51
|
Ma Z, Wu W, Huang W, Huang J. Down-regulation of specific plastid ribosomal proteins suppresses thf1 leaf variegation, implying a role of THF1 in plastid gene expression. PHOTOSYNTHESIS RESEARCH 2015; 126:301-310. [PMID: 25733183 DOI: 10.1007/s11120-015-0101-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Accepted: 02/13/2015] [Indexed: 06/04/2023]
Abstract
Chloroplast development is regulated by many biological processes. However, these processes are not fully understood. Leaf variegation mutants have been used as powerful models to elucidate the genetic network of chloroplast development since the degree of leaf variegation is regulated by developmental and environmental cues. The thylakoid formation 1 (thf1) mutant is unique for its variegation in both leaves and cotyledons. Here, we reported a new suppressor gene of thf1 leaf variegation, designated sot8. Map-based cloning and DNA sequencing results showed that a single nucleotide mutation from G to A was detected in the second exon of the gene encoding the ribosomal protein small subunit 9 (PRPS9) in sot8-1, resulting in an amino acid change and a partial loss of PRPS9 function. However, sot8-1 was unable to rescue the thf1 phenotype in low photosystem II activity (Fv/Fm). In addition, we identified two T-DNA insertion mutants defective in plastid-specific ribosomal proteins (PSRPs), psrp2-1, and psrp5-1. Genetic analysis showed that knockdown of PSRP5 expression but not PSRP2 expression suppressed leaf variegation. Northern blotting results showed that precursors of plastid rRNAs over-accumulated in prps9-1 and psrp5-1, indicating that mutations in PRPS9 and PSRP5 cause a defect in rRNA processing. Consistently, inhibition of plastid protein synthesis by spectinomycin led to increased levels of plastid rRNA precursors in wild-type plants, suggesting that rRNA processing and plastid ribosomal assembly are coupled. Taken together, our data indicate that downregulating the expression of specific plastid ribosomal proteins suppresses thf1 leaf variegation, and provide new insights into a role of THF1 in plastid gene expression.
Collapse
Affiliation(s)
- Zhaoxue Ma
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Wenjuan Wu
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Weihua Huang
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Jirong Huang
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, 200032, China.
| |
Collapse
|
52
|
Oryza sativa Chloroplast Signal Recognition Particle 43 (OscpSRP43) Is Required for Chloroplast Development and Photosynthesis. PLoS One 2015; 10:e0143249. [PMID: 26600124 PMCID: PMC4657901 DOI: 10.1371/journal.pone.0143249] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 11/02/2015] [Indexed: 12/26/2022] Open
Abstract
A rice chlorophyll-deficient mutant w67 was isolated from an ethyl methane sulfonate (EMS)-induced IR64 (Oryza sativa L. ssp. indica) mutant bank. The mutant exhibited a distinct yellow-green leaf phenotype in the whole plant growth duration with significantly reduced levels of chlorophyll and carotenoid, impaired chloroplast development and lowered capacity of photosynthesis compared with the wild-type IR64. Expression of a number of genes associated with chlorophyll metabolism, chloroplast biogenesis and photosynthesis was significantly altered in the mutant. Genetic analysis indicated that the yellow-green phenotype was controlled by a single recessive nuclear gene located on the short arm of chromosome 3. Using map-based strategy, the mutation was isolated and predicted to encode a chloroplast signal recognition particle 43 KD protein (cpSRP43) with 388 amino acid residuals. A single base substitution from A to T at position 160 resulted in a premature stop codon. OscpSRP43 was constitutively expressed in various organs with the highest level in the leaf. Functional complementation could rescue the mutant phenotype and subcellular localization showed that the cpSRP43:GFP fusion protein was targeted to the chloroplast. The data suggested that Oryza sativa cpSRP43 (OscpSRP43) was required for the normal development of chloroplasts and photosynthesis in rice.
Collapse
|
53
|
Printz B, Guerriero G, Sergeant K, Renaut J, Lutts S, Hausman JF. Ups and downs in alfalfa: Proteomic and metabolic changes occurring in the growing stem. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 238:13-25. [PMID: 26259170 DOI: 10.1016/j.plantsci.2015.05.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 05/16/2015] [Indexed: 05/05/2023]
Abstract
The expanding interest for using lignocellulosic biomass in industry spurred the study of the mechanisms underlying plant cell-wall synthesis. Efforts using genetic approaches allowed the disentanglement of major steps governing stem fibre synthesis. Nonetheless, little is known about the relations between the stem maturation and the evolution of its proteome. During Medicago sativa L. maturation, the different internodes grow asynchronously allowing the discrimination of various developmental stages on a same stem. In this study, the proteome of three selected regions of the stem of alfalfa (apical, intermediate and basal) was analyzed and combined with a compositional analysis of the different stem parts. Interestingly, the apical and the median regions share many similarities: high abundance of chloroplast- and mitochondrial-related proteins together with the accumulation of proteins acting in the early steps of fibre production. In the mature basal region, forisomes and stress-related proteins accumulate. The RT-qPCR assessment of the expression of genes coding for members of the cellulose synthase family likewise indicates that fibres and the machinery responsible for the deposition of secondary cell walls are predominantly formed in the apical section. Altogether, this study reflects the metabolic change from the fibre production in the upper stem regions to the acquisition of defence-related functions in the fibrous basal part.
Collapse
Affiliation(s)
- Bruno Printz
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), 5, Avenue des Hauts-Fourneaux, L-4362 Esch/Alzette, Luxembourg; Groupe de Recherche en Physiologie végétale (GRPV), Earth and Life Institute Agronomy (ELI-A), Université catholique de Louvain, 5 (bte 7.07.13) Place Croix du Sud, B-1348 Louvain-la-Neuve, Belgium
| | - Gea Guerriero
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), 5, Avenue des Hauts-Fourneaux, L-4362 Esch/Alzette, Luxembourg
| | - Kjell Sergeant
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), 5, Avenue des Hauts-Fourneaux, L-4362 Esch/Alzette, Luxembourg.
| | - Jenny Renaut
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), 5, Avenue des Hauts-Fourneaux, L-4362 Esch/Alzette, Luxembourg
| | - Stanley Lutts
- Groupe de Recherche en Physiologie végétale (GRPV), Earth and Life Institute Agronomy (ELI-A), Université catholique de Louvain, 5 (bte 7.07.13) Place Croix du Sud, B-1348 Louvain-la-Neuve, Belgium
| | - Jean-Francois Hausman
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), 5, Avenue des Hauts-Fourneaux, L-4362 Esch/Alzette, Luxembourg
| |
Collapse
|
54
|
Hu F, Zhu Y, Wu W, Xie Y, Huang J. Leaf Variegation of Thylakoid Formation1 Is Suppressed by Mutations of Specific σ-Factors in Arabidopsis. PLANT PHYSIOLOGY 2015; 168:1066-75. [PMID: 25999408 PMCID: PMC4741321 DOI: 10.1104/pp.15.00549] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 05/19/2015] [Indexed: 05/04/2023]
Abstract
Thylakoid Formation1 (THF1) has been shown to play roles in chloroplast development, resistance to excessive light, and chlorophyll degradation in Arabidopsis (Arabidopsis thaliana). To elucidate mechanisms underlying THF1-regulated chloroplast development, we mutagenized thf1 seeds with ethyl methanesulfonate and screened second-site recessive mutations that suppress its leaf variegation phenotype. Here, we characterized a unique suppressor line, 42-6, which displays a leaf virescent phenotype. Map-based cloning and genetic complementation results showed that thf1 variegation was suppressed by a mutation in σ-FACTOR6 (SIG6), which is a plastid transcription factor specifically controlling gene expression through the plastid-encoded RNA polymerase. Northern-blot analysis revealed that plastid gene expression was down-regulated in not only 42-6 and sig6 but also, thf1 at the early stage of chloroplast development. Interestingly, mutations in SIG2 but not in other σ-factors also suppressed thf1 leaf variegation. Furthermore, we found that leaf variegation of thf1 and var2 could be suppressed by several virescent mutations, including yellow seedling1, brz-insensitive-pale green2, and nitric oxide-associated protein1, indicating that virescent mutations suppress leaf variegation. Taken together, our results provide unique insights into thf1-mediated leaf variegation, which might be triggered by defects in plastid gene transcription.
Collapse
Affiliation(s)
- Fenhong Hu
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Ying Zhu
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Wenjuan Wu
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Ye Xie
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Jirong Huang
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
55
|
Sakuraba Y, Park SY, Paek NC. The Divergent Roles of STAYGREEN (SGR) Homologs in Chlorophyll Degradation. Mol Cells 2015; 38:390-5. [PMID: 25913011 PMCID: PMC4443279 DOI: 10.14348/molcells.2015.0039] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 03/06/2015] [Indexed: 12/25/2022] Open
Abstract
Degradation of chlorophyll (Chl) by Chl catabolic enzymes (CCEs) causes the loss of green color that typically occurs during senescence of leaves. In addition to CCEs, staygreen1 (SGR1) functions as a key regulator of Chl degradation. Although sgr1 mutants in many plant species exhibit a stay-green phenotype, the biochemical function of the SGR1 protein remains elusive. Many recent studies have examined the physiological and molecular roles of SGR1 and its homologs (SGR2 and SGR-LIKE) in Chl metabolism, finding that these proteins have different roles in different species. In this review, we summarize the recent studies on SGR and discuss the most likely functions of SGR homologs.
Collapse
Affiliation(s)
- Yasuhito Sakuraba
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 151-921,
Korea
| | - So-Yon Park
- Department of Plant Pathology, Physiology and Weed Science, Virginia Tech, Blacksburg, VA 24061-0331,
USA
| | - Nam-Chon Paek
- Department of Plant Science, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 151-921,
Korea
- Crop Biotechnology Institute, GreenBio Science and Technology, Seoul National University, Pyeongchang 232-916,
Korea
| |
Collapse
|
56
|
Proteome changes induced by Pyrenophora tritici-repentis ToxA in both insensitive and sensitive wheat indicate senescence-like signaling. Proteome Sci 2015; 13:3. [PMID: 25663824 PMCID: PMC4320625 DOI: 10.1186/s12953-014-0060-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 12/23/2014] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Pyrenophora tritici-repentis is a phytopathogenic fungus which causes tan spot on wheat. Some races of P. tritici-repentis produce host-specific toxins which present symptoms of chlorosis or necrosis on susceptible wheat cultivars. One such toxin is Ptr ToxA, which enters mesophyll cells through a putative toxin-receptor and localizes with chloroplasts, ultimately causing damage and necrosis on leaves. These symptoms can occur even in the absence of the pathogen. Insensitive cultivars lack the receptor and Ptr ToxA cannot enter cells. The molecular mechanisms surrounding this plant-pathogen interaction are still largely unknown, although some details have begun to emerge. RESULTS Using 2-D electrophoresis, fifteen protein changes were identified reproducibly in the leaf proteomes of a sensitive and an insensitive cultivar over three days after inoculation of purified Ptr ToxA. Functional analysis of the proteins indicated that senescence signals may be induced in the sensitive cultivar. In the insensitive cultivar proteins involved in some features of senescence inhibition were seen. Complementary responses at the biochemical level may be actively promoting a localized senescence-like response in sensitive wheat cultivars whilst actively inhibiting this response in insensitive cultivars. CONCLUSION This is the first report of a biochemical response in an insensitive cultivar in this plant-pathogen interaction. Findings support the involvement of ethylene, and the activation of complementary pathways in sensitive versus insensitive wheat cultivars responding to Ptr ToxA. The nature of the system permits using purified toxin to mimic disease, which eliminates the pathogen proteome and ensures a synchronous response in inoculated leaves.
Collapse
|
57
|
Photosystem II repair in plant chloroplasts--Regulation, assisting proteins and shared components with photosystem II biogenesis. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1847:900-9. [PMID: 25615587 DOI: 10.1016/j.bbabio.2015.01.006] [Citation(s) in RCA: 198] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Revised: 01/07/2015] [Accepted: 01/15/2015] [Indexed: 01/30/2023]
Abstract
Photosystem (PS) II is a multisubunit thylakoid membrane pigment-protein complex responsible for light-driven oxidation of water and reduction of plastoquinone. Currently more than 40 proteins are known to associate with PSII, either stably or transiently. The inherent feature of the PSII complex is its vulnerability in light, with the damage mainly targeted to one of its core proteins, the D1 protein. The repair of the damaged D1 protein, i.e. the repair cycle of PSII, initiates in the grana stacks where the damage generally takes place, but subsequently continues in non-appressed thylakoid domains, where many steps are common for both the repair and de novo assembly of PSII. The sequence of the (re)assembly steps of genuine PSII subunits is relatively well-characterized in higher plants. A number of novel findings have shed light into the regulation mechanisms of lateral migration of PSII subcomplexes and the repair as well as the (re)assembly of the complex. Besides the utmost importance of the PSII repair cycle for the maintenance of PSII functionality, recent research has pointed out that the maintenance of PSI is closely dependent on regulation of the PSII repair cycle. This review focuses on the current knowledge of regulation of the repair cycle of PSII in higher plant chloroplasts. Particular emphasis is paid on sequential assembly steps of PSII and the function of the number of PSII auxiliary proteins involved both in the biogenesis and repair of PSII. This article is part of a Special Issue entitled: Chloroplast Biogenesis.
Collapse
|
58
|
Delfosse K, Wozny MR, Jaipargas EA, Barton KA, Anderson C, Mathur J. Fluorescent Protein Aided Insights on Plastids and their Extensions: A Critical Appraisal. FRONTIERS IN PLANT SCIENCE 2015; 6:1253. [PMID: 26834765 PMCID: PMC4719081 DOI: 10.3389/fpls.2015.01253] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Accepted: 12/21/2015] [Indexed: 05/20/2023]
Abstract
Multi-colored fluorescent proteins targeted to plastids have provided new insights on the dynamic behavior of these organelles and their interactions with other cytoplasmic components and compartments. Sub-plastidic components such as thylakoids, stroma, the inner and outer membranes of the plastid envelope, nucleoids, plastoglobuli, and starch grains have been efficiently highlighted in living plant cells. In addition, stroma filled membrane extensions called stromules have drawn attention to the dynamic nature of the plastid and its interactions with the rest of the cell. Use of dual and triple fluorescent protein combinations has begun to reveal plastid interactions with mitochondria, the nucleus, the endoplasmic reticulum and F-actin and suggests integral roles of plastids in retrograde signaling, cell to cell communication as well as plant-pathogen interactions. While the rapid advances and insights achieved through fluorescent protein based research on plastids are commendable it is necessary to endorse meaningful observations but subject others to closer scrutiny. Here, in order to develop a better and more comprehensive understanding of plastids and their extensions we provide a critical appraisal of recent information that has been acquired using targeted fluorescent protein probes.
Collapse
|
59
|
de Luna-Valdez L, Martínez-Batallar A, Hernández-Ortiz M, Encarnación-Guevara S, Ramos-Vega M, López-Bucio J, León P, Guevara-García A. Proteomic analysis of chloroplast biogenesis (clb) mutants uncovers novel proteins potentially involved in the development of Arabidopsis thaliana chloroplasts. J Proteomics 2014; 111:148-64. [DOI: 10.1016/j.jprot.2014.07.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2014] [Revised: 06/25/2014] [Accepted: 07/03/2014] [Indexed: 02/04/2023]
|
60
|
Geng X, Jin L, Shimada M, Kim MG, Mackey D. The phytotoxin coronatine is a multifunctional component of the virulence armament of Pseudomonas syringae. PLANTA 2014; 240:1149-65. [PMID: 25156488 PMCID: PMC4228168 DOI: 10.1007/s00425-014-2151-x] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Accepted: 08/08/2014] [Indexed: 05/20/2023]
Abstract
Plant pathogens deploy an array of virulence factors to suppress host defense and promote pathogenicity. Numerous strains of Pseudomonas syringae produce the phytotoxin coronatine (COR). A major aspect of COR function is its ability to mimic a bioactive jasmonic acid (JA) conjugate and thus target the JA-receptor COR-insensitive 1 (COI1). Biological activities of COR include stimulation of JA-signaling and consequent suppression of SA-dependent defense through antagonistic crosstalk, antagonism of stomatal closure to allow bacterial entry into the interior of plant leaves, contribution to chlorotic symptoms in infected plants, and suppression of plant cell wall defense through perturbation of secondary metabolism. Here, we review the virulence function of COR, including updates on these established activities as well as more recent findings revealing COI1-independent activity of COR and shedding light on cooperative or redundant defense suppression between COR and type III effector proteins.
Collapse
Affiliation(s)
- Xueqing Geng
- Department of Horticulture and Crop Science, Ohio State University, Columbus, OH 43210 USA
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240 People’s Republic of China
| | - Lin Jin
- Department of Horticulture and Crop Science, Ohio State University, Columbus, OH 43210 USA
| | - Mikiko Shimada
- Department of Horticulture and Crop Science, Ohio State University, Columbus, OH 43210 USA
| | - Min Gab Kim
- College of Pharmacy, Research Institute of Pharmaceutical Science, PMBBRC Gyeongsang National University, Jinju daero, Jinju, 660-751 Republic of Korea
| | - David Mackey
- Department of Horticulture and Crop Science, Ohio State University, Columbus, OH 43210 USA
- Department of Molecular Genetics, Ohio State University, Columbus, OH 43210 USA
| |
Collapse
|
61
|
Gan Y, Li H, Xie Y, Wu W, Li M, Wang X, Huang J. THF1 mutations lead to increased basal and wound-induced levels of oxylipins that stimulate anthocyanin biosynthesis via COI1 signaling in Arabidopsis. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2014; 56:916-27. [PMID: 24467527 DOI: 10.1111/jipb.12177] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2013] [Accepted: 01/21/2014] [Indexed: 05/21/2023]
Abstract
Mutants defective in chloroplast development or photosynthesis are liable to accumulate higher levels of anthocyanin in photo-oxidative stress. However, regulatory mechanisms of anthocyanin biosynthesis in the mutants remain unclear. Here, we investigated the mechanism by which the deletion of thylakoid formation1 (THF1) leads to an increased level of anthocyanin in Arabidopsis thaliana L. Physiological and genetic evidence showed that the increased level of anthocyanin in thf1 is dependent on coronatine-insensitive1 (COI1) signaling. Our data showed that thf1 had higher levels of basal α-linolenic acid (α-LeA), and methyl jasmonate (JA)-induced α-LeA and 12-oxophytodienoic acid (OPDA) than the wild type (WT). Consistently, expression levels of phospholipase genes including pPLAIIα and PLA-Iγ1 were elevated in thf1. Furthermore, inhibition of lipase activity by bromoenol lactone, a specific inhibitor of plant pPLA, led to producing identical levels of anthocyanins in WT and thf1 plants. Interestingly, OPDA biosynthesis was triggered by light illumination in isolated chloroplasts, indicating that new protein import into chloroplasts is not required for OPDA biosynthesis. Thus, we conclude that the elevated anthocyanin accumulation in thf1 is attributed to an increase in JA levels. This JA-mediated signaling to coordinate plant metabolism and growth in stress may be conserved in other photosensitive mutants.
Collapse
Affiliation(s)
- Yi Gan
- National Key Laboratory of Plant Molecular Genetics, Shanghai Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, the Chinese Academy of Sciences, Shanghai, 200032, China; School of Agricultural and Food Science, Zhejiang A&F University, Lin'an, 311300, China
| | | | | | | | | | | | | |
Collapse
|
62
|
Lu S, Faris JD, Sherwood R, Friesen TL, Edwards MC. A dimeric PR-1-type pathogenesis-related protein interacts with ToxA and potentially mediates ToxA-induced necrosis in sensitive wheat. MOLECULAR PLANT PATHOLOGY 2014; 15:650-63. [PMID: 24433289 PMCID: PMC6638811 DOI: 10.1111/mpp.12122] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
A dimeric PR-1-type pathogenesis-related protein (PR-1-5), recently identified in wheat, was found to interact with Stagonospora nodorum ToxA in both yeast two-hybrid and co-immunoprecipitation assays. Site-specific mutational analyses revealed that the RGD motif of ToxA is not targeted by PR-1-5, whereas two surface-exposed asparagine residues are essential for the interaction: the N102 residue of the turning loop between β2 and β3 in ToxA and the N141 residue of the turning loop between βC and βD in PR-1-5. Recombinant PR-1-5 and ToxA mutant proteins carrying alanine substitutions at the interacting sites were expressed in Pichia pastoris, together with the wild-type proteins. Native polyacrylamide gel electrophoresis (PAGE) confirmed that the PR-1-5-N141A mutant retains the ability to form dimers. Plant assays indicated that the ToxA-N102A mutant fails to induce necrosis, whereas the PR-1-5-N141A mutant is impaired in the 'necrosis-promoting' activity shown by the wild-type PR-1-5 when co-infiltrated with ToxA in sensitive wheat. Reverse transcriptase-polymerase chain reaction and Western blot analyses revealed that the native PR-1-5 protein is differentially expressed between ToxA-sensitive and ToxA-insensitive wheat lines in response to ToxA treatment. These results suggest that PR-1-5 is a potential target of ToxA and the site-specific interaction between PR-1-5 and ToxA may mediate ToxA-induced necrosis in sensitive wheat.
Collapse
Affiliation(s)
- Shunwen Lu
- Cereal Crops Research Unit, USDA-ARS, Fargo, ND, 58102, USA
| | | | | | | | | |
Collapse
|
63
|
Abstract
In this review, we consider a selection of recent advances in chloroplast biology. These include new findings concerning chloroplast evolution, such as the identification of Chlamydiae as a third partner in primary endosymbiosis, a second instance of primary endosymbiosis represented by the chromatophores found in amoebae of the genus Paulinella, and a new explanation for the longevity of captured chloroplasts (kleptoplasts) in sacoglossan sea slugs. The controversy surrounding the three-dimensional structure of grana, its recent resolution by tomographic analyses, and the role of the CURVATURE THYLAKOID1 (CURT1) proteins in supporting grana formation are also discussed. We also present an updated inventory of photosynthetic proteins and the factors involved in the assembly of thylakoid multiprotein complexes, and evaluate findings that reveal that cyclic electron flow involves NADPH dehydrogenase (NDH)- and PGRL1/PGR5-dependent pathways, both of which receive electrons from ferredoxin. Other topics covered in this review include new protein components of nucleoids, an updated inventory of the chloroplast proteome, new enzymes in chlorophyll biosynthesis and new candidate messengers in retrograde signaling. Finally, we discuss the first successful synthetic biology approaches that resulted in chloroplasts in which electrons from the photosynthetic light reactions are fed to enzymes derived from secondary metabolism.
Collapse
Affiliation(s)
- Poul Erik Jensen
- Copenhagen Plant Science Center (CPSC), Department of Plant and Environmental Sciences, University of CopenhagenThorvaldsensvej 40, DK-1871 Frederiksberg CDenmark
| | - Dario Leister
- Copenhagen Plant Science Center (CPSC), Department of Plant and Environmental Sciences, University of CopenhagenThorvaldsensvej 40, DK-1871 Frederiksberg CDenmark
- Plant Molecular Biology, Department of Biology I, Ludwig-Maximilians-University MunichGroßhaderner Str. 2, D-82152 Planegg-MartinsriedGermany
| |
Collapse
|
64
|
Pribil M, Labs M, Leister D. Structure and dynamics of thylakoids in land plants. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:1955-72. [PMID: 24622954 DOI: 10.1093/jxb/eru090] [Citation(s) in RCA: 179] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Thylakoids of land plants have a bipartite structure, consisting of cylindrical grana stacks, made of membranous discs piled one on top of the other, and stroma lamellae which are helically wound around the cylinders. Protein complexes predominantly located in the stroma lamellae and grana end membranes are either bulky [photosystem I (PSI) and the chloroplast ATP synthase (cpATPase)] or are involved in cyclic electron flow [the NAD(P)H dehydrogenase (NDH) and PGRL1-PGR5 heterodimers], whereas photosystem II (PSII) and its light-harvesting complex (LHCII) are found in the appressed membranes of the granum. Stacking of grana is thought to be due to adhesion between Lhcb proteins (LHCII or CP26) located in opposed thylakoid membranes. The grana margins contain oligomers of CURT1 proteins, which appear to control the size and number of grana discs in a dosage- and phosphorylation-dependent manner. Depending on light conditions, thylakoid membranes undergo dynamic structural changes that involve alterations in granum diameter and height, vertical unstacking of grana, and swelling of the thylakoid lumen. This plasticity is realized predominantly by reorganization of the supramolecular structure of protein complexes within grana stacks and by changes in multiprotein complex composition between appressed and non-appressed membrane domains. Reversible phosphorylation of LHC proteins (LHCPs) and PSII components appears to initiate most of the underlying regulatory mechanisms. An update on the roles of lipids, proteins, and protein complexes, as well as possible trafficking mechanisms, during thylakoid biogenesis and the de-etiolation process complements this review.
Collapse
Affiliation(s)
- Mathias Pribil
- Plant Molecular Biology, Department of Biology, Ludwig-Maximilians-University Munich (LMU), D-82152 Planegg-Martinsried, Germany
| | | | | |
Collapse
|
65
|
Karim S, Alezzawi M, Garcia-Petit C, Solymosi K, Khan NZ, Lindquist E, Dahl P, Hohmann S, Aronsson H. A novel chloroplast localized Rab GTPase protein CPRabA5e is involved in stress, development, thylakoid biogenesis and vesicle transport in Arabidopsis. PLANT MOLECULAR BIOLOGY 2014; 84:675-92. [PMID: 24337800 DOI: 10.1007/s11103-013-0161-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Accepted: 12/03/2013] [Indexed: 05/21/2023]
Abstract
A novel Rab GTPase protein in Arabidopsis thaliana, CPRabA5e (CP = chloroplast localized) is located in chloroplasts and has a role in transport. Transient expression of CPRabA5e:EGFP fusion protein in tobacco (Nicotiana tabacum) leaves, and immunoblotting using Arabidopsis showed localization of CPRabA5e in chloroplasts (stroma and thylakoids). Ypt31/32 in the yeast Saccharomyces cerevisiae are involved in regulating vesicle transport, and CPRabA5e a close homolog of Ypt31/32, restores the growth of the ypt31Δ ypt32(ts) mutant at 37 °C in yeast complementation. Knockout mutants of CPRabA5e displayed delayed seed germination and growth arrest during oxidative stress. Ultrastructural studies revealed that after preincubation at 4 °C mutant chloroplasts contained larger plastoglobules, lower grana, and more vesicles close to the envelopes compared to wild type, and vesicle formation being enhanced under oxidative stress. This indicated altered thylakoid development and organization of the mutants. A yeast-two-hybrid screen with CPRabA5e as bait revealed 13 interacting partner proteins, mainly located in thylakoids and plastoglobules. These proteins are known or predicted to be involved in development, stress responses, and photosynthesis related processes, consistent with the stress phenotypes observed. The results observed suggest a role of CPRabA5e in transport to and from thylakoids, similar to cytosolic Rab proteins involved in vesicle transport.
Collapse
Affiliation(s)
- Sazzad Karim
- Department of Biological and Environmental Sciences, University of Gothenburg, SE-405 30, Gothenburg, Sweden
| | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Mohayeji M, Capriotti AL, Cavaliere C, Piovesana S, Samperi R, Stampachiacchiere S, Toorchi M, Lagana A. Heterosis profile of sunflower leaves: A label free proteomics approach. J Proteomics 2014; 99:101-10. [DOI: 10.1016/j.jprot.2014.01.028] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Revised: 01/21/2014] [Accepted: 01/27/2014] [Indexed: 12/24/2022]
|
67
|
Karim S, Aronsson H. The puzzle of chloroplast vesicle transport - involvement of GTPases. FRONTIERS IN PLANT SCIENCE 2014; 5:472. [PMID: 25295043 PMCID: PMC4171996 DOI: 10.3389/fpls.2014.00472] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2014] [Accepted: 08/28/2014] [Indexed: 05/04/2023]
Abstract
In the cytosol of plant cells vesicle transport occurs via secretory pathways among the endoplasmic reticulum network, Golgi bodies, secretory granules, endosome, and plasma membrane. Three systems transfer lipids, proteins and other important molecules through aqueous spaces to membrane-enclosed compartments, via vesicles that bud from donor membranes, being coated and uncoated before tethered and fused with acceptor membranes. In addition, molecular, biochemical and ultrastructural evidence indicates presence of a vesicle transport system in chloroplasts. Little is known about the protein components of this system. However, as chloroplasts harbor the photosynthetic apparatus that ultimately supports most organisms on the planet, close attention to their pathways is warranted. This may also reveal novel diversification and/or distinct solutions to the problems posed by the targeted intra-cellular trafficking of important molecules. To date two homologs to well-known yeast cytosolic vesicle transport proteins, CPSAR1 and CPRabA5e (CP, chloroplast localized), have been shown to have roles in chloroplast vesicle transport, both being GTPases. Bioinformatic data indicate that several homologs of cytosolic vesicle transport system components are putatively chloroplast-localized and in addition other proteins have been implicated to participate in chloroplast vesicle transport, including vesicle-inducing protein in plastids 1, thylakoid formation 1, snowy cotyledon 2/cotyledon chloroplast biogenesis factor, curvature thylakoid 1 proteins, and a dynamin like GTPase FZO-like protein. Several putative potential cargo proteins have also been identified, including building blocks of the photosynthetic apparatus. Here we discuss details of the largely unknown putative chloroplast vesicle transport system, focusing on GTPase-related components.
Collapse
Affiliation(s)
| | - Henrik Aronsson
- *Correspondence: Henrik Aronsson, Department of Biological and Environmental Sciences, University of Gothenburg, Box 461, 405 30 Gothenburg, Sweden e-mail:
| |
Collapse
|
68
|
Abstract
Photosynthetic organisms are continuously subjected to changes in light quantity and quality, and must adjust their photosynthetic machinery so that it maintains optimal performance under limiting light and minimizes photodamage under excess light. To achieve this goal, these organisms use two main strategies in which light-harvesting complex II (LHCII), the light-harvesting system of photosystem II (PSII), plays a key role both for the collection of light energy and for photoprotection. The first is energy-dependent nonphotochemical quenching, whereby the high-light-induced proton gradient across the thylakoid membrane triggers a process in which excess excitation energy is harmlessly dissipated as heat. The second involves a redistribution of the mobile LHCII between the two photosystems in response to changes in the redox poise of the electron transport chain sensed through a signaling chain. These two processes strongly diminish the production of damaging reactive oxygen species, but photodamage of PSII is unavoidable, and it is repaired efficiently.
Collapse
Affiliation(s)
- Jean-David Rochaix
- Departments of Molecular Biology and Plant Biology, University of Geneva, 1211 Geneva, Switzerland;
| |
Collapse
|
69
|
Lindquist E, Aronsson H. Proteins affecting thylakoid morphology - the key to understanding vesicle transport in chloroplasts? PLANT SIGNALING & BEHAVIOR 2014; 9:e977205. [PMID: 25482753 PMCID: PMC4623354 DOI: 10.4161/15592324.2014.977205] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 08/29/2014] [Accepted: 08/29/2014] [Indexed: 05/20/2023]
Abstract
We recently showed that a Rab protein, CPRabA5e (CP = chloroplast localized), is located in chloroplasts of Arabidopsis thaliana where it is involved in various processes, such as thylakoid biogenesis and vesicle transport. Using a yeast two-hybrid method, CPRabA5e was shown to interact with a number of chloroplast proteins, including the CURVATURE THYLAKOID 1A (CURT1A) protein and the light-harvesting chlorophyll a/b binding protein (LHCB1.5). CURT1A has recently been shown to modify thylakoid architecture by inducing membrane curvature in grana, whereas LHCB1.5 is a protein of PSII (Photosystem II) facilitating light capture. LHCB1.5 is imported to chloroplasts and transported to thylakoid membranes using the post-translational Signal Recognition Particle (SRP) pathway. With this information as starting point, we here discuss their subsequent protein-protein interactions, given by the literature and Interactome 3D. CURT1A itself and several of the proteins interacting with CURT1A and LHCB1.5 have relations to vesicle transport and thylakoid morphology, which are also characteristics of cprabA5e mutants. This highlights the previous hypothesis of an alternative thylakoid targeting pathway for LHC proteins using vesicles, in addition to the SRP pathway.
Collapse
Affiliation(s)
- Emelie Lindquist
- Department of Biology and Environmental Sciences; University of Gothenburg; Gothenburg, Sweden
| | - Henrik Aronsson
- Department of Biology and Environmental Sciences; University of Gothenburg; Gothenburg, Sweden
- Correspondence to: Henrik Aronsson;
| |
Collapse
|
70
|
Wu W, Zhu Y, Ma Z, Sun Y, Quan Q, Li P, Hu P, Shi T, Lo C, Chu IK, Huang J. Proteomic evidence for genetic epistasis: ClpR4 mutations switch leaf variegation to virescence in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 76:943-956. [PMID: 24124904 DOI: 10.1111/tpj.12344] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2013] [Revised: 09/26/2013] [Accepted: 10/01/2013] [Indexed: 05/28/2023]
Abstract
Chloroplast development in plants is regulated by a series of coordinated biological processes. In this work, a genetic suppressor screen for the leaf variegation phenotype of the thylakoid formation 1 (thf1) mutant combined with a proteomic assay was employed to elucidate this complicated network. We identified a mutation in ClpR4, named clpR4-3, which leads to leaf virescence and also rescues the var2 variegation. Proteomic analysis showed that the chloroplast proteome of clpR4-3 thf1 is dominantly controlled by clpR4-3, providing molecular mechanisms that cause genetic epistasis of clpR4-3 to thf1. Classification of the proteins significantly mis-regulated in the mutants revealed that those functioning in the expression of plastid genes are oppositely regulated while proteins functioning in antioxidative stress, protein folding, and starch metabolism are changed in the same direction between thf1 and clpR4-3. The levels of FtsHs including FtsH2/VAR2, FtsH8, and FtsH5/VAR1 are greatly reduced in thf1 compared with those in the wild type, but are higher in clpR4-3 thf1 than in thf1. Quantitative PCR analysis revealed that FtsH expression in clpR4-3 thf1 is regulated post-transcriptionally. In addition, a number of ribosomal proteins are less expressed in the clpR4-3 proteome, which is in line with the reduced levels of rRNAs in clpR4-3. Furthermore, knocking out PRPL11, one of the most downregulated proteins in the clpR4-3 thf1 proteome, rescues the leaf variegation phenotype of the thf1 and var2 mutants. These results provide insights into molecular mechanisms by which the virescent clpR4-3 mutation suppresses leaf variegation of thf1 and var2.
Collapse
Affiliation(s)
- Wenjuan Wu
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
71
|
Wang P, Liu J, Liu B, Feng D, Da Q, Wang P, Shu S, Su J, Zhang Y, Wang J, Wang HB. Evidence for a role of chloroplastic m-type thioredoxins in the biogenesis of photosystem II in Arabidopsis. PLANT PHYSIOLOGY 2013; 163:1710-28. [PMID: 24151299 PMCID: PMC3850194 DOI: 10.1104/pp.113.228353] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Chloroplastic m-type thioredoxins (TRX m) are essential redox regulators in the light regulation of photosynthetic metabolism. However, recent genetic studies have revealed novel functions for TRX m in meristem development, chloroplast morphology, cyclic electron flow, and tetrapyrrole synthesis. The focus of this study is on the putative role of TRX m1, TRX m2, and TRX m4 in the biogenesis of the photosynthetic apparatus in Arabidopsis (Arabidopsis thaliana). To that end, we investigated the impact of single, double, and triple TRX m deficiency on chloroplast development and the accumulation of thylakoid protein complexes. Intriguingly, only inactivation of three TRX m genes led to pale-green leaves and specifically reduced stability of the photosystem II (PSII) complex, implying functional redundancy between three TRX m isoforms. In addition, plants silenced for three TRX m genes displayed elevated levels of reactive oxygen species, which in turn interrupted the transcription of photosynthesis-related nuclear genes but not the expression of chloroplast-encoded PSII core proteins. To dissect the function of TRX m in PSII biogenesis, we showed that TRX m1, TRX m2, and TRX m4 interact physically with minor PSII assembly intermediates as well as with PSII core subunits D1, D2, and CP47. Furthermore, silencing three TRX m genes disrupted the redox status of intermolecular disulfide bonds in PSII core proteins, most notably resulting in elevated accumulation of oxidized CP47 oligomers. Taken together, our results suggest an important role for TRX m1, TRX m2, and TRX m4 proteins in the biogenesis of PSII, and they appear to assist the assembly of CP47 into PSII.
Collapse
|
72
|
Kusaba M, Tanaka A, Tanaka R. Stay-green plants: what do they tell us about the molecular mechanism of leaf senescence. PHOTOSYNTHESIS RESEARCH 2013; 117:221-34. [PMID: 23771643 DOI: 10.1007/s11120-013-9862-x] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 05/25/2013] [Indexed: 05/08/2023]
Abstract
A practical approach to increasing crop yields is to extend the duration of active photosynthesis. Stay-green is a term that is used to describe mutant and transgenic plants or cultivars with the trait of maintaining their leaves for a longer period of time than the wild-type or crosses from which they are derived. Analyzing stay-green genotypes contributes to our understanding of the molecular mechanism regulating leaf senescence which may allow us to extend the duration of active photosynthesis in crop plants. This article summarizes recent studies on stay-green plants and the insights they provide on the mechanism of leaf senescence. Briefly, mutations suppressing ethylene, abscisic acid, brassinosteroid, and strigolactone signal transduction or those activating cytokinin signaling often lead to stay-green phenotypes indicating a complex signaling network regulating leaf senescence. Developmentally regulated transcription factors, including NAC or WRKY family members, play key roles in the induction of leaf senescence and thus alteration in the activity of these transcription factors also result in stay-green phenotypes. Impairment in the enzymatic steps responsible for chlorophyll breakdown also leads to stay-green phenotypes. Some of these genotypes die in the middle of the process of chlorophyll breakdown due to the accumulation of toxic intermediates, while others appear to stay-green but their photosynthetic activity declines in a manner similar to wild-type plants. Alterations in certain metabolic pathways in chloroplasts (e.g., photosynthesis) can lead to a delayed onset of leaf senescence with maintenance of photosynthetic activity longer than wild-type plants, indicating that chloroplast metabolism can also affect the regulatory mechanism of leaf senescence.
Collapse
Affiliation(s)
- Makoto Kusaba
- Graduate School of Science, Hiroshima University, Higashi-Hiroshima, 739-8526, Japan
| | | | | |
Collapse
|
73
|
Putarjunan A, Liu X, Nolan T, Yu F, Rodermel S. Understanding chloroplast biogenesis using second-site suppressors of immutans and var2. PHOTOSYNTHESIS RESEARCH 2013; 116:437-53. [PMID: 23703455 DOI: 10.1007/s11120-013-9855-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 05/15/2013] [Indexed: 05/07/2023]
Abstract
Chloroplast biogenesis is an essential light-dependent process involving the differentiation of photosynthetically competent chloroplasts from precursors that include undifferentiated proplastids in leaf meristems, as well as etioplasts in dark-grown seedlings. The mechanisms that govern these developmental processes are poorly understood, but entail the coordinated expression of nuclear and plastid genes. This coordination is achieved, in part, by signals generated in response to the metabolic and developmental state of the plastid that regulate the transcription of nuclear genes for photosynthetic proteins (retrograde signaling). Variegation mutants are powerful tools to understand pathways of chloroplast biogenesis, and over the years our lab has focused on immutans (im) and variegated2 (var2), two nuclear gene-induced variegations of Arabidopsis. im and var2 are among the best-characterized chloroplast biogenesis mutants, and they define the genes for plastid terminal oxidase (PTOX) and the AtFtsH2 subunit of the thylakoid FtsH metalloprotease complex, respectively. To gain insight into the function of these proteins, forward and reverse genetic approaches have been used to identify second-site suppressors of im and var2 that replace or bypass the need for PTOX and AtFtsH2 during chloroplast development. In this review, we provide a brief update of im and var2 and the functions of PTOX and AtFtsH2. We then summarize information about second-site suppressors of im and var2 that have been identified to date, and describe how they have provided insight into mechanisms of photosynthesis and pathways of chloroplast development.
Collapse
Affiliation(s)
- Aarthi Putarjunan
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA, 50011, USA
| | | | | | | | | |
Collapse
|
74
|
Pagliano C, Saracco G, Barber J. Structural, functional and auxiliary proteins of photosystem II. PHOTOSYNTHESIS RESEARCH 2013; 116:167-88. [PMID: 23417641 DOI: 10.1007/s11120-013-9803-8] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2012] [Accepted: 02/07/2013] [Indexed: 05/06/2023]
Abstract
Photosystem II (PSII) is the water-splitting enzyme complex of photosynthesis and consists of a large number of protein subunits. Most of these proteins have been structurally and functionally characterized, although there are differences between PSII of plants, algae and cyanobacteria. Here we catalogue all known PSII proteins giving a brief description, where possible of their genetic origin, physical properties, structural relationships and functions. We have also included details of auxiliary proteins known at present to be involved in the in vivo assembly, maintenance and turnover of PSII and which transiently bind to the reaction centre core complex. Finally, we briefly give details of the proteins which form the outer light-harvesting systems of PSII in different types of organisms.
Collapse
Affiliation(s)
- Cristina Pagliano
- Applied Science and Technology Department-BioSolar Lab, Politecnico di Torino, Viale T. Michel 5, 15121, Torino, Alessandria, Italy,
| | | | | |
Collapse
|
75
|
Song Y, Chen Q, Ci D, Zhang D. Transcriptome profiling reveals differential transcript abundance in response to chilling stress in Populus simonii. PLANT CELL REPORTS 2013; 32:1407-25. [PMID: 23652820 DOI: 10.1007/s00299-013-1454-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Revised: 04/23/2013] [Accepted: 04/24/2013] [Indexed: 05/08/2023]
Abstract
We report global gene expression patterns of poplar in response to chilling stress. A total of 1,085 significantly differentially expressed genes, involved in photosynthesis, signal transduction, and regulation of transcription, were identified. To understand the gene network underlying the response to chilling stress in the poplar, Populus simonii, we determined the genome transcript expression profile using an Affymetrix GeneChip with 56,000 genes. Our results revealed 11,626 cold-responsive genes, with 5,267 upregulated and 6,359 downregulated. In terms of biological processes, gene ontology (GO) analysis indicated that cold-induced genes were enriched in response to temperature stimulus, reactive oxygen species, and hormone stimulus. GO terms including cellular nitrogen compound metabolic processes, photosynthesis, and generation of precursor metabolites and energy were enriched in the cold-repressed genes. The functional annotation of differentially expressed genes revealed genes involved in photosynthesis, calcium/calmodulin-mediated signal transduction, abscisic acid (ABA) homeostasis and transport, and antioxidant defense systems. Gene expression analysis showed that the majority of genes involved in photosynthesis were repressed, but the THF1 gene was induced, suggesting that it may play an important role in the production of vesicles for leaf development under low-temperature conditions. Several genes involved in calcium/calmodulin-mediated signal transduction, ABA homeostasis and transport, and antioxidant defense systems were significantly induced under chilling stress, suggesting that they may act as positive regulators in the enhanced low-temperature tolerance of poplar. Several transcription factors had divergent expression patterns, suggesting they have variable functional responses to abiotic stress. This profile of global gene expression patterns during chilling stress will be valuable for future studies on the molecular mechanisms of chilling tolerance in woody plants.
Collapse
Affiliation(s)
- Yuepeng Song
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, People's Republic of China.
| | | | | | | |
Collapse
|
76
|
Huang W, Chen Q, Zhu Y, Hu F, Zhang L, Ma Z, He Z, Huang J. Arabidopsis thylakoid formation 1 is a critical regulator for dynamics of PSII-LHCII complexes in leaf senescence and excess light. MOLECULAR PLANT 2013; 6:1673-91. [PMID: 23671330 DOI: 10.1093/mp/sst069] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
In higher plants, photosystem II (PSII) is a large pigment-protein supramolecular complex composed of the PSII core complex and the plant-specific peripheral light-harvesting complexes (LHCII). PSII-LHCII complexes are highly dynamic in their quantity and macro-organization to various environmental conditions. In this study, we reported a critical factor, the Arabidopsis Thylakoid Formation 1 (THF1) protein, which controls PSII-LHCII dynamics during dark-induced senescence and light acclimation. Loss-of-function mutations in THF1 lead to a stay-green phenotype in pathogen-infected and senescent leaves. Both LHCII and PSII core subunits are retained in dark-induced senescent leaves of thf1, indicative of the presence of PSII-LHCII complexes. Blue native (BN)-polyacrylamide gel electrophoresis (PAGE) and immunoblot analysis showed that, in dark- and high-light-treated thf1 leaves, a type of PSII-LHCII megacomplex is selectively retained while the stability of PSII-LHCII supercomplexes significantly decreased, suggesting a dual role of THF1 in dynamics of PSII-LHCII complexes. We showed further that THF1 interacts with Lhcb proteins in a pH-dependent manner and that the stay-green phenotype of thf1 relies on the presence of LHCII complexes. Taken together, the data suggest that THF1 is required for dynamics of PSII-LHCII supramolecular organization in higher plants.
Collapse
Affiliation(s)
- Weihua Huang
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 300 Fenglin Road, Shanghai 200032, China
| | | | | | | | | | | | | | | |
Collapse
|
77
|
Qu GZ, Zheng T, Liu G, Wang W, Zang L, Liu H, Yang C. Overexpression of a MADS-box gene from birch (Betula platyphylla) promotes flowering and enhances chloroplast development in transgenic tobacco. PLoS One 2013; 8:e63398. [PMID: 23691043 PMCID: PMC3656909 DOI: 10.1371/journal.pone.0063398] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2013] [Accepted: 04/02/2013] [Indexed: 11/19/2022] Open
Abstract
In this study, a MADS-box gene (BpMADS), which is an ortholog of AP1 from Arabidopsis, was isolated from birch (Betula platyphylla). Transgenic Arabidopsis containing a BpMADS promoter::GUS construct was produced, which exhibited strong GUS staining in sepal tissues. Ectopic expression of BpMADS significantly enhanced the flowering of tobacco (35S::BpMADS). In addition, the chloroplasts of transgenic tobacco exhibited much higher growth and division rates, as well rates of photosynthesis, than wild-type. A grafting experiment demonstrated that the flowering time of the scion was not affected by stock that overexpressed BpMADS. In addition, the overexpression of BpMADS resulted in the upregulation of some flowering-related genes in tobacco.
Collapse
Affiliation(s)
- Guan-Zheng Qu
- State Key Laboratory of Forest Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Tangchun Zheng
- State Key Laboratory of Forest Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Guifeng Liu
- State Key Laboratory of Forest Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Wenjie Wang
- Key Laboratory of Forest Plant Ecology, Northeast Forestry University, Harbin, China
| | - Lina Zang
- State Key Laboratory of Forest Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Huanzhen Liu
- State Key Laboratory of Forest Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| | - Chuanping Yang
- State Key Laboratory of Forest Tree Genetics and Breeding, Northeast Forestry University, Harbin, China
| |
Collapse
|
78
|
Švubová R, Ovečka M, Pavlovič A, Slováková Ľ, Blehová A. Cuscuta europaea plastid apparatus in various developmental stages: localization of THF1 protein. PLANT SIGNALING & BEHAVIOR 2013; 8:e24037. [PMID: 23438585 PMCID: PMC3907459 DOI: 10.4161/psb.24037] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2013] [Accepted: 02/18/2013] [Indexed: 05/05/2023]
Abstract
It was generally accepted that Cuscuta europaea is mostly adapted to a parasitic lifestyle with no detectable levels of chlorophylls. We found out relatively high level of chlorophylls (Chls a+b) in young developmental stages of dodder. Significant lowering of Chls (a+b) content and increase of carotenoid concentration was typical only for ontogenetically more developed stages. Lower content of photosynthesis-related proteins involved in Chls biosynthesis and in photosystem formation as well as low photochemical activity of PSII indicate that photosynthesis is not the main activity of C. europaea plastids. Previously, it has been shown in other species that the Thylakoid Formation Protein 1 (THF1) is involved in thylakoid membrane differentiation, plant-fungal and plant-bacterial interactions and in sugar signaling with its preferential localization to plastids. Our immunofluorescence localization studies and analyses of haustorial plasma membrane fractions revealed that in addition to plastids, the THF1 protein localizes also to the plasma membrane and plasmodesmata in developing C. europaea haustorium, most abundantly in the digitate cells of the endophyte primordium. These results are supported by western blot analysis, documenting the highest levels of the THF1 protein in "get together" tissues of dodder and tobacco. Based on the fact that photosynthesis is not a typical process in the C. europaea haustorium and on the extra-plastidial localization pattern of the THF1, our data support rather other functions of this protein in the complex relationship between C. europaea and its host.
Collapse
Affiliation(s)
- Renáta Švubová
- Department of Plant Physiology; Faculty of Natural Sciences; Comenius University in Bratislava; Bratislava, Slovak Republic
| | - Miroslav Ovečka
- Institute of Botany; Slovak Academy of Sciences; Bratislava, Slovak Republic
- Centre of the Region Hana for Biotechnological and Agricultural Researc; Faculty of Science; Palacky University in Olomouc; Olomouc, Czech Republic
| | - Andrej Pavlovič
- Department of Plant Physiology; Faculty of Natural Sciences; Comenius University in Bratislava; Bratislava, Slovak Republic
| | - Ľudmila Slováková
- Department of Plant Physiology; Faculty of Natural Sciences; Comenius University in Bratislava; Bratislava, Slovak Republic
| | - Alžbeta Blehová
- Department of Plant Physiology; Faculty of Natural Sciences; Comenius University in Bratislava; Bratislava, Slovak Republic
| |
Collapse
|
79
|
Yamatani H, Sato Y, Masuda Y, Kato Y, Morita R, Fukunaga K, Nagamura Y, Nishimura M, Sakamoto W, Tanaka A, Kusaba M. NYC4, the rice ortholog of Arabidopsis THF1, is involved in the degradation of chlorophyll - protein complexes during leaf senescence. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 74:652-62. [PMID: 23432654 DOI: 10.1111/tpj.12154] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Revised: 02/02/2013] [Accepted: 02/12/2013] [Indexed: 05/21/2023]
Abstract
Yellowing/chlorophyll breakdown is a prominent phenomenon in leaf senescence, and is associated with the degradation of chlorophyll - protein complexes. From a rice mutant population generated by ionizing radiation, we isolated nyc4-1, a stay-green mutant with a defect in chlorophyll breakdown during leaf senescence. Using gene mapping, nyc4-1 was found to be linked to two chromosomal regions. We extracted Os07g0558500 as a candidate for NYC4 via gene expression microarray analysis, and concluded from further evidence that disruption of the gene by a translocation-related event causes the nyc4 phenotype. Os07g0558500 is thought to be the ortholog of THF1 in Arabidopsis thaliana. The thf1 mutant leaves show variegation in a light intensity-dependent manner. Surprisingly, the Fv /Fm value remained high in nyc4-1 during the dark incubation, suggesting that photosystem II retained its function. Western blot analysis revealed that, in nyc4-1, the PSII core subunits D1 and D2 were significantly retained during leaf senescence in comparison with wild-type and other non-functional stay-green mutants, including sgr-2, a mutant of the key regulator of chlorophyll degradation SGR. The role of NYC4 in degradation of chlorophyll and chlorophyll - protein complexes during leaf senescence is discussed.
Collapse
Affiliation(s)
- Hiroshi Yamatani
- Graduate School of Science, Hiroshima University, Higashi-Hiroshima, 739-8526, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
80
|
New putative chloroplast vesicle transport components and cargo proteins revealed using a bioinformatics approach: an Arabidopsis model. PLoS One 2013; 8:e59898. [PMID: 23573218 PMCID: PMC3613420 DOI: 10.1371/journal.pone.0059898] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 02/19/2013] [Indexed: 11/23/2022] Open
Abstract
Proteins and lipids are known to be transported to targeted cytosolic compartments in vesicles. A similar system in chloroplasts is suggested to transfer lipids from the inner envelope to the thylakoids. However, little is known about both possible cargo proteins and the proteins required to build a functional vesicle transport system in chloroplasts. A few components have been suggested, but only one (CPSAR1) has a verified location in chloroplast vesicles. This protein is localized in the donor membrane (envelope) and vesicles, but not in the target membrane (thylakoids) suggesting it plays a similar role to a cytosolic homologue, Sar1, in the secretory pathway. Thus, we hypothesized that there may be more similarities, in addition to lipid transport, between the vesicle transport systems in the cytosol and chloroplast, i.e. similar vesicle transport components, possible cargo proteins and receptors. Therefore, using a bioinformatics approach we searched for putative chloroplast components in the model plant Arabidopsis thaliana, corresponding mainly to components of the cytosolic vesicle transport system that may act in coordination with previously proposed COPII chloroplast homologues. We found several additional possible components, supporting the notion of a fully functional vesicle transport system in chloroplasts. Moreover, we found motifs in thylakoid-located proteins similar to those of COPII vesicle cargo proteins, supporting the hypothesis that chloroplast vesicles may transport thylakoid proteins from the envelope to the thylakoid membrane. Several putative cargo proteins are involved in photosynthesis, thus we propose the existence of a novel thylakoid protein pathway that is important for construction and maintenance of the photosynthetic machinery.
Collapse
|
81
|
Grimaud F, Renaut J, Dumont E, Sergeant K, Lucau-Danila A, Blervacq AS, Sellier H, Bahrman N, Lejeune-Hénaut I, Delbreil B, Goulas E. Exploring chloroplastic changes related to chilling and freezing tolerance during cold acclimation of pea (Pisum sativum L.). J Proteomics 2013; 80:145-59. [PMID: 23318888 DOI: 10.1016/j.jprot.2012.12.030] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 12/22/2012] [Accepted: 12/29/2012] [Indexed: 01/10/2023]
Abstract
Pea (Pisum sativum L.) productivity is linked to its ability to cope with abiotic stresses such as low temperatures during fall and winter. In this study, we investigate the chloroplast-related changes occurring during pea cold acclimation, in order to further lead to genetic improvement of its field performance. Champagne and Térèse, two pea lines with different acclimation capabilities, were studied by physiological measurements, sub-cellular fractionation followed by relative protein quantification and two-dimensional DIGE. The chilling tolerance might be related to an increase in protein related to soluble sugar synthesis, antioxidant potential, regulation of mRNA transcription and translation through the chloroplast. Freezing tolerance, only observed in Champagne, seems to rely on a higher inherent photosynthetic potential at the beginning of the cold exposure, combined with an early ability to start metabolic processes aimed at maintaining the photosynthetic capacity, optimizing the stoichiometry of the photosystems and inducing dynamic changes in carbohydrate and protein synthesis and/or turnover.
Collapse
Affiliation(s)
- Florent Grimaud
- Université Lille 1/INRA, UMR 1281, Stress Abiotiques et Différenciation des Végétaux cultivés, 59650 Villeneuve d'Ascq Cedex/Estrées-Mons, 80200 cedex, France; Centre de Recherche Public, Gabriel Lippmann, Department of Environment and Agrobiotechnologies (EVA), 4422, Belvaux, Luxembourg.
| | - Jenny Renaut
- Centre de Recherche Public, Gabriel Lippmann, Department of Environment and Agrobiotechnologies (EVA), 4422, Belvaux, Luxembourg.
| | - Estelle Dumont
- Université Lille 1/INRA, UMR 1281, Stress Abiotiques et Différenciation des Végétaux cultivés, 59650 Villeneuve d'Ascq Cedex/Estrées-Mons, 80200 cedex, France.
| | - Kjell Sergeant
- Centre de Recherche Public, Gabriel Lippmann, Department of Environment and Agrobiotechnologies (EVA), 4422, Belvaux, Luxembourg.
| | - Anca Lucau-Danila
- Université Lille 1/INRA, UMR 1281, Stress Abiotiques et Différenciation des Végétaux cultivés, 59650 Villeneuve d'Ascq Cedex/Estrées-Mons, 80200 cedex, France.
| | - Anne-Sophie Blervacq
- Université Lille 1/INRA, UMR 1281, Stress Abiotiques et Différenciation des Végétaux cultivés, 59650 Villeneuve d'Ascq Cedex/Estrées-Mons, 80200 cedex, France.
| | - Hélène Sellier
- Université Lille 1/INRA, UMR 1281, Stress Abiotiques et Différenciation des Végétaux cultivés, 59650 Villeneuve d'Ascq Cedex/Estrées-Mons, 80200 cedex, France.
| | - Nasser Bahrman
- Université Lille 1/INRA, UMR 1281, Stress Abiotiques et Différenciation des Végétaux cultivés, 59650 Villeneuve d'Ascq Cedex/Estrées-Mons, 80200 cedex, France.
| | - Isabelle Lejeune-Hénaut
- Université Lille 1/INRA, UMR 1281, Stress Abiotiques et Différenciation des Végétaux cultivés, 59650 Villeneuve d'Ascq Cedex/Estrées-Mons, 80200 cedex, France.
| | - Bruno Delbreil
- Université Lille 1/INRA, UMR 1281, Stress Abiotiques et Différenciation des Végétaux cultivés, 59650 Villeneuve d'Ascq Cedex/Estrées-Mons, 80200 cedex, France.
| | - Estelle Goulas
- Université Lille 1/INRA, UMR 1281, Stress Abiotiques et Différenciation des Végétaux cultivés, 59650 Villeneuve d'Ascq Cedex/Estrées-Mons, 80200 cedex, France.
| |
Collapse
|
82
|
Park HJ, Lee SS, You YN, Yoon DH, Kim BG, Ahn JC, Cho HS. A Rice Immunophilin Gene, OsFKBP16-3, Confers Tolerance to Environmental Stress in Arabidopsis and Rice. Int J Mol Sci 2013; 14:5899-919. [PMID: 23485991 PMCID: PMC3634459 DOI: 10.3390/ijms14035899] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Revised: 03/04/2013] [Accepted: 03/05/2013] [Indexed: 01/09/2023] Open
Abstract
The putative thylakoid lumen immunophilin, FKBP16-3, has not yet been characterized, although this protein is known to be regulated by thioredoxin and possesses a well-conserved CxxxC motif in photosynthetic organisms. Here, we characterized rice OsFKBP16-3 and examined the role of this gene in the regulation of abiotic stress in plants. FKBP16-3s are well conserved in eukaryotic photosynthetic organisms, including the presence of a unique disulfide-forming CxxxC motif in their N-terminal regions. OsFKBP16-3 was mainly expressed in rice leaf tissues and was upregulated by various abiotic stresses, including salt, drought, high light, hydrogen peroxide, heat and methyl viologen. The chloroplast localization of OsFKBP16-3-GFP was confirmed through the transient expression of OsFKBP16-3 in Nicotiana benthamiana leaves. Transgenic Arabidopsis and transgenic rice plants that constitutively expressed OsFKBP16-3 exhibited increased tolerance to salinity, drought and oxidative stresses, but showed no change in growth or phenotype, compared with vector control plants, when grown under non-stressed conditions. This is the first report to demonstrate the potential role of FKBP16-3 in the environmental stress response, which may be regulated by a redox relay process in the thylakoid lumen, suggesting that artificial regulation of FKBP16-3 expression is a candidate for stress-tolerant crop breeding.
Collapse
Affiliation(s)
- Hyun Ji Park
- Green Bio Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-506, Korea; E-Mails: (H.J.P.); (S.S.L.); (Y.N.Y.); (D.H.Y.)
| | - Sang Sook Lee
- Green Bio Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-506, Korea; E-Mails: (H.J.P.); (S.S.L.); (Y.N.Y.); (D.H.Y.)
| | - Young Nim You
- Green Bio Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-506, Korea; E-Mails: (H.J.P.); (S.S.L.); (Y.N.Y.); (D.H.Y.)
| | - Dae Hwa Yoon
- Green Bio Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-506, Korea; E-Mails: (H.J.P.); (S.S.L.); (Y.N.Y.); (D.H.Y.)
- Department of Pharmacology, Medical Science, Seonam University, Namwon 590-170, Korea
| | - Beom-Gi Kim
- Division of Bio-Crops Development, National Academy of Agricultural Science, RDA, Suwon 441-707, Korea; E-Mail:
| | - Jun Cheul Ahn
- Department of Pharmacology, Medical Science, Seonam University, Namwon 590-170, Korea
- Authors to whom correspondence should be addressed; E-Mails: (J.C.A.); (H.S.C.); Tel.: +82-63-620-0256 (J.C.A.); +82-42-860-4469 (H.S.C); Fax: +82-63-620-0031 (J.C.A.); +82-42-860-4608 (H.S.C)
| | - Hye Sun Cho
- Green Bio Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-506, Korea; E-Mails: (H.J.P.); (S.S.L.); (Y.N.Y.); (D.H.Y.)
- Authors to whom correspondence should be addressed; E-Mails: (J.C.A.); (H.S.C.); Tel.: +82-63-620-0256 (J.C.A.); +82-42-860-4469 (H.S.C); Fax: +82-63-620-0031 (J.C.A.); +82-42-860-4608 (H.S.C)
| |
Collapse
|
83
|
Nickelsen J, Rengstl B. Photosystem II assembly: from cyanobacteria to plants. ANNUAL REVIEW OF PLANT BIOLOGY 2013; 64:609-35. [PMID: 23451783 DOI: 10.1146/annurev-arplant-050312-120124] [Citation(s) in RCA: 230] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Photosystem II (PSII) is an integral-membrane, multisubunit complex that initiates electron flow in oxygenic photosynthesis. The biogenesis of this complex machine involves the concerted assembly of at least 20 different polypeptides as well as the incorporation of a variety of inorganic and organic cofactors. Many factors have recently been identified that constitute an integrative network mediating the stepwise assembly of PSII components. One recurring theme is the subcellular organization of the assembly process in specialized membranes that form distinct biogenesis centers. Here, we review our current knowledge of the molecular components and events involved in PSII assembly and their high degree of evolutionary conservation.
Collapse
Affiliation(s)
- Jörg Nickelsen
- Molekulare Pflanzenwissenschaften, Biozentrum Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany.
| | | |
Collapse
|
84
|
Meierhoff K, Westhoff P. The Biogenesis of the Thylakoid Membrane: Photosystem II, a Case Study. PLASTID DEVELOPMENT IN LEAVES DURING GROWTH AND SENESCENCE 2013. [DOI: 10.1007/978-94-007-5724-0_4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
85
|
Wu W, Huang J. Functional analysis of heterotrimeric G proteins in chloroplast development in Arabidopsis. Methods Mol Biol 2013; 1043:81-7. [PMID: 23913038 DOI: 10.1007/978-1-62703-532-3_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Functional analysis of G-proteins has been extensively carried out using their over-expressing lines and knockout mutants in plants. Since α subunit exists in an active or inactive form, overexpressing α subunit does not mean that G-protein signaling pathways are activated in the transgenic lines. Ectopic expression of the constitutively active form of the α subunit will magnify a role of G-protein signaling pathways in plant growth and development, and ultimately yield phenotypes. Here, we describe the method to study function of G-proteins in chloroplast development using the constitutively active form of the α subunit in Arabidopsis.
Collapse
Affiliation(s)
- Wenjuan Wu
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | | |
Collapse
|
86
|
Zhang L, Kato Y, Otters S, Vothknecht UC, Sakamoto W. Essential role of VIPP1 in chloroplast envelope maintenance in Arabidopsis. THE PLANT CELL 2012; 24:3695-707. [PMID: 23001039 PMCID: PMC3480296 DOI: 10.1105/tpc.112.103606] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Revised: 08/03/2012] [Accepted: 09/03/2012] [Indexed: 05/20/2023]
Abstract
VESICLE-INDUCING PROTEIN IN PLASTIDS1 (VIPP1), proposed to play a role in thylakoid biogenesis, is conserved in photosynthetic organisms and is closely related to Phage Shock Protein A (PspA), which is involved in plasma membrane integrity in Escherichia coli. This study showed that chloroplasts/plastids in Arabidopsis thaliana vipp1 knockdown and knockout mutants exhibit a unique morphology, forming balloon-like structures. This altered morphology, as well as lethality of vipp1, was complemented by expression of VIPP1 fused to green fluorescent protein (VIPP1-GFP). Several lines of evidence show that the balloon chloroplasts result from chloroplast swelling related to osmotic stress, implicating VIPP1 in the maintenance of plastid envelopes. In support of this, Arabidopsis VIPP1 rescued defective proton leakage in an E. coli pspA mutant. Microscopy observation of VIPP1-GFP in transgenic Arabidopsis revealed that VIPP1 forms large macrostructures that are integrated into various morphologies along the envelopes. Furthermore, live imaging revealed that VIPP1-GFP is highly mobile when chloroplasts are subjected to osmotic stress. VIPP1-GFP showed dynamic movement in the transparent area of spherical chloroplasts, as the fluorescent molecules formed filament-like structures likely derived from disassembly of the large VIPP1 complex. Collectively, our data demonstrate that VIPP1 is a multifunctional protein in chloroplasts that is critically important for envelope maintenance.
Collapse
Affiliation(s)
- Lingang Zhang
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama 710-0046, Japan
- Core Research for Evolutional Science and Technology, The Japan Science and Technology Agency, Kurashiki, Okayama 710-0046, Japan
| | - Yusuke Kato
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama 710-0046, Japan
| | - Stephanie Otters
- Center for Integrated Protein Science (München) of Department of Biology, Ludwig-Maximilians-Universität München, Munich D-81377, Germany
| | - Ute C. Vothknecht
- Center for Integrated Protein Science (München) of Department of Biology, Ludwig-Maximilians-Universität München, Munich D-81377, Germany
| | - Wataru Sakamoto
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama 710-0046, Japan
- Core Research for Evolutional Science and Technology, The Japan Science and Technology Agency, Kurashiki, Okayama 710-0046, Japan
| |
Collapse
|
87
|
Yamane K, Mitsuya S, Taniguchi M, Miyake H. Salt-induced chloroplast protrusion is the process of exclusion of ribulose-1,5-bisphosphate carboxylase/oxygenase from chloroplasts into cytoplasm in leaves of rice. PLANT, CELL & ENVIRONMENT 2012; 35:1663-1671. [PMID: 22489666 DOI: 10.1111/j.1365-3040.2012.02516.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Chloroplast protrusions (CPs) are often observed under environmental stresses, but their role has not been elucidated. The formation of CPs was observed in the leaf of rice plants treated with 75 mm NaCl for 14 d. Some CPs were almost separated from the main chloroplast body. In some CPs, inner membrane structures and crystalline inclusions were included. Similar structures surrounded by double membranes were observed in the cytoplasm and vacuole. Ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco) was detected in CPs and the similar structures in the cytoplasm and vacuole. These results suggest that CP is one of the pathways of Rubisco exclusion from chloroplasts into the cytoplasm under salinity, and the exclusions could be transported to vacuole for their degradation.
Collapse
Affiliation(s)
- Koji Yamane
- School of Agriculture, Kinki University, Nara 631-8505 Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya 464-8601, Japan
| | | | | | | |
Collapse
|
88
|
Stergiopoulos I, Collemare J, Mehrabi R, De Wit PJGM. Phytotoxic secondary metabolites and peptides produced by plant pathogenic Dothideomycete fungi. FEMS Microbiol Rev 2012; 37:67-93. [PMID: 22931103 DOI: 10.1111/j.1574-6976.2012.00349.x] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 07/01/2012] [Accepted: 07/19/2012] [Indexed: 01/25/2023] Open
Abstract
Many necrotrophic plant pathogenic fungi belonging to the class of Dothideomycetes produce phytotoxic metabolites and peptides that are usually required for pathogenicity. Phytotoxins that affect a broad range of plant species are known as non-host-specific toxins (non-HSTs), whereas HSTs affect only a particular plant species or more often genotypes of that species. For pathogens producing HSTs, pathogenicity and host specificity are largely defined by the ability to produce the toxin, while plant susceptibility is dependent on the presence of the toxin target. Non-HSTs are not the main determinants of pathogenicity but contribute to virulence of the producing pathogen. Dothideomycetes are remarkable for the production of toxins, particularly HSTs because they are the only fungal species known so far to produce them. The synthesis, regulation, and mechanisms of action of the most important HSTs and non-HSTs will be discussed. Studies on the mode of action of HSTs have highlighted the induction of programed cell death (PCD) as an important mechanism. We discuss HST-induced PCD and the plant hypersensitive response upon recognition of avirulence factors that share common pathways. In this respect, although nucleotide-binding-site-leucine-rich repeat types of resistance proteins mediate resistance against biotrophs, they can also contribute to susceptibility toward necrotrophs.
Collapse
|
89
|
Gollan PJ, Ziemann M, Bhave M. PPIase activities and interaction partners of FK506-binding proteins in the wheat thylakoid. PHYSIOLOGIA PLANTARUM 2011; 143:385-395. [PMID: 21848652 DOI: 10.1111/j.1399-3054.2011.01503.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
FK506-binding proteins (FKBPs) and cyclophilins, collectively called immunophilins, conserve peptidyl-prolyl cis/trans isomerase (PPIase) active sites, although many lack PPIase activity. The chloroplast thylakoid contains a large proportion of the plant immunophilin family, but their functions within this compartment are unclear. Some lumenal immunophilins are important for assembly of photosynthetic complexes, implicating them in the maintenance and turnover of the photosynthetic apparatus during acclimation processes. In this investigation into the functions of three FKBPs localized to the thylakoid of Triticum aestivum (wheat), we present the first evidence of PPIase activity in the thylakoid of a cereal plant, and also show that PPIase activity is not conserved in all lumenal FKBPs. Using yeast two-hybrid analysis we found that the PPIase-active FKBP13 interacts with the globular domain of the wheat Rieske protein, with potential impact on photosynthetic electron transfer. Specific interaction partners for PPIase-deficient FKBP16-1 and FKBP16-3 link these isoforms to photosystem assembly.
Collapse
Affiliation(s)
- Peter J Gollan
- Environment and Biotechnology Centre, Faculty of Life and Social Sciences, Swinburne University of Technology, PO Box 218, Hawthorn, VIC 3122, Australia
| | | | | |
Collapse
|
90
|
Wu W, Elsheery N, Wei Q, Zhang L, Huang J. Defective etioplasts observed in variegation mutants may reveal the light-independent regulation of white/yellow sectors of Arabidopsis leaves. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2011; 53:846-57. [PMID: 21981015 DOI: 10.1111/j.1744-7909.2011.01079.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Leaf variegation resulting from nuclear gene mutations has been used as a model system to elucidate the molecular mechanisms of chloroplast development. Since most variegation genes also function in photosynthesis, it remains unknown whether their roles in photosynthesis and chloroplast development are distinct. Here, using the variegation mutant thylakoid formation1 (thf1) we show that variegation formation is light independent. It was found that slow and uneven chloroplast development in thf1 can be attributed to defects in etioplast development in darkness. Ultrastructural analysis showed the coexistence of plastids with or without prolamellar bodies (PLB) in cells of thf1, but not of WT. Although THF1 mutation leads to significant decreases in the levels of Pchlide and Pchllide oxidoreductase (POR) expression, genetic and 5-aminolevulinic acid (ALA)-feeding analysis did not reveal Pchlide or POR to be critical factors for etioplast formation in thf1. Northern blot analysis showed that plastid gene expression is dramatically reduced in thf1 compared with that in WT, particularly in the dark. Our results also indicate that chlorophyll biosynthesis and expression of plastidic genes are coordinately suppressed in thf1. Based on these results, we propose a model to explain leaf variegation formation from the plastid development perspective.
Collapse
Affiliation(s)
- Wenjuan Wu
- National Key Laboratory of Plant Molecular Genetics, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, the Chinese Academy of Sciences, Shanghai 200032, China
| | | | | | | | | |
Collapse
|
91
|
Fellerer C, Schweiger R, Schöngruber K, Soll J, Schwenkert S. Cytosolic HSP90 cochaperones HOP and FKBP interact with freshly synthesized chloroplast preproteins of Arabidopsis. MOLECULAR PLANT 2011; 4:1133-45. [PMID: 21596689 DOI: 10.1093/mp/ssr037] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Most chloroplast and mitochondrial proteins are synthesized in the cytosol of the plant cell and have to be imported into the organelles post-translationally. Molecular chaperones play an important role in preventing protein aggregation of freshly translated preproteins and assist in maintaining the preproteins in an import competent state. Preproteins can associate with HSP70, HSP90, and 14-3-3 proteins in the cytosol. In this study, we analyzed a large set of wheat germ-translated chloroplast preproteins with respect to their chaperone binding. Our results demonstrate that the formation of distinct 14-3-3 or HSP90 containing preprotein complexes is a common feature in post-translational protein transport in addition to preproteins that seem to interact solely with HSP70. We were able to identify a diverse and extensive class of preproteins as HSP90 substrates, thus providing a tool for the investigation of HSP90 client protein association. The analyses of chimeric HSP90 and 14-3-3 binding preproteins with exchanged transit peptides indicate an involvement of both the transit peptide and the mature part of the proteins, in HSP90 binding. We identified two partner components of the HSP90 cycle, which were present in the preprotein containing high-molecular-weight complexes, the HSP70/HSP90 organizing protein HOP, as well as the immunophilin FKBP73. The results establish chloroplast preproteins as a general class of HSP90 client proteins in plants using HOP and FKBP as novel cochaperones.
Collapse
Affiliation(s)
- Christine Fellerer
- Department of Biology I, Botany, Ludwig-Maximilians-Universität München, Grosshaderner Strasse 2-4, D-82152 Planegg-Martinsried, Germany
| | | | | | | | | |
Collapse
|
92
|
Quesada V, Sarmiento-Mañús R, González-Bayón R, Hricová A, Pérez-Marcos R, Graciá-Martínez E, Medina-Ruiz L, Leyva-Díaz E, Ponce MR, Micol JL. Arabidopsis RUGOSA2 encodes an mTERF family member required for mitochondrion, chloroplast and leaf development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 68:738-53. [PMID: 21790815 DOI: 10.1111/j.1365-313x.2011.04726.x] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Little is known about the mechanisms that control transcription of the mitochondrial and chloroplastic genomes, and their interplay within plant cells. Here, we describe the positional cloning of the Arabidopsis RUG2 gene, which encodes a protein that is dual-targeted to mitochondria and chloroplasts, and is homologous with the metazoan mitochondrial transcription termination factors (mTERFs). In the loss-of-function rug2 mutants, most organs were pale and showed reduced growth, and the leaves exhibited both green and pale sectors, with the latter containing sparsely packed mesophyll cells. Chloroplast and mitochondrion development were strongly perturbed in the rug2-1 mutant, particularly in pale leaf sectors, in which chloroplasts were abnormally shaped and reduced in number, thereby impairing photoautotrophic growth. As expected from the pleiotropic phenotypes caused by its loss-of-function alleles, the RUG2 gene was ubiquitously expressed. In a microarray analysis of the mitochondrial and chloroplastic genomes, 56 genes were differentially expressed between rug2-1 and the wild type: most mitochondrial genes were downregulated, whereas the majority of the chloroplastic genes were upregulated. Quantitative RT-PCR analyses showed that the rug2-1 mutation specifically increases expression of the RpoTp nuclear gene, which encodes chloroplastic RNA polymerase. Therefore, the RUG2 nuclear gene seems to be crucial for the maintenance of the correct levels of transcripts in the mitochondria and chloroplasts, which is essential for optimized functions of these organelles and proper plant development. Our results highlight the complexity of the functional interaction between these two organelles and the nucleus.
Collapse
Affiliation(s)
- Víctor Quesada
- Instituto de Bioingeniería, Universidad Miguel Hernández, Campus de Elche, 03202 Elche, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|
93
|
Birtic S, Ksas B, Genty B, Mueller MJ, Triantaphylidès C, Havaux M. Using spontaneous photon emission to image lipid oxidation patterns in plant tissues. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 67:1103-15. [PMID: 21595761 DOI: 10.1111/j.1365-313x.2011.04646.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Plants, like almost all living organisms, spontaneously emit photons of visible light. We used a highly sensitive, low-noise cooled charge coupled device camera to image spontaneous photon emission (autoluminescence) of plants. Oxidative stress and wounding induced a long-lasting enhancement of plant autoluminescence, the origin of which is investigated here. This long-lived phenomenon can be distinguished from the short-lived chlorophyll luminescence resulting from charge recombinations within the photosystems by pre-adapting the plant to darkness for about 2 h. Lipids in solvent were found to emit a persistent luminescence after oxidation in vitro, which exhibited the same time and temperature dependence as plant autoluminescence. Other biological molecules, such as DNA or proteins, either did not produce measurable light upon oxidation or they did produce a chemiluminescence that decayed rapidly, which excludes their significant contribution to the in vivo light emission signal. Selective manipulation of the lipid oxidation levels in Arabidopsis mutants affected in lipid hydroperoxide metabolism revealed a causal link between leaf autoluminescence and lipid oxidation. Addition of chlorophyll to oxidized lipids enhanced light emission. Both oxidized lipids and plants predominantly emit light at wavelengths higher than 600 nm; the emission spectrum of plant autoluminescence was shifted towards even higher wavelengths, a phenomenon ascribable to chlorophyll molecules acting as luminescence enhancers in vivo. Taken together, the presented results show that spontaneous photon emission imaged in plants mainly emanates from oxidized lipids. Imaging of this signal thus provides a simple and sensitive non-invasive method to selectively visualize and map patterns of lipid oxidation in plants.
Collapse
Affiliation(s)
- Simona Birtic
- CEA, DSV, IBEB, Laboratoire d'Ecophysiologie Moléculaire des Plantes, F-13108 Saint-Paul-lez-Durance, France
| | | | | | | | | | | |
Collapse
|
94
|
Shi LX, Hall M, Funk C, Schröder WP. Photosystem II, a growing complex: updates on newly discovered components and low molecular mass proteins. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2011; 1817:13-25. [PMID: 21907181 DOI: 10.1016/j.bbabio.2011.08.008] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Revised: 08/19/2011] [Accepted: 08/23/2011] [Indexed: 12/12/2022]
Abstract
Photosystem II is a unique complex capable of absorbing light and splitting water. The complex has been thoroughly studied and to date there are more than 40 proteins identified, which bind to the complex either stably or transiently. Another special feature of this complex is the unusually high content of low molecular mass proteins that represent more than half of the proteins. In this review we summarize the recent findings on the low molecular mass proteins (<15kDa) and present an overview of the newly identified components as well. We have also performed co-expression analysis of the genes encoding PSII proteins to see if the low molecular mass proteins form a specific sub-group within the Photosystem II complex. Interestingly we found that the chloroplast-localized genes encoding PSII proteins display a different response to environmental and stress conditions compared to the nuclear localized genes. This article is part of a Special Issue entitled: Photosystem II.
Collapse
Affiliation(s)
- Lan-Xin Shi
- Department of Plant Biology, University of California-Davis, One Shields Avenue, Davis, CA 95616, USA
| | | | | | | |
Collapse
|
95
|
Adam Z, Charuvi D, Tsabari O, Knopf RR, Reich Z. Biogenesis of thylakoid networks in angiosperms: knowns and unknowns. PLANT MOLECULAR BIOLOGY 2011; 76:221-34. [PMID: 20859754 DOI: 10.1007/s11103-010-9693-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Accepted: 09/10/2010] [Indexed: 05/06/2023]
Abstract
Aerobic life on Earth depends on oxygenic photosynthesis. This fundamentally important process is carried out within an elaborate membranous system, called the thylakoid network. In angiosperms, thylakoid networks are constructed almost from scratch by an intricate, light-dependent process in which lipids, proteins, and small organic molecules are assembled into morphologically and functionally differentiated, three-dimensional lamellar structures. In this review, we summarize the major events that occur during this complex, largely elusive process, concentrating on those that are directly involved in network formation and potentiation and highlighting gaps in our knowledge, which, as hinted by the title, are substantial.
Collapse
Affiliation(s)
- Zach Adam
- The Robert H. Smith Institute of Plant Sciences and Genetics in Agriculture, Hebrew University of Jerusalem, 76100 Rehovot, Israel.
| | | | | | | | | |
Collapse
|
96
|
Horbach R, Navarro-Quesada AR, Knogge W, Deising HB. When and how to kill a plant cell: infection strategies of plant pathogenic fungi. JOURNAL OF PLANT PHYSIOLOGY 2011; 168:51-62. [PMID: 20674079 DOI: 10.1016/j.jplph.2010.06.014] [Citation(s) in RCA: 208] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Revised: 06/16/2010] [Accepted: 06/18/2010] [Indexed: 05/23/2023]
Abstract
Fungi cause severe diseases on a broad range of crop and ornamental plants, leading to significant economical losses. Plant pathogenic fungi exhibit a huge variability in their mode of infection, differentiation and function of infection structures and nutritional strategy. In this review, advances in understanding mechanisms of biotrophy, necrotrophy and hemibiotrophic lifestyles are described. Special emphasis is given to the biotrophy-necrotrophy switch of hemibiotrophic pathogens, and to biosynthesis, chemical diversity and mode of action of various fungal toxins produced during the infection process.
Collapse
Affiliation(s)
- Ralf Horbach
- Martin-Luther-University Halle-Wittenberg, Faculty of Natural Sciences III, Institute for Agricultural and Nutritional Sciences, Phytopathology and Plant Protection, Betty-Heimann-Strasse 3, Halle (Saale), Germany
| | | | | | | |
Collapse
|
97
|
Manning VA, Chu AL, Scofield SR, Ciuffetti LM. Intracellular expression of a host-selective toxin, ToxA, in diverse plants phenocopies silencing of a ToxA-interacting protein, ToxABP1. THE NEW PHYTOLOGIST 2010; 187:1034-1047. [PMID: 20646220 DOI: 10.1111/j.1469-8137.2010.03363.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
*ToxA, a host-selective toxin of wheat, can be detected within ToxA-sensitive mesophyll cells, where it localizes to chloroplasts and induces necrosis. Interaction of ToxA with the chloroplast-localized protein ToxABP1 has been implicated in this process. Therefore, we hypothesized that silencing of ToxABP1 in wheat would lead to a necrotic phenotype. Also, because ToxABP1 is highly conserved in plants, internal expression of ToxA in plants that do not normally internalize ToxA should result in cell death. *Reduction of ToxABP1 expression was achieved using Barley stripe mosaic virus (BSMV)-mediated, viral-induced gene silencing. The BSMV system was modified for use as an internal expression vector for ToxA in monocots. Agrobacterium-mediated expression of ToxA in a dicot (tobacco-Nicotiana benthamiana) was also performed. *Viral-induced gene silencing of ToxABP1 partially recapitulates the phenotype of ToxA treatment and wheat plants with reduced ToxABP1 also have reduced sensitivity to ToxA. When ToxA is expressed in ToxA-insensitive wheat, barley (Hordeum vulgare) and tobacco, cell death ensues. *ToxA accumulation in any chloroplast-containing cell is likely to result in cell death. Our data indicate that the ToxA-ToxABP1 interaction alters ToxABP1 function. This interaction is a critical, although not exclusive, component of the ToxA-induced cell death cascade.
Collapse
Affiliation(s)
- Viola A Manning
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA
| | - Ashley L Chu
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA
| | - Steven R Scofield
- United States Department of Agriculture, Agricultural Research Service, Crop Production and Pest Control Research Unit, West Lafayette, IN 47907, USA
- Department of Agronomy, Purdue University, West Lafayette, IN 47907, USA
| | - Lynda M Ciuffetti
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
98
|
Liu X, Yu F, Rodermel S. Arabidopsis chloroplast FtsH, var2 and suppressors of var2 leaf variegation: a review. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2010; 52:750-61. [PMID: 20666930 DOI: 10.1111/j.1744-7909.2010.00980.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Variegation mutants are ideal model systems to study chloroplast biogenesis. We are interested in variegations whose green and white-sectored leaves arise as a consequence of the action of nuclear recessive genes. In this review, we focus on the Arabidopsis var2 variegation mutant, and discuss recent progress toward understanding the function of VAR2 and the mechanism of var2-mediated variegation. VAR2 is a subunit of the chloroplast FtsH complex, which is involved in turnover of the Photosystem II reaction center D1 protein, as well as in other processes required for the development and maintenance of the photosynthetic apparatus. The cells in green sectors of var2 have normal-appearing chloroplasts whereas cells in the white sectors have abnormal plastids that lack pigments and organized lamellae. To explain the mechanism of var2 variegation, we have proposed a threshold model in which the formation of chloroplasts is due to the presence of activities/processes that are able to compensate for a lack of VAR2. To gain insight into these activities, second-site suppressor screens have been carried out to obtain mutants with non-variegation phenotypes. Cloning and characterization of several var2 suppressor lines have uncovered several mechanisms of variegation suppression, including an unexpected link between var2 variegation and chloroplast translation.
Collapse
Affiliation(s)
- Xiayan Liu
- Department of Genetics, Development and Cell Biology, Iowa State University, Ames, IA 50011, USA.
| | | | | |
Collapse
|
99
|
Nixon PJ, Michoux F, Yu J, Boehm M, Komenda J. Recent advances in understanding the assembly and repair of photosystem II. ANNALS OF BOTANY 2010; 106:1-16. [PMID: 20338950 PMCID: PMC2889791 DOI: 10.1093/aob/mcq059] [Citation(s) in RCA: 391] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Revised: 02/01/2010] [Accepted: 02/09/2010] [Indexed: 05/18/2023]
Abstract
BACKGROUND Photosystem II (PSII) is the light-driven water:plastoquinone oxidoreductase of oxygenic photosynthesis and is found in the thylakoid membrane of chloroplasts and cyanobacteria. Considerable attention is focused on how PSII is assembled in vivo and how it is repaired following irreversible damage by visible light (so-called photoinhibition). Understanding these processes might lead to the development of plants with improved growth characteristics especially under conditions of abiotic stress. SCOPE Here we summarize recent results on the assembly and repair of PSII in cyanobacteria, which are excellent model organisms to study higher plant photosynthesis. CONCLUSIONS Assembly of PSII is highly co-ordinated and proceeds through a number of distinct assembly intermediates. Associated with these assembly complexes are proteins that are not found in the final functional PSII complex. Structural information and possible functions are beginning to emerge for several of these 'assembly' factors, notably Ycf48/Hcf136, Psb27 and Psb28. A number of other auxiliary proteins have been identified that appear to have evolved since the divergence of chloroplasts and cyanobacteria. The repair of PSII involves partial disassembly of the damaged complex, the selective replacement of the damaged sub-unit (predominantly the D1 sub-unit) by a newly synthesized copy, and reassembly. It is likely that chlorophyll released during the repair process is temporarily stored by small CAB-like proteins (SCPs). A model is proposed in which damaged D1 is removed in Synechocystis sp. PCC 6803 by a hetero-oligomeric complex composed of two different types of FtsH sub-unit (FtsH2 and FtsH3), with degradation proceeding from the N-terminus of D1 in a highly processive reaction. It is postulated that a similar mechanism of D1 degradation also operates in chloroplasts. Deg proteases are not required for D1 degradation in Synechocystis 6803 but members of this protease family might play a supplementary role in D1 degradation in chloroplasts under extreme conditions.
Collapse
Affiliation(s)
- Peter J Nixon
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK.
| | | | | | | | | |
Collapse
|
100
|
Nixon PJ, Michoux F, Yu J, Boehm M, Komenda J. Recent advances in understanding the assembly and repair of photosystem II. ANNALS OF BOTANY 2010. [PMID: 20338950 DOI: 10.3389/fols.2075.07700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
BACKGROUND Photosystem II (PSII) is the light-driven water:plastoquinone oxidoreductase of oxygenic photosynthesis and is found in the thylakoid membrane of chloroplasts and cyanobacteria. Considerable attention is focused on how PSII is assembled in vivo and how it is repaired following irreversible damage by visible light (so-called photoinhibition). Understanding these processes might lead to the development of plants with improved growth characteristics especially under conditions of abiotic stress. SCOPE Here we summarize recent results on the assembly and repair of PSII in cyanobacteria, which are excellent model organisms to study higher plant photosynthesis. CONCLUSIONS Assembly of PSII is highly co-ordinated and proceeds through a number of distinct assembly intermediates. Associated with these assembly complexes are proteins that are not found in the final functional PSII complex. Structural information and possible functions are beginning to emerge for several of these 'assembly' factors, notably Ycf48/Hcf136, Psb27 and Psb28. A number of other auxiliary proteins have been identified that appear to have evolved since the divergence of chloroplasts and cyanobacteria. The repair of PSII involves partial disassembly of the damaged complex, the selective replacement of the damaged sub-unit (predominantly the D1 sub-unit) by a newly synthesized copy, and reassembly. It is likely that chlorophyll released during the repair process is temporarily stored by small CAB-like proteins (SCPs). A model is proposed in which damaged D1 is removed in Synechocystis sp. PCC 6803 by a hetero-oligomeric complex composed of two different types of FtsH sub-unit (FtsH2 and FtsH3), with degradation proceeding from the N-terminus of D1 in a highly processive reaction. It is postulated that a similar mechanism of D1 degradation also operates in chloroplasts. Deg proteases are not required for D1 degradation in Synechocystis 6803 but members of this protease family might play a supplementary role in D1 degradation in chloroplasts under extreme conditions.
Collapse
Affiliation(s)
- Peter J Nixon
- Department of Life Sciences, Imperial College London, London SW7 2AZ, UK.
| | | | | | | | | |
Collapse
|