51
|
Cui J, Lamade E, Tcherkez G. Potassium deficiency reconfigures sugar export and induces catecholamine accumulation in oil palm leaves. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 300:110628. [PMID: 33180708 DOI: 10.1016/j.plantsci.2020.110628] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 07/24/2020] [Accepted: 07/29/2020] [Indexed: 05/25/2023]
Abstract
Metabolic effects of potassium (K) deficiency have been described for nearly 70 years but specific effects of low K availability on sugar composition, sugar export rate and its relationship with other leaf metabolites are not very well documented. Having such pieces of information is nevertheless essential to identify metabolic signatures to monitor K fertilization. This is particularly true in oil-producing crop species such as oil palm (Elaeis guineensis), which is strongly K-demanding and involves high sugar dependence for fruit formation because of low carbon use efficiency in lipid synthesis. Here, we used metabolic analyses, measured sugar export rates with 13C isotopic labeling and examined the effects of K availability on both leaflet and rachis sugar metabolism in oil palm seedlings. We show that low K leads to a modification of sugar composition mostly in rachis and decreased sucrose and hexose export rates from leaflets. As a result, leaflets contained more starch and induced alternative pathways such as raffinose synthesis, although metabolites of the raffinose pathway remained quantitatively minor. The alteration of glycolysis by low K was compensated for by an increase in alternative sugar phosphate utilization by tyrosine metabolism, resulting in considerable amounts of tyramine and dopamine.
Collapse
Affiliation(s)
- Jing Cui
- Research School of Biology, ANU Joint College of Sciences, Australian National University, 2601, Canberra, ACT, Australia
| | - Emmanuelle Lamade
- Centre de coopération internationale en recherche agronomique pour le développement (CIRAD),UPR Systèmes de Pérennes; Université de Montpellier, Systèmes de Pérennes, CIRAD, 34398, Montpellier, France
| | - Guillaume Tcherkez
- Research School of Biology, ANU Joint College of Sciences, Australian National University, 2601, Canberra, ACT, Australia.
| |
Collapse
|
52
|
Wasonga DO, Kleemola J, Alakukku L, Mäkelä PSA. Potassium Fertigation With Deficit Irrigation Improves the Nutritive Quality of Cassava. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2020. [DOI: 10.3389/fsufs.2020.575353] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
53
|
Feng X, Liu W, Cao F, Wang Y, Zhang G, Chen ZH, Wu F. Overexpression of HvAKT1 improves drought tolerance in barley by regulating root ion homeostasis and ROS and NO signaling. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:6587-6600. [PMID: 32766860 DOI: 10.1093/jxb/eraa354] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 07/28/2020] [Indexed: 05/24/2023]
Abstract
Potassium (K+) is the major cationic inorganic nutrient utilized for osmotic regulation, cell growth, and enzyme activation in plants. Inwardly rectifying K+ channel 1 (AKT1) is the primary channel for root K+ uptake in plants, but the function of HvAKT1 in barley plants under drought stress has not been fully elucidated. In this study, we conducted evolutionary bioinformatics, biotechnological, electrophysiological, and biochemical assays to explore molecular mechanisms of HvAKT1 in response to drought in barley. The expression of HvAKT1 was significantly up-regulated by drought stress in the roots of XZ5-a drought-tolerant wild barley genotype. We isolated and functionally characterized the plasma membrane-localized HvAKT1 using Agrobacterium-mediated plant transformation and Barley stripe mosaic virus-induced gene silencing of HvAKT1 in barley. Evolutionary bioinformatics indicated that the K+ selective filter in AKT1 originated from streptophyte algae and is evolutionarily conserved in land plants. Silencing of HvAKT1 resulted in significantly decreased biomass and suppressed K+ uptake in root epidermal cells under drought treatment. Disruption of HvAKT1 decreased root H+ efflux, H+-ATPase activity, and nitric oxide (NO) synthesis, but increased hydrogen peroxide (H2O2) production in the roots under drought stress. Furthermore, we observed that overexpression of HvAKT1 improves K+ uptake and increases drought resistance in barley. Our results highlight the importance of HvAKT1 for root K+ uptake and its pleiotropic effects on root H+-ATPase, and H2O2 and NO in response to drought stress, providing new insights into the genetic basis of drought tolerance and K+ nutrition in barley.
Collapse
Affiliation(s)
- Xue Feng
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Wenxing Liu
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Fangbin Cao
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| | - Yizhou Wang
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Guoping Zhang
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, China
| | - Zhong-Hua Chen
- School of Science, Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
- Collaborative Innovation Center for Grain Industry, College of Agriculture, Yangtze University, Jingzhou, China
| | - Feibo Wu
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, China
| |
Collapse
|
54
|
Suh DH, Kim YX, Jung ES, Lee S, Park J, Lee CH, Sung J. Characterization of Metabolic Changes under Low Mineral Supply (N, K, or Mg) and Supplemental LED Lighting (Red, Blue, or Red-Blue Combination) in Perilla frutescens Using a Metabolomics Approach. Molecules 2020; 25:E4714. [PMID: 33066640 PMCID: PMC7587346 DOI: 10.3390/molecules25204714] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/09/2020] [Accepted: 10/12/2020] [Indexed: 01/01/2023] Open
Abstract
In order to achieve premium quality with crop production, techniques involving the adjustment of nutrient supply and/or supplemental lighting with specific light quality have been applied. To examine the effects of low mineral supply and supplemental lighting, we performed non-targeted metabolite profiling of leaves and stems of the medicinal herb Perilla frutescens, grown under a lower (0.75×) and lowest (0.1×) supply of different minerals (N, K, or Mg) and under supplemental light-emitting diode (LED) lighting (red, blue, or red-blue combination). The lowest N supply increased flavonoids, and the lowest K or Mg slightly increased rosmarinic acid and some flavonoids in the leaves and stems. Supplemental LED lighting conditions (red, blue, or red-blue combination) significantly increased the contents of chlorophyll, most cinnamic acid derivatives, and rosmarinic acid in the leaves. LED lighting with either blue or the red-blue combination increased antioxidant activity compared with the control group without LED supplementation. The present study demonstrates that the cultivation of P. frutescens under low mineral supply and supplemental LED lighting conditions affected metabolic compositions, and we carefully suggest that an adjustment of minerals and light sources could be applied to enhance the levels of targeted metabolites in perilla.
Collapse
Affiliation(s)
- Dong Ho Suh
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea; (D.H.S.); (J.P.)
| | - Yangmin X. Kim
- National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Korea; (Y.X.K.); (S.L.)
| | - Eun Sung Jung
- Department of Systems Biotechnology, Konkuk University, Seoul 05029, Korea;
| | - Seulbi Lee
- National Institute of Agricultural Sciences, Rural Development Administration, Wanju 55365, Korea; (Y.X.K.); (S.L.)
| | - Jinyong Park
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea; (D.H.S.); (J.P.)
| | - Choong Hwan Lee
- Department of Bioscience and Biotechnology, Konkuk University, Seoul 05029, Korea; (D.H.S.); (J.P.)
- Research Institute for Bioactive-Metabolome Network, Konkuk University, Seoul 05029, Korea
| | - Jwakyung Sung
- Department of Crop Science, College of Agriculture, Life and Environment Sciences, Chungbuk National University, Cheongju 28644, Korea
| |
Collapse
|
55
|
Zhao Y, Sun R, Liu H, Liu X, Xu K, Xiao K, Zhang S, Yang X, Xue C. Multi-Omics Analyses Reveal the Molecular Mechanisms Underlying the Adaptation of Wheat ( Triticum aestivum L.) to Potassium Deprivation. FRONTIERS IN PLANT SCIENCE 2020; 11:588994. [PMID: 33123186 PMCID: PMC7573229 DOI: 10.3389/fpls.2020.588994] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 09/14/2020] [Indexed: 05/25/2023]
Abstract
Potassium (K) is essential for regulating plant growth and mediating abiotic stress responses. Elucidating the biological mechanism underlying plant responses to K-deficiency is crucial for breeding new cultivars with improved K uptake and K utilization efficiency. In this study, we evaluated the extent of the genetic variation among 543 wheat accessions differing in K-deficiency tolerance at the seedling and adult plant stages. Two accessions, KN9204 and BN207, were identified as extremely tolerant and sensitive to K-deficiency, respectively. The accessions were exposed to normal and K-deficient conditions, after which their roots underwent ionomic, transcriptomic, and metabolomic analyses. Under K-deficient conditions, KN9204 exhibited stronger root growth and maintained higher K concentrations than BN207. Moreover, 19,440 transcripts and 162 metabolites were differentially abundant in the roots of both accessions according to transcriptomic and metabolomic analyses. An integrated analysis of gene expression and metabolite profiles revealed that substantially more genes, including those related to ion homeostasis, cellular reactive oxygen species homeostasis, and the glutamate metabolic pathway, were up-regulated in KN9204 than in BN207 in response to low-K stress. Accordingly, these candidate genes have unique regulatory roles affecting plant K-starvation tolerance. These findings may be useful for further clarifying the molecular changes underlying wheat root adaptations to K deprivation.
Collapse
|
56
|
Hu W, Lu Z, Meng F, Li X, Cong R, Ren T, Sharkey TD, Lu J. The reduction in leaf area precedes that in photosynthesis under potassium deficiency: the importance of leaf anatomy. THE NEW PHYTOLOGIST 2020; 227:1749-1763. [PMID: 32367581 DOI: 10.1111/nph.16644] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 04/26/2020] [Indexed: 06/11/2023]
Abstract
Synergistic improvement in leaf photosynthetic area and rate is essential for enhancing crop yield. However, reduction in leaf area occurs earlier than that in the photosynthetic rate under potassium (K) deficiency stress. The photosynthetic capacity and anatomical characteristics of oilseed rape (Brassica napus) leaves in different growth stages under different K levels were observed to clarify the mechanism regulating this process. Increased mesophyll cell size and palisade tissue thickness, in K-deficient leaves triggered significant enlargement of mesophyll cell area per transverse section width (S/W), in turn inhibiting leaf expansion. However, there was only a minor difference in chloroplast morphology, likely because of K redistribution from vacuole to chloroplast. As K stress increased, decreased mesophyll surface exposed to intercellular space and chloroplast density induced longer distances between neighbouring chloroplasts (Dchl-chl ) and decreased the chloroplast surface area exposed to intercellular space (Sc /S); conversely this induced a greater limitation imposed by the cytosol on CO2 transport, further reducing the photosynthetic rate. Changes in S/W associated with mesophyll cell morphology occurred earlier than changes in Sc /S and Dchl-chl , inducing a decrease in leaf area before photosynthetic rate reduction. Adequate K nutrition simultaneously increases photosynthetic area and rate, thus enhancing crop yield.
Collapse
Affiliation(s)
- Wenshi Hu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River, Ministry of Agriculture and Rural Affairs, Wuhan, 430070, China
| | - Zhifeng Lu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River, Ministry of Agriculture and Rural Affairs, Wuhan, 430070, China
| | - Fanjin Meng
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River, Ministry of Agriculture and Rural Affairs, Wuhan, 430070, China
| | - Xiaokun Li
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River, Ministry of Agriculture and Rural Affairs, Wuhan, 430070, China
| | - Rihuan Cong
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River, Ministry of Agriculture and Rural Affairs, Wuhan, 430070, China
| | - Tao Ren
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River, Ministry of Agriculture and Rural Affairs, Wuhan, 430070, China
| | - Thomas D Sharkey
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824, USA
- Department of Energy Plant Research Laboratory, Michigan State University, East Lansing, MI, 48824, USA
| | - Jianwei Lu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River, Ministry of Agriculture and Rural Affairs, Wuhan, 430070, China
| |
Collapse
|
57
|
Metabolic indices related to leaf marginal necrosis associated with potassium deficiency in tomato using GC/MS metabolite profiling. J Biosci Bioeng 2020; 130:520-524. [PMID: 32830038 DOI: 10.1016/j.jbiosc.2020.06.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 04/28/2020] [Accepted: 06/11/2020] [Indexed: 12/21/2022]
Abstract
To clarify the physiological factors associated with the development of tomato leaf marginal necrosis associated with potassium deficiency, tomato leaf blades prior to development of the symptoms were collected, and profiles of water-soluble metabolites were analyzed using gas chromatography-mass spectrometry. Multivariate analysis was conducted to screen for a component that was related to potassium deficiency-induced leaf necrosis among the 60 metabolites detected in tomato leaves. Polyamines, sugars, and branched amino acids were ranked highly. Putrescine was most strongly and negatively correlated with potassium concentration and exhibited an exponential response, regardless of the site or plant body. In addition to putrescine, glucose, xylose and l-isoleucine are known to play important roles in stress response and ion balance control, and it is thought that changes in metabolite profiles are linked to tomato leaf marginal necrosis associated with a decrease in endogenous potassium concentration. These findings will be useful for cultivation management to mitigate this physiological disorder of tomato.
Collapse
|
58
|
Feng X, Liu W, Qiu C, Zeng F, Wang Y, Zhang G, Chen Z, Wu F. HvAKT2 and HvHAK1 confer drought tolerance in barley through enhanced leaf mesophyll H + homoeostasis. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:1683-1696. [PMID: 31917885 PMCID: PMC7336388 DOI: 10.1111/pbi.13332] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 12/27/2019] [Accepted: 01/05/2020] [Indexed: 05/18/2023]
Abstract
Plant K+ uptake typically consists low-affinity mechanisms mediated by Shaker K+ channels (AKT/KAT/KC) and high-affinity mechanisms regulated by HAK/KUP/KT transporters, which are extensively studied. However, the evolutionary and genetic roles of both K+ uptake mechanisms for drought tolerance are not fully explored in crops adapted to dryland agriculture. Here, we employed evolutionary bioinformatics, biotechnological and electrophysiological approaches to determine the role of two important K+ transporters HvAKT2 and HvHAK1 in drought tolerance in barley. HvAKT2 and HvHAK1 were cloned and functionally characterized using barley stripe mosaic virus-induced gene silencing (BSMV-VIGS) in drought-tolerant wild barley XZ5 and agrobacterium-mediated gene transfer in the barley cultivar Golden Promise. The hallmarks of the K+ selective filters of AKT2 and HAK1 are both found in homologues from strepotophyte algae, and they are evolutionarily conserved in strepotophyte algae and land plants. HvAKT2 and HvHAK1 are both localized to the plasma membrane and have high selectivity to K+ and Rb+ over other tested cations. Overexpression of HvAKT2 and HvHAK1 enhanced K+ uptake and H+ homoeostasis leading to drought tolerance in these transgenic lines. Moreover, HvAKT2- and HvHAK1-overexpressing lines showed distinct response of K+ , H+ and Ca2+ fluxes across plasma membrane and production of nitric oxide and hydrogen peroxide in leaves as compared to the wild type and silenced lines. High- and low-affinity K+ uptake mechanisms and their coordination with H+ homoeostasis play essential roles in drought adaptation of wild barley. These findings can potentially facilitate future breeding programs for resilient cereal crops in a changing global climate.
Collapse
Affiliation(s)
- Xue Feng
- Department of AgronomyCollege of Agriculture and BiotechnologyZhejiang UniversityHangzhouChina
- Jiangsu Co‐Innovation Center for Modern Production Technology of Grain CropsYangzhou UniversityYangzhouChina
| | - Wenxing Liu
- Department of AgronomyCollege of Agriculture and BiotechnologyZhejiang UniversityHangzhouChina
| | - Cheng‐Wei Qiu
- Department of AgronomyCollege of Agriculture and BiotechnologyZhejiang UniversityHangzhouChina
- Jiangsu Co‐Innovation Center for Modern Production Technology of Grain CropsYangzhou UniversityYangzhouChina
| | - Fanrong Zeng
- Department of AgronomyCollege of Agriculture and BiotechnologyZhejiang UniversityHangzhouChina
| | - Yizhou Wang
- Department of AgronomyCollege of Agriculture and BiotechnologyZhejiang UniversityHangzhouChina
| | - Guoping Zhang
- Department of AgronomyCollege of Agriculture and BiotechnologyZhejiang UniversityHangzhouChina
| | - Zhong‐Hua Chen
- School of ScienceHawkesbury Institute for the EnvironmentWestern Sydney UniversityPenrithNSWAustralia
- Collaborative Innovation Center for Grain IndustryCollege of AgricultureYangtze UniversityJingzhouChina
| | - Feibo Wu
- Department of AgronomyCollege of Agriculture and BiotechnologyZhejiang UniversityHangzhouChina
- Jiangsu Co‐Innovation Center for Modern Production Technology of Grain CropsYangzhou UniversityYangzhouChina
| |
Collapse
|
59
|
Cui J, Pottosin I, Lamade E, Tcherkez G. What is the role of putrescine accumulated under potassium deficiency? PLANT, CELL & ENVIRONMENT 2020; 43:1331-1347. [PMID: 32017122 DOI: 10.1111/pce.13740] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 01/23/2020] [Accepted: 01/25/2020] [Indexed: 05/25/2023]
Abstract
Biomarker metabolites are of increasing interest in crops since they open avenues for precision agriculture, whereby nutritional needs and stresses can be monitored optimally. Putrescine has the potential to be a useful biomarker to reveal potassium (K+ ) deficiency. In fact, although this diamine has also been observed to increase during other stresses such as drought, cold or heavy metals, respective changes are comparably low. Due to its multifaceted biochemical properties, several roles for putrescine under K+ deficiency have been suggested, such as cation balance, antioxidant, reactive oxygen species mediated signalling, osmolyte or pH regulator. However, the specific association of putrescine build-up with low K+ availability in plants remains poorly understood, and possible regulatory roles must be consistent with putrescine concentration found in plant tissues. We hypothesize that the massive increase of putrescine upon K+ starvation plays an adaptive role. A distinction of putrescine function from that of other polyamines (spermine, spermidine) may be based either on its specificity or (which is probably more relevant under K+ deficiency) on a very high attainable concentration of putrescine, which far exceeds those for spermidine and spermine. putrescine and its catabolites appear to possess a strong potential in controlling cellular K+ and Ca2+ , and mitochondria and chloroplasts bioenergetics under K+ stress.
Collapse
Affiliation(s)
- Jing Cui
- Research School of Biology, ANU Joint College of Sciences, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Igor Pottosin
- Biomedical Centre, University of Colima, Colima, Mexico
| | - Emmanuelle Lamade
- UPR34 Performance des systèmes de culture des plantes pérennes, Département PERSYST, Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Montpellier, France
| | - Guillaume Tcherkez
- Research School of Biology, ANU Joint College of Sciences, Australian National University, Canberra, Australian Capital Territory, Australia
| |
Collapse
|
60
|
Obata T, Klemens PAW, Rosado-Souza L, Schlereth A, Gisel A, Stavolone L, Zierer W, Morales N, Mueller LA, Zeeman SC, Ludewig F, Stitt M, Sonnewald U, Neuhaus HE, Fernie AR. Metabolic profiles of six African cultivars of cassava (Manihot esculenta Crantz) highlight bottlenecks of root yield. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 102:1202-1219. [PMID: 31950549 DOI: 10.1111/tpj.14693] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 12/10/2019] [Accepted: 01/02/2020] [Indexed: 05/25/2023]
Abstract
Cassava is an important staple crop in sub-Saharan Africa, due to its high productivity even on nutrient poor soils. The metabolic characteristics underlying this high productivity are poorly understood including the mode of photosynthesis, reasons for the high rate of photosynthesis, the extent of source/sink limitation, the impact of environment, and the extent of variation between cultivars. Six commercial African cassava cultivars were grown in a greenhouse in Erlangen, Germany, and in the field in Ibadan, Nigeria. Source leaves, sink leaves, stems and storage roots were harvested during storage root bulking and analyzed for sugars, organic acids, amino acids, phosphorylated intermediates, minerals, starch, protein, activities of enzymes in central metabolism and yield traits. High ratios of RuBisCO:phosphoenolpyruvate carboxylase activity support a C3 mode of photosynthesis. The high rate of photosynthesis is likely to be attributed to high activities of enzymes in the Calvin-Benson cycle and pathways for sucrose and starch synthesis. Nevertheless, source limitation is indicated because root yield traits correlated with metabolic traits in leaves rather than in the stem or storage roots. This situation was especially so in greenhouse-grown plants, where irradiance will have been low. In the field, plants produced more storage roots. This was associated with higher AGPase activity and lower sucrose in the roots, indicating that feedforward loops enhanced sink capacity in the high light and low nitrogen environment in the field. Overall, these results indicated that carbon assimilation rate, the K battery, root starch synthesis, trehalose, and chlorogenic acid accumulation are potential target traits for genetic improvement.
Collapse
Affiliation(s)
- Toshihiro Obata
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
- Department of Biochemistry and Center for Plant Science Innovation, University of Nebraska-Lincoln, 1901 Vine Street, Lincoln, 68588, NE, USA
| | - Patrick A W Klemens
- Plant Physiology, University of Kaiserslautern, Erwin-Schrödinger-Str, D-67653, Kaiserslautern, Germany
| | - Laise Rosado-Souza
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Armin Schlereth
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Andreas Gisel
- International Institute of Tropical Agriculture, Oyo Road, 200001, Ibadan, Nigeria
- Institute for Biomedical Technologies, CNR, Via Amendola 122D, 70125, Bari, Italy
| | - Livia Stavolone
- International Institute of Tropical Agriculture, Oyo Road, 200001, Ibadan, Nigeria
- Institute for Sustainable Plant Protection, CNR, Via Amendola 122D, 70125, Bari, Italy
| | - Wolfgang Zierer
- Department of Biochemistry, University of Erlangen-Nuremberg, Staudtstr. 5, 91058, Erlangen, Germany
| | - Nicolas Morales
- Boyce Thompson Institute, 533 Tower Road, Ithaca, NY, 14850, USA
| | - Lukas A Mueller
- Boyce Thompson Institute, 533 Tower Road, Ithaca, NY, 14850, USA
| | - Samuel C Zeeman
- Institute of Molecular Plant Biology, Department of Biology, ETH Zürich, Zürich, Switzerland
| | - Frank Ludewig
- Institute for Biomedical Technologies, CNR, Via Amendola 122D, 70125, Bari, Italy
| | - Mark Stitt
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Uwe Sonnewald
- Department of Biochemistry, University of Erlangen-Nuremberg, Staudtstr. 5, 91058, Erlangen, Germany
| | - H Ekkehard Neuhaus
- Plant Physiology, University of Kaiserslautern, Erwin-Schrödinger-Str, D-67653, Kaiserslautern, Germany
| | - Alisdair R Fernie
- Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| |
Collapse
|
61
|
Omondi JO, Lazarovitch N, Rachmilevitch S, Kukew T, Yermiyahu U, Yasuor H. Potassium and storage root development: focusing on photosynthesis, metabolites and soluble carbohydrates in cassava. PHYSIOLOGIA PLANTARUM 2020; 169:169-178. [PMID: 31837027 DOI: 10.1111/ppl.13060] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/25/2019] [Accepted: 12/10/2019] [Indexed: 05/25/2023]
Abstract
The linkage between K and the development of storage roots in root crops is partially understood, hence this experiment determined some of the mechanisms involved in cassava. The effects of 10, 40, 70, 100, 150 and 200 mg K l-1 fertigation on photosynthetic attributes, soluble carbohydrates, starch, metabolites, growth and yield were studied in a greenhouse. Storage root yield, number of storage roots, stomatal conductance and net photosynthesis reached maximum at 150 mg K l-1 . However, soluble carbohydrates and starch in the leaves significantly declined with an increasing concentration of K solution, similarly to the trend of glycerol in the leaves. Conversely, malic acid, citric acid and propionic acid gradually increased reaching maximum at 150, 150 and 70 mg K l-1 respectively. Combined, these results suggest that sugars were transported from the leaves to a stronger sink - the bulking storage roots. This and the increase of intermediate metabolites of tricarboxylic acid cycle provided the energy required for the bulking process and the development of the storage roots. Although the measured parameters indirectly link K to storage root development, they nonetheless form a basis for studies on direct interactions.
Collapse
Affiliation(s)
- John Okoth Omondi
- French Associates Institute for Agriculture and Biotechnology of Drylands, Ben Gurion University of the Negev, Beersheba, Israel
| | - Naftali Lazarovitch
- French Associates Institute for Agriculture and Biotechnology of Drylands, Ben Gurion University of the Negev, Beersheba, Israel
| | - Shimon Rachmilevitch
- French Associates Institute for Agriculture and Biotechnology of Drylands, Ben Gurion University of the Negev, Beersheba, Israel
| | - Titaya Kukew
- National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Khlong Luang, Thailand
| | - Uri Yermiyahu
- Gilat Research Centre, Agricultural Research Organization, Gilat, Israel
| | - Hagai Yasuor
- Gilat Research Centre, Agricultural Research Organization, Gilat, Israel
| |
Collapse
|
62
|
Villette J, Cuéllar T, Verdeil JL, Delrot S, Gaillard I. Grapevine Potassium Nutrition and Fruit Quality in the Context of Climate Change. FRONTIERS IN PLANT SCIENCE 2020; 11:123. [PMID: 32174933 PMCID: PMC7054452 DOI: 10.3389/fpls.2020.00123] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 01/28/2020] [Indexed: 06/01/2023]
Abstract
Potassium (K+) nutrition is of relevant interest for winegrowers because it influences grapevine growth, berry composition, as well as must and wine quality. Indeed, wine quality strongly depends on berry composition at harvest. However, K+ content of grape berries increased steadily over the last decades, in part due to climate change. Currently, the properties and qualities of many fruits are also impacted by environment. In grapevine, this disturbs berry properties resulting in unbalanced wines with poor organoleptic quality and low acidity. This requires a better understanding of the molecular basis of K+ accumulation and its control along grape berry development. This mini-review summarizes our current knowledge on K+ nutrition in relation with fruit quality in the context of a changing environment.
Collapse
Affiliation(s)
- Jérémy Villette
- BPMP, Univ Montpellier, CNRS, INRAE, SupAgro, Montpellier, France
| | - Teresa Cuéllar
- CIRAD, UMR AGAP, Univ Montpellier, INRA, Montpellier SupAgro, Montpellier, France
| | - Jean-Luc Verdeil
- CIRAD, UMR AGAP, Univ Montpellier, INRA, Montpellier SupAgro, Montpellier, France
| | - Serge Delrot
- EGFV, Bordeaux Sciences Agro, INRAE, Université de Bordeaux, ISVV, Villenave d’Ornon, France
| | | |
Collapse
|
63
|
Mahmood A, Kataoka R. Metabolite profiling reveals a complex response of plants to application of plant growth-promoting endophytic bacteria. Microbiol Res 2020; 234:126421. [PMID: 32006789 DOI: 10.1016/j.micres.2020.126421] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 12/17/2019] [Accepted: 01/14/2020] [Indexed: 11/19/2022]
Abstract
Endophytic bacteria have been explored for their role in plant growth promotion, however, not much has been explored in cucumber. The metabolomic response of plants to application of such microbes also remains largely unknown. Thus, we investigated the application of endophytic bacteria to cucumber to infer their role in plant growth promotion and document metabolome response. The lowest healthy leaf-stalks were sampled from four differently sourced cucumber plants, and endophytic bacteria were isolated after surface disinfection. Initial plant growth-promoting (PGP) screening was performed to identify PGP strains out of numerous isolates, and five strains (Strains 4=Curtobacterium spp., 72=Brevibacillus spp., 167=Paenibacillus spp., 193=Bacillus spp., and 227=Microbacterium spp.) were selected based on their contribution to root growth compared with the control. The selected strains were further evaluated in pot experiments, axenic PGP trait assays, and metabolomic analysis. Results revealed that the selected isolates possessed different qualitative characteristics among indole acetic acid, siderophore production, phosphate solubilization, and 1-aminocyclopropane-1-carboxylate (ACC)-deaminase and nifH genes, and all isolates significantly enhanced plant growth in both pot experiments compared with the uninoculated control and fertilizer control. Metabolomic profiling revealed that both strains affected the plant metabolomes compared with the uninoculated control. Around 50 % of the metabolites explored had higher concentrations in either or both bacteria-applied plants compared with the uninoculated control. Differences were observed in both strains' regulation of metabolites, although both enhanced root growth near equally. Overall, endophytic bacteria significantly enhanced plant growth and tended to produce or induce release of certain metabolites within the plant endosphere.
Collapse
Affiliation(s)
- Ahmad Mahmood
- Department of Environmental Sciences, Faculty of Life & Environmental Sciences, University of Yamanashi, Takeda, Kofu, Yamanashi, Japan
| | - Ryota Kataoka
- Department of Environmental Sciences, Faculty of Life & Environmental Sciences, University of Yamanashi, Takeda, Kofu, Yamanashi, Japan.
| |
Collapse
|
64
|
Xu X, Du X, Wang F, Sha J, Chen Q, Tian G, Zhu Z, Ge S, Jiang Y. Effects of Potassium Levels on Plant Growth, Accumulation and Distribution of Carbon, and Nitrate Metabolism in Apple Dwarf Rootstock Seedlings. FRONTIERS IN PLANT SCIENCE 2020; 11:904. [PMID: 32655607 PMCID: PMC7325393 DOI: 10.3389/fpls.2020.00904] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Accepted: 06/02/2020] [Indexed: 05/05/2023]
Abstract
Nitrogen (N) is one of the most required mineral elements for plant growth, and potassium (K) plays a vital role in nitrogen metabolism, both elements being widely applied as fertilizers in agricultural production. However, the exact relationship between K and nitrogen use efficiency (NUE) remains unclear. Apple dwarf rootstock seedlings (M9T337) were used to study the impacts of different K levels on plant growth, nitrogen metabolism, and carbon (C) assimilation in water culture experiments for 2 years. The results showed that both deficiency and excess K inhibited the growth and root development of M9T337 seedlings. When the K supply concentration was 0 mM and 12 mM, the biomass of each organ, root-shoot ratio, root activity and NO3 - ion flow rate decreased significantly, net photosynthetic rate (P n) and photochemical efficiency (F v/F m) being lower. Meanwhile, seedlings treated with 6 mM K+ had higher N and C metabolizing enzyme activities and higher nitrate transporter gene expression levels (NRT1.1; NRT2.1). 13C and 15N labeling results showed that deficiency and excess K could not only reduce 15N absorption and 13C assimilation accumulation of M9T337 seedlings, but also reduced the 15N distribution ratio in leaves and 13C distribution ratio in roots. These results suggest that appropriate K supply (6 mM) was optimal as it enhanced photoassimilate transport from leaves to roots and increased NUE by influencing photosynthesis, C and N metabolizing enzyme activities, nitrate assimilation gene activities, and nitrate transport.
Collapse
|
65
|
Physiology and proteomic analysis reveals root, stem and leaf responses to potassium deficiency stress in alligator weed. Sci Rep 2019; 9:17366. [PMID: 31758026 PMCID: PMC6874644 DOI: 10.1038/s41598-019-53916-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 11/05/2019] [Indexed: 11/09/2022] Open
Abstract
Alligator weed is reported to have a strong ability to adapt to potassium deficiency stress. Proteomic changes in response to this stress are largely unknown in alligator weed seedlings. In this study, we performed physiological and comparative proteomics of alligator weed seedlings between normal growth (CK) and potassium deficiency (LK) stress using 2-DE techniques, including root, stem and leaf tissues. Seedling height, soluble sugar content, PGK activity and H2O2 contents were significantly altered after 15 d of LK treatment. A total of 206 differentially expressed proteins (DEPs) were identified. There were 72 DEPs in the root, 79 in the stem, and 55 in the leaves. The proteomic results were verified using western blot and qRT-PCR assays. The most represented KEGG pathway was "Carbohydrate and energy metabolism" in the three samples. The "Protein degradation" pathway only existed in the stem and root, and the "Cell cycle" pathway only existed in the root. Protein-protein interaction analysis demonstrated that the interacting proteins detected were the most common in the stem, with 18 proteins. Our study highlights protein changes in alligator weed seedling under LK stress and provides new information on the comprehensive analysis of the protein network in plant potassium nutrition.
Collapse
|
66
|
Hu W, Ren T, Meng F, Cong R, Li X, White PJ, Lu J. Leaf photosynthetic capacity is regulated by the interaction of nitrogen and potassium through coordination of CO 2 diffusion and carboxylation. PHYSIOLOGIA PLANTARUM 2019; 167:418-432. [PMID: 30690727 DOI: 10.1111/ppl.12919] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 12/18/2018] [Indexed: 06/09/2023]
Abstract
Combined application of nitrogen (N) and potassium (K) fertilizer could significantly enhance crop yield. Crop yield and photosynthesis are inseparable. However, the influence of N and K interaction on photosynthesis is still not fully understood. Field and hydroponic experiments were conducted to examine the effects of N and K interaction on leaf photosynthesis characteristics and to explore the mechanisms in the hydroponic experiment. CO2 conductance and carboxylation characteristic parameters of oilseed leaves were measured under different N and K supplies. Results indicated that detectable increases in leaf area, biomass and net photosynthetic rate (An ) were observed under optimal N and K supply in field and hydroponic experiments. The ratio of total CO2 diffusion conductance to the maximum carboxylation rate (gtot /Vcmax ) and An presented a linear-plateau relationship. Under insufficient N, increased K contributed to the CO2 transmission capacity and improved the proportion of N used for carboxylation, promoting gtot /Vcmax . However, the low Vcmax associated with N insufficiency limited the An . High N supply obviously accelerated Vcmax , yet K deficiency led to a reduction of gtot , which restricted Vcmax . Synchronous increases in N and K supplementation ensured the appropriate ratio of N to K content in leaves, which simultaneously facilitated gtot and Vcmax and preserved a gtot /Vcmax suitable for guaranteeing CO2 transmission and carboxylation coordination; the overall effect was increased An and leaf area. These results highlight the suitable N and K nutrients to coordinate CO2 diffusion and carboxylation, thereby enhancing photosynthetic capacity and area to obtain high crop yield.
Collapse
Affiliation(s)
- Wenshi Hu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Wuhan 430070, China
| | - Tao Ren
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Wuhan 430070, China
| | - Fanjin Meng
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Wuhan 430070, China
| | - Rihuan Cong
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Wuhan 430070, China
| | - Xiaokun Li
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Wuhan 430070, China
| | | | - Jianwei Lu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River), Ministry of Agriculture, Wuhan 430070, China
| |
Collapse
|
67
|
Cui J, Davanture M, Zivy M, Lamade E, Tcherkez G. Metabolic responses to potassium availability and waterlogging reshape respiration and carbon use efficiency in oil palm. THE NEW PHYTOLOGIST 2019; 223:310-322. [PMID: 30767245 DOI: 10.1111/nph.15751] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 02/12/2019] [Indexed: 05/25/2023]
Abstract
Oil palm is by far the major oil-producing crop on the global scale, with c. 62 Mt oil produced each year. This species is a strong potassium (K)-demanding species cultivated in regions where soil K availability is generally low and waterlogging due to tropical heavy rains can limit further nutrient absorption. However, the metabolic effects of K and waterlogging have never been assessed precisely. Here, we examined the metabolic response of oil palm saplings in the glasshouse under controlled conditions (nutrient composition with low or high K availability, with or without waterlogging), using gas exchange, metabolomics and proteomics analyses. Our results showed that both low K and waterlogging have a detrimental effect on photosynthesis but stimulate leaf respiration, with differential accumulation of typical metabolic intermediates and enzymes of Krebs cycle and alternative catabolic pathways. In addition, we found a strong relationship between metabolic composition, the rate of leaf dark respiration, and cumulated respiratory loss. Advert environmental conditions (here, low K and waterlogging) therefore have an enormous effect on respiration in oil palm. Leaf metabolome and proteome appear to be good predictors of carbon balance, and open avenues for cultivation biomonitoring using functional genomics technologies.
Collapse
Affiliation(s)
- Jing Cui
- Research School of Biology, ANU Joint College of Sciences, Australian National University, Canberra, ACT, 2601, Australia
| | - Marlène Davanture
- Plateforme d'Analyse de Protéomique Paris-Sud-Ouest (PAPPSO), GQE Le Moulon, INRA, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, Ferme du Moulon, Gif-sur-Yvette, 91190, France
| | - Michel Zivy
- Plateforme d'Analyse de Protéomique Paris-Sud-Ouest (PAPPSO), GQE Le Moulon, INRA, Univ. Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, Ferme du Moulon, Gif-sur-Yvette, 91190, France
| | - Emmanuelle Lamade
- UPR34 Performance des systèmes de culture des plantes pérennes, Département PERSYST, Centre de Coopération Internationale en Recherche Agronomique pour le Développement (CIRAD), Montpellier, 34398, France
| | - Guillaume Tcherkez
- Research School of Biology, ANU Joint College of Sciences, Australian National University, Canberra, ACT, 2601, Australia
| |
Collapse
|
68
|
Lu Z, Xie K, Pan Y, Ren T, Lu J, Wang M, Shen Q, Guo S. Potassium mediates coordination of leaf photosynthesis and hydraulic conductance by modifications of leaf anatomy. PLANT, CELL & ENVIRONMENT 2019; 42:2231-2244. [PMID: 30938459 DOI: 10.1111/pce.13553] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 03/22/2019] [Accepted: 03/26/2019] [Indexed: 06/09/2023]
Abstract
Typical symptoms of potassium deficiency, characterized as chlorosis or withered necrosis, occur concomitantly with downregulated photosynthesis and impaired leaf water transport. However, the prominent limitations and mechanisms underlying the concerted decreases of leaf photosynthesis and hydraulic conductance are poorly understood. Monocots and dicots were investigated based on responses of photosynthesis and hydraulic conductance and their components and the correlated anatomical determinants to potassium deficiency. We found a conserved pattern in which leaf photosynthesis and hydraulic conductance concurrently decreased under potassium starvation. However, monocots and dicots showed two different hydraulic-redesign strategies: Dicots tended to show a decreased minor vein density, whereas monocots reduced the size of the bundle sheath and its extensions, rather than the minor vein density; both of these strategies may restrain xylem and outside-xylem hydraulic conductance. Additionally, potassium-deprived leaves developed with fewer mesophyll cell-to-cell connections, leading to a reduced area being available for liquid-phase flow. Further quantitative analysis revealed that mesophyll conductance to CO2 and outside-xylem hydraulic resistance were the major contributors to photosynthetic limitation and increased hydraulic resistance, at more than 50% and 60%, respectively. These results emphasize the importance of potassium in the coordinated regulation of leaf photosynthesis and hydraulic conductance through modifications of leaf anatomy.
Collapse
Affiliation(s)
- Zhifeng Lu
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Kailiu Xie
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yonghui Pan
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Tao Ren
- College of Resources and Environment, Huazhong Agricultural University, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River) Ministry of Agriculture, Wuhan, 430070, China
| | - Jianwei Lu
- College of Resources and Environment, Huazhong Agricultural University, Key Laboratory of Arable Land Conservation (Middle and Lower Reaches of Yangtze River) Ministry of Agriculture, Wuhan, 430070, China
| | - Min Wang
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qirong Shen
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shiwei Guo
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
69
|
Ye XQ, Yan YN, Wu M, Yu FH. High Capacity of Nutrient Accumulation by Invasive Solidago canadensis in a Coastal Grassland. FRONTIERS IN PLANT SCIENCE 2019; 10:575. [PMID: 31134115 PMCID: PMC6514223 DOI: 10.3389/fpls.2019.00575] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 04/16/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Solidago canadensis is a notorious invasive species from North America that is spreading across East China. It is invading some coastal grasslands and replacing native grass species. The effects of the S. canadensis invasion on soil nutrient cycling in the grasslands remain unclear. This study examined the effects of the invasion of S. canadensis on macronutrient accumulation in species aboveground part and soil. METHODS Aboveground biomass, macronutrient (N, P, and K) pools in biomass, litter mass and decomposition rates, soil macronutrient availability and soil microbial biomass and enzyme activity that were related to nutrient transformation were compared between plots invaded by S. canadensis and uninvaded plots dominated by three different native grass species: Phacelurus latifolius, Phragmites australis, and Imperata cylindrica. RESULTS S. canadensis had higher aboveground biomass, higher leaf N, P, and K concentrations, and consequently, a larger macronutrient pool size in the standing biomass. S. canadensis also produced more litter with higher N, P, and K concentrations and faster decomposition rates. The S. canadensis invasion did not change the total N, P, and K concentration in the topsoil (0-10 cm), but the invasion did increase their availability. The S. canadensis invasion did not increase the total soil organic matter (TSOM) content but did increase the soil microbial biomass and the activities of urease, alkaline phosphatase, invertase, amylase, and glucosidase in the topsoil. CONCLUSION The invasion of S. canadensis accelerates the macronutrient cycling rate via increases in aboveground productivity and nutrient accumulation in standing biomass, faster nutrient release from litter and higher soil microbial activity. An enhanced nutrient cycling rate may further enhance its invasiveness through a positive feedback on soil processes.
Collapse
Affiliation(s)
- Xiao-Qi Ye
- Research Station of Hangzhou Bay Wetland Ecosystems, National Forestry Bureau, Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
| | - Ya-Nan Yan
- Research Station of Hangzhou Bay Wetland Ecosystems, National Forestry Bureau, Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
- College of Life Sciences, Shanxi Normal University, Linfen, China
| | - Ming Wu
- Research Station of Hangzhou Bay Wetland Ecosystems, National Forestry Bureau, Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
| | - Fei-hai Yu
- College of Life Sciences, Taizhou University, Taizhou, China
| |
Collapse
|
70
|
Ghatak A, Chaturvedi P, Weckwerth W. Metabolomics in Plant Stress Physiology. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2019; 164:187-236. [PMID: 29470599 DOI: 10.1007/10_2017_55] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Metabolomics is an essential technology for functional genomics and systems biology. It plays a key role in functional annotation of genes and understanding towards cellular and molecular, biotic and abiotic stress responses. Different analytical techniques are used to extend the coverage of a full metabolome. The commonly used techniques are NMR, CE-MS, LC-MS, and GC-MS. The choice of a suitable technique depends on the speed, sensitivity, and accuracy. This chapter provides insight into plant metabolomic techniques, databases used in the analysis, data mining and processing, compound identification, and limitations in metabolomics. It also describes the workflow of measuring metabolites in plants. Metabolomic studies in plant responses to stress are a key research topic in many laboratories worldwide. We summarize different approaches and provide a generic overview of stress responsive metabolite markers and processes compiled from a broad range of different studies. Graphical Abstract.
Collapse
Affiliation(s)
- Arindam Ghatak
- Department of Ecogenomics and Systems Biology, Faculty of Sciences, University of Vienna, Vienna, Austria
| | - Palak Chaturvedi
- Department of Ecogenomics and Systems Biology, Faculty of Sciences, University of Vienna, Vienna, Austria
| | - Wolfram Weckwerth
- Department of Ecogenomics and Systems Biology, Faculty of Sciences, University of Vienna, Vienna, Austria. .,Vienna Metabolomics Center (VIME), University of Vienna, Althanstrasse 14, 1090, Vienna, Austria.
| |
Collapse
|
71
|
The Ameliorative Effect of Silicon on Maize Plants Grown in Mg-Deficient Conditions. Int J Mol Sci 2019; 20:ijms20040969. [PMID: 30813370 PMCID: PMC6412671 DOI: 10.3390/ijms20040969] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 02/14/2019] [Accepted: 02/19/2019] [Indexed: 12/19/2022] Open
Abstract
The importance of magnesium (Mg) for plant growth is well-documented. Silicon (Si)-mediated alleviation of mineral deficiencies has been also reported in a number of plant species; however, there is no report on the relevance of Si nutrition in plants grown in Mg-deficient condition. Therefore, in the present work, an attempt was undertaken to study the role of Si nutrition in maize plants exposed to Mg deficiency. Plants were grown either under low (0.02 mM) or normal (0.5 mM) levels of Mg, with or without Si supplement. We have shown that Mg-deficient plants treated with Si maintained their growth and increased significantly the levels of chlorophyll and soluble sugars compared to those plants which did not receive Si. In addition, the concentrations of hexose-P, and glycolytic intermediate metabolites—mainly organic acids (isocitric and glutamic acids)—were increased in response to Si nutrition, which was associated with an increase in the levels of stress amino acids such as gamma-aminobutyric-acid (GABA), serine and glycine, as well as polyamines putrescine, which overall contributed to Mg stress tolerance. In addition, Si enhanced the levels of phytohormones cytokinin iso-pentenyladenine (IP), iso-pentenyladenine riboside (IPR), jasmonic acid (JA) and its derivate l-isoleucine (JA-ILE). The increase in cytokinin maintained the growth of Mg-deficient plants, while JA and JA-IEA were induced in response to carbohydrates accumulation. Altogether, our study reveals the vital role of Si under Mg deficiency by regulating plant primary metabolite and hormonal changes.
Collapse
|
72
|
Nieves-Cordones M, Ródenas R, Lara A, Martínez V, Rubio F. The combination of K + deficiency with other environmental stresses: What is the outcome? PHYSIOLOGIA PLANTARUM 2019; 165:264-276. [PMID: 30187486 DOI: 10.1111/ppl.12827] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 07/19/2018] [Accepted: 08/31/2018] [Indexed: 05/25/2023]
Abstract
Potassium (K+ ) is a macronutrient known for its high mobility and positive charge, which allows efficient and fast control of the electrical balance and osmotic potential in plant cells. Such features allow K+ to remarkably contribute to plant stress adaptation. Some agricultural lands are deficient in K+ , imposing a stress that reduces crop yield and makes fertilization a common practice. However, individual stress conditions in the field are rare, and crops usually face a combination of different stresses. As plant response to a stress combination cannot always be deduced from individual stress action, it is necessary to gain insights into the specific mechanisms that connect K+ homeostasis with other stress effects to improve plant performance in the context of climate change. Surprisingly, plant responses to environmental stresses under a K+ -limiting scenario are poorly understood. In the present review, we summarize current knowledge and find substantial gaps regarding specific outcomes of K+ deficiency in addition to other environmental stresses. In this regard, combined nutrient deficiencies of K+ and other macronutrients are covered in the first part of the review and interactions arising from K+ deficiency with salinity, drought and biotic factors in the second part. Information available so far suggests a prominent role of potassium and nitrate transport systems and their regulatory proteins in the response of plants to several stress combinations. Thus, such molecular pathways, which are located at the crossroad between K+ homeostasis and environmental stresses, could be considered biotechnological targets in future studies.
Collapse
Affiliation(s)
| | - Reyes Ródenas
- Departamento de Nutrición Vegetal, CEBAS-CSIC, 30100 Murcia, Spain
| | - Alberto Lara
- Departamento de Nutrición Vegetal, CEBAS-CSIC, 30100 Murcia, Spain
| | - Vicente Martínez
- Departamento de Nutrición Vegetal, CEBAS-CSIC, 30100 Murcia, Spain
| | - Francisco Rubio
- Departamento de Nutrición Vegetal, CEBAS-CSIC, 30100 Murcia, Spain
| |
Collapse
|
73
|
Cui J, Abadie C, Carroll A, Lamade E, Tcherkez G. Responses to K deficiency and waterlogging interact via respiratory and nitrogen metabolism. PLANT, CELL & ENVIRONMENT 2019; 42:647-658. [PMID: 30242853 DOI: 10.1111/pce.13450] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 09/13/2018] [Accepted: 09/16/2018] [Indexed: 05/24/2023]
Abstract
K deficiency and waterlogging are common stresses that can occur simultaneously and impact on crop development and yield. They are both known to affect catabolism, with rather opposite effects: inhibition of glycolysis and higher glycolytic fermentative flux, respectively. But surprisingly, the effect of their combination on plant metabolism has never been examined precisely. Here, we applied a combined treatment (K availability and waterlogging) to sunflower (Helianthus annuus L.) plants under controlled greenhouse conditions and performed elemental quantitation, metabolomics, and isotope analyses at different sampling times. Whereas separate K deficiency and waterlogging caused well-known effects such as polyamines production and sugar accumulation, respectively, waterlogging altered K-induced respiration enhancement (via the C5 -branched acid pathway) and polyamine production, and K deficiency tended to suppress waterlogging-induced accumulation of Krebs cycle intermediates in leaves. Furthermore, the natural 15 N/14 N isotope composition (δ15 N) in leaf compounds shows that there was a change in nitrate circulation, with less nitrate influx to leaves under low K availablity combined with waterlogging and more isotopic dilution of lamina nitrates under high K. Our results show that K deficiency and waterlogging effects are not simply additive, reshape respiration as well as nitrogen metabolism and partitioning, and are associated with metabolomic and isotopic biomarkers of potential interest for crop monitoring.
Collapse
Affiliation(s)
- Jing Cui
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Cyril Abadie
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Adam Carroll
- Joint Mass Spectrometry Facility, Research School of Chemistry, Australian National University, Canberra, ACT, Australia
| | - Emmanuelle Lamade
- Unité PERSYST, UPR34, Système de pérennes, Centre de Coopération Internationale en Recherche Agronomique pour le Développement, Montpellier, France
| | - Guillaume Tcherkez
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| |
Collapse
|
74
|
Li LQ, Lyu CC, Li JH, Tong Z, Lu YF, Wang XY, Ni S, Yang SM, Zeng FC, Lu LM. Physiological Analysis and Proteome Quantification of Alligator Weed Stems in Response to Potassium Deficiency Stress. Int J Mol Sci 2019; 20:ijms20010221. [PMID: 30626112 PMCID: PMC6337362 DOI: 10.3390/ijms20010221] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 12/26/2018] [Accepted: 12/27/2018] [Indexed: 02/06/2023] Open
Abstract
The macronutrient potassium is essential to plant growth, development and stress response. Alligator weed (Alternanthera philoxeroides) has a high tolerance to potassium deficiency (LK) stress. The stem is the primary organ responsible for transporting molecules from the underground root system to the aboveground parts of the plant. However, proteomic changes in response to LK stress are largely unknown in alligator weed stems. In this study, we investigated the physiological and proteomic changes in alligator weed stems under LK stress. First, the chlorophyll and soluble protein content and SOD and POD activity were significantly altered after 15 days of LK treatment. The quantitative proteomic analysis suggested that a total of 296 proteins were differentially abundant proteins (DAPs). The functional annotation analysis revealed that LK stress elicited complex proteomic alterations that were involved in oxidative phosphorylation, plant-pathogen interactions, glycolysis/gluconeogenesis, sugar metabolism, and transport in stems. The subcellular locations analysis suggested 104 proteins showed chloroplastic localization, 81 proteins showed cytoplasmic localization and 40 showed nuclear localization. The protein–protein interaction analysis revealed that 56 proteins were involved in the interaction network, including 9 proteins involved in the ribosome network and 9 in the oxidative phosphorylation network. Additionally, the expressed changes of 5 DAPs were similar between the proteomic quantification analysis and the PRM-MS analysis, and the expression levels of eight genes that encode DAPs were further verified using an RT-qPCR analysis. These results provide valuable information on the adaptive mechanisms in alligator weed stems under LK stress and facilitate the development of efficient strategies for genetically engineering potassium-tolerant crops.
Collapse
Affiliation(s)
- Li-Qin Li
- College of Agronomy, Sichuan Agriculture University, Chengdu 611130, China.
| | - Cheng-Cheng Lyu
- College of Agronomy, Sichuan Agriculture University, Chengdu 611130, China.
| | - Jia-Hao Li
- College of Agronomy, Sichuan Agriculture University, Chengdu 611130, China.
| | - Zhu Tong
- College of Agronomy, Sichuan Agriculture University, Chengdu 611130, China.
| | - Yi-Fei Lu
- College of Agronomy, Sichuan Agriculture University, Chengdu 611130, China.
| | - Xi-Yao Wang
- College of Agronomy, Sichuan Agriculture University, Chengdu 611130, China.
| | - Su Ni
- College of Agronomy, Sichuan Agriculture University, Chengdu 611130, China.
| | - Shi-Min Yang
- College of Agronomy, Sichuan Agriculture University, Chengdu 611130, China.
| | - Fu-Chun Zeng
- College of Agronomy, Sichuan Agriculture University, Chengdu 611130, China.
| | - Li-Ming Lu
- College of Agronomy, Sichuan Agriculture University, Chengdu 611130, China.
| |
Collapse
|
75
|
Shen C, Shi X, Xie C, Li Y, Yang H, Mei X, Xu Y, Dong C. The change in microstructure of petioles and peduncles and transporter gene expression by potassium influences the distribution of nutrients and sugars in pear leaves and fruit. JOURNAL OF PLANT PHYSIOLOGY 2019; 232:320-333. [PMID: 30553968 DOI: 10.1016/j.jplph.2018.11.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2018] [Revised: 11/27/2018] [Accepted: 11/27/2018] [Indexed: 05/26/2023]
Abstract
Potassium (K) is one of the most important mineral nutrients required for fruit growth and development and is known as a 'quality element'. To investigate the role of K in more detail, we performed experiments in which seven-year-old pot-grown 'Huangguan' pear trees were treated with three levels of K (0, 0.4, or 0.8 g K2O kg-1 soil). K supply improved the development of vascular bundles in pear petioles and fruit peduncles and enhanced expression of genes involved in nutrients and sugar transport. Different from K and calcium (Ca), magnesium (Mg) concentrations in the leaves, petioles, and fruit peduncles were significantly higher under low K but lower under high K. However, the concentrations of K, Ca, and Mg in fruit all increased as more K was applied. Correspondingly, the expression of leaf Mg transporters (MRS2-1 and MRS2-3) increased under low K, indicating that Mg had an obvious compensation effect on K, while their expression decreased under medium and high K, showing that K had an obvious antagonistic effect on Mg. Except for NIPA2, the expressions of fruit K, Ca, and Mg transporters increased under high K, implying a synergistic effect among them in fruit. The concentration of sorbitol, sucrose, and total sugar in leaves and fruit at maturity significantly increased in response to the supply of K. The increase in sugar concentration was closely related to the up-regulated expression of sucrose transporter (SUT) and sorbitol transporter (SOT) genes. Together, these effects may promote the transport of nutrients and sugar from sources (leaves) to sinks (fruit) and increase the accumulation of sugar in the fruit.
Collapse
Affiliation(s)
- Changwei Shen
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, China; School of Resources and Environmental Sciences, Henan Institute of Science and Technology, Xinxiang, 453003, China.
| | - Xiaoqian Shi
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Changyan Xie
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Yan Li
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Han Yang
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Xinlan Mei
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Yangchun Xu
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Caixia Dong
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
76
|
Wang Y, Ren W, Li Y, Xu Y, Teng Y, Christie P, Luo Y. Nontargeted metabolomic analysis to unravel the impact of di (2-ethylhexyl) phthalate stress on root exudates of alfalfa (Medicago sativa). THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 646:212-219. [PMID: 30053665 DOI: 10.1016/j.scitotenv.2018.07.247] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 06/14/2018] [Accepted: 07/16/2018] [Indexed: 05/08/2023]
Abstract
Root exudates are the main media of information communication and energy transfer between plant roots and the soil. Understanding the response of root exudates to contamination stress is crucial in revealing the rhizoremediation mechanisms. Here, we investigate the response of alfalfa root exudates to bis(2-ethylhexyl) phthalate (DEHP) stress based on nontargeted metabolomic analysis. Alfalfa root exudates were collected using greenhouse hydroponic culture and analysed by gas chromatography-time of flight mass spectrometry (GC-TOFMS). A total of 314 compounds were identified in alfalfa root exudates of which carbohydrates, acids and lipids accounted for 28.6, 15.58 and 13.87%, respectively. Orthogonal partial least squares discriminant analysis (OPLS-DA) shows that DEHP exerted an important influence on the composition and quantity of root exudates. Fifty metabolites were clearly changed even at lower concentrations of DEHP, including common carbohydrates, fatty acids and some special rhizosphere signal materials, such as 4',5-dihyrroxy-7-methoxyisoflavone. DEHP stress significantly suppressed carbohydrate metabolism but promoted fatty acid metabolism. However, amino acid metabolism, lipid metabolism and the tricarboxylic acid (TCA) cycle showed little change in response to DEHP stress.
Collapse
Affiliation(s)
- Yuting Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | - Wenjie Ren
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yan Li
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025, China
| | - Yongfeng Xu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Ying Teng
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Peter Christie
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Yongming Luo
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| |
Collapse
|
77
|
|
78
|
Davis JL, Armengaud P, Larson TR, Graham IA, White PJ, Newton AC, Amtmann A. Contrasting nutrient-disease relationships: Potassium gradients in barley leaves have opposite effects on two fungal pathogens with different sensitivities to jasmonic acid. PLANT, CELL & ENVIRONMENT 2018; 41:2357-2372. [PMID: 29851096 PMCID: PMC6175101 DOI: 10.1111/pce.13350] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Accepted: 05/21/2018] [Indexed: 05/20/2023]
Abstract
Understanding the interactions between mineral nutrition and disease is essential for crop management. Our previous studies with Arabidopsis thaliana demonstrated that potassium (K) deprivation induced the biosynthesis of jasmonic acid (JA) and increased the plant's resistance to herbivorous insects. Here, we addressed the question of how tissue K affects the development of fungal pathogens and whether sensitivity of the pathogens to JA could play a role for the K-disease relationship in barley (Hordeum vulgare cv. Optic). We report that K-deprived barley plants showed increased leaf concentrations of JA and other oxylipins. Furthermore, a natural tip-to-base K-concentration gradient within leaves of K-sufficient plants was quantitatively mirrored by the transcript levels of JA-responsive genes. The local leaf tissue K concentrations affected the development of two economically important fungi in opposite ways, showing a positive correlation with powdery mildew (Blumeria graminis) and a negative correlation with leaf scald (Rhynchosporium commune) disease symptoms. B. graminis induced a JA response in the plant and was sensitive to methyl-JA treatment whereas R. commune initiated no JA response and was JA insensitive. Our study challenges the view that high K generally improves plant health and suggests that JA sensitivity of pathogens could be an important factor in determining the exact K-disease relationship.
Collapse
Affiliation(s)
- Jayne L. Davis
- Plant Science Group, Institute for Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUK
- Ecological SciencesThe James Hutton InstituteDundeeUK
| | - Patrick Armengaud
- Plant Science Group, Institute for Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUK
| | - Tony R. Larson
- Department of Biology, Centre for Novel Agricultural ProductsUniversity of YorkYorkUK
| | - Ian A. Graham
- Department of Biology, Centre for Novel Agricultural ProductsUniversity of YorkYorkUK
| | | | | | - Anna Amtmann
- Plant Science Group, Institute for Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life SciencesUniversity of GlasgowGlasgowUK
| |
Collapse
|
79
|
Zeng J, Quan X, He X, Cai S, Ye Z, Chen G, Zhang G. Root and leaf metabolite profiles analysis reveals the adaptive strategies to low potassium stress in barley. BMC PLANT BIOLOGY 2018; 18:187. [PMID: 30200885 PMCID: PMC6131769 DOI: 10.1186/s12870-018-1404-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 08/30/2018] [Indexed: 05/05/2023]
Abstract
BACKGROUND Potassium (K) deficiency in arable land is one of the most important factors affecting crop productivity. Development of low K (LK) tolerant crop cultivars is regarded as a best economic and effective approach for solving the issue of LK. In previous studies, we found a wider variation of LK tolerance in the Tibetan wild barley accessions than cultivated barley. However, the mechanism of LK tolerance in wild barley is still elusive. RESULTS In this study, two wild barley genotypes (XZ153, LK tolerant and XZ141, LK sensitive) and one cultivar (LuDaoMai, LK tolerant) was used to investigate metabolome changes in response to LK stress. Totally 57 kinds of metabolites were identified in roots and leaves of three genotypes at 16 d after LK treatment. In general, accumulation of amino acids and sugars was enhanced in both roots and leaves, while organic acids were reduced under LK stress compared to the control. Meanwhile, the concentrations of the negatively charged amino acids (Asp and Glu) and most organic acids was reduced in both roots and leaves, but more positively charged amino acids (Lys and Gln) were increased in three genotypes under LK. XZ153 had less reduction than other two genotypes in biomass and chlorophyll content under LK stress and showed greater antioxidant capacity as reflected by more synthesis of active oxygen scavengers. Higher LK tolerance of XZ153 may also be attributed to its less carbohydrate consumption and more storage of glucose and other sugars, thus providing more energy for plant growth under LK stress. Moreover, phenylpropanoid metabolic pathway mediated by PAL differed among three genotypes, which is closely associated with the genotypic difference in LK tolerance. CONCLUSIONS LK tolerance in the wild barley is attributed to more active phenylpropanoid metabolic pathway mediated by PAL, energy use economy by reducing carbohydrate consumption and storage of glucose and other sugars, and higher antioxidant defense ability under LK stress.
Collapse
Affiliation(s)
- Jianbin Zeng
- Agronomy Department, Institute of Crop Science, Zhejiang University, Hangzhou, 310058 China
| | - Xiaoyan Quan
- Agronomy Department, Institute of Crop Science, Zhejiang University, Hangzhou, 310058 China
| | - Xiaoyan He
- Agronomy Department, Institute of Crop Science, Zhejiang University, Hangzhou, 310058 China
| | - Shengguan Cai
- Agronomy Department, Institute of Crop Science, Zhejiang University, Hangzhou, 310058 China
| | - Zhilan Ye
- Agronomy Department, Institute of Crop Science, Zhejiang University, Hangzhou, 310058 China
| | - Guang Chen
- Agronomy Department, Institute of Crop Science, Zhejiang University, Hangzhou, 310058 China
| | - Guoping Zhang
- Agronomy Department, Institute of Crop Science, Zhejiang University, Hangzhou, 310058 China
| |
Collapse
|
80
|
Li LQ, Liu L, Zhuo W, Chen Q, Hu S, Peng S, Wang XY, Lu YF, Lu LM. Physiological and quantitative proteomic analyses unraveling potassium deficiency stress response in alligator weed (Alternanthera philoxeroides L.) root. PLANT MOLECULAR BIOLOGY 2018; 97:265-278. [PMID: 29777486 DOI: 10.1007/s11103-018-0738-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2018] [Accepted: 05/14/2018] [Indexed: 06/08/2023]
Abstract
Physiological and iTRAQ based proteomic analysis provided new insights into potassium deficiency stress response in alligator weed root. Alligator weed (Alternanthera philoxeroides) has a strong ability to adapt to potassium deficiency (LK) stress. Proteomic changes in response to this stress are largely unknown in alligator weed. In this study, we investigated physiological and molecular mechanisms under LK using isobaric tags for relative and absolute quantitation to characterize proteome-level changes in this plant. First, root physiology, 2, 3, 5-Triphenyl-trazolium chloride (TTC) assay and peroxidase activity were significantly altered after 10 and 15 days of LK treatment. The comparative proteomic analysis suggested a total of 375 proteins were differential abundance proteins. The proteomic results were verified by western blot assays and quantitative real-time PCR. Correlation analysis of transcription and proteomics suggested protein processing in the endoplasmic reticulum, endocytosis, and spliceosome pathways were significantly enriched. The protein responsible for energy metabolism, signal sensing and transduction and protein degradation played crucial roles in this stress. Twelve ubiquitin pathway related proteins were identified in our study, among them 11 proteins were up-regulated. All protein ubiquitination of lysine using pan antibodies were also increased after LK treatment. Our study provide a valuable insights of molecular mechanism underlying LK stress response in alligator weed roots and afford a vital basis to further study potassium nutrition molecular breeding of other plant species.
Collapse
Affiliation(s)
- Li-Qin Li
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Lun Liu
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Wei Zhuo
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Qian Chen
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Sheng Hu
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shuang Peng
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xi-Yao Wang
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yi-Fei Lu
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China
| | - Li-Ming Lu
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
81
|
De Luca A, Pardo JM, Leidi EO. Pleiotropic effects of enhancing vacuolar K/H exchange in tomato. PHYSIOLOGIA PLANTARUM 2018; 163:88-102. [PMID: 29076168 DOI: 10.1111/ppl.12656] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 10/11/2017] [Accepted: 10/23/2017] [Indexed: 05/27/2023]
Abstract
Cation antiporters of the NHX family are widely regarded as determinants of salt tolerance due to their capacity to drive sodium (Na) and sequester it into vacuoles. Recent work shows, however, that NHX transporters are primarily involved in vacuolar potassium (K) storage. Over-expression of the K/H antiporter AtNHX1 in tomato increases K accumulation into vacuoles and plant sensitivity to K deprivation. Here we show that the appearance of early leaf symptoms of K deficiency was associated with higher concentration of polyamines. Transgenic roots exhibited a greater sensitivity than shoots to K deprivation with changes in the composition of the free amino acids pool, total sugars and organic acids. Concentrations of amides (glutamine), amino acids (arginine) and sugars significantly increased in root, together with a reduction in malate and succinate concentrations. The concentration of pyruvate and the activity of pyruvate kinase were greater in the transgenic roots before K withdrawal although both parameters were depressed by K deprivation and approached wild-type levels. In the longer term, the over-expression of the NHX1 antiporter affected root growth and biomass partitioning (shoot/root ratio). Greater ethylene release produced longer stem internodes and leaf curling in the transgenic line. Our data show that enhanced sequestration of K by the NHX antiporter in the vacuoles altered cellular K homeostasis and had deeper physiological consequences than expected. Early metabolic changes lead later on to profound morphological and physiological adjustments resulting eventually in the loss of nutrient use efficiency.
Collapse
Affiliation(s)
- Anna De Luca
- Department of Plant Biotechnology, IRNAS-CSIC, Reina Mercedes 10, Seville, 41012, Spain
| | - José M Pardo
- Institute of Plant Biochemistry and Photosynthesis, IBVF-CSIC, Americo Vespucio 49, Seville, 41092, Spain
| | - Eduardo O Leidi
- Department of Plant Biotechnology, IRNAS-CSIC, Reina Mercedes 10, Seville, 41012, Spain
| |
Collapse
|
82
|
Potassium: A Vital Regulator of Plant Responses and Tolerance to Abiotic Stresses. AGRONOMY-BASEL 2018. [DOI: 10.3390/agronomy8030031] [Citation(s) in RCA: 180] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Among the plant nutrients, potassium (K) is one of the vital elements required for plant growth and physiology. Potassium is not only a constituent of the plant structure but it also has a regulatory function in several biochemical processes related to protein synthesis, carbohydrate metabolism, and enzyme activation. Several physiological processes depend on K, such as stomatal regulation and photosynthesis. In recent decades, K was found to provide abiotic stress tolerance. Under salt stress, K helps to maintain ion homeostasis and to regulate the osmotic balance. Under drought stress conditions, K regulates stomatal opening and helps plants adapt to water deficits. Many reports support the notion that K enhances antioxidant defense in plants and therefore protects them from oxidative stress under various environmental adversities. In addition, this element provides some cellular signaling alone or in association with other signaling molecules and phytohormones. Although considerable progress has been made in understanding K-induced abiotic stress tolerance in plants, the exact molecular mechanisms of these protections are still under investigation. In this review, we summarized the recent literature on the biological functions of K, its uptake, its translocation, and its role in plant abiotic stress tolerance.
Collapse
|
83
|
Shen Q, Yu J, Fu L, Wu L, Dai F, Jiang L, Wu D, Zhang G. Ionomic, metabolomic and proteomic analyses reveal molecular mechanisms of root adaption to salt stress in Tibetan wild barley. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2018; 123:319-330. [PMID: 29289898 DOI: 10.1016/j.plaphy.2017.12.032] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 12/14/2017] [Accepted: 12/20/2017] [Indexed: 05/18/2023]
Abstract
In our previous study, Tibetan wild barley (Hordeum spontaneum L.) has been found to be rich in the elite accessions with strong abiotic stress tolerance, including salt stress tolerance. However, the molecular mechanism of salt tolerance underlying the wild barley remains to be elucidated. In this study, two Tibetan wild barley accessions, XZ26 (salt-tolerant) and XZ169 (salt-sensitive), were used to investigate ionomic, metabolomic and proteomic responses in roots when exposed to 0, 200 (moderate) and 400 mM (high) salinity. XZ26 showed stronger root growth and maintained higher K concentrations when compared with XZ169 under moderate salinity, while no significant difference was found between the two accessions under high salinity. A total of 574 salt-regulated proteins and 153 salt-regulated metabolites were identified in the roots of both accessions based on quantitative proteomic (iTRAQ methods) and metabolomic (GC-TOF/MS) analysis. XZ26 developed its root adaptive strategies mainly by accumulating more compatible solutes such as proline and inositol, acquiring greater antioxidant ability to cope with ROS, and consuming less energy under salt stress for producing biomass. These findings provide a better understanding of molecular responses of root adaptive strategies to salt stress in the wild barley.
Collapse
Affiliation(s)
- Qiufang Shen
- Department of Agronomy, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Jiahua Yu
- Department of Agronomy, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Liangbo Fu
- Department of Agronomy, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Liyuan Wu
- Department of Agronomy, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Fei Dai
- Department of Agronomy, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Lixi Jiang
- Department of Agronomy, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Dezhi Wu
- Department of Agronomy, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou 310058, China.
| | - Guoping Zhang
- Department of Agronomy, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
84
|
Ali N, Schwarzenberg A, Yvin JC, Hosseini SA. Regulatory Role of Silicon in Mediating Differential Stress Tolerance Responses in Two Contrasting Tomato Genotypes Under Osmotic Stress. FRONTIERS IN PLANT SCIENCE 2018; 9:1475. [PMID: 30349552 PMCID: PMC6187069 DOI: 10.3389/fpls.2018.01475] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 09/20/2018] [Indexed: 05/03/2023]
Abstract
Previous studies have shown the role of silicon (Si) in mitigating the adverse effect of drought stress in different crop species. However, data are lacking on a comparison of drought tolerant and drought sensitive crop cultivars in response to Si nutrition. Therefore, the aim of this study was to elucidate the mechanism (s) by which two contrasting tomato genotypes respond to Si nutrition under osmotic stress condition. Two tomato lines contrasting in their response to drought stress were hydroponically grown under polyethylene glycol (PEG, 6000) and two regimes of Si (0 and 1.5 mM). Metabolite profiling was performed in two lines. Growth and relevant physiological parameters, and expression levels of selected genes were also measured. Si application resulted in improved osmotic stress tolerance in both drought tolerant line LA0147 and drought sensitive line FERUM. In the drought tolerant line, Si enhanced uptake of sulfur (S) and ammonium ( NH 4 + ) which led to a significantly higher production of amino acids arginine, methionine, serine, and glycine. While in the drought sensitive line, Si significantly increased production of amino acids proline and GABA which further lowered the level of GSSG to GSH ratio and thus balanced the redox homeostasis under osmotic stress. The higher significant production of amino acids arginine, methionine, GABA, and proline enhanced production of free polyamines putrescine and spermidine and improved osmotic stress tolerance. Therefore, we conclude that Si distinctively regulated osmotic stress tolerance in two contrasting tomato genotypes by differential accumulation of relevant amino acids which eventually led to enhanced polyamine metabolism.
Collapse
|
85
|
Guo K, Tu L, He Y, Deng J, Wang M, Huang H, Li Z, Zhang X. Interaction between calcium and potassium modulates elongation rate in cotton fiber cells. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:5161-5175. [PMID: 29045717 PMCID: PMC5853336 DOI: 10.1093/jxb/erx346] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 09/14/2017] [Indexed: 05/20/2023]
Abstract
Calcium (Ca2+) is necessary for fiber cell development in cotton (Gossypium hirsutum), both as a cell wall structural component and for environmental signaling responses. It is also known that potassium (K+) plays a critical role in cotton fiber cell elongation. However, it is unclear whether Ca2+ integrates its activities with K+ to regulate fiber elongation. Here, we report the novel discovery that Ca2+ deficiency, when integrated with K+ signaling, promotes fiber elongation. Using inductively coupled plasma-mass spectrometry (ICP-MS), we determined dynamic profiles of the ionome in ovules and fibers at different developmental stages, and found that a high accumulation of macro-elements, but not Ca2+, was associated with longer fibers. Using an in vitro ovule culture system, we found that under Ca2+-deficient conditions, sufficient K+ (52 mM) rapidly induced ovule and fiber browning, while reduced K+ (2 or 27 mM) not only suppressed tissue browning but also altered fiber elongation. Reduced K+ also enhanced reactive oxygen species scavenging ability and maintained abscisic acid and jasmonic acid levels, which in turn compensated for Ca2+ deficiency. Ca2+ deficiency combined with reduced K+ (0 mM Ca2+ and 27 mM K+) produced longer fibers in cultured ovules, due to cell wall loosening by phytosulfokine (PSK), expansin (EXP), and xyloglucan endotransglycosylase/hydrolase (XTH), and an increase of the K+ content of fiber cells. Using transgenic cotton, we showed that the CBL-INTERACTING PROTEIN KINASE 6 (GhCIPK6) gene mediates the uptake of K+ under Ca2+-deficient conditions. This study establishes a new link between Ca2+, K+, and fiber elongation.
Collapse
Affiliation(s)
- Kai Guo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Lili Tu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
- Correspondence:
| | - Yonghui He
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Jinwu Deng
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Maojun Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Hui Huang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Zhonghua Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| |
Collapse
|
86
|
Coskun D, Britto DT, Kronzucker HJ. The nitrogen-potassium intersection: membranes, metabolism, and mechanism. PLANT, CELL & ENVIRONMENT 2017; 40:2029-2041. [PMID: 26524711 DOI: 10.1111/pce.12671] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Revised: 10/13/2015] [Accepted: 10/14/2015] [Indexed: 05/21/2023]
Abstract
Nitrogen (N) and potassium (K) are the two most abundantly acquired mineral elements by plants, and their acquisition pathways interact in complex ways. Here, we review pivotal interactions with respect to root acquisition, storage, translocation and metabolism, between the K+ ion and the two major N sources, ammonium (NH4+ ) and nitrate (NO3- ). The intersections between N and K physiology are explored at a number of organizational levels, from molecular-genetic processes, to compartmentation, to whole plant physiology, and discussed in the context of both N-K cooperation and antagonism. Nutritional regulation and optimization of plant growth, yield, metabolism and water-use efficiency are also discussed.
Collapse
Affiliation(s)
- Devrim Coskun
- Department of Biological Sciences and the Canadian Centre for World Hunger Research (CCWHR), University of Toronto, 1265 Military Trail, Toronto, Ontario, Canada, M1C 1A4
| | - Dev T Britto
- Department of Biological Sciences and the Canadian Centre for World Hunger Research (CCWHR), University of Toronto, 1265 Military Trail, Toronto, Ontario, Canada, M1C 1A4
| | - Herbert J Kronzucker
- Department of Biological Sciences and the Canadian Centre for World Hunger Research (CCWHR), University of Toronto, 1265 Military Trail, Toronto, Ontario, Canada, M1C 1A4
| |
Collapse
|
87
|
Rogiers SY, Coetzee ZA, Walker RR, Deloire A, Tyerman SD. Potassium in the Grape ( Vitis vinifera L.) Berry: Transport and Function. FRONTIERS IN PLANT SCIENCE 2017; 8:1629. [PMID: 29021796 PMCID: PMC5623721 DOI: 10.3389/fpls.2017.01629] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 09/05/2017] [Indexed: 05/20/2023]
Abstract
K+ is the most abundant cation in the grape berry. Here we focus on the most recent information in the long distance transport and partitioning of K+ within the grapevine and postulate on the potential role of K+ in berry sugar accumulation, berry water relations, cellular growth, disease resistance, abiotic stress tolerance and mitigating senescence. By integrating information from several different plant systems we have been able to generate new hypotheses on the integral functions of this predominant cation and to improve our understanding of how these functions contribute to grape berry growth and ripening. Valuable contributions to the study of K+ in membrane stabilization, turgor maintenance and phloem transport have allowed us to propose a mechanistic model for the role of this cation in grape berry development.
Collapse
Affiliation(s)
- Suzy Y. Rogiers
- New South Wales Department of Primary Industries, Wagga Wagga, NSW, Australia
- National Wine and Grape Industry Centre, Charles Sturt University, Wagga Wagga, NSW, Australia
- The Australian Research Council Training Centre for Innovative Wine Production, University of Adelaide, Glen Osmond, SA, Australia
| | - Zelmari A. Coetzee
- National Wine and Grape Industry Centre, Charles Sturt University, Wagga Wagga, NSW, Australia
- The Australian Research Council Training Centre for Innovative Wine Production, University of Adelaide, Glen Osmond, SA, Australia
- School of Agricultural and Wine Sciences, Charles Sturt University, Wagga Wagga, NSW, Australia
| | - Rob R. Walker
- The Australian Research Council Training Centre for Innovative Wine Production, University of Adelaide, Glen Osmond, SA, Australia
- School of Agricultural and Wine Sciences, Charles Sturt University, Wagga Wagga, NSW, Australia
- Agriculture and Food (CSIRO), Glen Osmond, SA, Australia
- School of Agriculture, Food, and Wine, University of Adelaide, Urrbrae, SA, Australia
| | - Alain Deloire
- National Wine and Grape Industry Centre, Charles Sturt University, Wagga Wagga, NSW, Australia
- The Australian Research Council Training Centre for Innovative Wine Production, University of Adelaide, Glen Osmond, SA, Australia
- Department of Biology-Ecology, SupAgro, Montpellier, France
| | - Stephen D. Tyerman
- The Australian Research Council Training Centre for Innovative Wine Production, University of Adelaide, Glen Osmond, SA, Australia
- School of Agriculture, Food, and Wine, University of Adelaide, Urrbrae, SA, Australia
| |
Collapse
|
88
|
Hosseini SA, Maillard A, Hajirezaei MR, Ali N, Schwarzenberg A, Jamois F, Yvin JC. Induction of Barley Silicon Transporter HvLsi1 and HvLsi2, increased silicon concentration in the shoot and regulated Starch and ABA Homeostasis under Osmotic stress and Concomitant Potassium Deficiency. FRONTIERS IN PLANT SCIENCE 2017; 8:1359. [PMID: 28824688 PMCID: PMC5541011 DOI: 10.3389/fpls.2017.01359] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2017] [Accepted: 07/20/2017] [Indexed: 05/18/2023]
Abstract
Drought is one of the major stress factors reducing cereal production worldwide. There is ample evidence that the mineral nutrient status of plants plays a critical role in increasing plant tolerance to different biotic and abiotic stresses. In this regard, the important role of various nutrients e.g., potassium (K) or silicon (Si) in the mitigation of different stress factors, such as drought, heat or frost has been well documented. Si application has been reported to ameliorate plant nutrient deficiency. Here, we used K and Si either solely or in combination to investigate whether an additive positive effect on barley growth can be achieved under osmotic stress and which mechanisms contribute to a better tolerance to osmotic stress. To achieve this goal, barley plants were subjected to polyethylene glycol (PEG)-induced osmotic stress under low or high K supply and two Si regimes. The results showed that barley silicon transporters HvLsi1 and HvLsi2 regulate the accumulation of Si in the shoot only when plant suffered from K deficiency. Si, in turn, increased the starch level under both osmotic stress and K deficiency and modulated the glycolytic and TCA pathways. Hormone profiling revealed that the beneficial effect of Si is most likely mediated also by ABA homeostasis and active cytokinin isopentenyl adenine (iP). We conclude that Si may effectively improve stress tolerance under K deficient condition in particular when additional stress like osmotic stress interferes.
Collapse
Affiliation(s)
- Seyed A Hosseini
- Plant Nutrition Department, Centre Mondial de I'lnnovation RoullierSaint Malo, France
| | - Anne Maillard
- Plant Nutrition Department, Centre Mondial de I'lnnovation RoullierSaint Malo, France
| | - Mohammad R Hajirezaei
- Molecular Plant Nutrition Group, Physiology and Cell Biology, Leibniz-Institute of Plant Genetics and Crop Plant ResearchGatersleben, Germany
| | - Nusrat Ali
- Plant Nutrition Department, Centre Mondial de I'lnnovation RoullierSaint Malo, France
| | - Adrian Schwarzenberg
- Plant Nutrition Department, Centre Mondial de I'lnnovation RoullierSaint Malo, France
| | - Frank Jamois
- Plant Nutrition Department, Centre Mondial de I'lnnovation RoullierSaint Malo, France
| | - Jean-Claude Yvin
- Plant Nutrition Department, Centre Mondial de I'lnnovation RoullierSaint Malo, France
| |
Collapse
|
89
|
Li P, Li H, Zong Y, Li FY, Han Y, Hao X. Photosynthesis and metabolite responses of Isatis indigotica Fortune to elevated [CO 2 ]. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.cj.2017.03.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
90
|
Zahoor R, Zhao W, Abid M, Dong H, Zhou Z. Title: Potassium application regulates nitrogen metabolism and osmotic adjustment in cotton (Gossypium hirsutum L.) functional leaf under drought stress. JOURNAL OF PLANT PHYSIOLOGY 2017; 215:30-38. [PMID: 28527336 DOI: 10.1016/j.jplph.2017.05.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 04/27/2017] [Accepted: 05/02/2017] [Indexed: 05/13/2023]
Abstract
To evaluate the role of potassium (K) in maintaining nitrogen metabolism and osmotic adjustment development of cotton functional leaves to sustain growth under soil drought and rewatering conditions, the plants of two cotton cultivars Siza 3 (low-K sensitive) and Simian 3 (low-K tolerant), were grown under three different K rates (K0, K1, and K2; 0, 150, and 300kgK2Oha-1, respectively) and exposed to drought stress with 40±5% soil relative water content (SRWC). The drought stress was applied at flowering stage by withholding water for eight days followed by rewatering to a well-watered level (75±5% SRWC). The results showed that drought-stressed plants of both cultivars showed a decrease in leaf relative water content (RWC) and osmotic potential in the functional leaves and developed osmotic adjustment with an increase in the contents of free amino acids, soluble sugars, inorganic K, and nitrate as compared to well-watered plants. In drought-stressed plants, nitrogen-metabolizing enzyme activities of nitrogen reductase (NR), glutamine synthetase (GS), and glutamate synthase (GOGAT) were diminished significantly (P≤0.05) along with decreased chlorophyll content and soluble proteins. However, drought-stressed plants under K application not only exhibited higher osmotic adjustment with greater accumulation of osmolytes but also regulated nitrogen metabolism by maintaining higher enzyme activities, soluble proteins, and chlorophyll content in functional leaves as compared to the plants without K application. Siza 3 showed better stability in enzyme activities and resulted in 89% higher seed cotton yield under K2 as compared to K0 in drought-stressed plants, whereas this increase was 53% in the case of Simian 3. The results of the study suggested that K application enhances cotton plants' potential for sustaining high nitrogen-metabolizing enzyme activities and related components to supplement osmotic adjustment under soil drought conditions.
Collapse
Affiliation(s)
- Rizwan Zahoor
- Key Laboratory of Crop Growth Regulation, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, PR China, PR China
| | - Wenqing Zhao
- Key Laboratory of Crop Growth Regulation, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, PR China, PR China
| | - Muhammad Abid
- Key Laboratory of Crop Growth Regulation, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, PR China, PR China
| | - Haoran Dong
- Key Laboratory of Crop Growth Regulation, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, PR China, PR China
| | - Zhiguo Zhou
- Key Laboratory of Crop Growth Regulation, Ministry of Agriculture, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, PR China, PR China.
| |
Collapse
|
91
|
Zhang X, Jiang H, Wang H, Cui J, Wang J, Hu J, Guo L, Qian Q, Xue D. Transcriptome Analysis of Rice Seedling Roots in Response to Potassium Deficiency. Sci Rep 2017; 7:5523. [PMID: 28717149 PMCID: PMC5514036 DOI: 10.1038/s41598-017-05887-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 06/02/2017] [Indexed: 12/20/2022] Open
Abstract
Rice is one of the most important food crops in the world, and its growth, development, yield, and grain quality are susceptible to a deficiency of the macronutrient potassium (K+). The molecular mechanism for K+ deficiency tolerance remains poorly understood. In this study, K+ deficient conditions were employed to investigate the resulting changes in the transcriptome of rice seedling roots. Using ribonucleic acid sequencing (RNA-Seq) and analysis, a total of 805 differentially expressed genes were obtained, of which 536 genes were upregulated and 269 were downregulated. Gene functional classification showed that the expression of genes involved in nutrient transport, protein kinases, transcription processes, and plant hormones were particularly altered in the roots. Although these changes were significant, the expression of most genes remained constant even in K+-deficient conditions. Interestingly, when our RNA-Seq results were compared to public microarray data, we found that most of the genes that were differentially expressed in low K+ conditions also exhibited changes in expression in other environmental stress conditions.
Collapse
Affiliation(s)
- Xiaoqin Zhang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Hua Jiang
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Zhejiang Academy of Agricultural Science, Hangzhou, China
| | - Hua Wang
- State Key Laboratory Breeding Base for Zhejiang Sustainable Pest and Disease Control, Zhejiang Academy of Agricultural Science, Hangzhou, China.,Institute of Crop Germplasm and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Jun Cui
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Jiahui Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Jiang Hu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Longbiao Guo
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Qian Qian
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China.
| | - Dawei Xue
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China.
| |
Collapse
|
92
|
Hu W, Coomer TD, Loka DA, Oosterhuis DM, Zhou Z. Potassium deficiency affects the carbon-nitrogen balance in cotton leaves. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2017; 115:408-417. [PMID: 28441628 DOI: 10.1016/j.plaphy.2017.04.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 04/03/2017] [Accepted: 04/05/2017] [Indexed: 05/21/2023]
Abstract
Potassium (K) plays important roles in the metabolism of carbon (C) and nitrogen (N), but studies of K deficiency affecting C-N balance are lacking. This study explored the influence of K deficiency on C-N interaction in cotton leaves by conducting a field experiment with cotton cultivar DP0912 under two K rates (K0: 0 kg K2O ha-1 and K67: 67 kg K2O ha-1) and a controlled environment experiment with K-deficient solution (K1: 0 mM K+) and K-sufficient solution (K2: 6 mM K+). The results showed that leaf K content, leaf number, leaf area, boll number, reproductive dry weight and total dry weight were significant lower under K deficiency (K0 or K1). Lower total chlorophyll content and Chl a/b ratio, and decreased Pn along with lower Gs and higher Ci were measured under K deficiency, suggesting that the decrease in Pn was resulted from non-stomatal limitation. Leaf glucose, fructose, sucrose and starch contents were higher under K deficiency, because lower sucrose export was detected in phloem. Although leaf nitrate and ammonium contents significantly decreased, free amino acid content was increased by 40-63% under K deficiency, since lower amino acid export was also measured in phloem. K deficiency also induced lower soluble protein content in leaves. Leaf ATP level was significantly increased under K deficiency, indicating ATP utilization was lower, so that less energy was supplied to C and N metabolism. The ratio of soluble sugar to free amino acid and the C/N ratio markedly increased under K deficiency, and one reason was that the phloem export reduced more prominent for sucrose (54.6-78.0%) than amino acid (36.7-85.4%) under K deficiency. In addition, lower phosphoenolpyruvate carboxylase activity limited malate and citrate biosynthesis under K deficiency, causing a decrease of C flux into the amino acids, which was not beneficial for maintaining C-N balance. Sucrose phosphate synthase and nitrate reductase activities were lower under K deficiency, which would limit sucrose biosynthesis and nitrate assimilation. This was another factor altering soluble sugar to free amino acid ratio and C/N ratio in the K-deficient leaves.
Collapse
Affiliation(s)
- Wei Hu
- College of Agriculture, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, PR China; Department of Crop, Soil, and Environmental Sciences, University of Arkansas, 1366 West Altheimer Drive, Fayetteville, AR 72704, USA
| | - Taylor D Coomer
- Department of Crop, Soil, and Environmental Sciences, University of Arkansas, 1366 West Altheimer Drive, Fayetteville, AR 72704, USA
| | - Dimitra A Loka
- Department of Crop, Soil, and Environmental Sciences, University of Arkansas, 1366 West Altheimer Drive, Fayetteville, AR 72704, USA; Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Ceredigion, UK
| | - Derrick M Oosterhuis
- Department of Crop, Soil, and Environmental Sciences, University of Arkansas, 1366 West Altheimer Drive, Fayetteville, AR 72704, USA.
| | - Zhiguo Zhou
- College of Agriculture, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, PR China.
| |
Collapse
|
93
|
Shen C, Wang J, Shi X, Kang Y, Xie C, Peng L, Dong C, Shen Q, Xu Y. Transcriptome Analysis of Differentially Expressed Genes Induced by Low and High Potassium Levels Provides Insight into Fruit Sugar Metabolism of Pear. FRONTIERS IN PLANT SCIENCE 2017; 8:938. [PMID: 28620410 PMCID: PMC5450510 DOI: 10.3389/fpls.2017.00938] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2017] [Accepted: 05/19/2017] [Indexed: 05/14/2023]
Abstract
Potassium (K) deficiency is a common abiotic stress that can inhibit the growth of fruit and thus reduce crop yields. Little research has been conducted on pear transcriptional changes under low and high K conditions. Here, we performed an experiment with 7-year-old pot-grown "Huangguan" pear trees treated with low, Control or high K levels (0, 0.4, or 0.8 g·K2O/kg soil, respectively) during fruit enlargement and mature stages. We identified 36,444 transcripts from leaves and fruit using transcriptome sequencing technology. From 105 days after full blooming (DAB) to 129 DAB, the number of differentially expressed genes (DEGs) in leaves and fruit in response to low K increased, while in response to high K, the number of DEGs in leaves and fruit decreased. We selected 17 of these DEGs for qRT-PCR analysis to confirm the RNA sequencing results. Based on GO enrichment and KEGG pathway analysis, we found that low-K treatment significantly reduced K nutrient and carbohydrate metabolism of the leaves and fruit compared with the Control treatment. During the fruit development stages, AKT1 (gene39320) played an important role on K+ transport of the leaves and fruit response to K stress. At maturity, sucrose and acid metabolic pathways were inhibited by low K. The up-regulation of the expression of three SDH and two S6PDH genes involved in sorbitol metabolism was induced by low K, promoting the fructose accumulation. Simultaneously, higher expression was found for genes encoding amylase under low K, promoting the decomposition of the starch and leading the glucose accumulation. High K could enhance leaf photosynthesis, and improve the distribution of the nutrient and carbohydrate from leaf to fruit. Sugar components of the leaves and fruit under low K were regulated by the expression of genes encoding 8 types of hormone signals and reactive oxygen species (ROS). Our data revealed the gene expression patterns of leaves and fruit in response to different K levels during the middle and late stages of fruit development as well as the molecular mechanism of improvement of fruit sugar levels by K and provided a scientific basis for improving fruit quality with supplemental K fertilizers.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Caixia Dong
- Key Laboratory of Plant Nutrition and Fertilization in Low-Middle Reaches of the Yangtze River, Ministry of Agriculture, Jiangsu Key Laboratory of Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, College of Resources and Environmental Science, Nanjing Agricultural UniversityNanjing, China
| | | | | |
Collapse
|
94
|
Piñero MC, Otálora G, Porras ME, Sánchez-Guerrero MC, Lorenzo P, Medrano E, Del Amor FM. The Form in Which Nitrogen Is Supplied Affects the Polyamines, Amino Acids, and Mineral Composition of Sweet Pepper Fruit under an Elevated CO 2 Concentration. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:711-717. [PMID: 28075582 DOI: 10.1021/acs.jafc.6b04118] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We investigated the effect of supplying nitrogen, as NO3- or as NO3-/NH4+, on the composition of fruits of sweet pepper (Capsicum annuum L. cv. Melchor) plants grown with different CO2 concentrations ([CO2]): ambient or elevated (800 μmol mol-1). The results show that the application of NH4+ and high [CO2] affected the chroma related to the concentrations of chlorophylls. The concentrations of Ca, Cu, Mg, P, and Zn were significantly reduced in the fruits of plants nourished with NH4+, the loss of Fe being more dramatic at increased [CO2], which was also the case with the protein concentration. The concentration of total phenolics was increased by NH4+, being unaffected by [CO2]. Globally, the NH4+ was the main factor that affected fruit free amino acid concentrations. Polyamines were affected differently: putrescine was increased by elevated [CO2], while the response of cadaverine depended on the form of N supplied.
Collapse
Affiliation(s)
- Maria C Piñero
- Departamento de Hortofruticultura, Instituto Murciano de Investigación y Desarrollo Agrario y Alimentario (IMIDA) , C/Mayor s/n, 30150 Murcia, Spain
| | - Ginés Otálora
- Departamento de Hortofruticultura, Instituto Murciano de Investigación y Desarrollo Agrario y Alimentario (IMIDA) , C/Mayor s/n, 30150 Murcia, Spain
| | - Manuel E Porras
- Agricultural Research and Development Centre of Almería (IFAPA-Almería) , Autovía del Mediterráneo, Sal. 420, Paraje San Nicolás, 04745 La Mojonera, Almería, Spain
| | - Mari C Sánchez-Guerrero
- Agricultural Research and Development Centre of Almería (IFAPA-Almería) , Autovía del Mediterráneo, Sal. 420, Paraje San Nicolás, 04745 La Mojonera, Almería, Spain
| | - Pilar Lorenzo
- Agricultural Research and Development Centre of Almería (IFAPA-Almería) , Autovía del Mediterráneo, Sal. 420, Paraje San Nicolás, 04745 La Mojonera, Almería, Spain
| | - Evangelina Medrano
- Agricultural Research and Development Centre of Almería (IFAPA-Almería) , Autovía del Mediterráneo, Sal. 420, Paraje San Nicolás, 04745 La Mojonera, Almería, Spain
| | - Francisco M Del Amor
- Agricultural Research and Development Centre of Almería (IFAPA-Almería) , Autovía del Mediterráneo, Sal. 420, Paraje San Nicolás, 04745 La Mojonera, Almería, Spain
| |
Collapse
|
95
|
Tracking the Orchestration of the Tricarboxylic Acid Pathway in Plants, 80 Years After the Discovery of the Krebs Cycle. ADVANCES IN PHOTOSYNTHESIS AND RESPIRATION 2017. [DOI: 10.1007/978-3-319-68703-2_14] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
96
|
Quan X, Qian Q, Ye Z, Zeng J, Han Z, Zhang G. Metabolic analysis of two contrasting wild barley genotypes grown hydroponically reveals adaptive strategies in response to low nitrogen stress. JOURNAL OF PLANT PHYSIOLOGY 2016; 206:59-67. [PMID: 27693987 DOI: 10.1016/j.jplph.2016.07.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 07/03/2016] [Accepted: 07/28/2016] [Indexed: 05/21/2023]
Abstract
Nitrogen (N) is an essential macronutrient for plants. The increasingly severe environmental problems caused by N fertilizer application urge alleviation of N fertilizer dependence in crop production. In previous studies, we identified the Tibetan wild barley accessions with high tolerance to low nitrogen (LN). In this study, metabolic analysis was done on two wild genotypes (XZ149, tolerant and XZ56, sensitive) to understand the mechanism of LN tolerance, using a hydroponic experiment. Leaf and root samples were taken at seven time points within 18 d after LN treatment, respectively. XZ149 was much less affected by low N stress than XZ56 in plant biomass. A total of 51 differentially accumulated metabolites were identified between LN and normal N treated plants. LN stress induced tissue-specific changes in carbon and nitrogen partitioning, and XZ149 had a pattern of energy-saving amino acids accumulation and carbon distribution in favor of root growth that contribute to its higher LN tolerance. Moreover, XZ149 is highly capable of producing energy and maintaining the redox homeostasis under LN stress. The current results revealed the mechanisms underlying the wild barley in high LN tolerance and provided the valuable references for developing barley cultivars with LN tolerance.
Collapse
Affiliation(s)
- Xiaoyan Quan
- Agronomy Department, Institute of Crop Science, Zhejiang University, Hangzhou, 310058, China
| | - Qiufeng Qian
- Agronomy Department, Institute of Crop Science, Zhejiang University, Hangzhou, 310058, China
| | - Zhilan Ye
- Agronomy Department, Institute of Crop Science, Zhejiang University, Hangzhou, 310058, China
| | - Jianbin Zeng
- Agronomy Department, Institute of Crop Science, Zhejiang University, Hangzhou, 310058, China
| | - Zhigang Han
- Agronomy Department, Institute of Crop Science, Zhejiang University, Hangzhou, 310058, China
| | - Guoping Zhang
- Agronomy Department, Institute of Crop Science, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
97
|
Dong X, Liu G, Wu X, Lu X, Yan L, Muhammad R, Shah A, Wu L, Jiang C. Different metabolite profile and metabolic pathway with leaves and roots in response to boron deficiency at the initial stage of citrus rootstock growth. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2016; 108:121-131. [PMID: 27428366 DOI: 10.1016/j.plaphy.2016.07.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 07/08/2016] [Accepted: 07/09/2016] [Indexed: 05/02/2023]
Abstract
Boron (B) is a microelement required for higher plants, and B deficiency has serious negative effect on metabolic processes. We concentrated on the changes in metabolite profiles of trifoliate orange leaves and roots as a consequence of B deficiency at the initial stage of growth by gas chromatography-mass spectrometry (GC-MS)-based metabolomics. Enlargement and browning of root tips were observed in B-deficient plants, while any obvious symptom was not recorded in the leaves after 30 days of B deprivation. The distinct patterns of alterations in metabolites observed in leaves and roots due to B deficiency suggest the presence of specific organ responses to B starvation. The accumulation of soluble sugars was occurred in leaves, which may be attributed to down-regulated pentose phosphate pathway (PPP) and amino acid biosynthesis under B deficiency, while the amount of most amino acids in roots was increased, indicating that the effects of B deficiency on amino acids metabolism in trifoliate orange may be a consequence of disruptions in root tissues and decreased protein biosynthesis. Several important products of shikimate pathway were also significantly affected by B deficiency, which may be related to abnormal growth of roots induced by B deficiency. Conclusively, our results revealed a global perspective of the discriminative metabolism responses appearing between B-deprived leaves and roots and provided new insight into the relationship between B deficiency symptom in roots and the altered amino acids profiling and shikimate pathway induced by B deficiency during seedling establishment.
Collapse
Affiliation(s)
- Xiaochang Dong
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China
| | - Guidong Liu
- National Navel Orange Engineering Research Center, Gannan Normal University, Ganzhou, Jiangxi, 341000, PR China
| | - Xiuwen Wu
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China
| | - Xiaopei Lu
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China
| | - Lei Yan
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China
| | - Riaz Muhammad
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China
| | - Asad Shah
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China
| | - Lishu Wu
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China
| | - Cuncang Jiang
- Microelement Research Center, College of Resources and Environment, Huazhong Agricultural University, Wuhan, Hubei, 430070, PR China.
| |
Collapse
|
98
|
Rashid MM, Jahan M, Islam KS. Response of Adult Brown Planthopper Nilaparvata lugens (Stål) to Rice Nutrient Management. NEOTROPICAL ENTOMOLOGY 2016; 45:588-596. [PMID: 27155974 DOI: 10.1007/s13744-016-0401-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 04/05/2016] [Indexed: 06/05/2023]
Abstract
Nitrogen (N) limitation is well documented for the brown planthopper (BPH) Nilaparvata lugens (Stål), but phosphorus (P) and potassium (K) limitation is poorly studied. We studied the effects of N, P, and K application on chemical composition of rice plants and its consequences on life parameters-adult longevity, fecundity, and egg hatchability of BPH. Life parameters of BPH were regressed as function of plant chemical composition. A completely randomized design with four replicates in a factorial scheme was used considering N, P, and K levels as factors. Nitrogen application increased N and soluble proteins (SP) and decreased silicon (Si) content in the plants resulting in increased adult longevity, fecundity, and egg hatchability of BPH. Phosphorus fertilization increased P content and showed markedly increased fecundity, but not egg hatchability or adult longevity. Significant interaction between N and P was observed for fecundity of BPH. Potassium supplementation increased K content but reduced N, Si, SP, and total free sugars (TFS) content in the plants, but it had no significant effect on life parameters of BPH. The association of BPH life parameters with N, SP, TFS, and P content was significant and positive, but it was negative with the content of Si. Thus, N and P fertilization on rice plants enhanced BPH fitness. In conclusion, judicious nutrient application can be helpful in avoiding generalized infestation of BPH to rice.
Collapse
Affiliation(s)
- M M Rashid
- Plant Physiology Division, Bangladesh Rice Research Institute (BRRI), Gazipur, 1701, Bangladesh.
| | - M Jahan
- Dept of Entomology, Bangladesh Agricultural Univ, Mymensingh, Bangladesh
| | - K S Islam
- Dept of Entomology, Bangladesh Agricultural Univ, Mymensingh, Bangladesh
| |
Collapse
|
99
|
Rashid MM, Jahan M, Islam KS. Response of Adult Brown Planthopper Nilaparvata lugens (Stål) to Rice Nutrient Management. NEOTROPICAL ENTOMOLOGY 2016; 45:588-596. [PMID: 27155974 DOI: 10.1186/s13717-017-0080-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2015] [Accepted: 04/05/2016] [Indexed: 05/23/2023]
Abstract
Nitrogen (N) limitation is well documented for the brown planthopper (BPH) Nilaparvata lugens (Stål), but phosphorus (P) and potassium (K) limitation is poorly studied. We studied the effects of N, P, and K application on chemical composition of rice plants and its consequences on life parameters-adult longevity, fecundity, and egg hatchability of BPH. Life parameters of BPH were regressed as function of plant chemical composition. A completely randomized design with four replicates in a factorial scheme was used considering N, P, and K levels as factors. Nitrogen application increased N and soluble proteins (SP) and decreased silicon (Si) content in the plants resulting in increased adult longevity, fecundity, and egg hatchability of BPH. Phosphorus fertilization increased P content and showed markedly increased fecundity, but not egg hatchability or adult longevity. Significant interaction between N and P was observed for fecundity of BPH. Potassium supplementation increased K content but reduced N, Si, SP, and total free sugars (TFS) content in the plants, but it had no significant effect on life parameters of BPH. The association of BPH life parameters with N, SP, TFS, and P content was significant and positive, but it was negative with the content of Si. Thus, N and P fertilization on rice plants enhanced BPH fitness. In conclusion, judicious nutrient application can be helpful in avoiding generalized infestation of BPH to rice.
Collapse
Affiliation(s)
- M M Rashid
- Plant Physiology Division, Bangladesh Rice Research Institute (BRRI), Gazipur, 1701, Bangladesh.
| | - M Jahan
- Dept of Entomology, Bangladesh Agricultural Univ, Mymensingh, Bangladesh
| | - K S Islam
- Dept of Entomology, Bangladesh Agricultural Univ, Mymensingh, Bangladesh
| |
Collapse
|
100
|
Liu D, Lian B, Wang B. Solubilization of potassium containing minerals by high temperature resistant Streptomyces sp. isolated from earthworm’s gut. ACTA GEOCHIMICA 2016; 35:262-270. [DOI: 10.1007/s11631-016-0106-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|