51
|
Maruyama T, Stevens R, Boka A, DiRienzo L, Chang C, Yu HMI, Nishimori K, Morrison C, Hsu W. BMPR1A maintains skeletal stem cell properties in craniofacial development and craniosynostosis. Sci Transl Med 2021; 13:13/583/eabb4416. [PMID: 33658353 DOI: 10.1126/scitranslmed.abb4416] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 10/19/2020] [Accepted: 02/12/2021] [Indexed: 12/20/2022]
Abstract
Skeletal stem cells from the suture mesenchyme, which are referred to as suture stem cells (SuSCs), exhibit long-term self-renewal, clonal expansion, and multipotency. These SuSCs reside in the suture midline and serve as the skeletal stem cell population responsible for calvarial development, homeostasis, injury repair, and regeneration. The ability of SuSCs to engraft in injury site to replace the damaged skeleton supports their potential use for stem cell-based therapy. Here, we identified BMPR1A as essential for SuSC self-renewal and SuSC-mediated bone formation. SuSC-specific disruption of Bmpr1a in mice caused precocious differentiation, leading to craniosynostosis initiated at the suture midline, which is the stem cell niche. We found that BMPR1A is a cell surface marker of human SuSCs. Using an ex vivo system, we showed that SuSCs maintained stemness properties for an extended period without losing the osteogenic ability. This study advances our knowledge base of congenital deformity and regenerative medicine mediated by skeletal stem cells.
Collapse
Affiliation(s)
- Takamitsu Maruyama
- Center for Oral Biology, University of Rochester Medical Center, Rochester, NY 14642, USA.,Department of Dentistry, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Ronay Stevens
- Center for Oral Biology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Alan Boka
- Center for Oral Biology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Laura DiRienzo
- Center for Oral Biology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Connie Chang
- Center for Oral Biology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Hsiao-Man Ivy Yu
- Center for Oral Biology, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Katsuhiko Nishimori
- Department of Bioregulation and Pharmacological Medicine and Department of Obesity and Internal Inflammation, Fukushima Medical University, Fukushima City 960-1295, Japan
| | - Clinton Morrison
- Department of Surgery, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Wei Hsu
- Center for Oral Biology, University of Rochester Medical Center, Rochester, NY 14642, USA. .,Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY 14642, USA.,Stem Cell and Regenerative Medicine Institute, University of Rochester Medical Center, Rochester, NY 14642, USA
| |
Collapse
|
52
|
Wen YL, Guo XF, Ma L, Zhang XS, Zhang JL, Zhao SG, Chu MX. The expression and mutation of BMPR1B and its association with litter size in small-tail Han sheep ( Ovis aries). Arch Anim Breed 2021; 64:211-221. [PMID: 34109270 PMCID: PMC8182661 DOI: 10.5194/aab-64-211-2021] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Accepted: 04/27/2021] [Indexed: 11/25/2022] Open
Abstract
Previous studies have shown that BMPR1B promotes follicular development and
ovarian granulosa cell proliferation, thereby affecting ovulation in
mammals. In this study, the expression and polymorphism of the BMPR1B gene
associated with litter size in small-tail Han (STH) sheep were determined.
The expression of BMPR1B was detected in 14 tissues of STH sheep during the follicular phase
as well as in the hypothalamic–pituitary–gonadal (HPG) axis of monotocous and
polytocous STH sheep during the follicular and luteal phases using
quantitative polymerase chain reaction (qPCR). Sequenom MassARRAY® single nucleotide polymorphism (SNP) technology was also used
to detect the polymorphism of SNPs in seven sheep breeds. Here, BMPR1B was highly
expressed in hypothalamus, ovary, uterus, and oviduct tissue during the
follicular phase, and BMPR1B was expressed significantly more in the hypothalamus of
polytocous ewes than in monotocous ewes during both the follicular and luteal
phases (P<0.05). For genotyping, we found that genotype and allele
frequencies of three loci of the BMPR1B gene
were extremely significantly different (P<0.01) between the monotocous and polytocous groups. Association
analysis results showed that the g.29380965A>G locus had significant
negative effects on the litter size of STH sheep, and the combination of
g.29380965A>G and FecB (Fec – fecundity and B – Booroola; A746G) at the BMPR1B gene showed that the litter size
of AG–GG, AA–GG, and GG–GG genotypes was significantly higher compared with
other genotypes (P<0.05). This is the first study to find a new molecular
marker affecting litter size and to systematically analyze the expression of
BMPR1B in different fecundity and physiological periods of STH sheep.
Collapse
Affiliation(s)
- Yu-Liang Wen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China.,College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Xiao-Fei Guo
- Tianjin Institute of Animal Sciences, Tianjin 300381, China
| | - Lin Ma
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | | | - Jin-Long Zhang
- Tianjin Institute of Animal Sciences, Tianjin 300381, China
| | - Sheng-Guo Zhao
- College of Animal Science and Technology, Gansu Agricultural University, Lanzhou 730070, China
| | - Ming-Xing Chu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
53
|
Minn KT, Dietmann S, Waye SE, Morris SA, Solnica-Krezel L. Gene expression dynamics underlying cell fate emergence in 2D micropatterned human embryonic stem cell gastruloids. Stem Cell Reports 2021; 16:1210-1227. [PMID: 33891870 PMCID: PMC8185470 DOI: 10.1016/j.stemcr.2021.03.031] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 03/28/2021] [Accepted: 03/29/2021] [Indexed: 11/26/2022] Open
Abstract
Human embryonic stem cells cultured in 2D micropatterns with BMP4 differentiate into a radial arrangement of germ layers and extraembryonic cells. Single-cell transcriptomes demonstrate generation of cell types transcriptionally similar to their in vivo counterparts in Carnegie stage 7 human gastrula. Time-course analyses indicate sequential differentiation, where the epiblast arises by 12 h between the prospective ectoderm in the center and the cells initiating differentiation toward extraembryonic fates at the edge. Extraembryonic and mesendoderm precursors arise from the epiblast by 24 h, while nascent mesoderm, endoderm, and primordial germ cell-like cells form by 44 h. Dynamic changes in transcripts encoding signaling components support a BMP, WNT, and Nodal hierarchy underlying germ-layer specification conserved across mammals, and FGF and HIPPO pathways being active throughout differentiation. This work also provides a resource for mining genes and pathways expressed in a stereotyped 2D gastruloid model, common with other species or unique to human gastrulation.
Collapse
Affiliation(s)
- Kyaw Thu Minn
- Department of Biomedical Engineering, Washington University, St. Louis, MO 63130, USA; Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Sabine Dietmann
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; Division of Nephrology, Washington University School of Medicine, St. Louis, MO 63110, USA; Institute for Informatics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Sarah E Waye
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Samantha A Morris
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA; Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Lilianna Solnica-Krezel
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
54
|
Morgani SM, Hadjantonakis AK. Quantitative analysis of signaling responses during mouse primordial germ cell specification. Biol Open 2021; 10:261796. [PMID: 34184730 PMCID: PMC8186728 DOI: 10.1242/bio.058741] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 04/09/2021] [Indexed: 12/19/2022] Open
Abstract
During early mammalian development, the pluripotent cells of the embryo are exposed to a combination of signals that drive exit from pluripotency and germ layer differentiation. At the same time, a small population of pluripotent cells give rise to the primordial germ cells (PGCs), the precursors of the sperm and egg, which pass on heritable genetic information to the next generation. Despite the importance of PGCs, it remains unclear how they are first segregated from the soma, and if this involves distinct responses to their signaling environment. To investigate this question, we mapped BMP, MAPK and WNT signaling responses over time in PGCs and their surrounding niche in vitro and in vivo at single-cell resolution. We showed that, in the mouse embryo, early PGCs exhibit lower BMP and MAPK responses compared to neighboring extraembryonic mesoderm cells, suggesting the emergence of distinct signaling regulatory mechanisms in the germline versus soma. In contrast, PGCs and somatic cells responded comparably to WNT, indicating that this signal alone is not sufficient to promote somatic differentiation. Finally, we investigated the requirement of a BMP response for these cell fate decisions. We found that cell lines with a mutation in the BMP receptor (Bmpr1a−/−), which exhibit an impaired BMP signaling response, can efficiently generate PGC-like cells revealing that canonical BMP signaling is not cell autonomously required to direct PGC-like differentiation. Summary: A subpopulation of pluripotent cells of the embryo give rise to the primordial germ cells (PGCs), the precursors of the sperm and egg, which pass on heritable genetic information to the next generation. To determine how PGCs are first segregated from the soma, we investigated BMP, MAPK and WNT signaling over time in PGCs and their surrounding niche in vitro and in vivo at single-cell resolution.
Collapse
Affiliation(s)
- Sophie M Morgani
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Anna-Katerina Hadjantonakis
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
55
|
Elmasry K, Habib S, Moustafa M, Al-Shabrawey M. Bone Morphogenetic Proteins and Diabetic Retinopathy. Biomolecules 2021; 11:biom11040593. [PMID: 33919531 PMCID: PMC8073699 DOI: 10.3390/biom11040593] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/16/2021] [Accepted: 04/16/2021] [Indexed: 12/12/2022] Open
Abstract
Bone morphogenetic proteins (BMPs) play an important role in bone formation and repair. Recent studies underscored their essential role in the normal development of several organs and vascular homeostasis in health and diseases. Elevated levels of BMPs have been linked to the development of cardiovascular complications of diabetes mellitus. However, their particular role in the pathogenesis of microvascular dysfunction associated with diabetic retinopathy (DR) is still under-investigated. Accumulated evidence from our and others’ studies suggests the involvement of BMP signaling in retinal inflammation, hyperpermeability and pathological neovascularization in DR and age-related macular degeneration (AMD). Therefore, targeting BMP signaling in diabetes is proposed as a potential therapeutic strategy to halt the development of microvascular dysfunction in retinal diseases, particularly in DR. The goal of this review article is to discuss the biological functions of BMPs, their underlying mechanisms and their potential role in the pathogenesis of DR in particular.
Collapse
Affiliation(s)
- Khaled Elmasry
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA;
- Culver Vision discovery Institute, Augusta University, Augusta, GA 30912, USA;
- Department of Anatomy, Mansoura Faculty of Medicine, Mansoura University, Dakahlia Governorate 35516, Egypt
| | - Samar Habib
- Department of Medical Parasitology, Mansoura Faculty of Medicine, Mansoura University, Dakahlia Governorate 35516, Egypt;
- Department of Obstetrics and Gynecology, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Mohamed Moustafa
- Culver Vision discovery Institute, Augusta University, Augusta, GA 30912, USA;
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Mohamed Al-Shabrawey
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA;
- Culver Vision discovery Institute, Augusta University, Augusta, GA 30912, USA;
- Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912, USA
- Correspondence: ; Tel.: +1-(706)721-4278 or +1-(706)721-4279
| |
Collapse
|
56
|
Abstract
TGF-β family heterodimeric ligands show increased or exclusive signaling compared to homodimeric ligands in both vertebrate and insect development as well as in therapeutically relevant processes, like osteogenesis. However, the mechanisms that differentiate heterodimer and homodimer signaling remain uncharacterized. We show that BMP antagonists do not account for the exclusive signaling of Bmp2/7 heterodimers in zebrafish development. We found that overexpressed homodimers can signal but surprisingly require two distinct type I receptors, like heterodimers, indicating a required activity of the heteromeric type I receptor complex. We further demonstrate that a canonical type I receptor function has been delegated to only one of these receptors, Acvr1. Our findings should inform both basic and translational research in multiple TGF-β family signaling contexts. Heterodimeric TGF-β ligands outperform homodimers in a variety of developmental, cell culture, and therapeutic contexts; however, the mechanisms underlying this increased potency remain uncharacterized. Here, we use dorsal–ventral axial patterning of the zebrafish embryo to interrogate the BMP2/7 heterodimer signaling mechanism. We demonstrate that differential interactions with BMP antagonists do not account for the reduced signaling ability of homodimers. Instead, we find that while overexpressed BMP2 homodimers can signal, they require two nonredundant type I receptors, one from the Acvr1 subfamily and one from the Bmpr1 subfamily. This implies that all BMP signaling within the zebrafish gastrula, even BMP2 homodimer signaling, requires Acvr1. This is particularly surprising as BMP2 homodimers do not bind Acvr1 in vitro. Furthermore, we find that the roles of the two type I receptors are subfunctionalized within the heterodimer signaling complex, with the kinase activity of Acvr1 being essential, while that of Bmpr1 is not. These results suggest that the potency of the Bmp2/7 heterodimer arises from the ability to recruit both Acvr1 and Bmpr1 into the same signaling complex.
Collapse
|
57
|
Genome-Wide Association Analysis Identified BMPR1A as a Novel Candidate Gene Affecting the Number of Thoracic Vertebrae in a Large White × Minzhu Intercross Pig Population. Animals (Basel) 2020; 10:ani10112186. [PMID: 33266466 PMCID: PMC7700692 DOI: 10.3390/ani10112186] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 10/29/2020] [Accepted: 11/06/2020] [Indexed: 01/28/2023] Open
Abstract
Simple Summary The number of thoracic vertebrae (NTV) and number of vertebrae (NV) varies among pig breeds with a high correlation of about 0.8. It is important to discover variants associated with the NTV by considering the effect of the NV in pig. The results suggest that regulation variants on SSC7 might play crucial roles in the NTV and the FOS on SSC7 should be further studied as a critical candidate gene. In addition, BMPR1A was identified as a novel candidate gene affecting the NTV in pigs. Abstract The number of vertebrae (NV), especially the number of thoracic vertebrae (NTV), varies among pig breeds. The NTV is controlled by vertebral segmentation and the number of somites during embryonic development. Although there is a high correlation between the NTV and NV, studies on a fixed NV have mainly considered the absolute numbers of thoracic vertebrae instead of vertebral segmentation. Therefore, this study aimed to discover variants associated with the NTV by considering the effect of the NV in pigs. The NTV and NV of 542 F2 individuals from a Large White × Minzhu pig crossbreed were recorded. All animals were genotyped for VRTN g.19034 A > C, LTBP2 c.4481A > C, and 37 missense or splice variants previously reported in a 951-kb interval on SSC7 and 147 single nucleotide polymorphisms (SNPs) on SSC14. To identify NTV-associated SNPs, we firstly performed a genome-wide association study (GWAS) using the Q + K (population structure + kinship matrix) model in TASSEL. With the NV as a covariate, the obtained data were used to identify the SNPs with the most significant genome-wide association with the NTV by performing a GWAS on a PorcineSNP60K Genotyping BeadChip. Finally, a conditional GWAS was performed by fixing this SNP. The GWAS showed that 31 SNPs on SSC7 have significant genome-wide associations with the NTV. No missense or splice variants were found to be associated with the NTV significantly. A linkage disequilibrium analysis suggested the existence of quantitative trait loci (QTL) in a 479-Kb region on SSC7, which contained a critical candidate gene FOS for the NTV in pigs. Subsequently, a conditional GWAS was performed by fixing M1GA0010658, the most significant of these SNPs. Two SNPs in BMPR1A were found to have significant genome-wide associations and a significant dominant effect. The leading SNP, S14_87859370, accounted for 3.86% of the phenotypic variance. Our study uncovered that regulation variants in FOS on SSC7 and in BMPR1A on SSC14 might play important roles in controlling the NTV, and thus these genetic factors may be harnessed for increasing the NTV in pigs.
Collapse
|
58
|
Sozen B, Demir N, Zernicka-Goetz M. BMP signalling is required for extra-embryonic ectoderm development during pre-to-post-implantation transition of the mouse embryo. Dev Biol 2020; 470:84-94. [PMID: 33217407 DOI: 10.1016/j.ydbio.2020.11.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 11/06/2020] [Accepted: 11/08/2020] [Indexed: 12/12/2022]
Abstract
At implantation, the mouse embryo undergoes a critical transformation which requires the precise spatiotemporal control of signalling pathways necessary for morphogenesis and developmental progression. The role played by such signalling pathways during this transition are largely unexplored, due to the inaccessibility of the embryo during the implantation when it becomes engulfed by uterine tissues. Genetic studies demonstrate that mutant embryos for BMPs die around gastrulation. Here we have aimed to dissect the role of BMPs during pre-to post-implantation transition by using a protocol permitting the development of the embryo beyond implantation stages in vitro and using stem cells to mimic post-implantation tissue organisation. By assessing both the canonical and non-canonical mechanisms of BMP, we show that the loss of canonical BMP activity compromises the extra-embryonic ectoderm development. Our analyses demonstrate that BMP signalling maintains stem cell populations within both embryonic/extra-embryonic tissues during pre-to post-implantation development. These results may provide insight into the role played by BMP signalling in controlling early embryogenesis.
Collapse
Affiliation(s)
- Berna Sozen
- Mammalian Embryo and Stem Cell Group, University of Cambridge, Department of Physiology, Development and Neuroscience, Downing Street, Cambridge, CB2 3EG, UK; California Institute of Technology, Division of Biology and Biological Engineering, 1200 E. California Boulevard, Pasadena, CA, 91125, USA; Department of Histology and Embryology, Faculty of Medicine, Akdeniz University, Antalya, 07070, Turkey; Yale University School of Medicine, Department of Genetics, New Haven, CT, 06510, USA
| | - Necdet Demir
- Department of Histology and Embryology, Faculty of Medicine, Akdeniz University, Antalya, 07070, Turkey
| | - Magdalena Zernicka-Goetz
- Mammalian Embryo and Stem Cell Group, University of Cambridge, Department of Physiology, Development and Neuroscience, Downing Street, Cambridge, CB2 3EG, UK; California Institute of Technology, Division of Biology and Biological Engineering, 1200 E. California Boulevard, Pasadena, CA, 91125, USA.
| |
Collapse
|
59
|
Zeevaert K, Elsafi Mabrouk MH, Wagner W, Goetzke R. Cell Mechanics in Embryoid Bodies. Cells 2020; 9:E2270. [PMID: 33050550 PMCID: PMC7599659 DOI: 10.3390/cells9102270] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 10/06/2020] [Accepted: 10/09/2020] [Indexed: 12/14/2022] Open
Abstract
Embryoid bodies (EBs) resemble self-organizing aggregates of pluripotent stem cells that recapitulate some aspects of early embryogenesis. Within few days, the cells undergo a transition from rather homogeneous epithelial-like pluripotent stem cell colonies into a three-dimensional organization of various cell types with multifaceted cell-cell interactions and lumen formation-a process associated with repetitive epithelial-mesenchymal transitions. In the last few years, culture methods have further evolved to better control EB size, growth, cellular composition, and organization-e.g., by the addition of morphogens or different extracellular matrix molecules. There is a growing perception that the mechanical properties, cell mechanics, and cell signaling during EB development are also influenced by physical cues to better guide lineage specification; substrate elasticity and topography are relevant, as well as shear stress and mechanical strain. Epithelial structures outside and inside EBs support the integrity of the cell aggregates and counteract mechanical stress. Furthermore, hydrogels can be used to better control the organization and lineage-specific differentiation of EBs. In this review, we summarize how EB formation is accompanied by a variety of biomechanical parameters that need to be considered for the directed and reproducible self-organization of early cell fate decisions.
Collapse
Affiliation(s)
- Kira Zeevaert
- Helmholtz-Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH Aachen University Medical School, 52074 Aachen, Germany; (K.Z.); (M.H.E.M.)
- Institute for Biomedical Engineering–Cell Biology, RWTH Aachen University Medical School, 52074 Aachen, Germany
| | - Mohamed H. Elsafi Mabrouk
- Helmholtz-Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH Aachen University Medical School, 52074 Aachen, Germany; (K.Z.); (M.H.E.M.)
- Institute for Biomedical Engineering–Cell Biology, RWTH Aachen University Medical School, 52074 Aachen, Germany
| | - Wolfgang Wagner
- Helmholtz-Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH Aachen University Medical School, 52074 Aachen, Germany; (K.Z.); (M.H.E.M.)
- Institute for Biomedical Engineering–Cell Biology, RWTH Aachen University Medical School, 52074 Aachen, Germany
| | - Roman Goetzke
- Helmholtz-Institute for Biomedical Engineering, Stem Cell Biology and Cellular Engineering, RWTH Aachen University Medical School, 52074 Aachen, Germany; (K.Z.); (M.H.E.M.)
- Institute for Biomedical Engineering–Cell Biology, RWTH Aachen University Medical School, 52074 Aachen, Germany
| |
Collapse
|
60
|
Okuyama S, Kawamura F, Kubiura M, Tsuji S, Osaki M, Kugoh H, Oshimura M, Kazuki Y, Tada M. Real-time fluorometric evaluation of hepatoblast proliferation in vivo and in vitro using the expression of CYP3A7 coding for human fetus-specific P450. Pharmacol Res Perspect 2020; 8:e00642. [PMID: 32886454 PMCID: PMC7507068 DOI: 10.1002/prp2.642] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/10/2020] [Accepted: 07/13/2020] [Indexed: 12/18/2022] Open
Abstract
The fields of drug discovery and regenerative medicine require large numbers of adult human primary hepatocytes. For this purpose, it is desirable to use hepatocyte-like cells (HLCs) differentiated from human pluripotent stem cells (PSCs). Premature hepatoblast-like cells (HB-LCs) differentiated from PSCs provide an intermediate source and steady supply of newly mature HLCs. To develop an efficient HB-LC induction method, we constructed a red fluorescent reporter, CYP3A7R, in which DsRed is placed under the transcriptional control of CYP3A7 coding for a human fetus-type P450 enzyme. Before using this reporter in human cells, we created transgenic mice using mouse embryonic stem cells (ESCs) carrying a CYP3A7R transgene and confirmed that CYP3A7R was specifically expressed in fetal and newborn livers and reactivated in the adult liver in response to hepatic regeneration. Moreover, we optimized the induction procedure of HB-LCs from transgenic mouse ESCs using semi-quantitative fluorometric evaluation. Activation of Wnt signaling together with chromatin modulation prior to Activin A treatment greatly improved the induction efficiency of HB-LCs. BMP2 and 1.7% dimethyl sulfoxide induced selective proliferation of HB-LCs, which matured to HLCs. Therefore, CYP3A7R will provide a fluorometric evaluation system for high content screening of chemicals that induce HB-LC differentiation, hepatocyte regeneration, and hepatotoxicity when it is introduced into human PSCs.
Collapse
Affiliation(s)
- Shota Okuyama
- Stem Cells & Reprogramming LaboratoryDepartment of BiologyFaculty of ScienceToho UniversityFunabashiJapan
| | - Fumihiko Kawamura
- Stem Cells & Reprogramming LaboratoryDepartment of BiologyFaculty of ScienceToho UniversityFunabashiJapan
- Institute of Regenerative Medicine and BiofunctionGraduate School of Medical ScienceTottori UniversityYonagoJapan
| | - Musashi Kubiura
- Stem Cells & Reprogramming LaboratoryDepartment of BiologyFaculty of ScienceToho UniversityFunabashiJapan
| | - Saori Tsuji
- Chromosome Engineering Research CenterTottori UniversityYonagoJapan
| | - Mitsuhiko Osaki
- Chromosome Engineering Research CenterTottori UniversityYonagoJapan
| | - Hiroyuki Kugoh
- Institute of Regenerative Medicine and BiofunctionGraduate School of Medical ScienceTottori UniversityYonagoJapan
- Chromosome Engineering Research CenterTottori UniversityYonagoJapan
| | - Mitsuo Oshimura
- Chromosome Engineering Research CenterTottori UniversityYonagoJapan
| | - Yasuhiro Kazuki
- Institute of Regenerative Medicine and BiofunctionGraduate School of Medical ScienceTottori UniversityYonagoJapan
- Chromosome Engineering Research CenterTottori UniversityYonagoJapan
| | - Masako Tada
- Stem Cells & Reprogramming LaboratoryDepartment of BiologyFaculty of ScienceToho UniversityFunabashiJapan
| |
Collapse
|
61
|
Bardot ES, Hadjantonakis AK. Mouse gastrulation: Coordination of tissue patterning, specification and diversification of cell fate. Mech Dev 2020; 163:103617. [PMID: 32473204 PMCID: PMC7534585 DOI: 10.1016/j.mod.2020.103617] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 05/18/2020] [Accepted: 05/22/2020] [Indexed: 12/22/2022]
Abstract
During mouse embryonic development a mass of pluripotent epiblast tissue is transformed during gastrulation to generate the three definitive germ layers: endoderm, mesoderm, and ectoderm. During gastrulation, a spatiotemporally controlled sequence of events results in the generation of organ progenitors and positions them in a stereotypical fashion throughout the embryo. Key to the correct specification and differentiation of these cell fates is the establishment of an axial coordinate system along with the integration of multiple signals by individual epiblast cells to produce distinct outcomes. These signaling domains evolve as the anterior-posterior axis is established and the embryo grows in size. Gastrulation is initiated at the posteriorly positioned primitive streak, from which nascent mesoderm and endoderm progenitors ingress and begin to diversify. Advances in technology have facilitated the elaboration of landmark findings that originally described the epiblast fate map and signaling pathways required to execute those fates. Here we will discuss the current state of the field and reflect on how our understanding has shifted in recent years.
Collapse
Affiliation(s)
- Evan S Bardot
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA.
| | - Anna-Katerina Hadjantonakis
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
62
|
Swedlund B, Lescroart F. Cardiopharyngeal Progenitor Specification: Multiple Roads to the Heart and Head Muscles. Cold Spring Harb Perspect Biol 2020; 12:a036731. [PMID: 31818856 PMCID: PMC7397823 DOI: 10.1101/cshperspect.a036731] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
During embryonic development, the heart arises from various sources of undifferentiated mesodermal progenitors, with an additional contribution from ectodermal neural crest cells. Mesodermal cardiac progenitors are plastic and multipotent, but are nevertheless specified to a precise heart region and cell type very early during development. Recent findings have defined both this lineage plasticity and early commitment of cardiac progenitors, using a combination of single-cell and population analyses. In this review, we discuss several aspects of cardiac progenitor specification. We discuss their markers, fate potential in vitro and in vivo, early segregation and commitment, and also intrinsic and extrinsic cues regulating lineage restriction from multipotency to a specific cell type of the heart. Finally, we also discuss the subdivisions of the cardiopharyngeal field, and the shared origins of the heart with other mesodermal derivatives, including head and neck muscles.
Collapse
Affiliation(s)
- Benjamin Swedlund
- Laboratory of Stem Cells and Cancer, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | | |
Collapse
|
63
|
A Synthetic Peptide, CK2.3, Inhibits RANKL-Induced Osteoclastogenesis through BMPRIa and ERK Signaling Pathway. J Dev Biol 2020; 8:jdb8030012. [PMID: 32660129 PMCID: PMC7557985 DOI: 10.3390/jdb8030012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/07/2020] [Accepted: 07/07/2020] [Indexed: 12/23/2022] Open
Abstract
The skeletal system plays an important role in the development and maturation process. Through the bone remodeling process, 10% of the skeletal system is renewed every year. Osteoblasts and osteoclasts are two major bone cells that are involved in the development of the skeletal system, and their activity is kept in balance. An imbalance between their activities can lead to diseases such as osteoporosis that are characterized by significant bone loss due to the overactivity of bone-resorbing osteoclasts. Our laboratory has developed a novel peptide, CK2.3, which works as both an anabolic and anti-resorptive agent to induce bone formation and prevent bone loss. We previously reported that CK2.3 mediated mineralization and osteoblast development through the SMAD, ERK, and AKT signaling pathways. In this study, we demonstrated the mechanism by which CK2.3 inhibits osteoclast development. We showed that the inhibition of MEK by the U0126 inhibitor rescued the osteoclast development of RAW264.7 induced by RANKL in a co-culture system with CK2.3. We observed that CK2.3 induced ERK activation and BMPRIa expression on Day 1 after stimulation with CK2.3. While CK2.3 was previously reported to induce the SMAD signaling pathway in osteoblast development, we did not observe any changes in SMAD activation in osteoclast development with CK2.3 stimulation. Understanding the mechanism by which CK2.3 inhibits osteoclast development will allow CK2.3 to be developed as a new treatment for osteoporosis.
Collapse
|
64
|
Krambs JR, Abou Ezzi G, Yao JC, Link DC. Canonical signaling by TGF family members in mesenchymal stromal cells is dispensable for hematopoietic niche maintenance under basal and stress conditions. PLoS One 2020; 15:e0233751. [PMID: 32470079 PMCID: PMC7259882 DOI: 10.1371/journal.pone.0233751] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 05/12/2020] [Indexed: 02/07/2023] Open
Abstract
Mesenchymal stromal cells are an important component of the bone marrow hematopoietic niche. Prior studies showed that signaling from members of the transforming growth factor (TGF) superfamily in mesenchymal stromal cells is required for normal niche development. Here, we assessed the impact of TGF family signaling on niche maintenance and stress responses by deleting Smad4 in mesenchymal stromal cells at birth, thereby abrogating canonical TGF signaling. No alteration in the number or spatial organization of CXCL12-abundant reticular (CAR) cells, osteoblasts, or adipocytes was observed in Osx-Cre, Smad4fl/fl mice, and expression of key niche factors was normal. Basal hematopoiesis and stress erythropoiesis responses to acute hemolytic anemia were normal. TGF-β potently inhibits stromal CXCL12 expression in vitro; however, G-CSF induced decreases in bone marrow CXCL12 expression and subsequent hematopoietic stem/progenitor cell mobilization were normal in Osx-Cre, Tgfbr2fl/fl mice, in which all TGF-β signaling in mesenchymal stromal is lost. Finally, although a prior study showed that TGF-β enhances recovery from myeloablative therapy, hematopoietic recovery following single or multiple doses of 5-flurauracil were normal in Osx-Cre, Tgfbr2fl/fl mice. Collectively, these data suggest that TGF family member signaling in mesenchymal stromal cells is dispensable for hematopoietic niche maintenance under basal and stress conditions.
Collapse
Affiliation(s)
- Joseph Ryan Krambs
- Division of Oncology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, United States of America
| | - Grazia Abou Ezzi
- Division of Oncology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, United States of America
| | - Juo-Chin Yao
- Division of Oncology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, United States of America
| | - Daniel C. Link
- Division of Oncology, Department of Medicine, Washington University School of Medicine, Saint Louis, MO, United States of America
- * E-mail:
| |
Collapse
|
65
|
Ihle CL, Straign DM, Provera MD, Novitskiy SV, Owens P. Loss of Myeloid BMPR1a Alters Differentiation and Reduces Mouse Prostate Cancer Growth. Front Oncol 2020; 10:357. [PMID: 32318332 PMCID: PMC7154049 DOI: 10.3389/fonc.2020.00357] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 02/28/2020] [Indexed: 12/11/2022] Open
Abstract
The Bone Morphogenetic Protein (BMP) pathway is a member of the TGFβ signaling family and has complex roles in cancer. BMP signaling is rarely mutated and can be frequently overexpressed in many human cancers. The dichotomous role of BMPs as both tumor promoters and suppressors appears to be largely context based in both the cancer cell and the surrounding microenvironment. Myeloid cells including macrophages and neutrophils have been shown to be tumor promoting when stimulated from BMPs. We found that conditional deletion of BMPR1a in myeloid cells (LysMCre) restricts tumor progression in a syngeneic mouse prostate cancer model. Specific changes occurred in myeloid cells both in tumor bearing mice and tumor naïve mice throughout multiple tissues. We profiled myeloid subsets in the bone marrow, spleen and primary tumor and found myeloid BMPR1a loss altered the differentiation and lineage capability of distinct populations by histologic, flow cytometry and high dimensional mass cytometry analysis. We further confirmed the requirement for BMP signaling with pharmacologic inhibition of THP-1 and Raw264.7 activated into M2 macrophages with the BMP inhibitor DMH1. M2 polarized primary bone marrow derived cells from LysMCre BMPR1a knockout mice indicated a distinct requirement for BMP signaling in myeloid cells during M2 activation. These results indicate a unique necessity for BMP signaling in myeloid cells during tumor progression.
Collapse
Affiliation(s)
- Claire L. Ihle
- Cancer Biology Graduate Program, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Desiree M. Straign
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Meredith D. Provera
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Sergey V. Novitskiy
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Philip Owens
- Department of Pathology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
- Department of Veterans Affairs, Research Service, Eastern Colorado Health Care System, Aurora, CO, United States
| |
Collapse
|
66
|
Renault L, Patiño LC, Magnin F, Delemer B, Young J, Laissue P, Binart N, Beau I. BMPR1A and BMPR1B Missense Mutations Cause Primary Ovarian Insufficiency. J Clin Endocrinol Metab 2020; 105:5643734. [PMID: 31769494 DOI: 10.1210/clinem/dgz226] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 11/25/2019] [Indexed: 02/13/2023]
Abstract
CONTEXT Primary ovarian insufficiency (POI) is a frequently occurring disorder affecting approximately 1% of women under 40 years of age. POI, which is characterized by the premature depletion of ovarian follicles and elevated plasma levels of follicle-stimulating hormone, leads to infertility. Although various etiological factors have been described, including chromosomal abnormalities and gene mutations, most cases remain idiopathic. OBJECTIVE To identify and to functionally validate new sequence variants in 2 genes that play a key role in mammalian ovarian function, BMPR1A and BMPR1B (encoding for bone morphogenic protein receptor), leading to POI. METHODS The impact on bone morphogenic protein (BMP) signaling of BMPR1A and BMPR1B variants, previously identified by whole-exome sequencing on 69 women affected by isolated POI, was established by different in vitro functional experiments. RESULTS We demonstrate that the BMPR1A-p.Arg442His and BMPR1B-p.Phe272Leu variants are correctly expressed and located but lead to an impairment of downstream BMP signaling. CONCLUSION In accordance with infertility observed in mice lacking Bmpr1a in the ovaries and in Bmpr1b-/- mice, our results unveil, for the first time, a link between BMPR1A and BMPR1B variants and the origin of POI. We show that BMP signaling impairment through specific BMPR1A and BMPR1B variants is a novel pathophysiological mechanism involved in human POI. We consider that BMPR1A and BMPR1B variants constitute genetic biomarkers of the origin of POI and have clinical utility.
Collapse
Affiliation(s)
- Lucie Renault
- Inserm U1185, Faculté de Médecine Paris Sud, France
- Univ Paris Sud, Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France
| | - Liliana C Patiño
- Center For Research in Genetics and Genomics (CIGGUR), GENIUROS Research Group, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá DC, Colombia
| | - Françoise Magnin
- Inserm U1185, Faculté de Médecine Paris Sud, France
- Univ Paris Sud, Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France
| | - Brigitte Delemer
- Service d'Endocrinologie-Diabète-Nutrition, CHU de Reims-Hôpital Robert-Debré, Reims, France
| | - Jacques Young
- Inserm U1185, Faculté de Médecine Paris Sud, France
- Univ Paris Sud, Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France
- Department of Reproductive Endocrinology, Assistance Publique-Hôpitaux de Paris, Bicêtre Hôpital, Le Kremlin-Bicêtre, France
| | - Paul Laissue
- Center For Research in Genetics and Genomics (CIGGUR), GENIUROS Research Group, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá DC, Colombia
| | - Nadine Binart
- Inserm U1185, Faculté de Médecine Paris Sud, France
- Univ Paris Sud, Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France
| | - Isabelle Beau
- Inserm U1185, Faculté de Médecine Paris Sud, France
- Univ Paris Sud, Université Paris-Saclay, 94270 Le Kremlin-Bicêtre, France
| |
Collapse
|
67
|
Borok MJ, Mademtzoglou D, Relaix F. Bu-M-P-ing Iron: How BMP Signaling Regulates Muscle Growth and Regeneration. J Dev Biol 2020; 8:jdb8010004. [PMID: 32053985 PMCID: PMC7151139 DOI: 10.3390/jdb8010004] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 02/05/2020] [Accepted: 02/07/2020] [Indexed: 12/16/2022] Open
Abstract
The bone morphogenetic protein (BMP) pathway is best known for its role in promoting bone formation, however it has been shown to play important roles in both development and regeneration of many different tissues. Recent work has shown that the BMP proteins have a number of functions in skeletal muscle, from embryonic to postnatal development. Furthermore, complementary studies have recently demonstrated that specific components of the pathway are required for efficient muscle regeneration.
Collapse
Affiliation(s)
- Matthew J Borok
- Inserm, IMRB U955-E10, 94010 Créteil, France; (M.J.B.); (D.M.)
- Faculté de santé, Université Paris Est, 94000 Creteil, France
| | - Despoina Mademtzoglou
- Inserm, IMRB U955-E10, 94010 Créteil, France; (M.J.B.); (D.M.)
- Faculté de santé, Université Paris Est, 94000 Creteil, France
| | - Frederic Relaix
- Inserm, IMRB U955-E10, 94010 Créteil, France; (M.J.B.); (D.M.)
- Faculté de santé, Université Paris Est, 94000 Creteil, France
- Ecole Nationale Veterinaire d’Alfort, 94700 Maison Alfort, France
- Etablissement Français du Sang, 94017 Créteil, France
- APHP, Hopitaux Universitaires Henri Mondor, DHU Pepsy & Centre de Référence des Maladies Neuromusculaires GNMH, 94000 Créteil, France
- Correspondence: ; Tel.: +33-149-813-940
| |
Collapse
|
68
|
Aluganti Narasimhulu C, Singla DK. The Role of Bone Morphogenetic Protein 7 (BMP-7) in Inflammation in Heart Diseases. Cells 2020; 9:cells9020280. [PMID: 31979268 PMCID: PMC7073173 DOI: 10.3390/cells9020280] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 01/17/2020] [Accepted: 01/21/2020] [Indexed: 12/31/2022] Open
Abstract
Bone morphogenetic protein-7 is (BMP-7) is a potent anti-inflammatory growth factor belonging to the Transforming Growth Factor Beta (TGF-β) superfamily. It plays an important role in various biological processes, including embryogenesis, hematopoiesis, neurogenesis and skeletal morphogenesis. BMP-7 stimulates the target cells by binding to specific membrane-bound receptor BMPR 2 and transduces signals through mothers against decapentaplegic (Smads) and mitogen activated protein kinase (MAPK) pathways. To date, rhBMP-7 has been used clinically to induce the differentiation of mesenchymal stem cells bordering the bone fracture site into chondrocytes, osteoclasts, the formation of new bone via calcium deposition and to stimulate the repair of bone fracture. However, its use in cardiovascular diseases, such as atherosclerosis, myocardial infarction, and diabetic cardiomyopathy is currently being explored. More importantly, these cardiovascular diseases are associated with inflammation and infiltrated monocytes where BMP-7 has been demonstrated to be a key player in the differentiation of pro-inflammatory monocytes, or M1 macrophages, into anti-inflammatory M2 macrophages, which reduces developed cardiac dysfunction. Therefore, this review focuses on the molecular mechanisms of BMP-7 treatment in cardiovascular disease and its role as an anti-fibrotic, anti-apoptotic and anti-inflammatory growth factor, which emphasizes its potential therapeutic significance in heart diseases.
Collapse
|
69
|
Witman N, Zhou C, Grote Beverborg N, Sahara M, Chien KR. Cardiac progenitors and paracrine mediators in cardiogenesis and heart regeneration. Semin Cell Dev Biol 2019; 100:29-51. [PMID: 31862220 DOI: 10.1016/j.semcdb.2019.10.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/13/2019] [Accepted: 10/21/2019] [Indexed: 12/17/2022]
Abstract
The mammalian hearts have the least regenerative capabilities among tissues and organs. As such, heart regeneration has been and continues to be the ultimate goal in the treatment against acquired and congenital heart diseases. Uncovering such a long-awaited therapy is still extremely challenging in the current settings. On the other hand, this desperate need for effective heart regeneration has developed various forms of modern biotechnologies in recent years. These involve the transplantation of pluripotent stem cell-derived cardiac progenitors or cardiomyocytes generated in vitro and novel biochemical molecules along with tissue engineering platforms. Such newly generated technologies and approaches have been shown to effectively proliferate cardiomyocytes and promote heart repair in the diseased settings, albeit mainly preclinically. These novel tools and medicines give somehow credence to breaking down the barriers associated with re-building heart muscle. However, in order to maximize efficacy and achieve better clinical outcomes through these cell-based and/or cell-free therapies, it is crucial to understand more deeply the developmental cellular hierarchies/paths and molecular mechanisms in normal or pathological cardiogenesis. Indeed, the morphogenetic process of mammalian cardiac development is highly complex and spatiotemporally regulated by various types of cardiac progenitors and their paracrine mediators. Here we discuss the most recent knowledge and findings in cardiac progenitor cell biology and the major cardiogenic paracrine mediators in the settings of cardiogenesis, congenital heart disease, and heart regeneration.
Collapse
Affiliation(s)
- Nevin Witman
- Department of Cell and Molecular Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden; Department of Medicine, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Chikai Zhou
- Department of Cell and Molecular Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| | - Niels Grote Beverborg
- Department of Cell and Molecular Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden; Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Makoto Sahara
- Department of Cell and Molecular Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden; Department of Medicine, Karolinska Institutet, SE-171 77 Stockholm, Sweden; Department of Surgery, Yale University School of Medicine, CT, USA.
| | - Kenneth R Chien
- Department of Cell and Molecular Biology, Karolinska Institutet, SE-171 77 Stockholm, Sweden; Department of Medicine, Karolinska Institutet, SE-171 77 Stockholm, Sweden.
| |
Collapse
|
70
|
Wegleiter T, Buthey K, Gonzalez-Bohorquez D, Hruzova M, Bin Imtiaz MK, Abegg A, Mebert I, Molteni A, Kollegger D, Pelczar P, Jessberger S. Palmitoylation of BMPR1a regulates neural stem cell fate. Proc Natl Acad Sci U S A 2019; 116:25688-25696. [PMID: 31772009 PMCID: PMC6926058 DOI: 10.1073/pnas.1912671116] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Neural stem cells (NSCs) generate neurons and glial cells throughout embryonic and postnatal brain development. The role of S-palmitoylation (also referred to as S-acylation), a reversible posttranslational lipid modification of proteins, in regulating the fate and activity of NSCs remains largely unknown. We used an unbiased screening approach to identify proteins that are S-acylated in mouse NSCs and showed that bone morphogenic protein receptor 1a (BMPR1a), a core mediator of BMP signaling, is palmitoylated. Genetic manipulation of S-acylated sites affects the localization and trafficking of BMPR1a and leads to altered BMP signaling. Strikingly, defective palmitoylation of BMPR1a modulates NSC function within the mouse brain, resulting in enhanced oligodendrogenesis. Thus, we identified a mechanism regulating the behavior of NSCs and provided the framework to characterize dynamic posttranslational lipid modifications of proteins in the context of NSC biology.
Collapse
Affiliation(s)
- Thomas Wegleiter
- Laboratory of Neural Plasticity, Faculties of Medicine and Science, Brain Research Institute, University of Zurich, 8057 Zurich, Switzerland;
| | - Kilian Buthey
- Laboratory of Neural Plasticity, Faculties of Medicine and Science, Brain Research Institute, University of Zurich, 8057 Zurich, Switzerland
| | - Daniel Gonzalez-Bohorquez
- Laboratory of Neural Plasticity, Faculties of Medicine and Science, Brain Research Institute, University of Zurich, 8057 Zurich, Switzerland
| | - Martina Hruzova
- Laboratory of Neural Plasticity, Faculties of Medicine and Science, Brain Research Institute, University of Zurich, 8057 Zurich, Switzerland
| | - Muhammad Khadeesh Bin Imtiaz
- Laboratory of Neural Plasticity, Faculties of Medicine and Science, Brain Research Institute, University of Zurich, 8057 Zurich, Switzerland
| | - Andrin Abegg
- Laboratory of Neural Plasticity, Faculties of Medicine and Science, Brain Research Institute, University of Zurich, 8057 Zurich, Switzerland
| | - Iliana Mebert
- Laboratory of Neural Plasticity, Faculties of Medicine and Science, Brain Research Institute, University of Zurich, 8057 Zurich, Switzerland
| | - Adriano Molteni
- Laboratory of Neural Plasticity, Faculties of Medicine and Science, Brain Research Institute, University of Zurich, 8057 Zurich, Switzerland
| | - Dominik Kollegger
- Laboratory of Neural Plasticity, Faculties of Medicine and Science, Brain Research Institute, University of Zurich, 8057 Zurich, Switzerland
| | - Pawel Pelczar
- Center for Transgenic Models, University of Basel, 4001 Basel, Switzerland
| | - Sebastian Jessberger
- Laboratory of Neural Plasticity, Faculties of Medicine and Science, Brain Research Institute, University of Zurich, 8057 Zurich, Switzerland;
| |
Collapse
|
71
|
Morgani SM, Hadjantonakis AK. Signaling regulation during gastrulation: Insights from mouse embryos and in vitro systems. Curr Top Dev Biol 2019; 137:391-431. [PMID: 32143751 DOI: 10.1016/bs.ctdb.2019.11.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Gastrulation is the process whereby cells exit pluripotency and concomitantly acquire and pattern distinct cell fates. This is driven by the convergence of WNT, BMP, Nodal and FGF signals, which are tightly spatially and temporally controlled, resulting in regional and stage-specific signaling environments. The combination, level and duration of signals that a cell is exposed to, according its position within the embryo and the developmental time window, dictates the fate it will adopt. The key pathways driving gastrulation exhibit complex interactions, which are difficult to disentangle in vivo due to the complexity of manipulating multiple signals in parallel with high spatiotemporal resolution. Thus, our current understanding of the signaling dynamics regulating gastrulation is limited. In vitro stem cell models have been established, which undergo organized cellular differentiation and patterning. These provide amenable, simplified, deconstructed and scalable models of gastrulation. While the foundation of our understanding of gastrulation stems from experiments in embryos, in vitro systems are now beginning to reveal the intricate details of signaling regulation. Here we discuss the current state of knowledge of the role, regulation and dynamic interaction of signaling pathways that drive mouse gastrulation.
Collapse
Affiliation(s)
- Sophie M Morgani
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, United States; Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute, University of Cambridge, Jeffrey Cheah Biomedical Centre Cambridge Biomedical Campus, Cambridge, United Kingdom.
| | - Anna-Katerina Hadjantonakis
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, United States.
| |
Collapse
|
72
|
Bauer R, Tondl P, Schneider WJ. A differentiation program induced by bone morphogenetic proteins 4 and 7 in endodermal epithelial cells provides the molecular basis for efficient nutrient transport by the chicken yolk sac. Dev Dyn 2019; 249:222-236. [PMID: 31691430 PMCID: PMC7028021 DOI: 10.1002/dvdy.129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 10/17/2019] [Accepted: 10/29/2019] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The mammalian yolk sac provides nutrients for the growing fetus during critical early developmental processes such as neural tube closure, which precedes the functional maturation of the placenta. In contrast, oviparous species such as the chicken rely solely on the yolk sac for transfer of nutrients from the yolk to the developing embryo. However, the molecular mechanisms that provide the yolk sac with nutrient transfer competence remain poorly understood. RESULTS We demonstrate that the chicken endodermal epithelial cells (EEC), which are in close contact with the yolk, gain their nutrient-transport competence by a paracrine crosstalk with the blood-vessel forming mesodermal cell layer. Bone morphogenetic proteins (BMP) 4 and 7 produced by ectodermal and mesodermal cell layers likely initiate a differentiation program of EECs during the transition from the area vitellina to the area vasculosa. BMPs, by inducing SMAD signaling, promote the up-regulation of endocytic receptor expression and thereby provide the EECs with the molecular machinery to produce triglyceride-rich lipoprotein particles. CONCLUSION This paracrine signaling cascade may constitute the basis for the EEC-mediated mechanism underlying the efficient uptake, degradation, resynthesis, and transfer of yolk-derived nutrients into the embryonic circulation, which assures proper energy supply and development of the growing fetus.
Collapse
Affiliation(s)
- Raimund Bauer
- Center for Pathobiochemistry and Genetics, Institute of Medical Chemistry, Medical University of Vienna, Vienna, Austria
| | - Philipp Tondl
- Department of Chemistry, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Wolfgang J Schneider
- Department of Medical Biochemistry, Max Perutz Labs, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
73
|
Omi M, Kaartinen V, Mishina Y. Activin A receptor type 1-mediated BMP signaling regulates RANKL-induced osteoclastogenesis via canonical SMAD-signaling pathway. J Biol Chem 2019; 294:17818-17836. [PMID: 31619522 DOI: 10.1074/jbc.ra119.009521] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 10/10/2019] [Indexed: 12/12/2022] Open
Abstract
Bone morphogenetic proteins (BMPs) are important mediators of osteoclast differentiation. Although accumulating evidence has implicated BMPs in osteoblastogenesis, the mechanisms by which BMPs regulate osteoclastogenesis remain unclear. Activin A receptor type 1 (ACVR1) is a BMP type 1 receptor essential for skeletal development. Here, we observed that BMP-7, which preferentially binds to ACVR1, promotes osteoclast differentiation, suggesting ACVR1 is involved in osteoclastogenesis. To investigate this further, we isolated osteoclasts from either Acvr1-floxed mice or mice with constitutively-activated Acvr1 (caAcvr1) carrying tamoxifen-inducible Cre driven by a ubiquitin promotor and induced Cre activity in culture. Osteoclasts from the Acvr1-floxed mice had reduced osteoclast numbers and demineralization activity, whereas those from the caAcvr1-mutant mice formed large osteoclasts and demineralized pits, suggesting that BMP signaling through ACVR1 regulates osteoclast fusion and activity. It is reported that BMP-2 binds to BMPR1A, another BMP type 1 receptor, whereas BMP-7 binds to ACVR1 to activate SMAD1/5/9 signaling. Here, Bmpr1a-disrupted osteoclasts displayed reduced phospho-SMAD1/5/9 (pSMAD1/5/9) levels when induced by BMP-2, whereas no impacts on pSMAD1/5/9 were observed when induced by BMP-7. In contract, Acvr1-disrupted osteoclasts displayed reduced pSMAD1/5/9 levels when induced either by BMP-2 or BMP-7, suggesting that ACVR1 is the major receptor for transducing BMP-7 signals in osteoclasts. Indeed, LDN-193189 and LDN-212854, which specifically block SMAD1/5/9 phosphorylation, inhibited osteoclastogenesis of caAcvr1-mutant cells. Moreover, increased BMP signaling promoted nuclear translocation of nuclear factor-activated T-cells 1 (NFATc1), which was inhibited by LDN treatments. Taken together, ACVR1-mediated BMP-SMAD signaling activates NFATc1, a regulatory protein crucial for receptor activator of NF-κB ligand (RANKL)-induced osteoclastogenesis.
Collapse
Affiliation(s)
- Maiko Omi
- Department of Biologic and Materials Sciences and Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, Michigan 48109
| | - Vesa Kaartinen
- Department of Biologic and Materials Sciences and Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, Michigan 48109
| | - Yuji Mishina
- Department of Biologic and Materials Sciences and Prosthodontics, School of Dentistry, University of Michigan, Ann Arbor, Michigan 48109
| |
Collapse
|
74
|
Zhang Z, Zwick S, Loew E, Grimley JS, Ramanathan S. Mouse embryo geometry drives formation of robust signaling gradients through receptor localization. Nat Commun 2019; 10:4516. [PMID: 31586065 PMCID: PMC6778081 DOI: 10.1038/s41467-019-12533-7] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 09/12/2019] [Indexed: 12/21/2022] Open
Abstract
Morphogen signals are essential for cell fate specification during embryogenesis. Some receptors that sense these morphogens are known to localize to only the apical or basolateral membrane of polarized cell lines in vitro. How such localization affects morphogen sensing and patterning in the developing embryo remains unknown. Here, we show that the formation of a robust BMP signaling gradient in the early mouse embryo depends on the restricted, basolateral localization of BMP receptors. The mis-localization of receptors to the apical membrane results in ectopic BMP signaling in the mouse epiblast in vivo. With evidence from mathematical modeling, human embryonic stem cells in vitro, and mouse embryos in vivo, we find that the geometric compartmentalization of BMP receptors and ligands creates a signaling gradient that is buffered against fluctuations. Our results demonstrate the importance of receptor localization and embryo geometry in shaping morphogen signaling during embryogenesis.
Collapse
Affiliation(s)
- Zhechun Zhang
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, 02138, USA.
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA.
| | - Steven Zwick
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA
| | - Ethan Loew
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Joshua S Grimley
- Allen Institute for Brain Science, Seattle, WA, 98109, USA
- Universal Cells, Seattle, WA, 98121, USA
| | - Sharad Ramanathan
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, 02138, USA.
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, 02138, USA.
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, 02138, USA.
| |
Collapse
|
75
|
Russell BE, Rigueur D, Weaver KN, Sund K, Basil JS, Hufnagel RB, Prows CA, Oestreich A, Al-Gazali L, Hopkin RJ, Saal HM, Lyons K, Dauber A. Homozygous missense variant in BMPR1A resulting in BMPR signaling disruption and syndromic features. Mol Genet Genomic Med 2019; 7:e969. [PMID: 31493347 PMCID: PMC6825850 DOI: 10.1002/mgg3.969] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 07/12/2019] [Accepted: 08/04/2019] [Indexed: 12/12/2022] Open
Abstract
Background The bone morphogenetic protein (BMP) pathway is known to play an imperative role in bone, cartilage, and cardiac tissue formation. Truncating, heterozygous variants, and deletions of one of the essential receptors in this pathway, Bone Morphogenetic Protein Receptor Type1A (BMPR1A), have been associated with autosomal dominant juvenile polyposis. Heterozygous deletions have also been associated with cardiac and minor skeletal anomalies. Populations with atrioventricular septal defects are enriched for rare missense BMPR1A variants. Methods We report on a patient with a homozygous missense variant in BMPR1A causing skeletal abnormalities, growth failure a large atrial septal defect, severe subglottic stenosis, laryngomalacia, facial dysmorphisms, and developmental delays. Results Functional analysis of this variant shows increased chondrocyte death for cells with the mutated receptor, increased phosphorylated R‐Smads1/5/8, and loss of Sox9 expression mediated by decreased phosphorylation of p38. Conclusion This homozygous missense variant in BMPR1A appears to cause a distinct clinical phenotype.
Collapse
Affiliation(s)
- Bianca E Russell
- Division of Human Genetics, Cincinnati Children's Hospital and University of Cincinnati College of Medicine Department of Pediatrics, Cincinnati, OH, USA
| | - Diana Rigueur
- Department of Molecular, Cell & Developmental Biology, UCLA, Los Angeles, CA, USA
| | - Kathryn N Weaver
- Division of Human Genetics, Cincinnati Children's Hospital and University of Cincinnati College of Medicine Department of Pediatrics, Cincinnati, OH, USA
| | - Kristen Sund
- Division of Human Genetics, Cincinnati Children's Hospital and University of Cincinnati College of Medicine Department of Pediatrics, Cincinnati, OH, USA
| | - Janet S Basil
- Division of Human Genetics, Cincinnati Children's Hospital and University of Cincinnati College of Medicine Department of Pediatrics, Cincinnati, OH, USA
| | - Robert B Hufnagel
- Division of Human Genetics, Cincinnati Children's Hospital and University of Cincinnati College of Medicine Department of Pediatrics, Cincinnati, OH, USA
| | - Cynthia A Prows
- Division of Human Genetics, Cincinnati Children's Hospital and University of Cincinnati College of Medicine Department of Pediatrics, Cincinnati, OH, USA
| | - Alan Oestreich
- Department of Radiology, Cincinnati Children's Hospital, Cincinnati, OH, USA
| | - Lihadh Al-Gazali
- Department of Pediatrics, United Arab Emirates University, Abu Dhabi, United Arab Emirates
| | - Robert J Hopkin
- Division of Human Genetics, Cincinnati Children's Hospital and University of Cincinnati College of Medicine Department of Pediatrics, Cincinnati, OH, USA
| | - Howard M Saal
- Division of Human Genetics, Cincinnati Children's Hospital and University of Cincinnati College of Medicine Department of Pediatrics, Cincinnati, OH, USA
| | - Karen Lyons
- Department of Molecular, Cell & Developmental Biology, UCLA, Los Angeles, CA, USA.,Department of Orthopaedic Surgery, UCLA, Los Angeles, CA, USA
| | - Andrew Dauber
- Division of Endocrinology, Cincinnati Children's Hospital and University of Cincinnati College of Medicine, Department of Pediatrics, Cincinnati, OH, USA
| |
Collapse
|
76
|
Shen J, Lyu C, Zhu Y, Feng Z, Zhang S, Hoyle DL, Ji G, Brodsky RA, Cheng T, Wang ZZ. Defining early hematopoietic-fated primitive streak specification of human pluripotent stem cells by the orchestrated balance of Wnt, activin, and BMP signaling. J Cell Physiol 2019; 234:16136-16147. [PMID: 30740687 PMCID: PMC6689260 DOI: 10.1002/jcp.28272] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 01/16/2019] [Accepted: 01/22/2019] [Indexed: 01/25/2023]
Abstract
Distinct regions of the primitive streak (PS) have diverse potential to differentiate into several tissues, including the hematopoietic lineage originated from the posterior region of PS. Although various signaling pathways have been identified to promote the development of PS and its mesoderm derivatives, there is a large gap in our understanding of signaling pathways that regulate the hematopoietic fate of PS. Here, we defined the roles of Wnt, activin, and bone morphogenetic protein (BMP) signaling pathways in generating hematopoietic-fated PS from human pluripotent stem cells (hPSCs). We found that the synergistic balance of these signaling pathways was crucial for controlling the PS fate determination towards hematopoietic lineage via mesodermal progenitors. Although the induction of PS depends largely on the Wnt and activin signaling, the PS generated without BMP4 lacks the hematopoietic potential, indicating that the BMP signaling is necessary for the PS to acquire hematopoietic property. Appropriate levels of Wnt signaling is crucial for the development of PS and its specification to the hematopoietic lineage. Although the development of PS is less sensitive to activin or BMP signaling, the fate of PS to mesoderm progenitors and subsequent hematopoietic lineage is determined by appropriate levels of activin or BMP signaling. Collectively, our study demonstrates that Wnt, activin, and BMP signaling pathways play cooperative and distinct roles in regulating the fate determination of PS for hematopoietic development. Our understanding of the regulatory networks of hematopoietic-fated PS would provide important insights into early hematopoietic patterning and possible guidance for generating functional hematopoietic cells from hPSCs in vitro.
Collapse
Affiliation(s)
- Jun Shen
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, China
- Division of Hematology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Cuicui Lyu
- Department of Hematology, the First Central Hospital of Tianjin, Tianjin, China
| | - Yaoyao Zhu
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, China
| | - Zicen Feng
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, China
| | - Shuo Zhang
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, China
- Division of Hematology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Dixie L. Hoyle
- Division of Hematology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Guangzhen Ji
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, China
| | - Robert A. Brodsky
- Division of Hematology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Tao Cheng
- State Key Laboratory of Experimental Hematology, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin, China
- Collaborative Innovation Center for Cancer Medicine, Tianjin, China
- Tianjin Key Laboratory of Blood Cell Therapy and Technology, Tianjin, China
| | - Zack Z. Wang
- Division of Hematology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
77
|
Wang Y, Zhu P, Luo J, Wang J, Liu Z, Wu W, Du Y, Ye B, Wang D, He L, Ren W, Wang J, Sun X, Chen R, Tian Y, Fan Z. LncRNA HAND2-AS1 promotes liver cancer stem cell self-renewal via BMP signaling. EMBO J 2019; 38:e101110. [PMID: 31334575 DOI: 10.15252/embj.2018101110] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 06/07/2019] [Accepted: 06/13/2019] [Indexed: 12/30/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most prevalent liver cancer, characterized by a high rate of recurrence and heterogeneity. Liver cancer stem cells (CSCs) may well contribute to both of these pathological properties, but the mechanism underlying their self-renewal maintenance is poorly understood. Here, we identified a long noncoding RNA (lncRNA) termed HAND2-AS1 that is highly expressed in liver CSCs. Human HAND2-AS1 and its mouse ortholog lncHand2 display a high level of conservation. HAND2-AS1 is required for the self-renewal maintenance of liver CSCs to initiate HCC development. Mechanistically, HAND2-AS1 recruits the INO80 chromatin-remodeling complex to the promoter of BMPR1A, thereby inducing its expression and leading to the activation of BMP signaling. Importantly, interfering with expression of HAND2-AS1 by antisense oligonucleotides (ASOs) and BMPR1A by siRNAs has synergistic anti-tumorigenic effects on humanized HCC models. Moreover, knockout of lncHand2 or Bmpr1a in mouse hepatocytes impairs BMP signaling and suppresses the initiation of liver cancer. Our findings reveal that HAND2-AS1 promotes the self-renewal of liver CSCs and drives liver oncogenesis, offering a potential new target for HCC therapy.
Collapse
Affiliation(s)
- Yanying Wang
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Pingping Zhu
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Jianjun Luo
- CAS Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Jing Wang
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zhiwei Liu
- Department of Hepatobiliary Surgery, PLA General Hospital, Beijing, China
| | - Wei Wu
- CAS Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Ying Du
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Buqing Ye
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Dongpeng Wang
- CAS Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Lei He
- Department of Hepatobiliary Surgery, PLA General Hospital, Beijing, China
| | - Weizheng Ren
- Department of Hepatobiliary Surgery, PLA General Hospital, Beijing, China
| | - Jianyi Wang
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xianhui Sun
- CAS Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Runsheng Chen
- CAS Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yong Tian
- CAS Key Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Zusen Fan
- CAS Key Laboratory of Infection and Immunity, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
78
|
Shparberg RA, Glover HJ, Morris MB. Modeling Mammalian Commitment to the Neural Lineage Using Embryos and Embryonic Stem Cells. Front Physiol 2019; 10:705. [PMID: 31354503 PMCID: PMC6637848 DOI: 10.3389/fphys.2019.00705] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 05/20/2019] [Indexed: 12/21/2022] Open
Abstract
Early mammalian embryogenesis relies on a large range of cellular and molecular mechanisms to guide cell fate. In this highly complex interacting system, molecular circuitry tightly controls emergent properties, including cell differentiation, proliferation, morphology, migration, and communication. These molecular circuits include those responsible for the control of gene and protein expression, as well as metabolism and epigenetics. Due to the complexity of this circuitry and the relative inaccessibility of the mammalian embryo in utero, mammalian neural commitment remains one of the most challenging and poorly understood areas of developmental biology. In order to generate the nervous system, the embryo first produces two pluripotent populations, the inner cell mass and then the primitive ectoderm. The latter is the cellular substrate for gastrulation from which the three multipotent germ layers form. The germ layer definitive ectoderm, in turn, is the substrate for multipotent neurectoderm (neural plate and neural tube) formation, representing the first morphological signs of nervous system development. Subsequent patterning of the neural tube is then responsible for the formation of most of the central and peripheral nervous systems. While a large number of studies have assessed how a competent neurectoderm produces mature neural cells, less is known about the molecular signatures of definitive ectoderm and neurectoderm and the key molecular mechanisms driving their formation. Using pluripotent stem cells as a model, we will discuss the current understanding of how the pluripotent inner cell mass transitions to pluripotent primitive ectoderm and sequentially to the multipotent definitive ectoderm and neurectoderm. We will focus on the integration of cell signaling, gene activation, and epigenetic control that govern these developmental steps, and provide insight into the novel growth factor-like role that specific amino acids, such as L-proline, play in this process.
Collapse
Affiliation(s)
| | | | - Michael B. Morris
- Embryonic Stem Cell Laboratory, Discipline of Physiology, School of Medical Sciences, Bosch Institute, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
79
|
Moses MM, Behringer RR. A gene regulatory network for Müllerian duct regression. ENVIRONMENTAL EPIGENETICS 2019; 5:dvz017. [PMID: 31579527 PMCID: PMC6760261 DOI: 10.1093/eep/dvz017] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 08/12/2019] [Accepted: 08/13/2019] [Indexed: 05/03/2023]
Abstract
Mammalian embryos initially develop progenitor tissues for both male and female reproductive tract organs, known as the Wolffian ducts and the Müllerian ducts, respectively. Ultimately, each individual develops a single set of male or female reproductive tract organs. Therefore, an essential step for sex differentiation is the regression of one duct and growth and differentiation of the other duct. In males, this requires Müllerian duct regression and Wolffian duct growth and differentiation. Müllerian duct regression is induced by the expression of Amh, encoding anti-Müllerian hormone, from the fetal testes. Subsequently, receptor-mediated signal transduction in mesenchymal cells surrounding the Müllerian duct epithelium leads to duct elimination. The genes that induce Amh transcription and the downstream signaling that results from Amh activity form a pathway. However, the molecular details of this pathway are currently unknown. A set of essential genes for AMH pathway function has been identified. More recently, transcriptome analysis of male and female Müllerian duct mesenchyme at an initial stage of regression has identified new genes that may mediate elimination of the Müllerian system. The evidence taken together can be used to generate an initial gene regulatory network describing the Amh pathway for Müllerian duct regression. An Amh gene regulatory network will be a useful tool to study Müllerian duct regression, sex differentiation, and its relationship to environmental influences.
Collapse
Affiliation(s)
- Malcolm M Moses
- Department of Genetics, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
| | - Richard R Behringer
- Department of Genetics, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA
- Correspondence address. Department of Genetics, University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA. Tel: +713-834-6327; Fax: +713-834-6339; E-mail:
| |
Collapse
|
80
|
Vrathasha V, Weidner H, Nohe A. Mechanism of CK2.3, a Novel Mimetic Peptide of Bone Morphogenetic Protein Receptor Type IA, Mediated Osteogenesis. Int J Mol Sci 2019; 20:E2500. [PMID: 31117181 PMCID: PMC6567251 DOI: 10.3390/ijms20102500] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 05/18/2019] [Accepted: 05/19/2019] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Osteoporosis is a degenerative skeletal disease with a limited number of treatment options. CK2.3, a novel peptide, may be a potential therapeutic. It induces osteogenesis and bone formation in vitro and in vivo by acting downstream of BMPRIA through releasing CK2 from the receptor. However, the detailed signaling pathways, the time frame of signaling, and genes activated remain largely unknown. METHODS Using a newly developed fluorescent CK2.3 analog, specific inhibitors for the BMP signaling pathways, Western blot, and RT-qPCR, we determined the mechanism of CK2.3 in C2C12 cells. We then confirmed the results in primary BMSCs. RESULTS Using these methods, we showed that CK2.3 stimulation activated OSX, ALP, and OCN. CK2.3 stimulation induced time dependent release of CK2β from BMPRIA and concurrently CK2.3 colocalized with CK2α. Furthermore, CK2.3 induced BMP signaling depends on ERK1/2 and Smad1/5/8 signaling pathways. CONCLUSION CK2.3 is a novel peptide that drives osteogenesis, and we detailed the molecular sequence of events that are triggered from the stimulation of CK2.3 until the induction of mineralization. This knowledge can be applied in the development of future therapeutics for osteoporosis.
Collapse
Affiliation(s)
- Vrathasha Vrathasha
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA.
| | - Hilary Weidner
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA.
| | - Anja Nohe
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA.
| |
Collapse
|
81
|
Watterston C, Zeng L, Onabadejo A, Childs SJ. MicroRNA26 attenuates vascular smooth muscle maturation via endothelial BMP signalling. PLoS Genet 2019; 15:e1008163. [PMID: 31091229 PMCID: PMC6538191 DOI: 10.1371/journal.pgen.1008163] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 05/28/2019] [Accepted: 04/27/2019] [Indexed: 12/23/2022] Open
Abstract
As small regulatory transcripts, microRNAs (miRs) act as genetic ‘fine tuners’ of posttranscriptional events, and as genetic switches to promote phenotypic switching. The miR miR26a targets the BMP signalling effector, smad1. We show that loss of miR26a leads to hemorrhage (a loss of vascular stability) in vivo, suggesting altered vascular differentiation. Reduction in miR26a levels increases smad1 mRNA and phospho-Smad1 (pSmad1) levels. We show that increasing BMP signalling by overexpression of smad1 also leads to hemorrhage. Normalization of Smad1 levels through double knockdown of miR26a and smad1 rescues hemorrhage, suggesting a direct relationship between miR26a, smad1 and vascular stability. Using an in vivo BMP genetic reporter and pSmad1 staining, we show that the effect of miR26a on smooth muscle differentiation is non-autonomous; BMP signalling is active in embryonic endothelial cells, but not in smooth muscle cells. Nonetheless, increased BMP signalling due to loss of miR26a results in an increase in acta2-expressing smooth muscle cell numbers and promotes a differentiated smooth muscle morphology. Similarly, forced expression of smad1 in endothelial cells leads to an increase in smooth muscle cell number and coverage. Furthermore, smooth muscle phenotypes caused by inhibition of the BMP pathway are rescued by loss of miR26a. Taken together, our data suggest that miR26a modulates BMP signalling in endothelial cells and indirectly promotes a differentiated smooth muscle phenotype. Our data highlights how crosstalk from BMP-responsive endothelium to smooth muscle is important for smooth muscle differentiation. The structural integrity of a blood vessel is critical to ensure proper vessel support and vascular tone. Vascular smooth cells (vSMCs) are a key component of the vessel wall and, in their mature state, express contractile proteins that help to constrict and relax the vessel in response to blood flow changes. vSMCs differentiate from immature vascular mural cells that lack contractile function. Here, we use a zebrafish model to identify a small microRNA that regulates vascular stabilization. We show that a small regulatory RNA, microRNA26a is enriched in the endothelial lining of the blood vessel wall and, through signalling, communicates to the smooth muscle cell to control its maturation. Providing a mechanistic insight into vSMC differentiation may help develop and produce feasible miR-based pharmaceutical to promote SMC differentiation.
Collapse
Affiliation(s)
- Charlene Watterston
- Alberta Children's Hospital Research Institute and Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary AB, Canada
| | - Lei Zeng
- Alberta Children's Hospital Research Institute and Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary AB, Canada
| | - Abidemi Onabadejo
- Alberta Children's Hospital Research Institute and Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary AB, Canada
| | - Sarah J. Childs
- Alberta Children's Hospital Research Institute and Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary AB, Canada
- * E-mail:
| |
Collapse
|
82
|
Inhibiting Bone Morphogenetic Protein 4 Type I Receptor Signaling Promotes Remyelination by Potentiating Oligodendrocyte Differentiation. eNeuro 2019; 6:ENEURO.0399-18.2019. [PMID: 31028086 PMCID: PMC6529590 DOI: 10.1523/eneuro.0399-18.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 03/31/2019] [Accepted: 04/18/2019] [Indexed: 12/22/2022] Open
Abstract
Blocking inhibitory factors within CNS demyelinating lesions is regarded as a promising strategy to promote remyelination. Bone morphogenetic protein 4 (BMP4) is an inhibitory factor present in demyelinating lesions. Noggin, an endogenous antagonist to BMP, has previously been shown to increase the number of oligodendrocytes and promote remyelination in vivo. However, it remains unclear how BMP4 signaling inhibits remyelination. Here we investigated the downstream signaling pathway that mediates the inhibitory effect that BMP4 exerts upon remyelination through pharmacological and transgenic approaches. Using the cuprizone mouse model of central demyelination, we demonstrate that selectively blocking BMP4 signaling via the pharmacological inhibitor LDN-193189 significantly promotes oligodendroglial differentiation and the extent of remyelination in vivo. This was accompanied by the downregulation of transcriptional targets that suppress oligodendrocyte differentiation. Further, selective deletion of BMP receptor type IA (BMPRIA) within primary mouse oligodendrocyte progenitor cells (OPCs) significantly enhanced their differentiation and subsequent myelination in vitro. Together, the results of this study identify that BMP4 signals via BMPRIA within OPCs to inhibit oligodendroglial differentiation and their capacity to myelinate axons, and suggest that blocking the BMP4/BMPRIA pathway in OPCs is a promising strategy to promote CNS remyelination.
Collapse
|
83
|
A familial congenital heart disease with a possible multigenic origin involving a mutation in BMPR1A. Sci Rep 2019; 9:2959. [PMID: 30814609 PMCID: PMC6393482 DOI: 10.1038/s41598-019-39648-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 01/28/2019] [Indexed: 12/12/2022] Open
Abstract
The genetics of many congenital heart diseases (CHDs) can only unsatisfactorily be explained by known chromosomal or Mendelian syndromes. Here, we present sequencing data of a family with a potentially multigenic origin of CHD. Twelve of nineteen family members carry a familial mutation [NM_004329.2:c.1328 G > A (p.R443H)] which encodes a predicted deleterious variant of BMPR1A. This mutation co-segregates with a linkage region on chromosome 1 that associates with the emergence of severe CHDs including Ebstein's anomaly, atrioventricular septal defect, and others. We show that the continuous overexpression of the zebrafish homologous mutation bmpr1aap.R438H within endocardium causes a reduced AV valve area, a downregulation of Wnt/ß-catenin signalling at the AV canal, and growth of additional tissue mass in adult zebrafish hearts. This finding opens the possibility of testing genetic interactions between BMPR1A and other candidate genes within linkage region 1 which may provide a first step towards unravelling more complex genetic patterns in cardiovascular disease aetiology.
Collapse
|
84
|
Abstract
IMPACT STATEMENT By compiling findings from recent studies, this review will garner novel insight on the dynamic and complex role of BMP signaling in diseases of inflammation, highlighting the specific roles played by both individual ligands and endogenous antagonists. Ultimately, this summary will help inform the high therapeutic value of targeting this pathway for modulating diseases of inflammation.
Collapse
Affiliation(s)
- David H Wu
- Division of Cardiovascular Medicine, Department of
Medicine and Department of Cell & Developmental Biology, Vanderbilt
University Medical Center, Nashville, TN 37232, USA
| | - Antonis K Hatzopoulos
- Division of Cardiovascular Medicine, Department of
Medicine and Department of Cell & Developmental Biology, Vanderbilt
University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
85
|
Abstract
BMPs play important roles in the development, disease, and regeneration of many tissues. Genetically modified mice with altered BMP receptor genes are particularly informative for clarifying the role of BMP signaling. In this chapter, we introduce several selected protocols for in vivo functional characterization of BMP receptors in genetically modified mice, including immunohistochemistry of BMP downstream signaling (P-Smad1/5/9 or others), histological analysis, whole-mount skeletal staining for cartilage and bone tissues, and whole-mount cartilage staining.
Collapse
|
86
|
Yang J, Mishina Y. Generation and Identification of Genetically Modified Mice for BMP Receptors. Methods Mol Biol 2019; 1891:165-177. [PMID: 30414132 DOI: 10.1007/978-1-4939-8904-1_12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BMP signaling is critical in embryogenesis and in the development of numerous tissues. Many genetically modified (knockout and transgenic) mice have been established to study BMP function in development and disease. Mice with altered BMP receptor genes (including global knockout, conditional knockout, and conditional constitutively active transgenic mouse lines) have been particularly informative. In this chapter, we describe how the genetically modified mice were generated and introduce genotyping methods. These methods include regular PCR and genomic real-time PCR using specific primers based on different constructs in different mice strains.
Collapse
Affiliation(s)
- Jingwen Yang
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI, USA.,State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education (KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Yuji Mishina
- Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
87
|
Vigolo E, Markó L, Hinze C, Müller DN, Schmidt-Ullrich R, Schmidt-Ott KM. Canonical BMP signaling in tubular cells mediates recovery after acute kidney injury. Kidney Int 2018; 95:108-122. [PMID: 30447934 DOI: 10.1016/j.kint.2018.08.028] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 08/03/2018] [Accepted: 08/16/2018] [Indexed: 10/27/2022]
Abstract
Bone morphogenetic protein (BMP) signaling has been shown to modulate the development of renal fibrosis in animal models of kidney injury, but the downstream mediators are incompletely understood. In wild-type mice, canonical BMP signaling mediated by SMAD1/5/8 transcription factors was constitutively active in healthy renal tubules, transiently down-regulated after ischemia reperfusion injury (IRI), and reactivated during successful tubular regeneration. We then induced IRI in mice with a tubular-specific BMP receptor 1A (BMPR1A) deletion. These mice failed to reactivate SMAD1/5/8 signaling in the post-ischemic phase and developed renal fibrosis after injury. Using unbiased genomic analyses, we identified three genes encoding inhibitor of DNA-binding (ID) proteins (Id1, Id2, and Id4) as key targets of BMPR1A-SMAD1/5/8 signaling. BMPR1A-deficient mice failed to re-induce these targets following IRI. Instead, BMPR1A-deficiency resulted in activation of pro-fibrotic signaling proteins that are normally repressed by ID proteins, namely, p38 mitogen-activated protein kinase and cell cycle inhibitor p27. These data indicate that the post-ischemic activation of canonical BMP signaling acts endogenously to repress pro-fibrotic signaling in tubular cells and may help to prevent the progression of acute kidney injury to chronic kidney disease.
Collapse
Affiliation(s)
- Emilia Vigolo
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Lajos Markó
- Experimental and Clinical Research Center, a joint cooperation between the Max Delbrück Center for Molecular Medicine and the Charité Medical Faculty, Berlin, Germany; Berlin Institute of Health, Berlin, Germany
| | - Christian Hinze
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany; Berlin Institute of Health, Berlin, Germany; Department of Nephrology and Medical Intensive Care, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Dominik N Müller
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany; Experimental and Clinical Research Center, a joint cooperation between the Max Delbrück Center for Molecular Medicine and the Charité Medical Faculty, Berlin, Germany; Berlin Institute of Health, Berlin, Germany; DZHK (German Centre for Cardiovascular Research), Berlin, Germany
| | - Ruth Schmidt-Ullrich
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | - Kai M Schmidt-Ott
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany; Berlin Institute of Health, Berlin, Germany; Department of Nephrology and Medical Intensive Care, Charité - Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
88
|
Palaria A, Angelo JR, Guertin TM, Mager J, Tremblay KD. Patterning of the hepato-pancreatobiliary boundary by BMP reveals heterogeneity within the murine liver bud. Hepatology 2018; 68:274-288. [PMID: 29315687 PMCID: PMC6033643 DOI: 10.1002/hep.29769] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 11/20/2017] [Accepted: 01/01/2018] [Indexed: 12/17/2022]
Abstract
During development, the endoderm initiates organ-restricted gene expression patterns in a spatiotemporally controlled manner. This process, termed induction, requires signals from adjacent mesodermal derivatives. Fibroblast growth factor (FGF) and bone morphogenetic protein (BMP) emanating from the cardiac mesoderm and the septum transversum mesenchyme (STM), respectively, are believed to be simultaneously and uniformly required to directly induce hepatic gene expression from the murine endoderm. Using small molecule inhibitors of BMP signals during liver bud induction in the developing mouse embryo, we found that BMP signaling was not uniformly required to induce hepatic gene expression. Although BMP inhibition caused an overall reduction in the number of induced hepatoblasts, the STM-bounded posterior liver bud demonstrated the most severe loss of the essential hepatic transcription factor, hepatocyte nuclear factor 4-α (HNF4α), whereas the sinus venosus-lined anterior liver bud was less affected. We found that the posterior liver bud progenitors were anteriorly displaced and aberrantly activated pancreatobiliary markers, including sex-determining region Y-box 9 (SOX9). Additionally, we found that ectopically expressed SOX9 inhibited HNF4α and that BMP was indirectly required for hepatoblast induction. Finally, because previous studies have demonstrated that FGF signals are essential for anterior but not posterior liver bud induction, we examined synchronous BMP and FGF inhibition and found this led to a nearly complete loss of hepatoblasts. CONCLUSION BMP signaling is required to maintain the hepato-pancreatobiliary boundary, at least in part, by indirectly repressing SOX9 in the hepatic endoderm. BMP and FGF signals are each required for the induction of spatially complementary subsets of hepatoblasts. These results underscore the importance of studying early inductive processes in the whole embryo. (Hepatology 2018;68:274-288).
Collapse
Affiliation(s)
- Amrita Palaria
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, Amherst, MA
| | - Jesse R Angelo
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA
| | - Taylor M Guertin
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA
| | - Jesse Mager
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, Amherst, MA
| | - Kimberly D Tremblay
- Department of Veterinary and Animal Sciences, University of Massachusetts Amherst, Amherst, MA
- Molecular and Cellular Biology Graduate Program, University of Massachusetts Amherst, Amherst, MA
| |
Collapse
|
89
|
Abstract
TGF-β family ligands function in inducing and patterning many tissues of the early vertebrate embryonic body plan. Nodal signaling is essential for the specification of mesendodermal tissues and the concurrent cellular movements of gastrulation. Bone morphogenetic protein (BMP) signaling patterns tissues along the dorsal-ventral axis and simultaneously directs the cell movements of convergence and extension. After gastrulation, a second wave of Nodal signaling breaks the symmetry between the left and right sides of the embryo. During these processes, elaborate regulatory feedback between TGF-β ligands and their antagonists direct the proper specification and patterning of embryonic tissues. In this review, we summarize the current knowledge of the function and regulation of TGF-β family signaling in these processes. Although we cover principles that are involved in the development of all vertebrate embryos, we focus specifically on three popular model organisms: the mouse Mus musculus, the African clawed frog of the genus Xenopus, and the zebrafish Danio rerio, highlighting the similarities and differences between these species.
Collapse
Affiliation(s)
- Joseph Zinski
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104-6058
| | - Benjamin Tajer
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104-6058
| | - Mary C Mullins
- University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania 19104-6058
| |
Collapse
|
90
|
BMPRIA is required for osteogenic differentiation and RANKL expression in adult bone marrow mesenchymal stromal cells. Sci Rep 2018; 8:8475. [PMID: 29855498 PMCID: PMC5981611 DOI: 10.1038/s41598-018-26820-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 05/10/2018] [Indexed: 11/08/2022] Open
Abstract
Bone morphogenetic proteins (BMPs) activate the canonical Smad1/5/8 and non-canonical Tak1-MAPK pathways via BMP receptors I and II to regulate skeletal development and bone remodeling. Specific ablation of Bmpr1a in immature osteoblasts, osteoblasts, or osteocytes results in an increase in cancellous bone mass, yet opposite results have been reported regarding the underlying mechanisms. Moreover, the role for BMPRIA-mediated signaling in bone marrow mesenchymal stromal cells (BM-MSCs) has not been explored. Here, we specifically ablated Bmpr1a in BM-MSCs in adult mice to study the function of BMPR1A in bone remodeling and found that the mutant mice showed an increase in cancellous and cortical bone mass, which was accompanied by a decrease in bone formation rate and a greater decrease in bone resorption. Decreased bone formation was associated with a defect in BM-MSC osteogenic differentiation whereas decreased bone resorption was associated with a decrease in RANKL production and osteoclastogenesis. However, ablation of Tak1, a critical non-canonical signaling molecule downstream of BMP receptors, in BM-MSCs at adult stage did not affect bone remodeling. These results suggest that BMP signaling through BMPRIA controls BM-MSC osteogenic differentiation/bone formation and RANKL expression/osteoclastogenesis in adult mice independent of Tak1 signaling.
Collapse
|
91
|
Correlating interfacial water dynamics with protein-protein interaction in complex of GDF-5 and BMPRI receptors. Biophys Chem 2018; 240:50-62. [PMID: 29890403 DOI: 10.1016/j.bpc.2018.05.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 04/03/2018] [Accepted: 05/22/2018] [Indexed: 11/21/2022]
Abstract
GDF-5 mediated signal transduction regulating chondrogenesis and skeletogenesis involves three different type-I receptors viz. Act-RI, BMPRIA and BMPRIB. BMPRIA and BMPRIB generally shows temporal and spatial co-expression but some spatially different expression pattern has also been observed. BMPRIA receptor is the key receptor implicated in BMP signalling during osteogenesis and is expressed in osteoblasts during the course of bone formation. However, BMPRIB appears to be primarily expressed in mesenchymal pre-cartilage condensations and also found in differentiated osteoblast and chondrocytes. The extracellular pH affects bone cell function and it is experimentally known that mineralization of bone is affected by shift of pH in cultured osteoblast. Here we report the effect of pH on dynamics of water present at the interface of GDF-5:BMPRIA and GDF-5:BMPRIB and binding interaction energy of these complexes. Water dynamics at different pH was analysed using residence time and hydrogen bond relaxation kinetics. pH influences the interaction energy between GDF-5 and BMPRIA and BMPRIB receptors indicating the electrostatic environment modulating the activity of two receptors. This pH dependence of interaction energy is further supported by similar behaviour of hydrogen bond existence of buried water molecules at the interface. In contrast to this the slow and fast exchanging water molecules do not show similar pH dependence of hydrogen bonding relaxation kinetics. Hence; we conclude that only buried water molecule at the interface influences the protein-protein interaction and the electrostatic environment of the extracellular fluid might decide the specificity of the two receptors.
Collapse
|
92
|
Song LL, Cui Y, Yu SJ, Liu PG, Liu J, Yang X, He JF, Zhang Q. Expression characteristics of BMP2, BMPR-IA and Noggin in different stages of hair follicle in yak skin. Gen Comp Endocrinol 2018; 260:18-24. [PMID: 29174869 DOI: 10.1016/j.ygcen.2017.11.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 11/04/2017] [Accepted: 11/21/2017] [Indexed: 01/17/2023]
Abstract
Bone morphogenetic protein 2 (BMP2), BMP receptor-IA (BMPR-IA), and the BMP2 antagonist Noggin are important proteins involved in regulating the hair follicle (HF) cycle in skin. In order to explore the expression profiles of BMP2, BMPR-IA, and Noggin in the HF cycle of yak skin, we collected adult yak skin in the telogen, proanagen, and midanagen phases of HFs and evaluated gene and protein expression by real-time quantitative polymerase chain reaction (qRT-PCR), western blotting, and immunohistochemistry. qRT-PCR and western blotting results showed that BMP2 and BMPR-IA expression levels were highest in the telogen of HFs and higher than that of Noggin in the same phase. The expression of Noggin was significantly higher in proanagen and midanagen phases of HFs than in the telogen phase, with the highest expression observed in the proanagen phase. Moreover, the expression of Noggin in the proanagen phase was significantly higher than those of BMP2 and BMPR-IA during the same phase. Immunohistochemistry results showed that BMP2, BMPR-IA, and Noggin were expressed in the skin epidermis, sweat glands, sebaceous glands, HF outer root sheath, and hair matrix. In summary, the characteristic expression profiles of BMP2, BMPR-IA, and Noggin suggested that BMP2 and BMPR-IA had inhibitory effects on the growth of HFs in yaks, whereas Noggin promoted the growth of yak HFs, mainly by affecting skin epithelial cell activity. These results provide a basis for further studies of HF development and cycle transition in yak skin.
Collapse
Affiliation(s)
- Liang-Li Song
- Laboratory of Animal Anatomy & Tissue Embryology, Department of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China.
| | - Yan Cui
- Laboratory of Animal Anatomy & Tissue Embryology, Department of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China; Gansu Province Livestock Embryo Engineering Research Center, Department of Clinical Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China.
| | - Si-Jiu Yu
- Gansu Province Livestock Embryo Engineering Research Center, Department of Clinical Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China.
| | - Peng-Gang Liu
- Laboratory of Animal Anatomy & Tissue Embryology, Department of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China.
| | - Jun Liu
- Laboratory of Animal Anatomy & Tissue Embryology, Department of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China.
| | - Xue Yang
- Laboratory of Animal Anatomy & Tissue Embryology, Department of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China.
| | - Jun-Feng He
- Laboratory of Animal Anatomy & Tissue Embryology, Department of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China.
| | - Qian Zhang
- Laboratory of Animal Anatomy & Tissue Embryology, Department of Basic Veterinary Medicine, Faculty of Veterinary Medicine, Gansu Agricultural University, Lanzhou, Gansu, China.
| |
Collapse
|
93
|
Zhang B, He L, Liu Y, Zhang J, Zeng Q, Wang S, Fan Z, Fang F, Chen L, Lv Y, Xi J, Yue W, Li Y, Pei X. Prostaglandin E 2 Is Required for BMP4-Induced Mesoderm Differentiation of Human Embryonic Stem Cells. Stem Cell Reports 2018; 10:905-919. [PMID: 29478896 PMCID: PMC5919771 DOI: 10.1016/j.stemcr.2018.01.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 01/20/2018] [Accepted: 01/22/2018] [Indexed: 01/05/2023] Open
Abstract
The accurate control of early cell fate specification during differentiation of human embryonic stem cells (hESCs) is critical for acquiring pure therapeutic cell populations of interest. Bone morphogenetic protein 4 (BMP4) is a key mesoderm inducer from ESCs. However, the molecular mechanism of the mesodermal cell fate decision induced by BMP4 remains unclear. Here, we demonstrate the requirement of a bioactive lipid, prostaglandin E2 (PGE2), for the mesoderm specification from hESCs by BMP4 induction. We show that BMP4 directly regulates the expression of the key enzyme for PGE2 synthesis, COX-1, and promotes PGE2 production. More importantly, in the absence of BMP4, forced COX-1 expression or PGE2 treatment is sufficient to initiate mesoderm specification of hESCs by activation of EP2-PKA signaling and modulation of nuclear translocation of β-catenin. Together, our findings provide insights into the critical role of BMP regulation of PGE2 synthesis and its downstream signaling in initiating mesoderm commitment of hESCs. COX-1 and PGE2 played pivotal roles in the mesoderm specification of hESCs Specific inhibition of COX-1 suppressed mesoderm differentiation of hESCs BMP4 directly upregulated the transcription of the COX-1 PGE2 stimulated differentiation mainly via the EP2-PKA-GSK3β/β-catenin signaling pathway
Collapse
Affiliation(s)
- Bowen Zhang
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Transfusion Medicine, Beijing 100850, China; South China Research Center for Stem Cell & Regenerative Medicine, SCIB, Guangzhou 510005, China
| | - Lijuan He
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Transfusion Medicine, Beijing 100850, China; South China Research Center for Stem Cell & Regenerative Medicine, SCIB, Guangzhou 510005, China
| | - Yiming Liu
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Transfusion Medicine, Beijing 100850, China; South China Research Center for Stem Cell & Regenerative Medicine, SCIB, Guangzhou 510005, China
| | - Jing Zhang
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Transfusion Medicine, Beijing 100850, China; South China Research Center for Stem Cell & Regenerative Medicine, SCIB, Guangzhou 510005, China
| | - Quan Zeng
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Transfusion Medicine, Beijing 100850, China; South China Research Center for Stem Cell & Regenerative Medicine, SCIB, Guangzhou 510005, China
| | - Sihan Wang
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Transfusion Medicine, Beijing 100850, China; South China Research Center for Stem Cell & Regenerative Medicine, SCIB, Guangzhou 510005, China
| | - Zeng Fan
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Transfusion Medicine, Beijing 100850, China; South China Research Center for Stem Cell & Regenerative Medicine, SCIB, Guangzhou 510005, China
| | - Fang Fang
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Transfusion Medicine, Beijing 100850, China; South China Research Center for Stem Cell & Regenerative Medicine, SCIB, Guangzhou 510005, China
| | - Lin Chen
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Transfusion Medicine, Beijing 100850, China; South China Research Center for Stem Cell & Regenerative Medicine, SCIB, Guangzhou 510005, China
| | - Yang Lv
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Transfusion Medicine, Beijing 100850, China; South China Research Center for Stem Cell & Regenerative Medicine, SCIB, Guangzhou 510005, China
| | - Jiafei Xi
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Transfusion Medicine, Beijing 100850, China; South China Research Center for Stem Cell & Regenerative Medicine, SCIB, Guangzhou 510005, China
| | - Wen Yue
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Transfusion Medicine, Beijing 100850, China; South China Research Center for Stem Cell & Regenerative Medicine, SCIB, Guangzhou 510005, China
| | - Yanhua Li
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Transfusion Medicine, Beijing 100850, China; South China Research Center for Stem Cell & Regenerative Medicine, SCIB, Guangzhou 510005, China.
| | - Xuetao Pei
- Stem Cell and Regenerative Medicine Lab, Beijing Institute of Transfusion Medicine, Beijing 100850, China; South China Research Center for Stem Cell & Regenerative Medicine, SCIB, Guangzhou 510005, China.
| |
Collapse
|
94
|
Morgani SM, Metzger JJ, Nichols J, Siggia ED, Hadjantonakis AK. Micropattern differentiation of mouse pluripotent stem cells recapitulates embryo regionalized cell fate patterning. eLife 2018; 7:e32839. [PMID: 29412136 PMCID: PMC5807051 DOI: 10.7554/elife.32839] [Citation(s) in RCA: 138] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 02/02/2018] [Indexed: 12/29/2022] Open
Abstract
During gastrulation epiblast cells exit pluripotency as they specify and spatially arrange the three germ layers of the embryo. Similarly, human pluripotent stem cells (PSCs) undergo spatially organized fate specification on micropatterned surfaces. Since in vivo validation is not possible for the human, we developed a mouse PSC micropattern system and, with direct comparisons to mouse embryos, reveal the robust specification of distinct regional identities. BMP, WNT, ACTIVIN and FGF directed mouse epiblast-like cells to undergo an epithelial-to-mesenchymal transition and radially pattern posterior mesoderm fates. Conversely, WNT, ACTIVIN and FGF patterned anterior identities, including definitive endoderm. By contrast, epiblast stem cells, a developmentally advanced state, only specified anterior identities, but without patterning. The mouse micropattern system offers a robust scalable method to generate regionalized cell types present in vivo, resolve how signals promote distinct identities and generate patterns, and compare mechanisms operating in vivo and in vitro and across species.
Collapse
Affiliation(s)
- Sophie M Morgani
- Developmental Biology ProgramSloan Kettering Institute, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
- Wellcome Trust-Medical Research Council Centre for Stem Cell ResearchUniversity of CambridgeCambridgeUnited Kingdom
| | - Jakob J Metzger
- Center for Studies in Physics and BiologyThe Rockefeller UniversityNew YorkUnited States
| | - Jennifer Nichols
- Wellcome Trust-Medical Research Council Centre for Stem Cell ResearchUniversity of CambridgeCambridgeUnited Kingdom
| | - Eric D Siggia
- Center for Studies in Physics and BiologyThe Rockefeller UniversityNew YorkUnited States
| | - Anna-Katerina Hadjantonakis
- Developmental Biology ProgramSloan Kettering Institute, Memorial Sloan Kettering Cancer CenterNew YorkUnited States
| |
Collapse
|
95
|
Jiang FX, Harrison LC. Transient Impairment of Islet Architectural Development in Pancreas-Specific Bmpr1a-Deleted Prenatal Mice Involves Reduced Expression of E-Cadherin. Stem Cells Dev 2017; 26:1706-1714. [PMID: 28922976 DOI: 10.1089/scd.2017.0040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Bone morphogenetic protein (BMP) signaling plays critical roles on the development of a large array of embryonic organs and promotes the in vitro formation of pancreatic cystoid colonies containing insulin-producing cells. However, this signaling and its underlying mechanism on in vivo development of prenatal pancreas have not been clearly understood. To address these questions, we analyzed, with a variety of techniques, the prenatal mouse pancreas after Pdx1 (the pancreas and duodenum homeobox factor 1 gene)-driving deletion of the BMP receptor type 1a gene (Bmpr1a). In this study, we report that the Pdx1-driving deletion of Bmpr1a transiently disrupted only the assembly of architectural structure of prenatal islets. The differentiation of endocrine lineage cells and the development of pancreatic acinar tissue were comparable between Bmpr1a-deleted fetuses and -undeleted Controls throughout the period examined. Molecular studies revealed that among many proteins surveyed, the key cell-cell interaction molecule E-cadherin (E-cad) only was expressed significantly less at both messenger RNA (mRNA) and protein levels in Bmpr1a-deleted than Control fetal endocrine cells. We thus conclude that BMP signaling transiently regulates the expression of E-cad and the establishment of prenatal islet architecture.
Collapse
Affiliation(s)
- Fang-Xu Jiang
- 1 Islet Cell Development Program, Harry Perkins Institute of Medical Research, Centre for Medical Research, University of Western Australia , Nedlands, Australia .,2 The Walter & Eliza Hall Institute of Medical Research , Parkville, Australia
| | - Leonard C Harrison
- 2 The Walter & Eliza Hall Institute of Medical Research , Parkville, Australia
| |
Collapse
|
96
|
MacFarlane EG, Haupt J, Dietz HC, Shore EM. TGF-β Family Signaling in Connective Tissue and Skeletal Diseases. Cold Spring Harb Perspect Biol 2017; 9:cshperspect.a022269. [PMID: 28246187 DOI: 10.1101/cshperspect.a022269] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The transforming growth factor β (TGF-β) family of signaling molecules, which includes TGF-βs, activins, inhibins, and numerous bone morphogenetic proteins (BMPs) and growth and differentiation factors (GDFs), has important functions in all cells and tissues, including soft connective tissues and the skeleton. Specific TGF-β family members play different roles in these tissues, and their activities are often balanced with those of other TGF-β family members and by interactions with other signaling pathways. Perturbations in TGF-β family pathways are associated with numerous human diseases with prominent involvement of the skeletal and cardiovascular systems. This review focuses on the role of this family of signaling molecules in the pathologies of connective tissues that manifest in rare genetic syndromes (e.g., syndromic presentations of thoracic aortic aneurysm), as well as in more common disorders (e.g., osteoarthritis and osteoporosis). Many of these diseases are caused by or result in pathological alterations of the complex relationship between the TGF-β family of signaling mediators and the extracellular matrix in connective tissues.
Collapse
Affiliation(s)
- Elena Gallo MacFarlane
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| | - Julia Haupt
- Department of Orthopedic Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104.,Center for Research in FOP and Related Disorders, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Harry C Dietz
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205.,Howard Hughes Medical Institute, Bethesda, Maryland 21205
| | - Eileen M Shore
- Department of Orthopedic Surgery, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104.,Center for Research in FOP and Related Disorders, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104.,Department of Genetics, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania 19104
| |
Collapse
|
97
|
Monsivais D, Matzuk MM, Pangas SA. The TGF-β Family in the Reproductive Tract. Cold Spring Harb Perspect Biol 2017; 9:cshperspect.a022251. [PMID: 28193725 DOI: 10.1101/cshperspect.a022251] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The transforming growth factor β (TGF-β) family has a profound impact on the reproductive function of various organisms. In this review, we discuss how highly conserved members of the TGF-β family influence the reproductive function across several species. We briefly discuss how TGF-β-related proteins balance germ-cell proliferation and differentiation as well as dauer entry and exit in Caenorhabditis elegans. In Drosophila melanogaster, TGF-β-related proteins maintain germ stem-cell identity and eggshell patterning. We then provide an in-depth analysis of landmark studies performed using transgenic mouse models and discuss how these data have uncovered basic developmental aspects of male and female reproductive development. In particular, we discuss the roles of the various TGF-β family ligands and receptors in primordial germ-cell development, sexual differentiation, and gonadal cell development. We also discuss how mutant mouse studies showed the contribution of TGF-β family signaling to embryonic and postnatal testis and ovarian development. We conclude the review by describing data obtained from human studies, which highlight the importance of the TGF-β family in normal female reproductive function during pregnancy and in various gynecologic pathologies.
Collapse
Affiliation(s)
- Diana Monsivais
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas 77030.,Center for Drug Discovery, Baylor College of Medicine, Houston, Texas 77030
| | - Martin M Matzuk
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas 77030.,Center for Drug Discovery, Baylor College of Medicine, Houston, Texas 77030.,Department of Molecular and Cellular Biology, Baylor College of Medicine Houston, Texas 77030.,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030.,Department of Pharmacology, Baylor College of Medicine, Houston, Texas 77030
| | - Stephanie A Pangas
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas 77030.,Center for Drug Discovery, Baylor College of Medicine, Houston, Texas 77030.,Department of Molecular and Cellular Biology, Baylor College of Medicine Houston, Texas 77030
| |
Collapse
|
98
|
Home P, Kumar RP, Ganguly A, Saha B, Milano-Foster J, Bhattacharya B, Ray S, Gunewardena S, Paul A, Camper SA, Fields PE, Paul S. Genetic redundancy of GATA factors in the extraembryonic trophoblast lineage ensures the progression of preimplantation and postimplantation mammalian development. Development 2017; 144:876-888. [PMID: 28232602 PMCID: PMC5374352 DOI: 10.1242/dev.145318] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Accepted: 01/10/2017] [Indexed: 12/16/2022]
Abstract
GATA transcription factors are implicated in establishing cell fate during mammalian development. In early mammalian embryos, GATA3 is selectively expressed in the extraembryonic trophoblast lineage and regulates gene expression to promote trophoblast fate. However, trophoblast-specific GATA3 function is dispensable for early mammalian development. Here, using dual conditional knockout mice, we show that genetic redundancy of Gata3 with paralog Gata2 in trophoblast progenitors ensures the successful progression of both pre- and postimplantation mammalian development. Stage-specific gene deletion in trophoblasts reveals that loss of both GATA genes, but not either alone, leads to embryonic lethality prior to the onset of their expression within the embryo proper. Using ChIP-seq and RNA-seq analyses, we define the global targets of GATA2/GATA3 and show that they directly regulate a large number of common genes to orchestrate stem versus differentiated trophoblast fate. In trophoblast progenitors, GATA factors directly regulate BMP4, Nodal and Wnt signaling components that promote embryonic-extraembryonic signaling cross-talk, which is essential for the development of the embryo proper. Our study provides genetic evidence that impairment of trophoblast-specific GATA2/GATA3 function could lead to early pregnancy failure. Summary: During trophoblast development in mice, GATA2 and GATA3 act synergistically by directly regulating a large number of common genes, and together are important to ensure trophoblast lineage progression.
Collapse
Affiliation(s)
- Pratik Home
- Department of Pathology and Laboratory Medicine and Institute for Reproductive Health and Regenerative Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Ram Parikshan Kumar
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Avishek Ganguly
- North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX 76107, USA
| | - Biswarup Saha
- Department of Pathology and Laboratory Medicine and Institute for Reproductive Health and Regenerative Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Jessica Milano-Foster
- Department of Pathology and Laboratory Medicine and Institute for Reproductive Health and Regenerative Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Bhaswati Bhattacharya
- Department of Pathology and Laboratory Medicine and Institute for Reproductive Health and Regenerative Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Soma Ray
- Department of Pathology and Laboratory Medicine and Institute for Reproductive Health and Regenerative Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Sumedha Gunewardena
- Department of Molecular and Integrative Physiology, Department of Biostatistics, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Arindam Paul
- Department of Pathology and Laboratory Medicine and Institute for Reproductive Health and Regenerative Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Sally A Camper
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Patrick E Fields
- Department of Pathology and Laboratory Medicine and Institute for Reproductive Health and Regenerative Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Soumen Paul
- Department of Pathology and Laboratory Medicine and Institute for Reproductive Health and Regenerative Medicine, University of Kansas Medical Center, Kansas City, KS 66160, USA
| |
Collapse
|
99
|
Tenno M, Shiroguchi K, Muroi S, Kawakami E, Koseki K, Kryukov K, Imanishi T, Ginhoux F, Taniuchi I. Cbfβ2 deficiency preserves Langerhans cell precursors by lack of selective TGFβ receptor signaling. J Exp Med 2017; 214:2933-2946. [PMID: 28814567 PMCID: PMC5626404 DOI: 10.1084/jem.20170729] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 06/18/2017] [Accepted: 07/14/2017] [Indexed: 12/23/2022] Open
Abstract
Tenno et al. show that loss of Cbfβ2, one of two RNA splice variants of the Cbfb gene, results in the persistence of embryonic Langerhans cell precursors in the adult epidermis by selective loss of BMP7-BMPR1A signaling with intact TGFβR1 signaling. The mouse Langerhans cell (LC) network is established through the differentiation of embryonic LC precursors. BMP7 and TGFβ1 initiate cellular signaling that is essential for inducing LC differentiation and preserving LCs in a quiescent state, respectively. Here we show that loss of Cbfβ2, one of two RNA splice variants of the Cbfb gene, results in long-term persistence of embryonic LC precursors after their developmental arrest at the transition into the EpCAM+ stage. This phenotype is caused by selective loss of BMP7-mediated signaling essential for LC differentiation, whereas TGFβR signaling is intact, maintaining cells in a quiescent state. Transgenic Cbfβ2 expression at the neonatal stage, but not at the adult stage, restored differentiation from Cbfβ2-deficient LC precursors. Loss of developmental potential in skin-residential precursor cells was accompanied by diminished BMP7–BMPR1A signaling. Collectively, our results reveal an essential requirement for the Cbfβ2 variant in LC differentiation and provide novel insight into how the establishment and homeostasis of the LC network is regulated.
Collapse
Affiliation(s)
- Mari Tenno
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Katsuyuki Shiroguchi
- Laboratory for Immunogenetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.,Laboratory for Integrative Omics, RIKEN Quantitative Biology Center, Osaka, Japan.,PRESTO, Japan Science and Technology Agency, Saitama, Japan
| | - Sawako Muroi
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Eiryo Kawakami
- Disease Biology Group, RIKEN Medical Sciences Innovation Hub Program, Yokohama, Japan
| | - Keita Koseki
- Disease Biology Group, RIKEN Medical Sciences Innovation Hub Program, Yokohama, Japan
| | - Kirill Kryukov
- Biomedical Informatics Laboratory, Department of Molecular Life Science, Tokai University School of Medicine, Kanagawa, Japan
| | - Tadashi Imanishi
- Biomedical Informatics Laboratory, Department of Molecular Life Science, Tokai University School of Medicine, Kanagawa, Japan
| | - Florent Ginhoux
- Singapore Immunology Network, Agency for Science, Technology, and Research, Singapore
| | - Ichiro Taniuchi
- Laboratory for Transcriptional Regulation, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| |
Collapse
|
100
|
Pramono A, Zahabi A, Morishima T, Lan D, Welte K, Skokowa J. Thrombopoietin induces hematopoiesis from mouse ES cells via HIF-1α-dependent activation of a BMP4 autoregulatory loop. Ann N Y Acad Sci 2017; 1375:38-51. [PMID: 27447537 DOI: 10.1111/nyas.13138] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Revised: 05/02/2016] [Accepted: 05/19/2016] [Indexed: 01/26/2023]
Abstract
Understanding the molecular mechanisms underlying hematopoietic differentiation of embryonic stem (ES) cells may help to ascertain the conditions for the in vitro generation of hematopoietic cells. Previously, we found that patients with congenital amegakaryocytic thrombocytopenia (CAMT), who develop pancytopenia early after birth, harbor mutations within the thrombopoietin (TPO) receptor, c-MPL. This knowledge, together with observations in vitro and in vivo, suggests that TPO/c-MPL signaling promotes early hematopoiesis. However, the mechanisms underlying TPO signaling are not fully elucidated. Here, we describe a direct connection between TPO and bone morphogenetic protein 4 (BMP4) signaling pathways in determining the hematopoietic fate of ES cells. Morphogen BMP4 is known to induce early hematopoietic differentiation of ES cells. Treatment of ES cells with TPO induced the autocrine production of BMP4 with concomitant upregulation of the BMP receptor BMPR1A, phosphorylation of SMAD1, 5, 8, and activation of specific BMP4 target genes; this was mediated by TPO-dependent binding of transcription factor HIF-1α to the BMP4 gene promoter. Treatment of ES cells with the BMP antagonist noggin substantially reduced TPO-dependent hematopoietic differentiation of ES cells. Thus, our findings contribute to the establishment of techniques for generating hematopoietic cells from ES cells.
Collapse
Affiliation(s)
- Andri Pramono
- Stem Cell and Tissue Engineering Research Center, Faculty of Medicine, University of Pembangunan Nasional "Veteran,", Jakarta, Indonesia
| | - Azadeh Zahabi
- Departments of Hematology, Oncology, Immunology, Rheumatology, and Pulmonology, University Hospital Tübingen, Tübingen, Germany
| | - Tatsuya Morishima
- Departments of Hematology, Oncology, Immunology, Rheumatology, and Pulmonology, University Hospital Tübingen, Tübingen, Germany
| | - Dan Lan
- Pediatric Department of the First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, China
| | - Karl Welte
- Department of Hematology, Oncology and Bone Marrow Transplantation, Children's Hospital, University Hospital Tübingen, Tübingen, Germany
| | - Julia Skokowa
- Departments of Hematology, Oncology, Immunology, Rheumatology, and Pulmonology, University Hospital Tübingen, Tübingen, Germany
| |
Collapse
|