51
|
Huang JH, Han TT, Li LX, Qu T, Zhang XY, Liao X, Zhong Y. Host microRNAs regulate expression of hepatitis B virus genes during transmission from patients' sperm to embryo. Reprod Toxicol 2021; 100:1-6. [PMID: 33338580 DOI: 10.1016/j.reprotox.2020.11.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 09/21/2020] [Accepted: 11/06/2020] [Indexed: 02/05/2023]
Abstract
Human sperm nucleus contains diverse RNA populations. This study aimed to screen and identify host microRNAs (miRs) that regulate gene expression of hepatitis B virus (HBV) during transmission from patients' sperm to sperm-derived embryos. Using microarrays, 336 miRs were found to be differentially expressed. After validation using real-time quantitative RT-PCR (RT-qPCR), four miRs were selected as targets. Using RT-qPCR and enzyme-linked immunosorbent assays, when patients' sperm were treated with mimics (or inhibitors) specific for hsa-miR-19a-3p and hsa-miR-29c-3p, the S gene transcription in sperm and translation in sperm-derived embryos was downregulated (or upregulated). There were significant differences in transcriptional and translational levels of the S gene between the test and control groups. These findings suggest that hsa-miR-19a-3p and hsa-miR-29c-3p significantly suppressed expression of the S gene, offering potential therapeutic targets for treating patients with HBV infection, and further reducing the negative impact of HBV infection on sperm fertilizing capacity.
Collapse
Affiliation(s)
- Ji-Hua Huang
- Chengdu Jinxin Research Institute for Reproductive Medicine and Genetics, 66 Bisheng Road, Chengdu, China.
| | - Ting-Ting Han
- Chengdu Jinxin Research Institute for Reproductive Medicine and Genetics, 66 Bisheng Road, Chengdu, China; Research Center for Reproductive Medicine, Shantou University Medical College, 22 Xinling Road, Shantou, 515041, China.
| | - Ling-Xiao Li
- Chengdu Jinxin Research Institute for Reproductive Medicine and Genetics, 66 Bisheng Road, Chengdu, China.
| | - Ting Qu
- Chengdu Jinxin Research Institute for Reproductive Medicine and Genetics, 66 Bisheng Road, Chengdu, China.
| | - Xin-Yue Zhang
- Chengdu Jinxin Research Institute for Reproductive Medicine and Genetics, 66 Bisheng Road, Chengdu, China.
| | - Xue Liao
- Chengdu Jinxin Research Institute for Reproductive Medicine and Genetics, 66 Bisheng Road, Chengdu, China.
| | - Ying Zhong
- Chengdu Jinxin Research Institute for Reproductive Medicine and Genetics, 66 Bisheng Road, Chengdu, China.
| |
Collapse
|
52
|
Roganović J. Downregulation of microRNA-146a in diabetes, obesity and hypertension may contribute to severe COVID-19. Med Hypotheses 2021; 146:110448. [PMID: 33338955 PMCID: PMC7836676 DOI: 10.1016/j.mehy.2020.110448] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2020] [Revised: 11/17/2020] [Accepted: 12/02/2020] [Indexed: 12/15/2022]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is able to produce an excessive host immune reaction and may leads to severe disease- a life-threatening condition occurring more often in patients suffering from comorbidities such as hypertension, diabetes and obesity. Infection by human corona viruses highly depends on host microRNA (miR) involved in regulation of host innate immune response and inflammation-modulatory miR-146a is among the first miRs induced by immune reaction to a virus. Moreover, recent analysis showed that miR-146 is predicted to target at the SARS-CoV-2 genome. As the dominant regulator of Toll-like receptors (TLRs) downstream signaling, miR-146a may limit excessive inflammatory response to virus. Downregulation of circulating miR-146a was found in diabetes, obesity and hypertension and it is reflected by enhanced inflammation and fibrosis, systemic effects accompanying severe COVID-19. Thus it could be hypothesized that miR-146a deficiency may contribute to severe COVID-19 state observed in diabetes, obesity and hypertension but further investigations are needed.
Collapse
Affiliation(s)
- Jelena Roganović
- Department of Pharmacology in Dentistry, School of Dental Medicine, University of Belgrade, Belgrade, Serbia.
| |
Collapse
|
53
|
Zhao J, Xie F, Chen R, Zhang Z, Dai R, Zhao N, Wang R, Sun Y, Chen Y. Transcription factor NF-κB promotes acute lung injury via microRNA-99b-mediated PRDM1 down-regulation. J Biol Chem 2020; 295:18638-18648. [PMID: 33109608 PMCID: PMC7939479 DOI: 10.1074/jbc.ra120.014861] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 10/08/2020] [Indexed: 01/12/2023] Open
Abstract
Acute lung injury (ALI), is a rapidly progressing heterogenous pulmonary disorder that possesses a high risk of mortality. Accumulating evidence has implicated the activation of the p65 subunit of NF-κB [NF-κB(p65)] activation in the pathological process of ALI. microRNAs (miRNAs), a group of small RNA molecules, have emerged as major governors due to their post-transcriptional regulation of gene expression in a wide array of pathological processes, including ALI. The dysregulation of miRNAs and NF-κB activation has been implicated in human diseases. In the current study, we set out to decipher the convergence of miR-99b and p65 NF-κB activation in ALI pathology. We measured the release of pro-inflammatory cytokines (IL-1β, IL-6, and TNFα) in bronchoalveolar lavage fluid using ELISA. MH-S cells were cultured and their viability were detected with cell counting kit 8 (CCK8) assays. The results showed that miR-99b was up-regulated, while PRDM1 was down-regulated in a lipopolysaccharide (LPS)-induced murine model of ALI. Mechanistic investigations showed that NF-κB(p65) was enriched at the miR-99b promoter region, and further promoted its transcriptional activity. Furthermore, miR-99b targeted PRDM1 by binding to its 3'UTR, causing its down-regulation. This in-creased lung injury, as evidenced by increased wet/dry ratio of mouse lung, myeloperoxidase activity and pro-inflammatory cytokine secretion, and enhanced infiltration of inflammatory cells in lung tissues. Together, our findings indicate that NF-κB(p65) promotion of miR-99b can aggravate ALI in mice by down-regulating the expression of PRDM1.
Collapse
Affiliation(s)
- Jie Zhao
- The Second Department of Pediatric, Cangzhou Central Hospital, Cangzhou, P. R. China.
| | - Fei Xie
- The Six Department of Pediatric, Cangzhou Central Hospital, Cangzhou, P. R. China
| | - Ruidong Chen
- The Six Department of Pediatric, Cangzhou Central Hospital, Cangzhou, P. R. China
| | - Zhen Zhang
- The Second Department of Pediatric, Cangzhou Central Hospital, Cangzhou, P. R. China
| | - Rujun Dai
- The Second Department of Pediatric, Cangzhou Central Hospital, Cangzhou, P. R. China
| | - Na Zhao
- The Second Department of Pediatric, Cangzhou Central Hospital, Cangzhou, P. R. China
| | - Rongxin Wang
- The Second Department of Pediatric, Cangzhou Central Hospital, Cangzhou, P. R. China
| | - Yanhong Sun
- The Second Department of Pediatric, Cangzhou Central Hospital, Cangzhou, P. R. China
| | - Yue Chen
- The Second Department of Pediatric, Cangzhou Central Hospital, Cangzhou, P. R. China
| |
Collapse
|
54
|
Yang L, Zhang Y, Bao J, Feng JF. Long non-coding RNA BCYRN1 exerts an oncogenic role in colorectal cancer by regulating the miR-204-3p/KRAS axis. Cancer Cell Int 2020; 20:453. [PMID: 32944001 PMCID: PMC7491190 DOI: 10.1186/s12935-020-01543-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 09/05/2020] [Indexed: 12/24/2022] Open
Abstract
Background It has been well documented that long non-coding RNAs (lncRNAs) regulate numerous characteristics of cancer, including proliferation, migration, metastasis, apoptosis, and even metabolism. LncRNA BCYRN1 (BCYRN1) is a newly identified brain cytoplasmic lncRNA with 200 nucleotides that was discovered to be highly expressed in tumour tissues, including those of hepatocellular carcinoma, gastric cancer and lung cancer. However, the roles of BCYRN1 in colorectal cancer (CRC) remain obscure. This study was designed to reveal the role of BCYRN1 in the occurrence and progression of CRC. Methods RT-PCR was used to detect the expression level of BCYRN1 in tumour tissues and CRC cell lines. BCYRN1 was knocked down in CRC cells, and cell proliferation changes were evaluated by cell counting kit-8 (CCK-8), 5-ethynyl-2′-deoxyuridine (EdU), and Ki-67 and proliferating cell nuclear antigen (PCNA) expression assays. Cell migration and invasion changes were evaluated by wound healing, Transwell and invasion-related protein expression assays. Flow cytometry analysis was used to assess whether BCYRN1 regulates the apoptosis of CRC cells. The dual luciferase reporter gene detects the competitive binding of BCYRN1 to miR-204-3p. In vivo experiments were performed to evaluate the effect of BCYRN1 on tumour development. TargetScan analysis and dual luciferase reporter gene assays were applied to detect the target gene of miR-204-3p. Rescue experiments verified that BCYRN1 affects CRC by regulating the effect of miR-204-3p on KRAS. Results We found that compared with normal tissues and human intestinal epithelial cells (HIECs), CRC tumour tissues and cell lines had significantly increased BCYRN1 levels. We further determined that knockdown of BCYRN1 inhibited the proliferation, migration, and invasion and promoted the apoptosis of CRC cells. In addition, bioinformatics analysis and dual luciferase reporter assay showed that BCYRN1 served as a competitive endogenous RNA (ceRNA) to regulate the development of CRC through competitively binding to miR-204-3p. Further studies proved that overexpression of miR-204-3p reversed the effects of BCYRN1 on CRC. Next, TargetScan analysis and dual luciferase reporter assay indicated that KRAS is a target gene of miR-204-3p and is negatively regulated by miR-204-3p. A series of rescue experiments showed that BCYRN1 affected the occurrence and development of CRC by regulating the effects of miR-204-3p on KRAS. In addition, tumorigenesis experiments in a CRC mouse model confirmed that BCYRN1 downregulation effectively inhibited tumour growth. Conclusions Our findings suggest that BCYRN1 plays a carcinogenic role in CRC by regulating the miR-204-3p/KRAS axis.
Collapse
Affiliation(s)
- Liu Yang
- Department of Colorectal Surgery, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, China
| | - Yinan Zhang
- Department of Colorectal Surgery, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, Nanjing, China
| | - Jun Bao
- Department of Chemotherapy, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, No. 42 Baiziting, Nanjing, China
| | - Ji-Feng Feng
- Department of Chemotherapy, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, No. 42 Baiziting, Nanjing, China
| |
Collapse
|
55
|
Wang R, Liu X, Wu J, Liu H, Wang W, Chen X, Yuan L, Wang Y, Du X, Ma Y, Losiewicz MD, Zhang X, Zhang H. Role of microRNA-122 in microcystin-leucine arginine-induced dysregulation of hepatic iron homeostasis in mice. ENVIRONMENTAL TOXICOLOGY 2020; 35:822-830. [PMID: 32170997 DOI: 10.1002/tox.22918] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 02/27/2020] [Accepted: 03/01/2020] [Indexed: 06/10/2023]
Abstract
Microcystin-leucine arginine (MC-LR) is a cyclic heptapeptide hepatotoxin produced by cyanobacteria. MicroRNA-122 (miR-122) is specifically expressed in the liver. This study focuses on the role of miR-122 in MC-LR-induced dysregulation of hepatic iron homeostasis in C57BL/6 mice. The thirty mice were randomly divided into five groups (Control, 12.5 μg/kg·BW MC-LR, 25 μg/kg·BW MC-LR, Negative control agomir and 25 μg/kg·BW MC-LR + miR-122 agomir). The results show that MC-LR decreases the expressions of miR-122, Hamp, and its related regulators, while increasing the content of hepatic iron and the expressions of FPN1 and Tmprss6. Furthermore, miR-122 agomir pretreatment improves MC-LR induced dysregulation of hepatic iron homeostasis by arousing the related regulators and reducing the expression of Tmprss6. These results suggest that miR-122 agomir can prevent the accumulation of hepatic iron induced by MC-LR, which may be related to the regulation of hepcidin by BMP/SMAD and IL-6/STAT signaling pathways.
Collapse
Affiliation(s)
- Rui Wang
- College of Public Health, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Xiaohui Liu
- School of Basic Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, People's Republic of China
| | - Jinxia Wu
- College of Public Health, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Haohao Liu
- College of Public Health, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Wenjun Wang
- School of Public Health, Jining Medical University, Jining, People's Republic of China
| | - Xinghai Chen
- Department of Chemistry and Biochemistry, St Mary's University, San Antonio, Texas, USA
| | - Le Yuan
- College of Public Health, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Yueqin Wang
- College of Public Health, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Xingde Du
- College of Public Health, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Ya Ma
- College of Public Health, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Michael D Losiewicz
- Department of Chemistry and Biochemistry, St Mary's University, San Antonio, Texas, USA
| | - Xiaofeng Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, People's Republic of China
| | - Huizhen Zhang
- College of Public Health, Zhengzhou University, Zhengzhou, People's Republic of China
| |
Collapse
|
56
|
Wu KJ. The role of miRNA biogenesis and DDX17 in tumorigenesis and cancer stemness. Biomed J 2020; 43:107-114. [PMID: 32513392 PMCID: PMC7283569 DOI: 10.1016/j.bj.2020.03.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 03/03/2020] [Accepted: 03/09/2020] [Indexed: 12/18/2022] Open
Abstract
Cancer stemness represents one of the major mechanisms that predispose patients to tumor aggressiveness, metastasis, and treatment resistance. MicroRNA biogenesis is an important process controlling miRNA processing and maturation. Deregulation of miRNA biogenesis can lead to tumorigenesis and cancer stemness. DDX17 is a co-factor of the miRNA microprocessor. Misregulation of DDX17 can be associated with cancer stemness. K63-linked polyubiquitination of DDX17 presents a concerted mechanism of decreased synthesis of stemness-inhibiting miRNAs and increased transcriptional activation of stemness-related gene expression. K63-linked polyubiquitination of HAUSP serves as a scaffold to anchor HIF-1α, CBP, the mediator complex, and the super-elongation complex to enhance HIF-1α-induced gene transcription. Recent progress in RNA modifications shows that RNA N6-methyladenosine (m6A) modification is a crucial mechanism to regulate RNA levels. M6A modification of miRNAs can also be linked to tumorigenesis and cancer stemness. Overall, miRNA biogenesis and K63-linked polyubiquitination of DDX17 play an important role in the induction of cancer stemness. Delineation of the mechanisms and identification of suitable targets may provide new therapeutic options for treatment-resistant cancers.
Collapse
Affiliation(s)
- Kou-Juey Wu
- Cancer Genome Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan; Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan; Institute of Clinical Medical Sciences, Chang Gung University, Taoyuan, Taiwan.
| |
Collapse
|
57
|
Spadotto V, Giambruno R, Massignani E, Mihailovich M, Maniaci M, Patuzzo F, Ghini F, Nicassio F, Bonaldi T. PRMT1-mediated methylation of the microprocessor-associated proteins regulates microRNA biogenesis. Nucleic Acids Res 2020; 48:96-115. [PMID: 31777917 PMCID: PMC6943135 DOI: 10.1093/nar/gkz1051] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 10/04/2019] [Accepted: 11/22/2019] [Indexed: 12/17/2022] Open
Abstract
MicroRNA (miRNA) biogenesis is a tightly controlled multi-step process operated in the nucleus by the activity of the Microprocessor and its associated proteins. Through high resolution mass spectrometry (MS)- proteomics we discovered that this complex is extensively methylated, with 84 methylated sites associated to 19 out of its 24 subunits. The majority of the modifications occurs on arginine (R) residues (61), leading to 81 methylation events, while 30 lysine (K)-methylation events occurs on 23 sites of the complex. Interestingly, both depletion and pharmacological inhibition of the Type-I Protein Arginine Methyltransferases (PRMTs) lead to a widespread change in the methylation state of the complex and induce global decrease of miRNA expression, as a consequence of the impairment of the pri-to-pre-miRNA processing step. In particular, we show that the reduced methylation of the Microprocessor subunit ILF3 is linked to its diminished binding to the pri-miRNAs miR-15a/16, miR-17-92, miR-301a and miR-331. Our study uncovers a previously uncharacterized role of R-methylation in the regulation of miRNA biogenesis in mammalian cells.
Collapse
Affiliation(s)
- Valeria Spadotto
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Roberto Giambruno
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Enrico Massignani
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Marija Mihailovich
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Marianna Maniaci
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Francesca Patuzzo
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Francesco Ghini
- Center for Genomic Science of IIT@SEMM, Istituto Italiano di Tecnologia, Milan, Italy
| | - Francesco Nicassio
- Center for Genomic Science of IIT@SEMM, Istituto Italiano di Tecnologia, Milan, Italy
| | - Tiziana Bonaldi
- Department of Experimental Oncology, IEO, European Institute of Oncology IRCCS, Milan, Italy
| |
Collapse
|
58
|
Mitochondrial Damage Mediated by miR-1 Overexpression in Cancer Stem Cells. MOLECULAR THERAPY-NUCLEIC ACIDS 2019; 18:938-953. [PMID: 31765945 PMCID: PMC6883328 DOI: 10.1016/j.omtn.2019.10.016] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 10/15/2019] [Accepted: 10/16/2019] [Indexed: 02/06/2023]
Abstract
It is well known that cells rely on mitochondrial respiration for survival. However, the effect of microRNAs (miRNAs) on mitochondria of cells has not been extensively explored. Our results indicated that the overexpression of a miRNA (miR-1) could destroy mitochondria of cancer stem cells. miR-1 was downregulated in melanoma stem cells (MSCs) and breast cancer stem cells (BCSCs) compared with cancer non-stem cells. However, the upregulation of miR-1 in cancer non-stem cells did not induce mitochondrial damage. miR-1 overexpression caused mitochondrial damage of cancer stem cells by directly targeting the 3′ UTRs of MINOS1 (mitochondrial inner membrane organizing system 1) and GPD2 (glycerol-3-phosphate dehydrogenase 2) genes and interacting with LRPPRC (leucine-rich pentatricopeptide-repeat containing) protein, a protein localized in mitochondria. MINOS1, GPD2, and LRPPRC in mitochondria were required for mitochondrial inner membrane. The results of in vitro and in vivo assays demonstrated that miR-1 overexpression induced mitophagy of cancer stem cells. Therefore, our study contributed novel insights into the mechanism of miRNA-mediated regulation of mitochondria morphology of cancer stem cells.
Collapse
|
59
|
Morenikeji OB, Hawkes ME, Hudson AO, Thomas BN. Computational Network Analysis Identifies Evolutionarily Conserved miRNA Gene Interactions Potentially Regulating Immune Response in Bovine Trypanosomosis. Front Microbiol 2019; 10:2010. [PMID: 31555241 PMCID: PMC6722470 DOI: 10.3389/fmicb.2019.02010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 08/16/2019] [Indexed: 12/19/2022] Open
Abstract
Bovine trypanosomosis is a devastating disease that causes huge economic loss to the global cattle industry on a yearly basis. Selection of accurate biomarkers are important in early disease diagnosis and treatment. Of late, micro-RNAs (miRNAs) are becoming the most useful biomarkers for both infectious and non-infectious diseases in humans, but this is not the case in animals. miRNAs are non-coding RNAs that regulate gene expression through binding to the 3'-, 5'-untranslated regions (UTR) or coding sequence (CDS) region of one or more target genes. The molecular identification of miRNAs that regulates the expression of immune genes responding to bovine trypanosomosis is poorly defined, as is the possibility that these miRNAs could serve as potential biomarkers for disease diagnosis and treatment currently unknown. To this end, we utilized in silico tools to elucidate conserved miRNAs regulating immune response genes during infection, in addition to cataloging significant genes. Based on the p value of 1.77E-32, we selected 25 significantly expressed immune genes. Using prediction analysis, we identified a total of 4,251 bovine miRNAs targeting these selected genes across the 3'UTR, 5'UTR and CDS regions. Thereafter, we identified candidate miRNAs based on the number of gene targets and their abundance at the three regions. In all, we found the top 13 miRNAs that are significantly conserved targeting 7 innate immune response genes, including bta-mir-2460, bta-mir-193a, bta-mir-2316, and bta-mir-2456. Our gene ontology analysis suggests that these miRNAs are involved in gene silencing, cellular protein modification process, RNA-induced silencing complex, regulation of humoral immune response mediated by circulating immunoglobulin and negative regulation of chronic inflammatory response, among others. In conclusion, this study identifies specific miRNAs that may be involved in the regulation of gene expression during bovine trypanosomosis. These miRNAs have the potential to be used as biomarkers in the animal and veterinary research community to facilitate the development of tools for early disease diagnosis/detection, drug targeting, and the rational design of drugs to facilitate disease treatment.
Collapse
Affiliation(s)
- Olanrewaju B. Morenikeji
- Department of Biomedical Sciences, Rochester Institute of Technology, Rochester, NY, United States
| | - Megan E. Hawkes
- Department of Biomedical Sciences, Rochester Institute of Technology, Rochester, NY, United States
| | - André O. Hudson
- Thomas H. Gosnell School of Life Sciences, Rochester Institute of Technology, Rochester, NY, United States
| | - Bolaji N. Thomas
- Department of Biomedical Sciences, Rochester Institute of Technology, Rochester, NY, United States
| |
Collapse
|
60
|
Kao SH, Cheng WC, Wang YT, Wu HT, Yeh HY, Chen YJ, Tsai MH, Wu KJ. Regulation of miRNA Biogenesis and Histone Modification by K63-Polyubiquitinated DDX17 Controls Cancer Stem-like Features. Cancer Res 2019; 79:2549-2563. [PMID: 30877109 DOI: 10.1158/0008-5472.can-18-2376] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 01/17/2019] [Accepted: 03/12/2019] [Indexed: 11/16/2022]
Abstract
Markers of cancer stemness predispose patients to tumor aggressiveness, drug and immunotherapy resistance, relapse, and metastasis. DDX17 is a cofactor of the Drosha-DGCR8 complex in miRNA biogenesis and transcriptional coactivator and has been associated with cancer stem-like properties. However, the precise mechanism by which DDX17 controls cancer stem-like features remains elusive. Here, we show that the E3 ligase HectH9 mediated K63-polyubiquitination of DDX17 under hypoxia to control stem-like properties and tumor-initiating capabilities. Polyubiquitinated DDX17 disassociated from the Drosha-DGCR8 complex, leading to decreased biogenesis of anti-stemness miRNAs. Increased association of polyubiquitinated DDX17 with p300-YAP resulted in histone 3 lysine 56 (H3K56) acetylation proximal to stemness-related genes and their subsequent transcriptional activation. High expression of HectH9 and six stemness-related genes (BMI1, SOX2, OCT4, NANOG, NOTCH1, and NOTCH2) predicted poor survival in patients with head and neck squamous cell carcinoma and lung adenocarcinoma. Our findings demonstrate that concerted regulation of miRNA biogenesis and histone modifications through posttranslational modification of DDX17 underlies many cancer stem-like features. Inhibition of DDX17 ubiquitination may serve as a new therapeutic venue for cancer treatment. SIGNIFICANCE: Hypoxia-induced polyubiquitination of DDX17 controls its dissociation from the pri-miRNA-Drosha-DCGR8 complex to reduce anti-stemness miRNA biogenesis and association with YAP and p300 to enhance transcription of stemness-related genes.
Collapse
Affiliation(s)
- Shih-Han Kao
- Research Center for Tumor Medical Science, China Medical University, Taichung, Taiwan.,Drug Development Center, China Medical University, Taichung, Taiwan
| | - Wei-Chung Cheng
- Research Center for Tumor Medical Science, China Medical University, Taichung, Taiwan.,Drug Development Center, China Medical University, Taichung, Taiwan.,Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan
| | - Yi-Ting Wang
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
| | - Han-Tsang Wu
- Department of Cell and Tissue Engineering, Changhua Christian Hospital, Changhua City, Taiwan
| | - Han-Yu Yeh
- Research Center for Tumor Medical Science, China Medical University, Taichung, Taiwan
| | - Yu-Ju Chen
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan
| | - Ming-Hsui Tsai
- Department of Otolaryngology, China Medical University Hospital, Taichung, Taiwan
| | - Kou-Juey Wu
- Research Center for Tumor Medical Science, China Medical University, Taichung, Taiwan. .,Drug Development Center, China Medical University, Taichung, Taiwan.,Graduate Institute of Biomedical Sciences, China Medical University, Taichung, Taiwan.,Institute of New Drug Development, China Medical University, Taichung, Taiwan.,Department of Medical Research, China Medical University Hospital, Taichung, Taiwan.,Institute of Cellular and Organismic Biology, Academia Sinica, Taipei, Taiwan.,Cancer Genome Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| |
Collapse
|
61
|
Mukhopadhyay P, Smolenkova I, Warner D, Pisano MM, Greene RM. Spatio-Temporal Expression and Functional Analysis of miR-206 in Developing Orofacial Tissue. Microrna 2019; 8:43-60. [PMID: 30068287 DOI: 10.2174/2211536607666180801094528] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 06/28/2018] [Accepted: 07/27/2018] [Indexed: 01/24/2023]
Abstract
BACKGROUND Development of the mammalian palate is dependent on precise, spatiotemporal expression of a panoply of genes. MicroRNAs (miRNAs), the largest family of noncoding RNAs, function as crucial modulators of cell and tissue differentiation, regulating expression of key downstream genes. OBSERVATIONS Our laboratory has previously identified several developmentally regulated miRNAs, including miR-206, during critical stages of palatal morphogenesis. The current study reports spatiotemporal distribution of miR-206 during development of the murine secondary palate (gestational days 12.5-14.5). RESULT AND CONCLUSION Potential cellular functions and downstream gene targets of miR-206 were investigated using functional assays and expression profiling, respectively. Functional analyses highlighted potential roles of miR-206 in governing TGFß- and Wnt signaling in mesenchymal cells of the developing secondary palate. In addition, altered expression of miR-206 within developing palatal tissue of TGFß3-/- fetuses reinforced the premise that crosstalk between this miRNA and TGFß3 is crucial for secondary palate development.
Collapse
Affiliation(s)
- Partha Mukhopadhyay
- Division of Craniofacial Development and Anomalies, Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, KY 40202, United States
| | - Irina Smolenkova
- Division of Craniofacial Development and Anomalies, Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, KY 40202, United States
| | - Dennis Warner
- Division of Craniofacial Development and Anomalies, Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, KY 40202, United States
| | - Michele M Pisano
- Division of Craniofacial Development and Anomalies, Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, KY 40202, United States
| | - Robert M Greene
- Division of Craniofacial Development and Anomalies, Department of Oral Immunology and Infectious Diseases, School of Dentistry, University of Louisville, Louisville, KY 40202, United States
| |
Collapse
|
62
|
Pendzialek SM, Knelangen JM, Schindler M, Gürke J, Grybel KJ, Gocza E, Fischer B, Navarrete Santos A. Trophoblastic microRNAs are downregulated in a diabetic pregnancy through an inhibition of Drosha. Mol Cell Endocrinol 2019; 480:167-179. [PMID: 30447248 DOI: 10.1016/j.mce.2018.11.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 09/11/2018] [Accepted: 11/11/2018] [Indexed: 12/21/2022]
Abstract
MicroRNAs are promising biological markers for prenatal diagnosis. They regulate placental development and are present in maternal plasma. Maternal metabolic diseases are major risk factors for placental deterioration. We analysed the influence of a maternal insulin-dependent diabetes mellitus on microRNA expression in maternal plasma and in blastocysts employing an in vivo rabbit diabetic pregnancy model and an in vitro embryo culture in hyperglycaemic and hypoinsulinaemic medium. Maternal diabetes led to a marked downregulation of Dicer protein in embryoblast cells and Drosha protein in trophoblast cells. MiR-27b, miR-141 and miR-191 were decreased in trophoblast cells and in maternal plasma of diabetic rabbits. In vitro studies indicate, that maternal hyperglycaemia and hypoinsulinaemia partially contribute to the downregulation of trophoblastic microRNAs. As the altered microRNA expression was detectable in maternal plasma, too, the plasma microRNA signature could serve as an early biological marker for the prediction of trophoblast function during a diabetic pregnancy.
Collapse
Affiliation(s)
- S Mareike Pendzialek
- Department of Anatomy and Cell Biology, Martin Luther University Faculty of Medicine, Grosse Steinstrasse 52, 06097, Halle (Saale), Germany.
| | - Julia M Knelangen
- Department of Anatomy and Cell Biology, Martin Luther University Faculty of Medicine, Grosse Steinstrasse 52, 06097, Halle (Saale), Germany
| | - Maria Schindler
- Department of Anatomy and Cell Biology, Martin Luther University Faculty of Medicine, Grosse Steinstrasse 52, 06097, Halle (Saale), Germany
| | - Jacqueline Gürke
- Department of Anatomy and Cell Biology, Martin Luther University Faculty of Medicine, Grosse Steinstrasse 52, 06097, Halle (Saale), Germany
| | - Katarzyna J Grybel
- Department of Anatomy and Cell Biology, Martin Luther University Faculty of Medicine, Grosse Steinstrasse 52, 06097, Halle (Saale), Germany
| | - Elen Gocza
- Agricultural Biotechnology Institute (ABC), National Agricultural Research and Innovation Centre (NARIC), Szent-Györgyi Albert u. 4, 2100, Gödöllő, Hungary
| | - Bernd Fischer
- Department of Anatomy and Cell Biology, Martin Luther University Faculty of Medicine, Grosse Steinstrasse 52, 06097, Halle (Saale), Germany
| | - Anne Navarrete Santos
- Department of Anatomy and Cell Biology, Martin Luther University Faculty of Medicine, Grosse Steinstrasse 52, 06097, Halle (Saale), Germany
| |
Collapse
|
63
|
Li HJ, Sun ZL, Pan YB, Sun YY, Xu MH, Feng DF. Inhibition of miRNA-21 promotes retinal ganglion cell survival and visual function by modulating Müller cell gliosis after optic nerve crush. Exp Cell Res 2019; 375:10-19. [PMID: 30639060 DOI: 10.1016/j.yexcr.2019.01.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 12/29/2018] [Accepted: 01/08/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND Müller cell gliosis not only plays an important physiological role by maintaining retinal neuronal homeostasis but is also associated with multiple pathological events in the retina, including optic nerve crush (ONC) injury. Modulating Müller cell gliosis contributes to the creation of a permissive environment for neuronal survival. However, the underlying mechanism of Müller cell gliosis has remained elusive. OBJECTIVE To investigate the underlying mechanism of Müller cell gliosis after ONC. METHODS Rats with ONC injury were transfected with miRNA-21 (miR-21) agomir (overexpressing miR-21) or antagomir (inhibiting miR-21) via intravitreous injection. Immunofluorescence and western blotting were performed to confirm the effects of miR-21 on Müller cell gliosis. The retinal nerve fiber layer (RNFL) thickness was measured using optical coherence tomography and the positive scotopic threshold response (pSTR) was recorded using electroretinogram. RESULTS In the acute phase (14 days) after ONC, compared with the crushed group, inhibiting miR-21 promoted Müller cell gliosis, exhibiting thicker processes and increased GFAP expression. In the chronic phase (35 days), inhibiting miR-21 ameliorated Müller cell gliosis, which exhibited thicker and denser processes and increased GFAP expression. Retinal ganglion cell (RGC) counts in retinas showed that the number of surviving RGCs increased significantly in the antagomir group. The thickness of the RNFL increased significantly, and pSTR showed significant preservation of the amplitudes in the antagomir group. CONCLUSIONS Inhibition of miR-21 promotes RGC survival, RNFL thickness and the recovery of RGC function by modulating Müller cell gliosis after ONC.
Collapse
Affiliation(s)
- Hong-Jiang Li
- Department of Neurosurgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 201999, China; Institute of Traumatic Medicine, Shanghai JiaoTong University School of Medicine, Shanghai 201999, China
| | - Zhao-Liang Sun
- Department of Neurosurgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 201999, China
| | - Yuan-Bo Pan
- Institute of Traumatic Medicine, Shanghai JiaoTong University School of Medicine, Shanghai 201999, China
| | - Yi-Yu Sun
- Institute of Traumatic Medicine, Shanghai JiaoTong University School of Medicine, Shanghai 201999, China
| | - Mang-Hua Xu
- Institute of Traumatic Medicine, Shanghai JiaoTong University School of Medicine, Shanghai 201999, China
| | - Dong-Fu Feng
- Department of Neurosurgery, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 201999, China; Institute of Traumatic Medicine, Shanghai JiaoTong University School of Medicine, Shanghai 201999, China.
| |
Collapse
|
64
|
Xu L, Zhang Y, Tang J, Wang P, Li L, Yan X, Zheng X, Ren S, Zhang M, Xu M. The Prognostic Value and Regulatory Mechanisms of microRNA-145 in Various Tumors: A Systematic Review and Meta-analysis of 50 Studies. Cancer Epidemiol Biomarkers Prev 2019; 28:867-881. [PMID: 30602498 DOI: 10.1158/1055-9965.epi-18-0570] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 08/16/2018] [Accepted: 12/26/2018] [Indexed: 02/05/2023] Open
Abstract
Acting as an important tumor-related miRNA, the clinical significance and underlying mechanisms of miR-145 in various malignant tumors have been investigated by numerous studies. This study aimed to comprehensively estimate the prognostic value and systematically illustrate the regulatory mechanisms of miR-145 based on all eligible literature.Relevant studies were acquired from multiple online databases. Overall survival (OS) and progression-free survival (PFS) were used as primary endpoints. Detailed subgroup analyses were performed to decrease the heterogeneity among studies and recognize the prognostic value of miR-145. All statistical analyses were performed with RevMan software version 5.3 and STATA software version 14.1. A total of 48 articles containing 50 studies were included in the meta-analysis. For OS, the pooled results showed that low miR-145 expression in tumor tissues was significantly associated with worse OS in patients with various tumors [HR = 1.70; 95% confidence interval (CI), 1.46-1.99; P < 0.001). Subgroup analysis based on tumor type showed that the downregulation of miR-145 was associated with unfavorable OS in colorectal cancer (HR = 2.17; 95% CI, 1.52-3.08; P < 0.001), ovarian cancer (HR = 2.15; 95% CI, 1.29-3.59; P = 0.003), gastric cancer (HR = 1.78; 95% CI, 1.35-2.36; P < 0.001), glioma (HR = 1.65; 95% CI, 1.30-2.10; P < 0.001), and osteosarcoma (HR = 2.28; 95% CI, 1.50-3.47; P < 0.001). For PFS, the pooled results also showed that the downregulation of miR-145 was significantly associated with poor PFS in patients with multiple tumors (HR = 1.39; 95% CI, 1.16-1.67; P < 0.001), and the subgroup analyses further identified that the low miR-145 expression was associated with worse PFS in patients with lung cancer (HR = 1.97; 95% CI, 1.25-3.09; P = 0.003) and those of Asian descent (HR = 1.50; 95% CI, 1.23-1.82; P < 0.001). For the regulatory mechanisms, we observed that numerous tumor-related transcripts could be targeted by miR-145-5p or miR-145-3p, as well as the expression and function of miR-145-5p could be regulated by multiple molecules.This meta-analysis indicated that downregulated miR-145 in tumor tissues or peripheral blood predicted unfavorable prognostic outcomes for patients suffering from various malignant tumors. In addition, miR-145 was involved in multiple tumor-related pathways and the functioning of significant biological effects. miR-145 is a well-demonstrated tumor suppressor, and its expression level is significantly correlated with the prognosis of patients with multiple malignant tumors.
Collapse
Affiliation(s)
- Liangliang Xu
- Department of Liver Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Yanfang Zhang
- Center of Infectious Diseases, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Jianwei Tang
- Department of Liver Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Peng Wang
- Department of Liver Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Lian Li
- Department of Liver Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Xiaokai Yan
- Department of Liver Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Xiaobo Zheng
- Department of Liver Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Shengsheng Ren
- Department of Liver Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Ming Zhang
- Department of Liver Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China
| | - Mingqing Xu
- Department of Liver Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan Province, China.
| |
Collapse
|
65
|
Li X, Xu Y, Ding Y, Li C, Zhao H, Wang J, Meng S. Posttranscriptional upregulation of HER3 by HER2 mRNA induces trastuzumab resistance in breast cancer. Mol Cancer 2018; 17:113. [PMID: 30068375 PMCID: PMC6090962 DOI: 10.1186/s12943-018-0862-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 07/24/2018] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND HER2 gene amplification generates an enormous number of HER2 transcripts, but the global effects on endogenous miRNA targets including HER family members in breast cancer are unexplored. METHODS We generated a HER2-3'UTR expressing vector to test the tumor-promoting properties in HER2 low expressing T47D and MCF7 cells. Through microarray analysis and real-time PCR analysis we identified genes that were regulated by HER2-3'UTR. Positive and negative manipulation of miRNA expression, response element mutational studies and transcript reporter assays were performed to explore the mechanism of competitive sequestration of miR125a/miRNA125b by HER2 3'UTR. To investigate if trastuzumab-induced upregulation of HER3 is also mediated through miRNA de-repression, we used the CRISPR/cas9 to mutate the endogenous HER2 mRNA in HER2 over-expressing Au565 cells. Finally, we looked at cohorts of breast cancer samples of our own and the TCGA to show if HER2 and HER3 mRNAs correlate with each other. RESULTS The HER2 3'UTR pronouncedly promoted cell proliferation, colony formation, and breast tumor growth. High-throughput sequencing revealed a significant increase in HER3 mRNA and protein levels by the HER2 3'untranslated region (3'UTR). The HER2 3'UTR harboring a shared miR-125a/b response element induced miR-125a/b sequestration and thus resulted in HER3 mRNA derepression. Trastuzumab treatment upregulated HER3 via elevated HER2 mRNA expression, leading to trastuzumab resistance. Depletion of miR-125a/b enhanced the antitumor activity of trastuzumab. Microarray data from HER2-overexpressing primary breast cancer showed significant elevation of mRNAs for predicted miR-125a/b targets compared to non-targets. CONCLUSIONS These results suggest that HER2 3'UTR-mediated HER3 upregulation is involved in breast cell transformation, increased tumor growth, and resistance to anti-HER2 therapy. The combinatorial targeting of HER3 mRNA or miR-125a/b may offer an effective tool for breast cancer therapy.
Collapse
Affiliation(s)
- Xin Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, People's Republic of China.
| | - Yuxiu Xu
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, People's Republic of China.
| | - Yun Ding
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, People's Republic of China
| | - Changfei Li
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, People's Republic of China
| | - Hong Zhao
- Cancer Institute and Hospital, Chinese Academy of Medical Sciences, Beijing, People's Republic of China
| | - Jiandong Wang
- The General Hospital of People's Liberation Army, Beijing, People's Republic of China
| | - Songdong Meng
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences (CAS), Beijing, People's Republic of China. .,University of Chinese Academy of Sciences, Beijing, People's Republic of China.
| |
Collapse
|
66
|
Inhibition of miR-21 ameliorates excessive astrocyte activation and promotes axon regeneration following optic nerve crush. Neuropharmacology 2018; 137:33-49. [PMID: 29709341 DOI: 10.1016/j.neuropharm.2018.04.028] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 04/18/2018] [Accepted: 04/26/2018] [Indexed: 12/15/2022]
Abstract
Optic nerve injury is a leading cause of irreversible visual impairment worldwide and can even cause blindness. Excessive activation of astrocytes has negative effects on the repair and recovery of retinal ganglion cells following optic nerve injury. However, the molecular and cellular mechanisms underlying astrocyte activation after optic nerve injury remain largely unknown. In the present study, we explored the effects of microRNA-21 (miR-21) on axon regeneration and flash visual evoked potential (F-VEP) and the underlying mechanisms of these effects based on astrocyte activation in the rat model of optic nerve crush (ONC). To the best of our knowledge, this article is the first to report that inhibition of miR-21 enhances axonal regeneration and promotes functional recovery in F-VEP in the rat model of ONC. Furthermore, inhibition of miR-21 attenuates excessive astrocyte activation and glial scar formation, thereby promoting axonal regeneration by regulating the epidermal growth factor receptor (EGFR) pathway. In addition, we observed that the expression of tissue inhibitor of metalloproteinase-3, a target gene of miR-21, was inhibited during this process. Taken together, these findings demonstrate that inhibition of miR-21 regulates the EGFR pathway, ameliorating excessive astrocyte activation and glial scar progression and promoting axonal regeneration and alleviating impairment in F-VEP function in a model of ONC. This study's results suggest that miR-21 may represent a therapeutic target for optic nerve injury.
Collapse
|
67
|
Lin MH, Chen YZ, Lee MY, Weng KP, Chang HT, Yu SY, Dong BJ, Kuo FR, Hung LT, Liu LF, Chen WS, Tsai KW. Comprehensive identification of microRNA arm selection preference in lung cancer: miR-324-5p and -3p serve oncogenic functions in lung cancer. Oncol Lett 2018; 15:9818-9826. [PMID: 29844840 PMCID: PMC5958786 DOI: 10.3892/ol.2018.8557] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 11/16/2017] [Indexed: 12/31/2022] Open
Abstract
MicroRNA (miRNA/miR) dysfunction is a hallmark of lung cancer, and results in the dysregulation of tumor suppressors and oncogenes during lung cancer progression. Selection of the 5p and 3p arms of miRNA is a mechanism that improves the modulation of miRNA biological functions and complicates the regulatory network in human types of cancer. However, the involvement of arm selection preference of miRNA in lung cancer remains unclear. In the present study, changes in miRNA arm selection preference were comprehensively identified in lung cancer and corresponding adjacent normal tissues by analyzing The Cancer Genome Atlas. Arm selection was revealed to be consistent in the majority of miRNAs in lung cancer. Only a few miRNAs had significantly altered arm selection preference in lung cancer. Among these, the biological functions of the individual arms of miR-324 were investigated further. The data revealed that miR-324-5p and -3p were significantly overexpressed in lung cancer cells. Ectopic expression of miR-324-5p significantly promoted cell proliferation and invasion in lung cancer cells, while miR-324-3p overexpression significantly increased cell proliferation but did not alter the invasion of lung cancer cells. In conclusion, the arm selection preference of miRNA may be an additional mechanism through which biological functions are modulated. The results of the present study provide a novel insight into the underlying mechanisms of lung cancer and may direct research into future therapies.
Collapse
Affiliation(s)
- Min-Hsi Lin
- Division of Chest Medicine, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan, R.O.C.,School of Medicine, National Yang-Ming University, Taipei 112, Taiwan, R.O.C
| | - You-Zuo Chen
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan, R.O.C
| | - Mei-Yu Lee
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan, R.O.C.,Department of Biological Science and Technology, I-Shou University, Kaohsiung 813, Taiwan, R.O.C
| | - Ken-Pen Weng
- School of Medicine, National Yang-Ming University, Taipei 112, Taiwan, R.O.C.,Department of Pediatrics, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan, R.O.C.,Department of Physical Therapy, Shu-Zen College of Medicine and Management, Kaohsiung 813, Taiwan, R.O.C
| | - Hong-Tai Chang
- Center for Geriatrics and Gerontology, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan, R.O.C.,Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan, R.O.C
| | - Shou-Yu Yu
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan, R.O.C
| | - Bo-Jhu Dong
- Department of Chemical Biology, National Pingtung University of Education, Pingtung 900, Taiwan, R.O.C
| | - Fan-Rong Kuo
- Department of Chemical Biology, National Pingtung University of Education, Pingtung 900, Taiwan, R.O.C
| | - Li-Tzu Hung
- Department of Chemical Biology, National Pingtung University of Education, Pingtung 900, Taiwan, R.O.C
| | - Li-Feng Liu
- Department of Biological Science and Technology, I-Shou University, Kaohsiung 813, Taiwan, R.O.C
| | - Wei-Shone Chen
- School of Medicine, National Yang-Ming University, Taipei 112, Taiwan, R.O.C.,Department of Surgery, Veterans General Hospital, Taipei 112, Taiwan, R.O.C
| | - Kuo-Wang Tsai
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung 813, Taiwan, R.O.C.,Department of Chemical Biology, National Pingtung University of Education, Pingtung 900, Taiwan, R.O.C.,Institute of Biomedical Sciences, National Sun Yat-sen University, Kaohsiung 813, Taiwan, R.O.C
| |
Collapse
|
68
|
Wang SE, Lin RJ. MicroRNA and HER2-overexpressing cancer. Microrna 2018; 2:137-47. [PMID: 25070783 PMCID: PMC4120065 DOI: 10.2174/22115366113029990011] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 05/26/2013] [Accepted: 07/10/2013] [Indexed: 02/07/2023]
Abstract
The discovery of microRNAs (miRNAs) has opened up new avenues for studying cancer at the molecular level, featuring a post-genomic era of biomedical research. These non-coding regulatory RNA molecules of ~22 nucleotides have emerged as important cancer biomarkers, effectors, and targets. In this review, we focus on the dysregulated biogenesis and function of miRNAs in cancers with an overexpression of the proto-oncogene HER2. Many of the studies reviewed here were carried out in breast cancer, where HER2 overexpression has been extensively studied and HER2-targeted therapy practiced for more than a decade. MiRNA signatures that can be used to classify tumors with different HER2 status have been reported but little consensus can be established among various studies, emphasizing the needs for additional well-controlled profiling approaches and meta-analyses in large and well-balanced patient cohorts. We further discuss three aspects of microRNA dysregulation in or contribution to HER2-associated malignancies or therapies: (a) miRNAs that are up- or down-regulated by HER2 and mediate the downstream signaling of HER2; (b) miRNAs that suppress the expression of HER2 or a factor in HER2 receptor complexes, such as HER3; and (c) miRNAs that affect responses to anti-HER2 therapies. The regulatory mechanisms are elaborated using mainly examples of miR-205, miR-125, and miR-21. Understanding the regulation and function of miRNAs in HER2-overexpressing tumors shall shed new light on the pathogenic mechanisms of microRNAs and the HER2 proto-oncogene in cancer, as well as on individualized or combinatorial anti-HER2 therapies.
Collapse
Affiliation(s)
| | - Ren-Jang Lin
- Department of Cancer Biology, Beckman Research Institute of City of Hope, KCRB2007, 1500 E. Duarte Road, Duarte, CA 91010, USA.
| |
Collapse
|
69
|
Khosravi A, Alizadeh S, Jalili A, Shirzad R, Saki N. The impact of Mir-9 regulation in normal and malignant hematopoiesis. Oncol Rev 2018; 12:348. [PMID: 29774136 PMCID: PMC5939831 DOI: 10.4081/oncol.2018.348] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Accepted: 03/01/2018] [Indexed: 12/19/2022] Open
Abstract
MicroRNA-9 (MiR-9) dysregulation has been observed in various cancers. Recently, MiR-9 is considered to have a part in hematopoiesis and hematologic malignancies. However, its importance in blood neoplasms is not yet well defined. Thus, this study was conducted in order to assess the significance of MiR-9 role in the development of hematologic neoplasia, prognosis, and treatment approaches. We have shown that a large number of MiR-9 targets (such as FOXOs, SIRT1, CCND1, ID2, CCNG1, Ets, and NFkB) play essential roles in leukemogenesis and that it is overexpressed in different leukemias. Our findings indicated MiR-9 downregulation in a majority of leukemias. However, its overexpression was reported in patients with dysregulated MiR-9 controlling factors (such as MLLr). Additionally, prognostic value of MiR-9 has been reported in some types of leukemia. This study generally emphasizes on the critical role of MiR-9 in hematologic malignancies as a prognostic factor and a therapeutic target.
Collapse
Affiliation(s)
- Abbas Khosravi
- Transfusion Research Center, High Institute for Research and Education in Transfusion Medi-cine, Tehran
| | - Shaban Alizadeh
- Hematology Department, Allied Medical School, Tehran University of Medical Sciences, Tehran
| | - Arsalan Jalili
- Department of Stem Cells and Developmental Biology at Cell Science Re-search Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran
| | - Reza Shirzad
- WHO Collaborating Center for Reference and Research on Rabies, Pasteur Institute of Iran, Tehran
| | - Najmaldin Saki
- Thalassemia & Hemoglobinopathy Research Center, Research Institute of Health, Ahvaz Jun-dishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
70
|
Inhibition of PHLPP2/cyclin D1 protein translation contributes to the tumor suppressive effect of NFκB2 (p100). Oncotarget 2018; 7:34112-30. [PMID: 27095572 PMCID: PMC5085141 DOI: 10.18632/oncotarget.8746] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 03/31/2016] [Indexed: 12/24/2022] Open
Abstract
Although the precursor protein of NFκB2 (p100) is thought to act as a tumor suppressor in mammalian cells, the molecular mechanism of its anti-tumor activity is far from clear. Here, we are, for the first time, to report that p100 protein expression was dramatically decreased in bladder cancers of N-butyl-N-(4-hydroxybutyl)-nitrosamine (BBN)-treated mice and human patients. Knockdown of p100 in cultured human bladder cancer cells promoted anchorage-independent growth accompanied with elevating abundance of cell-cycle-related proteins and accelerated cell-cycle progression. Above effects could be completely reversed by ectopically expression of p100, but not p52. Mechanistically, p100 inhibited Cyclin D1 protein translation by activating the transcription of LARP7 and its hosted miR-302d, which could directly bind to 3'-UTR of cyclin d1 mRNA and inhibited its protein translation. Furthermore, p100 suppressed the expression of PHLPP2 (PH domain and leucine-rich repeat protein phosphatases 2), thus promoting CREB phosphorylation at Ser133 and subsequently leading to miR-302d transcription. Taken together, our studies not only for the first time establish p100 as a key tumor suppressor of bladder cancer growth, but also identify a novel molecular cascade of PHLPP2/CREB/miR-302d that mediates the tumor suppressive function of p100.
Collapse
|
71
|
Abstract
Mitochondria are cytosolic organelles essential for generating energy and maintaining cell homeostasis. Despite their critical function, the handful of proteins expressed by the mitochondrial genome is insufficient to maintain mitochondrial structure or activity. Accordingly, mitochondrial metabolism is fully dependent on factors encoded by the nuclear DNA, including many proteins synthesized in the cytosol and imported into mitochondria via established mechanisms. However, there is growing evidence that mammalian mitochondria can also import cytosolic noncoding RNA via poorly understood processes. Here, we summarize our knowledge of mitochondrial RNA, discuss recent progress in understanding the molecular mechanisms and functional impact of RNA import into mitochondria, and identify rising challenges and opportunities in this rapidly evolving field.
Collapse
Affiliation(s)
- Kyoung Mi Kim
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Ji Heon Noh
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Kotb Abdelmohsen
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging Intramural Research Program, National Institutes of Health, Baltimore, Maryland 21224, USA
| |
Collapse
|
72
|
Ransey E, Björkbom A, Lelyveld VS, Biecek P, Pantano L, Szostak JW, Sliz P. Comparative analysis of LIN28-RNA binding sites identified at single nucleotide resolution. RNA Biol 2017; 14:1756-1765. [PMID: 28945502 PMCID: PMC5731800 DOI: 10.1080/15476286.2017.1356566] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
It remains a formidable challenge to characterize the diverse complexes of RNA binding proteins and their targets. While crosslink and immunoprecipitation (CLIP) methods are powerful techniques that identify RNA targets on a global scale, the resolution and consistency of these methods is a matter of debate. Here we present a comparative analysis of LIN28-pre-let-7 UV-induced crosslinking using a tandem mass spectrometry (MS/MS) and deep sequencing interrogation of in vitro crosslinked complexes. Interestingly, analyses by the two methods diverge in their identification of crosslinked nucleotide identity – whereas bioinformatics and sequencing analyses suggest guanine in mammalian cells, MS/MS identifies uridine. This work suggests the need for comprehensive analysis and validation of crosslinking methodologies.
Collapse
Affiliation(s)
- Elizabeth Ransey
- a Department of Biological Chemistry and Molecular Pharmacology , Harvard Medical School , Boston , MA
| | - Anders Björkbom
- c Department of Molecular Biology and Center for Computational and Integrative Biology , Howard Hughes Medical Institute, Massachusetts General Hospital , Boston , MA , USA.,d Åbo Akademi University , Department of Biosciences , Artillerigatan 6, FI-20520 Åbo , Finland
| | - Victor S Lelyveld
- c Department of Molecular Biology and Center for Computational and Integrative Biology , Howard Hughes Medical Institute, Massachusetts General Hospital , Boston , MA , USA
| | - Przemyslaw Biecek
- e Faculty of Mathematics Informatics and Mechanics, University of Warsaw , Banacha 2, Warsaw , Poland
| | - Lorena Pantano
- f Department of Biostatistics , Harvard T.H. Chan School of Public Health , Boston , MA , USA
| | - Jack W Szostak
- c Department of Molecular Biology and Center for Computational and Integrative Biology , Howard Hughes Medical Institute, Massachusetts General Hospital , Boston , MA , USA
| | - Piotr Sliz
- a Department of Biological Chemistry and Molecular Pharmacology , Harvard Medical School , Boston , MA.,b Division of Molecular Medicine , Boston Children's Hospital , Boston , MA , USA
| |
Collapse
|
73
|
Saraiva C, Esteves M, Bernardino L. MicroRNA: Basic concepts and implications for regeneration and repair of neurodegenerative diseases. Biochem Pharmacol 2017; 141:118-131. [DOI: 10.1016/j.bcp.2017.07.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 07/07/2017] [Indexed: 12/25/2022]
|
74
|
Fontenla S, Rinaldi G, Smircich P, Tort JF. Conservation and diversification of small RNA pathways within flatworms. BMC Evol Biol 2017; 17:215. [PMID: 28893179 PMCID: PMC5594548 DOI: 10.1186/s12862-017-1061-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Accepted: 09/05/2017] [Indexed: 02/04/2023] Open
Abstract
Background Small non-coding RNAs, including miRNAs, and gene silencing mediated by RNA interference have been described in free-living and parasitic lineages of flatworms, but only few key factors of the small RNA pathways have been exhaustively investigated in a limited number of species. The availability of flatworm draft genomes and predicted proteomes allowed us to perform an extended survey of the genes involved in small non-coding RNA pathways in this phylum. Results Overall, findings show that the small non-coding RNA pathways are conserved in all the analyzed flatworm linages; however notable peculiarities were identified. While Piwi genes are amplified in free-living worms they are completely absent in all parasitic species. Remarkably all flatworms share a specific Argonaute family (FL-Ago) that has been independently amplified in different lineages. Other key factors such as Dicer are also duplicated, with Dicer-2 showing structural differences between trematodes, cestodes and free-living flatworms. Similarly, a very divergent GW182 Argonaute interacting protein was identified in all flatworm linages. Contrasting to this, genes involved in the amplification of the RNAi interfering signal were detected only in the ancestral free living species Macrostomum lignano. We here described all the putative small RNA pathways present in both free living and parasitic flatworm lineages. Conclusion These findings highlight innovations specifically evolved in platyhelminths presumably associated with novel mechanisms of gene expression regulation mediated by small RNA pathways that differ to what has been classically described in model organisms. Understanding these phylum-specific innovations and the differences between free living and parasitic species might provide clues to adaptations to parasitism, and would be relevant for gene-silencing technology development for parasitic flatworms that infect hundreds of million people worldwide. Electronic supplementary material The online version of this article (10.1186/s12862-017-1061-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Santiago Fontenla
- Departamento de Genética, Facultad de Medicina, Universidad de la República (UDELAR), Gral. Flores 2125, CP11800, Montevideo, MVD, Uruguay
| | - Gabriel Rinaldi
- Parasite Genomics, Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, CB10 1SA, UK
| | - Pablo Smircich
- Departamento de Genética, Facultad de Medicina, Universidad de la República (UDELAR), Gral. Flores 2125, CP11800, Montevideo, MVD, Uruguay.,Laboratorio de Interacciones Moleculares, Facultad de Ciencias, Universidad de la República (UdelaR), Montevideo, Uruguay
| | - Jose F Tort
- Departamento de Genética, Facultad de Medicina, Universidad de la República (UDELAR), Gral. Flores 2125, CP11800, Montevideo, MVD, Uruguay.
| |
Collapse
|
75
|
Johnston WL, Krizus A, Ramani AK, Dunham W, Youn JY, Fraser AG, Gingras AC, Dennis JW. C. elegans SUP-46, an HNRNPM family RNA-binding protein that prevents paternally-mediated epigenetic sterility. BMC Biol 2017; 15:61. [PMID: 28716093 PMCID: PMC5513350 DOI: 10.1186/s12915-017-0398-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 06/21/2017] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND In addition to DNA, gametes contribute epigenetic information in the form of histones and non-coding RNA. Epigenetic programs often respond to stressful environmental conditions and provide a heritable history of ancestral stress that allows for adaptation and propagation of the species. In the nematode C. elegans, defective epigenetic transmission often manifests as progressive germline mortality. We previously isolated sup-46 in a screen for suppressors of the hexosamine pathway gene mutant, gna-2(qa705). In this study, we examine the role of SUP-46 in stress resistance and progressive germline mortality. RESULTS We identified SUP-46 as an HNRNPM family RNA-binding protein, and uncovered a highly novel role for SUP-46 in preventing paternally-mediated progressive germline mortality following mating. Proximity biotinylation profiling of human homologs (HNRNPM, MYEF2) identified proteins of ribonucleoprotein complexes previously shown to contain non-coding RNA. Like HNRNPM and MYEF2, SUP-46 was associated with multiple RNA granules, including stress granules, and also formed granules on active chromatin. SUP-46 depletion disrupted germ RNA granules and caused ectopic sperm, increased sperm transcripts, and chronic heat stress sensitivity. SUP-46 was also required for resistance to acute heat stress, and a conserved "MYEF2" motif was identified that was needed for stress resistance. CONCLUSIONS In mammals, non-coding RNA from the sperm of stressed males has been shown to recapitulate paternal stress phenotypes in the offspring. Our results suggest that HNRNPM family proteins enable stress resistance and paternally-mediated epigenetic transmission that may be conserved across species.
Collapse
Affiliation(s)
- Wendy L. Johnston
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON Canada
| | - Aldis Krizus
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON Canada
| | - Arun K. Ramani
- Centre for Computational Medicine, The Hospital for Sick Children, Toronto, ON Canada
| | - Wade Dunham
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON Canada
| | - Ji Young Youn
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON Canada
| | - Andrew G. Fraser
- Department of Molecular Genetics, University of Toronto, Toronto, ON Canada
- The Donnelly Centre, University of Toronto, Toronto, ON Canada
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON Canada
| | - James W. Dennis
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON Canada
| |
Collapse
|
76
|
Zhang Y, Tang C, Yu T, Zhang R, Zheng H, Yan W. MicroRNAs control mRNA fate by compartmentalization based on 3' UTR length in male germ cells. Genome Biol 2017; 18:105. [PMID: 28615029 PMCID: PMC5471846 DOI: 10.1186/s13059-017-1243-x] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 05/23/2017] [Indexed: 12/18/2022] Open
Abstract
Background Post-transcriptional regulation of gene expression can be achieved through the control of mRNA stability, cytoplasmic compartmentalization, 3′ UTR length and translational efficacy. Spermiogenesis, a process through which haploid male germ cells differentiate into spermatozoa, represents an ideal model for studying post-transcriptional regulation in vivo because it involves a large number of transcripts that are physically sequestered in ribonucleoprotein particles (RNPs) and thus subjected to delayed translation. To explore how small RNAs regulate mRNA fate, we conducted RNA-Seq analyses to determine not only the levels of both mRNAs and small noncoding RNAs, but also their cytoplasmic compartmentalization during spermiogenesis. Result Among all small noncoding RNAs studied, miRNAs displayed the most dynamic changes in both abundance and subcytoplasmic localization. mRNAs with shorter 3′ UTRs became increasingly enriched in RNPs from pachytene spermatocytes to round spermatids, and the enrichment of shorter 3′ UTR mRNAs in RNPs coincided with newly synthesized miRNAs that target these mRNAs at sites closer to the stop codon. In contrast, the translocation of longer 3′ UTR mRNAs from RNPs to polysomes correlated with the production of new miRNAs that target these mRNAs at sites distal to the stop codon. Conclusions miRNAs appear to control cytoplasmic compartmentalization of mRNAs based on 3′ UTR length. Our data suggest that transcripts with longer 3′ UTRs tend to contain distal miRNA binding sites and are thus targeted to polysomes for translation followed by degradation. In contrast, those with shorter 3′ UTRs only possess proximal miRNA binding sites, which, therefore, are targeted into RNPs for enrichment and delayed translation. Electronic supplementary material The online version of this article (doi:10.1186/s13059-017-1243-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Center for Molecular Medicine, Room 207B, 1664 North Virginia Street, MS/0575, Reno, NV, 89557, USA
| | - Chong Tang
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Center for Molecular Medicine, Room 207B, 1664 North Virginia Street, MS/0575, Reno, NV, 89557, USA
| | - Tian Yu
- Department of Biology, University of Nevada, Reno, 1664 North Virginia Street, MS575, Reno, NV, 89557, USA
| | - Ruirui Zhang
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Center for Molecular Medicine, Room 207B, 1664 North Virginia Street, MS/0575, Reno, NV, 89557, USA
| | - Huili Zheng
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Center for Molecular Medicine, Room 207B, 1664 North Virginia Street, MS/0575, Reno, NV, 89557, USA
| | - Wei Yan
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Center for Molecular Medicine, Room 207B, 1664 North Virginia Street, MS/0575, Reno, NV, 89557, USA. .,Department of Biology, University of Nevada, Reno, 1664 North Virginia Street, MS575, Reno, NV, 89557, USA.
| |
Collapse
|
77
|
Primate-specific Long Non-coding RNAs and MicroRNAs. GENOMICS PROTEOMICS & BIOINFORMATICS 2017; 15:187-195. [PMID: 28602844 PMCID: PMC5487532 DOI: 10.1016/j.gpb.2017.04.002] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 03/25/2017] [Accepted: 04/05/2017] [Indexed: 12/21/2022]
Abstract
Non-coding RNAs (ncRNAs) are critical regulators of gene expression in essentially all life forms. Long ncRNAs (lncRNAs) and microRNAs (miRNAs) are two important RNA classes possessing regulatory functions. Up to date, many primate-specific ncRNAs have been identified and investigated. Their expression specificity to primate lineage suggests primate-specific roles. It is thus critical to elucidate the biological significance of primate or even human-specific ncRNAs, and to develop potential ncRNA-based therapeutics. Here, we have summarized the studies regarding regulatory roles of some key primate-specific lncRNAs and miRNAs.
Collapse
|
78
|
Yang CM, Chen CC, Tseng YK, Huang SJ, Liou HH, Lee YC, Lee JH, Wang JS, Chen HC, Chi CC, Kang BH, Lin YC, Tsai KW, Ger LP. The variant of pri-mir-26a-1 polymorphism is associated with decreased risk of betel quid-related oral premalignant lesions and oral squamous cell carcinoma. Oral Surg Oral Med Oral Pathol Oral Radiol 2017; 124:378-389.e1. [PMID: 28743663 DOI: 10.1016/j.oooo.2017.05.515] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 05/24/2017] [Accepted: 05/30/2017] [Indexed: 01/05/2023]
Abstract
OBJECTIVES This case-control study evaluated the association of the single nucleotide polymorphism rs7372209 (T>C) in pri-mir-26a-1 with the risk and progression of betel quid (BQ)-related oral premalignant lesions (OPLs) and oral squamous cell carcinoma (OSCC). STUDY DESIGN In total, 597 BQ chewers were recruited: 196 healthy controls, 241 patients with OPLs, and 160 patients with OSCC. Genotypes were determined using the TaqMan real-time assay. RESULTS The C/T + T/T genotypes and T allele in pri-mir-26a-1 were correlated with a decreased risk of BQ-related OPLs (P = .038 and .005, respectively), oral leukoplakia (P = .01 and .001, respectively), and advanced-stage OSCC (P = .021 and .004, respectively). The effects of the C/T + T/T genotypes and T allele on the decreased risk of OPLs were potent in the older age group (both Pinteraction < .001), heavy smokers (Pinteraction ≤ .003 and .006, respectively) and alcohol drinkers (Pinteraction ≤ .004 and .001, respectively). Furthermore, among patients with OSCC, the C/T + T/T genotypes and T allele were associated with a decreased risk of advanced pathologic stage (P = .032) and lymph node involvement (P = .017). CONCLUSIONS BQ chewers carrying the T allele or C/T + T/T genotypes in pri-mir-26a-1 may have a decreased risk of oral leukoplakia, OPLs, and advanced-stage OSCC.
Collapse
Affiliation(s)
- Cheng-Mei Yang
- Director, Division of Endodontics, Department of Stomatology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan; Assistant Professor, Department of Dental Technology, Shu-Zen Junior College of Medicine and Management, Kaohsiung, Taiwan
| | - Chien-Chou Chen
- Director, Department of Family Medicine, Zuoying Branch of Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan
| | - Yu-Kai Tseng
- Resident Doctor, Department of Orthopedics, Show Chwan Memorial Hospital, Changhua, Taiwan; Resident Doctor, Department of Orthopedics, National Cheng Kung University Hospital, Tainan, Taiwan
| | - Sin-Jhih Huang
- Research Assistant, Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Huei-Han Liou
- Research Assistant, Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Yi-Cheng Lee
- Research Assistant, Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan; Registered Nurse, Department of Nursing, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Jang-Hwa Lee
- Director, Department of Pathology and Laboratory Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Jyh-Seng Wang
- Attending Doctor, Department of Pathology and Laboratory Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Hung-Chih Chen
- Assistant Professor, Department of Dental Technology, Shu-Zen Junior College of Medicine and Management, Kaohsiung, Taiwan; Director, Division of Oral & Maxillary surgery, Department of Stomatology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Chao-Chuan Chi
- Director, Division of Laryngology, Department of Otorhinolaryngology-Head & Neck Surgery, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Bor-Hwang Kang
- Director, Division of Rhinology, Department of Otorhinolaryngology-Head & Neck Surgery, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Yun-Chung Lin
- Resident Doctor, Department of Pathology, China Medical University Hospital, Taichung, Taiwan
| | - Kuo-Wang Tsai
- Investigator, Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan; Assistant Professor, Department of Chemical Biology, National Pingtung University of Education, Pingtung, Taiwan.
| | - Luo-Ping Ger
- Investigator, Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan; Professor, Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan.
| |
Collapse
|
79
|
Munk R, Panda AC, Grammatikakis I, Gorospe M, Abdelmohsen K. Senescence-Associated MicroRNAs. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2017; 334:177-205. [PMID: 28838538 PMCID: PMC8436595 DOI: 10.1016/bs.ircmb.2017.03.008] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Senescent cells arise as a consequence of cellular damage and can have either a detrimental or advantageous impact on tissues and organs depending on the specific cell type and metabolic state. As senescent cells accumulate in tissues with advancing age, they have been implicated in many age-related declines and diseases. The major facets of senescence include two pathways responsible for establishing and maintaining a senescence program, p53/CDKN1A(p21) and CDKN2A(p16)/RB, as well as the senescence-associated secretory phenotype. Numerous MicroRNAs influence senescence by modulating the abundance of key senescence regulatory proteins, generally by lowering the stability and/or translation of mRNAs that encode such factors. Accordingly, understanding the molecular mechanisms by which MicroRNAs influence senescence will enable diagnostic and therapeutic opportunities directed at senescent cells. Here, we review senescence-associated (SA)-MicroRNAs and discuss their implications in senescence-relevant pathologies.
Collapse
Affiliation(s)
- Rachel Munk
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Amaresh C Panda
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Ioannis Grammatikakis
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Myriam Gorospe
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States
| | - Kotb Abdelmohsen
- Laboratory of Genetics and Genomics, National Institute on Aging, National Institutes of Health, Baltimore, MD, United States.
| |
Collapse
|
80
|
Zong Y, Wu P, Nai C, Luo Y, Hu F, Gao W, Zhai N, Xu T, Li D. Effect of MicroRNA-30e on the Behavior of Vascular Smooth Muscle Cells via Targeting Ubiquitin-Conjugating Enzyme E2I. Circ J 2017; 81:567-576. [PMID: 28123167 DOI: 10.1253/circj.cj-16-0751] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
BACKGROUND Many microRNAs (miRNAs) have recently been shown to demonstrate critical roles in differentiation, proliferation and migration of vascular smooth muscle cells (VSMCs).Methods and Results:In this study, a certain amount of miRNA expression in VSMCs was evaluated by real-time polymerase chain reaction, and it was found that microRNA-30e (miR-30e) was expressed more strongly than other common vascular well-expressed miRNAs in vitro. Subsequently, both a gain and loss of function study was performed in vitro and in vivo. It was found that miR-30e in VSMCs was strongly downregulated concomitantly with stimulation, and miR-30e inhibited VSMCs proliferation and migration both in vitro and in vivo. Furthermore, ubiquitin-conjugating enzyme E2I (Ube2i) was identified as the target gene of endogenous miR-30e by luciferase reporter assay, and it was confirmed that overexpression of miR-30e significantly reduced Ube2i and inhibited the phenotypic switch of VSMCs. Knockdown of Ube2i had an influence over the proliferation and migration of cultured VSMCs, as same as the miR-30e mimic did. Overexpression of miR-30e induced the apoptosis of VSMCs and deregulated the protein expression of IkBα, which is crucial for the NFκB signal pathway. CONCLUSIONS The results of this study indicated that miR-30e in VSMCs exerted an anti-atherosclerosis effect via inhibiting proliferation and migration, and promoting apoptosis of VSMCs. More specifically, it was demonstrated that miR-30e exhibited these effects on VSMCs partially through targeting Ube2i and downregulating the IκBα/NFκB signaling pathway.
Collapse
Affiliation(s)
- Yu Zong
- Institute of Cardiovascular Disease, Xuzhou Medical University
| | | | | | | | | | | | | | | | | |
Collapse
|
81
|
Tarasov VA, Boyko NV, Makhotkin MA, Shin EF, Tyutyakina MG, Chikunov IE, Naboka AV, Mashkarina AN, Kirpiy AA, Matishov DG. The miRNA aberrant expression dependence on DNA methylation in HeLa cells treated with mitomycin C. RUSS J GENET+ 2016. [DOI: 10.1134/s1022795416110156] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
82
|
Dudekula DB, Panda AC, Grammatikakis I, De S, Abdelmohsen K, Gorospe M. CircInteractome: A web tool for exploring circular RNAs and their interacting proteins and microRNAs. RNA Biol 2016; 13:34-42. [PMID: 26669964 DOI: 10.1080/15476286.2015.1128065] [Citation(s) in RCA: 840] [Impact Index Per Article: 105.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Circular RNAs (circRNAs) are widely expressed in animal cells, but their biogenesis and functions are poorly understood. CircRNAs have been shown to act as sponges for miRNAs and may also potentially sponge RNA-binding proteins (RBPs) and are thus predicted to function as robust posttranscriptional regulators of gene expression. The joint analysis of large-scale transcriptome data coupled with computational analyses represents a powerful approach to elucidate possible biological roles of ribonucleoprotein (RNP) complexes. Here, we present a new web tool, CircInteractome (circRNA interactome), for mapping RBP- and miRNA-binding sites on human circRNAs. CircInteractome searches public circRNA, miRNA, and RBP databases to provide bioinformatic analyses of binding sites on circRNAs and additionally analyzes miRNA and RBP sites on junction and junction-flanking sequences. CircInteractome also allows the user the ability to (1) identify potential circRNAs which can act as RBP sponges, (2) design junction-spanning primers for specific detection of circRNAs of interest, (3) design siRNAs for circRNA silencing, and (4) identify potential internal ribosomal entry sites (IRES). In sum, the web tool CircInteractome, freely accessible at http://circinteractome.nia.nih.gov, facilitates the analysis of circRNAs and circRNP biology.
Collapse
Affiliation(s)
- Dawood B Dudekula
- a Laboratory of Genetics, National Institute on Aging-Intramural Research Program, National Institutes of Health , Baltimore , Maryland 21224 , USA
| | - Amaresh C Panda
- a Laboratory of Genetics, National Institute on Aging-Intramural Research Program, National Institutes of Health , Baltimore , Maryland 21224 , USA
| | - Ioannis Grammatikakis
- a Laboratory of Genetics, National Institute on Aging-Intramural Research Program, National Institutes of Health , Baltimore , Maryland 21224 , USA
| | - Supriyo De
- a Laboratory of Genetics, National Institute on Aging-Intramural Research Program, National Institutes of Health , Baltimore , Maryland 21224 , USA
| | - Kotb Abdelmohsen
- a Laboratory of Genetics, National Institute on Aging-Intramural Research Program, National Institutes of Health , Baltimore , Maryland 21224 , USA
| | - Myriam Gorospe
- a Laboratory of Genetics, National Institute on Aging-Intramural Research Program, National Institutes of Health , Baltimore , Maryland 21224 , USA
| |
Collapse
|
83
|
Leon-Sarmiento FE, Leon-Ariza JS, Prada D, Leon-Ariza DS, Rizzo-Sierra CV. Sensory aspects in myasthenia gravis: A translational approach. J Neurol Sci 2016; 368:379-88. [DOI: 10.1016/j.jns.2016.07.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 07/07/2016] [Accepted: 07/08/2016] [Indexed: 12/24/2022]
|
84
|
Tsai KW, Leung CM, Lo YH, Chen TW, Chan WC, Yu SY, Tu YT, Lam HC, Li SC, Ger LP, Liu WS, Chang HT. Arm Selection Preference of MicroRNA-193a Varies in Breast Cancer. Sci Rep 2016; 6:28176. [PMID: 27307030 PMCID: PMC4910092 DOI: 10.1038/srep28176] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 05/31/2016] [Indexed: 01/28/2023] Open
Abstract
MicroRNAs (miRNAs) are short noncoding RNAs derived from the 3′ and 5′ ends of the same precursor. However, the biological function and mechanism of miRNA arm expression preference remain unclear in breast cancer. We found significant decreases in the expression levels of miR-193a-5p but no significant differences in those of miR-193a-3p in breast cancer. MiR-193a-3p suppressed breast cancer cell growth and migration and invasion abilities, whereas miR-193a-5p suppressed cell growth but did not influence cell motility. Furthermore, NLN and CCND1, PLAU, and SEPN1 were directly targeted by miR-193a-5p and miR-193a-3p, respectively, in breast cancer cells. The endogenous levels of miR-193a-5p and miR-193a-3p were significantly increased by transfecting breast cancer cells with the 3′UTR of their direct targets. Comprehensive analysis of The Cancer Genome Atlas database revealed significant differences in the arm expression preferences of several miRNAs between breast cancer and adjacent normal tissues. Our results collectively indicate that the arm expression preference phenomenon may be attributable to the target gene amount during breast cancer progression. The miRNA arm expression preference may be a means of modulating miRNA function, further complicating the mRNA regulatory network. Our findings provide a new insight into miRNA regulation and an application for breast cancer therapy.
Collapse
Affiliation(s)
- Kuo-Wang Tsai
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan.,Department of Chemical Biology, National Pingtung University of Education, Pingtung, Taiwan
| | - Chung-Man Leung
- Department of Radiation Oncology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Yi-Hao Lo
- Department of Family Medicine, Zuoying Branch of Kaohsiung Armed Forces General Hospital, Kaohsiung, Taiwan
| | - Ting-Wen Chen
- Molecular Medicine Research Center, Chang Gung University, Taoyuan, Taiwan.,Bioinformatics Center, Chang Gung University, Taoyuan, Taiwan
| | - Wen-Ching Chan
- Genomics &Proteomics Core Laboratory, Department of medical research, Kaohsiung, Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Shou-Yu Yu
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Ya-Ting Tu
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Hing-Chung Lam
- Center For Geriatrics and Gerontology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Sung-Chou Li
- Genomics &Proteomics Core Laboratory, Department of medical research, Kaohsiung, Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Luo-Ping Ger
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan.,Institute of Biomedical Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Wen-Shan Liu
- Department of Radiation Oncology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan.,Department of Radiation Oncology, Tri-Service General Hospital, Taipei, Twiwan
| | - Hong-Tai Chang
- Center For Geriatrics and Gerontology, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan.,Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| |
Collapse
|
85
|
Brandon-Warner E, Feilen NA, Culberson CR, Field CO, deLemos AS, Russo MW, Schrum LW. Processing of miR17-92 Cluster in Hepatic Stellate Cells Promotes Hepatic Fibrogenesis During Alcohol-Induced Injury. Alcohol Clin Exp Res 2016; 40:1430-42. [PMID: 27291156 DOI: 10.1111/acer.13116] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 04/27/2016] [Indexed: 12/13/2022]
Abstract
BACKGROUND Exposure to alcohol and its metabolites can initiate hepatic injury and fibrogenesis. Fibrosis is mediated through hepatic stellate cell (HSC) activation, leading to global changes in mRNA and microRNA (miR) expression. miRs are expressed in cells or shuttled to exosomes which can be detected in tissue culture media (TCM) and biological fluids. The mechanisms and function underlying the differential expression and processing of miRs and their downstream effects during hepatic injury remain poorly understood. METHODS Expression of primary (pri)-miR17-92. and individual members of this cluster, miR17a, 18a, 19a, 20a, 19b, and 92, were examined in primary HSCs and human LX2 cells exposed to alcohol-conditioned media (CM), liver tissue from a rodent model of alcoholic injury, and in exosomes from TCM and plasma of rodent models and patients with alcoholic liver disease (ALD). miR expression was examined in HSCs transduced with an AAV2 vector carrying GFP-miR19b or GFP-control transgene under the collagen promoter. RESULTS Profibrotic markers were enhanced in primary HSCs and LX2 cells exposed to alcohol-CM, concomitant with decreased miR19b expression and a significant increase in pri-miR17-92. Increased pri-miR17-92 was confirmed in a rodent model of alcohol-induced liver injury. Individual members of the cluster were inversely proportionate in cells and exosomes. AAV2-mediated miR19b overexpression inhibited miR17-92 and altered expression of individual cluster members in cells and exosomes. Expression of individual miR17-92 cluster members in plasma exosomes isolated from patients with ALD was similar to that seen in a rodent model of alcoholic injury and in vitro. CONCLUSIONS Reintroduction of miR19b inhibits HSC activation and modulates expression of pri-miR17-92 and the inverse expression of individual cluster members in cells and exosomes. Better understanding of miR17-92 processing may provide mechanistic insights into the role of individual miRs and exosomes during hepatic injury, revealing new therapeutic targets.
Collapse
Affiliation(s)
- Elizabeth Brandon-Warner
- Liver Pathobiology Laboratory, Department of Internal Medicine, Carolinas Medical Center, Charlotte, North Carolina
| | - Nicole A Feilen
- Liver Pathobiology Laboratory, Department of Internal Medicine, Carolinas Medical Center, Charlotte, North Carolina
| | - Catherine R Culberson
- Liver Pathobiology Laboratory, Department of Internal Medicine, Carolinas Medical Center, Charlotte, North Carolina
| | - Conroy O Field
- Liver Pathobiology Laboratory, Department of Internal Medicine, Carolinas Medical Center, Charlotte, North Carolina
| | - Andrew S deLemos
- Center for Liver Diseases and Liver Transplant, Carolinas Medical Center, Charlotte, North Carolina
| | - Mark W Russo
- Center for Liver Diseases and Liver Transplant, Carolinas Medical Center, Charlotte, North Carolina
| | - Laura W Schrum
- Liver Pathobiology Laboratory, Department of Internal Medicine, Carolinas Medical Center, Charlotte, North Carolina
| |
Collapse
|
86
|
Abstract
The idea of treating disease in humans with genetic material was conceived over two decades ago and with that a promising journey involving development and efficacy studies in cells and animals of a large number of novel therapeutic reagents unfolded. In the footsteps of this process, successful gene therapy treatment of genetic conditions in humans has shown clear signs of efficacy. Notably, significant advancements using gene supplementation and silencing strategies have been made in the field of ocular gene therapy, thereby pinpointing ocular gene therapy as one of the compelling "actors" bringing gene therapy to the clinic. Most of all, this success has been facilitated because of (1) the fact that the eye is an effortlessly accessible, exceedingly compartmentalized, and immune-privileged organ offering a unique advantage as a gene therapy target, and (2) significant progress toward efficient, sustained transduction of cells within the retina having been achieved using nonintegrating vectors based on recombinant adeno-associated virus and nonintegrating lentivirus vectors. The results from in vivo experiments and trials suggest that treatment of inherited retinal dystrophies, ocular angiogenesis, and inflammation with gene therapy can be both safe and effective. Here, the progress of ocular gene therapy is examined with special emphasis on the potential use of RNAi- and protein-based antiangiogenic gene therapy to treat exudative age-related macular degeneration.
Collapse
Affiliation(s)
- Thomas J Corydon
- Department of Biomedicine, Aarhus University , Aarhus C, Denmark
| |
Collapse
|
87
|
Abstract
Small evolutionarily conserved noncoding RNAs, microRNAs (miRNAs), regulate gene expression either by translational repression or by mRNA degradation in mammals. miRNAs play functional roles in diverse physiological and pathological processes. miRNA processing is accurately regulated through multifarious factors. The canonical miRNA processing pathway consists of four sequential steps: (a) miRNA gene is transcribed into primary miRNA (pri-miRNA) mainly by RNA polymerase II; (b) pri-miRNA is processed into precursor miRNA (pre-miRNA) through microprocessor complex; (c) pre-miRNA is exported from the nucleus to the cytoplasm with the assistance of Exportin 5 (EXP5/XP05) protein; and (d) pre-miRNA is further processed into mature miRNA via Dicer. Emerging evidence has also demonstrated that some miRNAs undergo alternative processing pathways. Dysregulation of miRNA processing is closely related to tumorigenesis. Here, we review the current advances in the knowledge of miRNA processing and briefly discuss its impact on human cancers.
Collapse
Affiliation(s)
- Shuai Jiang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Wei Yan
- Department of Cancer Biology, Beckman Research Institute of City of Hope, Duarte, CA, USA
| |
Collapse
|
88
|
Salzman DW, Nakamura K, Nallur S, Dookwah MT, Metheetrairut C, Slack FJ, Weidhaas JB. miR-34 activity is modulated through 5'-end phosphorylation in response to DNA damage. Nat Commun 2016; 7:10954. [PMID: 26996824 PMCID: PMC4802117 DOI: 10.1038/ncomms10954] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 02/04/2016] [Indexed: 01/07/2023] Open
Abstract
MicroRNA (miRNA) expression is tightly regulated by several mechanisms, including transcription and cleavage of the miRNA precursor RNAs, to generate a mature miRNA, which is thought to be directly correlated with activity. MiR-34 is a tumour-suppressor miRNA important in cell survival, that is transcriptionally upregulated by p53 in response to DNA damage. Here, we show for the first time that there is a pool of mature miR-34 in cells that lacks a 5′-phosphate and is inactive. Following exposure to a DNA-damaging stimulus, the inactive pool of miR-34 is rapidly activated through 5′-end phosphorylation in an ATM- and Clp1-dependent manner, enabling loading into Ago2. Importantly, this mechanism of miR-34 activation occurs faster than, and independently of, de novo p53-mediated transcription and processing. Our study reveals a novel mechanism of rapid miRNA activation in response to environmental stimuli occurring at the mature miRNA level. MiR-34 is a tumour suppressor microRNA known to be upregulated by p53 after DNA damage and plays a critical role in cell cycle arrest and apoptosis. Here the authors show the cell maintains an inactive pool of miR-34 which is rapidly activated after damage via ATM-dependent phosphorylation.
Collapse
Affiliation(s)
- David W Salzman
- Department of Therapeutic Radiology, Yale School of Medicine, 15 York Street, New Haven, Connecticut 06502, USA
| | - Kotoka Nakamura
- Department of Radiation Oncology, David Geffen School of Medicine, Los Angeles, California 90024, USA
| | - Sunitha Nallur
- Department of Therapeutic Radiology, Yale School of Medicine, 15 York Street, New Haven, Connecticut 06502, USA
| | - Michelle T Dookwah
- Department of Therapeutic Radiology, Yale School of Medicine, 15 York Street, New Haven, Connecticut 06502, USA
| | - Chanatip Metheetrairut
- Department of Molecular, Cellular and Developmental Biology, Yale University, PO Box 208103, New Haven, Connecticut 06502, USA
| | - Frank J Slack
- Department of Molecular, Cellular and Developmental Biology, Yale University, PO Box 208103, New Haven, Connecticut 06502, USA.,Department of Pathology, Beth Israel Deaconess Medical Center, Institute for RNA Medicine, Harvard Medical School, 330 Brookline Avenue, Boston, Massachusetts 02215, USA
| | - Joanne B Weidhaas
- Department of Radiation Oncology, David Geffen School of Medicine, Los Angeles, California 90024, USA
| |
Collapse
|
89
|
Basak I, Patil KS, Alves G, Larsen JP, Møller SG. microRNAs as neuroregulators, biomarkers and therapeutic agents in neurodegenerative diseases. Cell Mol Life Sci 2016; 73:811-27. [PMID: 26608596 PMCID: PMC11108480 DOI: 10.1007/s00018-015-2093-x] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 10/14/2015] [Accepted: 11/09/2015] [Indexed: 01/03/2023]
Abstract
The last decade has experienced the emergence of microRNAs as a key molecular tool for the diagnosis and prognosis of human diseases. Although the focus has mostly been on cancer, neurodegenerative diseases present an exciting, yet less explored, platform for microRNA research. Several studies have highlighted the significance of microRNAs in neurogenesis and neurodegeneration, and pre-clinical studies have shown the potential of microRNAs as biomarkers. Despite this, no bona fide microRNAs have been identified as true diagnostic or prognostic biomarkers for neurodegenerative disease. This is mainly due to the lack of precisely defined patient cohorts and the variability within and between individual cohorts. However, the discovery that microRNAs exist as stable molecules at detectable levels in body fluids has opened up new avenues for microRNAs as potential biomarker candidates. Furthermore, technological developments in microRNA biology have contributed to the possible design of microRNA-mediated disease intervention strategies. The combination of these advancements, with the availability of well-defined longitudinal patient cohort, promises to not only assist in developing invaluable diagnostic tools for clinicians, but also to increase our overall understanding of the underlying heterogeneity of neurodegenerative diseases. In this review, we present a comprehensive overview of the existing knowledge of microRNAs in neurodegeneration and provide a perspective of the applicability of microRNAs as a basis for future therapeutic intervention strategies.
Collapse
Affiliation(s)
- Indranil Basak
- Department of Biological Sciences, St. John's University, 8000 Utopia Parkway, New York, NY, 11439, USA
| | - Ketan S Patil
- Department of Biological Sciences, St. John's University, 8000 Utopia Parkway, New York, NY, 11439, USA
| | - Guido Alves
- Norwegian Center for Movement Disorders, Stavanger University Hospital, 4068, Stavanger, Norway
| | - Jan Petter Larsen
- Norwegian Center for Movement Disorders, Stavanger University Hospital, 4068, Stavanger, Norway
| | - Simon Geir Møller
- Department of Biological Sciences, St. John's University, 8000 Utopia Parkway, New York, NY, 11439, USA.
- Norwegian Center for Movement Disorders, Stavanger University Hospital, 4068, Stavanger, Norway.
| |
Collapse
|
90
|
Fan B, Sutandy FXR, Syu GD, Middleton S, Yi G, Lu KY, Chen CS, Kao CC. Heterogeneous Ribonucleoprotein K (hnRNP K) Binds miR-122, a Mature Liver-Specific MicroRNA Required for Hepatitis C Virus Replication. Mol Cell Proteomics 2015; 14:2878-86. [PMID: 26330540 DOI: 10.1074/mcp.m115.050344] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Indexed: 12/12/2022] Open
Abstract
Heterogeneous ribonucleoprotein K (hnRNP K) binds to the 5' untranslated region of the hepatitis C virus (HCV) and is required for HCV RNA replication. The hnRNP K binding site on HCV RNA overlaps with the sequence recognized by the liver-specific microRNA, miR-122. A proteome chip containing ∼17,000 unique human proteins probed with miR-122 identified hnRNP K as one of the strong binding proteins. In vitro kinetic study showed hnRNP K binds miR-122 with a nanomolar dissociation constant, in which the short pyrimidine-rich residues in the central and 3' portion of the miR-122 were required for hnRNP K binding. In liver hepatocytes, miR-122 formed a coprecipitable complex with hnRNP K. High throughput Illumina DNA sequencing of the RNAs precipitated with hnRNP K was enriched for mature miR-122. SiRNA knockdown of hnRNP K in human hepatocytes reduced the levels of miR-122. These results show that hnRNP K is a cellular protein that binds and affects the accumulation of miR-122. Its ability to also bind HCV RNA near the miR-122 binding site suggests a role for miR-122 recognition of HCV RNA.
Collapse
Affiliation(s)
- Baochang Fan
- From the ‡Department of Molecular & Cellular Biochemistry, Indiana University, Bloomington, IN 47405, USA
| | - F X Reymond Sutandy
- §Graduate Institute of Systems Biology and Bioinformatics, National Central University, Jhongli 32001, Taiwan
| | - Guan-Da Syu
- §Graduate Institute of Systems Biology and Bioinformatics, National Central University, Jhongli 32001, Taiwan
| | - Stefani Middleton
- From the ‡Department of Molecular & Cellular Biochemistry, Indiana University, Bloomington, IN 47405, USA
| | - Guanghui Yi
- From the ‡Department of Molecular & Cellular Biochemistry, Indiana University, Bloomington, IN 47405, USA
| | - Kuan-Yi Lu
- §Graduate Institute of Systems Biology and Bioinformatics, National Central University, Jhongli 32001, Taiwan
| | - Chien-Sheng Chen
- §Graduate Institute of Systems Biology and Bioinformatics, National Central University, Jhongli 32001, Taiwan
| | - C Cheng Kao
- From the ‡Department of Molecular & Cellular Biochemistry, Indiana University, Bloomington, IN 47405, USA;
| |
Collapse
|
91
|
Abdelmohsen K, Gorospe M. Noncoding RNA control of cellular senescence. WILEY INTERDISCIPLINARY REVIEWS-RNA 2015; 6:615-29. [PMID: 26331977 DOI: 10.1002/wrna.1297] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 07/19/2015] [Accepted: 07/20/2015] [Indexed: 12/23/2022]
Abstract
Senescent cells accumulate in normal tissues with advancing age and arise by long-term culture of primary cells. Senescence develops following exposure to a range of stress-causing agents and broadly influences the physiology and pathology of tissues, organs, and systems in the body. While many proteins are known to control senescence, numerous noncoding (nc)RNAs are also found to promote or repress the senescent phenotype. Here, we review the regulatory ncRNAs (primarily microRNAs and lncRNAs) identified to-date as key modulators of senescence. We highlight the major senescent pathways (p53/p21 and pRB/p16), as well as the senescence-associated secretory phenotype (SASP) and other senescence-associated events governed by ncRNAs, and discuss the importance of understanding comprehensively the ncRNAs implicated in cell senescence.
Collapse
Affiliation(s)
- Kotb Abdelmohsen
- Laboratory of Genetics, National Institute on Aging-Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| | - Myriam Gorospe
- Laboratory of Genetics, National Institute on Aging-Intramural Research Program, National Institutes of Health, Baltimore, MD, USA
| |
Collapse
|
92
|
A cross-talk between Hepatitis B virus and host mRNAs confers viral adaptation to liver. Sci Rep 2015; 5:10572. [PMID: 26184825 PMCID: PMC4505342 DOI: 10.1038/srep10572] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2015] [Accepted: 04/20/2015] [Indexed: 02/08/2023] Open
Abstract
Hepatitis B virus (HBV) chronically infects approximately 350 million people worldwide. The replication of HBV which genome is only 3.2 kb long relies heavily on host factors. Previous studies demonstrated that a highly expressed liver-specific microRNA (miRNA) miR-122 suppresses HBV expression and replication in multiple ways. In this study, we found that the miR-122 response elements in viral genome facilitate HBV expression and replication in miR-122 highly-expressed hepatocytes. Moreover, mutations in miR-122 response elements are correlated with viral loads and disease progression in HBV-infected patients. We next found that HBV mRNA with miR-122 response elements alone could lead to altered expression of multiple host genes by whole genome expression analysis. HBV mRNA-mediated miR-122 down-regulation plays a major role in HBV mRNA-induced differential gene expression. HBV mRNA could enhance viral replication via miR-122 degradation and the up-regulation of its target cyclin G1. Our study thereby reveals that under the unique condition of high abundance of miR-122 and viral mRNAs and much lower level of miR-122 target in HBV infection, HBV may have evolved to employ the miRNA-mediated virus and host mRNAs network for optimal fitness within hepatocytes.
Collapse
|
93
|
Bioimaging of transcriptional activity of microRNA124a during neurogenesis. Biotechnol Lett 2015; 37:2333-40. [DOI: 10.1007/s10529-015-1912-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 07/09/2015] [Indexed: 10/23/2022]
|
94
|
Abstract
Myocardial ischemia and reperfusion (I/R) injury is a pathological condition characterized by an initial restriction of blood supply to the heart followed by the subsequent restoration of perfusion and concomitant re-oxygenation. This condition may cause heart injury and contribute to morbidity and mortality. Although tremendous advances have been made in understanding the mechanisms of myocardial I/R injury, the translation of these findings into the clinical setting has been largely disappointing. MicroRNAs (miRNAs) are endogenous, single-stranded, non-coding RNAs ranging from 18-24 nucleotides in length. They are highly conserved and ubiquitously expressed in all species, which control diverse cellular functions by either promoting degradation or inhibiting target mRNA translation. In particular, a multitude of studies demonstrated miRNAs played an important role in acute and chronic cardiovascular disease processes. In this review, we focus on miRNAs and summarize the latest insights on the role of the specific miRNAs in myocardial I/R injury.
Collapse
Affiliation(s)
- Zhi-Xing Fan
- Department of Cardiology, the First College of Clinical Medical Sciences, China Three Gorges University, Yichang, Hubei Province, Hubei, China. E-mail.
| | | |
Collapse
|
95
|
Abstract
The discovery of the first microRNA (miRNA) over 20 years ago has ushered in a new era in molecular biology. There are now over 2000 miRNAs that have been discovered in humans and it is believed that they collectively regulate one third of the genes in the genome. miRNAs have been linked to many human diseases and are being pursued as clinical diagnostics and as therapeutic targets. This review presents an overview of the miRNA pathway, including biogenesis routes, biological roles, and clinical approaches.
Collapse
Affiliation(s)
- Scott M Hammond
- Department of Cell Biology and Physiology, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC 27599, USA.
| |
Collapse
|
96
|
Yuan Z, Ding S, Yan M, Zhu X, Liu L, Tan S, Jin Y, Sun Y, Li Y, Huang T. Variability of miRNA expression during the differentiation of human embryonic stem cells into retinal pigment epithelial cells. Gene 2015; 569:239-49. [PMID: 26028588 DOI: 10.1016/j.gene.2015.05.060] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Revised: 05/23/2015] [Accepted: 05/25/2015] [Indexed: 01/08/2023]
Abstract
Embryonic stem cells (ESCs) and induced pluripotent stem cells can be induced to differentiate into retinal pigment epithelium (RPE). MiRNAs have been characterized and found playing important roles in the differentiation process of ESCs, but their length and sequence heterogeneity (isomiRs), and their non-canonical forms of miRNAs are underestimated or ignored. In this report, we found some non-canonical miRNAs (dominant isomiRs) in all differentiation stages, and 27 statistically significant editing sites were identified in 24 different miRNAs. Moreover, we found marked major-to-minor arm-switching events in 14 pre-miRNAs during the hESC to RPE cell differentiation phases. Our study for the first time reports exploring the variability of miRNA expression during the differentiation of hESCs into RPE cells and the results show that miRNA variability is a ubiquitous phenomenon in the ESC differentiation.
Collapse
Affiliation(s)
- Zhidong Yuan
- School of Life Sciences, Hunan University of Science and Technology, Xiangtan 411201, China; Key Laboratory of Ecological Remediation and Safe Utilization of Heavy Metal-Polluted Soils, College of Hunan Province, Xiangtan 411201, China.
| | - Suping Ding
- School of Life Sciences, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Mingli Yan
- School of Life Sciences, Hunan University of Science and Technology, Xiangtan 411201, China; Key Laboratory of Ecological Remediation and Safe Utilization of Heavy Metal-Polluted Soils, College of Hunan Province, Xiangtan 411201, China
| | - Xiao Zhu
- Guangdong Province Key Laboratory of Medical Molecular Diagnosis, Dongguan Scientific Research Center, Guangdong Medical University, Dongguan 523808, China
| | - Lili Liu
- School of Life Sciences, Hunan University of Science and Technology, Xiangtan 411201, China; Key Laboratory of Ecological Remediation and Safe Utilization of Heavy Metal-Polluted Soils, College of Hunan Province, Xiangtan 411201, China
| | - Shuhua Tan
- School of Life Sciences, Hunan University of Science and Technology, Xiangtan 411201, China; Key Laboratory of Ecological Remediation and Safe Utilization of Heavy Metal-Polluted Soils, College of Hunan Province, Xiangtan 411201, China
| | - Yuanchang Jin
- School of Life Sciences, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Yuandong Sun
- School of Life Sciences, Hunan University of Science and Technology, Xiangtan 411201, China; Key Laboratory of Ecological Remediation and Safe Utilization of Heavy Metal-Polluted Soils, College of Hunan Province, Xiangtan 411201, China
| | - Yufeng Li
- School of Life Sciences, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Ting Huang
- School of Life Sciences, Hunan University of Science and Technology, Xiangtan 411201, China
| |
Collapse
|
97
|
Yuva-Aydemir Y, Xu XL, Aydemir O, Gascon E, Sayin S, Zhou W, Hong Y, Gao FB. Downregulation of the Host Gene jigr1 by miR-92 Is Essential for Neuroblast Self-Renewal in Drosophila. PLoS Genet 2015; 11:e1005264. [PMID: 26000445 PMCID: PMC4441384 DOI: 10.1371/journal.pgen.1005264] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 05/05/2015] [Indexed: 11/18/2022] Open
Abstract
Intragenic microRNAs (miRNAs), located mostly in the introns of protein-coding genes, are often co-expressed with their host mRNAs. However, their functional interaction in development is largely unknown. Here we show that in Drosophila, miR-92a and miR-92b are embedded in the intron and 3'UTR of jigr1, respectively, and co-expressed with some jigr1 isoforms. miR-92a and miR-92b are highly expressed in neuroblasts of larval brain where Jigr1 expression is low. Genetic deletion of both miR-92a and miR-92b demonstrates an essential cell-autonomous role for these miRNAs in maintaining neuroblast self-renewal through inhibiting premature differentiation. We also show that miR-92a and miR-92b directly target jigr1 in vivo and that some phenotypes due to the absence of these miRNAs are partially rescued by reducing the level of jigr1. These results reveal a novel function of the miR-92 family in Drosophila neuroblasts and provide another example that local negative feedback regulation of host genes by intragenic miRNAs is essential for animal development.
Collapse
Affiliation(s)
- Yeliz Yuva-Aydemir
- Department of Neurology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Xia-Lian Xu
- Gladstone Institute of Neurological Disease, San Francisco, California, United States of America
| | - Ozkan Aydemir
- Department of Neurology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Eduardo Gascon
- Department of Neurology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Serkan Sayin
- Department of Neurology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| | - Wenke Zhou
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Yang Hong
- Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Fen-Biao Gao
- Department of Neurology, University of Massachusetts Medical School, Worcester, Massachusetts, United States of America
| |
Collapse
|
98
|
Handley A, Schauer T, Ladurner A, Margulies C. Designing Cell-Type-Specific Genome-wide Experiments. Mol Cell 2015; 58:621-31. [DOI: 10.1016/j.molcel.2015.04.024] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
99
|
Yang Q, Li W, She H, Dou J, Duong DM, Du Y, Yang SH, Seyfried NT, Fu H, Gao G, Mao Z. Stress induces p38 MAPK-mediated phosphorylation and inhibition of Drosha-dependent cell survival. Mol Cell 2015; 57:721-734. [PMID: 25699712 DOI: 10.1016/j.molcel.2015.01.004] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 07/14/2014] [Accepted: 12/29/2014] [Indexed: 12/12/2022]
Abstract
MicroRNAs (miRNAs) regulate the translational potential of their mRNA targets and control many cellular processes. The key step in canonical miRNA biogenesis is the cleavage of the primary transcripts by the nuclear RNase III enzyme Drosha. Emerging evidence suggests that the miRNA biogenic cascade is tightly controlled. However, little is known whether Drosha is regulated. Here, we show that Drosha is targeted by stress. Under stress, p38 MAPK directly phosphorylates Drosha at its N terminus. This reduces its interaction with DiGeorge syndrome critical region gene 8 and promotes its nuclear export and degradation by calpain. This regulatory mechanism mediates stress-induced inhibition of Drosha function. Reduction of Drosha sensitizes cells to stress and increases death. In contrast, increase in Drosha attenuates stress-induced death. These findings reveal a critical regulatory mechanism by which stress engages p38 MAPK pathway to destabilize Drosha and inhibit Drosha-mediated cellular survival.
Collapse
Affiliation(s)
- Qian Yang
- Department of Neurosurgery, Tangdu Hospital, the Fourth Military Medical University, Xi'an, Shaanxi 710038, China; Department of Pharmacology, Emory University School of Medicine, Atlanta, GA 30322, USA.
| | - Wenming Li
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Hua She
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Juan Dou
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Duc M Duong
- Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Yuhong Du
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Shao-Hua Yang
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Nicholas T Seyfried
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Haian Fu
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Guodong Gao
- Department of Neurosurgery, Tangdu Hospital, the Fourth Military Medical University, Xi'an, Shaanxi 710038, China
| | - Zixu Mao
- Department of Pharmacology, Emory University School of Medicine, Atlanta, GA 30322, USA; Department of Neurology, Emory University School of Medicine, Atlanta, GA 30322, USA.
| |
Collapse
|
100
|
García R, Nistal JF, Merino D, Price NL, Fernández-Hernando C, Beaumont J, González A, Hurlé MA, Villar AV. p-SMAD2/3 and DICER promote pre-miR-21 processing during pressure overload-associated myocardial remodeling. Biochim Biophys Acta Mol Basis Dis 2015; 1852:1520-30. [PMID: 25887159 DOI: 10.1016/j.bbadis.2015.04.006] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2014] [Revised: 03/23/2015] [Accepted: 04/07/2015] [Indexed: 12/21/2022]
Abstract
Transforming growth factor-β (TGF-β) induces miR-21 expression which contributes to fibrotic events in the left ventricle (LV) under pressure overload. SMAD effectors of TGF-β signaling interact with DROSHA to promote primary miR-21 processing into precursor miR-21 (pre-miR-21). We hypothesize that p-SMAD-2 and -3 also interact with DICER1 to regulate the processing of pre-miR-21 to mature miR-21 in cardiac fibroblasts under experimental and clinical pressure overload. The subjects of the study were mice undergoing transverse aortic constriction (TAC) and patients with aortic stenosis (AS). In vitro, NIH-3T3 fibroblasts transfected with pre-miR-21 responded to TGF-β1 stimulation by overexpressing miR-21. Overexpression and silencing of SMAD2/3 resulted in higher and lower production of mature miR-21, respectively. DICER1 co-precipitated along with SMAD2/3 and both proteins were up-regulated in the LV from TAC-mice. Pre-miR-21 was isolated bound to the DICER1 maturation complex. Immunofluorescence analysis revealed co-localization of p-SMAD2/3 and DICER1 in NIH-3T3 and mouse cardiac fibroblasts. DICER1-p-SMAD2/3 protein-protein interaction was confirmed by in situ proximity ligation assay. Myocardial up-regulation of DICER1 constituted a response to pressure overload in TAC-mice. DICER mRNA levels correlated directly with those of TGF-β1, SMAD2 and SMAD3. In the LV from AS patients, DICER mRNA was up-regulated and its transcript levels correlated directly with TGF-β1, SMAD2, and SMAD3. Our results support that p-SMAD2/3 interacts with DICER1 to promote pre-miR-21 processing to mature miR-21. This new TGFβ-dependent regulatory mechanism is involved in miR-21 overexpression in cultured fibroblasts, and in the pressure overloaded LV of mice and human patients.
Collapse
Affiliation(s)
- Raquel García
- Departamento de Fisiología y Farmacología, Facultad de Medicina, Universidad de Cantabria, Santander, Spain; Instituto de Investigación Marqués de Valdecilla (IDIVAL), Santander, Spain
| | - J Francisco Nistal
- Instituto de Investigación Marqués de Valdecilla (IDIVAL), Santander, Spain; Servicio de Cirugía Cardiovascular, Hospital Universitario Marqués de Valdecilla, Santander, Spain
| | - David Merino
- Departamento de Fisiología y Farmacología, Facultad de Medicina, Universidad de Cantabria, Santander, Spain; Instituto de Investigación Marqués de Valdecilla (IDIVAL), Santander, Spain
| | - Nathan L Price
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, USA; Integrative Cell Signaling and Neurobiology of Metabolism Program, Section of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Carlos Fernández-Hernando
- Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT, USA; Integrative Cell Signaling and Neurobiology of Metabolism Program, Section of Comparative Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Javier Beaumont
- Programa de Enfermedades Cardiovasculares, Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Pamplona, Spain
| | - Arantxa González
- Programa de Enfermedades Cardiovasculares, Centro de Investigación Médica Aplicada (CIMA), Universidad de Navarra, Pamplona, Spain
| | - María A Hurlé
- Departamento de Fisiología y Farmacología, Facultad de Medicina, Universidad de Cantabria, Santander, Spain; Instituto de Investigación Marqués de Valdecilla (IDIVAL), Santander, Spain.
| | - Ana V Villar
- Departamento de Fisiología y Farmacología, Facultad de Medicina, Universidad de Cantabria, Santander, Spain; Instituto de Investigación Marqués de Valdecilla (IDIVAL), Santander, Spain
| |
Collapse
|