51
|
Ma J, Li J, Xu Z, Wang F, Xiong A. Transcriptome profiling of genes involving in carotenoid biosynthesis and accumulation between leaf and root of carrot (Daucus carota L.). Acta Biochim Biophys Sin (Shanghai) 2018; 50:481-490. [PMID: 29617714 DOI: 10.1093/abbs/gmy027] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 02/23/2018] [Indexed: 12/14/2022] Open
Abstract
Carrot provides abundant carotenoid for human diet and is one of the most widely cultivated root vegetables in the world. However, the absence of the tissue-specific transcriptome of carrots hampers the investigation of the association of secondary metabolic mechanism with the different tissue types. In this study, we obtained 46,119,008/48,414,508 raw reads and 45,394,846/47,887,648 clean reads from the carrot leaf and root, respectively. Moreover, α- and β-carotene were found to accumulate in both tissues. Then, using Trinity assembly into contigs and mapped back to contigs, these reads were assembled to 56,267 and 62,427 leaf and root unigenes, respectively, after Ns removal and paired-end extension. In addition, a total of 18,354 DEGs were found between the carrot leaf and root unigenes, and 99 of these DEGs were found to be involved in carotenoid biosynthesis as revealed by integrated function annotation. In the carotenoid pathway DEGs, DcPSY1, DcZ-ISO, DcCISO2, DcLBCY, DcLECY, DcZEP1, DcZEP2, DcVDE1, DcVDE2, DcNSY1, DcNSY2, DcA8H-CYP707A1.2, DcAAO3a, DcCCD4, and DcMAX1 were expressed dramatically in the carrot leaf compared with in the root. This result was consistent with the results from the quantitative real-time PCR analysis of DEG expression profiles. Moreover, 67 more carotenoid biosynthesis-related genes were found in this transcriptome database. Most of these DEGs were up-regulated in the carrot leaf compared with those in the root. The expression of DEGs may be related to the higher carotenoid pathway flux in the carrot leaf than in the root. These results will help to further understand the carotenoid biosynthesis in carrot.
Collapse
Affiliation(s)
- Jing Ma
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Jingwen Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhisheng Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Feng Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Aisheng Xiong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
52
|
Singh A, Nath O, Singh S, Kumar S, Singh IK. Genome-wide identification of the MAPK gene family in chickpea and expression analysis during development and stress response. ACTA ACUST UNITED AC 2018. [DOI: 10.1016/j.plgene.2017.12.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
53
|
Clúa J, Roda C, Zanetti ME, Blanco FA. Compatibility between Legumes and Rhizobia for the Establishment of a Successful Nitrogen-Fixing Symbiosis. Genes (Basel) 2018; 9:E125. [PMID: 29495432 PMCID: PMC5867846 DOI: 10.3390/genes9030125] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 01/24/2018] [Accepted: 02/08/2018] [Indexed: 12/14/2022] Open
Abstract
The root nodule symbiosis established between legumes and rhizobia is an exquisite biological interaction responsible for fixing a significant amount of nitrogen in terrestrial ecosystems. The success of this interaction depends on the recognition of the right partner by the plant within the richest microbial ecosystems on Earth, the soil. Recent metagenomic studies of the soil biome have revealed its complexity, which includes microorganisms that affect plant fitness and growth in a beneficial, harmful, or neutral manner. In this complex scenario, understanding the molecular mechanisms by which legumes recognize and discriminate rhizobia from pathogens, but also between distinct rhizobia species and strains that differ in their symbiotic performance, is a considerable challenge. In this work, we will review how plants are able to recognize and select symbiotic partners from a vast diversity of surrounding bacteria. We will also analyze recent advances that contribute to understand changes in plant gene expression associated with the outcome of the symbiotic interaction. These aspects of nitrogen-fixing symbiosis should contribute to translate the knowledge generated in basic laboratory research into biotechnological advances to improve the efficiency of the nitrogen-fixing symbiosis in agronomic systems.
Collapse
Affiliation(s)
- Joaquín Clúa
- Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Centro Científico y Tecnológico-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, 1900-La Plata, Argentina.
| | - Carla Roda
- Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Centro Científico y Tecnológico-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, 1900-La Plata, Argentina.
| | - María Eugenia Zanetti
- Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Centro Científico y Tecnológico-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, 1900-La Plata, Argentina.
| | - Flavio A Blanco
- Instituto de Biotecnología y Biología Molecular, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Centro Científico y Tecnológico-La Plata, Consejo Nacional de Investigaciones Científicas y Técnicas, 1900-La Plata, Argentina.
| |
Collapse
|
54
|
Taheri S, Lee Abdullah T, Yusop MR, Hanafi MM, Sahebi M, Azizi P, Shamshiri RR. Mining and Development of Novel SSR Markers Using Next Generation Sequencing (NGS) Data in Plants. Molecules 2018; 23:E399. [PMID: 29438290 PMCID: PMC6017569 DOI: 10.3390/molecules23020399] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 01/11/2018] [Accepted: 01/13/2018] [Indexed: 11/17/2022] Open
Abstract
Microsatellites, or simple sequence repeats (SSRs), are one of the most informative and multi-purpose genetic markers exploited in plant functional genomics. However, the discovery of SSRs and development using traditional methods are laborious, time-consuming, and costly. Recently, the availability of high-throughput sequencing technologies has enabled researchers to identify a substantial number of microsatellites at less cost and effort than traditional approaches. Illumina is a noteworthy transcriptome sequencing technology that is currently used in SSR marker development. Although 454 pyrosequencing datasets can be used for SSR development, this type of sequencing is no longer supported. This review aims to present an overview of the next generation sequencing, with a focus on the efficient use of de novo transcriptome sequencing (RNA-Seq) and related tools for mining and development of microsatellites in plants.
Collapse
Affiliation(s)
- Sima Taheri
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | - Thohirah Lee Abdullah
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | - Mohd Rafii Yusop
- Department of Crop Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
- Laboratory of Climate-Smart Food Crop Production, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | - Mohamed Musa Hanafi
- Laboratory of Climate-Smart Food Crop Production, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
- Laboratory of Plantation Science and Technology, Institute of Plantation Studies, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
- Department of Land Management, Faculty of Agriculture, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | - Mahbod Sahebi
- Laboratory of Climate-Smart Food Crop Production, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | - Parisa Azizi
- Laboratory of Climate-Smart Food Crop Production, Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.
| | - Redmond Ramin Shamshiri
- Smart Farming Technology Research Center, Department of Biological and Agricultural Engineering, Faculty of Engineering, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| |
Collapse
|
55
|
Mazumdar P, Binti Othman R, Mebus K, Ramakrishnan N, Ann Harikrishna J. Codon usage and codon pair patterns in non-grass monocot genomes. ANNALS OF BOTANY 2017; 120:893-909. [PMID: 29155926 PMCID: PMC5710610 DOI: 10.1093/aob/mcx112] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 09/19/2017] [Indexed: 05/19/2023]
Abstract
BACKGROUND AND AIMS Studies on codon usage in monocots have focused on grasses, and observed patterns of this taxon were generalized to all monocot species. Here, non-grass monocot species were analysed to investigate the differences between grass and non-grass monocots. METHODS First, studies of codon usage in monocots were reviewed. The current information was then extended regarding codon usage, as well as codon-pair context bias, using four completely sequenced non-grass monocot genomes (Musa acuminata, Musa balbisiana, Phoenix dactylifera and Spirodela polyrhiza) for which comparable transcriptome datasets are available. Measurements were taken regarding relative synonymous codon usage, effective number of codons, derived optimal codon and GC content and then the relationships investigated to infer the underlying evolutionary forces. KEY RESULTS The research identified optimal codons, rare codons and preferred codon-pair context in the non-grass monocot species studied. In contrast to the bimodal distribution of GC3 (GC content in third codon position) in grasses, non-grass monocots showed a unimodal distribution. Disproportionate use of G and C (and of A and T) in two- and four-codon amino acids detected in the analysis rules out the mutational bias hypothesis as an explanation of genomic variation in GC content. There was found to be a positive relationship between CAI (codon adaptation index; predicts the level of expression of a gene) and GC3. In addition, a strong correlation was observed between coding and genomic GC content and negative correlation of GC3 with gene length, indicating a strong impact of GC-biased gene conversion (gBGC) in shaping codon usage and nucleotide composition in non-grass monocots. CONCLUSION Optimal codons in these non-grass monocots show a preference for G/C in the third codon position. These results support the concept that codon usage and nucleotide composition in non-grass monocots are mainly driven by gBGC.
Collapse
Affiliation(s)
- Purabi Mazumdar
- Centre for Research in Biotechnology for Agriculture, University of Malaya, Kuala Lumpur, Malaysia
| | - RofinaYasmin Binti Othman
- Centre for Research in Biotechnology for Agriculture, University of Malaya, Kuala Lumpur, Malaysia
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | - Katharina Mebus
- Centre for Research in Biotechnology for Agriculture, University of Malaya, Kuala Lumpur, Malaysia
| | - N Ramakrishnan
- Electrical and Computer System Engineering, School of Engineering, Monash University Malaysia, Bandar Sunway, Malaysia
| | - Jennifer Ann Harikrishna
- Centre for Research in Biotechnology for Agriculture, University of Malaya, Kuala Lumpur, Malaysia
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
- For correspondence. E-mail:
| |
Collapse
|
56
|
Garg R, Singh VK, Rajkumar MS, Kumar V, Jain M. Global transcriptome and coexpression network analyses reveal cultivar-specific molecular signatures associated with seed development and seed size/weight determination in chickpea. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 91:1088-1107. [PMID: 28640939 DOI: 10.1111/tpj.13621] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 06/02/2017] [Accepted: 06/09/2017] [Indexed: 05/22/2023]
Abstract
Seed development is an intricate process regulated via a complex transcriptional regulatory network. To understand the molecular mechanisms governing seed development and seed size/weight in chickpea, we performed a comprehensive analysis of transcriptome dynamics during seed development in two cultivars with contrasting seed size/weight (small-seeded, Himchana 1 and large-seeded, JGK 3). Our analysis identified stage-specific expression for a significant proportion (>13%) of the genes in each cultivar. About one half of the total genes exhibited significant differential expression in JGK 3 as compared with Himchana 1. We found that different seed development stages can be delineated by modules of coexpressed genes. A comparative analysis revealed differential developmental stage specificity of some modules between the two cultivars. Furthermore, we constructed transcriptional regulatory networks and identified key components determining seed size/weight. The results suggested that extended period of cell division during embryogenesis and higher level of endoreduplication along with more accumulation of storage compounds during maturation determine large seed size/weight. Further, we identified quantitative trait loci-associated candidate genes harboring single nucleotide polymorphisms in the promoter sequences that differentiate small- and large-seeded chickpea cultivars. The results provide a valuable resource to dissect the role of candidate genes governing seed development and seed size/weight in chickpea.
Collapse
Affiliation(s)
- Rohini Garg
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Gautam Buddha Nagar, Uttar Pradesh, 201314, India
| | - Vikash K Singh
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Mohan Singh Rajkumar
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Vinay Kumar
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Mukesh Jain
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
- School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Delhi, 110067, India
| |
Collapse
|
57
|
Genome-wide analysis of the CCCH zinc finger family identifies tissue specific and stress responsive candidates in chickpea (Cicer arietinum L.). PLoS One 2017; 12:e0180469. [PMID: 28704400 PMCID: PMC5507508 DOI: 10.1371/journal.pone.0180469] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Accepted: 06/15/2017] [Indexed: 12/15/2022] Open
Abstract
The CCCH zinc finger is a group of proteins characterised by a typical motif consisting of three cysteine residues and one histidine residue. These proteins have been reported to play important roles in regulation of plant growth, developmental processes and environmental responses. In the present study, genome wide analysis of the CCCH zinc finger gene family was carried out in the available chickpea genome. Various bioinformatics tools were employed to predict 58 CCCH zinc finger genes in chickpea (designated CarC3H1-58), which were analysed for their physio-chemical properties. Phylogenetic analysis classified the proteins into 12 groups in which members of a particular group had similar structural organization. Further, the numbers as well as the types of CCCH motifs present in the CarC3H proteins were compared with those from Arabidopsis and Medicago truncatula. Synteny analysis revealed valuable information regarding the evolution of this gene family. Tandem and segmental duplication events were identified and their Ka/Ks values revealed that the CarC3H gene family in chickpea had undergone purifying selection. Digital, as well as real time qRT-PCR expression analysis was performed which helped in identification of several CarC3H members that expressed preferentially in specific chickpea tissues as well as during abiotic stresses (desiccation, cold, salinity). Moreover, molecular characterization of an important member CarC3H45 was carried out. This study provides comprehensive genomic information about the important CCCH zinc finger gene family in chickpea. The identified tissue specific and abiotic stress specific CCCH genes could be potential candidates for further characterization to delineate their functional roles in development and stress.
Collapse
|
58
|
Khandal H, Parween S, Roy R, Meena MK, Chattopadhyay D. MicroRNA profiling provides insights into post-transcriptional regulation of gene expression in chickpea root apex under salinity and water deficiency. Sci Rep 2017; 7:4632. [PMID: 28680071 PMCID: PMC5498500 DOI: 10.1038/s41598-017-04906-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 05/05/2017] [Indexed: 11/08/2022] Open
Abstract
Activity of root apical meristem (RAM) at the root apex is critical for stress-mediated modulation of root-architecture. Chickpea, like other legumes, possesses a basic open root meristem. Deep sequencing was used to perform microRNA expression profiling in root apex of chickpea (Cicer arietinum L.) in order to investigate post-transcriptional regulation of gene expression in this tissue in response to salinity and water deficit. Five small RNA libraries prepared from chickpea root apices at different stages of stress treatments were sequenced to obtain 284 unique miRNA sequences including 60 novel miRNAs belonging to total 255 families. Two hundred and fiftynine miRNAs were differentially expressed in stress. Six hundred and nine mRNA targets involved in diverse cellular processes were predicted for 244 miRNAs. Stress-responsive expression patterns of selected miRNAs, inverse expression patterns of their target genes and the target-cleavage sites were validated. Three candidate miRNA-target gene relationships were validated in transient expression system in chickpea. The miRNA expression profiling under salinity and water deficiency in a legume root apex and the reported function of their target genes suggested important roles of miRNA-mediated post-transcriptional regulation of gene expression involved in re-patterning of root hair cells, lateral root formation and high-affinity K+-uptake under these stresses.
Collapse
Affiliation(s)
- Hitaishi Khandal
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Sabiha Parween
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Riti Roy
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Mukesh Kumar Meena
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Debasis Chattopadhyay
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
59
|
Spatial transcriptome analysis provides insights of key gene(s) involved in steroidal saponin biosynthesis in medicinally important herb Trillium govanianum. Sci Rep 2017; 7:45295. [PMID: 28349986 PMCID: PMC5368571 DOI: 10.1038/srep45295] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 02/23/2017] [Indexed: 01/29/2023] Open
Abstract
Trillium govanianum, an endangered medicinal herb native to the Himalaya, is less studied at the molecular level due to the non-availability of genomic resources. To facilitate the basic understanding of the key genes and regulatory mechanism of pharmaceutically important biosynthesis pathways, first spatial transcriptome sequencing of T. govanianum was performed. 151,622,376 (~11.5 Gb) high quality reads obtained using paired-end Illumina sequencing were de novo assembled into 69,174 transcripts. Functional annotation with multiple public databases identified array of genes involved in steroidal saponin biosynthesis and other secondary metabolite pathways including brassinosteroid, carotenoid, diterpenoid, flavonoid, phenylpropanoid, steroid and terpenoid backbone biosynthesis, and important TF families (bHLH, MYB related, NAC, FAR1, bZIP, B3 and WRKY). Differentially expressed large number of transcripts, together with CYPs and UGTs suggests involvement of these candidates in tissue specific expression. Combined transcriptome and expression analysis revealed that leaf and fruit tissues are the main site of steroidal saponin biosynthesis. In conclusion, comprehensive genomic dataset created in the current study will serve as a resource for identification of potential candidates for genetic manipulation of targeted bioactive metabolites and also contribute for development of functionally relevant molecular marker resource to expedite molecular breeding and conservation efforts in T. govanianum.
Collapse
|
60
|
Yao S, Jiang C, Huang Z, Torres-Jerez I, Chang J, Zhang H, Udvardi M, Liu R, Verdier J. The Vigna unguiculata Gene Expression Atlas (VuGEA) from de novo assembly and quantification of RNA-seq data provides insights into seed maturation mechanisms. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2016; 88:318-327. [PMID: 27448251 DOI: 10.1111/tpj.13279] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 07/14/2016] [Accepted: 07/15/2016] [Indexed: 05/10/2023]
Abstract
Legume research and cultivar development are important for sustainable food production, especially of high-protein seed. Thanks to the development of deep-sequencing technologies, crop species have been taken to the front line, even without completion of their genome sequences. Black-eyed pea (Vigna unguiculata) is a legume species widely grown in semi-arid regions, which has high potential to provide stable seed protein production in a broad range of environments, including drought conditions. The black-eyed pea reference genotype has been used to generate a gene expression atlas of the major plant tissues (i.e. leaf, root, stem, flower, pod and seed), with a developmental time series for pods and seeds. From these various organs, 27 cDNA libraries were generated and sequenced, resulting in more than one billion reads. Following filtering, these reads were de novo assembled into 36 529 transcript sequences that were annotated and quantified across the different tissues. A set of 24 866 unique transcript sequences, called Unigenes, was identified. All the information related to transcript identification, annotation and quantification were stored into a gene expression atlas webserver (http://vugea.noble.org), providing a user-friendly interface and necessary tools to analyse transcript expression in black-eyed pea organs and to compare data with other legume species. Using this gene expression atlas, we inferred details of molecular processes that are active during seed development, and identified key putative regulators of seed maturation. Additionally, we found evidence for conservation of regulatory mechanisms involving miRNA in plant tissues subjected to drought and seeds undergoing desiccation.
Collapse
Affiliation(s)
- Shaolun Yao
- Shanghai Center for Plant Stress Biology, Shanghai Institutes of Biological Sciences (SIBS), The Chinese Academy of Sciences (CAS), Shanghai, 201602, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Chuan Jiang
- Shanghai Center for Plant Stress Biology, Shanghai Institutes of Biological Sciences (SIBS), The Chinese Academy of Sciences (CAS), Shanghai, 201602, China
- University of Chinese Academy of Sciences, Beijing, 100039, China
| | - Ziyue Huang
- Shanghai Center for Plant Stress Biology, Shanghai Institutes of Biological Sciences (SIBS), The Chinese Academy of Sciences (CAS), Shanghai, 201602, China
| | - Ivone Torres-Jerez
- The Samuel Roberts Noble Foundation, Plant Biology Division, Ardmore, OK, 73401, USA
| | - Junil Chang
- The Samuel Roberts Noble Foundation, Plant Biology Division, Ardmore, OK, 73401, USA
- The Samuel Roberts Noble Foundation, Computing Service Department, Ardmore, OK, 73401, USA
| | - Heng Zhang
- Shanghai Center for Plant Stress Biology, Shanghai Institutes of Biological Sciences (SIBS), The Chinese Academy of Sciences (CAS), Shanghai, 201602, China
| | - Michael Udvardi
- The Samuel Roberts Noble Foundation, Plant Biology Division, Ardmore, OK, 73401, USA
| | - Renyi Liu
- Shanghai Center for Plant Stress Biology, Shanghai Institutes of Biological Sciences (SIBS), The Chinese Academy of Sciences (CAS), Shanghai, 201602, China
| | - Jerome Verdier
- Shanghai Center for Plant Stress Biology, Shanghai Institutes of Biological Sciences (SIBS), The Chinese Academy of Sciences (CAS), Shanghai, 201602, China
| |
Collapse
|
61
|
Srivastava R, Bajaj D, Malik A, Singh M, Parida SK. Transcriptome landscape of perennial wild Cicer microphyllum uncovers functionally relevant molecular tags regulating agronomic traits in chickpea. Sci Rep 2016; 6:33616. [PMID: 27680662 PMCID: PMC5041113 DOI: 10.1038/srep33616] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Accepted: 08/26/2016] [Indexed: 01/03/2023] Open
Abstract
The RNA-sequencing followed by de-novo transcriptome assembly identified 11621 genes differentially xpressed in roots vs. shoots of a wild perennial Cicer microphyllum. Comparative analysis of transcriptomes between microphyllum and cultivated desi cv. ICC4958 detected 12772 including 3242 root- and 1639 shoot-specific microphyllum genes with 85% expression validation success rate. Transcriptional reprogramming of microphyllum root-specific genes implicates their possible role in regulating differential natural adaptive characteristics between wild and cultivated chickpea. The transcript-derived 5698 including 282 in-silico polymorphic SSR and 127038 SNP markers annotated at a genome-wide scale exhibited high amplification and polymorphic potential among cultivated (desi and kabuli) and wild accessions suggesting their utility in chickpea genomics-assisted breeding applications. The functional significance of markers was assessed based on their localization in non-synonymous coding and regulatory regions of microphyllum root-specific genes differentially expressed predominantly in ICC 4958 roots under drought stress. A high-density 490 genic SSR- and SNP markers-anchored genetic linkage map identified six major QTLs regulating drought tolerance-related traits, yield per plant and harvest-index in chickpea. The integration of high-resolution QTL mapping with comparative transcriptome profiling delineated five microphyllum root-specific genes with non-synonymous and regulatory SNPs governing drought-responsive yield traits. Multiple potential key regulators and functionally relevant molecular tags delineated can drive translational research and drought tolerance-mediated chickpea genetic enhancement.
Collapse
Affiliation(s)
- Rishi Srivastava
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Deepak Bajaj
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Ayushi Malik
- Faculty of Science, Jamia Hamdard University, Hamdard Nagar, New Delhi 110062, India
| | - Mohar Singh
- National Bureau of Plant Genetic Resources Regional Station, Shimla, Himachal Pradesh 171004, India
| | - Swarup K. Parida
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| |
Collapse
|
62
|
Genome-wide analysis of long intergenic non-coding RNAs in chickpea and their potential role in flower development. Sci Rep 2016; 6:33297. [PMID: 27628568 PMCID: PMC5024101 DOI: 10.1038/srep33297] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 08/22/2016] [Indexed: 02/01/2023] Open
Abstract
Non-coding RNAs constitute a major portion of the transcriptome in most of eukaryotes. Long non-coding transcripts originating from the DNA segment present between the protein coding genes are termed as long intergenic non-coding RNAs (lincRNAs). Several evidences suggest the role of lincRNAs in regulation of various biological processes. In this study, we identified a total of 2248 lincRNAs in chickpea using RNA-seq data from eight successive stages of flower development and three vegetative tissues via an optimized pipeline. Different characteristic features of lincRNAs were studied and compared with those of predicted mRNAs in chickpea. Further, we utilized a method using network propagation algorithm to reveal the putative function of lincRNAs in plants. In total, at least 79% of the identified chickpea lincRNAs were assigned with a putative function. A comprehensive expression profiling revealed differential expression patterns and tissue specificity of lincRNAs in different stages of flower development in chickpea. In addition, potential lincRNAs-miRNA interactions were explored for the predicted lincRNAs in chickpea. These findings will pave the way for understanding the role of lincRNAs in the regulatory mechanism underlying flower development in chickpea and other legumes.
Collapse
|
63
|
Bedre R, Mangu VR, Srivastava S, Sanchez LE, Baisakh N. Transcriptome analysis of smooth cordgrass (Spartina alterniflora Loisel), a monocot halophyte, reveals candidate genes involved in its adaptation to salinity. BMC Genomics 2016; 17:657. [PMID: 27542721 PMCID: PMC4992267 DOI: 10.1186/s12864-016-3017-3] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 08/13/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Soil salinity affects growth and yield of crop plants. Plants respond to salinity by physiological and biochemical adjustments through a coordinated regulation and expression of a cascade of genes. Recently, halophytes have attracted attention of the biologists to understand their salt adaptation mechanisms. Spartina alterniflora (smooth cordgrass) is a Louisiana native monocot halophyte that can withstand salinity up to double the strength of sea water. To dissect the molecular mechanisms underlying its salinity adaptation, leaf and root transcriptome of S. alterniflora was sequenced using 454/GS-FLX. RESULTS Altogether, 770,690 high quality reads with an average length 324-bp were assembled de novo into 73,131 contigs (average 577-bp long) with 5.9X sequence coverage. Most unigenes (95 %) annotated to proteins with known functions, and had more than 90 % similarity to rice genes. About 28 % unigenes were considered specific to S. alterniflora. Digital expression profiles revealed significant enrichment (P < 0.01) of transporters, vacuolar proton pump members and transcription factors under salt stress, which suggested the role of ion homeostasis and transcriptional regulation in the salinity adaptation of this grass. Also, 10,805 SSRs markers from 9457 unigenes were generated and validated through genetic diversity analysis among 13 accessions of S. alterniflora. CONCLUSIONS The present study explores the transcriptome of S. alterniflora to understand the gene regulation under salt stress in halophytes. The sequenced transcriptome (control and salt-regulated) of S. alterniflora provides a platform for further gene finding studies in grasses. This study and our previously published studies suggested that S. alterniflora is a rich reservoir of salt tolerance genes that can be used to develop salt tolerant cereal crops, especially rice, a major food crop of global importance.
Collapse
Affiliation(s)
- Renesh Bedre
- School of Plant, Environmental and Soil Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA, 70803, USA
| | - Venkata Ramanarao Mangu
- School of Plant, Environmental and Soil Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA, 70803, USA
| | - Subodh Srivastava
- Department of Genetics and Biochemistry, Clemson University, Clemson, SC, 29634, USA
| | - Luis Eduardo Sanchez
- School of Plant, Environmental and Soil Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA, 70803, USA
- Current address: Centro de Investigaciones Biotecnológicas del Ecuador (CIBE), Km 30.5 Via Perimetral, Guayaquil, Ecuador
| | - Niranjan Baisakh
- School of Plant, Environmental and Soil Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA, 70803, USA.
| |
Collapse
|
64
|
Pandey MK, Roorkiwal M, Singh VK, Ramalingam A, Kudapa H, Thudi M, Chitikineni A, Rathore A, Varshney RK. Emerging Genomic Tools for Legume Breeding: Current Status and Future Prospects. FRONTIERS IN PLANT SCIENCE 2016; 7:455. [PMID: 27199998 PMCID: PMC4852475 DOI: 10.3389/fpls.2016.00455] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 03/24/2016] [Indexed: 05/19/2023]
Abstract
Legumes play a vital role in ensuring global nutritional food security and improving soil quality through nitrogen fixation. Accelerated higher genetic gains is required to meet the demand of ever increasing global population. In recent years, speedy developments have been witnessed in legume genomics due to advancements in next-generation sequencing (NGS) and high-throughput genotyping technologies. Reference genome sequences for many legume crops have been reported in the last 5 years. The availability of the draft genome sequences and re-sequencing of elite genotypes for several important legume crops have made it possible to identify structural variations at large scale. Availability of large-scale genomic resources and low-cost and high-throughput genotyping technologies are enhancing the efficiency and resolution of genetic mapping and marker-trait association studies. Most importantly, deployment of molecular breeding approaches has resulted in development of improved lines in some legume crops such as chickpea and groundnut. In order to support genomics-driven crop improvement at a fast pace, the deployment of breeder-friendly genomics and decision support tools seems appear to be critical in breeding programs in developing countries. This review provides an overview of emerging genomics and informatics tools/approaches that will be the key driving force for accelerating genomics-assisted breeding and ultimately ensuring nutritional and food security in developing countries.
Collapse
Affiliation(s)
- Manish K. Pandey
- International Crops Research Institute for the Semi-Arid TropicsHyderabad, India
| | - Manish Roorkiwal
- International Crops Research Institute for the Semi-Arid TropicsHyderabad, India
| | - Vikas K. Singh
- International Crops Research Institute for the Semi-Arid TropicsHyderabad, India
| | - Abirami Ramalingam
- International Crops Research Institute for the Semi-Arid TropicsHyderabad, India
| | - Himabindu Kudapa
- International Crops Research Institute for the Semi-Arid TropicsHyderabad, India
| | - Mahendar Thudi
- International Crops Research Institute for the Semi-Arid TropicsHyderabad, India
| | - Anu Chitikineni
- International Crops Research Institute for the Semi-Arid TropicsHyderabad, India
| | - Abhishek Rathore
- International Crops Research Institute for the Semi-Arid TropicsHyderabad, India
| | - Rajeev K. Varshney
- International Crops Research Institute for the Semi-Arid TropicsHyderabad, India
- The University of Western AustraliaCrawley, WA, Australia
| |
Collapse
|
65
|
Kang SW, Patnaik BB, Hwang HJ, Park SY, Wang TH, Park EB, Chung JM, Song DK, Patnaik HH, Lee JB, Kim C, Kim S, Park HS, Lee JS, Han YS, Lee YS. De novo Transcriptome Generation and Annotation for Two Korean Endemic Land Snails, Aegista chejuensis and Aegista quelpartensis, Using Illumina Paired-End Sequencing Technology. Int J Mol Sci 2016; 17:379. [PMID: 26999110 PMCID: PMC4813237 DOI: 10.3390/ijms17030379] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 03/05/2016] [Accepted: 03/09/2016] [Indexed: 12/24/2022] Open
Abstract
Aegista chejuensis and Aegista quelpartensis (Family-Bradybaenidae) are endemic to Korea, and are considered vulnerable due to declines in their population. The limited genetic resources for these species restricts the ability to prioritize conservation efforts. We sequenced the transcriptomes of these species using Illumina paired-end technology. Approximately 257 and 240 million reads were obtained and assembled into 198,531 and 230,497 unigenes for A. chejuensis and A. quelpartensis, respectively. The average and N50 unigene lengths were 735.4 and 1073 bp, respectively, for A. chejuensis, and 705.6 and 1001 bp, respectively, for A. quelpartensis. In total, 68,484 (34.5%) and 77,745 (33.73%) unigenes for A. chejuensis and A. quelpartensis, respectively, were annotated to databases. Gene Ontology terms were assigned to 23,778 (11.98%) and 26,396 (11.45) unigenes, for A. chejuensis and A. quelpartensis, respectively, while 5050 and 5838 unigenes were mapped to 117 and 124 pathways in the Kyoto Encyclopedia of Genes and Genomes database. In addition, we identified and annotated 9542 and 10,395 putative simple sequence repeats (SSRs) in unigenes from A. chejuensis and A. quelpartensis, respectively. We designed a list of PCR primers flanking the putative SSR regions. These microsatellites may be utilized for future phylogenetics and conservation initiatives.
Collapse
Affiliation(s)
- Se Won Kang
- Department of Life Science and Biotechnology, College of Natural Sciences, Soonchunhyang University, 22 Soonchunhyangro, Shinchang-myeon, Asan, Chungcheongnam-do 31538, Korea.
| | - Bharat Bhusan Patnaik
- Department of Life Science and Biotechnology, College of Natural Sciences, Soonchunhyang University, 22 Soonchunhyangro, Shinchang-myeon, Asan, Chungcheongnam-do 31538, Korea.
- Trident School of Biotech Sciences, Trident Academy of Creative Technology (TACT), Chandaka Industrial Estate, Chandrasekharpur, Bhubaneswar, Odisha 751024, India.
| | - Hee-Ju Hwang
- Department of Life Science and Biotechnology, College of Natural Sciences, Soonchunhyang University, 22 Soonchunhyangro, Shinchang-myeon, Asan, Chungcheongnam-do 31538, Korea.
| | - So Young Park
- Department of Life Science and Biotechnology, College of Natural Sciences, Soonchunhyang University, 22 Soonchunhyangro, Shinchang-myeon, Asan, Chungcheongnam-do 31538, Korea.
| | - Tae Hun Wang
- Department of Life Science and Biotechnology, College of Natural Sciences, Soonchunhyang University, 22 Soonchunhyangro, Shinchang-myeon, Asan, Chungcheongnam-do 31538, Korea.
| | - Eun Bi Park
- Department of Life Science and Biotechnology, College of Natural Sciences, Soonchunhyang University, 22 Soonchunhyangro, Shinchang-myeon, Asan, Chungcheongnam-do 31538, Korea.
| | - Jong Min Chung
- Department of Life Science and Biotechnology, College of Natural Sciences, Soonchunhyang University, 22 Soonchunhyangro, Shinchang-myeon, Asan, Chungcheongnam-do 31538, Korea.
| | - Dae Kwon Song
- Department of Life Science and Biotechnology, College of Natural Sciences, Soonchunhyang University, 22 Soonchunhyangro, Shinchang-myeon, Asan, Chungcheongnam-do 31538, Korea.
| | - Hongray Howrelia Patnaik
- Department of Life Science and Biotechnology, College of Natural Sciences, Soonchunhyang University, 22 Soonchunhyangro, Shinchang-myeon, Asan, Chungcheongnam-do 31538, Korea.
| | - Jae Bong Lee
- Korea Zoonosis Research Institute (KOZRI), Chonbuk National University, 820-120 Hana-ro, Iksan, Jeollabuk-do 54528, Korea.
| | - Changmu Kim
- National Institute of Biological Resources, 42, Hwangyeong-ro, Seo-gu, Incheon 22689, Korea.
| | - Soonok Kim
- National Institute of Biological Resources, 42, Hwangyeong-ro, Seo-gu, Incheon 22689, Korea.
| | - Hong Seog Park
- Research Institute, GnC BIO Co., LTD. 621-6 Banseok-dong, Yuseong-gu, Daejeon 34069, Korea.
| | - Jun Sang Lee
- Institute of Environmental Research, Kangwon National University, 1 Kangwondaehak-gil, Chuncheon-si, Gangwon-do 243341, Korea.
| | - Yeon Soo Han
- College of Agriculture and Life Science, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, Korea.
| | - Yong Seok Lee
- Department of Life Science and Biotechnology, College of Natural Sciences, Soonchunhyang University, 22 Soonchunhyangro, Shinchang-myeon, Asan, Chungcheongnam-do 31538, Korea.
| |
Collapse
|
66
|
De Novo Transcriptome Analysis of Medicinally Important Plantago ovata Using RNA-Seq. PLoS One 2016; 11:e0150273. [PMID: 26943165 PMCID: PMC4778938 DOI: 10.1371/journal.pone.0150273] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 02/11/2016] [Indexed: 01/19/2023] Open
Abstract
Plantago ovata is an economically and medicinally important plant of the family Plantaginaceae. It is used extensively for the production of seed husk for its application in pharmaceutical, food and cosmetic industries. In the present study, the transcriptome of P. ovata ovary was sequenced using Illumina Genome Analyzer platform to characterize the mucilage biosynthesis pathway in the plant. De novo assembly was carried out using Oases followed by velvet. A total of 46,955 non-redundant transcripts (≥100 bp) using ~29 million high-quality paired end reads were generated. Functional categorization of these transcripts revealed the presence of several genes involved in various biological processes like metabolic pathways, mucilage biosynthesis, biosynthesis of secondary metabolites and antioxidants. In addition, simple sequence-repeat motifs, non-coding RNAs and transcription factors were also identified. Expression profiling of some genes involved in mucilage biosynthetic pathway was performed in different tissues of P. ovata using Real time PCR analysis. The study has resulted in a valuable resource for further studies on gene expression, genomics and functional genomics in P. ovata.
Collapse
|
67
|
De novo transcriptome assembly and comprehensive expression profiling in Crocus sativus to gain insights into apocarotenoid biosynthesis. Sci Rep 2016; 6:22456. [PMID: 26936416 PMCID: PMC4776159 DOI: 10.1038/srep22456] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 02/15/2016] [Indexed: 12/12/2022] Open
Abstract
Saffron (Crocus sativus L.) is commonly known as world’s most expensive spice with rich source of apocarotenoids and possesses magnificent medicinal properties. To understand the molecular basis of apocarotenoid biosynthesis/accumulation, we performed transcriptome sequencing from five different tissues/organs of C. sativus using Illumina platform. After comprehensive optimization of de novo transcriptome assembly, a total of 105, 269 unique transcripts (average length of 1047 bp and N50 length of 1404 bp) were obtained from 206 million high-quality paired-end reads. Functional annotation led to the identification of many genes involved in various biological processes and molecular functions. In total, 54% of C. sativus transcripts could be functionally annotated using public databases. Transcriptome analysis of C. sativus revealed the presence of 16721 SSRs and 3819 transcription factor encoding transcripts. Differential expression analysis revealed preferential/specific expression of many transcripts involved in apocarotenoid biosynthesis in stigma. We have revealed the differential expression of transcripts encoding for transcription factors (MYB, MYB related, WRKY, C2C2-YABBY and bHLH) involved in secondary metabolism. Overall, these results will pave the way for understanding the molecular basis of apocarotenoid biosynthesis and other aspects of stigma development in C. sativus.
Collapse
|
68
|
Genome wide transcriptome profiling reveals differential gene expression in secondary metabolite pathway of Cymbopogon winterianus. Sci Rep 2016; 6:21026. [PMID: 26877149 PMCID: PMC4753472 DOI: 10.1038/srep21026] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Accepted: 01/14/2016] [Indexed: 11/09/2022] Open
Abstract
Advances in transcriptome sequencing provide fast, cost-effective and reliable approach to generate large expression datasets especially suitable for non-model species to identify putative genes, key pathway and regulatory mechanism. Citronella (Cymbopogon winterianus) is an aromatic medicinal grass used for anti-tumoral, antibacterial, anti-fungal, antiviral, detoxifying and natural insect repellent properties. Despite of having number of utilities, the genes involved in terpenes biosynthetic pathway is not yet clearly elucidated. The present study is a pioneering attempt to generate an exhaustive molecular information of secondary metabolite pathway and to increase genomic resources in Citronella. Using high-throughput RNA-Seq technology, root and leaf transcriptome was analysed at an unprecedented depth (11.7 Gb). Targeted searches identified majority of the genes associated with metabolic pathway and other natural product pathway viz. antibiotics synthesis along with many novel genes. Terpenoid biosynthesis genes comparative expression results were validated for 15 unigenes by RT-PCR and qRT-PCR. Thus the coverage of these transcriptome is comprehensive enough to discover all known genes of major metabolic pathways. This transcriptome dataset can serve as important public information for gene expression, genomics and function genomics studies in Citronella and shall act as a benchmark for future improvement of the crop.
Collapse
|
69
|
Garg R, Shankar R, Thakkar B, Kudapa H, Krishnamurthy L, Mantri N, Varshney RK, Bhatia S, Jain M. Transcriptome analyses reveal genotype- and developmental stage-specific molecular responses to drought and salinity stresses in chickpea. Sci Rep 2016; 6:19228. [PMID: 26759178 PMCID: PMC4725360 DOI: 10.1038/srep19228] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 12/09/2015] [Indexed: 01/31/2023] Open
Abstract
Drought and salinity are the major factors that limit chickpea production worldwide. We performed whole transcriptome analyses of chickpea genotypes to investigate the molecular basis of drought and salinity stress response/adaptation. Phenotypic analyses confirmed the contrasting responses of the chickpea genotypes to drought or salinity stress. RNA-seq of the roots of drought and salinity related genotypes was carried out under control and stress conditions at vegetative and/or reproductive stages. Comparative analysis of the transcriptomes revealed divergent gene expression in the chickpea genotypes at different developmental stages. We identified a total of 4954 and 5545 genes exclusively regulated in drought-tolerant and salinity-tolerant genotypes, respectively. A significant fraction (~47%) of the transcription factor encoding genes showed differential expression under stress. The key enzymes involved in metabolic pathways, such as carbohydrate metabolism, photosynthesis, lipid metabolism, generation of precursor metabolites/energy, protein modification, redox homeostasis and cell wall component biogenesis, were affected by drought and/or salinity stresses. Interestingly, transcript isoforms showed expression specificity across the chickpea genotypes and/or developmental stages as illustrated by the AP2-EREBP family members. Our findings provide insights into the transcriptome dynamics and components of regulatory network associated with drought and salinity stress responses in chickpea.
Collapse
Affiliation(s)
- Rohini Garg
- Functional and Applied Genomics Laboratory, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, India
| | - Rama Shankar
- Functional and Applied Genomics Laboratory, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, India
| | - Bijal Thakkar
- Functional and Applied Genomics Laboratory, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, India
| | - Himabindu Kudapa
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Telangana, India
| | - Lakshmanan Krishnamurthy
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Telangana, India
| | - Nitin Mantri
- School of Applied Sciences, RMIT University, Victoria, Australia
| | - Rajeev K Varshney
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Telangana, India
| | - Sabhyata Bhatia
- Functional and Applied Genomics Laboratory, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, India
| | - Mukesh Jain
- Functional and Applied Genomics Laboratory, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, India.,School of Computational &Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
70
|
Satheesh V, Chidambaranathan P, Jagannadham PT, Kumar V, Jain PK, Chinnusamy V, Bhat SR, Srinivasan R. Transmembrane START domain proteins: in silico identification, characterization and expression analysis under stress conditions in chickpea (Cicer arietinum L.). PLANT SIGNALING & BEHAVIOR 2016; 11:e992698. [PMID: 26445326 PMCID: PMC4883873 DOI: 10.4161/15592324.2014.992698] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Revised: 11/24/2014] [Accepted: 11/24/2014] [Indexed: 06/01/2023]
Abstract
Steroidogenic acute regulatory related transfer (StART) proteins that are involved in transport of lipid molecules, play a myriad of functions in insects, mammals and plants. These proteins consist of a modular START domain of approximately 200 amino acids which binds and transfers the lipids. In the present study we have performed a genome-wide search for all START domain proteins in chickpea. The search identified 36 chickpea genes belonging to the START domain family. Through a phylogenetic tree reconstructed with Arabidopsis, rice, chickpea, and soybean START proteins, we were able to identify four transmembrane START (TM-START) proteins in chickpea. These four proteins are homologous to the highly conserved mammalian phosphatidylcholine transfer proteins. Multiple sequence alignment of all the transmembrane containing START proteins from Arabidopsis, rice, chickpea, and soybean revealed that the amino acid residues to which phosphatidylcholine binds in mammals, is also conserved in all these plant species, implying an important functional role and a very similar mode of action of all these proteins across dicots and monocots. This study characterizes a few of the not so well studied transmembrane START superfamily genes that may be involved in stress signaling. Expression analysis in various tissues showed that these genes are predominantly expressed in flowers and roots of chickpea. Three of the chickpea TM-START genes showed induced expression in response to drought, salt, wound and heat stress, suggesting their role in stress response.
Collapse
Affiliation(s)
| | | | | | - Vajinder Kumar
- National Research Centre on Plant Biotechnology; New Delhi, India
| | - Pradeep K. Jain
- National Research Centre on Plant Biotechnology; New Delhi, India
| | | | - Shripad R. Bhat
- National Research Centre on Plant Biotechnology; New Delhi, India
| | - R. Srinivasan
- National Research Centre on Plant Biotechnology; New Delhi, India
| |
Collapse
|
71
|
Upadhyaya HD, Bajaj D, Narnoliya L, Das S, Kumar V, Gowda CLL, Sharma S, Tyagi AK, Parida SK. Genome-Wide Scans for Delineation of Candidate Genes Regulating Seed-Protein Content in Chickpea. FRONTIERS IN PLANT SCIENCE 2016; 7:302. [PMID: 27047499 PMCID: PMC4803732 DOI: 10.3389/fpls.2016.00302] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 02/25/2016] [Indexed: 05/17/2023]
Abstract
Identification of potential genes/alleles governing complex seed-protein content (SPC) is essential in marker-assisted breeding for quality trait improvement of chickpea. Henceforth, the present study utilized an integrated genomics-assisted breeding strategy encompassing trait association analysis, selective genotyping in traditional bi-parental mapping population and differential expression profiling for the first-time to understand the complex genetic architecture of quantitative SPC trait in chickpea. For GWAS (genome-wide association study), high-throughput genotyping information of 16376 genome-based SNPs (single nucleotide polymorphism) discovered from a structured population of 336 sequenced desi and kabuli accessions [with 150-200 kb LD (linkage disequilibrium) decay] was utilized. This led to identification of seven most effective genomic loci (genes) associated [10-20% with 41% combined PVE (phenotypic variation explained)] with SPC trait in chickpea. Regardless of the diverse desi and kabuli genetic backgrounds, a comparable level of association potential of the identified seven genomic loci with SPC trait was observed. Five SPC-associated genes were validated successfully in parental accessions and homozygous individuals of an intra-specific desi RIL (recombinant inbred line) mapping population (ICC 12299 × ICC 4958) by selective genotyping. The seed-specific expression, including differential up-regulation (>four fold) of six SPC-associated genes particularly in accessions, parents and homozygous individuals of the aforementioned mapping population with a high level of contrasting SPC (21-22%) was evident. Collectively, the integrated genomic approach delineated diverse naturally occurring novel functional SNP allelic variants in six potential candidate genes regulating SPC trait in chickpea. Of these, a non-synonymous SNP allele-carrying zinc finger transcription factor gene exhibiting strong association with SPC trait was found to be the most promising in chickpea. The informative functionally relevant molecular tags scaled-down essentially have potential to accelerate marker-assisted genetic improvement by developing nutritionally rich chickpea cultivars with enhanced SPC.
Collapse
Affiliation(s)
- Hari D. Upadhyaya
- International Crops Research Institute for the Semi-Arid TropicsPatancheru, India
| | - Deepak Bajaj
- National Institute of Plant Genome ResearchNew Delhi, India
| | | | - Shouvik Das
- National Institute of Plant Genome ResearchNew Delhi, India
| | - Vinod Kumar
- National Research Centre on Plant BiotechnologyNew Delhi, India
| | - C. L. L. Gowda
- International Crops Research Institute for the Semi-Arid TropicsPatancheru, India
| | - Shivali Sharma
- International Crops Research Institute for the Semi-Arid TropicsPatancheru, India
| | | | - Swarup K. Parida
- National Institute of Plant Genome ResearchNew Delhi, India
- *Correspondence: Swarup K. Parida, ;
| |
Collapse
|
72
|
High-density linkage map construction and mapping of seed trait QTLs in chickpea (Cicer arietinum L.) using Genotyping-by-Sequencing (GBS). Sci Rep 2015; 5:17512. [PMID: 26631981 PMCID: PMC4668357 DOI: 10.1038/srep17512] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 10/30/2015] [Indexed: 12/18/2022] Open
Abstract
This study reports the use of Genotyping-by-Sequencing (GBS) for large-scale SNP discovery and simultaneous genotyping of recombinant inbred lines (RILs) of an intra-specific mapping population of chickpea contrasting for seed traits. A total of 119,672 raw SNPs were discovered, which after stringent filtering revealed 3,977 high quality SNPs of which 39.5% were present in genic regions. Comparative analysis using physically mapped marker loci revealed a higher degree of synteny with Medicago in comparison to soybean. The SNP genotyping data was utilized to construct one of the most saturated intra-specific genetic linkage maps of chickpea having 3,363 mapped positions including 3,228 SNPs on 8 linkage groups spanning 1006.98 cM at an average inter marker distance of 0.33 cM. The map was utilized to identify 20 quantitative trait loci (QTLs) associated with seed traits accounting for phenotypic variations ranging from 9.97% to 29.71%. Analysis of the genomic sequence corresponding to five robust QTLs led to the identification of 684 putative candidate genes whose expression profiling revealed that 101 genes exhibited seed specific expression. The integrated approach utilizing the identified QTLs along with the available genome and transcriptome could serve as a platform for candidate gene identification for molecular breeding of chickpea.
Collapse
|
73
|
Alves-Carvalho S, Aubert G, Carrère S, Cruaud C, Brochot AL, Jacquin F, Klein A, Martin C, Boucherot K, Kreplak J, da Silva C, Moreau S, Gamas P, Wincker P, Gouzy J, Burstin J. Full-length de novo assembly of RNA-seq data in pea (Pisum sativum L.) provides a gene expression atlas and gives insights into root nodulation in this species. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 84:1-19. [PMID: 26296678 DOI: 10.1111/tpj.12967] [Citation(s) in RCA: 111] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 07/09/2015] [Accepted: 07/16/2015] [Indexed: 05/21/2023]
Abstract
Next-generation sequencing technologies allow an almost exhaustive survey of the transcriptome, even in species with no available genome sequence. To produce a Unigene set representing most of the expressed genes of pea, 20 cDNA libraries produced from various plant tissues harvested at various developmental stages from plants grown under contrasting nitrogen conditions were sequenced. Around one billion reads and 100 Gb of sequence were de novo assembled. Following several steps of redundancy reduction, 46 099 contigs with N50 length of 1667 nt were identified. These constitute the 'Caméor' Unigene set. The high depth of sequencing allowed identification of rare transcripts and detected expression for approximately 80% of contigs in each library. The Unigene set is now available online (http://bios.dijon.inra.fr/FATAL/cgi/pscam.cgi), allowing (i) searches for pea orthologs of candidate genes based on gene sequences from other species, or based on annotation, (ii) determination of transcript expression patterns using various metrics, (iii) identification of uncharacterized genes with interesting patterns of expression, and (iv) comparison of gene ontology pathways between tissues. This resource has allowed identification of the pea orthologs of major nodulation genes characterized in recent years in model species, as a major step towards deciphering unresolved pea nodulation phenotypes. In addition to a remarkable conservation of the early transcriptome nodulation apparatus between pea and Medicago truncatula, some specific features were highlighted. The resource provides a reference for the pea exome, and will facilitate transcriptome and proteome approaches as well as SNP discovery in pea.
Collapse
Affiliation(s)
- Susete Alves-Carvalho
- Institut National de la Recherche Agronomique, UMR1347, 17 rue Sully, BP 86510, 21065, Dijon Cedex, France
| | - Grégoire Aubert
- Institut National de la Recherche Agronomique, UMR1347, 17 rue Sully, BP 86510, 21065, Dijon Cedex, France
| | - Sébastien Carrère
- Laboratoire des Interactions Plantes Micro-Organismes, Institut National de la Recherche Agronomique/Centre National de la Recherche Scientifique, 24 chemin de Borde Rouge, 31326, Castanet Tolosan, France
| | | | - Anne-Lise Brochot
- Institut National de la Recherche Agronomique, UMR1347, 17 rue Sully, BP 86510, 21065, Dijon Cedex, France
| | - Françoise Jacquin
- Institut National de la Recherche Agronomique, UMR1347, 17 rue Sully, BP 86510, 21065, Dijon Cedex, France
| | - Anthony Klein
- Institut National de la Recherche Agronomique, UMR1347, 17 rue Sully, BP 86510, 21065, Dijon Cedex, France
| | - Chantal Martin
- Institut National de la Recherche Agronomique, UMR1347, 17 rue Sully, BP 86510, 21065, Dijon Cedex, France
| | - Karen Boucherot
- Institut National de la Recherche Agronomique, UMR1347, 17 rue Sully, BP 86510, 21065, Dijon Cedex, France
| | - Jonathan Kreplak
- Institut National de la Recherche Agronomique, UMR1347, 17 rue Sully, BP 86510, 21065, Dijon Cedex, France
| | | | - Sandra Moreau
- Laboratoire des Interactions Plantes Micro-Organismes, Institut National de la Recherche Agronomique/Centre National de la Recherche Scientifique, 24 chemin de Borde Rouge, 31326, Castanet Tolosan, France
| | - Pascal Gamas
- Laboratoire des Interactions Plantes Micro-Organismes, Institut National de la Recherche Agronomique/Centre National de la Recherche Scientifique, 24 chemin de Borde Rouge, 31326, Castanet Tolosan, France
| | | | - Jérôme Gouzy
- Laboratoire des Interactions Plantes Micro-Organismes, Institut National de la Recherche Agronomique/Centre National de la Recherche Scientifique, 24 chemin de Borde Rouge, 31326, Castanet Tolosan, France
| | - Judith Burstin
- Institut National de la Recherche Agronomique, UMR1347, 17 rue Sully, BP 86510, 21065, Dijon Cedex, France
| |
Collapse
|
74
|
Srivastava V, Verma PK. Genome Wide Identification of LIM Genes in Cicer arietinum and Response of Ca-2LIMs in Development, Hormone and Pathogenic Stress. PLoS One 2015; 10:e0138719. [PMID: 26418014 PMCID: PMC4587737 DOI: 10.1371/journal.pone.0138719] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2015] [Accepted: 09/02/2015] [Indexed: 11/20/2022] Open
Abstract
The eukaryotic lineage-specific LIM protein (LIN11, ISL1, and MEC3) family play pivotal role in modulation of actin dynamics and transcriptional regulation. The systematic investigation of this family has not been carried in detail and rare in legumes. Current study involves the mining of Cicer arietinum genome for the genes coding for LIM domain proteins and displayed significant homology with LIM genes of other species. The analysis led to the identification of 15 members, which were positioned on chickpea chromosomes. The phylogenetic and motif analysis suggested their categorization into two sub-families i.e., Ca-2LIMs and Ca-DA1/DAR, which comprised of nine and six candidates, respectively. Further sub-categories of Ca-2LIMs were recognised as αLIM, βLIM, δLIM and γLIM. The LIM genes within their sub-families displayed conserved genomic and motif organization. The expression pattern of Ca-2LIMs across developmental and reproductive tissues demonstrated strong correlation with established consensus. The Ca-2LIM belongs to PLIM and GLIM (XLIM) was found highly expressed in floral tissue. Others showed ubiquitous expression pattern with their dominance in stem. Under hormonal and pathogenic conditions these LIMs were found to up-regulate during salicylic acid, abscisic acid and Ascochyta rabiei treatment or infection; and down-regulated in response to jasmonic acid treatment. The findings of this work, particularly in terms of modulation of LIM genes under biotic stress will open up the way to further explore and establish the role of chickpea LIMs in plant defense response.
Collapse
Affiliation(s)
- Vikas Srivastava
- Plant Immunity Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Praveen Kumar Verma
- Plant Immunity Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
- * E-mail:
| |
Collapse
|
75
|
Characterization of the Transcriptional Complexity of the Receptive and Pre-receptive Endometria of Dairy Goats. Sci Rep 2015; 5:14244. [PMID: 26373443 PMCID: PMC4571617 DOI: 10.1038/srep14244] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Accepted: 08/21/2015] [Indexed: 12/18/2022] Open
Abstract
Endometrium receptivity is essential for successful embryo implantation in mammals. However, the lack of genetic information remains an obstacle to understanding the mechanisms underlying the development of a receptive endometrium from the pre-receptive phase in dairy goats. In this study, more than 4 billion high-quality reads were generated and de novo assembled into 102,441 unigenes; these unigenes were annotated using published databases. A total of 3,255 unigenes that were differentially expressed (DEGs) between the PE and RE were discovered in this study (P-values < 0.05). In addition, 76,729–77,102 putative SNPs and 12,837 SSRs were discovered in this study. Bioinformatics analysis of the DEGs revealed a number of biological processes and pathways that are potentially involved in the establishment of the RE, notably including the GO terms proteolysis, apoptosis, and cell adhesion and the KEGG pathways Cell cycle and extracellular matrix (ECM)-receptor interaction. We speculated that ADCY8, VCAN, SPOCK1, THBS1, and THBS2 may play important roles in the development of endometrial receptivity. The de novo assembly provided a good starting point and will serve as a valuable resource for further investigations into endometrium receptivity in dairy goats and future studies on the genomes of goats and other related mammals.
Collapse
|
76
|
Verma M, Kumar V, Patel RK, Garg R, Jain M. CTDB: An Integrated Chickpea Transcriptome Database for Functional and Applied Genomics. PLoS One 2015; 10:e0136880. [PMID: 26322998 DOI: 10.1371/journal.pone.0136880] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 08/10/2015] [Indexed: 11/19/2022] Open
Abstract
Chickpea is an important grain legume used as a rich source of protein in human diet. The narrow genetic diversity and limited availability of genomic resources are the major constraints in implementing breeding strategies and biotechnological interventions for genetic enhancement of chickpea. We developed an integrated Chickpea Transcriptome Database (CTDB), which provides the comprehensive web interface for visualization and easy retrieval of transcriptome data in chickpea. The database features many tools for similarity search, functional annotation (putative function, PFAM domain and gene ontology) search and comparative gene expression analysis. The current release of CTDB (v2.0) hosts transcriptome datasets with high quality functional annotation from cultivated (desi and kabuli types) and wild chickpea. A catalog of transcription factor families and their expression profiles in chickpea are available in the database. The gene expression data have been integrated to study the expression profiles of chickpea transcripts in major tissues/organs and various stages of flower development. The utilities, such as similarity search, ortholog identification and comparative gene expression have also been implemented in the database to facilitate comparative genomic studies among different legumes and Arabidopsis. Furthermore, the CTDB represents a resource for the discovery of functional molecular markers (microsatellites and single nucleotide polymorphisms) between different chickpea types. We anticipate that integrated information content of this database will accelerate the functional and applied genomic research for improvement of chickpea. The CTDB web service is freely available at http://nipgr.res.in/ctdb.html.
Collapse
Affiliation(s)
- Mohit Verma
- Functional and Applied Genomics Laboratory, National Institute of Plant Genome Research (NIPGR), New Delhi, India
| | - Vinay Kumar
- Functional and Applied Genomics Laboratory, National Institute of Plant Genome Research (NIPGR), New Delhi, India
| | - Ravi K Patel
- Functional and Applied Genomics Laboratory, National Institute of Plant Genome Research (NIPGR), New Delhi, India
| | - Rohini Garg
- Functional and Applied Genomics Laboratory, National Institute of Plant Genome Research (NIPGR), New Delhi, India
| | - Mukesh Jain
- Functional and Applied Genomics Laboratory, National Institute of Plant Genome Research (NIPGR), New Delhi, India
| |
Collapse
|
77
|
Parida SK, Verma M, Yadav SK, Ambawat S, Das S, Garg R, Jain M. Development of genome-wide informative simple sequence repeat markers for large-scale genotyping applications in chickpea and development of web resource. FRONTIERS IN PLANT SCIENCE 2015; 6:645. [PMID: 26347762 PMCID: PMC4543896 DOI: 10.3389/fpls.2015.00645] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 08/03/2015] [Indexed: 05/18/2023]
Abstract
Development of informative polymorphic simple sequence repeat (SSR) markers at a genome-wide scale is essential for efficient large-scale genotyping applications. We identified genome-wide 1835 SSRs showing polymorphism between desi and kabuli chickpea. A total of 1470 polymorphic SSR markers from diverse coding and non-coding regions of the chickpea genome were developed. These physically mapped SSR markers exhibited robust amplification efficiency (73.9%) and high intra- and inter-specific polymorphic potential (63.5%), thereby suggesting their immense use in various genomics-assisted breeding applications. The SSR markers particularly derived from intergenic and intronic sequences revealed high polymorphic potential. Using the mapped SSR markers, a wider functional molecular diversity (16-94%, mean: 68%), and parentage- and cultivar-specific admixed domestication pattern and phylogenetic relationships in a structured population of desi and kabuli chickpea genotypes was evident. The intra-specific polymorphism (47.6%) and functional molecular diversity (65%) potential of polymorphic SSR markers developed in our study is much higher than that of previous documentations. Finally, we have developed a user-friendly web resource, Chickpea Microsatellite Database (CMsDB; http://www.nipgr.res.in/CMsDB.html), which provides public access to the data and results reported in this study. The developed informative SSR markers can serve as a resource for various genotyping applications, including genetic enhancement studies in chickpea.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Mukesh Jain
- Functional and Applied Genomics Laboratory, National Institute of Plant Genome ResearchNew Delhi, India
| |
Collapse
|
78
|
Sudheesh S, Sawbridge TI, Cogan NO, Kennedy P, Forster JW, Kaur S. De novo assembly and characterisation of the field pea transcriptome using RNA-Seq. BMC Genomics 2015; 16:611. [PMID: 26275991 PMCID: PMC4537571 DOI: 10.1186/s12864-015-1815-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 05/15/2015] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Field pea (Pisum sativum L.) is a cool-season grain legume that is cultivated world-wide for both human consumption and stock-feed purposes. Enhancement of genetic and genomic resources for field pea will permit improved understanding of the control of traits relevant to crop productivity and quality. Advances in second-generation sequencing and associated bioinformatics analysis now provide unprecedented opportunities for the development of such resources. The objective of this study was to perform transcriptome sequencing and characterisation from two genotypes of field pea that differ in terms of seed and plant morphological characteristics. RESULTS Transcriptome sequencing was performed with RNA templates from multiple tissues of the field pea genotypes Kaspa and Parafield. Tissue samples were collected at various growth stages, and a total of 23 cDNA libraries were sequenced using Illumina high-throughput sequencing platforms. A total of 407 and 352 million paired-end reads from the Kaspa and Parafield transcriptomes, respectively were assembled into 129,282 and 149,272 contigs, which were filtered on the basis of known gene annotations, presence of open reading frames (ORFs), reciprocal matches and degree of coverage. Totals of 126,335 contigs from Kaspa and 145,730 from Parafield were subsequently selected as the reference set. Reciprocal sequence analysis revealed that c. 87% of contigs were expressed in both cultivars, while a small proportion were unique to each genotype. Reads from different libraries were aligned to the genotype-specific assemblies in order to identify and characterise expression of contigs on a tissue-specific basis, of which 87% were expressed in more than one tissue, while others showed distinct expression patterns in specific tissues, providing unique transcriptome signatures. CONCLUSION This study provided a comprehensive assembled and annotated transcriptome set for field pea that can be used for development of genetic markers, in order to assess genetic diversity, construct linkage maps, perform trait-dissection and implement whole-genome selection strategies in varietal improvement programs, as well to identify target genes for genetic modification approaches on the basis of annotation and expression analysis. In addition, the reference field pea transcriptome will prove highly valuable for comparative genomics studies and construction of a finalised genome sequence.
Collapse
Affiliation(s)
- Shimna Sudheesh
- Department of Economic Development, Jobs, Transport and Resources, Biosciences Research Division, AgriBio, Centre for AgriBioscience, 5 Ring Road, Bundoora, VIC, 3083, Australia.
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, 3086, Australia.
| | - Timothy I Sawbridge
- Department of Economic Development, Jobs, Transport and Resources, Biosciences Research Division, AgriBio, Centre for AgriBioscience, 5 Ring Road, Bundoora, VIC, 3083, Australia.
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, 3086, Australia.
| | - Noel Oi Cogan
- Department of Economic Development, Jobs, Transport and Resources, Biosciences Research Division, AgriBio, Centre for AgriBioscience, 5 Ring Road, Bundoora, VIC, 3083, Australia.
| | - Peter Kennedy
- Department of Economic Development, Jobs, Transport and Resources, Biosciences Research Division, Grains Innovation Park, Horsham, VIC, 3401, Australia.
| | - John W Forster
- Department of Economic Development, Jobs, Transport and Resources, Biosciences Research Division, AgriBio, Centre for AgriBioscience, 5 Ring Road, Bundoora, VIC, 3083, Australia.
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, 3086, Australia.
| | - Sukhjiwan Kaur
- Department of Economic Development, Jobs, Transport and Resources, Biosciences Research Division, AgriBio, Centre for AgriBioscience, 5 Ring Road, Bundoora, VIC, 3083, Australia.
| |
Collapse
|
79
|
Parween S, Nawaz K, Roy R, Pole AK, Venkata Suresh B, Misra G, Jain M, Yadav G, Parida SK, Tyagi AK, Bhatia S, Chattopadhyay D. An advanced draft genome assembly of a desi type chickpea (Cicer arietinum L.). Sci Rep 2015; 5:12806. [PMID: 26259924 PMCID: PMC4531285 DOI: 10.1038/srep12806] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 07/06/2015] [Indexed: 11/09/2022] Open
Abstract
Chickpea (Cicer arietinum L.) is an important pulse legume crop. We previously reported a draft genome assembly of the desi chickpea cultivar ICC 4958. Here we report an advanced version of the ICC 4958 genome assembly (version 2.0) generated using additional sequence data and an improved genetic map. This resulted in 2.7-fold increase in the length of the pseudomolecules and substantial reduction of sequence gaps. The genome assembly covered more than 94% of the estimated gene space and predicted the presence of 30,257 protein-coding genes including 2230 and 133 genes encoding potential transcription factors (TF) and resistance gene homologs, respectively. Gene expression analysis identified several TF and chickpea-specific genes with tissue-specific expression and displayed functional diversification of the paralogous genes. Pairwise comparison of pseudomolecules in the desi (ICC 4958) and the earlier reported kabuli (CDC Frontier) chickpea assemblies showed an extensive local collinearity with incongruity in the placement of large sequence blocks along the linkage groups, apparently due to use of different genetic maps. Single nucleotide polymorphism (SNP)-based mining of intra-specific polymorphism identified more than four thousand SNPs differentiating a desi group and a kabuli group of chickpea genotypes.
Collapse
Affiliation(s)
- Sabiha Parween
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Kashif Nawaz
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Riti Roy
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Anil K. Pole
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - B. Venkata Suresh
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Gopal Misra
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Mukesh Jain
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Gitanjali Yadav
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Swarup K. Parida
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Akhilesh K. Tyagi
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Sabhyata Bhatia
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Debasis Chattopadhyay
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| |
Collapse
|
80
|
Development and Validation of EST-SSR Markers from the Transcriptome of Adzuki Bean (Vigna angularis). PLoS One 2015; 10:e0131939. [PMID: 26146990 PMCID: PMC4492930 DOI: 10.1371/journal.pone.0131939] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 06/08/2015] [Indexed: 11/28/2022] Open
Abstract
The adzuki bean (Vigna angularis (Ohwi) Ohwi and Ohashi) is an important grain legume of Asia. It is cultivated mainly in China, Japan and Korea. Despite its importance, few genomic resources are available for molecular genetic research of adzuki bean. In this study, we developed EST-SSR markers for the adzuki bean through next-generation sequencing. More than 112 million high-quality cDNA sequence reads were obtained from adzuki bean using Illumina paired-end sequencing technology, and the sequences were de novo assembled into 65,950 unigenes. The average length of the unigenes was 1,213 bp. Among the unigenes, 14,547 sequences contained a unique simple sequence repeat (SSR) and 3,350 sequences contained more than one SSR. A total of 7,947 EST-SSRs were identified as potential molecular markers, with mono-nucleotide A/T repeats (99.0%) as the most abundant motif class, followed by AG/CT (68.4%), AAG/CTT (30.0%), AAAG/CTTT (26.2%), AAAAG/CTTTT (16.1%), and AACGGG/CCCGTT (6.0%). A total of 500 SSR markers were randomly selected for validation, of which 296 markers produced reproducible amplicons with 38 polymorphic markers among the 32 adzuki bean genotypes selected from diverse geographical locations across China. The large number of SSR-containing sequences and EST-SSR markers will be valuable for genetic analysis of the adzuki bean and related Vigna species.
Collapse
|
81
|
Miguel A, de Vega-Bartol J, Marum L, Chaves I, Santo T, Leitão J, Varela MC, Miguel CM. Characterization of the cork oak transcriptome dynamics during acorn development. BMC PLANT BIOLOGY 2015; 15:158. [PMID: 26109289 PMCID: PMC4479327 DOI: 10.1186/s12870-015-0534-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2015] [Accepted: 05/26/2015] [Indexed: 05/11/2023]
Abstract
BACKGROUND Cork oak (Quercus suber L.) has a natural distribution across western Mediterranean regions and is a keystone forest tree species in these ecosystems. The fruiting phase is especially critical for its regeneration but the molecular mechanisms underlying the biochemical and physiological changes during cork oak acorn development are poorly understood. In this study, the transcriptome of the cork oak acorn, including the seed, was characterized in five stages of development, from early development to acorn maturation, to identify the dominant processes in each stage and reveal transcripts with important functions in gene expression regulation and response to water. RESULTS A total of 80,357 expressed sequence tags (ESTs) were de novo assembled from RNA-Seq libraries representative of the several acorn developmental stages. Approximately 7.6 % of the total number of transcripts present in Q. suber transcriptome was identified as acorn specific. The analysis of expression profiles during development returned 2,285 differentially expressed (DE) transcripts, which were clustered into six groups. The stage of development corresponding to the mature acorn exhibited an expression profile markedly different from other stages. Approximately 22 % of the DE transcripts putatively code for transcription factors (TF) or transcriptional regulators, and were found almost equally distributed among the several expression profile clusters, highlighting their major roles in controlling the whole developmental process. On the other hand, carbohydrate metabolism, the biological pathway most represented during acorn development, was especially prevalent in mid to late stages as evidenced by enrichment analysis. We further show that genes related to response to water, water deprivation and transport were mostly represented during the early (S2) and the last stage (S8) of acorn development, when tolerance to water desiccation is possibly critical for acorn viability. CONCLUSIONS To our knowledge this work represents the first report of acorn development transcriptomics in oaks. The obtained results provide novel insights into the developmental biology of cork oak acorns, highlighting transcripts putatively involved in the regulation of the gene expression program and in specific processes likely essential for adaptation. It is expected that this knowledge can be transferred to other oak species of great ecological value.
Collapse
Affiliation(s)
- Andreia Miguel
- Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901, Oeiras, Portugal.
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Avenida da República, 2780-157, Oeiras, Portugal.
| | - José de Vega-Bartol
- Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901, Oeiras, Portugal.
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Avenida da República, 2780-157, Oeiras, Portugal.
- The Genome Analysis Centre, Norwich Research Park, Norwich, NR4 7UH, UK.
| | - Liliana Marum
- Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901, Oeiras, Portugal.
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Avenida da República, 2780-157, Oeiras, Portugal.
- KLÓN, Innovative Technologies from Cloning, Biocant Park, Núcleo 4, Lote 4A, 3060-197, Cantanhede, Portugal.
| | - Inês Chaves
- Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901, Oeiras, Portugal.
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Avenida da República, 2780-157, Oeiras, Portugal.
| | - Tatiana Santo
- Laboratory of Genomics and Genetic Improvement, BioFIG, FCT, Universidade do Algarve, E.8, Campus de Gambelas, Faro, 8300, Portugal.
| | - José Leitão
- Laboratory of Genomics and Genetic Improvement, BioFIG, FCT, Universidade do Algarve, E.8, Campus de Gambelas, Faro, 8300, Portugal.
| | - Maria Carolina Varela
- INIAV- Instituto Nacional de Investigação Agrária e Veterinária, IP, Quinta do, Marquês, Oeiras, 2780-159, Portugal.
| | - Célia M Miguel
- Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901, Oeiras, Portugal.
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, Avenida da República, 2780-157, Oeiras, Portugal.
| |
Collapse
|
82
|
Kujur A, Bajaj D, Upadhyaya HD, Das S, Ranjan R, Shree T, Saxena MS, Badoni S, Kumar V, Tripathi S, Gowda CLL, Sharma S, Singh S, Tyagi AK, Parida SK. A genome-wide SNP scan accelerates trait-regulatory genomic loci identification in chickpea. Sci Rep 2015; 5:11166. [PMID: 26058368 PMCID: PMC4461920 DOI: 10.1038/srep11166] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Accepted: 05/18/2015] [Indexed: 01/09/2023] Open
Abstract
We identified 44844 high-quality SNPs by sequencing 92 diverse chickpea accessions belonging to a seed and pod trait-specific association panel using reference genome- and de novo-based GBS (genotyping-by-sequencing) assays. A GWAS (genome-wide association study) in an association panel of 211, including the 92 sequenced accessions, identified 22 major genomic loci showing significant association (explaining 23-47% phenotypic variation) with pod and seed number/plant and 100-seed weight. Eighteen trait-regulatory major genomic loci underlying 13 robust QTLs were validated and mapped on an intra-specific genetic linkage map by QTL mapping. A combinatorial approach of GWAS, QTL mapping and gene haplotype-specific LD mapping and transcript profiling uncovered one superior haplotype and favourable natural allelic variants in the upstream regulatory region of a CesA-type cellulose synthase (Ca_Kabuli_CesA3) gene regulating high pod and seed number/plant (explaining 47% phenotypic variation) in chickpea. The up-regulation of this superior gene haplotype correlated with increased transcript expression of Ca_Kabuli_CesA3 gene in the pollen and pod of high pod/seed number accession, resulting in higher cellulose accumulation for normal pollen and pollen tube growth. A rapid combinatorial genome-wide SNP genotyping-based approach has potential to dissect complex quantitative agronomic traits and delineate trait-regulatory genomic loci (candidate genes) for genetic enhancement in crop plants, including chickpea.
Collapse
Affiliation(s)
- Alice Kujur
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Deepak Bajaj
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Hari D Upadhyaya
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru 502324, Andhra Pradesh, India
| | - Shouvik Das
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Rajeev Ranjan
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Tanima Shree
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Maneesha S Saxena
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Saurabh Badoni
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Vinod Kumar
- National Research Centre on Plant Biotechnology (NRCPB), New Delhi 110012, India
| | - Shailesh Tripathi
- Division of Genetics, Indian Agricultural Research Institute (IARI), New Delhi 110012, India
| | - C L L Gowda
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru 502324, Andhra Pradesh, India
| | - Shivali Sharma
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru 502324, Andhra Pradesh, India
| | - Sube Singh
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru 502324, Andhra Pradesh, India
| | - Akhilesh K Tyagi
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Swarup K Parida
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| |
Collapse
|
83
|
Thanh NM, Jung H, Lyons RE, Njaci I, Yoon BH, Chand V, Tuan NV, Thu VTM, Mather P. Optimizing de novo transcriptome assembly and extending genomic resources for striped catfish (Pangasianodon hypophthalmus). Mar Genomics 2015; 23:87-97. [PMID: 25979246 DOI: 10.1016/j.margen.2015.05.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 05/03/2015] [Accepted: 05/03/2015] [Indexed: 12/17/2022]
Abstract
Striped catfish (Pangasianodon hypophthalmus) is a commercially important freshwater fish used in inland aquaculture in the Mekong Delta, Vietnam. The culture industry is facing a significant challenge however from saltwater intrusion into many low topographical coastal provinces across the Mekong Delta as a result of predicted climate change impacts. Developing genomic resources for this species can facilitate the production of improved culture lines that can withstand raised salinity conditions, and so we have applied high-throughput Ion Torrent sequencing of transcriptome libraries from six target osmoregulatory organs from striped catfish as a genomic resource for use in future selection strategies. We obtained 12,177,770 reads after trimming and processing with an average length of 97bp. De novo assemblies were generated using CLC Genomic Workbench, Trinity and Velvet/Oases with the best overall contig performance resulting from the CLC assembly. De novo assembly using CLC yielded 66,451 contigs with an average length of 478bp and N50 length of 506bp. A total of 37,969 contigs (57%) possessed significant similarity with proteins in the non-redundant database. Comparative analyses revealed that a significant number of contigs matched sequences reported in other teleost fishes, ranging in similarity from 45.2% with Atlantic cod to 52% with zebrafish. In addition, 28,879 simple sequence repeats (SSRs) and 55,721 single nucleotide polymorphisms (SNPs) were detected in the striped catfish transcriptome. The sequence collection generated in the current study represents the most comprehensive genomic resource for P. hypophthalmus available to date. Our results illustrate the utility of next-generation sequencing as an efficient tool for constructing a large genomic database for marker development in non-model species.
Collapse
Affiliation(s)
- Nguyen Minh Thanh
- International University - VNU HCMC, Quarter 6, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Viet Nam.
| | - Hyungtaek Jung
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, GPO Box 2434, Brisbane, QLD 4001, Australia; Science and Engineering Faculty, Queensland University of Technology, GPO Box 2434, Brisbane, QLD 4001, Australia.
| | - Russell E Lyons
- Animal Genetics Laboratory, School of Veterinary Science, University of Queensland, Gatton, QLD 4343, Australia.
| | - Isaac Njaci
- Centre for Tropical Crops and Biocommodities, Queensland University of Technology, GPO Box 2434, Brisbane, QLD 4001, Australia.
| | - Byoung-Ha Yoon
- Medical Genomics Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 305-806, Republic of Korea; Department of Functional Genomics, Korea University of Science and Technology, Daejoen 305-333, Republic of Korea.
| | - Vincent Chand
- Science and Engineering Faculty, Queensland University of Technology, GPO Box 2434, Brisbane, QLD 4001, Australia.
| | - Nguyen Viet Tuan
- Science and Engineering Faculty, Queensland University of Technology, GPO Box 2434, Brisbane, QLD 4001, Australia.
| | - Vo Thi Minh Thu
- International University - VNU HCMC, Quarter 6, Linh Trung Ward, Thu Duc District, Ho Chi Minh City, Viet Nam.
| | - Peter Mather
- Science and Engineering Faculty, Queensland University of Technology, GPO Box 2434, Brisbane, QLD 4001, Australia.
| |
Collapse
|
84
|
Arun-Chinnappa KS, McCurdy DW. De novo assembly of a genome-wide transcriptome map of Vicia faba (L.) for transfer cell research. FRONTIERS IN PLANT SCIENCE 2015; 6:217. [PMID: 25914703 PMCID: PMC4391045 DOI: 10.3389/fpls.2015.00217] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Accepted: 03/17/2015] [Indexed: 05/20/2023]
Abstract
Vicia faba (L.) is an important cool-season grain legume species used widely in agriculture but also in plant physiology research, particularly as an experimental model to study transfer cell (TC) development. TCs are specialized nutrient transport cells in plants, characterized by invaginated wall ingrowths with amplified plasma membrane surface area enriched with transporter proteins that facilitate nutrient transfer. Many TCs are formed by trans-differentiation from differentiated cells at apoplasmic/symplasmic boundaries in nutrient transport. Adaxial epidermal cells of isolated cotyledons can be induced to form functional TCs, thus providing a valuable experimental system to investigate genetic regulation of TC trans-differentiation. The genome of V. faba is exceedingly large (ca. 13 Gb), however, and limited genomic information is available for this species. To provide a resource for future transcript profiling of epidermal TC differentiation, we have undertaken de novo assembly of a genome-wide transcriptome map for V. faba. Illumina paired-end sequencing of total RNA pooled from different tissues and different stages, including isolated cotyledons induced to form epidermal TCs, generated 69.5 M reads, of which 65.8 M were used for assembly following trimming and quality control. Assembly using a De-Bruijn graph-based approach generated 21,297 contigs, of which 80.6% were successfully annotated against GO terms. The assembly was validated against known V. faba cDNAs held in GenBank, including transcripts previously identified as being specifically expressed in epidermal cells across TC trans-differentiation. This genome-wide transcriptome map therefore provides a valuable tool for future transcript profiling of epidermal TC trans-differentiation, and also enriches the genetic resources available for this important legume crop species.
Collapse
Affiliation(s)
| | - David W. McCurdy
- Centre for Plant Science, School of Environmental and Life Sciences, The University of NewcastleNewcastle, NSW, Australia
| |
Collapse
|
85
|
Meena MK, Ghawana S, Sardar A, Dwivedi V, Khandal H, Roy R, Chattopadhyay D. Investigation of genes encoding calcineurin B-like protein family in legumes and their expression analyses in chickpea (Cicer arietinum L.). PLoS One 2015; 10:e0123640. [PMID: 25853855 PMCID: PMC4390317 DOI: 10.1371/journal.pone.0123640] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 02/20/2015] [Indexed: 11/29/2022] Open
Abstract
Calcium ion (Ca2+) is a ubiquitous second messenger that transmits various internal and external signals including stresses and, therefore, is important for plants’ response process. Calcineurin B-like proteins (CBLs) are one of the plant calcium sensors, which sense and convey the changes in cytosolic Ca2+-concentration for response process. A search in four leguminous plant (soybean, Medicago truncatula, common bean and chickpea) genomes identified 9 to 15 genes in each species that encode CBL proteins. Sequence analyses of CBL peptides and coding sequences (CDS) suggested that there are nine original CBL genes in these legumes and some of them were multiplied during whole genome or local gene duplication. Coding sequences of chickpea CBL genes (CaCBL) were cloned from their cDNAs and sequenced, and their annotations in the genome assemblies were corrected accordingly. Analyses of protein sequences and gene structures of CBL family in plant kingdom indicated its diverse origin but showed a remarkable conservation in overall protein structure with appearance of complex gene structure in the course of evolution. Expression of CaCBL genes in different tissues and in response to different stress and hormone treatment were studied. Most of the CaCBL genes exhibited high expression in flowers. Expression profile of CaCBL genes in response to different abiotic stresses and hormones related to development and stresses (ABA, auxin, cytokinin, SA and JA) at different time intervals suggests their diverse roles in development and plant defence in addition to abiotic stress tolerance. These data not only contribute to a better understanding of the complex regulation of chickpea CBL gene family, but also provide valuable information for further research in chickpea functional genomics.
Collapse
Affiliation(s)
- Mukesh Kumar Meena
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Sanjay Ghawana
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Atish Sardar
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Vikas Dwivedi
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Hitaishi Khandal
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Riti Roy
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Debasis Chattopadhyay
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
- * E-mail:
| |
Collapse
|
86
|
Kujur A, Bajaj D, Upadhyaya HD, Das S, Ranjan R, Shree T, Saxena MS, Badoni S, Kumar V, Tripathi S, Gowda CLL, Sharma S, Singh S, Tyagi AK, Parida SK. Employing genome-wide SNP discovery and genotyping strategy to extrapolate the natural allelic diversity and domestication patterns in chickpea. FRONTIERS IN PLANT SCIENCE 2015; 6:162. [PMID: 25873920 PMCID: PMC4379880 DOI: 10.3389/fpls.2015.00162] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 03/01/2015] [Indexed: 05/19/2023]
Abstract
The genome-wide discovery and high-throughput genotyping of SNPs in chickpea natural germplasm lines is indispensable to extrapolate their natural allelic diversity, domestication, and linkage disequilibrium (LD) patterns leading to the genetic enhancement of this vital legume crop. We discovered 44,844 high-quality SNPs by sequencing of 93 diverse cultivated desi, kabuli, and wild chickpea accessions using reference genome- and de novo-based GBS (genotyping-by-sequencing) assays that were physically mapped across eight chromosomes of desi and kabuli. Of these, 22,542 SNPs were structurally annotated in different coding and non-coding sequence components of genes. Genes with 3296 non-synonymous and 269 regulatory SNPs could functionally differentiate accessions based on their contrasting agronomic traits. A high experimental validation success rate (92%) and reproducibility (100%) along with strong sensitivity (93-96%) and specificity (99%) of GBS-based SNPs was observed. This infers the robustness of GBS as a high-throughput assay for rapid large-scale mining and genotyping of genome-wide SNPs in chickpea with sub-optimal use of resources. With 23,798 genome-wide SNPs, a relatively high intra-specific polymorphic potential (49.5%) and broader molecular diversity (13-89%)/functional allelic diversity (18-77%) was apparent among 93 chickpea accessions, suggesting their tremendous applicability in rapid selection of desirable diverse accessions/inter-specific hybrids in chickpea crossbred varietal improvement program. The genome-wide SNPs revealed complex admixed domestication pattern, extensive LD estimates (0.54-0.68) and extended LD decay (400-500 kb) in a structured population inclusive of 93 accessions. These findings reflect the utility of our identified SNPs for subsequent genome-wide association study (GWAS) and selective sweep-based domestication trait dissection analysis to identify potential genomic loci (gene-associated targets) specifically regulating important complex quantitative agronomic traits in chickpea. The numerous informative genome-wide SNPs, natural allelic diversity-led domestication pattern, and LD-based information generated in our study have got multidimensional applicability with respect to chickpea genomics-assisted breeding.
Collapse
Affiliation(s)
- Alice Kujur
- National Institute of Plant Genome Research (NIPGR)New Delhi, India
| | - Deepak Bajaj
- National Institute of Plant Genome Research (NIPGR)New Delhi, India
| | - Hari D. Upadhyaya
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT)Telangana, India
| | - Shouvik Das
- National Institute of Plant Genome Research (NIPGR)New Delhi, India
| | - Rajeev Ranjan
- National Institute of Plant Genome Research (NIPGR)New Delhi, India
| | - Tanima Shree
- National Institute of Plant Genome Research (NIPGR)New Delhi, India
| | | | - Saurabh Badoni
- National Institute of Plant Genome Research (NIPGR)New Delhi, India
| | - Vinod Kumar
- National Research Centre on Plant Biotechnology (NRCPB)New Delhi, India
| | - Shailesh Tripathi
- Division of Genetics, Indian Agricultural Research Institute (IARI)New Delhi, India
| | - C. L. L. Gowda
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT)Telangana, India
| | - Shivali Sharma
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT)Telangana, India
| | - Sube Singh
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT)Telangana, India
| | | | - Swarup K. Parida
- National Institute of Plant Genome Research (NIPGR)New Delhi, India
| |
Collapse
|
87
|
Gupta S, Garg V, Bhatia S. A new set of ESTs from chickpea (Cicer arietinum L.) embryo reveals two novel F-box genes, CarF-box_PP2 and CarF-box_LysM, with potential roles in seed development. PLoS One 2015; 10:e0121100. [PMID: 25803812 PMCID: PMC4372429 DOI: 10.1371/journal.pone.0121100] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Accepted: 02/09/2015] [Indexed: 11/18/2022] Open
Abstract
Considering the economic importance of chickpea (C. arietinum L.) seeds, it is important to understand the mechanisms underlying seed development for which a cDNA library was constructed from 6 day old chickpea embryos. A total of 8,186 ESTs were obtained from which 4,048 high quality ESTs were assembled into 1,480 unigenes that majorly encoded genes involved in various metabolic and regulatory pathways. Of these, 95 ESTs were found to be involved in ubiquitination related protein degradation pathways and 12 ESTs coded specifically for putative F-box proteins. Differential transcript accumulation of these putative F-box genes was observed in chickpea tissues as evidenced by quantitative real-time PCR. Further, to explore the role of F-box proteins in chickpea seed development, two F-box genes were selected for molecular characterization. These were named as CarF-box_PP2 and CarF-box_LysM depending on their C-terminal domains, PP2 and LysM, respectively. Their highly conserved structures led us to predict their target substrates. Subcellular localization experiment revealed that CarF-box_PP2 was localized in the cytoplasm and CarF-box_LysM was localized in the nucleus. We demonstrated their physical interactions with SKP1 protein, which validated that they function as F-box proteins in the formation of SCF complexes. Sequence analysis of their promoter regions revealed certain seed specific cis-acting elements that may be regulating their preferential transcript accumulation in the seed. Overall, the study helped in expanding the EST database of chickpea, which was further used to identify two novel F-box genes having a potential role in seed development.
Collapse
Affiliation(s)
- Shefali Gupta
- National Institute of Plant Genome Research, New Delhi, India
| | - Vanika Garg
- National Institute of Plant Genome Research, New Delhi, India
| | - Sabhyata Bhatia
- National Institute of Plant Genome Research, New Delhi, India
- * E-mail:
| |
Collapse
|
88
|
Zhang S, Shi Y, Cheng N, Du H, Fan W, Wang C. De novo characterization of fall dormant and nondormant alfalfa (Medicago sativa L.) leaf transcriptome and identification of candidate genes related to fall dormancy. PLoS One 2015; 10:e0122170. [PMID: 25799491 PMCID: PMC4370819 DOI: 10.1371/journal.pone.0122170] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Accepted: 02/08/2015] [Indexed: 12/03/2022] Open
Abstract
Alfalfa (Medicago sativa L.) is one of the most widely cultivated perennial forage legumes worldwide. Fall dormancy is an adaptive character related to the biomass production and winter survival in alfalfa. The physiological, biochemical and molecular mechanisms causing fall dormancy and the related genes have not been well studied. In this study, we sequenced two standard varieties of alfalfa (dormant and non-dormant) at two time points and generated approximately 160 million high quality paired-end sequence reads using sequencing by synthesis (SBS) technology. The de novo transcriptome assembly generated a set of 192,875 transcripts with an average length of 856 bp representing about 165.1 Mb of the alfalfa leaf transcriptome. After assembly, 111,062 (57.6%) transcripts were annotated against the NCBI non-redundant database. A total of 30,165 (15.6%) transcripts were mapped to 323 Kyoto Encyclopedia of Genes and Genomes pathways. We also identified 41,973 simple sequence repeats, which can be used to generate markers for alfalfa, and 1,541 transcription factors were identified across 1,350 transcripts. Gene expression between dormant and non-dormant alfalfa at different time points were performed, and we identified several differentially expressed genes potentially related to fall dormancy. The Gene Ontology and pathways information were also identified. We sequenced and assembled the leaf transcriptome of alfalfa related to fall dormancy, and also identified some genes of interest involved in the fall dormancy mechanism. Thus, our research focused on studying fall dormancy in alfalfa through transcriptome sequencing. The sequencing and gene expression data generated in this study may be used further to elucidate the complete mechanisms governing fall dormancy in alfalfa.
Collapse
Affiliation(s)
- Senhao Zhang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan 450002, China
| | - Yinghua Shi
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan 450002, China
| | - Ningning Cheng
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan 450002, China
| | - Hongqi Du
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan 450002, China
| | - Wenna Fan
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan 450002, China
| | - Chengzhang Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan 450002, China
- * E-mail:
| |
Collapse
|
89
|
Bajaj D, Saxena MS, Kujur A, Das S, Badoni S, Tripathi S, Upadhyaya HD, Gowda CLL, Sharma S, Singh S, Tyagi AK, Parida SK. Genome-wide conserved non-coding microsatellite (CNMS) marker-based integrative genetical genomics for quantitative dissection of seed weight in chickpea. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:1271-90. [PMID: 25504138 PMCID: PMC4339591 DOI: 10.1093/jxb/eru478] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Phylogenetic footprinting identified 666 genome-wide paralogous and orthologous CNMS (conserved non-coding microsatellite) markers from 5'-untranslated and regulatory regions (URRs) of 603 protein-coding chickpea genes. The (CT)n and (GA)n CNMS carrying CTRMCAMV35S and GAGA8BKN3 regulatory elements, respectively, are abundant in the chickpea genome. The mapped genic CNMS markers with robust amplification efficiencies (94.7%) detected higher intraspecific polymorphic potential (37.6%) among genotypes, implying their immense utility in chickpea breeding and genetic analyses. Seventeen differentially expressed CNMS marker-associated genes showing strong preferential and seed tissue/developmental stage-specific expression in contrasting genotypes were selected to narrow down the gene targets underlying seed weight quantitative trait loci (QTLs)/eQTLs (expression QTLs) through integrative genetical genomics. The integration of transcript profiling with seed weight QTL/eQTL mapping, molecular haplotyping, and association analyses identified potential molecular tags (GAGA8BKN3 and RAV1AAT regulatory elements and alleles/haplotypes) in the LOB-domain-containing protein- and KANADI protein-encoding transcription factor genes controlling the cis-regulated expression for seed weight in the chickpea. This emphasizes the potential of CNMS marker-based integrative genetical genomics for the quantitative genetic dissection of complex seed weight in chickpea.
Collapse
Affiliation(s)
- Deepak Bajaj
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Maneesha S Saxena
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Alice Kujur
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Shouvik Das
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Saurabh Badoni
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Shailesh Tripathi
- Division of Genetics, Indian Agricultural Research Institute (IARI), New Delhi 110012, India
| | - Hari D Upadhyaya
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru 502324, Telangana, India
| | - C L L Gowda
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru 502324, Telangana, India
| | - Shivali Sharma
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru 502324, Telangana, India
| | - Sube Singh
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru 502324, Telangana, India
| | - Akhilesh K Tyagi
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| | - Swarup K Parida
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi 110067, India
| |
Collapse
|
90
|
Gupta S, Garg V, Kant C, Bhatia S. Genome-wide survey and expression analysis of F-box genes in chickpea. BMC Genomics 2015; 16:67. [PMID: 25759239 PMCID: PMC4340835 DOI: 10.1186/s12864-015-1293-y] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 01/29/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The F-box genes constitute one of the largest gene families in plants involved in degradation of cellular proteins. F-box proteins can recognize a wide array of substrates and regulate many important biological processes such as embryogenesis, floral development, plant growth and development, biotic and abiotic stress, hormonal responses and senescence, among others. However, little is known about the F-box genes in the important legume crop, chickpea. The available draft genome sequence of chickpea allowed us to conduct a genome-wide survey of the F-box gene family in chickpea. RESULTS A total of 285 F-box genes were identified in chickpea which were classified based on their C-terminal domain structures into 10 subfamilies. Thirteen putative novel motifs were also identified in F-box proteins with no known functional domain at their C-termini. The F-box genes were physically mapped on the 8 chickpea chromosomes and duplication events were investigated which revealed that the F-box gene family expanded largely due to tandem duplications. Phylogenetic analysis classified the chickpea F-box genes into 9 clusters. Also, maximum syntenic relationship was observed with soybean followed by Medicago truncatula, Lotus japonicus and Arabidopsis. Digital expression analysis of F-box genes in various chickpea tissues as well as under abiotic stress conditions utilizing the available chickpea transcriptome data revealed differential expression patterns with several F-box genes specifically expressing in each tissue, few of which were validated by using quantitative real-time PCR. CONCLUSIONS The genome-wide analysis of chickpea F-box genes provides new opportunities for characterization of candidate F-box genes and elucidation of their function in growth, development and stress responses for utilization in chickpea improvement.
Collapse
Affiliation(s)
- Shefali Gupta
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, Post Box No. 10531, New Delhi, 110067, India.
| | - Vanika Garg
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, Post Box No. 10531, New Delhi, 110067, India.
| | - Chandra Kant
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, Post Box No. 10531, New Delhi, 110067, India.
| | - Sabhyata Bhatia
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, Post Box No. 10531, New Delhi, 110067, India.
| |
Collapse
|
91
|
Wang RRC, Larson SR, Jensen KB, Bushman BS, DeHaan LR, Wang S, Yan X. Genome evolution of intermediate wheatgrass as revealed by EST-SSR markers developed from its three progenitor diploid species. Genome 2015; 58:63-70. [DOI: 10.1139/gen-2014-0186] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Intermediate wheatgrass (Thinopyrum intermedium (Host) Barkworth & D.R. Dewey), a segmental autoallohexaploid (2n = 6x = 42), is not only an important forage crop but also a valuable gene reservoir for wheat (Triticum aestivum L.) improvement. Throughout the scientific literature, there continues to be disagreement as to the origin of the different genomes in intermediate wheatgrass. Genotypic data obtained from newly developed EST-SSR primers derived from the putative progenitor diploid species Pseudoroegneria spicata (Pursh) Á. Löve (St genome), Thinopyrum bessarabicum (Savul. & Rayss) Á. Löve (J = Jb = Eb), and Thinopyrum elongatum (Host) D. Dewey (E = Je = Ee) indicate that the V genome of Dasypyrum (Coss. & Durieu) T. Durand is not one of the three genomes in intermediate wheatgrass. Based on all available information in the literature and findings in this study, the genomic designation of intermediate wheatgrass should be changed to JvsJrSt, where Jvs and Jr represent ancestral genomes of present-day Jb of Th. bessarabicum and Je of Th. elongatum, with Jvs being more ancient. Furthermore, the information suggests that the St genome in intermediate wheatgrass is most similar to the present-day St found in diploid species of Pseudoroegneria from Eurasia.
Collapse
Affiliation(s)
- Richard R.-C. Wang
- US Department of Agriculture, Agricultural Research Services, Forage and Range Research Laboratory, Logan, UT 84322-6300, USA
| | - Steve R. Larson
- US Department of Agriculture, Agricultural Research Services, Forage and Range Research Laboratory, Logan, UT 84322-6300, USA
| | - Kevin B. Jensen
- US Department of Agriculture, Agricultural Research Services, Forage and Range Research Laboratory, Logan, UT 84322-6300, USA
| | - B. Shaun Bushman
- US Department of Agriculture, Agricultural Research Services, Forage and Range Research Laboratory, Logan, UT 84322-6300, USA
| | - Lee R. DeHaan
- The Land Institute, 2440 E. Water Well Road, Salina, KS 67401, USA
| | - Shuwen Wang
- The Land Institute, 2440 E. Water Well Road, Salina, KS 67401, USA
| | - Xuebing Yan
- US Department of Agriculture, Agricultural Research Services, Forage and Range Research Laboratory, Logan, UT 84322-6300, USA
- College of Animal Husbandry and Veterinary Science, Henan Agricultural University, Zhengzhou, 450002, China
| |
Collapse
|
92
|
Meena MK, Ghawana S, Dwivedi V, Roy A, Chattopadhyay D. Expression of chickpea CIPK25 enhances root growth and tolerance to dehydration and salt stress in transgenic tobacco. FRONTIERS IN PLANT SCIENCE 2015; 6:683. [PMID: 26442004 PMCID: PMC4561800 DOI: 10.3389/fpls.2015.00683] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 08/17/2015] [Indexed: 05/02/2023]
Abstract
Calcium signaling plays an important role in adaptation and developmental processes in plants and animals. A class of calcium sensors, known as Calcineurin B-like (CBL) proteins sense specific temporal changes in cytosolic Ca(2+) concentration and regulate activities of a group of ser/thr protein kinases called CBL-interacting protein kinases (CIPKs). Although a number of CIPKs have been shown to play crucial roles in the regulation of stress signaling, no study on the function of CIPK25 or its orthologs has been reported so far. In the present study, an ortholog of Arabidopsis CIPK25 was cloned from chickpea (Cicer arietinum). CaCIPK25 gene expression in chickpea increased upon salt, dehydration, and different hormonal treatments. CaCIPK25 gene showed differential tissue-specific expression. 5'-upstream activation sequence (5'-UAS) of the gene and its different truncated versions were fused to a reporter gene and studied in Arabidopsis to identify promoter regions directing its tissue-specific expression. Replacement of a conserved threonine residue with an aspartic acid at its catalytic site increased the kinase activity of CaCIPK25 by 2.5-fold. Transgenic tobacco plants overexpressing full-length and the high active versions of CaCIPK25 displayed a differential germination period and longer root length in comparison to the control plants. Expression of CaCIPK25 and its high active form differentially increased salt and water-deficit tolerance demonstrated by improved growth and reduced leaf chlorosis suggesting that the kinase activity of CaCIPK25 was required for these functions. Expressions of the abiotic stress marker genes were enhanced in the CaCIPK25-expressing tobacco plants. Our results suggested that CaCIPK25 functions in root development and abiotic stress tolerance.
Collapse
Affiliation(s)
| | | | | | | | - Debasis Chattopadhyay
- *Correspondence: Debasis Chattopadhyay, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| |
Collapse
|
93
|
Misra G, Priya P, Bandhiwal N, Bareja N, Jain M, Bhatia S, Chattopadhyay D, Tyagi AK, Yadav G. The chickpea genomic web resource: visualization and analysis of the desi-type Cicer arietinum nuclear genome for comparative exploration of legumes. BMC PLANT BIOLOGY 2014; 14:315. [PMID: 25518738 PMCID: PMC4307184 DOI: 10.1186/s12870-014-0315-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Accepted: 10/30/2014] [Indexed: 06/04/2023]
Abstract
BACKGROUND Availability of the draft nuclear genome sequences of small-seeded desi-type legume crop Cicer arietinum has provided an opportunity for investigating unique chickpea genomic features and evaluation of their biological significance. The increasing number of legume genome sequences also presents a challenge for developing reliable and information-driven bioinformatics applications suitable for comparative exploration of this important class of crop plants. RESULTS The Chickpea Genomic Web Resource (CGWR) is an implementation of a suite of web-based applications dedicated to chickpea genome visualization and comparative analysis, based on next generation sequencing and assembly of Cicer arietinum desi-type genotype ICC4958. CGWR has been designed and configured for mapping, scanning and browsing the significant chickpea genomic features in view of the important existing and potential roles played by the various legume genome projects in mutant mapping and cloning. It also enables comparative informatics of ICC4958 DNA sequence analysis with other wild and cultivated genotypes of chickpea, various other leguminous species as well as several non-leguminous model plants, to enable investigations into evolutionary processes that shape legume genomes. CONCLUSIONS CGWR is an online database offering a comprehensive visual and functional genomic analysis of the chickpea genome, along with customized maps and gene-clustering options. It is also the only plant based web resource supporting display and analysis of nucleosome positioning patterns in the genome. The usefulness of CGWR has been demonstrated with discoveries of biological significance made using this server. The CGWR is compatible with all available operating systems and browsers, and is available freely under the open source license at http://www.nipgr.res.in/CGWR/home.php.
Collapse
Affiliation(s)
- Gopal Misra
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067 India
| | - Piyush Priya
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067 India
| | - Nitesh Bandhiwal
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067 India
| | - Neha Bareja
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067 India
| | - Mukesh Jain
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067 India
| | - Sabhyata Bhatia
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067 India
| | - Debasis Chattopadhyay
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067 India
| | - Akhilesh K Tyagi
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067 India
| | - Gitanjali Yadav
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067 India
| |
Collapse
|
94
|
Huang X, Peng X, Zhang L, Chen S, Cheng L, Liu G. Bovine serum albumin in saliva mediates grazing response in Leymus chinensis revealed by RNA sequencing. BMC Genomics 2014; 15:1126. [PMID: 25516098 PMCID: PMC4320431 DOI: 10.1186/1471-2164-15-1126] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 12/03/2014] [Indexed: 12/02/2022] Open
Abstract
Background Sheepgrass (Leymus chinensis) is an important perennial forage grass across the Eurasian Steppe and is adaptable to various environmental conditions, but little is known about its molecular mechanism responding to grazing and BSA deposition. Because it has a large genome, RNA sequencing is expensive and impractical except for the next-generation sequencing (NGS) technology. Results In this study, NGS technology was employed to characterize de novo the transcriptome of sheepgrass after defoliation and grazing treatments and to identify differentially expressed genes (DEGs) responding to grazing and BSA deposition. We assembled more than 47 M high-quality reads into 120,426 contigs from seven sequenced libraries. Based on the assembled transcriptome, we detected 2,002 DEGs responding to BSA deposition during grazing. Enrichment analysis of Gene ontology (GO), EuKaryotic Orthologous Groups (KOG) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways revealed that the effects of grazing and BSA deposition involved more apoptosis and cell oxidative changes compared to defoliation. Analysis of DNA fragments, cell oxidative factors and the lengths of leaf scars after grazing provided physiological and morphological evidence that BSA deposition during grazing alters the oxidative and apoptotic status of cells. Conclusions This research greatly enriches sheepgrass transcriptome resources and grazing-stress-related genes, helping us to better understand the molecular mechanism of grazing in sheepgrass. The grazing-stress-related genes and pathways will be a valuable resource for further gene-phenotype studies. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-1126) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | - Shuangyan Chen
- Key Laboratory of Plant Resources, Institute of Botany, The Chinese Academy of Sciences, Beijing, People's Republic of China.
| | | | | |
Collapse
|
95
|
Genome-wide identification and expression analysis of the CaNAC family members in chickpea during development, dehydration and ABA treatments. PLoS One 2014; 9:e114107. [PMID: 25479253 PMCID: PMC4257607 DOI: 10.1371/journal.pone.0114107] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 11/02/2014] [Indexed: 02/07/2023] Open
Abstract
The plant-specific NAC transcription factors (TFs) play important roles in regulation of diverse biological processes, including development, growth, cell division and responses to environmental stimuli. In this study, we identified the members of the NAC TF family of chickpea (Cicer arietinum) and assess their expression profiles during plant development and under dehydration and abscisic acid (ABA) treatments in a systematic manner. Seventy-one CaNAC genes were detected from the chickpea genome, including 8 membrane-bound members of which many might be involved in dehydration responses as judged from published literature. Phylogenetic analysis of the chickpea and well-known stress-related Arabidopsis and rice NACs enabled us to predict several putative stress-related CaNACs. By exploring available transcriptome data, we provided a comprehensive expression atlas of CaNACs in various tissues at different developmental stages. With the highest interest in dehydration responses, we examined the expression of the predicted stress-related and membrane-bound CaNACs in roots and leaves of chickpea seedlings, subjected to well-watered (control), dehydration and ABA treatments, using real-time quantitative PCR (RT-qPCR). Nine-teen of the 23 CaNACs examined were found to be dehydration-responsive in chickpea roots and/or leaves in either ABA-dependent or -independent pathway. Our results have provided a solid foundation for selection of promising tissue-specific and/or dehydration-responsive CaNAC candidates for detailed in planta functional analyses, leading to development of transgenic chickpea varieties with improved productivity under drought.
Collapse
|
96
|
Aya K, Kobayashi M, Tanaka J, Ohyanagi H, Suzuki T, Yano K, Takano T, Yano K, Matsuoka M. De Novo Transcriptome Assembly of a Fern, Lygodium japonicum, and a Web Resource Database, Ljtrans DB. ACTA ACUST UNITED AC 2014; 56:e5. [DOI: 10.1093/pcp/pcu184] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
97
|
Jain M, Chevala VVSN, Garg R. Genome-wide discovery and differential regulation of conserved and novel microRNAs in chickpea via deep sequencing. JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:5945-58. [PMID: 25151616 PMCID: PMC4203128 DOI: 10.1093/jxb/eru333] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
MicroRNAs (miRNAs) are essential components of complex gene regulatory networks that orchestrate plant development. Although several genomic resources have been developed for the legume crop chickpea, miRNAs have not been discovered until now. For genome-wide discovery of miRNAs in chickpea (Cicer arietinum), we sequenced the small RNA content from seven major tissues/organs employing Illumina technology. About 154 million reads were generated, which represented more than 20 million distinct small RNA sequences. We identified a total of 440 conserved miRNAs in chickpea based on sequence similarity with known miRNAs in other plants. In addition, 178 novel miRNAs were identified using a miRDeep pipeline with plant-specific scoring. Some of the conserved and novel miRNAs with significant sequence similarity were grouped into families. The chickpea miRNAs targeted a wide range of mRNAs involved in diverse cellular processes, including transcriptional regulation (transcription factors), protein modification and turnover, signal transduction, and metabolism. Our analysis revealed several miRNAs with differential spatial expression. Many of the chickpea miRNAs were expressed in a tissue-specific manner. The conserved and differential expression of members of the same miRNA family in different tissues was also observed. Some of the same family members were predicted to target different chickpea mRNAs, which suggested the specificity and complexity of miRNA-mediated developmental regulation. This study, for the first time, reveals a comprehensive set of conserved and novel miRNAs along with their expression patterns and putative targets in chickpea, and provides a framework for understanding regulation of developmental processes in legumes.
Collapse
Affiliation(s)
- Mukesh Jain
- Functional and Applied Genomics Laboratory, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi - 110067, India
| | - V V S Narayana Chevala
- Functional and Applied Genomics Laboratory, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi - 110067, India
| | - Rohini Garg
- Functional and Applied Genomics Laboratory, National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi - 110067, India
| |
Collapse
|
98
|
Thudi M, Gaur PM, Krishnamurthy L, Mir RR, Kudapa H, Fikre A, Kimurto P, Tripathi S, Soren KR, Mulwa R, Bharadwaj C, Datta S, Chaturvedi SK, Varshney RK. Genomics-assisted breeding for drought tolerance in chickpea. FUNCTIONAL PLANT BIOLOGY : FPB 2014; 41:1178-1190. [PMID: 32481067 DOI: 10.1071/fp13318] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2013] [Accepted: 05/23/2014] [Indexed: 06/11/2023]
Abstract
Terminal drought is one of the major constraints in chickpea (Cicer arietinum L.), causing more than 50% production losses. With the objective of accelerating genetic understanding and crop improvement through genomics-assisted breeding, a draft genome sequence has been assembled for the CDC Frontier variety. In this context, 544.73Mb of sequence data were assembled, capturing of 73.8% of the genome in scaffolds. In addition, large-scale genomic resources including several thousand simple sequence repeats and several million single nucleotide polymorphisms, high-density diversity array technology (15360 clones) and Illumina GoldenGate assay genotyping platforms, high-density genetic maps and transcriptome assemblies have been developed. In parallel, by using linkage mapping approach, one genomic region harbouring quantitative trait loci for several drought tolerance traits has been identified and successfully introgressed in three leading chickpea varieties (e.g. JG 11, Chefe, KAK 2) by using a marker-assisted backcrossing approach. A multilocation evaluation of these marker-assisted backcrossing lines provided several lines with 10-24% higher yield than the respective recurrent parents.Modern breeding approaches like marker-assisted recurrent selection and genomic selection are being deployed for enhancing drought tolerance in chickpea. Some novel mapping populations such as multiparent advanced generation intercross and nested association mapping populations are also being developed for trait mapping at higher resolution, as well as for enhancing the genetic base of chickpea. Such advances in genomics and genomics-assisted breeding will accelerate precision and efficiency in breeding for stress tolerance in chickpea.
Collapse
Affiliation(s)
- Mahendar Thudi
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad 502 324, India
| | - Pooran M Gaur
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad 502 324, India
| | - Lakshmanan Krishnamurthy
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad 502 324, India
| | - Reyazul R Mir
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad 502 324, India
| | - Himabindu Kudapa
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad 502 324, India
| | - Asnake Fikre
- Ethiopian Institute of Agricultural Research (EIAR), Debre Zeit, PO Box 2003, Ethiopia
| | | | - Shailesh Tripathi
- Indian Agricultural Research Institute (IARI), New Delhi 110 012, India
| | - Khela R Soren
- Indian Institute of Pulses Research (IIPR), Kanpur 208 024, India
| | | | | | - Subhojit Datta
- Indian Institute of Pulses Research (IIPR), Kanpur 208 024, India
| | | | - Rajeev K Varshney
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad 502 324, India
| |
Collapse
|
99
|
Zhao D, Jiang Y, Ning C, Meng J, Lin S, Ding W, Tao J. Transcriptome sequencing of a chimaera reveals coordinated expression of anthocyanin biosynthetic genes mediating yellow formation in herbaceous peony (Paeonia lactiflora Pall.). BMC Genomics 2014; 15:689. [PMID: 25134523 PMCID: PMC4159507 DOI: 10.1186/1471-2164-15-689] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 08/15/2014] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Herbaceous peony (Paeonia lactiflora Pall.) is a traditional flower in China and a wedding attractive flower in worldwide. In its flower colour, yellow is the rarest which is ten times the price of the other colours. However, the breeding of new yellow P. lactiflora varieties using genetic engineering is severely limited due to the little-known biochemical and molecular mechanisms underlying its characteristic formation. RESULTS In this study, two cDNA libraries generated from P. lactiflora chimaera with red outer-petal and yellow inner-petal were sequenced using an Illumina HiSeq™ 2000 platform. 66,179,398 and 65,481,444 total raw reads from red outer-petal and yellow inner-petal cDNA libraries were generated, which were assembled into 61,431 and 70,359 Unigenes with an average length of 628 and 617 nt, respectively. Moreover, 61,408 non-redundant All-unigenes were obtained, with 37,511 All-unigenes (61.08%) annotated in public databases. In addition, 6,345 All-unigenes were differentially expressed between the red outer-petal and yellow inner-petal, with 3,899 up-regulated and 2,446 down-regulated All-unigenes, and the flavonoid metabolic pathway related to colour development was identified using the Kyoto encyclopedia of genes and genomes database (KEGG). Subsequently, the expression patterns of 10 candidate differentially expressed genes (DEGs) involved in the flavonoid metabolic pathway were examined, and flavonoids were qualitatively and quantitatively analysed. Numerous anthoxanthins (flavone and flavonol) and a few anthocyanins were detected in the yellow inner-petal, which were all lower than those in the red outer-petal due to the low expression levels of the phenylalanine ammonialyase gene (PlPAL), flavonol synthase gene (PlFLS), dihydroflavonol 4-reductase gene (PlDFR), anthocyanidin synthase gene (PlANS), anthocyanidin 3-O-glucosyltransferase gene (Pl3GT) and anthocyanidin 5-O-glucosyltransferase gene (Pl5GT). CONCLUSION Transcriptome sequencing (RNA-Seq) analysis based on the high throughput sequencing technology was an efficient approach to identify critical genes in P. lactiflora and other non-model plants. The flavonoid metabolic pathway and glucide metabolic pathway were identified as relatived yellow formation in P. lactiflora, PlPAL, PlFLS, PlDFR, PlANS, Pl3GT and Pl5GT were selected as potential candidates involved in flavonoid metabolic pathway, which inducing inhibition of anthocyanin biosynthesis mediated yellow formation in P. lactiflora. This study could lay a theoretical foundation for breeding new yellow P. lactiflora varieties.
Collapse
Affiliation(s)
- Daqiu Zhao
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009 Jiangsu P.R. China
| | - Yao Jiang
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009 Jiangsu P.R. China
| | - Chuanlong Ning
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009 Jiangsu P.R. China
| | - Jiasong Meng
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009 Jiangsu P.R. China
| | - Shasha Lin
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009 Jiangsu P.R. China
| | - Wen Ding
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009 Jiangsu P.R. China
| | - Jun Tao
- Key Laboratory of Crop Genetics and Physiology of Jiangsu Province, College of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009 Jiangsu P.R. China
| |
Collapse
|
100
|
Verma M, Ghangal R, Sharma R, Sinha AK, Jain M. Transcriptome analysis of Catharanthus roseus for gene discovery and expression profiling. PLoS One 2014; 9:e103583. [PMID: 25072156 PMCID: PMC4114786 DOI: 10.1371/journal.pone.0103583] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Accepted: 06/28/2014] [Indexed: 12/02/2022] Open
Abstract
The medicinal plant, Catharanthus roseus, accumulates wide range of terpenoid indole alkaloids, which are well documented therapeutic agents. In this study, deep transcriptome sequencing of C. roseus was carried out to identify the pathways and enzymes (genes) involved in biosynthesis of these compounds. About 343 million reads were generated from different tissues (leaf, flower and root) of C. roseus using Illumina platform. Optimization of de novo assembly involving a two-step process resulted in a total of 59,220 unique transcripts with an average length of 1284 bp. Comprehensive functional annotation and gene ontology (GO) analysis revealed the representation of many genes involved in different biological processes and molecular functions. In total, 65% of C. roseus transcripts showed homology with sequences available in various public repositories, while remaining 35% unigenes may be considered as C. roseus specific. In silico analysis revealed presence of 11,620 genic simple sequence repeats (excluding mono-nucleotide repeats) and 1820 transcription factor encoding genes in C. roseus transcriptome. Expression analysis showed roots and leaves to be actively participating in bisindole alkaloid production with clear indication that enzymes involved in pathway of vindoline and vinblastine biosynthesis are restricted to aerial tissues. Such large-scale transcriptome study provides a rich source for understanding plant-specialized metabolism, and is expected to promote research towards production of plant-derived pharmaceuticals.
Collapse
Affiliation(s)
- Mohit Verma
- Functional and Applied Genomics Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Rajesh Ghangal
- Functional and Applied Genomics Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Raghvendra Sharma
- Functional and Applied Genomics Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Alok K. Sinha
- Functional and Applied Genomics Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
| | - Mukesh Jain
- Functional and Applied Genomics Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, India
- * E-mail:
| |
Collapse
|