51
|
Corbin C, Decourtil C, Marosevic D, Bailly M, Lopez T, Renouard S, Doussot J, Dutilleul C, Auguin D, Giglioli-Guivarc'h N, Lainé E, Lamblin F, Hano C. Role of protein farnesylation events in the ABA-mediated regulation of the Pinoresinol-Lariciresinol Reductase 1 (LuPLR1) gene expression and lignan biosynthesis in flax (Linum usitatissimum L.). PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2013; 72:96-111. [PMID: 23816064 DOI: 10.1016/j.plaphy.2013.06.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 06/01/2013] [Indexed: 05/23/2023]
Abstract
A Linum usitatissimum LuERA1 gene encoding a putative ortholog of the ERA1 (Enhanced Response to ABA 1) gene of Arabidopsis thaliana (encoding the beta subunit of a farnesyltransferase) was analyzed in silico and for its expression in flax. The gene and the protein sequences are highly similar to other sequences already characterized in plants and all the features of a farnesyltransferase were detected. Molecular modeling of LuERA1 protein confirmed its farnesyltransferase nature. LuERA1 is expressed in the vegetative organs and also in the outer seedcoat of the flaxseed, where it could modulate the previously observed regulation operated by ABA on lignan synthesis. This effect could be mediated by the regulation of the transcription of a key gene for lignan synthesis in flax, the LuPLR1 gene, encoding a pinoresinol lariciresinol reductase. The positive effect of manumycin A, a specific inhibitor of farnesyltransferase, on lignan biosynthesis in flax cell suspension systems supports the hypothesis of the involvement of such an enzyme in the negative regulation of ABA action. In Arabidopsis, ERA1 is able to negatively regulate the ABA effects and the mutant era1 has an enhanced sensitivity to ABA. When expressed in an Arabidopsis cell suspension (heterologous system) LuERA1 is able to reverse the effect of the era1 mutation. RNAi experiments in flax targeting the farnesyltransferase β-subunit encoded by the LuERA1 gene led to an increase LuPLR1 expression level associated with an increased content of lignan in transgenic calli. Altogether these results strongly suggest a role of the product of this LuERA1 gene in the ABA-mediated upregulation of lignan biosynthesis in flax cells through the activation of LuPLR1 promoter. This ABA signaling pathway involving ERA1 probably acts through the ABRE box found in the promoter sequence of LuPLR1, a key gene for lignan synthesis in flax, as demonstrated by LuPLR1 gene promoter-reporter experiments in flax cells using wild type and mutated promoter sequences.
Collapse
Affiliation(s)
- Cyrielle Corbin
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), UPRES EA 1207, Antenne Scientifique Universitaire de Chartres (ASUC), Université d'Orléans, 21 rue de Loigny la Bataille, F28000 Chartres, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
52
|
Noguero M, Atif RM, Ochatt S, Thompson RD. The role of the DNA-binding One Zinc Finger (DOF) transcription factor family in plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2013; 209:32-45. [PMID: 23759101 DOI: 10.1016/j.plantsci.2013.03.016] [Citation(s) in RCA: 172] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2012] [Revised: 03/19/2013] [Accepted: 03/22/2013] [Indexed: 05/18/2023]
Abstract
The DOF (DNA-binding One Zinc Finger) family of transcription factors is involved in many fundamental processes in higher plants, including responses to light and phytohormones as well as roles in seed maturation and germination. DOF transcription factor genes are restricted in their distribution to plants, where they are in many copies in both gymnosperms and angiosperms and also present in lower plants such as the moss Physcomitrella patens and in the alga Chlamydomonas reinhardtii which possesses a single DOF gene. DOF transcription factors bind to their promoter targets at the consensus sequence AAAG. This binding depends upon the presence of the highly conserved DOF domain in the protein. Depending on the target gene, DOF factor binding may activate or repress transcription. DOF factors are expressed in most if not all tissues of higher plants, but frequently appear to be functionally redundant. Recent next-generation sequencing data provide a more comprehensive survey of the distribution of DOF sequence classes among plant species and within tissue types, and clues as to the evolution of functions assumed by this transcription factor family. DOFs do not appear to be implicated in the initial differentiation of the plant body plan into organs via the resolution of meristematic zones, in contrast to MADS-box and homeobox transcription factors, which are found in other non-plant eukaryotes, and this may reflect a more recent evolutionary origin.
Collapse
|
53
|
Sagar M, Chervin C, Mila I, Hao Y, Roustan JP, Benichou M, Gibon Y, Biais B, Maury P, Latché A, Pech JC, Bouzayen M, Zouine M. SlARF4, an auxin response factor involved in the control of sugar metabolism during tomato fruit development. PLANT PHYSIOLOGY 2013; 161:1362-74. [PMID: 23341361 PMCID: PMC3585602 DOI: 10.1104/pp.113.213843] [Citation(s) in RCA: 156] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2013] [Accepted: 01/18/2013] [Indexed: 05/18/2023]
Abstract
Successful completion of fruit developmental programs depends on the interplay between multiple phytohormones. However, besides ethylene, the impact of other hormones on fruit quality traits remains elusive. A previous study has shown that down-regulation of SlARF4, a member of the tomato (Solanum lycopersicum) auxin response factor (ARF) gene family, results in a dark-green fruit phenotype with increased chloroplasts (Jones et al., 2002). This study further examines the role of this auxin transcriptional regulator during tomato fruit development at the level of transcripts, enzyme activities, and metabolites. It is noteworthy that the dark-green phenotype of antisense SlARF4-suppressed lines is restricted to fruit, suggesting that SlARF4 controls chlorophyll accumulation specifically in this organ. The SlARF4 underexpressing lines accumulate more starch at early stages of fruit development and display enhanced chlorophyll content and photochemical efficiency, which is consistent with the idea that fruit photosynthetic activity accounts for the elevated starch levels. SlARF4 expression is high in pericarp tissues of immature fruit and then undergoes a dramatic decline at the onset of ripening concomitant with the increase in sugar content. The higher starch content in developing fruits of SlARF4 down-regulated lines correlates with the up-regulation of genes and enzyme activities involved in starch biosynthesis, suggesting their negative regulation by SlARF4. Altogether, the data uncover the involvement of ARFs in the control of sugar content, an essential feature of fruit quality, and provide insight into the link between auxin signaling, chloroplastic activity, and sugar metabolism in developing fruit.
Collapse
|
54
|
Chevalier E, Loubert-Hudon A, Matton DP. ScRALF3, a secreted RALF-like peptide involved in cell-cell communication between the sporophyte and the female gametophyte in a solanaceous species. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2013; 73:1019-33. [PMID: 23237060 DOI: 10.1111/tpj.12096] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Revised: 11/29/2012] [Accepted: 12/06/2012] [Indexed: 05/16/2023]
Abstract
Small peptides have been shown to regulate numerous aspects of plant development through cell-cell communication. These signaling events are particularly important during reproduction, regulating gamete development and embryogenesis. Rapid alkalinization factor (RALF)-like genes, a large gene family that encodes secreted peptides, have specific or ubiquitous expression patterns. Previously, five RALF-like genes with potential involvement during reproduction were isolated from Solanum chacoense. Here, we show that ScRALF3 is an important peptide regulator of female gametophyte development. Its expression, which is auxin-inducible, is strictly regulated before and after fertilization. Down-regulation of ScRALF3 expression by RNA interference leads to the production of smaller fruits that produce fewer seeds, due to improper development of the embryo sacs. Defects include loss of embryo sac nuclei polarization, as well as an increase in asynchronous division, accounting for cellular dysfunctions and premature embryo sac development arrest during megagametogenesis. ScRALF3 is expressed in the sporophytic tissue surrounding the embryo sac, the integument and the nucellus, as revealed by in situ hybridization and GUS staining. As expected for a secreted peptide, fluorescence from an ScRALF3-GFP fusion construct is detected throughout the secretory pathway. Therefore, the ScRALF3 secreted peptide may be directly involved in the regulation of multiple aspects of cell-cell communication between the female gametophyte and its surrounding sporophytic tissue during ovule development.
Collapse
Affiliation(s)
- Eric Chevalier
- Institut de Recherche en Biologie Végétale, Département de Sciences Biologiques Université de Montréal, 4101 rue Sherbrooke est, Montréal, Québec, H1X 2B2, Canada
| | | | | |
Collapse
|
55
|
Hernando-Amado S, González-Calle V, Carbonero P, Barrero-Sicilia C. The family of DOF transcription factors in Brachypodium distachyon: phylogenetic comparison with rice and barley DOFs and expression profiling. BMC PLANT BIOLOGY 2012; 12:202. [PMID: 23126376 PMCID: PMC3579746 DOI: 10.1186/1471-2229-12-202] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 10/30/2012] [Indexed: 05/18/2023]
Abstract
BACKGROUND Transcription factors (TFs) are proteins that have played a central role both in evolution and in domestication, and are major regulators of development in living organisms. Plant genome sequences reveal that approximately 7% of all genes encode putative TFs. The DOF (DNA binding with One Finger) TF family has been associated with vital processes exclusive to higher plants and to their close ancestors (algae, mosses and ferns). These are seed maturation and germination, light-mediated regulation, phytohormone and plant responses to biotic and abiotic stresses, etc. In Hordeum vulgare and Oryza sativa, 26 and 30 different Dof genes, respectively, have been annotated. Brachypodium distachyon has been the first Pooideae grass to be sequenced and, due to its genomic, morphological and physiological characteristics, has emerged as the model system for temperate cereals, such as wheat and barley. RESULTS Through searches in the B. distachyon genome, 27 Dof genes have been identified and a phylogenetic comparison with the Oryza sativa and the Hordeum vulgare DOFs has been performed. To explore the evolutionary relationship among these DOF proteins, a combined phylogenetic tree has been constructed with the Brachypodium DOFs and those from rice and barley. This phylogenetic analysis has classified the DOF proteins into four Major Cluster of Orthologous Groups (MCOGs). Using RT-qPCR analysis the expression profiles of the annotated BdDof genes across four organs (leaves, roots, spikes and seeds) has been investigated. These results have led to a classification of the BdDof genes into two groups, according to their expression levels. The genes highly or preferentially expressed in seeds have been subjected to a more detailed expression analysis (maturation, dry stage and germination). CONCLUSIONS Comparison of the expression profiles of the Brachypodium Dof genes with the published functions of closely related DOF sequences from the cereal species considered here, deduced from the phylogenetic analysis, indicates that although the expression profile has been conserved in many of the putative orthologs, in some cases duplication followed by subsequent divergence may have occurred (neo-functionalization).
Collapse
Affiliation(s)
- Sara Hernando-Amado
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA). Escuela Técnica Superior de Ingenieros Agrónomos, Universidad Politécnica de Madrid. Campus de Montegancedo, Pozuelo de Alarcón, Madrid, 28223, Spain
| | - Virginia González-Calle
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA). Escuela Técnica Superior de Ingenieros Agrónomos, Universidad Politécnica de Madrid. Campus de Montegancedo, Pozuelo de Alarcón, Madrid, 28223, Spain
| | - Pilar Carbonero
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA). Escuela Técnica Superior de Ingenieros Agrónomos, Universidad Politécnica de Madrid. Campus de Montegancedo, Pozuelo de Alarcón, Madrid, 28223, Spain
| | - Cristina Barrero-Sicilia
- Centro de Biotecnología y Genómica de Plantas (UPM-INIA). Escuela Técnica Superior de Ingenieros Agrónomos, Universidad Politécnica de Madrid. Campus de Montegancedo, Pozuelo de Alarcón, Madrid, 28223, Spain
| |
Collapse
|
56
|
Bucsenez M, Rüping B, Behrens S, Twyman RM, Noll GA, Prüfer D. Multiple cis-regulatory elements are involved in the complex regulation of the sieve element-specific MtSEO-F1 promoter from Medicago truncatula. PLANT BIOLOGY (STUTTGART, GERMANY) 2012; 14:714-24. [PMID: 22404711 DOI: 10.1111/j.1438-8677.2011.00556.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The sieve element occlusion (SEO) gene family includes several members that are expressed specifically in immature sieve elements (SEs) in the developing phloem of dicotyledonous plants. To determine how this restricted expression profile is achieved, we analysed the SE-specific Medicago truncatula SEO-F1 promoter (PMtSEO-F1) by constructing deletion, substitution and hybrid constructs and testing them in transgenic tobacco plants using green fluorescent protein as a reporter. This revealed four promoter regions, each containing cis-regulatory elements that activate transcription in SEs. One of these segments also contained sufficient information to suppress PMtSEO-F1 transcription in the phloem companion cells (CCs). Subsequent in silico analysis revealed several candidate cis-regulatory elements that PMtSEO-F1 shares with other SEO promoters. These putative sieve element boxes (PSE boxes) are promising candidates for cis-regulatory elements controlling the SE-specific expression of PMtSEO-F1.
Collapse
Affiliation(s)
- M Bucsenez
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Aachen, Germany Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Münster, Germany Max Planck Institute for Molecular Genetics, Computational Molecular Biology, Berlin, Germany Department of Biological Sciences, University of Warwick, Coventry, UK
| | - B Rüping
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Aachen, Germany Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Münster, Germany Max Planck Institute for Molecular Genetics, Computational Molecular Biology, Berlin, Germany Department of Biological Sciences, University of Warwick, Coventry, UK
| | - S Behrens
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Aachen, Germany Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Münster, Germany Max Planck Institute for Molecular Genetics, Computational Molecular Biology, Berlin, Germany Department of Biological Sciences, University of Warwick, Coventry, UK
| | - R M Twyman
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Aachen, Germany Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Münster, Germany Max Planck Institute for Molecular Genetics, Computational Molecular Biology, Berlin, Germany Department of Biological Sciences, University of Warwick, Coventry, UK
| | - G A Noll
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Aachen, Germany Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Münster, Germany Max Planck Institute for Molecular Genetics, Computational Molecular Biology, Berlin, Germany Department of Biological Sciences, University of Warwick, Coventry, UK
| | - D Prüfer
- Fraunhofer Institute for Molecular Biology and Applied Ecology (IME), Aachen, Germany Institut für Biologie und Biotechnologie der Pflanzen, Westfälische Wilhelms-Universität Münster, Münster, Germany Max Planck Institute for Molecular Genetics, Computational Molecular Biology, Berlin, Germany Department of Biological Sciences, University of Warwick, Coventry, UK
| |
Collapse
|
57
|
Li Y, Sun Y, Yang Q, Kang J, Zhang T, Gruber MY, Fang F. Cloning and function analysis of an alfalfa (Medicago sativa L.) zinc finger protein promoter MsZPP. Mol Biol Rep 2012; 39:8559-69. [PMID: 22696187 DOI: 10.1007/s11033-012-1712-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Accepted: 06/06/2012] [Indexed: 10/28/2022]
Abstract
A 1272 bp upstream sequence of MsZFN gene was cloned from alfalfa, which was designed as MsZPP (Genbank accession number: FJ 161979.2) using an adaptor-mediated genome walking method. A sole transcription start site was located 69 bp upstream of the translation start site. Its pattern of expression included roots, stem vascular tissues, floral reproductive organs, and leaves, but the promoter did not express in seeds, petals or sepals. Transcription levels can be stimulated by dark, MeJA, and IAA. However, GUS fusion activities had no change by treatments of GA, ABA, drought and high salt for 3 days. Deletion analysis revealed that all sections of the promoter can drive gus gene expression in the root, stem, leaves and floral reproductive organs; however, only fragments longer than the -460 bp promoter can stimulate strong gus gene expression in these organs. In addition, the -460 bp promoter fragment can drive gus expression not only in the vascular tissue, but also in leaf guard cells. The results suggest that the promoter MsZPP plays roles in the regulation of transgene expression, particularly due to its darkness, MeJA, and IAA responsiveness.
Collapse
Affiliation(s)
- Yan Li
- Institute of Animal Science, Chinese Academy of Agricultural Sciences, No. 2 West Yuanmingyuan Road, Haidian, Beijing 100193, People's Republic of China.
| | | | | | | | | | | | | |
Collapse
|
58
|
Ginis O, Courdavault V, Melin C, Lanoue A, Giglioli-Guivarc'h N, St-Pierre B, Courtois M, Oudin A. Molecular cloning and functional characterization of Catharanthus roseus hydroxymethylbutenyl 4-diphosphate synthase gene promoter from the methyl erythritol phosphate pathway. Mol Biol Rep 2012; 39:5433-47. [PMID: 22160472 DOI: 10.1007/s11033-011-1343-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2011] [Accepted: 12/03/2011] [Indexed: 10/14/2022]
Abstract
The Madagascar periwinkle produces monoterpenoid indole alkaloids (MIA) of high interest due to their therapeutical values. The terpenoid moiety of MIA is derived from the methyl erythritol phosphate (MEP) and seco-iridoid pathways. These pathways are regarded as the limiting branch for MIA biosynthesis in C. roseus cell and tissue cultures. In previous studies, we demonstrated a coordinated regulation at the transcriptional and spatial levels of genes from both pathways. We report here on the isolation of the 5'-flanking region (1,049 bp) of the hydroxymethylbutenyl 4-diphosphate synthase (HDS) gene from the MEP pathway. To investigate promoter transcriptional activities, the HDS promoter was fused to GUS reporter gene. Agrobacterium-mediated transformation of young tobacco leaves revealed that the cloned HDS promoter displays a tissue-specific GUS staining restricted to the vascular region of the leaves and limited to a part of the vein that encompasses the phloem in agreement with the previous localization of HDS transcripts in C. roseus aerial organs. Further functional characterizations in stably or transiently transformed C. roseus cells allowed us to identify the region that can be consider as the minimal promoter and to demonstrate the induction of HDS promoter by several hormonal signals (auxin, cytokinin, methyljasmonate and ethylene) leading to MIA production. These results, and the bioinformatic analysis of the HDS 5'-region, suggest that the HDS promoter harbours a number of cis-elements binding specific transcription factors that would regulate the flux of terpenoid precursors involved in MIA biosynthesis.
Collapse
Affiliation(s)
- Olivia Ginis
- Université François Rabelais de Tours, EA 2106, Biomolécules et Biotechnologies Végétales, 31 avenue Monge, 37200, Tours, France
| | | | | | | | | | | | | | | |
Collapse
|
59
|
Lu Y, Ouyang B, Zhang J, Wang T, Lu C, Han Q, Zhao S, Ye Z, Li H. Genomic organization, phylogenetic comparison and expression profiles of annexin gene family in tomato (Solanum lycopersicum). Gene 2012; 499:14-24. [PMID: 22425974 DOI: 10.1016/j.gene.2012.03.026] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Revised: 02/16/2012] [Accepted: 03/05/2012] [Indexed: 01/02/2023]
Abstract
Annexins have been suggested to play pivotal roles in stress resistance and plant development. However, related studies on fruit-bearing plants, especially on fruit development, are very limited. In the present study, we provide a comprehensive overview of the annexin family in tomato, describing the gene structure, promoter cis-regulatory elements, organ expression profile, and gene expression patterns under hormone and stress treatments. Bioinformatic analysis revealed that the nine tomato annexins were structurally different from their animal counterparts, but highly conserved annexin domains were still found in most of them. Cis-regulatory element prediction showed that there were important elements in the 2kb upstream promoter regions, including stress- and hormone-responsive-related elements. The expression patterns of these genes were investigated, and the results revealed that they were regulated under developmental processes and environmental stimuli. Among them, AnnSl1.1 and AnnSl2 were highly expressed in most of the tested organs. Genes preferentially or specifically expressed in organs, such as stigma or ovary (AnnSl6), stamen (AnnSl8), and fruit pericarp (AnnSl1.2 and AnnSl9), were identified. Some annexin genes were induced by plant hormones including abscisic acid (AnnSl3, AnnSl6, AnnSl8, and AnnSl9) and gibberellic acid (AnnSl1.1, AnnSl1.2, AnnSl4, and AnnSl7). Most of these annexin genes were induced by salt, drought, wounding, and heat or cold stresses. The present study provides significant information for understanding the diverse roles of annexins in tomato growth and development.
Collapse
Affiliation(s)
- Yongen Lu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
60
|
Péron T, Véronési C, Mortreau E, Pouvreau JB, Thoiron S, Leduc N, Delavault P, Simier P. Role of the sucrose synthase encoding PrSus1 gene in the development of the parasitic plant Phelipanche ramosa L. (Pomel). MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2012; 25:402-11. [PMID: 22088196 DOI: 10.1094/mpmi-10-11-0260] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Phelipanche ramosa L. (Pomel) is a major root-parasitic weed attacking many important crops. Success in controlling this parasite is rare and a better understanding of its unique biology is needed to develop new specific control strategies. In the present study, quantitative polymerase chain reaction experiments showed that sucrose synthase encoding PrSus1 transcripts accumulate at their highest level once the parasite is connected to the host (tomato) vascular system, mainly in the parasite tubercles, which bear numerous adventitious roots. In situ hybridization experiments revealed strong PrSus1 expression in both shoot and root apices, especially in shoot apical meristems and in the vascular tissues of scale leaves and stems, and in the apical meristems and developing xylem in roots. In addition, immunolocalization experiments showed that a sucrose synthase protein co-localized with cell-wall thickening in xylem elements. These findings highlight the role of PrSus1 in the utilization of host-derived sucrose in meristematic areas and in cellulose biosynthesis in differentiating vascular elements. We also demonstrate that PrSus1 is downregulated in response to 2,3,5-triiodobenzoic acid-induced inhibition of polar auxin transport in the host stem, suggesting that PrSus1 activity in xylem maturation is controlled by host-derived auxin.
Collapse
Affiliation(s)
- Thomas Péron
- LUNAM Université Laboratoire de Biologie et Pathologie Végétales, UFR Sciences et Techniques, Nantes, France
| | | | | | | | | | | | | | | |
Collapse
|
61
|
Londe LN, Ueira-Vieira C, Kerr WE, Bonetti AM. Characterization of DNA polymorphisms in Caryocar brasiliense in populations with and without thorn at the endocarp by RAPD markers. AN ACAD BRAS CIENC 2011; 82:779-89. [PMID: 21562705 DOI: 10.1590/s0001-37652010000300024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2008] [Accepted: 04/08/2010] [Indexed: 11/22/2022] Open
Abstract
Caryocar brasiliense (pequi), is one of the main species at the biome of the Brazilian savannah due to its use in culinary, popular medicine, industry in general, and iron and steel industry. At São José do Xingu (MT), a tree of C. brasiliense without thorn at the endocarp was found, which enables the improvement of C. brasiliense not only for consumption but also to the high appreciation it already has. To detect the existing differences between the pequi with and without the thorn at the endocarp, RADP markers were used. The generated polymorphisms were cloned and sequenced in order to identify the sequences that are responsible for the fenotypical alteration. It was observed that the pequi without thorn is genetically isolated from the other populations of pequi with thorn at the endocarp, proving that this characteristic is related to the genetic divergence of the species. Analysis in BLASTn evidenced the similarity of the Dof1 genes of Zea mays to its gene of phosphinotricin acetyl transferase. In the analysis of BLASTx, the similarity was verified to the proteins responsible for the deficiency in ferric reductase 4, and catalase.
Collapse
Affiliation(s)
- Luciana N Londe
- Empresa de Pesquisa Agropecuária de Minas Gerais, Laboratório de Biotecnologia, Nova Porteirinha, MG, Brazil.
| | | | | | | |
Collapse
|
62
|
Zhang L, Xi D, Li S, Gao Z, Zhao S, Shi J, Wu C, Guo X. A cotton group C MAP kinase gene, GhMPK2, positively regulates salt and drought tolerance in tobacco. PLANT MOLECULAR BIOLOGY 2011; 77:17-31. [PMID: 21590508 DOI: 10.1007/s11103-011-9788-7] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2010] [Accepted: 05/08/2011] [Indexed: 05/22/2023]
Abstract
Mitogen-activated protein kinase (MAPK) cascades play important roles in mediating biotic and abiotic stress responses. In plants, MAPKs are classified into four major groups (A-D) according to their sequence homology and conserved phosphorylation motifs. Compared with well-studied MAPKs in groups A and B, little is known about group C. In this study, we functionally characterised a stress-responsive group C MAPK gene (GhMPK2) from cotton (Gossypium hirsutum). Northern blot analysis indicated that GhMPK2 was induced by abscisic acid (ABA) and abiotic stresses, such as NaCl, PEG, and dehydration. Subcellular localization analysis suggested that GhMPK2 may activate its specific targets in the nucleus. Constitutive overexpression of GhMPK2 in tobacco (Nicotiana tabacum) conferred reduced sensitivity to ABA during both seed germination and vegetative growth. Interestingly, transgenic plants had a decreased rate of water loss and exhibited enhanced drought and salt tolerance. Additionally, transgenic plants showed improved osmotic adjustment capacity, elevated proline accumulation and up-regulated expression of several stress-related genes, including DIN1, Osmotin and NtLEA5. β-glucuronidase (GUS) expression driven by the GhMPK2 promoter was clearly enhanced by treatment with NaCl, PEG, and ABA. These results strongly suggest that GhMPK2 positively regulates salt and drought tolerance in transgenic plants.
Collapse
Affiliation(s)
- Liang Zhang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, Shandong Agricultural University, Taian, Shandong 271018, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
63
|
A sweetpotato SRD1 promoter confers strong root-, taproot-, and tuber-specific expression in Arabidopsis, carrot, and potato. Transgenic Res 2011; 21:265-78. [DOI: 10.1007/s11248-011-9528-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Accepted: 05/30/2011] [Indexed: 10/18/2022]
|
64
|
Gupta N, Gupta AK, Kumar A. Spatial distribution pattern analysis of Dof1 transcription factor in different tissues of three Eleusine coracana genotypes differing in their grain colour, yield and photosynthetic efficiency. Mol Biol Rep 2011; 39:2089-95. [PMID: 21643752 DOI: 10.1007/s11033-011-0956-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2010] [Accepted: 05/26/2011] [Indexed: 10/18/2022]
Abstract
In the present study Dof1 gene of finger millet was cloned and sequenced. In silico analysis reveals 61% identity with the Sorghum bicolor and 57% identity with the Oryza sativa Dof1 sequence. A comparative analysis of gene sequences from different crops and three finger millet genotypes {Brown (PRM-1), Golden (PRM-701) and White (PRM-801)} differing in grain colour, yield and photosynthetic efficiency showed a high degree of sequence identity of Dof1 sequence gene ranging from 22 to 70% as evident from distance matrix of the built phylogenetic tree showing two major clusters. A total of five conserved motifs were observed in Dof1 sequences of different cereals. Motif 1 with multilevel consensus sequence CKNCRRYWTKGGAMRNVPVG contains zinc finger Dof domain. Motif 3 and motif 5 contains protein kinase phosphorylation site. Motif 2 contains Dof domain and zinc finger N-glycosylation site while motif 4 is involved in Zinc finger type profiling. Further, we studied the spatial distribution of Dof1 gene in three vegetative tissues (root, stem and flag leaf) as well as four stages of developing spikes (S1, S2, S3 and S4) of the three finger millet genotypes using qualitative and quantitative PCR based approaches. Physiological parameters (plant height, leaf area, chlorophyll content, SPAD value and photosynthetic efficiency) at the time of flowering was found to be highest in white (PRM-801) genotype followed by golden (PRM-701) and brown (PRM-1) genotype. Semi-quantitative RT-PCR and quantitative real-time PCR analysis revealed that the expression of Dof1 is highest in leaves and lowest in roots, which suggests its role in regulation of photosynthesis-related genes and carbon skeleton synthesis. Also at grain maturity stage, expression of Dof1 was higher in white (PRM-801) genotype followed by golden (PRM-701) and brown (PRM-1) genotype. The result is suggestive of Dof1 role in the accumulation of grain protein and yield attribute through regulation of key enzymes involved in source to sink relationship during grain filling stage.
Collapse
Affiliation(s)
- Nidhi Gupta
- Department of Molecular Biology & Genetic Engineering, College of Basic Sciences & Humanities, GB Pant University of Agriculture & Technology, Pantnagar, US Nagar 263 145, India
| | | | | |
Collapse
|
65
|
Kushwaha H, Gupta S, Singh VK, Rastogi S, Yadav D. Genome wide identification of Dof transcription factor gene family in sorghum and its comparative phylogenetic analysis with rice and Arabidopsis. Mol Biol Rep 2010; 38:5037-53. [PMID: 21161392 DOI: 10.1007/s11033-010-0650-9] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2010] [Accepted: 12/04/2010] [Indexed: 11/30/2022]
Abstract
The Dof (DNA binding with One Finger) family represents a classic zinc-finger transcription factors involved with multifarious roles exclusively in plants. There exists great diversity in terms of number of Dof genes observed in different crops. In current study, a total of 28 putative Dof genes have been predicted in silico from the recently available whole genome shotgun sequence of Sorghum bicolor (L.) Moench (with assigned accession numbers TPA:BK006983-BK007006 and TPA:BK007079-BK007082). The predicted SbDof genes are distributed on nine out of ten chromosomes of sorghum and most of these genes lack introns based on canonical intron/exon structure. Phylogenetic analysis of 28 SbDof proteins resulted in four subgroups constituting six clusters. The comparative phylogenetic analysis of these Dof proteins along with 30 rice and 36 Arabidopsis Dof proteins revealed six major groups similar to what has been observed earlier for rice and Arabidopsis. Motif analysis revealed the presence of conserved 50-52 amino acids Dof domain uniformly distributed across all the 28 Dof proteins of sorghum. The in silico cis-regulatory elements analysis of these SbDof genes suggested its diverse functions associated with light responsiveness, endosperm specific gene expression, hormone responsiveness, meristem specific expression and stress responsiveness.
Collapse
Affiliation(s)
- Hariom Kushwaha
- Department of Biotechnology, Integral University, Lucknow 226026, Uttar Pradesh, India
| | | | | | | | | |
Collapse
|
66
|
Xu X, Guo S, Chen K, Song H, Liu J, Guo L, Qian Q, Wang H. A 796 bp PsPR10 gene promoter fragment increased root-specific expression of the GUS reporter gene under the abiotic stresses and signal molecules in tobacco. Biotechnol Lett 2010; 32:1533-9. [PMID: 20495947 DOI: 10.1007/s10529-010-0312-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2010] [Accepted: 05/12/2010] [Indexed: 10/19/2022]
Abstract
A 1681 bp PsPR10 promoter was isolated from Pinus strobus and a series of 5'-deletions were fused to the β-glucuronidase (GUS) reporter gene and introduced into tobacco. GUS activity in P796 (-796 to +69) construct transgenic plant roots was similar with that of P1681 and higher than those of the P513 (-513 to +69) and P323 (-323 to +69) transgenic plants. Moreover, the abiotic stresses of NaCl, PEG 6000 and mannitol, and salicylic acid (SA), abscisic acid (ABA) and jasmonic acid (JA) induced higher GUS activity in the roots of P796 transgenic tobacco. This study provides a potential inducible root-specific promoter for transgenic plants.
Collapse
Affiliation(s)
- Xiangbin Xu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China
| | | | | | | | | | | | | | | |
Collapse
|
67
|
Shi J, An HL, Zhang L, Gao Z, Guo XQ. GhMPK7, a novel multiple stress-responsive cotton group C MAPK gene, has a role in broad spectrum disease resistance and plant development. PLANT MOLECULAR BIOLOGY 2010; 74:1-17. [PMID: 20602149 DOI: 10.1007/s11103-010-9661-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Accepted: 06/23/2010] [Indexed: 05/06/2023]
Abstract
Mitogen-activated protein kinase (MAPK) cascades play a pivotal role in environmental responses and developmental processes in plants. Previous researches mainly focus on the MAPKs in groups A and B, and little is known on group C. In this study, we isolated and characterized GhMPK7, which is a novel gene from cotton belonging to the group C MAPK. RNA blot analysis indicated that GhMPK7 transcript was induced by pathogen infection and multiple defense-related signal molecules. Transgenic Nicotina benthamiana overexpressing GhMPK7 displayed significant resistance to fungus Colletotrichum nicotianae and virus PVY, and the transcript levels of SA pathway genes were more rapidly and strongly induced. Furthermore, the transgenic N. benthamiana showed reduced ROS-mediated injuries by upregulating expression of oxidative stress-related genes. Interestingly, the transgenic plants germinated earlier and grew faster in comparison to wild-type plants. beta-glucuronidase activity driven by the GhMPK7 promoter was detected in the apical meristem at the vegetative stage, and it was enhanced by treatments with signal molecules and phytohormones. These results suggest that GhMPK7 might play an important role in SA-regulated broad-spectrum resistance to pathogen infection, and that it is also involved in regulation of plant growth and development.
Collapse
MESH Headings
- Amino Acid Sequence
- Arabidopsis
- Base Sequence
- Cloning, Molecular
- Colletotrichum/pathogenicity
- DNA Primers/genetics
- DNA, Complementary/genetics
- DNA, Plant/genetics
- Gene Expression Regulation, Developmental
- Gene Expression Regulation, Plant
- Genes, Plant
- Gossypium/enzymology
- Gossypium/genetics
- Gossypium/growth & development
- Mitogen-Activated Protein Kinases/classification
- Mitogen-Activated Protein Kinases/genetics
- Mitogen-Activated Protein Kinases/metabolism
- Molecular Sequence Data
- Phylogeny
- Plant Diseases/genetics
- Plant Diseases/microbiology
- Plant Diseases/virology
- Plants, Genetically Modified
- Promoter Regions, Genetic
- Reactive Oxygen Species/metabolism
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Sequence Homology, Amino Acid
- Stress, Physiological
- Nicotiana
Collapse
Affiliation(s)
- Jing Shi
- Shandong Agricultural University, Tai'an, People's Republic of China
| | | | | | | | | |
Collapse
|
68
|
He P, Ma Y, Zhao G, Dai H, Li H, Chang L, Zhang Z. FaRE1: a transcriptionally active Ty1-copia retrotransposon in strawberry. JOURNAL OF PLANT RESEARCH 2010; 123:707-14. [PMID: 20020171 DOI: 10.1007/s10265-009-0290-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2009] [Accepted: 11/09/2009] [Indexed: 05/08/2023]
Abstract
Retrotransposons are ubiquitous in the plant kingdom and constitute a large fraction of many plant genomes. Although most retrotransposons from plants were thought to be transcriptionally silent in somatic tissues, evidence of activity under certain conditions is available in some cases. In this study, a complete LTR retrotransposon was isolated from the cultivated strawberry (Fragaria x ananassa) genome using genome walking. The element, named FaRE1, has all the features of a typical Ty1-copia retrotransposon. Its total length was 5,104 bp, comprising a single 3,891 bp open reading frame. It is represented by approximately 96 copies per genome, equivalent to approximately 0.33% of the genome. Transcription of FaRE1 was detected in leaf tissue treated with various phytohormones, such as naphthalene acetic acid, 2,4-dichlorophenoxyacetic acid or abscisic acid . To our knowledge, this is the first report of the isolation of a complete LTR retrotransposon with transcriptional activity in strawberry.
Collapse
Affiliation(s)
- Ping He
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
69
|
El-Sharkawy I, Mila I, Bouzayen M, Jayasankar S. Regulation of two germin-like protein genes during plum fruit development. JOURNAL OF EXPERIMENTAL BOTANY 2010; 61:1761-70. [PMID: 20202999 PMCID: PMC2852666 DOI: 10.1093/jxb/erq043] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Germin-like proteins (GLPs) have several proposed roles in plant development and defence. Two novel genes (Ps-GLP1 and 2) encoding germin-like protein were isolated from plum (Prunus salicina). Their regulation was studied throughout fruit development and during ripening of early and late cultivars. These two genes exhibited similar expression patterns throughout the various stages of fruit development excluding two important stages, pit hardening (S2) and fruit ripening (S4). During fruit development until the ripening phase, the accumulation of both Ps-GLPs is related to the evolution of auxin. However, during the S2 stage only Ps-GLP1 is induced and this could putatively be in a H(2)O(2)-dependent manner. On the other hand, the diversity in the Ps-GLPs accumulation profile during the ripening process seems to be putatively due to the variability of endogenous auxin levels among the two plum cultivars, which consequently change the levels of autocatalytic ethylene available for the fruit to co-ordinate ripening. The effect of auxin on stimulating ethylene production and in regulating Ps-GLPs transcripts was also investigated. These data, supported by their localization in the extracellular matrix, suggest that auxin is somehow involved in the regulation of both transcripts throughout fruit development and ripening.
Collapse
Affiliation(s)
- I. El-Sharkawy
- Vineland Research and Innovation Centre, 4890 Victoria Av. N, PO Box 4000, Vineland Station, ON, L0R 2E0 Canada
| | - I. Mila
- UMR 990 INRA/INPT-ENSAT ‘Génomique et Biotechnologie des Fruits’, Av. de l'Agrobiopole, BP 32607, F-31326 Castanet-Tolosan Cedex, France
| | - M. Bouzayen
- UMR 990 INRA/INPT-ENSAT ‘Génomique et Biotechnologie des Fruits’, Av. de l'Agrobiopole, BP 32607, F-31326 Castanet-Tolosan Cedex, France
| | - S. Jayasankar
- University of Guelph, Department of Plant Agriculture, 4890 Victoria Av. N, PO Box 7000, Vineland Station, ON, L0R 2E0 Canada
- To whom correspondence should be addressed: E-mail:
| |
Collapse
|
70
|
Damaj MB, Kumpatla SP, Emani C, Beremand PD, Reddy AS, Rathore KS, Buenrostro-Nava MT, Curtis IS, Thomas TL, Mirkov TE. Sugarcane DIRIGENT and O-methyltransferase promoters confer stem-regulated gene expression in diverse monocots. PLANTA 2010; 231:1439-58. [PMID: 20352262 DOI: 10.1007/s00425-010-1138-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2009] [Accepted: 02/26/2010] [Indexed: 05/25/2023]
Abstract
Transcription profiling analysis identified Saccharum hybrid DIRIGENT (SHDIR16) and Omicron-Methyltransferase (SHOMT), putative defense and fiber biosynthesis-related genes that are highly expressed in the stem of sugarcane, a major sucrose accumulator and biomass producer. Promoters (Pro) of these genes were isolated and fused to the beta-glucuronidase (GUS) reporter gene. Transient and stable transgene expression analyses showed that both Pro( DIR16 ):GUS and Pro( OMT ):GUS retain the expression characteristics of their respective endogenous genes in sugarcane and function in orthologous monocot species, including rice, maize and sorghum. Furthermore, both promoters conferred stem-regulated expression, which was further enhanced in the stem and induced in the leaf and root by salicylic acid, jasmonic acid and methyl jasmonate, key regulators of biotic and abiotic stresses. Pro( DIR16 ) and Pro( OMT ) will enable functional gene analysis in monocots, and will facilitate engineering monocots for improved carbon metabolism, enhanced stress tolerance and bioenergy production.
Collapse
Affiliation(s)
- Mona B Damaj
- Department of Plant Pathology and Microbiology, Texas AgriLife Research, Texas A&M System, Weslaco, TX 78596, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
71
|
He QL, Cui SJ, Gu JL, Zhang H, Wang MX, Zhou Y, Zhang L, Huang MR. Analysis of floral transcription factors from Lycoris longituba. Genomics 2010; 96:119-27. [PMID: 20406677 DOI: 10.1016/j.ygeno.2010.04.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2009] [Revised: 04/09/2010] [Accepted: 04/12/2010] [Indexed: 10/19/2022]
Abstract
Transcription factors (TFs) are proteins that bind to specific promoter regions of their target genes and regulate gene transcription. Many of these factors have been found to influence flowering. Lycoris longituba exhibits a great deal of diversity in flower color and flower form, making it a suitable model for the study of floral development. We have identified 338 putative TFs from more than thirty thousand ESTs sequenced from the floral tissue of L. longituba, and validated them using real-time RT-PCR. Fifty-one of the TFs were recognized as being potentially flower-specific, and the expression patterns of some of them during six flowering phases have been elucidated. Homolog annotation and phylogenetic analysis revealed that some TFs that belong to several TF families, such as MADS, MYB-related, NAC, and ABI3-VP1, were suggested to play important roles in the flowering process. Our dataset may be used to identify priority target TF genes for further study.
Collapse
|
72
|
Gabriele S, Rizza A, Martone J, Circelli P, Costantino P, Vittorioso P. The Dof protein DAG1 mediates PIL5 activity on seed germination by negatively regulating GA biosynthetic gene AtGA3ox1. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2010; 61:312-23. [PMID: 19874540 DOI: 10.1111/j.1365-313x.2009.04055.x] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
We have previously shown that inactivation of the gene encoding the Arabidopsis thaliana transcription factor DOF AFFECTING GERMINATION 1 (DAG1) renders seed germination more sensitive to both phytochrome B (phyB) and gibberellins (GA). dag1 mutant seeds require less red (R) light fluence and a lower GA concentration than WT to germinate. Here, we show that inactivation of the gene PHYTOCHROME INTERACTING FACTOR 3-LIKE 5 (PIL5) results in down-regulation of DAG1. Inactivation of PIL5 in the dag1 mutant background further increased the germination potential of dag1 mutant seeds, supporting the suggestion that DAG1 is under the positive control of PIL5. Germination of dag1phyB seeds showed a reduced requirement of gibberellins as compared with phyB mutant seeds, both in the presence and in the absence of GA biosynthesis. Furthermore, the GA biosynthetic gene AtGA3ox1 is upregulated in dag1 seeds as compared with the WT, and DAG1 actually binds to the AtGA3ox1 promoter, as shown by chromatin immunoprecipitation experiments. Expression analysis at different time points confirms that AtGA3ox1 is directly regulated by DAG1, while suggesting that DAG1 is not a direct regulatory target of PIL5. Our data indicate that in the phyB pathway leading to seed germination, DAG1 negatively regulates GA biosynthesis and suggest that DAG1 acts downstream of PIL5. In addition, the analysis of hypocotyls of dag1 and phyB mutant plantlets, of plantlets overexpressing phyB in the dag1 mutant, as well as of dag1phyB double mutant suggests that DAG1 may act as a negative regulatory element downstream of phyB also in hypocotyl elongation.
Collapse
Affiliation(s)
- Stefano Gabriele
- Istituto Pasteur Fondazione Cenci Bolognetti, Dipartimento di Genetica e Biologia Molecolare, Università La Sapienza, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | | | | | | | | | | |
Collapse
|
73
|
Lima JE, Benedito VA, Figueira A, Peres LEP. Callus, shoot and hairy root formation in vitro as affected by the sensitivity to auxin and ethylene in tomato mutants. PLANT CELL REPORTS 2009; 28:1169-1177. [PMID: 19484241 DOI: 10.1007/s00299-009-0718-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2009] [Accepted: 05/13/2009] [Indexed: 05/27/2023]
Abstract
We analyzed the impact of ethylene and auxin disturbances on callus, shoots and Agrobacterium rhizogenes-induced hairy root formation in tomato (Solanum lycopersicum L.). The auxin low-sensitivity dgt mutation showed little hairy root initiation, whereas the ethylene low-sensitivity Nr mutation did not differ from the control Micro-Tom cultivar. Micro-Tom and dgt hairy roots containing auxin sensitivity/biosynthesis rol and aux genes formed prominent callus onto media supplemented with cytokinin. Under the same conditions, Nr hairy roots did not form callus. Double mutants combining Rg1, a mutation conferring elevated shoot formation capacity, with either dgt or Nr produced explants that formed shoots with little callus proliferation. The presence of rol + aux genes in Rg1 hairy roots prevented shoot formation. Taken together, the results suggest that although ethylene does not affect hairy root induction, as auxin does, it may be necessary for auxin-induced callus formation in tomato. Moreover, excess auxin prevents shoot formation in Rg1.
Collapse
Affiliation(s)
- Joni Esrom Lima
- Centro de Energia Nuclear na Agricultura, USP, Av. Centenário, 303, Piracicaba, SP, 13400-970, Brazil
| | | | | | | |
Collapse
|
74
|
Aspartic proteases gene family in rice: Gene structure and expression, predicted protein features and phylogenetic relation. Gene 2009; 442:108-18. [DOI: 10.1016/j.gene.2009.04.021] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2008] [Revised: 04/22/2009] [Accepted: 04/23/2009] [Indexed: 01/25/2023]
|
75
|
Shaw LM, McIntyre CL, Gresshoff PM, Xue GP. Members of the Dof transcription factor family in Triticum aestivum are associated with light-mediated gene regulation. Funct Integr Genomics 2009; 9:485-98. [PMID: 19578911 DOI: 10.1007/s10142-009-0130-2] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2009] [Revised: 06/09/2009] [Accepted: 06/23/2009] [Indexed: 11/29/2022]
Abstract
DNA binding with One Finger (Dof) protein is a plant-specific transcription factor implicated in the regulation of many important plant-specific processes, including photosynthesis and carbohydrate metabolism. This study has identified 31 Dof genes (TaDof) in bread wheat through extensive analysis of current nucleotide databases. Phylogenetic analysis suggests that the TaDof family can be divided into four clades. Expression analysis of the TaDof family across all major organs using quantitative RT-PCR and searches of the wheat genome array database revealed that the majority of TaDof members were predominately expressed in vegetative organs. A large number of TaDof members were down-regulated by drought and/or were responsive to the light and dark cycle. Further expression analysis revealed that light up-regulated TaDof members were highly correlated in expression with a number of genes that are involved in photosynthesis or sucrose transport. These data suggest that the TaDof family may have an important role in light-mediated gene regulation, including involvement in the photosynthetic process.
Collapse
Affiliation(s)
- Lindsay M Shaw
- CSIRO Plant Industry, 306 Carmody Rd, St Lucia, QLD, Australia
| | | | | | | |
Collapse
|
76
|
Potel F, Valadier MH, Ferrario-Méry S, Grandjean O, Morin H, Gaufichon L, Boutet-Mercey S, Lothier J, Rothstein SJ, Hirose N, Suzuki A. Assimilation of excess ammonium into amino acids and nitrogen translocation in Arabidopsis thaliana--roles of glutamate synthases and carbamoylphosphate synthetase in leaves. FEBS J 2009; 276:4061-76. [PMID: 19555410 DOI: 10.1111/j.1742-4658.2009.07114.x] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
This study was aimed at investigating the physiological role of ferredoxin-glutamate synthases (EC 1.4.1.7), NADH-glutamate synthase (EC 1.4.1.14) and carbamoylphosphate synthetase (EC 6.3.5.5) in Arabidopsis. Phenotypic analysis revealed a high level of photorespiratory ammonium, glutamine/glutamate and asparagine/aspartate in the GLU1 mutant lacking the major ferredoxin-glutamate synthase, indicating that excess photorespiratory ammonium was detoxified into amino acids for transport out of the veins. Consistent with these results, promoter analysis and in situ hybridization demonstrated that GLU1 and GLU2 were expressed in the mesophyll and phloem companion cell-sieve element complex. However, these phenotypic changes were not detected in the GLU2 mutant defective in the second ferredoxin-glutamate synthase gene. The impairment in primary ammonium assimilation in the GLT mutant under nonphotorespiratory high-CO(2) conditions underlined the importance of NADH-glutamate synthase for amino acid trafficking, given that this gene only accounted for 3% of total glutamate synthase activity. The excess ammonium from either endogenous photorespiration or the exogenous medium was shifted to arginine. The promoter analysis and slight effects on overall arginine synthesis in the T-DNA insertion mutant in the single carbamoylphosphate synthetase large subunit gene indicated that carbamoylphosphate synthetase located in the chloroplasts was not limiting for ammonium assimilation into arginine. The data provided evidence that ferredoxin-glutamate synthases, NADH-glutamate synthase and carbamoylphosphate synthetase play specific physiological roles in ammonium assimilation in the mesophyll and phloem for the synthesis and transport of glutamine, glutamate, arginine, and derived amino acids.
Collapse
Affiliation(s)
- Fabien Potel
- Unité de Nutrition Azotée des Plantes, Institut National de la Recherche Agronomique, Versailles, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
77
|
Bao Y, Dharmawardhana P, Arias R, Allen MB, Ma C, Strauss SH. WUS and STM-based reporter genes for studying meristem development in poplar. PLANT CELL REPORTS 2009; 28:947-62. [PMID: 19280192 DOI: 10.1007/s00299-009-0685-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2008] [Revised: 01/08/2009] [Accepted: 02/08/2009] [Indexed: 05/08/2023]
Abstract
We describe the development of a reporter system for monitoring meristem initiation in poplar using promoters of poplar homologs to the meristem-active regulatory genes WUSCHEL (WUS) and SHOOTMERISTEMLESS (STM). When ~3 kb of the 5' flanking regions of close homologs were used to drive expression of the GUSPlus gene, 50-60% of the transgenic events showed expression in apical and axillary meristems. However, expression was also common in other organs, including in leaf veins (40 and 46% of WUS and STM transgenic events, respectively) and hydathodes (56% of WUS transgenic events). Histochemical GUS staining of explants during callogenesis and shoot regeneration using in vitro stems as explants showed that expression was detectable prior to visible shoot development, starting 3-15 days after explants were placed onto callus inducing medium. A minority of WUS and STM events also showed expression in the cambium, phloem, or xylem of regenerated, greenhouse grown plants undergoing secondary growth. Based on microarray gene expression data, a paralog of poplar WUS was detectably up-regulated during shoot initiation, but the other paralog was not. Both paralogs of poplar STM were down-regulated threefold to sixfold during early callus initiation. We identified 15-35 copies of cytokinin response regulator binding motifs (ARR1AT) and one copy of the auxin response element (AuxRE) in both promoters. Several of the events recovered may be useful for studying the process of primary and secondary meristem development, including treatments intended to stimulate meristem development to promote clonal propagation and genetic transformation.
Collapse
Affiliation(s)
- Y Bao
- Department of Forest Ecosystems and Society, Oregon State University, Corvallis, OR, 97331-5752, USA
| | | | | | | | | | | |
Collapse
|
78
|
Li D, Yang C, Li X, Gan Q, Zhao X, Zhu L. Functional characterization of rice OsDof12. PLANTA 2009; 229:1159-69. [PMID: 19198875 DOI: 10.1007/s00425-009-0893-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2008] [Accepted: 01/15/2009] [Indexed: 05/02/2023]
Abstract
DNA-binding with one finger (Dof) proteins are a large family of transcription factors involved in a variety of biological processes in plants. In rice, 30 different Dof genes have been identified through genome analysis. Here we report the functional characteristics of a rice Dof gene, OsDof12, which encodes a predicted Dof protein. The nuclear localization of OsDof12 was investigated by the transient expression assays of the OsDof12-GFP fusion protein in onion epidermal cells. Trans-activation assays in a yeast one-hybrid system indicated that OsDof12 had transcriptional activity. RNA expression analyses showed that the expression of OsDof12 was not tissue-specific in general and fluctuated at different development stages in rice. In addition, OsDof12 was strongly inhibited by dark treatments. The transgenic lines overexpressing OsDof12 showed early flowering under long-day (LD) conditions, whereas OsDof12 overexpression had no effect on flowering time under short-day (SD) conditions. In transgenic lines overexpressing OsDof12, the transcription levels of Hd3a and OsMADS14 were up-regulated under LD conditions but not SD conditions, whereas the expression of Hd1, OsMADS51, Ehd1 and OsGI did not change under LD and SD conditions. These results suggested that OsDof12 might regulate flowering by controlling the expression of Hd3a and OsMADS14.
Collapse
Affiliation(s)
- Dejun Li
- State Key Laboratory of Plant Genomics and National Plant Gene Research Centre (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, 5 Datun Road, Chaoyang District, 100101, Beijing, China.
| | | | | | | | | | | |
Collapse
|
79
|
Hong JK, Hwang BK. The promoter of the pepper pathogen-induced membrane protein gene CaPIMP1 mediates environmental stress responses in plants. PLANTA 2009; 229:249-59. [PMID: 18936963 DOI: 10.1007/s00425-008-0824-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2008] [Accepted: 09/10/2008] [Indexed: 05/23/2023]
Abstract
The promoter of the pepper pathogen-induced membrane protein gene CaPIMP1 was analyzed by an Agrobacterium-mediated transient expression assay in tobacco leaves. Several stress-related cis-acting elements (GT-1, W-box and ABRE) are located within the CaPIMP1 promoter. In tobacco leaf tissues transiently transformed with a CaPIMP1 promoter-beta-glucuronidase (GUS) gene fusion, serially 5'-deleted CaPIMP1 promoters were differentially activated by Pseudomonas syringae pv. tabaci, ethylene, methyl jasmonate, abscisic acid, and nitric oxide. The -1,193 bp region of the CaPIMP1 gene promoter sequence exhibited full promoter activity. The -417- and -593 bp promoter regions were sufficient for GUS gene activation by ethylene and methyl jasmonate treatments, respectively. However, CaPIMP1 promoter sequences longer than -793 bp were required for promoter activation by abscisic acid and sodium nitroprusside treatments. CaPIMP1 expression was activated in pepper leaves by treatment with ethylene, methyl jasmonate, abscisic acid, beta-amino-n-butyric acid, NaCl, mechanical wounding, and low temperature, but not with salicylic acid. Overexpression of CaPIMP1 in Arabidopsis conferred hypersensitivity to mannitol, NaCl, and ABA during seed germination but not during seedling development. In contrast, transgenic plants overexpressing CaPIMP1 exhibited enhanced tolerance to oxidative stress induced by methyl viologen during germination and early seedling stages. These results suggest that CaPIMP1 expression may alter responsiveness to environmental stress, as well as to pathogen infection.
Collapse
Affiliation(s)
- Jeum Kyu Hong
- Department of Horticulture, College of Life Sciences and Natural Resources, Jinju National University, 150 Chilamdong, Jinju, Kyungnam, 660-758, Republic of Korea
| | | |
Collapse
|
80
|
Yin T, Wu H, Zhang S, Liu J, Lu H, Zhang L, Xu Y, Chen D. Two negative cis-regulatory regions involved in fruit-specific promoter activity from watermelon (Citrullus vulgaris S.). JOURNAL OF EXPERIMENTAL BOTANY 2009; 60:169-85. [PMID: 19073962 PMCID: PMC3071764 DOI: 10.1093/jxb/ern273] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2008] [Revised: 07/29/2008] [Accepted: 10/09/2008] [Indexed: 05/19/2023]
Abstract
A 1.8 kb 5'-flanking region of the large subunit of ADP-glucose pyrophosphorylase, isolated from watermelon (Citrullus vulgaris S.), has fruit-specific promoter activity in transgenic tomato plants. Two negative regulatory regions, from -986 to -959 and from -472 to -424, were identified in this promoter region by fine deletion analyses. Removal of both regions led to constitutive expression in epidermal cells. Gain-of-function experiments showed that these two regions were sufficient to inhibit RFP (red fluorescent protein) expression in transformed epidermal cells when fused to the cauliflower mosaic virus (CaMV) 35S minimal promoter. Gel mobility shift experiments demonstrated the presence of leaf nuclear factors that interact with these two elements. A TCCAAAA motif was identified in these two regions, as well as one in the reverse orientation, which was confirmed to be a novel specific cis-element. A quantitative beta-glucuronidase (GUS) activity assay of stable transgenic tomato plants showed that the activities of chimeric promoters harbouring only one of the two cis-elements, or both, were approximately 10-fold higher in fruits than in leaves. These data confirm that the TCCAAAA motif functions as a fruit-specific element by inhibiting gene expression in leaves.
Collapse
Affiliation(s)
- Tao Yin
- College of Agriculture and Biotechnology, Zhejiang University, PR China
| | - Hanying Wu
- National Engineering Research Center for Vegetable, PR China
| | - Shanglong Zhang
- College of Agriculture and Biotechnology, Zhejiang University, PR China
- To whom correspondence should be addressed. E-mail: ,
| | - Jingmei Liu
- National Engineering Research Center for Vegetable, PR China
- To whom correspondence should be addressed. E-mail: ,
| | - Hongyu Lu
- Department of Breeding and Genetics, China Pharmaceutical University, PR China
| | - Lingxiao Zhang
- Delta Research and Extension Center, Mississippi State University, Stoneville, Mississippi, USA
| | - Yong Xu
- National Engineering Research Center for Vegetable, PR China
| | - Daming Chen
- College of Agriculture and Biotechnology, Zhejiang University, PR China
- Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
81
|
Marzábal P, Gas E, Fontanet P, Vicente-Carbajosa J, Torrent M, Ludevid MD. The maize Dof protein PBF activates transcription of gamma-zein during maize seed development. PLANT MOLECULAR BIOLOGY 2008; 67:441-454. [PMID: 18379885 DOI: 10.1007/s11103-008-9325-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2007] [Accepted: 03/19/2008] [Indexed: 05/26/2023]
Abstract
Maize PBF (prolamin-box binding factor) belongs to the Dof class of plant specific transcription factors containing one highly conserved zinc finger DNA-binding domain, called Dof (DNA binding with one finger) domain. Maize PBF trans-activates the gamma-zein gene (gammaZ) promoter in developing maize seeds as shown by transient expression in maize endosperms. Co-transfection of a gammaZ:GUS construct with 35S:PBF resulted in a sevenfold increase in GUS expression, however, PBF mutation in Cys residues within the Dof domain abolishes both, binding to DNA and the capacity to activate gammaZ promoter. We present two pieces of evidence that PBF transactivates gammaZ promoter by binding to the Pb3 motif (TGTAAAG). First, recombinant Dof domain of PBF (bdPBF) specifically recognized Pb3 site as shown by gel mobility shift assays and second, co-expression of PBF with gammaZ promoter mutated in Pb3 motif suppressed PBF trans-activation capacity. Immunocytochemical analysis on developing endosperm sections shows that PBF is localized in the nuclei of the peripheral layer cells of starchy endosperm, the tissue in which the initial accumulation of gamma-zein protein occurs. By contrast, PBF is detected in the cytosol of the starchy endosperm cells newly differentiated from aleurone daughter cells, where gamma-zein was absent. Taken together these data indicate that maize PBF plays an essential role in the regulation of the temporal and spatial expression of gammaZ gene.
Collapse
Affiliation(s)
- Pau Marzábal
- Consorci CSIC-IRTA, Jordi Girona 18-26, 08034 Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
82
|
Marzábal P, Gas E, Fontanet P, Vicente-Carbajosa J, Torrent M, Ludevid MD. The maize Dof protein PBF activates transcription of gamma-zein during maize seed development. PLANT MOLECULAR BIOLOGY 2008. [PMID: 18379885 DOI: 10.1007/s11103-008-9325-9325] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Maize PBF (prolamin-box binding factor) belongs to the Dof class of plant specific transcription factors containing one highly conserved zinc finger DNA-binding domain, called Dof (DNA binding with one finger) domain. Maize PBF trans-activates the gamma-zein gene (gammaZ) promoter in developing maize seeds as shown by transient expression in maize endosperms. Co-transfection of a gammaZ:GUS construct with 35S:PBF resulted in a sevenfold increase in GUS expression, however, PBF mutation in Cys residues within the Dof domain abolishes both, binding to DNA and the capacity to activate gammaZ promoter. We present two pieces of evidence that PBF transactivates gammaZ promoter by binding to the Pb3 motif (TGTAAAG). First, recombinant Dof domain of PBF (bdPBF) specifically recognized Pb3 site as shown by gel mobility shift assays and second, co-expression of PBF with gammaZ promoter mutated in Pb3 motif suppressed PBF trans-activation capacity. Immunocytochemical analysis on developing endosperm sections shows that PBF is localized in the nuclei of the peripheral layer cells of starchy endosperm, the tissue in which the initial accumulation of gamma-zein protein occurs. By contrast, PBF is detected in the cytosol of the starchy endosperm cells newly differentiated from aleurone daughter cells, where gamma-zein was absent. Taken together these data indicate that maize PBF plays an essential role in the regulation of the temporal and spatial expression of gammaZ gene.
Collapse
Affiliation(s)
- Pau Marzábal
- Consorci CSIC-IRTA, Jordi Girona 18-26, 08034 Barcelona, Spain
| | | | | | | | | | | |
Collapse
|
83
|
Cavalar M, Phlippen Y, Kreuzaler F, Peterhänsel C. A drastic reduction in DOF1 transcript levels does not affect C4-specific gene expression in maize. JOURNAL OF PLANT PHYSIOLOGY 2007; 164:1665-74. [PMID: 17178169 DOI: 10.1016/j.jplph.2006.09.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2006] [Accepted: 09/12/2006] [Indexed: 05/08/2023]
Abstract
The transcription factor DOF1 has been suggested to regulate photosynthetic gene expression in maize. By screening a RescueMu transposon-tagged mutant library, we identified a maize mutant with a transposon integration in the Dof1 gene 16 bp upstream of the transcription initiation site (TIS). Sequencing of the Dof1 promoter region revealed an unusual promoter structure missing any typical elements. Homozygous (ho) mutant lines were generated by selfing and subsequent PCR and DNA gel blot analyses. The transposon integration reduced Dof1 transcript levels to less than 20% compared to the wild-type and overlapping RT-PCR systems revealed that these transcripts were not initiated from the native transcription start site. Dof1 transcripts transiently accumulate in wild-type plants after illumination of darkened seedlings, but this accumulation cannot be observed in mutant lines. However, the time-course of transcript accumulation from the C(4)-specific phosphoenolpyruvate carboxylase (PEPC) gene, a possible target of DOF1, is not altered. Moreover, no impact on the steady-state levels of five additional transcripts involved in C(4)-metabolism can be observed. The contents of amino acids, glucose, and malate as well as the carbon to nitrogen ratio in the leaves remained unchanged when comparing wild-type and mutant plants. Our data question the importance of DOF1 in the control of photosynthetic gene expression in maize.
Collapse
Affiliation(s)
- Markus Cavalar
- RWTH Aachen, Institute for Biology I, Worringer Weg 1, 52056 Aachen, Germany
| | | | | | | |
Collapse
|
84
|
Freitas RL, Carvalho CM, Fietto LG, Loureiro ME, Almeida AM, Fontes EPB. Distinct repressing modules on the distal region of the SBP2 promoter contribute to its vascular tissue-specific expression in different vegetative organs. PLANT MOLECULAR BIOLOGY 2007; 65:603-14. [PMID: 17710554 DOI: 10.1007/s11103-007-9225-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2007] [Accepted: 08/08/2007] [Indexed: 05/16/2023]
Abstract
The Glycine max sucrose binding protein (GmSBP2) promoter directs vascular tissue-specific expression of reporter genes in transgenic tobacco. Here we showed that an SBP2-GFP fusion protein under the control of the GmSBP2 promoter accumulates in the vascular tissues of vegetative organs, which is consistent with the proposed involvement of SBP in sucrose transport-dependent physiological processes. Through gain-of-function experiments we confirmed that the tissue-specific determinants of the SBP2 promoter reside in the distal cis-regulatory domain A, CRD-A (position -2000 to -700) that is organized into a modular configuration to suppress promoter activity in tissues other than vascular tissues. The four analyzed CRD-A sub-modules, designates Frag II (-1785/-1508), Frag III (-1507/-1237), Frag IV (-1236/-971) and Frag V (-970/-700), act independently to alter the constitutive pattern of -92pSBP2-mediated GUS expression in different organs. Frag V fused to -92pSBP2-GUS restored the tissue-specific pattern of the full-length promoter in the shoot apex, but not in other organs. Likewise, Frag IV confined GUS expression to the vascular bundle of leaves, whereas Frag II mediated vascular specific expression in roots. Strong stem expression-repressing elements were located at positions -1485 to -1212, as Frag III limited GUS expression to the inner phloem. We have also mapped a procambium silencer to the consensus sequence CAGTTnCaAccACATTcCT which is located in both distal and proximal upstream modules. Fusion of either repressing element-containing module to the constitutive -92pSBP2 promoter suppresses GUS expression in the elongation zone of roots. Together our results demonstrate the unusual aspect of distal sequences negatively controlling tissue-specificity of a plant promoter.
Collapse
Affiliation(s)
- Rejane L Freitas
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36571-000 Vicosa, MG, Brazil
| | | | | | | | | | | |
Collapse
|
85
|
Mahmood T, Hyder MZ, Naqvi SMS. Cloning and sequence analysis of germin-like protein gene 2 promoter from Oryza sativa L. ssp. indica. ACTA ACUST UNITED AC 2007; 18:26-32. [PMID: 17364810 DOI: 10.1080/10425170600986688] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Germin and germin-like proteins (GLPs) are water soluble extracellular proteins reportedly expressed in response to some environmental and developmental signals. Some enzymatic activities have also been associated with germin/GLPs. However, their role in overall metabolism has not been fully understood. Significant insight into their function may also be gained by analysis of their promoter. During this study, about 1107 bp 5'region of OsRGLP2 gene was amplified, cloned and sequenced. The sequence analysis by BLAST showed that this promoter sequence has five common regions (CR1-CR5) of different sizes, which are repeated at 3-6 other locations in 30 kb region in which this gene driven by its promoter is located. Interestingly, all the genes driven by promoter harboring these common regions are GLPs/putative germins. Analysis of these common regions located on OsRGLP2 indicated presence of many elements including those for light responsiveness, dehydration and dark induced senescence, stresses (pathogen and salt), plant growth regulators, pollen specific expression and elements related to seed storage proteins. Analysis of the 30 kb germin/GLP clustered region by GenScan detected each gene to have a putative 40 bp promoter which contains TATA box and Dof factor which turned out to be a part of CR2.
Collapse
Affiliation(s)
- Tariq Mahmood
- Department of Biochemistry, University of Arid Agriculture Rawalpindi. Rawalpindi, Pakistan
| | | | | |
Collapse
|
86
|
Zhong J, Wang H, Zhang D, Liu B, Wang J. Rice repetitive DNA sequence RRD3: a plant promoter and its application to RNA interference. J Genet Genomics 2007; 34:258-66. [PMID: 17498623 DOI: 10.1016/s1673-8527(07)60027-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2006] [Accepted: 05/17/2006] [Indexed: 11/29/2022]
Abstract
Previously, a moderately repetitive DNA sequence (RRD3) was cloned from rice (Oryza sativa L.) by DNA renaturation kinetics. Sequence analysis revealed several conserved promoter motifs, including four TATA-boxes and a CAAT-box, and promoter activity was shown in Escherichia coli and mammalian expression systems. Here, we inserted the RRD3 fragment into the plant promoter-capture vector, pCAMBIA1391Z, and examined whether the RRD3 fragment has promoter activity in plants. Transgenic tobacco and rice calli both showed beta-glucuronidase (GUS) activity, indicating that RRD3 can act as a promoter in both monocot and dicot plants. Based on the promoter characteristic of RRD3, we designed a plant universal binary vector, pCRiRRD3, which is suitable for performing researches on plant RNA interference. This vector has two multiple cloning sites to facilitate sense and antisense cloning of the target sequence, separated by an intron fragment of 200 bp. The efficiency of the vector for gene silencing was assayed by histochemical and quantitative fluorometric GUS assays in transgenic tobacco. These research results suggested that this plant RNAi vector pCRiRRD3 can effectively perform gene silencing researches on both monocot and dicot plants.
Collapse
Affiliation(s)
- Jian Zhong
- National Engineering Center of Cell Products, Amcellgene Co., Ltd., Tianjin 300457, China.
| | | | | | | | | |
Collapse
|
87
|
Tiwari RK, Trivedi M, Guang ZC, Guo GQ, Zheng GC. Genetic transformation of Gentiana macrophylla with Agrobacterium rhizogenes: growth and production of secoiridoid glucoside gentiopicroside in transformed hairy root cultures. PLANT CELL REPORTS 2007; 26:199-210. [PMID: 16972092 DOI: 10.1007/s00299-006-0236-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2005] [Revised: 05/19/2006] [Accepted: 08/18/2006] [Indexed: 05/11/2023]
Abstract
Hairy root cultures of Gentiana macrophylla were established by infecting the different explants four Agrobacterium rhizogenes strains namely A(4)GUS, R1000, LBA 9402 and ATCC11325, and hairy root lines were established with A. rhizogenes strain R1000 in 1/2 MS + B(5) medium. Initially, 42 independent hairy root clones were maintained and seven clones belongs to different category were evaluated for growth, morphology, integration and expression of Ri T-DNA genes, and alkaloid contents in dry root samples. On the basis of total root elongation, lateral root density and biomass accumulation on solid media, hairy root clones were separated into three categories. PCR and Southern hybridization analysis revealed both left and right T-DNA integration in the root clones and RT-PCR analysis confirmed the expression of hairy root inducible gene. GUS assay was also performed to confirm the integration of left T-DNA. The accumulation of considerable amounts of the root-specific secoiridoid glucosides gentiopicroside was observed in GM1 (T +/L and T +/R) and the GM2 (T +/L and T -/R DNA) type clones in considerably higher amount whether as two T -/L but T +/R callus-type clones (GM3) accumulated much less or only very negligible amounts of gentiopicroside. Out of four media composition the 1/2 MS + B(5) vitamin media was found most suitable. We found that initial establishment of root cultures largely depends on root:media ratio. Maximum growth rate was recorded in 1:50 root:media ratio. The maximum biomass in terms of fresh weight (33-fold) was achieved in 1/2 MS + B(5) media composition after 35 days in comparison to sixfold increase in control. The biomass increase was most abundant maximum from 15 to 30 days. Influence of A. rhizogenes strains and Ri plasmid of hairy root induction, the possible role of the T(L)-DNA and T(R)-DNA genes on growth pattern of hairy root, initial root inoculum:media ratio and effect of media composition is discussed.
Collapse
Affiliation(s)
- Rajesh Kumar Tiwari
- Institute of Cell Biology, School of Life Sciences, Lanzhou University, Lanzhou, 73000, Gansu, PR China.
| | | | | | | | | |
Collapse
|
88
|
Shigyo M, Tabei N, Yoneyama T, Yanagisawa S. Evolutionary Processes During the Formation of the Plant-Specific Dof Transcription Factor Family. ACTA ACUST UNITED AC 2007; 48:179-85. [PMID: 17132629 DOI: 10.1093/pcp/pcl044] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
We found 19 putative genes for plant-specific Dof transcription factors in the moss Physcomitrella patens and one Dof gene in the green alga Chlamydomonas reinhardtii, but no identifiable Dof gene in the red alga Cyanidioschyzon merolae and the diatom Thalassiosira pseudonana, suggesting that the origin of the Dof transcription factors pre-dates the divergence of the green algae and the ancestors of terrestrial plants. The phylogenetic analyses contended that the Dof family in angiosperms formed through a series of evolutionary processes, including intensive duplications of a specific ancestral gene after the divergence of the moss and the angiosperm lineages.
Collapse
Affiliation(s)
- Mikao Shigyo
- Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Yayoi 1-1-1, Bunkyo-ku, Tokyo, 113-8657 Japan
| | | | | | | |
Collapse
|
89
|
Cecchetti V, Altamura MM, Serino G, Pomponi M, Falasca G, Costantino P, Cardarelli M. ROX1, a gene induced by rolB, is involved in procambial cell proliferation and xylem differentiation in tobacco stamen. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2007; 49:27-37. [PMID: 17233794 DOI: 10.1111/j.1365-313x.2006.02934.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The Agrobacterium rhizogenes oncogene rolB mimics the effects of auxin in that it increases the sensitivity of transformed cells to this hormone. Here we isolated a tobacco gene, ROX1, acting downstream of rolB. We show that plants with reduced levels of ROX1 mRNA, due to the expression of a 35S-driven ROX1-antisense construct, have flowers with stamens and pistils longer than normal because of an increased number of cells. Localized expression of rolB in anthers results in overexpression of ROX1 and reduced growth of stamens, due to a reduced number of cells. In addition, the longer stamens of antisense plants show a delayed xylem differentiation in the lateral bundles, primarily of the junction region between anther and filament, while the shorter stamens of ROX1-overexpressing plants show a precocious differentiation of xylem cells in the same tissues. Expression of ROX1 in stamens peaks at early stages of stamen growth, and ROX1 mRNA is localized mostly in anther procambial cells. The sequence of ROX1 shares a conserved element with a number of plant genes, including TED3, which is involved in xylem differentiation. These results point to a role of ROX1 in the balance between proliferation of procambial cells and xylem differentiation during stamen development.
Collapse
Affiliation(s)
- Valentina Cecchetti
- Dipartimento di Genetica e Biologia Molecolare, Universita La Sapienza, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | | | | | | | | | | | | |
Collapse
|
90
|
Zhou G, Xu Y, Li J, Yang L, Liu JY. Molecular analyses of the metallothionein gene family in rice (Oryza sativa L.). BMB Rep 2006; 39:595-606. [PMID: 17002881 DOI: 10.5483/bmbrep.2006.39.5.595] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Metallothioneins are a group of low molecular mass and cysteine-rich metal-binding proteins, ubiquitously found in most living organisms. They play an important role in maintaining intracellular metal homeostasis, eliminating metal toxification and protecting against intracellular oxidative damages. Analysis of complete rice genome sequences revealed eleven genes encoding putative metallothionein (OsMT), indicating that OsMTs constitute a small gene family in rice. Expression profiling revealed that each member of the OsMT gene family differs not only in sequence but also in their tissue expression patterns, suggesting that these isoforms may have different functions they perform in specific tissues. On the basis of OsMT structural and phylogenetic analysis, the OsMT family was classified as two classes and class I was subdivided into four types. Additionally, in this paper we also present a complete overview of this family, describing the gene structure, genome localization, upstream regulatory element, and exon/intron organization of each member in order to provide valuable insight into this OsMT gene family.
Collapse
Affiliation(s)
- Gongke Zhou
- Laboratory of Molecular Biology and Protein Science Laboratory of the Ministry of Education, Department of Biological Sciences and Biotechnology, Tsinghua University, Beijing 100084, China
| | | | | | | | | |
Collapse
|
91
|
Shukla RK, Raha S, Tripathi V, Chattopadhyay D. Expression of CAP2, an APETALA2-family transcription factor from chickpea, enhances growth and tolerance to dehydration and salt stress in transgenic tobacco. PLANT PHYSIOLOGY 2006; 142:113-23. [PMID: 16844836 PMCID: PMC1557594 DOI: 10.1104/pp.106.081752] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2006] [Accepted: 07/11/2006] [Indexed: 05/10/2023]
Abstract
The APETALA2 (AP2) domain defines a large family of DNA-binding proteins that play important roles in plant morphology, development, and stress response. We describe isolation and characterization of a gene (CAP2) from chickpea (Cicer arietinum) encoding a novel AP2-family transcription factor. Recombinant CAP2 protein bound specifically to C-repeat/dehydration-responsive element in gel-shift assay and transactivated reporter genes in yeast (Saccharomyces cerevisiae) one-hybrid assay. CAP2 appeared to be a single/low copy intronless gene, and the protein product localized in the nucleus. Transcript level of CAP2 increased by dehydration and by treatment with sodium chloride, abscisic acid, and auxin, but not by treatment with low temperature, salicylic acid, and jasmonic acid. The 35S promoter-driven expression of CAP2 in tobacco (Nicotiana tabacum) caused drastic increase in the leaf cell size, and, thereby, in leaf surface area and number of lateral roots. Transgenic plants demonstrated more tolerance to dehydration and salt stress than the wild-type plants. Transgenic plants expressed higher steady-state transcript levels of abiotic stress-response genes NtERD10B and NtERD10C and auxin-response genes IAA4.2 and IAA2.5. Taken together, our results indicated a mutual interrelation between plant growth-development and abiotic stress-response pathways and a probable involvement of CAP2 in both the signaling pathways.
Collapse
Affiliation(s)
- Rakesh K Shukla
- National Centre for Plant Genome Research, Aruna Asaf Ali Marg, New Delhi 110067, India
| | | | | | | |
Collapse
|
92
|
Simeone MC, Gedye KR, Mason-Gamer R, Gill BS, Morris CF. Conserved regulatory elements identified from a comparative puroindoline gene sequence survey of Triticum and Aegilops diploid taxa. J Cereal Sci 2006. [DOI: 10.1016/j.jcs.2006.02.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
93
|
David-Assael O, Berezin I, Shoshani-Knaani N, Saul H, Mizrachy-Dagri T, Chen J, Brook E, Shaul O. AtMHX is an auxin and ABA-regulated transporter whose expression pattern suggests a role in metal homeostasis in tissues with photosynthetic potential. FUNCTIONAL PLANT BIOLOGY : FPB 2006; 33:661-672. [PMID: 32689275 DOI: 10.1071/fp05295] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2005] [Accepted: 04/19/2006] [Indexed: 06/11/2023]
Abstract
AtMHX is a vacuolar transporter encoded by a single gene in Arabidopsis thaliana (L.) Heynh. It exchanges protons with Mg2+, Zn2+, and Fe2+ ions. Proper homeostasis of these metals is essential for photosynthesis and numerous enzymatic reactions. In particular, very little is known about mechanisms involved in Mg2+ homeostasis in plants. Expression analysis using reporter-gene constructs suggested that AtMHX functions in metal homeostasis mainly in tissues with photosynthetic potential. This balancing is conducted by expression in the vascular region, the cortex of stems, trichomes, and hydathodes. Expression in stems is developmentally regulated, suggesting that minerals are accumulated in the upper regions of young stems, and are released during silique development. Mineral content in different stem parts was consistent with this possibility. Expression was induced by auxin and ABA, but not by the metal content of the growth medium, suggesting that expression is mainly regulated by endogenous developmental programs. AtMHX exhibits two distinguished regulatory properties. Its leader intron is absolutely essential for expression, and mediates an 86-fold enhancement of expression. This enhancement is the highest reported thus far for any dicot intron. Another remarkable feature is that a repetitive genomic element of 530 bp (or part of it) functions as an enhancer.
Collapse
Affiliation(s)
- Ora David-Assael
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Irina Berezin
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Noa Shoshani-Knaani
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Helen Saul
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Talya Mizrachy-Dagri
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Jianxin Chen
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Emil Brook
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
| | - Orit Shaul
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 52900, Israel
| |
Collapse
|
94
|
Chehab EW, Raman G, Walley JW, Perea JV, Banu G, Theg S, Dehesh K. Rice HYDROPEROXIDE LYASES with unique expression patterns generate distinct aldehyde signatures in Arabidopsis. PLANT PHYSIOLOGY 2006; 141:121-34. [PMID: 16531481 PMCID: PMC1459319 DOI: 10.1104/pp.106.078592] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2006] [Revised: 03/01/2006] [Accepted: 03/02/2006] [Indexed: 05/07/2023]
Abstract
HYDROPEROXIDE LYASE (HPL) genes encode enzymes that catalyze the cleavage of fatty acid hydroperoxides into aldehydes and oxoacids. There are three HPLs in rice (Oryza sativa), designated OsHPL1 through OsHPL3. To explore the possibility of differential functional activities among these genes, we have examined their expression patterns and biochemical properties of their encoded products. Transcript analysis indicates that these genes have distinct patterns and levels of expression. OsHPL1 is ubiquitously expressed, OsHPL2 is expressed in the leaves and leaf sheaths, whereas OsHPL3 is wound inducible and expressed exclusively in leaves. OsHPLs also differ in their substrate preference as determined by in vitro enzyme assays using 9-/13-hydroperoxy linolenic and 9-/13-hydroperoxy linoleic acids as substrates. OsHPL1 and OsHPL2 metabolize 9-/13-hydroperoxides, whereas OsHPL3 metabolizes 13-hydroperoxy linolenic acid exclusively. Sequence alignments of the HPL enzymes have identified signature residues potentially responsible for the substrate specificity/preference of these enzymes. All three OsHPLs are chloroplast localized as determined by chloroplast import assays and green fluorescent protein (GFP) fusion studies. Aldehyde measurements in transgenic Arabidopsis (Arabidopsis thaliana) plants overexpressing individual OsHPL-GFP fusions indicate that all rice HPLs are functional in a heterologous system, and each of them generates a distinct signature of the metabolites. Interestingly, these aldehydes were only detectable in leaves, but not in roots, despite similar levels of OsHPL-GFP proteins in both tissues. Similarly, there were undetectable levels of aldehydes in rice roots, in spite of the presence of OsHPL1 transcripts. Together, these data suggest that additional tissue-specific mechanism(s) beyond transcript and HPL enzyme abundance, regulate the levels of HPL-derived metabolites.
Collapse
Affiliation(s)
- E W Chehab
- Section of Plant Biology, University of California, Davis, California 95616, USA
| | | | | | | | | | | | | |
Collapse
|
95
|
Chen R, Ni Z, Qin Y, Nie X, Lin Z, Dong G, Sun Q. Isolation and characterization of TaDof1 transcription factor in wheat (Triticum. aestivum. L). ACTA ACUST UNITED AC 2006; 16:358-63. [PMID: 16243726 DOI: 10.1080/10425170500272940] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
The Dof (DNA binding with one finger) proteins are plant specific transcription factors. Dof proteins are apparently encoded by a multiple gene family in higher plants. However, only one Dof gene, WPBF, was reported in wheat. In this study, a member of Dof gene family, TaDof1, was cloned from wheat. TaDof1 encode 291 amino acids, with a predicted molecular mass of 30.348 kDa. At its N-terminal end, a 52 amino acid stretch typical of Dof domain and two serine-rich stretches were observed. Sequence alignment indicated that, in Dof domain, TaDof1 share more than 75% identity with other Dof proteins of different species. TaDof1 was expressed highly in leaves and sheaths, but lowly in roots, and constitutively expressed in developing seeds of 2-12 DAP. It was interesting to note that TaDof1 was differentially expressed between hybrids F1 and parents in root, sheath and leaf. The implication of the differential expression patterns of TaDof1 was discussed in related to the up-regulation of C4 pathway related gene in hybrid rice and heterosis.
Collapse
Affiliation(s)
- Rongmin Chen
- Key Laboratory of Crop Genomics and Genetic Improvement, Ministry of Agriculture/Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Department of Plant Genetics & Breeding, Beijing, 100094, China
| | | | | | | | | | | | | |
Collapse
|
96
|
Waclawovsky AJ, Freitas RL, Rocha CS, Contim LAS, Fontes EPB. Combinatorial regulation modules on GmSBP2 promoter: a distal cis-regulatory domain confines the SBP2 promoter activity to the vascular tissue in vegetative organs. BIOCHIMICA ET BIOPHYSICA ACTA 2006; 1759:89-98. [PMID: 16574256 DOI: 10.1016/j.bbaexp.2006.02.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2005] [Revised: 02/03/2006] [Accepted: 02/06/2006] [Indexed: 11/27/2022]
Abstract
The Glycine max sucrose binding protein (GmSBP2) promoter directs phloem-specific expression of reporter genes in transgenic tobacco. Here, we identified cis-regulatory domains (CRD) that contribute with positive and negative regulation for the tissue-specific pattern of the GmSPB2 promoter. Negative regulatory elements in the distal CRD-A (-2000 to -700) sequences suppressed expression from the GmSBP2 promoter in tissues other than seed tissues and vascular tissues of vegetative organs. Deletion of this region relieved repression resulting in a constitutive promoter highly active in all tissues analyzed. Further deletions from the strong constitutive -700GmSBP2 promoter delimited several intercalating enhancer-like and repressing domains that function in a context-dependent manner. Histochemical examination revealed that the CRD-C (-445 to -367) harbors both negative and positive elements. This region abolished promoter expression in roots and in all tissues of stems except for the inner phloem. In contrast, it restores root meristem expression when fused to the -132pSBP2-GUS construct, which contains root meristem expression-repressing determinants mapped to the 44-bp CRD-G (-136 to -92). Thus, the GmSBP2 promoter is functionally organized into a proximal region with the combinatorial modular configuration of plant promoters and a distal domain, which restricts gene expression to the vascular tissues in vegetative organs.
Collapse
|
97
|
Seki H, Nishizawa T, Tanaka N, Niwa Y, Yoshida S, Muranaka T. Hairy root-activation tagging: a high-throughput system for activation tagging in transformed hairy roots. PLANT MOLECULAR BIOLOGY 2005; 59:793-807. [PMID: 16270231 DOI: 10.1007/s11103-005-1008-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2005] [Accepted: 07/18/2005] [Indexed: 05/05/2023]
Abstract
Activation tagging is a powerful technique for generating gain-of-function mutants in plants. We developed a new vector system for activation tagging of genes in "transformed hairy roots". The binary vector pHR-AT (Hairy Root-Activation Tagging) and its derivative pHR-AT-GFP contain a cluster of rol (rooting locus) genes together with the right border facing four tandem repeats of the cauliflower mosaic virus (CaMV) 35S enhancer element on the same T-DNA. Transformation experiments using Arabidopsis, potato, and tobacco as model plants revealed that upon inoculating plants with Agrobacterium tumefaciens harboring these vectors, a large number of independently transformed roots could be induced from explants within a short period of time, and root culture lines were subsequently established. Molecular analyses of the pHR-AT-GFP-transformed Arabidopsis lines showed that expression of the genes adjacent to the T-DNA insertion site was significantly increased. This system may facilitate application of the activation-tagging approach to plant species that are recalcitrant to the regeneration of transgenic plants. High-throughput metabolic profiling of activation-tagged root culture lines will offer opportunities for identifying regulatory or biosynthetic genes for the production of valuable secondary metabolites of interest.
Collapse
Affiliation(s)
- Hikaru Seki
- RIKEN Plant Science Center, Kanagawa, Tsurumi-ku, Yokohama 230-0045, Japan
| | | | | | | | | | | |
Collapse
|
98
|
Aksamit A, Korobczak A, Skala J, Lukaszewicz M, Szopa J. The 14-3-3 gene expression specificity in response to stress is promoter-dependent. PLANT & CELL PHYSIOLOGY 2005; 46:1635-45. [PMID: 16081528 DOI: 10.1093/pcp/pci179] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Genomic clone coding for the 16R isoform of 14-3-3 proteins from potato plants has recently been described. This paper reports on 20R-gene isolation and analysis, and compares two isoforms. The northern blot analysis of mRNA of the 20R 14-3-3 isoform suggests its similarity to 16R. Vascular tissue-specific expression and age-dependent synthesis in potato leaves has been detected in both promoters. Screening of the potato genomic library using 20R cDNA isoform resulted in identification and isolation of the corresponding gene. This gene contains four exons and three introns. Inspecting the promoter sequence of the 20R isoform revealed several boxes important for the regulation of gene expression. The strongest GUS expression in transgenic potato plants transformed with the uidA reporter gene under the 20R promoter has been found in young leaf and stem vascular tissue, root tips, pollen and ovules. Mature fragments exhibit a significant decrease in GUS staining, which suggests age-dependent promoter activity. The analysis of transgenic plants transformed with 20R-GUS in contrast to 16R-GUS has revealed strong activation of the 20R promoter by metal ions and NaCl. Instead the 16R promoter is strongly affected by virus and salicylic acid treatments. The only factor, which strongly induced both promoters, was abscisic acid. It is thus suggested that promoter domain composition is the main factor differentiating the appearance of 14-3-3 isoforms.
Collapse
Affiliation(s)
- Anna Aksamit
- Institutes of Genetics and Microbiology, Wroclaw University, Poland
| | | | | | | | | |
Collapse
|
99
|
Scarpella E, Simons EJ, Meijer AH. Multiple regulatory elements contribute to the vascular-specific expression of the rice HD-Zip gene Oshox1 in Arabidopsis. PLANT & CELL PHYSIOLOGY 2005; 46:1400-10. [PMID: 15964905 DOI: 10.1093/pcp/pci153] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The primary vascular tissues of plants differentiate from a single precursor tissue, the procambium. The role of upstream regulatory sequences in the transcriptional control of early vascular-specific gene expression is largely unknown. The onset of expression of the rice homeodomain-leucine zipper (HD-Zip) gene Oshox1 marks procambial cells that have acquired their distinctive anatomical features but do not yet display any overt signs of terminal vascular differentiation. The expression pattern of Oshox1 in rice appears to be mainly controlled by the activity of the 1.6 kb upstream promoter region. Here, we show that the Oshox1 promoter directs vascular, auxin- and sucrose-responsive reporter gene expression in Arabidopsis plants in a fashion comparable with that in rice. This is the case not only during normal development but also upon experimental manipulation, suggesting that the cis-acting regulatory elements that are instrumental in Oshox1 expression pattern are conserved between rice and Arabidopsis. Finally, through analysis of reporter gene expression profiles conferred by progressive 5' deletions of the Oshox1 promoter in transgenic Arabidopsis, we have identified upstream regulatory regions required for auxin and sucrose inducibility, and for cell type-, tissue- and organ-specific aspects of Oshox1 expression. Our study suggests that Oshox1 embryonic vascular expression is mainly achieved through suppression of expression in non-vascular tissues.
Collapse
Affiliation(s)
- Enrico Scarpella
- Insitute of Biology, Leiden University, Clusius Laboratory, Wassenaarseweg 64, 2333 AL Leiden, The Netherlands
| | | | | |
Collapse
|
100
|
Liu K, Kang BC, Jiang H, Moore SL, Li H, Watkins CB, Setter TL, Jahn MM. A GH3-like gene, CcGH3, isolated from Capsicum chinense L. fruit is regulated by auxin and ethylene. PLANT MOLECULAR BIOLOGY 2005; 58:447-64. [PMID: 16021332 DOI: 10.1007/s11103-005-6505-4] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2005] [Accepted: 04/26/2005] [Indexed: 05/03/2023]
Abstract
Auxin, which has been implicated in multiple biochemical and physiological processes, elicits three classes of genes (Aux/IAAs, SAURs and GH3s) that have been characterized by their early or primary responses to the hormone. A new GH3-like gene was identified from a suppressive subtraction hybridization (SSH) library of pungent pepper (Capsicum chinense L.) cDNAs. This gene, CcGH3, possessed several auxin- and ethylene-inducible elements in the putative promoter region. Upon further investigation, CcGH3 was shown to be auxin-inducible in shoots, flower buds, sepals, petals and most notably ripening and mature pericarp and placenta. Paradoxically, this gene was expressed in fruit when auxin levels were decreasing, consistent with ethylene-inducibility. Further experiments demonstrated that CcGH3 was induced by endogenous ethylene, and that transcript accumulation was inhibited by 1-methylcyclopropene, an inhibitor of ethylene perception. When over-expressed in tomato, CcGH3 hastened ripening of ethylene-treated fruit. These results implicate CcGH3 as a factor in auxin and ethylene regulation of fruit ripening and suggest that it may be a point of intersection in the signaling by these two hormones.
Collapse
MESH Headings
- Arabidopsis/genetics
- Blotting, Northern
- Capsicum/genetics
- Capsicum/metabolism
- Cyclopropanes/pharmacology
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- DNA, Complementary/isolation & purification
- Ethylenes/pharmacology
- Fruit/genetics
- Fruit/metabolism
- Gene Expression Profiling
- Gene Expression Regulation, Plant/drug effects
- Glucuronidase/genetics
- Glucuronidase/metabolism
- Indoleacetic Acids/metabolism
- Indoleacetic Acids/pharmacology
- Solanum lycopersicum/genetics
- Molecular Sequence Data
- Nucleic Acid Hybridization/methods
- Phylogeny
- Plant Growth Regulators/pharmacology
- Plant Proteins/genetics
- Plants, Genetically Modified
- Promoter Regions, Genetic/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Recombinant Fusion Proteins/genetics
- Recombinant Fusion Proteins/metabolism
- Response Elements/genetics
- Reverse Transcriptase Polymerase Chain Reaction
- Sequence Alignment
- Sequence Analysis, DNA
- Transcription Initiation Site
- Transfection
Collapse
Affiliation(s)
- Kede Liu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agriculture University, 430070, Wuhan, Hubei Province, China
| | | | | | | | | | | | | | | |
Collapse
|