51
|
Kettles NL, Kopriva S, Malin G. Insights into the regulation of DMSP synthesis in the diatom Thalassiosira pseudonana through APR activity, proteomics and gene expression analyses on cells acclimating to changes in salinity, light and nitrogen. PLoS One 2014; 9:e94795. [PMID: 24733415 PMCID: PMC3986220 DOI: 10.1371/journal.pone.0094795] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 03/20/2014] [Indexed: 01/05/2023] Open
Abstract
Despite the importance of dimethylsulphoniopropionate (DMSP) in the global sulphur cycle and climate regulation, the biological pathways underpinning its synthesis in marine phytoplankton remain poorly understood. The intracellular concentration of DMSP increases with increased salinity, increased light intensity and nitrogen starvation in the diatom Thalassiosira pseudonana. We used these conditions to investigate DMSP synthesis at the cellular level via analysis of enzyme activity, gene expression and proteome comparison. The activity of the key sulphur assimilatory enzyme, adenosine 5′-phosphosulphate reductase was not coordinated with increasing intracellular DMSP concentration. Under all three treatments coordination in the expression of sulphur assimilation genes was limited to increases in sulphite reductase transcripts. Similarly, proteomic 2D gel analysis only revealed an increase in phosphoenolpyruvate carboxylase following increases in DMSP concentration. Our findings suggest that increased sulphur assimilation might not be required for increased DMSP synthesis, instead the availability of carbon and nitrogen substrates may be important in the regulation of this pathway. This contrasts with the regulation of sulphur metabolism in higher plants, which generally involves up-regulation of several sulphur assimilatory enzymes. In T. pseudonana changes relating to sulphur metabolism were specific to the individual treatments and, given that little coordination was seen in transcript and protein responses across the three growth conditions, different patterns of regulation might be responsible for the increase in DMSP concentration seen under each treatment.
Collapse
Affiliation(s)
- Nicola Louise Kettles
- Centre for Ocean and Atmospheric Sciences, School of Environmental Sciences, University of East Anglia, Norwich, United Kingdom
- John Innes Centre, Norwich, United Kingdom
| | | | - Gill Malin
- Centre for Ocean and Atmospheric Sciences, School of Environmental Sciences, University of East Anglia, Norwich, United Kingdom
| |
Collapse
|
52
|
Koprivova A, Calderwood A, Lee BR, Kopriva S. Do PFT1 and HY5 interact in regulation of sulfate assimilation by light in Arabidopsis? FEBS Lett 2014; 588:1116-21. [DOI: 10.1016/j.febslet.2014.02.031] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 02/11/2014] [Accepted: 02/12/2014] [Indexed: 01/10/2023]
|
53
|
D'Hooghe P, Dubousset L, Gallardo K, Kopriva S, Avice JC, Trouverie J. Evidence for proteomic and metabolic adaptations associated with alterations of seed yield and quality in sulfur-limited Brassica napus L. Mol Cell Proteomics 2014; 13:1165-83. [PMID: 24554741 DOI: 10.1074/mcp.m113.034215] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
In Brassica napus, seed yield and quality are related to sulfate availability, but the seed metabolic changes in response to sulfate limitation remain largely unknown. To address this question, proteomics and biochemical studies were carried out on mature seeds obtained from plants grown under low sulfate applied at the bolting (LS32), early flowering (LS53), or start of pod filling (LS70) stage. The protein quality of all low-sulfate seeds was reduced and associated with a reduction of S-rich seed storage protein accumulation (as Cruciferin Cru4) and an increase of S-poor seed storage protein (as Cruciferin BnC1). This compensation allowed the protein content to be maintained in LS70 and LS53 seeds but was not sufficient to maintain the protein content in LS32 seeds. The lipid content and quality of LS53 and LS32 seeds were also affected, and these effects were primarily associated with a reduction of C18-derivative accumulation. Proteomics changes related to lipid storage, carbohydrate metabolism, and energy (reduction of caleosins, phosphoglycerate kinase, malate synthase, ATP-synthase β-subunit, and thiazole biosynthetic enzyme THI1 and accumulation of β-glucosidase and citrate synthase) provide insights into processes that may contribute to decreased oil content and altered lipid composition (in favor of long-chain fatty acids in LS53 and LS32 seeds). These data indicate that metabolic changes associated with S limitation responses affect seed storage protein composition and lipid quality. Proteins involved in plant stress response, such as dehydroascorbate reductase and Cu/Zn-superoxide dismutase, were also accumulated in LS53 and LS32 seeds, and this might be a consequence of reduced glutathione content under low S availability. LS32 treatment also resulted in (i) reduced germination vigor, as evidenced by lower germination indexes, (ii) reduced seed germination capacity, related to a lower seed viability, and (iii) a strong decrease of glyoxysomal malate synthase, which is essential for the use of fatty acids during seedling establishment.
Collapse
|
54
|
Cao MJ, Wang Z, Zhao Q, Mao JL, Speiser A, Wirtz M, Hell R, Zhu JK, Xiang CB. Sulfate availability affects ABA levels and germination response to ABA and salt stress in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 77:604-15. [PMID: 24330104 DOI: 10.1111/tpj.12407] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Revised: 11/18/2013] [Accepted: 12/03/2013] [Indexed: 05/02/2023]
Abstract
Sulfur-containing compounds play a critical role in the response of plants to abiotic stress factors including drought. The phytohormone abscisic acid (ABA) is the key regulator of responses to drought and high-salt stress. However, our knowledge about interaction of S-metabolism and ABA biosynthesis is scarce. Here we report that sulfate supply affects synthesis and steady-state levels of ABA in Arabidopsis wild-type seedlings. By using different mutants of the sulfate uptake and reduction pathway, we confirmed the impact of sulfate supply on steady-state ABA content in Arabidopsis and demonstrated that this impact was due to cysteine availability. Loss of the chloroplast sulfate transporter3;1 function (sultr3;1) resulted in significantly decreased aldehyde oxidase (AO) activity and ABA levels in seedlings and seeds. These mutant phenotypes could be reverted by exogenous application of cysteine or ectopic expression of SULTR3;1. In addition the sultr3;1 mutant showed a decrease of xanthine dehydrogenase activity, but not of nitrate reductase, strongly indicating that in seedlings cysteine availability limits activity of the molybdenum co-factor sulfurase, ABA3, which requires cysteine as the S-donor for sulfuration. Transcription of ABA3 and NCED3, encoding another key enzyme of the ABA biosynthesis pathway, was regulated by S-supply in wild-type seedlings. In contrast, ABA up-regulated the transcript level of SULTR3;1 and other S-metabolism-related genes. Our results provide evidence for a significant co-regulation of S-metabolism and ABA biosynthesis that operates to ensure sufficient cysteine for AO maturation and highlights the importance of sulfur for stress tolerance of plants.
Collapse
Affiliation(s)
- Min-Jie Cao
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui Province, 230027, China
| | | | | | | | | | | | | | | | | |
Collapse
|
55
|
Chen J, Bang WY, Lee Y, Kim S, Lee KW, Kim SW, Son YS, Kim DW, Akhter S, Bahk JD. AtObgC-AtRSH1 interaction may play a vital role in stress response signal transduction in Arabidopsis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2014; 74:176-84. [PMID: 24308987 DOI: 10.1016/j.plaphy.2013.10.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2013] [Accepted: 10/16/2013] [Indexed: 05/24/2023]
Abstract
The interaction of Obg (Spo0B-associated GTP-binding protein) GTPase and SpoT, which is a bifunctional ppGpp (guanosine 3',5'-bispyrophosphate) hydrolase/synthetase, is vital for the modulation of intracellular ppGpp levels during bacterial responses to environmental cues. It has been recently reported that the ppGpp level is also inducible by various stresses in the chloroplasts of plant cells. However, the function of the Obg-SpoT interaction in plants remains elusive. The results from the present and previous studies suggest that AtRSH1 is a putative bacterial SpoT homolog in Arabidopsis and that its transcription levels are responsive to wounding and salt stresses. In this study, we used a yeast two-hybrid analysis to map the regions required for the AtObgC-AtRSH1 interaction. Moreover, protein-protein docking simulations revealed reasonable geometric and electrostatic complementarity in the binding surfaces of the two proteins. The data support our experimental results, which suggest that the conserved domains in AtObgC and the N terminus of AtRSH1 containing the TGS domain contribute to their interaction. In addition, quantitative real-time PCR (qRT-PCR) analyses showed that the expression of AtObgC and AtRSH1 exhibit a similar inhibition pattern under wounding and salt-stress conditions, but the inhibition pattern was not greatly influenced by the presence or absence of light. Based on in vivo analyses, we further confirmed that the AtRSH1 and AtObgC proteins similarly localize in chloroplasts. Based on these results, we propose that the AtObgC-AtRSH1 interaction plays a vital role in ppGpp-mediated stress responses in chloroplasts.
Collapse
Affiliation(s)
- Ji Chen
- Agronomy College, Sichuan Agricultural University, Chengdu 611130, China; Division of Applied Life Sciences (BK21+), Graduate School of Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Woo Young Bang
- Department of Horticultural Sciences, Texas A&M University, College Station, TX 77843-2133, USA
| | - Yuno Lee
- Division of Applied Life Sciences (BK21+), Graduate School of Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Songmi Kim
- Division of Applied Life Sciences (BK21+), Graduate School of Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Keun Woo Lee
- Division of Applied Life Sciences (BK21+), Graduate School of Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Se Won Kim
- Green Bio Research Center, Cabbage Genomics Assisted Breeding Supporting Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 305-806, Korea
| | - Young Sim Son
- Division of Applied Life Sciences (BK21+), Graduate School of Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Dae Won Kim
- Division of Applied Life Sciences (BK21+), Graduate School of Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Salina Akhter
- Division of Applied Life Sciences (BK21+), Graduate School of Gyeongsang National University, Jinju 660-701, Republic of Korea
| | - Jeong Dong Bahk
- Division of Applied Life Sciences (BK21+), Graduate School of Gyeongsang National University, Jinju 660-701, Republic of Korea.
| |
Collapse
|
56
|
Koprivova A, Kopriva S. Molecular mechanisms of regulation of sulfate assimilation: first steps on a long road. FRONTIERS IN PLANT SCIENCE 2014; 5:589. [PMID: 25400653 PMCID: PMC4212615 DOI: 10.3389/fpls.2014.00589] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 10/10/2014] [Indexed: 05/19/2023]
Abstract
The pathway of sulfate assimilation, which provides plants with the essential nutrient sulfur, is tightly regulated and coordinated with the demand for reduced sulfur. The responses of metabolite concentrations, enzyme activities and mRNA levels to various signals and environmental conditions have been well described for the pathway. However, only little is known about the molecular mechanisms of this regulation. To date, nine transcription factors have been described to control transcription of genes of sulfate uptake and assimilation. In addition, other levels of regulation contribute to the control of sulfur metabolism. Post-transcriptional regulation has been shown for sulfate transporters, adenosine 5'phosphosulfate reductase, and cysteine synthase. Several genes of the pathway are targets of microRNA miR395. In addition, protein-protein interaction is increasingly found in the center of various regulatory circuits. On top of the mechanisms of regulation of single genes, we are starting to learn more about mechanisms of adaptation, due to analyses of natural variation. In this article, the summary of different mechanisms of regulation will be accompanied by identification of the major gaps in knowledge and proposition of possible ways of filling them.
Collapse
Affiliation(s)
| | - Stanislav Kopriva
- *Correspondence: Stanislav Kopriva, Botanical Institute and Cluster of Excellence on Plant Sciences, Cologne Biocenter, University of Cologne, Zülpicher Straße 47b, 50674 Cologne, Germany e-mail:
| |
Collapse
|
57
|
Koprivova A, Giovannetti M, Baraniecka P, Lee BR, Grondin C, Loudet O, Kopriva S. Natural variation in the ATPS1 isoform of ATP sulfurylase contributes to the control of sulfate levels in Arabidopsis. PLANT PHYSIOLOGY 2013; 163:1133-41. [PMID: 24027241 PMCID: PMC3813639 DOI: 10.1104/pp.113.225748] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 09/10/2013] [Indexed: 05/18/2023]
Abstract
Sulfur is an essential macronutrient for all living organisms. Plants take up inorganic sulfate from the soil, reduce it, and assimilate it into bioorganic compounds, but part of this sulfate is stored in the vacuoles. In our first attempt to identify genes involved in the control of sulfate content in the leaves, we reported that a quantitative trait locus (QTL) for sulfate content in Arabidopsis (Arabidopsis thaliana) was underlain by the APR2 isoform of the key enzyme of sulfate assimilation, adenosine 5'-phosphosulfate reductase. To increase the knowledge of the control of this trait, we cloned a second QTL from the same analysis. Surprisingly, the gene underlying this QTL encodes the ATPS1 isoform of the enzyme ATP sulfurylase, which precedes adenosine 5'-phosphosulfate reductase in the sulfate assimilation pathway. Plants with the Bay allele of ATPS1 accumulate lower steady-state levels of ATPS1 transcript than those with the Sha allele, which leads to lower enzyme activity and, ultimately, the accumulation of sulfate. Our results show that the transcript variation is controlled in cis. Examination of ATPS1 sequences of Bay-0 and Shahdara identified two deletions in the first intron and immediately downstream the gene in Bay-0 shared with multiple other Arabidopsis accessions. The average ATPS1 transcript levels are lower in these accessions than in those without the deletions, while sulfate levels are significantly higher. Thus, sulfate content in Arabidopsis is controlled by two genes encoding subsequent enzymes in the sulfate assimilation pathway but using different mechanisms, variation in amino acid sequence and variation in expression levels.
Collapse
|
58
|
Bochenek M, Etherington GJ, Koprivova A, Mugford ST, Bell TG, Malin G, Kopriva S. Transcriptome analysis of the sulfate deficiency response in the marine microalga Emiliania huxleyi. THE NEW PHYTOLOGIST 2013; 199:650-62. [PMID: 23692606 DOI: 10.1111/nph.12303] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 03/27/2013] [Indexed: 05/03/2023]
Abstract
The response to sulfate deficiency of plants and freshwater green algae has been extensively analysed by system biology approaches. By contrast, seawater sulfate concentration is high and very little is known about the sulfur metabolism of marine organisms. Here, we used a combination of metabolite analysis and transcriptomics to analyse the response of the marine microalga Emiliania huxleyi as it acclimated to sulfate limitation. Lowering sulfate availability in artificial seawater from 25 to 5 mM resulted in significant reduction in growth and intracellular concentrations of dimethylsulfoniopropionate and glutathione. Sulfate-limited E. huxleyi cells showed increased sulfate uptake but sulfate reduction to sulfite did not seem to be regulated. Sulfate limitation in E. huxleyi affected expression of 1718 genes. The vast majority of these genes were upregulated, including genes involved in carbohydrate and lipid metabolism, and genes involved in the general stress response. The acclimation response of E. huxleyi to sulfate deficiency shows several similarities to the well-described responses of Arabidopsis and Chlamydomonas, but also has many unique features. This dataset shows that even though E. huxleyi is adapted to constitutively high sulfate concentration, it retains the ability to re-program its gene expression in response to reduced sulfate availability.
Collapse
|
59
|
Traka MH, Saha S, Huseby S, Kopriva S, Walley PG, Barker GC, Moore J, Mero G, van den Bosch F, Constant H, Kelly L, Schepers H, Boddupalli S, Mithen RF. Genetic regulation of glucoraphanin accumulation in Beneforté broccoli. THE NEW PHYTOLOGIST 2013; 198:1085-1095. [PMID: 23560984 PMCID: PMC3666090 DOI: 10.1111/nph.12232] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 02/09/2013] [Indexed: 05/07/2023]
Abstract
· Diets rich in broccoli (Brassica oleracea var italica) have been associated with maintenance of cardiovascular health and reduction in risk of cancer. These health benefits have been attributed to glucoraphanin that specifically accumulates in broccoli. The development of broccoli with enhanced concentrations of glucoraphanin may deliver greater health benefits. · Three high-glucoraphanin F1 broccoli hybrids were developed in independent programmes through genome introgression from the wild species Brassica villosa. Glucoraphanin and other metabolites were quantified in experimental field trials. Global SNP analyses quantified the differential extent of B. villosa introgression · The high-glucoraphanin broccoli hybrids contained 2.5-3 times the glucoraphanin content of standard hybrids due to enhanced sulphate assimilation and modifications in sulphur partitioning between sulphur-containing metabolites. All of the high-glucoraphanin hybrids possessed an introgressed B. villosa segment which contained a B. villosa Myb28 allele. Myb28 expression was increased in all of the high-glucoraphanin hybrids. Two high-glucoraphanin hybrids have been commercialised as Beneforté broccoli. · The study illustrates the translation of research on glucosinolate genetics from Arabidopsis to broccoli, the use of wild Brassica species to develop cultivars with potential consumer benefits, and the development of cultivars with contrasting concentrations of glucoraphanin for use in blinded human intervention studies.
Collapse
Affiliation(s)
- Maria H Traka
- Food & Health Programme, Institute of Food Research, Norwich Research Park, NR4 7UA, UK
| | - Shikha Saha
- Food & Health Programme, Institute of Food Research, Norwich Research Park, NR4 7UA, UK
| | - Stine Huseby
- Food & Health Programme, Institute of Food Research, Norwich Research Park, NR4 7UA, UK
- Metabolic Biology, John Innes Centre, Norwich Research Park, NR4 7UH, UK
| | - Stanislav Kopriva
- Metabolic Biology, John Innes Centre, Norwich Research Park, NR4 7UH, UK
| | - Peter G Walley
- Warwick Life Sciences, The University of Warwick, Wellesbourne, Warwick, CV35 9EF, UK
| | - Guy C Barker
- Warwick Life Sciences, The University of Warwick, Wellesbourne, Warwick, CV35 9EF, UK
| | - Jonathan Moore
- Warwick Systems Biology, The University of Warwick, Coventry, CV4 7AL, UK
| | - Gene Mero
- Seminis Vegetable Seeds, Inc., Arroyo Grande, CA, 93420, USA
| | - Frans van den Bosch
- Seminis Vegetable Seeds, Inc., Wageningse Afweg 31, 6702 PD, Wageningen, the Netherlands
| | - Howard Constant
- Monsanto Center for Food and Nutrition Research, Seminis Vegetable Seeds, Inc., Kannapolis, NC, 28081, USA
| | - Leo Kelly
- Seminis Vegetable Seeds, Inc., Woodland, CA, 95695, USA
| | - Hans Schepers
- Seminis Vegetable Seeds, Inc., Wageningse Afweg 31, 6702 PD, Wageningen, the Netherlands
| | | | - Richard F Mithen
- Food & Health Programme, Institute of Food Research, Norwich Research Park, NR4 7UA, UK
| |
Collapse
|
60
|
Iqbal N, Masood A, Khan MIR, Asgher M, Fatma M, Khan NA. Cross-talk between sulfur assimilation and ethylene signaling in plants. PLANT SIGNALING & BEHAVIOR 2013; 8:e22478. [PMID: 23104111 PMCID: PMC3745555 DOI: 10.4161/psb.22478] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 10/08/2012] [Indexed: 05/06/2023]
Abstract
Sulfur (S) deficiency is prevailing all over the world and becoming an important issue for crop improvement through maximising its utilization efficiency by plants for sustainable agriculture. Its interaction with other regulatory molecules in plants is necessary to improve our understanding on its role under changing environment. Our knowledge on the influence of S on ethylene signaling is meagre although it is a constituent of cysteine (Cys) required for the synthesis of reduced glutathione (GSH) and S-adenosyl methionine (SAM), a precursor of ethylene biosynthesis. Thus, there may be an interaction between S assimilation, ethylene signaling and plant responses under optimal and stressful environmental conditions. The present review emphasizes that responses of plants to S involve ethylene action. This evaluation will provide an insight into the details of interactive role of S and ethylene signaling in regulating plant processes and prove profitable for developing sustainability under changing environmental conditions.
Collapse
Affiliation(s)
- Noushina Iqbal
- Department of Botany; Aligarh Muslim University; Aligarh, India
| | - Asim Masood
- Department of Botany; Aligarh Muslim University; Aligarh, India
| | | | - Mohd Asgher
- Department of Botany; Aligarh Muslim University; Aligarh, India
| | - Mehar Fatma
- Department of Botany; Aligarh Muslim University; Aligarh, India
| | - Nafees A. Khan
- Department of Botany; Aligarh Muslim University; Aligarh, India
| |
Collapse
|
61
|
Chan KX, Wirtz M, Phua SY, Estavillo GM, Pogson BJ. Balancing metabolites in drought: the sulfur assimilation conundrum. TRENDS IN PLANT SCIENCE 2013; 18:18-29. [PMID: 23040678 DOI: 10.1016/j.tplants.2012.07.005] [Citation(s) in RCA: 110] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2012] [Revised: 07/27/2012] [Accepted: 07/30/2012] [Indexed: 05/18/2023]
Abstract
A key plant response to drought is the accumulation of specific sets of metabolites that act as osmoprotectants, osmolytes, antioxidants, and/or stress signals. An emerging question is: how do plants regulate metabolism to balance the 'competing interests' between metabolites during stress? Recent research connects primary sulfur metabolism (e.g., sulfate transport in the vasculature, its assimilation in leaves, and the recycling of sulfur-containing compounds) with the drought stress response. In this review, we highlight key steps in sulfur metabolism that play significant roles in drought stress signaling and responses. We propose that a complex balancing act is required to coordinate primary and secondary sulfur metabolism during the drought stress response in plants.
Collapse
Affiliation(s)
- Kai Xun Chan
- ARC Centre of Excellence in Plant Energy Biology, Research School of Biology, The Australian National University, Canberra, ACT 0200, Australia
| | | | | | | | | |
Collapse
|
62
|
Matthewman CA, Kawashima CG, Húska D, Csorba T, Dalmay T, Kopriva S. miR395 is a general component of the sulfate assimilation regulatory network in Arabidopsis. FEBS Lett 2012; 586:3242-8. [PMID: 22771787 DOI: 10.1016/j.febslet.2012.06.044] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Revised: 06/19/2012] [Accepted: 06/26/2012] [Indexed: 12/24/2022]
Abstract
In plants, microRNAs play an important role in many regulatory circuits, including responses to environmental cues such as nutrient limitations. One such microRNA is miR395, which is strongly up-regulated by sulfate deficiency and targets two components of the sulfate uptake and assimilation pathway. Here we show that miR395 levels are affected by treatments with metabolites regulating sulfate assimilation. The precursor of cysteine, O-acetylserine, which accumulates during sulfate deficiency, causes increase in miR395 accumulation. Feeding plants with cysteine, which inhibits sulfate uptake and assimilation, induces miR395 levels while buthionine sulfoximine, an inhibitor of glutathione synthesis, lowers miR395 expression. Thus, miR395 is an integral part of the regulatory network of sulfate assimilation.
Collapse
|
63
|
Lee BR, Huseby S, Koprivova A, Chételat A, Wirtz M, Mugford ST, Navid E, Brearley C, Saha S, Mithen R, Hell R, Farmer EE, Kopriva S. Effects of fou8/fry1 mutation on sulfur metabolism: is decreased internal sulfate the trigger of sulfate starvation response? PLoS One 2012; 7:e39425. [PMID: 22724014 PMCID: PMC3377649 DOI: 10.1371/journal.pone.0039425] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Accepted: 05/21/2012] [Indexed: 12/30/2022] Open
Abstract
The fou8 loss of function allele of adenosine bisphosphate phosphatase FIERY1 results in numerous phenotypes including the increased enzymatic oxygenation of fatty acids and increased jasmonate synthesis. Here we show that the mutation causes also profound alterations of sulfur metabolism. The fou8 mutants possess lower levels of sulfated secondary compounds, glucosinolates, and accumulate the desulfo-precursors similar to previously described mutants in adenosine 5′phosphosulfate kinase. Transcript levels of genes involved in sulfate assimilation differ in fou8 compared to wild type Col-0 plants and are similar to plants subjected to sulfate deficiency. Indeed, independent microarray analyses of various alleles of mutants in FIERY1 showed similar patterns of gene expression as in sulfate deficient plants. This was not caused by alterations in signalling, as the fou8 mutants contained significantly lower levels of sulfate and glutathione and, consequently, of total elemental sulfur. Analysis of mutants with altered levels of sulfate and glutathione confirmed the correlation of sulfate deficiency-like gene expression pattern with low internal sulfate but not low glutathione. The changes in sulfur metabolism in fou8 correlated with massive increases in 3′-phosphoadenosine 5′-phosphate levels. The analysis of fou8 thus revealed that sulfate starvation response is triggered by a decrease in internal sulfate as opposed to external sulfate availability and that the presence of desulfo-glucosinolates does not induce the glucosinolate synthesis network. However, as well as resolving these important questions on the regulation of sulfate assimilation in plants, fou8 has also opened an array of new questions on the links between jasmonate synthesis and sulfur metabolism.
Collapse
Affiliation(s)
- Bok-Rye Lee
- John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Stine Huseby
- John Innes Centre, Norwich Research Park, Norwich, United Kingdom
- Department of Plant- and Environmental Sciences, Norwegian University of Life Sciences, Aas, Norway
| | - Anna Koprivova
- John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Aurore Chételat
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
| | - Markus Wirtz
- Heidelberg Institute for Plant Sciences (HIP), Im Neuenheimer Feld 360, Heidelberg, Germany
| | - Sam T. Mugford
- John Innes Centre, Norwich Research Park, Norwich, United Kingdom
| | - Emily Navid
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
| | - Charles Brearley
- University of East Anglia, School of Biological Sciences, Norfolk, United Kingdom
| | - Shikha Saha
- Institute of Food Research, Norwich Research Park, Norwich, United Kingdom
| | - Richard Mithen
- Institute of Food Research, Norwich Research Park, Norwich, United Kingdom
| | - Rüdiger Hell
- Heidelberg Institute for Plant Sciences (HIP), Im Neuenheimer Feld 360, Heidelberg, Germany
| | - Edward E. Farmer
- Department of Plant Molecular Biology, University of Lausanne, Lausanne, Switzerland
| | - Stanislav Kopriva
- John Innes Centre, Norwich Research Park, Norwich, United Kingdom
- * E-mail:
| |
Collapse
|
64
|
Birke H, Müller SJ, Rother M, Zimmer AD, Hoernstein SNW, Wesenberg D, Wirtz M, Krauss GJ, Reski R, Hell R. The relevance of compartmentation for cysteine synthesis in phototrophic organisms. PROTOPLASMA 2012; 249 Suppl 2:S147-55. [PMID: 22543690 DOI: 10.1007/s00709-012-0411-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Accepted: 04/10/2012] [Indexed: 05/18/2023]
Abstract
In the vascular plant Arabidopsis thaliana, synthesis of cysteine and its precursors O-acetylserine and sulfide is distributed between the cytosol, chloroplasts, and mitochondria. This compartmentation contributes to regulation of cysteine synthesis. In contrast to Arabidopsis, cysteine synthesis is exclusively restricted to chloroplasts in the unicellular green alga Chlamydomonas reinhardtii. Thus, the question arises, whether specification of compartmentation was driven by multicellularity and specified organs and tissues. The moss Physcomitrella patens colonizes land but is still characterized by a simple morphology compared to vascular plants. It was therefore used as model organism to study evolution of compartmented cysteine synthesis. The presence of O-acetylserine(thiol)lyase (OAS-TL) proteins, which catalyze the final step of cysteine synthesis, in different compartments was applied as criterion. Purification and characterization of native OAS-TL proteins demonstrated the presence of five OAS-TL protein species encoded by two genes in Physcomitrella. At least one of the gene products is dual targeted to plastids and cytosol, as shown by combination of GFP fusion localization studies, purification of chloroplasts, and identification of N termini from native proteins. The bulk of OAS-TL protein is targeted to plastids, whereas there is no evidence for a mitochondrial OAS-TL isoform and only a minor part of OAS-TL protein is localized in the cytosol. This demonstrates that subcellular diversification of cysteine synthesis is already initialized in Physcomitrella but appears to gain relevance later during evolution of vascular plants.
Collapse
Affiliation(s)
- Hannah Birke
- Centre for Organismal Studies Heidelberg, Department Plant Molecular Biology, University of Heidelberg, Im Neuenheimer Feld 360, 69120 Heidelberg, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
65
|
Bräutigam A, Schaumlöffel D, Preud'homme H, Thondorf I, Wesenberg D. Physiological characterization of cadmium-exposed Chlamydomonas reinhardtii. PLANT, CELL & ENVIRONMENT 2011; 34:2071-2082. [PMID: 21819413 DOI: 10.1111/j.1365-3040.2011.02404.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Chlamydomonas reinhardtii is a common model organism for investigation of metal stress. This green alga produces phytochelatins in the presence of metal ions. The influence of cadmium is of main interest, because it is a strong activator of phytochelatin synthase. Cell wall bound and intracellular cadmium content was determined after exposition to 70 µm CdCl(2), showing the main portion of the metal outside the cell. Nevertheless, imported cadmium was sufficient to cause significant changes in thiolpeptide metabolism and its transcriptional regulation. Modern analytical approaches enable new insights into phytochelatin (PC) distribution. A new rapid and precise UPLC-MS method allowed high-throughput PC quantification in algal samples after 1, 4, 24 and 48 h cadmium stress. Initially, canonic PCs were synthesized in C. reinhardtii during cadmium exposition, but afterwards CysPCs became the major thiolpeptides. Thus, after 48 h the concentration of the PC-isoforms CysPC(2-3) and CysGSH attained between 105 and 199 nmol g(-1) fresh weight (FW), whereas the PC(2-3) concentrations were only 15 nmol g(-1) FW. The relative quantification of γ-glutamyl transpeptidase (γ-GT) mRNA suggests the generation of CysPCs by glutamate cleavage from canonic PCs by γ-GT. Furthermore, a homology model of C. reinhardtii phytochelatin synthase was constructed to verify the use of crystal structures from Anabaena sp. phytochelatin synthase (PCS) for docking studies with canonical PCs and CysPCs. From the difference in energy scores, we hypothesize that CysPC may prevent the synthesis of canonical PCs by blocking the binding pocket. Finally, possible physiological reasons for the high abundance of CysPC compared with their canonic precursors are discussed.
Collapse
Affiliation(s)
- Anja Bräutigam
- Martin-Luther-Universität Halle-Wittenberg, Institut für Biochemie und Biotechnologie, Abteilung Ökologische und Pflanzen-Biochemie, 06120 Halle (Saale), Germany
| | | | | | | | | |
Collapse
|
66
|
Lee BR, Koprivova A, Kopriva S. The key enzyme of sulfate assimilation, adenosine 5'-phosphosulfate reductase, is regulated by HY5 in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 67:1042-54. [PMID: 21623972 DOI: 10.1111/j.1365-313x.2011.04656.x] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Plant sulfate assimilation is regulated by demand for reduced sulfur, as is its key enzyme, adenosine 5'-phosphosulfate reductase (APR). In a genetic screen for mutants lacking this regulation, we identified the bZIP transcription factor LONG HYPOCOTYL 5 (HY5) as a necessary component of the regulatory circuit. Regulation of APR activity by the inhibitor of glutathione synthesis, buthionine sulfoximine, or by the precursor of cysteine, O-acetylserine, was disrupted in the hy5 mutant. When dark-adapted plants were re-illuminated, the rapid induction of APR1 and APR2 mRNA levels was attenuated in hy5 seedlings, but APR3 regulation was not affected. Chromatin immunoprecipitation revealed that HY5 binds directly to the APR1 and APR2 promoters but not to the APR3 promoter. Accordingly, the regulation of APR1 and APR2 by O-acetylserine was disturbed in hy5 roots. HY5 is also important for the coordination of nitrogen and sulfur assimilation, as, unlike the wild-type, hy5 mutants do not undergo a reduction in sulfate uptake and APR activity during nitrogen starvation. Altogether, these data show that HY5 plays an important role in regulation of APR gene expression and plant sulfate assimilation.
Collapse
Affiliation(s)
- Bok-Rye Lee
- Department of Metabolic Biology, John Innes Centre, Norwich Research Park, Norwich NR4 7UH, UK
| | | | | |
Collapse
|
67
|
Adenosine 5′-phosphosulfate reductase (APR2) mutation in Arabidopsis implicates glutathione deficiency in selenate toxicity. Biochem J 2011; 438:325-35. [DOI: 10.1042/bj20110025] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
APR2 is the dominant APR (adenosine 5′-phosphosulfate reductase) in the model plant Arabidopsis thaliana, and converts activated sulfate to sulfite, a key reaction in the sulfate reduction pathway. To determine whether APR2 has a role in selenium tolerance and metabolism, a mutant Arabidopsis line (apr2-1) was studied. apr2-1 plants had decreased selenate tolerance and photosynthetic efficiency. Sulfur metabolism was perturbed in apr2-1 plants grown on selenate, as observed by an increase in total sulfur and sulfate, and a 2-fold decrease in glutathione concentration. The altered sulfur metabolism in apr2-1 grown on selenate did not reflect typical sulfate starvation, as cysteine and methionine levels were increased. Knockout of APR2 also increased the accumulation of total selenium and selenate. However, the accumulation of selenite and selenium incorporation in protein was lower in apr2-1 mutants. Decreased incorporation of selenium in protein is typically associated with increased selenium tolerance in plants. However, because the apr2-1 mutant exhibited decreased tolerance to selenate, we propose that selenium toxicity can also be caused by selenate's disruption of glutathione biosynthesis leading to enhanced levels of damaging ROS (reactive oxygen species).
Collapse
|
68
|
Kawashima CG, Matthewman CA, Huang S, Lee BR, Yoshimoto N, Koprivova A, Rubio-Somoza I, Todesco M, Rathjen T, Saito K, Takahashi H, Dalmay T, Kopriva S. Interplay of SLIM1 and miR395 in the regulation of sulfate assimilation in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 66:863-76. [PMID: 21401744 DOI: 10.1111/j.1365-313x.2011.04547.x] [Citation(s) in RCA: 123] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
MicroRNAs play a key role in the control of plant development and response to adverse environmental conditions. For example, microRNA395 (miR395), which targets three out of four isoforms of ATP sulfurylase, the first enzyme of sulfate assimilation, as well as a low-affinity sulfate transporter, SULTR2;1, is strongly induced by sulfate deficiency. However, other components of sulfate assimilation are induced by sulfate starvation, so that the role of miR395 is counterintuitive. Here, we describe the regulation of miR395 and its targets by sulfate starvation. We show that miR395 is important for the increased translocation of sulfate to the shoots during sulfate starvation. MiR395 together with the SULFUR LIMITATION 1 transcription factor maintain optimal levels of ATP sulfurylase transcripts to enable increased flux through the sulfate assimilation pathway in sulfate-deficient plants. Reduced expression of ATP sulfurylase (ATPS) alone affects both sulfate translocation and flux, but SULTR2;1 is important for the full rate of sulfate translocation to the shoots. Thus, miR395 is an integral part of the regulatory circuit controlling plant sulfate assimilation with a complex mechanism of action.
Collapse
|
69
|
Takahashi H, Kopriva S, Giordano M, Saito K, Hell R. Sulfur assimilation in photosynthetic organisms: molecular functions and regulations of transporters and assimilatory enzymes. ANNUAL REVIEW OF PLANT BIOLOGY 2011; 62:157-84. [PMID: 21370978 DOI: 10.1146/annurev-arplant-042110-103921] [Citation(s) in RCA: 462] [Impact Index Per Article: 35.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Sulfur is required for growth of all organisms and is present in a wide variety of metabolites having distinctive biological functions. Sulfur is cycled in ecosystems in nature where conversion of sulfate to organic sulfur compounds is primarily dependent on sulfate uptake and reduction pathways in photosynthetic organisms and microorganisms. In vascular plant species, transport proteins and enzymes in this pathway are functionally diversified to have distinct biochemical properties in specific cellular and subcellular compartments. Recent findings indicate regulatory processes of sulfate transport and metabolism are tightly connected through several modes of transcriptional and posttranscriptional mechanisms. This review provides up-to-date knowledge in functions and regulations of sulfur assimilation in plants and algae, focusing on sulfate transport systems and metabolic pathways for sulfate reduction and synthesis of downstream metabolites with diverse biological functions.
Collapse
|
70
|
Mugford SG, Lee BR, Koprivova A, Matthewman C, Kopriva S. Control of sulfur partitioning between primary and secondary metabolism. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 65:96-105. [PMID: 21175893 DOI: 10.1111/j.1365-313x.2010.04410.x] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Sulfur is an essential nutrient for all organisms. Plants take up most sulfur as inorganic sulfate, reduce it and incorporate it into cysteine during primary sulfate assimilation. However, some of the sulfate is partitioned into the secondary metabolism to synthesize a variety of sulfated compounds. The two pathways of sulfate utilization branch after activation of sulfate to adenosine 5'-phosphosulfate (APS). Recently we showed that the enzyme APS kinase limits the availability of activated sulfate for the synthesis of sulfated secondary compounds in Arabidopsis. To further dissect the control of sulfur partitioning between the primary and secondary metabolism, we analysed plants in which activities of enzymes that use APS as a substrate were increased or reduced. Reduction in APS kinase activity led to reduced levels of glucosinolates as a major class of sulfated secondary metabolites and an increased concentration of thiols, products of primary reduction. However, over-expression of this gene does not affect the levels of glucosinolates. Over-expression of APS reductase had no effect on glucosinolate levels but did increase thiol levels, but neither glucosinolate nor thiol levels were affected in mutants lacking the APR2 isoform of this enzyme. Measuring the flux through sulfate assimilation using [(35) S]sulfate confirmed the larger flow of sulfur to primary assimilation when APS kinase activity was reduced. Thus, at least in Arabidopsis, the interplay between APS reductase and APS kinase is important for sulfur partitioning between the primary and secondary metabolism.
Collapse
Affiliation(s)
- Sarah G Mugford
- Department of Metabolic Biology, John Innes Centre, Norwich NR4 7UH, UK
| | - Bok-Rye Lee
- Department of Metabolic Biology, John Innes Centre, Norwich NR4 7UH, UK
| | - Anna Koprivova
- Department of Metabolic Biology, John Innes Centre, Norwich NR4 7UH, UK
| | | | - Stanislav Kopriva
- Department of Metabolic Biology, John Innes Centre, Norwich NR4 7UH, UK
| |
Collapse
|
71
|
Alvarez C, Lozano-Juste J, Romero LC, García I, Gotor C, León J. Inhibition of Arabidopsis O-acetylserine(thiol)lyase A1 by tyrosine nitration. J Biol Chem 2010; 286:578-86. [PMID: 21047785 DOI: 10.1074/jbc.m110.147678] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The last step of sulfur assimilation is catalyzed by O-acetylserine(thiol)lyase (OASTL) enzymes. OASTLs are encoded by a multigene family in the model plant Arabidopsis thaliana. Cytosolic OASA1 enzyme is the main source of OASTL activity and thus crucial for cysteine homeostasis. We found that nitrating conditions after exposure to peroxynitrite strongly inhibited OASTL activity. Among OASTLs, OASA1 was markedly sensitive to nitration as demonstrated by the comparative analysis of OASTL activity in nitrated crude protein extracts from wild type and different oastl mutants. Furthermore, nitration assays on purified recombinant OASA1 protein led to 90% reduction of the activity due to inhibition of the enzyme, as no degradation of the protein occurred under these conditions. The reduced activity was due to nitration of the protein because selective scavenging of peroxynitrite with epicatechin impaired OASA1 nitration and the concomitant inhibition of OASTL activity. Inhibition of OASA1 activity upon nitration correlated with the identification of a modified OASA1 protein containing 3-nitroTyr(302) residue. The essential role of the Tyr(302) residue for the catalytic activity was further demonstrated by the loss of OASTL activity of a Y302A-mutated version of OASA1. Inhibition caused by Tyr(302) nitration on OASA1 activity seems to be due to a drastically reduced O-acetylserine substrate binding to the nitrated protein, and also to reduced stabilization of the pyridoxal-5'-phosphate cofactor through hydrogen bonds. This is the first report identifying a Tyr nitration site of a plant protein with functional effect and the first post-translational modification identified in OASA1 enzyme.
Collapse
Affiliation(s)
- Consolación Alvarez
- Instituto de Bioquímica Vegetal y Fotosíntesis, CSIC-Universidad de Sevilla, Avenida Américo Vespucio 49, 41092 Sevilla, Spain
| | | | | | | | | | | |
Collapse
|
72
|
Kim JY, Lee HJ, Jung HJ, Maruyama K, Suzuki N, Kang H. Overexpression of microRNA395c or 395e affects differently the seed germination of Arabidopsis thaliana under stress conditions. PLANTA 2010; 232:1447-54. [PMID: 20839006 DOI: 10.1007/s00425-010-1267-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Accepted: 08/30/2010] [Indexed: 05/04/2023]
Abstract
The Arabidopsis genome encodes six members of microRNA395 (miR395) family previously determined to regulate the expression of ATP sulfurylase (APS) and the sulfate transporter SULTR2;1. However, the mRNA targets for the individual miR395 family members and the biological consequences produced by target gene regulation of each miR395 remain to be identified. In this study, a transgenic approach was employed to determine the mRNA targets for each miR395 family member as well as the role each member plays in plant growth under abiotic stress conditions. Overexpression of miR395c or miR395e retarded and accelerated, respectively, the seed germination of Arabidopsis under high salt or dehydration stress conditions. Despite a single nucleotide difference between miR395c and miR395e, the cleavage of mRNA targets, APS1, APS3, APS4 and SULTR2;1, was not same in miR395c- and miR395e-overexpressing plants. These results demonstrate that a given miRNA family containing a single nucleotide difference can guide the cleavage of various mRNA targets, thereby acting as a positive or negative regulator of seed germination under stress.
Collapse
Affiliation(s)
- Joo Yeol Kim
- Department of Plant Biotechnology, Agricultural Plant Stress Research Center and Biotechnology Research Institute, College of Agriculture and Life Sciences, Chonnam National University, 300 Yongbong-dong, Buk-gu, Gwangju, 500-757, Korea
| | | | | | | | | | | |
Collapse
|
73
|
Koprivova A, Mugford ST, Kopriva S. Arabidopsis root growth dependence on glutathione is linked to auxin transport. PLANT CELL REPORTS 2010; 29:1157-67. [PMID: 20669021 DOI: 10.1007/s00299-010-0902-0] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Revised: 07/12/2010] [Accepted: 07/18/2010] [Indexed: 05/03/2023]
Abstract
Glutathione depletion, e.g. by the inhibitor of its synthesis, buthionine sulphoximine (BSO), is well known to specifically reduce primary root growth. To obtain an insight into the mechanism of this inhibition, we explored the effects of BSO on Arabidopsis root growth in more detail. BSO inhibits root growth and reduces glutathione (GSH) concentration in a concentration-dependent manner leading to a linear correlation of root growth and GSH content. Microarray analysis revealed that the effect of BSO on gene expression is similar to the effects of misregulation of auxin homeostasis. In addition, auxin-resistant mutants axr1 and axr3 are less sensitive to BSO than the wild-type plants. Indeed, exposure of Arabidopsis to BSO leads to disappearance of the auxin maximum in root tips and the expression of QC cell marker. BSO treatment results in loss of the auxin carriers, PIN1, PIN2 and PIN7, from the root tips of primary roots, but not adventitious roots. Since BSO did not abolish transcription of PIN1, and since the effect of BSO was complemented by dithiothreitol, we conclude that as yet an uncharacterised post-transcriptional redox mechanism regulates the expression of PIN proteins, and thus auxin transport, in the root tips.
Collapse
Affiliation(s)
- Anna Koprivova
- Department of Metabolic Biology, John Innes Centre, Norwich NR4 7UH, UK
| | | | | |
Collapse
|
74
|
Koprivova A, des Francs-Small CC, Calder G, Mugford ST, Tanz S, Lee BR, Zechmann B, Small I, Kopriva S. Identification of a pentatricopeptide repeat protein implicated in splicing of intron 1 of mitochondrial nad7 transcripts. J Biol Chem 2010; 285:32192-9. [PMID: 20682769 DOI: 10.1074/jbc.m110.147603] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Splicing of plant organellar transcripts is facilitated by members of a large protein family, the pentatricopeptide repeat proteins. We have identified a pentatricopeptide repeat protein in a genetic screen for mutants resistant to inhibition of root growth by buthionine sulfoximine (BSO), an inhibitor of glutathione synthesis and consequently named BIR6 (BSO-insensitive roots 6). BIR6 is involved in splicing of intron 1 of the mitochondrial nad7 transcript. Loss-of-function mutations in BIR6 result in a strongly reduced accumulation of fully processed nad7 transcript. This affects assembly of Complex I and results in moderate growth retardation. In agreement with disruption of Complex I function, the genes encoding alternative NADH oxidizing enzymes are induced in the mutant, and the mutant plants are less sensitive to mannitol and salt stress. Mutation in the BIR6 gene allowed normal root growth in presence of BSO and strongly attenuated depletion of glutathione content at these conditions. The same phenotype was observed with other mutants affected in function of Complex I, thus reinforcing the importance of Complex I function for cellular redox homeostasis.
Collapse
Affiliation(s)
- Anna Koprivova
- Department of Metabolic Biology, John Innes Centre, Norwich NR4 7UH, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
75
|
Construction and analysis of SOS pathway-related transcriptional regulatory network underlying salt stress response in Arabidopsis. YI CHUAN = HEREDITAS 2010; 32:639-46. [DOI: 10.3724/sp.j.1005.2010.00639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
76
|
Hermsen C, Koprivova A, Matthewman C, Wesenberg D, Krauss GJ, Kopriva S. Regulation of sulfate assimilation in Physcomitrella patens: mosses are different! PLANTA 2010; 232:461-470. [PMID: 20473684 DOI: 10.1007/s00425-010-1190-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2010] [Accepted: 04/30/2010] [Indexed: 05/29/2023]
Abstract
Sulfur is an essential nutrient, taken up as sulfate from soil, reduced and incorporated into bioorganic compounds in plant cells. The pathway of sulfate assimilation is highly regulated in a demand-driven manner in seed plants. To test the evolutionary conservation of the regulatory mechanisms, we analyzed regulation of the pathway in the model for basal plants, the moss Physcomitrella patens. While in Arabidopsis the key enzyme of sulfate assimilation, adenosine 5'-phosphosulfate reductase (APR), is feedback repressed by thiols and induced by reduced levels of glutathione, in P. patens such regulation does not occur. The control of the pathway was not moved to other components as these conditions affected neither mRNA accumulation of other genes of sulfate assimilation nor sulfate uptake. Other treatments known to regulate APR, O-acetylserine, cadmium and sulfur deficiency affected APR transcript levels, but not enzyme activity. It appears that the sulfate assimilation pathway in P. patens is much more robust than in seed plants. Thus, the regulatory networks controlling the pathway have probably evolved only later in the evolution of the seed plants after separation of the bryophytes.
Collapse
Affiliation(s)
- Corinna Hermsen
- Department of Biochemistry/Biotechnology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | | | | | | | | | | |
Collapse
|
77
|
Galon Y, Aloni R, Nachmias D, Snir O, Feldmesser E, Scrase-Field S, Boyce JM, Bouché N, Knight MR, Fromm H. Calmodulin-binding transcription activator 1 mediates auxin signaling and responds to stresses in Arabidopsis. PLANTA 2010; 232:165-78. [PMID: 20383645 DOI: 10.1007/s00425-010-1153-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Accepted: 03/15/2010] [Indexed: 05/08/2023]
Abstract
Auxin is a key plant hormone that regulates various aspects of plant development. However, the mechanisms integrating auxin growth effects with stress responses are not fully understood. In this study, we investigated the possible role of calmodulin-binding transcription activator 1 (CAMTA1), an Arabidopsis thaliana calcium/calmodulin-binding transcription activator, in auxin signaling and its responses to different stresses. Plants harboring the AtCAMTA1 promoter fused to the GUS reporter gene revealed cell-specific expression patterns reminiscent of auxin responses. The responsiveness of CAMTA1 to auxin was further assessed by chemical disturbances in polar auxin transport, and by RT-PCR analysis of gene expression of dissected leaf sections from plants exposed to the auxin transport inhibitor NPA. Furthermore, the intensity and cell-specific expression patterns of CAMTA1 changed significantly and differentially on exposure to increasing salt concentrations and heat. Transcriptome analysis of a camta1 T-DNA insertion mutant revealed 63 up-regulated genes, of which 17 are associated with auxin signaling. Finally, analysis of hypocotyl elongation in the presence and absence of auxin revealed that camta1 T-DNA insertion mutants and CAMTA1-repressor lines are hyper-responsive to auxin compared to wild-type seedlings. Thus, CAMTA1 participates in auxin signaling and responds to abiotic stresses.
Collapse
Affiliation(s)
- Yael Galon
- Department of Plant Sciences, Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
78
|
Yatusevich R, Mugford SG, Matthewman C, Gigolashvili T, Frerigmann H, Delaney S, Koprivova A, Flügge UI, Kopriva S. Genes of primary sulfate assimilation are part of the glucosinolate biosynthetic network in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 62:1-11. [PMID: 20042022 DOI: 10.1111/j.1365-313x.2009.04118.x] [Citation(s) in RCA: 102] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Glucosinolates are plant secondary metabolites involved in responses to biotic stress. The final step of their synthesis is the transfer of a sulfo group from 3'-phosphoadenosine 5'-phosphosulfate (PAPS) onto a desulfo precursor. Thus, glucosinolate synthesis is linked to sulfate assimilation. The sulfate donor for this reaction is synthesized from sulfate in two steps catalyzed by ATP sulfurylase (ATPS) and adenosine 5'-phosphosulfate kinase (APK). Here we demonstrate that R2R3-MYB transcription factors, which are known to regulate both aliphatic and indolic glucosinolate biosynthesis in Arabidopsis thaliana, also control genes of primary sulfate metabolism. Using trans-activation assays we found that two isoforms of APK, APK1, and APK2, are regulated by both classes of glucosinolate MYB transcription factors; whereas two ATPS genes, ATPS1 and ATPS3, are differentially regulated by these two groups of MYB factors. In addition, we show that the adenosine 5'-phosphosulfate reductases APR1, APR2, and APR3, which participate in primary sulfate reduction, are also activated by the MYB factors. These observations were confirmed by analysis of transgenic lines with modulated expression levels of the glucosinolate MYB factors. The changes in transcript levels also affected enzyme activities, the thiol content and the sulfate reduction rate in some of the transgenic plants. Altogether the data revealed that the MYB transcription factors regulate genes of primary sulfate metabolism and that the genes involved in the synthesis of activated sulfate are part of the glucosinolate biosynthesis network.
Collapse
Affiliation(s)
- Ruslan Yatusevich
- Botanisches Institut der Universität zu Köln, Otto-Fischer-Str. 6, D-50674 Köln, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
79
|
Wiedemann G, Hermsen C, Melzer M, Büttner-Mainik A, Rennenberg H, Reski R, Kopriva S. Targeted knock-out of a gene encoding sulfite reductase in the moss Physcomitrella patens affects gametophytic and sporophytic development. FEBS Lett 2010; 584:2271-8. [PMID: 20347810 DOI: 10.1016/j.febslet.2010.03.034] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2009] [Revised: 03/17/2010] [Accepted: 03/22/2010] [Indexed: 01/16/2023]
Abstract
A key step in sulfate assimilation into cysteine is the reduction of sulfite to sulfide by sulfite reductase (SiR). This enzyme is encoded by three genes in the moss Physcomitrella patens. To obtain a first insight into the roles of the individual isoforms, we deleted the gene encoding the SiR1 isoform in P. patens by homologous recombination and subsequently analysed the DeltaSiR1 mutants. While DeltaSiR1 mutants showed no obvious alteration in sulfur metabolism, their regeneration from protoplasts and their ability to produce mature spores was significantly affected, highlighting an unexpected link between moss sulfate assimilation and development, that is yet to be characterized.
Collapse
Affiliation(s)
- Gertrud Wiedemann
- University of Freiburg, Faculty of Biology, Plant Biotechnology, Freiburg, Germany
| | | | | | | | | | | | | |
Collapse
|
80
|
Davidian JC, Kopriva S. Regulation of sulfate uptake and assimilation--the same or not the same? MOLECULAR PLANT 2010; 3:314-25. [PMID: 20139159 DOI: 10.1093/mp/ssq001] [Citation(s) in RCA: 145] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Plant take up the essential nutrient sulfur as sulfate from the soil, reduce it, and assimilate into bioorganic compounds, with cysteine being the first product. Both sulfate uptake and assimilation are highly regulated by the demand for the reduced sulfur, by availability of nutrients, and by environmental conditions. In the last decade, great progress has been achieved in dissecting the regulation of sulfur metabolism. Sulfate uptake and reduction of activated sulfate, adenosine 5'-phosphosulfate (APS), to sulfite by APS reductase appear to be the key regulatory steps. Here, we review the current knowledge on regulation of these processes, with special attention given to similarities and differences.
Collapse
Affiliation(s)
- Jean-Claude Davidian
- Unité mixte de recherche, Biochimie et Physiologie Moléculaire des Plantes, Montpellier SupAgro/CNRS/INRA/UM2, 2 place Pierre Viala, 34060 Montpellier Cedex 2, France
| | | |
Collapse
|
81
|
Mugford SG, Matthewman CA, Hill L, Kopriva S. Adenosine-5'-phosphosulfate kinase is essential for Arabidopsis viability. FEBS Lett 2010; 584:119-23. [PMID: 19903478 DOI: 10.1016/j.febslet.2009.11.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2009] [Revised: 11/03/2009] [Accepted: 11/04/2009] [Indexed: 12/21/2022]
Abstract
In Arabidopsis thaliana, adenosine-5'-phosphosulfate kinase (APK) provides activated sulfate for sulfation of secondary metabolites, including the glucosinolates. We have successfully isolated three of the four possible triple homozygous mutant combinations of this family. The APK1 isoform alone was sufficient to maintain WT levels of growth and development. Analysis of apk1 apk2 apk3 and apk1 apk3 apk4 mutants suggests that APK3 and APK4 are functionally redundant, despite being located in cytosol and plastids, respectively. We were, however, unable to isolate apk1 apk3 apk4 mutants, most probably because the apk1 apk3 apk4 triple mutant combination is pollen lethal. Therefore, we conclude that APS kinase is essential for plant reproduction and viability.
Collapse
Affiliation(s)
- Sarah G Mugford
- Department of Metabolic Biology, John Innes Centre, Norwich, UK
| | | | | | | |
Collapse
|
82
|
Scheerer U, Haensch R, Mendel RR, Kopriva S, Rennenberg H, Herschbach C. Sulphur flux through the sulphate assimilation pathway is differently controlled by adenosine 5'-phosphosulphate reductase under stress and in transgenic poplar plants overexpressing gamma-ECS, SO, or APR. JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:609-22. [PMID: 19923196 PMCID: PMC2803220 DOI: 10.1093/jxb/erp327] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2009] [Revised: 10/21/2009] [Accepted: 10/22/2009] [Indexed: 05/18/2023]
Abstract
Sulphate assimilation provides reduced sulphur for the synthesis of cysteine, methionine, and numerous other essential metabolites and secondary compounds. The key step in the pathway is the reduction of activated sulphate, adenosine 5'-phosphosulphate (APS), to sulphite catalysed by APS reductase (APR). In the present study, [(35)S]sulphur flux from external sulphate into glutathione (GSH) and proteins was analysed to check whether APR controls the flux through the sulphate assimilation pathway in poplar roots under some stress conditions and in transgenic poplars. (i) O-Acetylserine (OAS) induced APR activity and the sulphur flux into GSH. (ii) The herbicide Acetochlor induced APR activity and results in a decline of GSH. Thereby the sulphur flux into GSH or protein remained unaffected. (iii) Cd treatment increased APR activity without any changes in sulphur flux but lowered sulphate uptake. Several transgenic poplar plants that were manipulated in sulphur metabolism were also analysed. (i) Transgenic poplar plants that overexpressed the gamma-glutamylcysteine synthetase (gamma-ECS) gene, the enzyme catalysing the key step in GSH formation, showed an increase in sulphur flux into GSH and sulphate uptake when gamma-ECS was targeted to the cytosol, while no changes in sulphur flux were observed when gamma-ECS was targeted to plastids. (ii) No effect on sulphur flux was observed when the sulphite oxidase (SO) gene from Arabidopsis thaliana, which catalyses the back reaction of APR, that is the reaction from sulphite to sulphate, was overexpressed. (iii) When Lemna minor APR was overexpressed in poplar, APR activity increased as expected, but no changes in sulphur flux were observed. For all of these experiments the flux control coefficient for APR was calculated. APR as a controlling step in sulphate assimilation seems obvious under OAS treatment, in gamma-ECS and SO overexpressing poplars. A possible loss of control under certain conditions, that is Cd treatment, Acetochlor treatment, and in APR overexpressing poplar, is discussed.
Collapse
Affiliation(s)
- Ursula Scheerer
- Albert-Ludwigs-University Freiburg, Institute of Forest Botany and Tree Physiology, Chair of Tree Physiology, Georges-Köhler-Allee 053/054, D-79110 Freiburg, Germany
| | - Robert Haensch
- Technical University Braunschweig, Institute of Plant Biology, Humboldtstraße 1, D-38106 Braunschweig, Germany
| | - Ralf R. Mendel
- Technical University Braunschweig, Institute of Plant Biology, Humboldtstraße 1, D-38106 Braunschweig, Germany
| | - Stanislav Kopriva
- Albert-Ludwigs-University Freiburg, Institute of Forest Botany and Tree Physiology, Chair of Tree Physiology, Georges-Köhler-Allee 053/054, D-79110 Freiburg, Germany
| | - Heinz Rennenberg
- Albert-Ludwigs-University Freiburg, Institute of Forest Botany and Tree Physiology, Chair of Tree Physiology, Georges-Köhler-Allee 053/054, D-79110 Freiburg, Germany
| | - Cornelia Herschbach
- Albert-Ludwigs-University Freiburg, Institute of Forest Botany and Tree Physiology, Chair of Tree Physiology, Georges-Köhler-Allee 053/054, D-79110 Freiburg, Germany
- To whom correspondence should be addressed. E-mail:
| |
Collapse
|
83
|
Kopriva S, Mugford SG, Matthewman C, Koprivova A. Plant sulfate assimilation genes: redundancy versus specialization. PLANT CELL REPORTS 2009; 28:1769-80. [PMID: 19876632 DOI: 10.1007/s00299-009-0793-0] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2009] [Revised: 10/13/2009] [Accepted: 10/14/2009] [Indexed: 05/03/2023]
Abstract
Sulfur is an essential nutrient present in the amino acids cysteine and methionine, co-enzymes and vitamins. Plants and many microorganisms are able to utilize inorganic sulfate and assimilate it into these compounds. Sulfate assimilation in plants has been extensively studied because of the many functions of sulfur in plant metabolism and stress defense. The pathway is highly regulated in a demand-driven manner. A characteristic feature of this pathway is that most of its components are encoded by small multigene families. This may not be surprising, as several steps of sulfate assimilation occur in multiple cellular compartments, but the composition of the gene families is more complex than simply organellar versus cytosolic forms. Recently, several of these gene families have been investigated in a systematic manner utilizing Arabidopsis reverse genetics tools. In this review, we will assess how far the individual isoforms of sulfate assimilation enzymes possess specific functions and what level of genetic redundancy is retained. We will also compare the genomic organization of sulfate assimilation in the model plant Arabidopsis thaliana with other plant species to find common and species-specific features of the pathway.
Collapse
|
84
|
North KA, Ehlting B, Koprivova A, Rennenberg H, Kopriva S. Natural variation in Arabidopsis adaptation to growth at low nitrogen conditions. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2009; 47:912-8. [PMID: 19628403 DOI: 10.1016/j.plaphy.2009.06.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2009] [Revised: 06/23/2009] [Accepted: 06/26/2009] [Indexed: 05/24/2023]
Abstract
Improving nutrient use efficiency of crop plants, especially at low input, is essential to ensure sustainable food production in the future. In order to address the genetic basis of nutrient use efficiency in a model system, growth of Arabidopsis ecotypes at normal and low nitrogen (N) supply was compared. The ecotypes differed significantly in the extent of growth reduction in limiting conditions. The fresh weight of Shahdara and Ws grown at 1mM nitrate was reduced by 30% compared to control, whereas Col-0 and Ga-0 were almost unaffected. Total N content was reduced in all ecotypes by 10-30%. The capacity to store nitrate correlated with the tolerance to low N; in Shahdara and Ws, but not in Col-0 and Ga-0, nitrate content on low N was significantly reduced compared to control nutrition. The mRNA levels for genes of nitrate uptake and assimilation were only moderately affected by the treatment. The transcript levels of nitrate reductase NIA1 and nitrite reductase were higher in the ecotypes tolerant to low N (Col-0 and Ga-0) with normal N nutrition but on low N they were reduced to a much higher extent than the sensitive ecotypes (Shahdara and Ws). It seems that a higher capacity to keep nitrate reserves at low N, perhaps due to the ability to turn down nitrate reduction rate, is responsible for a better tolerance of Col-0 and Ga-0 to low N supply.
Collapse
|
85
|
Rubio V, Bustos R, Irigoyen ML, Cardona-López X, Rojas-Triana M, Paz-Ares J. Plant hormones and nutrient signaling. PLANT MOLECULAR BIOLOGY 2009; 69:361-73. [PMID: 18688730 DOI: 10.1007/s11103-008-9380-y] [Citation(s) in RCA: 160] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2008] [Accepted: 07/14/2008] [Indexed: 05/18/2023]
Abstract
Plants count on a wide variety of metabolic, physiological, and developmental responses to adapt their growth to variations in mineral nutrient availability. To react to such variations plants have evolved complex sensing and signaling mechanisms that allow them to monitor the external and internal concentration of each of these nutrients, both in absolute terms and also relatively to the status of other nutrients. Recent evidence has shown that hormones participate in the control of these regulatory networks. Conversely, mineral nutrient conditions influence hormone biosynthesis, further supporting close interrelation between hormonal stimuli and nutritional homeostasis. In this review, we summarize these evidences and analyze possible transcriptional correlations between hormonal and nutritional responses, as a means to further characterize the role of hormones in the response of plants to limiting nutrients in soil.
Collapse
Affiliation(s)
- Vicente Rubio
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología-CSIC, Campus Universidad Autónoma de Madrid, 28049 Cantoblanco, Madrid, Spain
| | | | | | | | | | | |
Collapse
|
86
|
A cyclophilin links redox and light signals to cysteine biosynthesis and stress responses in chloroplasts. Proc Natl Acad Sci U S A 2008; 105:16386-91. [PMID: 18845687 DOI: 10.1073/pnas.0808204105] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Cyclophilins belong to a large family of enzymes called "peptidyl prolyl isomerases" that assist protein folding and assembly. The cyclophilin CYP20-3 (also known as "ROC4") is the only member of this group located in the stroma (soluble phase) of chloroplasts. In the present study we isolated mutant Arabidopsis plants defective in the CYP20-3 gene and found them to be hypersensitive to oxidative stress conditions created by high light levels, rose bengal, high salt levels, and osmotic shock. Chloroplast serine acetyltransferase (SAT1), a rate-limiting enzyme in cysteine biosynthesis, was identified as an interacting partner for CYP20-3 by protein interaction analyses. In the present experiments, SAT1 activity increased significantly under conditions of light and oxidative stress in concert with total thiols in wild-type plants. By contrast, these parameters changed only marginally in experiments with the cyp20-3 mutant, suggesting that CYP20-3 links light and stress to SAT1 activity and cysteine biosynthesis. In further support of this conclusion, our analyses showed that the salt-hypersensitive phenotype of the mutant developed under illumination and not in the dark. Together with the earlier report that CYP20-3 foldase activity is enhanced by thioredoxin-mediated reduction, our findings suggest that CYP20-3 links photosynthetic electron transport and redox regulation to the folding of SAT1, thereby enabling the cysteine-based thiol biosynthesis pathway to adjust to light and stress conditions.
Collapse
|
87
|
Koprivova A, Kopriva S. Lessons from investigation of regulation of APS reductase by salt stress. PLANT SIGNALING & BEHAVIOR 2008; 3:567-9. [PMID: 19704471 PMCID: PMC2634499 DOI: 10.4161/psb.3.8.5716] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2008] [Accepted: 02/12/2008] [Indexed: 05/08/2023]
Abstract
Exposure to high salinity affects plant ion homeostasis, water relations and results in oxidative stress. Therefore, various processes are induced as salt stress response including antioxidative defense systems. The tripeptide glutathione has a prominent position among the metabolites involved in such stress defense. Glutathione synthesis is dependent on supply of cysteine and thus on the assimilation of sulfate. We have investigated how the key enzyme of sulfate assimilation, adenosine 5'phosphosulfate (APS) reductase is regulated by salt stress in Arabidopsis roots. Using Arabidopsis mutants in various signaling pathways we aimed to identify the signaling cascade leading to regulation of APS reductase by NaCl. We found the enzyme to be regulated by a complex signaling network on transcriptional and post-transcriptional levels with responses of mRNA accumulation and enzyme activity largely uncoupled. Here we want to share the important lessons we have learned from this investigations.
Collapse
|