collapse
|
93
|
Soh R, Hardy A, Zur Nieden NI. The FOXO signaling axis displays conjoined functions in redox homeostasis and stemness. Free Radic Biol Med 2021; 169:224-237. [PMID: 33878426 PMCID: PMC9910585 DOI: 10.1016/j.freeradbiomed.2021.04.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 02/07/2023]
Abstract
Previous views of reactive oxygen species (ROS) depicted them as harmful byproducts of metabolism as uncontrolled levels of ROS can lead to DNA damage and cell death. However, recent studies have shed light into the key role of ROS in the self-renewal or differentiation of the stem cell. The interplay between ROS levels, metabolism, and the downstream redox signaling pathways influence stem cell fate. In this review we will define ROS, explain how they are generated, and how ROS signaling can influence transcription factors, first and foremost forkhead box-O transcription factors, that shape not only the cellular redox state, but also stem cell fate. Now that studies have illustrated the importance of redox homeostasis and the role of redox signaling, understanding the mechanisms behind this interplay will further shed light into stem cell biology.
Collapse
Affiliation(s)
- Ruthia Soh
- Department of Molecular, Cell and Systems Biology, College of Natural and Agricultural Sciences, University of California Riverside, Riverside, 92521, CA, USA
| | - Ariana Hardy
- Department of Molecular, Cell and Systems Biology, College of Natural and Agricultural Sciences, University of California Riverside, Riverside, 92521, CA, USA
| | - Nicole I Zur Nieden
- Department of Molecular, Cell and Systems Biology, College of Natural and Agricultural Sciences, University of California Riverside, Riverside, 92521, CA, USA; Stem Cell Center, College of Natural and Agricultural Sciences, University of California Riverside, Riverside, 92521, CA, USA.
| |
Collapse
|
94
|
Kummer KK, Zeidler M, Kalpachidou T, Kress M. Role of IL-6 in the regulation of neuronal development, survival and function. Cytokine 2021; 144:155582. [PMID: 34058569 DOI: 10.1016/j.cyto.2021.155582] [Citation(s) in RCA: 103] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/07/2021] [Accepted: 05/11/2021] [Indexed: 12/17/2022]
Abstract
The pleiotropic cytokine interleukin-6 (IL-6) is emerging as a molecule with both beneficial and destructive potentials. It can exert opposing actions triggering either neuron survival after injury or causing neurodegeneration and cell death in neurodegenerative or neuropathic disorders. Importantly, neurons respond differently to IL-6 and this critically depends on their environment and whether they are located in the peripheral or the central nervous system. In addition to its hub regulator role in inflammation, IL-6 is recently emerging as an important regulator of neuron function in health and disease, offering exciting possibilities for more mechanistic insight into the pathogenesis of mental, neurodegenerative and pain disorders and for developing novel therapies for diseases with neuroimmune and neurogenic pathogenic components.
Collapse
Affiliation(s)
- Kai K Kummer
- Institute of Physiology, Medical University of Innsbruck, Austria
| | | | | | - Michaela Kress
- Institute of Physiology, Medical University of Innsbruck, Austria.
| |
Collapse
|
95
|
Ye X, Tian C, Liu L, Feng G, Jin K, Wang H, Chen J, Liu L. Oncostatin M Maintains Naïve Pluripotency of mESCs by Tetraploid Embryo Complementation (TEC) Assay. Front Cell Dev Biol 2021; 9:675411. [PMID: 34124061 PMCID: PMC8189179 DOI: 10.3389/fcell.2021.675411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 05/03/2021] [Indexed: 11/13/2022] Open
Abstract
It has been well established that leukemia inhibitory factor (LIF) is essential for maintaining naïve pluripotency of embryonic stem cells (ESCs). Oncostatin M (OSM) is a member of the IL-6 family of cytokines which share gp130 as a receptor subunit, and the OSM-gp130 complex can recruit either LIF receptor β or OSM receptor β. Here we show that OSM can completely replace LIF to maintain naïve pluripotency of ESCs. Mouse ESCs (mESCs) cultured in the presence of LIF or OSM not only express pluripotency genes at similar levels but also exhibit the same developmental pluripotency as evidenced by the generation of germline competent chimeras, supporting previous findings. Moreover, we demonstrate by tetraploid embryo complementation assay, the most stringent functional test of authentic pluripotency that mESCs cultured in OSM produce viable all-ESC pups. Furthermore, telomere length and telomerase activity, which are also crucial for unlimited self-renewal and genomic stability of mESCs, do not differ in mESCs cultured under OSM or LIF. The transcriptome of mESCs cultured in OSM overall is very similar to that of LIF, and OSM activates Stat3 signaling pathway, like LIF. Additionally, OSM upregulates pentose and glucuronate interconversion, ascorbate and aldarate metabolism, and steroid and retinol metabolic pathways. Although the significance of these pathways remains to be determined, our data shows that OSM can maintain naïve pluripotent stem cells in the absence of LIF.
Collapse
Affiliation(s)
- Xiaoying Ye
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China.,Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin, China
| | - Chenglei Tian
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China.,Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin, China.,Novo Nordisk Foundation Center for Stem Cell Biology (DanStem), University of Copenhagen, Copenhagen, Denmark
| | - Linlin Liu
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China.,Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin, China
| | - Guofeng Feng
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China.,Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin, China
| | - Kairang Jin
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China.,Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin, China
| | - Haiying Wang
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China.,Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin, China
| | - Jiyu Chen
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China.,Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin, China
| | - Lin Liu
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China.,Department of Cell Biology and Genetics, College of Life Sciences, Nankai University, Tianjin, China
| |
Collapse
|
96
|
Filppu P, Tanjore Ramanathan J, Granberg KJ, Gucciardo E, Haapasalo H, Lehti K, Nykter M, Le Joncour V, Laakkonen P. CD109-GP130 interaction drives glioblastoma stem cell plasticity and chemoresistance through STAT3 activity. JCI Insight 2021; 6:141486. [PMID: 33986188 PMCID: PMC8262342 DOI: 10.1172/jci.insight.141486] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 04/01/2021] [Indexed: 12/21/2022] Open
Abstract
Glioma stem cells (GSCs) drive propagation and therapeutic resistance of glioblastomas, the most aggressive diffuse brain tumors. However, the molecular mechanisms that maintain the stemness and promote therapy resistance remain poorly understood. Here we report CD109/STAT3 axis as crucial for the maintenance of stemness and tumorigenicity of GSCs and as a mediator of chemoresistance. Mechanistically, CD109 physically interacts with glycoprotein 130 to promote activation of the IL-6/STAT3 pathway in GSCs. Genetic depletion of CD109 abolished the stemness and self-renewal of GSCs and impaired tumorigenicity. Loss of stemness was accompanied with a phenotypic shift of GSCs to more differentiated astrocytic-like cells. Importantly, genetic or pharmacologic targeting of CD109/STAT3 axis sensitized the GSCs to chemotherapy, suggesting that targeting CD109/STAT3 axis has potential to overcome therapy resistance in glioblastoma.
Collapse
Affiliation(s)
- Pauliina Filppu
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | | | - Kirsi J. Granberg
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Science Center, Tampere University Hospital, Tampere, Finland
| | - Erika Gucciardo
- Individualized Drug Therapy Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Hannu Haapasalo
- Department of Pathology, Fimlab Laboratories, Tampere University Hospital and University of Tampere, Tampere, Finland
| | - Kaisa Lehti
- Individualized Drug Therapy Program, Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- Department of Biomedical Laboratory Science, Faculty of Natural Sciences, Norwegian University of Science and Technology, Trondheim, Norway
| | - Matti Nykter
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Vadim Le Joncour
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Pirjo Laakkonen
- Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Laboratory Animal Centre, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| |
Collapse
|
97
|
Wang X, Ruan Y, Zhang J, Tian Y, Liu L, Wang J, Liu G, Cheng Y, Xu Y, Yang Y, Yu M, Zhao B, Zhang Y, Wang J, Wang J, Wu W, He P, Xiao L, Xiong J, Jian R. Expression levels and activation status of Yap splicing isoforms determine self-renewal and differentiation potential of embryonic stem cells. STEM CELLS (DAYTON, OHIO) 2021; 39:1178-1191. [PMID: 33938099 DOI: 10.1002/stem.3389] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 03/30/2021] [Indexed: 11/10/2022]
Abstract
Yap is the key effector of Hippo signaling; however, its role in embryonic stem cells (ESCs) remains controversial. Here, we identify two Yap splicing isoforms (Yap472 and Yap488), which show equal expression levels but heterogeneous distribution in ESCs. Knockout (KO) of both isoforms reduces ESC self-renewal, accelerates pluripotency exit, but arrests terminal differentiation, while overexpression of each isoform leads to the reverse phenotype. The effect of both Yap isoforms on self-renewal is Teads-dependent and mediated by c-Myc. Nonetheless, different isoforms are found to affect overlapping yet distinct genes, and confer different developmental potential to Yap-KO cells, with Yap472 exerting a more pronounced biological effect and being more essential for neuroectoderm differentiation. Constitutive activation of Yaps, particularly Yap472, dramatically upregulates p53 and Cdx2, inducing trophectoderm trans-differentiation even under self-renewal conditions. These findings reveal the combined roles of different Yap splicing isoforms and mechanisms in regulating self-renewal efficiency and differentiation potential of ESCs.
Collapse
Affiliation(s)
- Xueyue Wang
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, Army Medical University, Chongqing, People's Republic of China.,Department of Paediatrics, The General Hospital of PLA Tibet Military Area Command, Lhasa, People's Republic of China
| | - Yan Ruan
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, Army Medical University, Chongqing, People's Republic of China
| | - Junlei Zhang
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, Army Medical University, Chongqing, People's Republic of China
| | - Yanping Tian
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, Army Medical University, Chongqing, People's Republic of China
| | - Lianlian Liu
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, Army Medical University, Chongqing, People's Republic of China
| | - JiaLi Wang
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, Army Medical University, Chongqing, People's Republic of China
| | - Gaoke Liu
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, Army Medical University, Chongqing, People's Republic of China
| | - Yuda Cheng
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, Army Medical University, Chongqing, People's Republic of China
| | - Yixiao Xu
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, Army Medical University, Chongqing, People's Republic of China.,Southwest Hospital/Southwest Eye Hospital, The First Hospital Affiliated to Army Medical University, Chongqing, People's Republic of China
| | - Yi Yang
- Experimental Center of Basic Medicine, College of Basic Medical Sciences, Army Medical University, Chongqing, People's Republic of China
| | - Meng Yu
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, Army Medical University, Chongqing, People's Republic of China
| | - Binyu Zhao
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, Army Medical University, Chongqing, People's Republic of China
| | - Yue Zhang
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, Army Medical University, Chongqing, People's Republic of China.,Southwest Hospital/Southwest Eye Hospital, The First Hospital Affiliated to Army Medical University, Chongqing, People's Republic of China
| | - Jiaqi Wang
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, Army Medical University, Chongqing, People's Republic of China
| | - Jiangjun Wang
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, Army Medical University, Chongqing, People's Republic of China
| | - Wei Wu
- Thoracic Surgery Department, Southwest Hospital, The First Hospital Affiliated to Army Medical University, Chongqing, People's Republic of China
| | - Ping He
- Cardiac Surgery Department, Southwest Hospital, The First Hospital Affiliated to Army Medical University, Chongqing, People's Republic of China
| | - Lan Xiao
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, Army Medical University, Chongqing, People's Republic of China
| | - Jiaxiang Xiong
- Experimental Center of Basic Medicine, College of Basic Medical Sciences, Army Medical University, Chongqing, People's Republic of China
| | - Rui Jian
- Laboratory of Stem Cell & Developmental Biology, Department of Histology and Embryology, Army Medical University, Chongqing, People's Republic of China
| |
Collapse
|
98
|
Aquaporins implicated in the cell proliferation and the signaling pathways of cell stemness. Biochimie 2021; 188:52-60. [PMID: 33894294 DOI: 10.1016/j.biochi.2021.04.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2020] [Revised: 04/11/2021] [Accepted: 04/16/2021] [Indexed: 12/20/2022]
Abstract
Aquaporins (AQPs) are water channel proteins facilitating passive transport of water and other small molecules across biomembranes. Regulation of osmotic homeostasis via AQPs is accompanied by dynamic participation of various cellular signaling pathways. Recently emerging evidence reveals that functional roles of AQPs are further extended from the osmotic regulation via water permeation into the cell proliferation and differentiation. In particular, anomalous expression of AQPs has been demonstrated in various types of cancer cells and cancer stem-like cells and it has been proposed as markers for proliferation and progression of cancer cells. Thus, a more comprehensive view on AQPs could bring a great interest in the cell stemness accompanied by the expression of AQPs. AQPs are broadly expressed across tissues and cells in a cell type- and lineage-specific manner during development via spatiotemporal transcriptional regulation. Moreover, AQPs are expressed in various adult stem cells and cells associated with a stem cell niche as well as cancer stem-like cells. However, the expression and regulatory mechanisms of AQP expression in stem cells have not been well understood. This review highlighted the AQPs expression in stem cell niches/stem cells and the involvement of AQPs in the cell proliferation and signaling pathways associated with cell stemness.
Collapse
|
99
|
Song HR, Kim HK, Kim SG, Lim HJ, Kim HY, Han MK. Changes in the phosphorylation of nucleotide metabolism‑associated proteins by leukemia inhibitory factor in mouse embryonic stem cells. Mol Med Rep 2021; 23:431. [PMID: 33846773 PMCID: PMC8060798 DOI: 10.3892/mmr.2021.12070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 09/22/2020] [Indexed: 11/05/2022] Open
Abstract
Leukemia inhibitory factor (LIF) is a stem cell growth factor that maintains self‑renewal of mouse embryonic stem cells (mESCs). LIF is a cytokine in the interleukin‑6 family and signals via the common receptor subunit gp130 and ligand‑specific LIF receptor. LIF causes heterodimerization of the LIF receptor and gp130, activating the Janus kinase/STAT and MAPK pathways, resulting in changes in protein phosphorylation. The present study profiled LIF‑mediated protein phosphorylation changes in mESCs via proteomic analysis. mESCs treated in the presence or absence of LIF were analyzed via two‑dimensional differential in‑gel electrophoresis and protein and phosphoprotein staining. Protein identification was performed by matrix‑assisted laser desorption/ionization‑time of flight mass spectrophotometry. Increased phosphorylation of 16 proteins and decreased phosphorylation of 34 proteins in response to LIF treatment was detected. Gene Ontology terms enriched in these proteins included 'organonitrogen compound metabolic process', 'regulation of mRNA splicing via spliceosome' and 'nucleotide metabolic process'. The present results revealed that LIF modulated phosphorylation levels of nucleotide metabolism‑associated proteins, thus providing insight into the mechanism underlying LIF action in mESCs.
Collapse
Affiliation(s)
- Hwa-Ryung Song
- Department of Microbiology, Jeonbuk National University Medical School, Jeonju, Jeollabuk 54896, Republic of Korea
| | - Han-Kyu Kim
- Department of Microbiology, Jeonbuk National University Medical School, Jeonju, Jeollabuk 54896, Republic of Korea
| | - Seung-Gook Kim
- Department of Microbiology, Jeonbuk National University Medical School, Jeonju, Jeollabuk 54896, Republic of Korea
| | - Hyung-Jin Lim
- Department of Microbiology, Jeonbuk National University Medical School, Jeonju, Jeollabuk 54896, Republic of Korea
| | - Hyun-Yi Kim
- Division of Anatomy and Developmental Biology, Department of Oral Biology, Yonsei University College of Dentistry, Seoul 03722, Republic of Korea
| | - Myung-Kwan Han
- Department of Microbiology, Jeonbuk National University Medical School, Jeonju, Jeollabuk 54896, Republic of Korea
| |
Collapse
|
100
|
Liu JY, Zhang YC, Xie RR, Song LN, Yang WL, Xin Z, Cao X, Yang JK. Nifuroxazide improves insulin secretion and attenuates high glucose-induced inflammation and apoptosis in INS-1 cells. Eur J Pharmacol 2021; 899:174042. [PMID: 33745960 DOI: 10.1016/j.ejphar.2021.174042] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 03/12/2021] [Accepted: 03/12/2021] [Indexed: 12/14/2022]
Abstract
Inflammation and oxidative stress are important factors that cause islet β-cell dysfunction. STAT3 is not only a major factor in cell proliferation and differentiation, but also plays an important role in mediating inflammation. As a potent inhibitor of STAT3, the effect of Nifuroxazide (Nifu) on pancreatic islet cells in a high glucose environment has not been reported. In the present study, we used high concentration glucose-induced INS-1 cells to examine the effects of Nifu on high glucose-induced cell function by glucose-stimulated insulin secretion (GSIS). The effects of Nifu on high glucose-induced oxidative stress were recorded by oxidative factors and antioxidant factors. Simultaneously, the effect of Nifu on the inflammatory response, apoptosis, and STAT3/SOCS3 signal pathway were validated by quantitative real-time PCR (qRT-PCR) and Western blot. Our study indicated that Nifu significantly improved cell vitality and insulin secretion of INS-1 cells induced by high glucose. We found Nifu significantly inhibited pro-oxidative factors (ROS, MDA) and promoted anti-oxidative factors (SOD, GSH-PX, CAT). Meanwhile, qRT-PCR and Western blot results showed that inflammatory and apoptosis factors were remarkably inhibited by Nifu. Further research indicated that Nifu clearly suppressed the activation of the STAT3/SOCS3 signaling pathway. In conclusion, Nifu can significantly improve the insulin secretion function, protect oxidative stress injury, and reduce inflammatory response and apoptosis in high glucose-induced INS-1 cells. Therefore, Nifu has a new positive effect on maintaining the normal function of pancreatic islet cells in a high glucose environment and provides new drug candidates for the treatment and prevention of diabetes.
Collapse
Affiliation(s)
- Jing-Yi Liu
- Beijing Diabetes Institute, Beijing Key Laboratory of Diabetes Research and Care, Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Yi-Chen Zhang
- Beijing Diabetes Institute, Beijing Key Laboratory of Diabetes Research and Care, Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Rong-Rong Xie
- Beijing Diabetes Institute, Beijing Key Laboratory of Diabetes Research and Care, Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Li-Ni Song
- Beijing Diabetes Institute, Beijing Key Laboratory of Diabetes Research and Care, Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Wei-Li Yang
- Beijing Diabetes Institute, Beijing Key Laboratory of Diabetes Research and Care, Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Zhong Xin
- Beijing Diabetes Institute, Beijing Key Laboratory of Diabetes Research and Care, Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China
| | - Xi Cao
- Beijing Diabetes Institute, Beijing Key Laboratory of Diabetes Research and Care, Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China.
| | - Jin-Kui Yang
- Beijing Diabetes Institute, Beijing Key Laboratory of Diabetes Research and Care, Department of Endocrinology, Beijing Tongren Hospital, Capital Medical University, Beijing, 100730, China.
| |
Collapse
|