51
|
Challenges, opportunities, and advances related to COVID-19 classification based on deep learning. DATA SCIENCE AND MANAGEMENT 2023. [PMCID: PMC10063459 DOI: 10.1016/j.dsm.2023.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
Abstract
The novel coronavirus disease, or COVID-19, is a hazardous disease. It is endangering the lives of many people living in more than two hundred countries. It directly affects the lungs. In general, two main imaging modalities: - computed tomography (CT) and chest x-ray (CXR) are used to achieve a speedy and reliable medical diagnosis. Identifying the coronavirus in medical images is exceedingly difficult for diagnosis, assessment, and treatment. It is demanding, time-consuming, and subject to human mistakes. In biological disciplines, excellent performance can be achieved by employing artificial intelligence (AI) models. As a subfield of AI, deep learning (DL) networks have drawn considerable attention than standard machine learning (ML) methods. DL models automatically carry out all the steps of feature extraction, feature selection, and classification. This study has performed comprehensive analysis of coronavirus classification using CXR and CT imaging modalities using DL architectures. Additionally, we have discussed how transfer learning is helpful in this regard. Finally, the problem of designing and implementing a system using computer-aided diagnostic (CAD) to find COVID-19 using DL approaches is highlighted a future research possibility.
Collapse
|
52
|
Gürsoy E, Kaya Y. An overview of deep learning techniques for COVID-19 detection: methods, challenges, and future works. MULTIMEDIA SYSTEMS 2023; 29:1603-1627. [PMID: 37261262 PMCID: PMC10039775 DOI: 10.1007/s00530-023-01083-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 03/20/2023] [Indexed: 06/02/2023]
Abstract
The World Health Organization (WHO) declared a pandemic in response to the coronavirus COVID-19 in 2020, which resulted in numerous deaths worldwide. Although the disease appears to have lost its impact, millions of people have been affected by this virus, and new infections still occur. Identifying COVID-19 requires a reverse transcription-polymerase chain reaction test (RT-PCR) or analysis of medical data. Due to the high cost and time required to scan and analyze medical data, researchers are focusing on using automated computer-aided methods. This review examines the applications of deep learning (DL) and machine learning (ML) in detecting COVID-19 using medical data such as CT scans, X-rays, cough sounds, MRIs, ultrasound, and clinical markers. First, the data preprocessing, the features used, and the current COVID-19 detection methods are divided into two subsections, and the studies are discussed. Second, the reported publicly available datasets, their characteristics, and the potential comparison materials mentioned in the literature are presented. Third, a comprehensive comparison is made by contrasting the similar and different aspects of the studies. Finally, the results, gaps, and limitations are summarized to stimulate the improvement of COVID-19 detection methods, and the study concludes by listing some future research directions for COVID-19 classification.
Collapse
Affiliation(s)
- Ercan Gürsoy
- Department of Computer Engineering, Adana Alparslan Turkes Science and Technology University, 01250 Adana, Turkey
| | - Yasin Kaya
- Department of Computer Engineering, Adana Alparslan Turkes Science and Technology University, 01250 Adana, Turkey
| |
Collapse
|
53
|
Rehman A, Khan A, Fatima G, Naz S, Razzak I. Review on chest pathogies detection systems using deep learning techniques. Artif Intell Rev 2023; 56:1-47. [PMID: 37362896 PMCID: PMC10027283 DOI: 10.1007/s10462-023-10457-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Chest radiography is the standard and most affordable way to diagnose, analyze, and examine different thoracic and chest diseases. Typically, the radiograph is examined by an expert radiologist or physician to decide about a particular anomaly, if exists. Moreover, computer-aided methods are used to assist radiologists and make the analysis process accurate, fast, and more automated. A tremendous improvement in automatic chest pathologies detection and analysis can be observed with the emergence of deep learning. The survey aims to review, technically evaluate, and synthesize the different computer-aided chest pathologies detection systems. The state-of-the-art of single and multi-pathologies detection systems, which are published in the last five years, are thoroughly discussed. The taxonomy of image acquisition, dataset preprocessing, feature extraction, and deep learning models are presented. The mathematical concepts related to feature extraction model architectures are discussed. Moreover, the different articles are compared based on their contributions, datasets, methods used, and the results achieved. The article ends with the main findings, current trends, challenges, and future recommendations.
Collapse
Affiliation(s)
- Arshia Rehman
- COMSATS University Islamabad, Abbottabad-Campus, Abbottabad, Pakistan
| | - Ahmad Khan
- COMSATS University Islamabad, Abbottabad-Campus, Abbottabad, Pakistan
| | - Gohar Fatima
- The Islamia University of Bahawalpur, Bahawal Nagar Campus, Bahawal Nagar, Pakistan
| | - Saeeda Naz
- Govt Girls Post Graduate College No.1, Abbottabad, Pakistan
| | - Imran Razzak
- School of Computer Science and Engineering, University of New South Wales, Sydney, Australia
| |
Collapse
|
54
|
Yadav DP, Jalal AS, Goyal A, Mishra A, Uprety K, Guragai N. COVID-19 radiograph prognosis using a deep CResNeXt network. MULTIMEDIA TOOLS AND APPLICATIONS 2023; 82:1-27. [PMID: 37362635 PMCID: PMC9993361 DOI: 10.1007/s11042-023-14960-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/07/2022] [Accepted: 02/22/2023] [Indexed: 06/28/2023]
Abstract
COVID-19 has caused an epidemic in the entire world and it is caused by the novel virus SARS-COV-2. In severe conditions, this virus can cause a critical lung infection or viral pneumonia. To administer the correct treatment to patients, COVID-19 testing is important for diagnosing and determining patients who are infected with COVID-19, as opposed to those infected with other bacterial or viral infections. In this paper, a CResNeXt chest radiograph COVID-19 prediction model is proposed using residual network architecture. The advantage of the proposed model is that it requires lesser free hyper-parameters as compared to other residual networks. In addition, the training time per epochs of the model is very less compared to VGG19, ResNet-50, ResNeXt. The proposed CResNeXt model's binary classification (COVID-19 versus No-Finding) accuracy is observed to be 98.63% and 99.99% and multi-class classification (COVID-19, Pneumonia, and No-Finding) accuracy is observed to be 97.42% and 99.27% on the original and augmented datasets, respectively.
Collapse
Affiliation(s)
- Dhirendra P. Yadav
- Department of Computer Engineering & Applications, G.L.A. University, Mathura, UP India
| | - Anand Singh Jalal
- Department of Computer Engineering & Applications, G.L.A. University, Mathura, UP India
| | - Ayush Goyal
- Department of Electrical Engineering and Computer Science, Texas A&M University, Kingsville, TX USA
| | - Avdesh Mishra
- Department of Electrical Engineering and Computer Science, Texas A&M University, Kingsville, TX USA
| | - Khem Uprety
- The University of Tennessee Health Science Center, Memphis, TN USA
| | - Nirmal Guragai
- Department of Cardiology, St. Joseph Regional Medical Center, Paterson, NJ USA
| |
Collapse
|
55
|
Chauhan J, Bedi J. EffViT-COVID: A dual-path network for COVID-19 percentage estimation. EXPERT SYSTEMS WITH APPLICATIONS 2023; 213:118939. [PMID: 36210962 PMCID: PMC9527203 DOI: 10.1016/j.eswa.2022.118939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/12/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
The first case of novel Coronavirus (COVID-19) was reported in December 2019 in Wuhan City, China and led to an international outbreak. This virus causes serious respiratory illness and affects several other organs of the body differently for different patient. Worldwide, several waves of this infection have been reported, and researchers/doctors are working hard to develop novel solutions for the COVID diagnosis. Imaging and vision-based techniques are widely explored for the prediction of COVID-19; however, COVID infection percentage estimation is under explored. In this work, we propose a novel framework for the estimation of COVID-19 infection percentage based on deep learning techniques. The proposed network utilizes the features from vision transformers and CNN (Convolutional Neural Networks), specifically EfficientNet-B7. The features of both are fused together for preparing an information-rich feature vector that contributes to a more precise estimation of infection percentage. We evaluate our model on the Per-COVID-19 dataset (Bougourzi et al., 2021b) which comprises labeled CT data of COVID-19 patients. For the evaluation of the model on this dataset, we employ the most widely-used slice-level metrics, i.e., Pearson correlation coefficient (PC), Mean absolute error (MAE), and Root mean square error (RMSE). The network outperforms the other state-of-the-art methods and achieves 0 . 9886 ± 0 . 009 , 1 . 23 ± 0 . 378 , and 3 . 12 ± 1 . 56 , PC, MAE, and RMSE, respectively, using a 5-fold cross-validation technique. In addition, the overall average difference in the actual and predicted infection percentage is observed to be < 2 % . In conclusion, the detailed experimental results reveal the robustness and efficiency of the proposed network.
Collapse
Affiliation(s)
- Joohi Chauhan
- Department of Computer Science and Engineering, Thapar Institute of Engineering and Technology, Patiala 147004, Punjab, India
| | - Jatin Bedi
- Department of Computer Science and Engineering, Thapar Institute of Engineering and Technology, Patiala 147004, Punjab, India
| |
Collapse
|
56
|
Bi M. Impact of COVID-19 on environmental regulation and economic growth in China: A Way forward for green economic recovery. ECONOMIC ANALYSIS AND POLICY 2023; 77:1001-1015. [PMID: 36590107 PMCID: PMC9788988 DOI: 10.1016/j.eap.2022.12.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 12/15/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
The COVID-19 pandemic has caused turmoil in every aspect of life and may be prevalent for years. Therefore, this study aimed to determine whether the pandemic reflects oil prices in China. We utilized a model to simulate and examine the energy, economic, and environmental effects of COVID-19, which affects a wide range of industries and households. The impact of the pandemic is considered in terms of customer expectations and factor input changes. Based on these changes, we find that factor input changes are the primary cause of the economic recession. We further find a parallel relationship between CO2 emissions and economic downturn. In addition, a reduction in transportation has significantly influenced the Gross Domestic product (GDP), which plunged during the pandemic period by 0.49%. Transportation negatively influences industrial production, railway sector, and air transportation by 10.17%, 1.76%, and 1.53%, respectively. Based on these findings, this study proposes important policy implications.
Collapse
Affiliation(s)
- Mingxiong Bi
- Donghai Academy Ningbo University, NingBo 315211, China
- Business School, NingBo University, NingBo 315211, China
| |
Collapse
|
57
|
Kurt Z, Işık Ş, Kaya Z, Anagün Y, Koca N, Çiçek S. Evaluation of EfficientNet models for COVID-19 detection using lung parenchyma. Neural Comput Appl 2023; 35:12121-12132. [PMID: 36843903 PMCID: PMC9940669 DOI: 10.1007/s00521-023-08344-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 01/25/2023] [Indexed: 02/23/2023]
Abstract
When the COVID-19 pandemic broke out in the beginning of 2020, it became crucial to enhance early diagnosis with efficient means to reduce dangers and future spread of the viruses as soon as possible. Finding effective treatments and lowering mortality rates is now more important than ever. Scanning with a computer tomography (CT) scanner is a helpful method for detecting COVID-19 in this regard. The present paper, as such, is an attempt to contribute to this process by generating an open-source, CT-based image dataset. This dataset contains the CT scans of lung parenchyma regions of 180 COVID-19-positive and 86 COVID-19-negative patients taken at the Bursa Yuksek Ihtisas Training and Research Hospital. The experimental studies show that the modified EfficientNet-ap-nish method uses this dataset effectively for diagnostic purposes. Firstly, a smart segmentation mechanism based on the k-means algorithm is applied to this dataset as a preprocessing stage. Then, performance pretrained models are analyzed using different CNN architectures and with our Nish activation function. The statistical rates are obtained by the various EfficientNet models and the highest detection score is obtained with the EfficientNet-B4-ap-nish version, which provides a 97.93% accuracy rate and a 97.33% F1-score. The implications of the proposed method are immense both for present-day applications and future developments.
Collapse
Affiliation(s)
- Zuhal Kurt
- Department of Computer Engineering, Atilim University, Ankara, Turkey
| | - Şahin Işık
- Department of Computer Engineering, Eskisehir Osmangazi University Meselik Campus, Eskisehir, Turkey
| | - Zeynep Kaya
- Department of Electrical and Energy, Bilecik Seyh Edebali University, Osmaneli Vocational School, Bilecik, Turkey
| | - Yıldıray Anagün
- Department of Computer Engineering, Eskisehir Osmangazi University Meselik Campus, Eskisehir, Turkey
| | - Nizameddin Koca
- Department of Internal Medicine, University of Health Sciences, Bursa Yuksek Ihtisas Training and Research Hospital, Bursa, Turkey
| | - Sümeyye Çiçek
- Department of Internal Medicine, University of Health Sciences, Bursa Yuksek Ihtisas Training and Research Hospital, Bursa, Turkey
| |
Collapse
|
58
|
Malik H, Anees T, Naeem A, Naqvi RA, Loh WK. Blockchain-Federated and Deep-Learning-Based Ensembling of Capsule Network with Incremental Extreme Learning Machines for Classification of COVID-19 Using CT Scans. Bioengineering (Basel) 2023; 10:203. [PMID: 36829697 PMCID: PMC9952069 DOI: 10.3390/bioengineering10020203] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
Due to the rapid rate of SARS-CoV-2 dissemination, a conversant and effective strategy must be employed to isolate COVID-19. When it comes to determining the identity of COVID-19, one of the most significant obstacles that researchers must overcome is the rapid propagation of the virus, in addition to the dearth of trustworthy testing models. This problem continues to be the most difficult one for clinicians to deal with. The use of AI in image processing has made the formerly insurmountable challenge of finding COVID-19 situations more manageable. In the real world, there is a problem that has to be handled about the difficulties of sharing data between hospitals while still honoring the privacy concerns of the organizations. When training a global deep learning (DL) model, it is crucial to handle fundamental concerns such as user privacy and collaborative model development. For this study, a novel framework is designed that compiles information from five different databases (several hospitals) and edifies a global model using blockchain-based federated learning (FL). The data is validated through the use of blockchain technology (BCT), and FL trains the model on a global scale while maintaining the secrecy of the organizations. The proposed framework is divided into three parts. First, we provide a method of data normalization that can handle the diversity of data collected from five different sources using several computed tomography (CT) scanners. Second, to categorize COVID-19 patients, we ensemble the capsule network (CapsNet) with incremental extreme learning machines (IELMs). Thirdly, we provide a strategy for interactively training a global model using BCT and FL while maintaining anonymity. Extensive tests employing chest CT scans and a comparison of the classification performance of the proposed model to that of five DL algorithms for predicting COVID-19, while protecting the privacy of the data for a variety of users, were undertaken. Our findings indicate improved effectiveness in identifying COVID-19 patients and achieved an accuracy of 98.99%. Thus, our model provides substantial aid to medical practitioners in their diagnosis of COVID-19.
Collapse
Affiliation(s)
- Hassaan Malik
- Department of Computer Science, University of Management and Technology, Lahore 54000, Pakistan
| | - Tayyaba Anees
- Department of Software Engineering, University of Management and Technology, Lahore 54000, Pakistan
| | - Ahmad Naeem
- Department of Computer Science, University of Management and Technology, Lahore 54000, Pakistan
| | - Rizwan Ali Naqvi
- Department of Unmanned Vehicle Engineering, Sejong University, Seoul 05006, Republic of Korea
| | - Woong-Kee Loh
- School of Computing, Gachon University, Seongnam 13120, Republic of Korea
| |
Collapse
|
59
|
Ahamed MKU, Islam MM, Uddin MA, Akhter A, Acharjee UK, Paul BK, Moni MA. DTLCx: An Improved ResNet Architecture to Classify Normal and Conventional Pneumonia Cases from COVID-19 Instances with Grad-CAM-Based Superimposed Visualization Utilizing Chest X-ray Images. Diagnostics (Basel) 2023; 13:diagnostics13030551. [PMID: 36766662 PMCID: PMC9914155 DOI: 10.3390/diagnostics13030551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/04/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
COVID-19 is a severe respiratory contagious disease that has now spread all over the world. COVID-19 has terribly impacted public health, daily lives and the global economy. Although some developed countries have advanced well in detecting and bearing this coronavirus, most developing countries are having difficulty in detecting COVID-19 cases for the mass population. In many countries, there is a scarcity of COVID-19 testing kits and other resources due to the increasing rate of COVID-19 infections. Therefore, this deficit of testing resources and the increasing figure of daily cases encouraged us to improve a deep learning model to aid clinicians, radiologists and provide timely assistance to patients. In this article, an efficient deep learning-based model to detect COVID-19 cases that utilizes a chest X-ray images dataset has been proposed and investigated. The proposed model is developed based on ResNet50V2 architecture. The base architecture of ResNet50V2 is concatenated with six extra layers to make the model more robust and efficient. Finally, a Grad-CAM-based discriminative localization is used to readily interpret the detection of radiological images. Two datasets were gathered from different sources that are publicly available with class labels: normal, confirmed COVID-19, bacterial pneumonia and viral pneumonia cases. Our proposed model obtained a comprehensive accuracy of 99.51% for four-class cases (COVID-19/normal/bacterial pneumonia/viral pneumonia) on Dataset-2, 96.52% for the cases with three classes (normal/ COVID-19/bacterial pneumonia) and 99.13% for the cases with two classes (COVID-19/normal) on Dataset-1. The accuracy level of the proposed model might motivate radiologists to rapidly detect and diagnose COVID-19 cases.
Collapse
Affiliation(s)
- Md. Khabir Uddin Ahamed
- Department of Computer Science and Engineering, Jagannath University, Dhaka 1100, Bangladesh
| | - Md Manowarul Islam
- Department of Computer Science and Engineering, Jagannath University, Dhaka 1100, Bangladesh
- Correspondence:
| | - Md. Ashraf Uddin
- Department of Computer Science and Engineering, Jagannath University, Dhaka 1100, Bangladesh
- School of Information Technology, Geelong, Deakin University, Geelong, VIC 3216, Australia
| | - Arnisha Akhter
- Department of Computer Science and Engineering, Jagannath University, Dhaka 1100, Bangladesh
| | - Uzzal Kumar Acharjee
- Department of Computer Science and Engineering, Jagannath University, Dhaka 1100, Bangladesh
| | - Bikash Kumar Paul
- Department of Information and Communication Technology, Mawlana Bhashani Science and Technology University, Tangail 1902, Bangladesh
- Department of Software Engineering, Daffodil International University, Dhaka 1207, Bangladesh
| | - Mohammad Ali Moni
- Artificial Intelligence & Data Science, School of Health and Rehabilitation Sciences, Faculty of Health and Behavioural Sciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| |
Collapse
|
60
|
Yuan D, Liu Y, Xu Z, Zhan Y, Chen J, Lukasiewicz T. Painless and accurate medical image analysis using deep reinforcement learning with task-oriented homogenized automatic pre-processing. Comput Biol Med 2023; 153:106487. [PMID: 36603432 DOI: 10.1016/j.compbiomed.2022.106487] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/27/2022] [Accepted: 12/25/2022] [Indexed: 12/29/2022]
Abstract
Pre-processing is widely applied in medical image analysis to remove the interference information. However, the existing pre-processing solutions mainly encounter two problems: (i) it is heavily relied on the assistance of clinical experts, making it hard for intelligent CAD systems to deploy quickly; (ii) due to the personnel and information barriers, it is difficult for medical institutions to conduct the same pre-processing operations, making a deep model that performs well on a specific medical institution difficult to achieve similar performances on the same task in other medical institutions. To overcome these problems, we propose a deep-reinforcement-learning-based task-oriented homogenized automatic pre-processing (DRL-HAPre) framework to overcome these two problems. This framework utilizes deep reinforcement learning techniques to learn a policy network to automatically and adaptively select the optimal pre-processing operations for the input medical images according to different analysis tasks, thus helping the intelligent CAD system to achieve a rapid deployment (i.e., painless) and maintain a satisfactory performance (i.e., accurate) among different medical institutes. To verify the effectiveness and advantages of the proposed DRL-HAPre framework, we further develop a homogenized automatic pre-processing model based on the DRL-HAPre framework to realize the automatic pre-processing of key region selection (called HAPre-KRS) in the pneumonia image classification task. Extensive experimental studies are conducted on three pediatric pneumonia classification datasets with different image qualities, and the results show that: (i) There does exist a hard-to-reproduce problem in clinical practices and the fact that having different medical image qualities in different medical institutes is an important reason for the existing of hard-to-reproduce problem, so it is compelling to propose homogenized automatic pre-processing method. (ii) The proposed HAPre-KRS model and DRL-HAPre framework greatly outperform three kinds of state-of-the-art baselines (i.e., pre-processing, attention and pneumonia baseline), and the lower the medical image quality, the greater the improvements of using our HAPre-KRS model and DRL-HAPre framework. (iii) With the help of homogenized pre-processing, HAPre-KRS (and DRL-HAPre framework) can greatly avoid performance degradation in real-world cross-source applications (i.e., thus overcoming the hard-to-reproduce problem).
Collapse
Affiliation(s)
- Di Yuan
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, China
| | - Yunxin Liu
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, China.
| | - Zhenghua Xu
- State Key Laboratory of Reliability and Intelligence of Electrical Equipment, School of Health Sciences and Biomedical Engineering, Hebei University of Technology, Tianjin, China.
| | - Yuefu Zhan
- Department of Radiology, Hainan Women and Children's Medical Center, Haikou, China
| | - Junyang Chen
- College of Computer Science and Software Engineering and the Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen, China
| | - Thomas Lukasiewicz
- Department of Computer Science, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
61
|
Aslani S, Jacob J. Utilisation of deep learning for COVID-19 diagnosis. Clin Radiol 2023; 78:150-157. [PMID: 36639173 PMCID: PMC9831845 DOI: 10.1016/j.crad.2022.11.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 11/21/2022] [Accepted: 11/22/2022] [Indexed: 01/12/2023]
Abstract
The COVID-19 pandemic that began in 2019 has resulted in millions of deaths worldwide. Over this period, the economic and healthcare consequences of COVID-19 infection in survivors of acute COVID-19 infection have become apparent. During the course of the pandemic, computer analysis of medical images and data have been widely used by the medical research community. In particular, deep-learning methods, which are artificial intelligence (AI)-based approaches, have been frequently employed. This paper provides a review of deep-learning-based AI techniques for COVID-19 diagnosis using chest radiography and computed tomography. Thirty papers published from February 2020 to March 2022 that used two-dimensional (2D)/three-dimensional (3D) deep convolutional neural networks combined with transfer learning for COVID-19 detection were reviewed. The review describes how deep-learning methods detect COVID-19, and several limitations of the proposed methods are highlighted.
Collapse
Affiliation(s)
- S Aslani
- Centre for Medical Image Computing and Department of Respiratory Medicine, University College London, London, UK.
| | - J Jacob
- Centre for Medical Image Computing and Department of Respiratory Medicine, University College London, London, UK
| |
Collapse
|
62
|
Bhattacharjya U, Sarma KK, Medhi JP, Choudhury BK, Barman G. Automated diagnosis of COVID-19 using radiological modalities and Artificial Intelligence functionalities: A retrospective study based on chest HRCT database. Biomed Signal Process Control 2023; 80:104297. [PMID: 36275840 PMCID: PMC9576693 DOI: 10.1016/j.bspc.2022.104297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 09/12/2022] [Accepted: 10/08/2022] [Indexed: 11/16/2022]
Abstract
Background and Objective The spread of coronavirus has been challenging for the healthcare system's proper management and diagnosis during the rapid spread and control of the infection. Real-time reverse transcription-polymerase chain reaction (RT-PCR), though considered the standard testing measure, has low sensitivity and is time-consuming, which restricts the fast screening of individuals. Therefore, computer tomography (CT) is used to complement the traditional approaches and provide fast and effective screening over other diagnostic methods. This work aims to appraise the importance of chest CT findings of COVID-19 and post-COVID in the diagnosis and prognosis of infected patients and to explore the ways and means to integrate CT findings for the development of advanced Artificial Intelligence (AI) tool-based predictive diagnostic techniques. Methods The retrospective study includes a 188 patient database with COVID-19 infection confirmed by RT-PCR testing, including post-COVID patients. Patients underwent chest high-resolution computer tomography (HRCT), where the images were evaluated for common COVID-19 findings and involvement of the lung and its lobes based on the coverage region. The radiological modalities analyzed in this study may help the researchers in generating a predictive model based on AI tools for further classification with a high degree of reliability. Results Mild to moderate ground glass opacities (GGO) with or without consolidation, crazy paving patterns, and halo signs were common COVID-19 related findings. A CT score is assigned to every patient based on the severity of lung lobe involvement. Conclusion Typical multifocal, bilateral, and peripheral distributions of GGO are the main characteristics related to COVID-19 pneumonia. Chest HRCT can be considered a standard method for timely and efficient assessment of disease progression and management severity. With its fusion with AI tools, chest HRCT can be used as a one-stop platform for radiological investigation and automated diagnosis system.
Collapse
Affiliation(s)
- Upasana Bhattacharjya
- Department of Electronics and Communication Engineering, Gauhati University, Guwahati, Assam, India
| | - Kandarpa Kumar Sarma
- Department of Electronics and Communication Engineering, Gauhati University, Guwahati, Assam, India
| | - Jyoti Prakash Medhi
- Department of Electronics and Communication Engineering, Gauhati University, Guwahati, Assam, India
| | - Binoy Kumar Choudhury
- Department of Radio Diagnosis and Imaging, Dr. Bhubaneswar Borooah Cancer Institute, Guwahati, Assam, India
| | - Geetanjali Barman
- Department of Radio Diagnosis and Imaging, Dr. Bhubaneswar Borooah Cancer Institute, Guwahati, Assam, India
| |
Collapse
|
63
|
A deep learning architecture for multi-class lung diseases classification using chest X-ray (CXR) images. ALEXANDRIA ENGINEERING JOURNAL 2023; 64:923-935. [PMCID: PMC9626367 DOI: 10.1016/j.aej.2022.10.053] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/10/2022] [Accepted: 10/21/2022] [Indexed: 05/27/2023]
Abstract
In 2019, the world experienced the rapid outbreak of the Covid-19 pandemic creating an alarming situation worldwide. The virus targets the respiratory system causing pneumonia with other symptoms such as fatigue, dry cough, and fever which can be mistakenly diagnosed as pneumonia, lung cancer, or TB. Thus, the early diagnosis of COVID-19 is critical since the disease can provoke patients’ mortality. Chest X-ray (CXR) is commonly employed in healthcare sector where both quick and precise diagnosis can be supplied. Deep learning algorithms have proved extraordinary capabilities in terms of lung diseases detection and classification. They facilitate and expedite the diagnosis process and save time for the medical practitioners. In this paper, a deep learning (DL) architecture for multi-class classification of Pneumonia, Lung Cancer, tuberculosis (TB), Lung Opacity, and most recently COVID-19 is proposed. Tremendous CXR images of 3615 COVID-19, 6012 Lung opacity, 5870 Pneumonia, 20,000 lung cancer, 1400 tuberculosis, and 10,192 normal images were resized, normalized, and randomly split to fit the DL requirements. In terms of classification, we utilized a pre-trained model, VGG19 followed by three blocks of convolutional neural network (CNN) as a feature extraction and fully connected network at the classification stage. The experimental results revealed that our proposed VGG19 + CNN outperformed other existing work with 96.48 % accuracy, 93.75 % recall, 97.56 % precision, 95.62 % F1 score, and 99.82 % area under the curve (AUC). The proposed model delivered superior performance allowing healthcare practitioners to diagnose and treat patients more quickly and efficiently.
Collapse
|
64
|
Abu Elhassan UE, Alqahtani SM, Al Saglan NS, Hawan A, Alqahtani FS, Almtheeb RS, Abdelwahab MS, AlFlan MA, Alfaifi AS, Alqahtani MA, Alshafa FA, Alsalem AA, Al-Imamah YA, Abdelwahab OS, Attia MF, Mahmoud IM. Utility of the 4C ISARIC mortality score in hospitalized COVID-19 patients at a large tertiary Saudi Arabian center. Multidiscip Respir Med 2023; 18:917. [PMID: 37692055 PMCID: PMC10483479 DOI: 10.4081/mrm.2023.917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 06/16/2023] [Indexed: 09/12/2023] Open
Abstract
Background The International Severe Acute Respiratory and Emerging Infections Consortium (ISARIC) 4C mortality score has been used before as a valuable tool for predicting mortality in COVID-19 patients. We aimed to address the utility of the 4C score in a well-defined Saudi population with COVID-19 admitted to a large tertiary referral hospital in Saudi Arabia. Methods A retrospective study was conducted that included all adults COVID‑19 patients admitted to the Armed Forces Hospital Southern Region (AFHSR), between January 2021 and September 2022. The receiver operating characteristic (ROC) curve depicted the diagnostic performance of the 4C Score for mortality prediction. Results A total of 1,853 patients were enrolled. The ROC curve of the 4C score had an area under the curve of 0.73 (95% CI: 0.702-0.758), p<0.001. The sensitivity and specificity with scores >8 were 80% and 58%, respectively, the positive and negative predictive values were 28% and 93%, respectively. Three hundred and sixteen (17.1%), 638 (34.4%), 814 (43.9%), and 85 (4.6%) patients had low, intermediate, high, and very high values, respectively. There were significant differences between survivors and non-survivors with regard to all variables used in the calculation of the 4C score. Multivariable logistic regression analysis revealed that all components of the 4C score, except gender and O2 saturation, were independent significant predictors of mortality. Conclusions Our data support previous international and Saudi studies that the 4C mortality score is a reliable tool with good sensitivity and specificity in the mortality prediction of COVID-19 patients. All components of the 4C score, except gender and O2 saturation, were independent significant predictors of mortality. Within the 4C score, odds ratios increased proportionately with an increase in the score value. Future multi-center prospective studies are warranted.
Collapse
Affiliation(s)
- Usama E. Abu Elhassan
- Department of Internal Medicine, Armed Forces Hospital Southern Region (AFHSR), Khamis Mushayt, Saudi Arabia
- Department of Pulmonary Medicine, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Saad M.A. Alqahtani
- Department of Internal Medicine, Armed Forces Hospital Southern Region (AFHSR), Khamis Mushayt, Saudi Arabia
| | - Naif S. Al Saglan
- Department of Internal Medicine, Armed Forces Hospital Southern Region (AFHSR), Khamis Mushayt, Saudi Arabia
| | - Ali Hawan
- Department of Pathology and Laboratory Medicine, Armed Forces Hospital Southern Region (AFHSR), Khamis Mushayt, Saudi Arabia
| | - Faisal S. Alqahtani
- Infectious Diseases and Notification Unit, Armed Forces Hospital Southern Region (AFHSR), Khamis Mushayt, Saudi Arabia
| | - Roaa S. Almtheeb
- Department of Pathology and Laboratory Medicine, Armed Forces Hospital Southern Region (AFHSR), Khamis Mushayt, Saudi Arabia
| | - Magda S.R. Abdelwahab
- Department of Anesthesia and Intensive Care, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mohammed A. AlFlan
- Department of Internal Medicine, Armed Forces Hospital Southern Region (AFHSR), Khamis Mushayt, Saudi Arabia
| | - Abdulaziz S.Y. Alfaifi
- Department of Internal Medicine, Armed Forces Hospital Southern Region (AFHSR), Khamis Mushayt, Saudi Arabia
| | - Mohammed A. Alqahtani
- Department of Internal Medicine, Armed Forces Hospital Southern Region (AFHSR), Khamis Mushayt, Saudi Arabia
| | - Fawwaz A. Alshafa
- Department of Internal Medicine, Armed Forces Hospital Southern Region (AFHSR), Khamis Mushayt, Saudi Arabia
| | - Ali A. Alsalem
- Department of Internal Medicine, Armed Forces Hospital Southern Region (AFHSR), Khamis Mushayt, Saudi Arabia
| | - Yahya A. Al-Imamah
- Department of Internal Medicine, Armed Forces Hospital Southern Region (AFHSR), Khamis Mushayt, Saudi Arabia
| | | | - Mohammed F. Attia
- Department of Critical Care, Armed Forces Hospital Southern Region (AFHSR), Khamis Mushayt, Saudi Arabia
| | - Ibrahim M.A. Mahmoud
- Department of Critical Care, Armed Forces Hospital Southern Region (AFHSR), Khamis Mushayt, Saudi Arabia
- Department of Critical Care, Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
65
|
Vinod DN, Prabaharan SRS. COVID-19-The Role of Artificial Intelligence, Machine Learning, and Deep Learning: A Newfangled. ARCHIVES OF COMPUTATIONAL METHODS IN ENGINEERING : STATE OF THE ART REVIEWS 2023; 30:2667-2682. [PMID: 36685135 PMCID: PMC9843670 DOI: 10.1007/s11831-023-09882-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 01/05/2023] [Indexed: 05/29/2023]
Abstract
The absolute previously infected novel coronavirus (COVID-19) was found in Wuhan, China, in December 2019. The COVID-19 epidemic has spread to more than 220 nations and territories globally and has altogether influenced each part of our day-to-day lives. As of 9th March 2022, a total aggregate of 44,78,82,185 (60,07,317) contaminated (dead) COVID-19 cases were accounted for all over the world. The quantities of contaminated cases passing despite everything increment essentially and do not indicate a controlled circumstance. The scope of this paper is to address this issue by presenting a comprehensive and comparative analysis of the existing Machine Learning (ML), Deep Learning (DL) and Artificial Intelligence (AI) based approaches used in significance in reacting to the COVID-19 epidemic and diagnosing the severe impacts. The paper provides, firstly, an overview of COVID-19 infection and highlights of this article; Secondly, an overview of exploring various executive innovations by utilizing different resources to stop the spread of COVID-19; Thirdly, a comparison of existing predicting methods of COVID-19 in the literature, with focus on ML, DL and AI-driven techniques with performance metrics; and finally, a discussion on the results of the work as well as future scope.
Collapse
Affiliation(s)
- Dasari Naga Vinod
- Department of Electronics and Communication Engineering, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Avadi, Chennai, Tamil Nadu 600062 India
| | - S. R. S. Prabaharan
- Sathyabama Centre for Advanced Studies, Sathyabama Institute of Science and Technology, Rajiv Gandhi Salai, Chennai, Tamil Nadu 600119 India
| |
Collapse
|
66
|
Alhares H, Tanha J, Balafar MA. AMTLDC: a new adversarial multi-source transfer learning framework to diagnosis of COVID-19. EVOLVING SYSTEMS 2023; 14:1-15. [PMID: 38625255 PMCID: PMC9838404 DOI: 10.1007/s12530-023-09484-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 01/02/2023] [Indexed: 01/13/2023]
Abstract
In recent years, deep learning techniques have been widely used to diagnose diseases. However, in some tasks, such as the diagnosis of COVID-19 disease, due to insufficient data, the model is not properly trained and as a result, the generalizability of the model decreases. For example, if the model is trained on a CT scan dataset and tested on another CT scan dataset, it predicts near-random results. To address this, data from several different sources can be combined using transfer learning, taking into account the intrinsic and natural differences in existing datasets obtained with different medical imaging tools and approaches. In this paper, to improve the transfer learning technique and better generalizability between multiple data sources, we propose a multi-source adversarial transfer learning model, namely AMTLDC. In AMTLDC, representations are learned that are similar among the sources. In other words, extracted representations are general and not dependent on the particular dataset domain. We apply the AMTLDC to predict Covid-19 from medical images using a convolutional neural network. We show that accuracy can be improved using the AMTLDC framework, and surpass the results of current successful transfer learning approaches. In particular, we show that the AMTLDC works well when using different dataset domains, or when there is insufficient data.
Collapse
Affiliation(s)
- Hadi Alhares
- Department of Computer Engineering, Faculty of Electrical and Computer Engineering, University of Tabriz, 29th Bahman Blvd, Tabriz, 5166616471 Iran
| | - Jafar Tanha
- Department of Computer Engineering, Faculty of Electrical and Computer Engineering, University of Tabriz, 29th Bahman Blvd, Tabriz, 5166616471 Iran
| | - Mohammad Ali Balafar
- Department of Computer Engineering, Faculty of Electrical and Computer Engineering, University of Tabriz, 29th Bahman Blvd, Tabriz, 5166616471 Iran
| |
Collapse
|
67
|
Mercaldo F, Belfiore MP, Reginelli A, Brunese L, Santone A. Coronavirus covid-19 detection by means of explainable deep learning. Sci Rep 2023; 13:462. [PMID: 36627339 PMCID: PMC9830129 DOI: 10.1038/s41598-023-27697-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 01/05/2023] [Indexed: 01/12/2023] Open
Abstract
The coronavirus is caused by the infection of the SARS-CoV-2 virus: it represents a complex and new condition, considering that until the end of December 2019 this virus was totally unknown to the international scientific community. The clinical management of patients with the coronavirus disease has undergone an evolution over the months, thanks to the increasing knowledge of the virus, symptoms and efficacy of the various therapies. Currently, however, there is no specific therapy for SARS-CoV-2 virus, know also as Coronavirus disease 19, and treatment is based on the symptoms of the patient taking into account the overall clinical picture. Furthermore, the test to identify whether a patient is affected by the virus is generally performed on sputum and the result is generally available within a few hours or days. Researches previously found that the biomedical imaging analysis is able to show signs of pneumonia. For this reason in this paper, with the aim of providing a fully automatic and faster diagnosis, we design and implement a method adopting deep learning for the novel coronavirus disease detection, starting from computed tomography medical images. The proposed approach is aimed to detect whether a computed tomography medical images is related to an healthy patient, to a patient with a pulmonary disease or to a patient affected with Coronavirus disease 19. In case the patient is marked by the proposed method as affected by the Coronavirus disease 19, the areas symptomatic of the Coronavirus disease 19 infection are automatically highlighted in the computed tomography medical images. We perform an experimental analysis to empirically demonstrate the effectiveness of the proposed approach, by considering medical images belonging from different institutions, with an average time for Coronavirus disease 19 detection of approximately 8.9 s and an accuracy equal to 0.95.
Collapse
Affiliation(s)
- Francesco Mercaldo
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, Campobasso, Italy.
| | - Maria Paola Belfiore
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Alfonso Reginelli
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Luca Brunese
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, Campobasso, Italy
| | - Antonella Santone
- Department of Medicine and Health Sciences "Vincenzo Tiberio", University of Molise, Campobasso, Italy
| |
Collapse
|
68
|
Chaddad A, Peng J, Xu J, Bouridane A. Survey of Explainable AI Techniques in Healthcare. SENSORS (BASEL, SWITZERLAND) 2023; 23:634. [PMID: 36679430 PMCID: PMC9862413 DOI: 10.3390/s23020634] [Citation(s) in RCA: 97] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/14/2022] [Accepted: 12/29/2022] [Indexed: 05/27/2023]
Abstract
Artificial intelligence (AI) with deep learning models has been widely applied in numerous domains, including medical imaging and healthcare tasks. In the medical field, any judgment or decision is fraught with risk. A doctor will carefully judge whether a patient is sick before forming a reasonable explanation based on the patient's symptoms and/or an examination. Therefore, to be a viable and accepted tool, AI needs to mimic human judgment and interpretation skills. Specifically, explainable AI (XAI) aims to explain the information behind the black-box model of deep learning that reveals how the decisions are made. This paper provides a survey of the most recent XAI techniques used in healthcare and related medical imaging applications. We summarize and categorize the XAI types, and highlight the algorithms used to increase interpretability in medical imaging topics. In addition, we focus on the challenging XAI problems in medical applications and provide guidelines to develop better interpretations of deep learning models using XAI concepts in medical image and text analysis. Furthermore, this survey provides future directions to guide developers and researchers for future prospective investigations on clinical topics, particularly on applications with medical imaging.
Collapse
Affiliation(s)
- Ahmad Chaddad
- School of Artificial Intelligence, Guilin University of Electronic Technology, Jinji Road, Guilin 541004, China
- The Laboratory for Imagery Vision and Artificial Intelligence, Ecole de Technologie Superieure, 1100 Rue Notre Dame O, Montreal, QC H3C 1K3, Canada
| | - Jihao Peng
- School of Artificial Intelligence, Guilin University of Electronic Technology, Jinji Road, Guilin 541004, China
| | - Jian Xu
- School of Artificial Intelligence, Guilin University of Electronic Technology, Jinji Road, Guilin 541004, China
| | - Ahmed Bouridane
- Centre for Data Analytics and Cybersecurity, University of Sharjah, Sharjah 27272, United Arab Emirates
| |
Collapse
|
69
|
Kaya Y, Gürsoy E. A MobileNet-based CNN model with a novel fine-tuning mechanism for COVID-19 infection detection. Soft comput 2023; 27:5521-5535. [PMID: 36618761 PMCID: PMC9812349 DOI: 10.1007/s00500-022-07798-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/24/2022] [Indexed: 01/05/2023]
Abstract
COVID-19 is a virus that causes upper respiratory tract and lung infections. The number of cases and deaths increased daily during the pandemic. Once it is vital to diagnose such a disease in a timely manner, the researchers have focused on computer-aided diagnosis systems. Chest X-rays have helped monitor various lung diseases consisting COVID-19. In this study, we proposed a deep transfer learning approach with novel fine-tuning mechanisms to classify COVID-19 from chest X-ray images. We presented one classical and two new fine-tuning mechanisms to increase the model's performance. Two publicly available databases were combined and used for the study, which included 3616 COVID-19 and 1576 normal (healthy) and 4265 pneumonia X-ray images. The models achieved average accuracy rates of 95.62%, 96.10%, and 97.61%, respectively, for 3-class cases with fivefold cross-validation. Numerical results show that the third model reduced 81.92% of the total fine-tuning operations and achieved better results. The proposed approach is quite efficient compared with other state-of-the-art methods of detecting COVID-19.
Collapse
Affiliation(s)
- Yasin Kaya
- Department of Computer Engineering, Adana Alparslan Turkes Science and Technology University, Adana, Turkey
| | - Ercan Gürsoy
- Department of Computer Engineering, Adana Alparslan Turkes Science and Technology University, Adana, Turkey
| |
Collapse
|
70
|
Tiwari A, Bhattacharjee K, Pant M, Srivastava S, Snasel V. An AI-enabled research support tool for the classification system of COVID-19. Front Public Health 2023; 11:1124998. [PMID: 36935722 PMCID: PMC10020488 DOI: 10.3389/fpubh.2023.1124998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 02/10/2023] [Indexed: 03/06/2023] Open
Abstract
The outbreak of COVID-19, a little more than 2 years ago, drastically affected all segments of society throughout the world. While at one end, the microbiologists, virologists, and medical practitioners were trying to find the cure for the infection; the Governments were laying emphasis on precautionary measures like lockdowns to lower the spread of the virus. This pandemic is perhaps also the first one of its kind in history that has research articles in all possible areas as like: medicine, sociology, psychology, supply chain management, mathematical modeling, etc. A lot of work is still continuing in this area, which is very important also for better preparedness if such a situation arises in future. The objective of the present study is to build a research support tool that will help the researchers swiftly identify the relevant literature on a specific field or topic regarding COVID-19 through a hierarchical classification system. The three main tasks done during this study are data preparation, data annotation and text data classification through bi-directional long short-term memory (bi-LSTM).
Collapse
Affiliation(s)
- Arti Tiwari
- Department of Applied Mathematics and Scientific Computing, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
- *Correspondence: Arti Tiwari
| | - Kamanasish Bhattacharjee
- Machine Intelligence in Medicine and Imaging (MI-2) Lab, Mayo Clinic, Phoenix, AZ, United States
- Kamanasish Bhattacharjee
| | - Millie Pant
- Department of Applied Mathematics and Scientific Computing, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
- Mehta Family School for Data Science and Artificial Intelligence, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
- Millie Pant
| | | | - Vaclav Snasel
- Department of Computer Science, VŠB-Technical University of Ostrava, Ostrava, Czechia
| |
Collapse
|
71
|
Deep Survival Analysis With Clinical Variables for COVID-19. IEEE JOURNAL OF TRANSLATIONAL ENGINEERING IN HEALTH AND MEDICINE 2023; 11:223-231. [PMID: 36950264 PMCID: PMC10027076 DOI: 10.1109/jtehm.2023.3256966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 01/08/2023] [Accepted: 03/08/2023] [Indexed: 03/18/2023]
Abstract
OBJECTIVE Millions of people have been affected by coronavirus disease 2019 (COVID-19), which has caused millions of deaths around the world. Artificial intelligence (AI) plays an increasing role in all areas of patient care, including prognostics. This paper proposes a novel predictive model based on one dimensional convolutional neural networks (1D CNN) to use clinical variables in predicting the survival outcome of COVID-19 patients. METHODS AND PROCEDURES We have considered two scenarios for survival analysis, 1) uni-variate analysis using the Log-rank test and Kaplan-Meier estimator and 2) combining all clinical variables ([Formula: see text]=44) for predicting the short-term from long-term survival. We considered the random forest (RF) model as a baseline model, comparing to our proposed 1D CNN in predicting survival groups. RESULTS Our experiments using the univariate analysis show that nine clinical variables are significantly associated with the survival outcome with corrected p < 0.05. Our approach of 1D CNN shows a significant improvement in performance metrics compared to the RF and the state-of-the-art techniques (i.e., 1D CNN) in predicting the survival group of patients with COVID-19. CONCLUSION Our model has been tested using clinical variables, where the performance is found promising. The 1D CNN model could be a useful tool for detecting the risk of mortality and developing treatment plans in a timely manner. CLINICAL IMPACT The findings indicate that using both Heparin and Exnox for treatment is typically the most useful factor in predicting a patient's chances of survival from COVID-19. Moreover, our predictive model shows that the combination of AI and clinical data can be applied to point-of-care services through fast-learning healthcare systems.
Collapse
|
72
|
Ghashghaei S, Wood DA, Sadatshojaei E, Jalilpoor M. Grayscale Image Statistical Attributes Effectively Distinguish the Severity of Lung Abnormalities in CT Scan Slices of COVID-19 Patients. SN COMPUTER SCIENCE 2023; 4:201. [PMID: 36789248 PMCID: PMC9912234 DOI: 10.1007/s42979-022-01642-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 12/27/2022] [Indexed: 02/12/2023]
Abstract
Grayscale statistical attributes analysed for 513 extract images taken from pulmonary computed tomography (CT) scan slices of 57 individuals (49 confirmed COVID-19 positive; eight confirmed COVID-19 negative) are able to accurately predict a visual score (VS from 0 to 4) used by a clinician to assess the severity of lung abnormalities in the patients. Some of these attributes can be used graphically to distinguish useful but overlapping distributions for the VS classes. Using machine and deep learning (ML/DL) algorithms with twelve grayscale image attributes as inputs enables the VS classes to be accurately distinguished. A convolutional neural network achieves this with better than 96% accuracy (only 18 images misclassified out of 513) on a supervised learning basis. Analysis of confusion matrices enables the VS prediction performance of ML/DL algorithms to be explored in detail. Those matrices demonstrate that the best performing ML/DL algorithms successfully distinguish between VS classes 0 and 1, which clinicians cannot readily do with the naked eye. Just five image grayscale attributes can also be used to generate an algorithmically defined scoring system (AS) that can also graphically distinguish the degree of pulmonary impacts in the dataset evaluated. The AS classification illustrated involves less overlap between its classes than the VS system and could be exploited as an automated expert system. The best-performing ML/DL models are able to predict the AS classes with better than 99% accuracy using twelve grayscale attributes as inputs. The decision tree and random forest algorithms accomplish that distinction with just one classification error in the 513 images tested.
Collapse
Affiliation(s)
- Sara Ghashghaei
- Medical School, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Erfan Sadatshojaei
- Department of Chemical Engineering, Shiraz University, Shiraz, 71345 Iran
| | | |
Collapse
|
73
|
Screening of COVID-19 Based on GLCM Features from CT Images Using Machine Learning Classifiers. SN COMPUTER SCIENCE 2023; 4:133. [PMID: 36593973 PMCID: PMC9798374 DOI: 10.1007/s42979-022-01583-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 12/16/2022] [Indexed: 12/30/2022]
Abstract
In healthcare, the decision-making process is crucial, including COVID-19 prevention methods should include fast diagnostic methods. Computed tomography (CT) is used to diagnose COVID patients' conditions. There is inherent variation in the texture of a CT image of COVID, much like the texture of a CT image of pneumonia. The process of diagnosing COVID images manually is difficult and challenging. Using low-resolution images and a small COVID dataset, the extraction of discriminant characteristics and fine-tuning of hyperparameters in classifiers provide challenges for computer-assisted diagnosis. In radiomics, quantitative image analysis is frequently used to evaluate the prognosis and diagnose diseases. This research tests an ML model built on GLCM features collected from chest CT images to screen for COVID-19. In this study, Support Vector Machines, K-nearest neighbors, Random Forest, and XGBoost classifiers are used together with LBGM. Tuning tests were used to regulate the hyperparameters of the model. With cross-validation, tenfold results were obtained. Random Forest and SVM were the best classification methods for GLCM features with an overall accuracy of 99.94%. The network's performance was assessed in terms of sensitivity, accuracy, and specificity.
Collapse
|
74
|
Rajamani KT, Rani P, Siebert H, ElagiriRamalingam R, Heinrich MP. Attention-augmented U-Net (AA-U-Net) for semantic segmentation. SIGNAL, IMAGE AND VIDEO PROCESSING 2023; 17:981-989. [PMID: 35910403 PMCID: PMC9311338 DOI: 10.1007/s11760-022-02302-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 05/22/2023]
Abstract
UNLABELLED Deep learning-based image segmentation models rely strongly on capturing sufficient spatial context without requiring complex models that are hard to train with limited labeled data. For COVID-19 infection segmentation on CT images, training data are currently scarce. Attention models, in particular the most recent self-attention methods, have shown to help gather contextual information within deep networks and benefit semantic segmentation tasks. The recent attention-augmented convolution model aims to capture long range interactions by concatenating self-attention and convolution feature maps. This work proposes a novel attention-augmented convolution U-Net (AA-U-Net) that enables a more accurate spatial aggregation of contextual information by integrating attention-augmented convolution in the bottleneck of an encoder-decoder segmentation architecture. A deep segmentation network (U-Net) with this attention mechanism significantly improves the performance of semantic segmentation tasks on challenging COVID-19 lesion segmentation. The validation experiments show that the performance gain of the attention-augmented U-Net comes from their ability to capture dynamic and precise (wider) attention context. The AA-U-Net achieves Dice scores of 72.3% and 61.4% for ground-glass opacity and consolidation lesions for COVID-19 segmentation and improves the accuracy by 4.2% points against a baseline U-Net and 3.09% points compared to a baseline U-Net with matched parameters. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s11760-022-02302-3.
Collapse
Affiliation(s)
| | - Priya Rani
- Applied Artificial Intelligence Institute, Deakin University, Burwood, VIC 3125 Australia
| | - Hanna Siebert
- Institute of Medical Informatics, University of Lübeck, Luebeck, Germany
| | | | | |
Collapse
|
75
|
Aminu M, Yadav D, Hong L, Young E, Edelkamp P, Saad M, Salehjahromi M, Chen P, Sujit SJ, Chen MM, Sabloff B, Gladish G, de Groot PM, Godoy MCB, Cascone T, Vokes NI, Zhang J, Brock KK, Daver N, Woodman SE, Tawbi HA, Sheshadri A, Lee JJ, Jaffray D, D3CODE Team, Wu CC, Chung C, Wu J. Habitat Imaging Biomarkers for Diagnosis and Prognosis in Cancer Patients Infected with COVID-19. Cancers (Basel) 2022; 15:275. [PMID: 36612278 PMCID: PMC9818576 DOI: 10.3390/cancers15010275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 01/03/2023] Open
Abstract
OBJECTIVES Cancer patients have worse outcomes from the COVID-19 infection and greater need for ventilator support and elevated mortality rates than the general population. However, previous artificial intelligence (AI) studies focused on patients without cancer to develop diagnosis and severity prediction models. Little is known about how the AI models perform in cancer patients. In this study, we aim to develop a computational framework for COVID-19 diagnosis and severity prediction particularly in a cancer population and further compare it head-to-head to a general population. METHODS We have enrolled multi-center international cohorts with 531 CT scans from 502 general patients and 420 CT scans from 414 cancer patients. In particular, the habitat imaging pipeline was developed to quantify the complex infection patterns by partitioning the whole lung regions into phenotypically different subregions. Subsequently, various machine learning models nested with feature selection were built for COVID-19 detection and severity prediction. RESULTS These models showed almost perfect performance in COVID-19 infection diagnosis and predicting its severity during cross validation. Our analysis revealed that models built separately on the cancer population performed significantly better than those built on the general population and locked to test on the cancer population. This may be because of the significant difference among the habitat features across the two different cohorts. CONCLUSIONS Taken together, our habitat imaging analysis as a proof-of-concept study has highlighted the unique radiologic features of cancer patients and demonstrated effectiveness of CT-based machine learning model in informing COVID-19 management in the cancer population.
Collapse
Affiliation(s)
- Muhammad Aminu
- Department of Imaging Physics, MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Divya Yadav
- Department of Radiation Oncology, MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Lingzhi Hong
- Department of Imaging Physics, MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Elliana Young
- Department of Enterprise Data Engineering & Analytics, MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Paul Edelkamp
- Department of Enterprise Data Engineering & Analytics, MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Maliazurina Saad
- Department of Imaging Physics, MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Morteza Salehjahromi
- Department of Imaging Physics, MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Pingjun Chen
- Department of Imaging Physics, MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Sheeba J. Sujit
- Department of Imaging Physics, MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Melissa M. Chen
- Department of Neuroradiology, MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Bradley Sabloff
- Department of Thoracic Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Gregory Gladish
- Department of Thoracic Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Patricia M. de Groot
- Department of Thoracic Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Myrna C. B. Godoy
- Department of Thoracic Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Tina Cascone
- Department of Thoracic/Head and Neck Medical Oncology, MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Natalie I. Vokes
- Department of Thoracic/Head and Neck Medical Oncology, MD Anderson Cancer Center, Houston, TX 77054, USA
- Department of Genomic Medicine, MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Jianjun Zhang
- Department of Thoracic/Head and Neck Medical Oncology, MD Anderson Cancer Center, Houston, TX 77054, USA
- Department of Genomic Medicine, MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Kristy K. Brock
- Department of Imaging Physics, MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
| | - Naval Daver
- Department of Leukemia, MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Scott E. Woodman
- Department of Genomic Medicine, MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Hussein A. Tawbi
- Department of Melanoma Medical Oncology, MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Ajay Sheshadri
- Department of Pulmonary Medicine, MD Anderson Cancer Center, Houston, TX 77054, USA
| | - J. Jack Lee
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - David Jaffray
- Office of the Chief Technology and Digital Officer, MD Anderson Cancer Center, Houston, TX 77054, USA
| | | | - Carol C. Wu
- Department of Thoracic Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Caroline Chung
- Office of the Chief Data Officer, MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Jia Wu
- Department of Imaging Physics, MD Anderson Cancer Center, 1515 Holcombe Blvd, Houston, TX 77030, USA
- Department of Thoracic/Head and Neck Medical Oncology, MD Anderson Cancer Center, Houston, TX 77054, USA
| |
Collapse
|
76
|
Cao Z, Huang J, He X, Zong Z. BND-VGG-19: A deep learning algorithm for COVID-19 identification utilizing X-ray images. Knowl Based Syst 2022; 258:110040. [PMID: 36284666 PMCID: PMC9585896 DOI: 10.1016/j.knosys.2022.110040] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/09/2022] [Accepted: 10/14/2022] [Indexed: 11/06/2022]
Abstract
During the past two years, a highly infectious virus known as COVID-19 has been damaging and harming the health of people all over the world. Simultaneously, the number of patients is rising in various countries, with many new cases appearing daily, posing a significant challenge to hospital medical staff. It is necessary to improve the efficiency of virus detection. To this end, we combine modern technology and visual assistance to detect COVID-19. Based on the above facts, for accurate and rapid identification of infected persons, the BND-VGG-19 method was proposed. This method is based on VGG-19 and further incorporates batch normalization and dropout layers between the layers to improve network accuracy. Then, the COVID-19 dataset including viral pneumonia, COVID-19, and normal X-ray images, are used to diagnose lung abnormalities and test the performance of the proposed algorithm. The experimental results show the superiority of BND-VGG-19 with a 95.48% accuracy rate compared with existing COVID-19 diagnostic methods.
Collapse
Affiliation(s)
- Zili Cao
- Chongqing Key Laboratory of Nonlinear Circuits and Intelligent Information Processing, College of Electronic and Information Engineering, Southwest University, Chongqing 400715, PR China
| | - Junjian Huang
- Chongqing Key Laboratory of Nonlinear Circuits and Intelligent Information Processing, College of Electronic and Information Engineering, Southwest University, Chongqing 400715, PR China,Corresponding author
| | - Xing He
- Chongqing Key Laboratory of Nonlinear Circuits and Intelligent Information Processing, College of Electronic and Information Engineering, Southwest University, Chongqing 400715, PR China
| | - Zhaowen Zong
- Department of Training Base for Health Care, Army Medical University, Chongqing 400038, PR China
| |
Collapse
|
77
|
Al-Shourbaji I, Kachare PH, Abualigah L, Abdelhag ME, Elnaim B, Anter AM, Gandomi AH. A Deep Batch Normalized Convolution Approach for Improving COVID-19 Detection from Chest X-ray Images. Pathogens 2022; 12:17. [PMID: 36678365 PMCID: PMC9860560 DOI: 10.3390/pathogens12010017] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/12/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Pre-trained machine learning models have recently been widely used to detect COVID-19 automatically from X-ray images. Although these models can selectively retrain their layers for the desired task, the output remains biased due to the massive number of pre-trained weights and parameters. This paper proposes a novel batch normalized convolutional neural network (BNCNN) model to identify COVID-19 cases from chest X-ray images in binary and multi-class frameworks with a dual aim to extract salient features that improve model performance over pre-trained image analysis networks while reducing computational complexity. The BNCNN model has three phases: Data pre-processing to normalize and resize X-ray images, Feature extraction to generate feature maps, and Classification to predict labels based on the feature maps. Feature extraction uses four repetitions of a block comprising a convolution layer to learn suitable kernel weights for the features map, a batch normalization layer to solve the internal covariance shift of feature maps, and a max-pooling layer to find the highest-level patterns by increasing the convolution span. The classifier section uses two repetitions of a block comprising a dense layer to learn complex feature maps, a batch normalization layer to standardize internal feature maps, and a dropout layer to avoid overfitting while aiding the model generalization. Comparative analysis shows that when applied to an open-access dataset, the proposed BNCNN model performs better than four other comparative pre-trained models for three-way and two-way class datasets. Moreover, the BNCNN requires fewer parameters than the pre-trained models, suggesting better deployment suitability on low-resource devices.
Collapse
Affiliation(s)
- Ibrahim Al-Shourbaji
- Department of Computer Science, University of Hertfordshire, Hatfield AL10 9AB, UK
| | - Pramod H. Kachare
- Department of Electronics & Telecommunication Engineering, Ramrao Adik Institute of Technology, Nerul, Navi Mumbai 400706, Maharashtra, India
| | - Laith Abualigah
- Computer Science Department, Prince Hussein Bin Abdullah Faculty for Information Technology, Al al-Bayt University, Mafraq 25113, Jordan
- Hourani Center for Applied Scientific Research, Al-Ahliyya Amman University, Amman 19328, Jordan
- Faculty of Information Technology, Middle East University, Amman 11831, Jordan
- Applied Science Research Center, Applied Science Private University, Amman 11931, Jordan
- School of Computer Sciences, Universiti Sains Malaysia, Pulau Pinang 11800, Malaysia
| | - Mohammed E. Abdelhag
- Department of Information Technology and Security, Jazan University, Jazan 45142, Saudi Arabia
| | - Bushra Elnaim
- Department of Computer Science, College of Science and Humanities in Al-Sulail, Prince Sattam bin Abdulaziz University, Riyadh 11671, Saudi Arabia
| | - Ahmed M. Anter
- Egypt-Japan University of Science and Technology (E-JUST), Alexandria 21934, Egypt
- Faculty of Computers and Artificial Intelligence, Beni-Suef University, Benisuef 62511, Egypt
| | - Amir H. Gandomi
- Faculty of Engineering and IT, University of Technology Sydney, Ultimo, NSW 2007, Australia
- University Research and Innovation Center (EKIK), Óbuda University, 1034 Budapest, Hungary
| |
Collapse
|
78
|
Uddin KMM, Dey SK, Babu HMH, Mostafiz R, Uddin S, Shoombuatong W, Moni MA. Feature fusion based VGGFusionNet model to detect COVID-19 patients utilizing computed tomography scan images. Sci Rep 2022; 12:21796. [PMID: 36526680 PMCID: PMC9757637 DOI: 10.1038/s41598-022-25539-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 11/30/2022] [Indexed: 12/23/2022] Open
Abstract
COVID-19 is one of the most life-threatening and dangerous diseases caused by the novel Coronavirus, which has already afflicted a larger human community worldwide. This pandemic disease recovery is possible if detected in the early stage. We proposed an automated deep learning approach from Computed Tomography (CT) scan images to detect COVID-19 positive patients by following a four-phase paradigm for COVID-19 detection: preprocess the CT scan images; remove noise from test image by using anisotropic diffusion techniques; make a different segment for the preprocessed images; and train and test COVID-19 detection using Convolutional Neural Network (CNN) models. This study employed well-known pre-trained models, including AlexNet, ResNet50, VGG16 and VGG19 to evaluate experiments. 80% of images are used to train the network in the detection process, while the remaining 20% are used to test it. The result of the experiment evaluation confirmed that the VGG19 pre-trained CNN model achieved better accuracy (98.06%). We used 4861 real-life COVID-19 CT images for experiment purposes, including 3068 positive and 1793 negative images. These images were acquired from a hospital in Sao Paulo, Brazil and two other different data sources. Our proposed method revealed very high accuracy and, therefore, can be used as an assistant to help professionals detect COVID-19 patients accurately.
Collapse
Affiliation(s)
| | - Samrat Kumar Dey
- grid.443070.4School of Science and Technology, Bangladesh Open University, Gazipur, 1705 Bangladesh
| | - Hafiz Md. Hasan Babu
- grid.8198.80000 0001 1498 6059Department of Computer Science and Engineering, University of Dhaka, Dhaka, 1000 Bangladesh
| | - Rafid Mostafiz
- grid.449503.f0000 0004 1798 7083Institute of Information Technology, Noakhali Science and Technology University, Noakhali, 3814 Bangladesh
| | - Shahadat Uddin
- grid.1013.30000 0004 1936 834XSchool of Project Management, Faculty of Engineering, The University of Sydney, Forest Lodge, NSW 2037 Australia
| | - Watshara Shoombuatong
- grid.10223.320000 0004 1937 0490Center of Data Mining and Biomedical Informatics, Faculty of Medical Technology, Mahidol University, Bangkok, 10700 Thailand
| | - Mohammad Ali Moni
- grid.1003.20000 0000 9320 7537Artificial Intelligence and Digital Health Data Science, School of Health and Rehabilitation Sciences, Faculty of Health and Behavioural Sciences, The University of Queensland, St Lucia, QLD 4072 Australia
| |
Collapse
|
79
|
Li B, Jiang L, Lin D, Dong J. Registered Clinical Trials for Artificial Intelligence in Lung Disease: A Scoping Review on ClinicalTrials.gov. Diagnostics (Basel) 2022; 12:3046. [PMID: 36553052 PMCID: PMC9777443 DOI: 10.3390/diagnostics12123046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 11/06/2022] [Accepted: 11/14/2022] [Indexed: 12/12/2022] Open
Abstract
Clinical trials are the most effective tools to evaluate the advantages of various diagnostic and treatment modalities. AI used in medical issues, including screening, diagnosis, and treatment decisions, improves health outcomes and patient experiences. This study's objective was to investigate the traits of registered trials on artificial intelligence for lung disease. Clinical studies on AI for lung disease that were present in the ClinicalTrials.gov database were searched, and fifty-three registered trials were included. Forty-six (72.1%) were observational trials, compared to seven (27.9%) that were interventional trials. Only eight trials (15.4%) were completed. Thirty (56.6%) trials were accepting applicants. Clinical studies often included a large number of cases; for example, 24 (32.0%) trials included samples of 100-1000 cases, while 14 (17.5%) trials included samples of 1000-2000 cases. Of the interventional trials, twenty (15.7%) were retrospective studies and twenty (65.7%) were prospective studies.
Collapse
Affiliation(s)
- Bingjie Li
- Department of Thoracic Oncology and State Key Laboratory of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu 610017, China
| | - Lisha Jiang
- Department of Nuclear Medicine, West China Hospital, Sichuan University, Chengdu 610017, China
| | - Dan Lin
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu 610017, China
| | - Jingsi Dong
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu 610017, China
| |
Collapse
|
80
|
Kato S, Oda M, Mori K, Shimizu A, Otake Y, Hashimoto M, Akashi T, Hotta K. Classification and visual explanation for COVID-19 pneumonia from CT images using triple learning. Sci Rep 2022; 12:20840. [PMID: 36460708 PMCID: PMC9716499 DOI: 10.1038/s41598-022-24936-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 11/22/2022] [Indexed: 12/03/2022] Open
Abstract
This study presents a novel framework for classifying and visualizing pneumonia induced by COVID-19 from CT images. Although many image classification methods using deep learning have been proposed, in the case of medical image fields, standard classification methods are unable to be used in some cases because the medical images that belong to the same category vary depending on the progression of the symptoms and the size of the inflamed area. In addition, it is essential that the models used be transparent and explainable, allowing health care providers to trust the models and avoid mistakes. In this study, we propose a classification method using contrastive learning and an attention mechanism. Contrastive learning is able to close the distance for images of the same category and generate a better feature space for classification. An attention mechanism is able to emphasize an important area in the image and visualize the location related to classification. Through experiments conducted on two-types of classification using a three-fold cross validation, we confirmed that the classification accuracy was significantly improved; in addition, a detailed visual explanation was achieved comparison with conventional methods.
Collapse
Affiliation(s)
- Sota Kato
- Department of Electrical, Information, Materials and Materials Engineering, Graduate School of Science and Engineering, Meijo University, Shiogamaguchi, Tempaku-ku, Nagoya, Aichi, 468-8502, Japan.
| | - Masahiro Oda
- Information Strategy Office, Information and Communications, Nagoya University, Nagoya, Aichi, Japan
- Graduate School of Informatics, Nagoya University, Nagoya, Aichi, Japan
| | - Kensaku Mori
- Information Strategy Office, Information and Communications, Nagoya University, Nagoya, Aichi, Japan
- Graduate School of Informatics, Nagoya University, Nagoya, Aichi, Japan
- Research Center for Medical Bigdata, National Institute of Informatics, Tokyo, Japan
| | - Akinobu Shimizu
- Institute of Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo, Japan
| | - Yoshito Otake
- Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, Japan
- Research Center for Medical Bigdata, National Institute of Informatics, Tokyo, Japan
| | - Masahiro Hashimoto
- Department of Radiology, Keio University School of Medicine, Tokyo, Japan
| | | | - Kazuhiro Hotta
- Department of Electrical and Electronic Engineering, Faculty of Engineering, Meijo University, Nagoya, Aichi, Japan
| |
Collapse
|
81
|
Rahman T, Akinbi A, Chowdhury MEH, Rashid TA, Şengür A, Khandakar A, Islam KR, Ismael AM. COV-ECGNET: COVID-19 detection using ECG trace images with deep convolutional neural network. Health Inf Sci Syst 2022; 10:1. [PMID: 35096384 PMCID: PMC8785028 DOI: 10.1007/s13755-021-00169-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 12/27/2021] [Indexed: 12/25/2022] Open
Abstract
The reliable and rapid identification of the COVID-19 has become crucial to prevent the rapid spread of the disease, ease lockdown restrictions and reduce pressure on public health infrastructures. Recently, several methods and techniques have been proposed to detect the SARS-CoV-2 virus using different images and data. However, this is the first study that will explore the possibility of using deep convolutional neural network (CNN) models to detect COVID-19 from electrocardiogram (ECG) trace images. In this work, COVID-19 and other cardiovascular diseases (CVDs) were detected using deep-learning techniques. A public dataset of ECG images consisting of 1937 images from five distinct categories, such as normal, COVID-19, myocardial infarction (MI), abnormal heartbeat (AHB), and recovered myocardial infarction (RMI) were used in this study. Six different deep CNN models (ResNet18, ResNet50, ResNet101, InceptionV3, DenseNet201, and MobileNetv2) were used to investigate three different classification schemes: (i) two-class classification (normal vs COVID-19); (ii) three-class classification (normal, COVID-19, and other CVDs), and finally, (iii) five-class classification (normal, COVID-19, MI, AHB, and RMI). For two-class and three-class classification, Densenet201 outperforms other networks with an accuracy of 99.1%, and 97.36%, respectively; while for the five-class classification, InceptionV3 outperforms others with an accuracy of 97.83%. ScoreCAM visualization confirms that the networks are learning from the relevant area of the trace images. Since the proposed method uses ECG trace images which can be captured by smartphones and are readily available facilities in low-resources countries, this study will help in faster computer-aided diagnosis of COVID-19 and other cardiac abnormalities.
Collapse
Affiliation(s)
- Tawsifur Rahman
- Department of Electrical Engineering, Qatar University, 2713 Doha, Qatar
| | - Alex Akinbi
- School of Computer Science and Mathematics, Liverpool John Moores University, Liverpool, UK
| | | | - Tarik A. Rashid
- Computer Science and Engineering Department, School of Science and Engineering, University of Kurdistan Hewler, Erbīl, KRG Iraq
| | - Abdulkadir Şengür
- Electrical-Electronics Engineering Department, Technology Faculty, Firat University, Elazig, Turkey
| | - Amith Khandakar
- Department of Electrical Engineering, Qatar University, 2713 Doha, Qatar
| | | | - Aras M. Ismael
- Information Technology Department, College of Informatics, Sulaimani Polytechnic University, Sulaymaniyah, Iraq
| |
Collapse
|
82
|
Díaz-Lozano M, Guijo-Rubio D, Gutiérrez PA, Gómez-Orellana AM, Túñez I, Ortigosa-Moreno L, Romanos-Rodríguez A, Padillo-Ruiz J, Hervás-Martínez C. COVID-19 contagion forecasting framework based on curve decomposition and evolutionary artificial neural networks: A case study in Andalusia, Spain. EXPERT SYSTEMS WITH APPLICATIONS 2022; 207:117977. [PMID: 35784094 PMCID: PMC9235375 DOI: 10.1016/j.eswa.2022.117977] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 06/17/2022] [Accepted: 06/22/2022] [Indexed: 05/09/2023]
Abstract
Many types of research have been carried out with the aim of combating the COVID-19 pandemic since the first outbreak was detected in Wuhan, China. Anticipating the evolution of an outbreak helps to devise suitable economic, social and health care strategies to mitigate the effects of the virus. For this reason, predicting the SARS-CoV-2 transmission rate has become one of the most important and challenging problems of the past months. In this paper, we apply a two-stage mid and long-term forecasting framework to the epidemic situation in eight districts of Andalusia, Spain. First, an analytical procedure is performed iteratively to fit polynomial curves to the cumulative curve of contagions. Then, the extracted information is used for estimating the parameters and structure of an evolutionary artificial neural network with hybrid architectures (i.e., with different basis functions for the hidden nodes) while considering single and simultaneous time horizon estimations. The results obtained demonstrate that including polynomial information extracted during the training stage significantly improves the mid- and long-term estimations in seven of the eight considered districts. The increase in average accuracy (for the joint mid- and long-term horizon forecasts) is 37.61% and 35.53% when considering the single and simultaneous forecast approaches, respectively.
Collapse
Affiliation(s)
| | - David Guijo-Rubio
- Department of Computer Science and Numerical Analysis, University of Cordoba, 14071 Cordoba, Spain
| | - Pedro Antonio Gutiérrez
- Department of Computer Science and Numerical Analysis, University of Cordoba, 14071 Cordoba, Spain
| | | | - Isaac Túñez
- Maimonides Institute for Biomedical Research of Córdoba (IMIBIC), 14071 Córdoba, Spain
| | | | | | - Javier Padillo-Ruiz
- University of Sevilla. University Hospital Virgen del Rocío, 41013 Sevilla, Spain
| | - César Hervás-Martínez
- Department of Computer Science and Numerical Analysis, University of Cordoba, 14071 Cordoba, Spain
| |
Collapse
|
83
|
Fan J, Qin B, Gu F, Wang Z, Liu X, Zhu Q, Yang J. Automatic Detection of Horner Syndrome by Using Facial Images. JOURNAL OF HEALTHCARE ENGINEERING 2022; 2022:8670350. [PMID: 36451761 PMCID: PMC9705100 DOI: 10.1155/2022/8670350] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 10/14/2022] [Accepted: 10/19/2022] [Indexed: 10/17/2023]
Abstract
Horner syndrome is a clinical constellation that presents with miosis, ptosis, and facial anhidrosis. It is important as a warning sign of the damaged oculosympathetic chain, potentially with serious causes. However, the diagnosis of Horner syndrome is operator dependent and subjective. This study aims to present an objective method that can recognize Horner sign from facial photos and verify its accuracy. A total of 173 images were collected, annotated, and divided into training and testing groups. Two types of classifiers were trained (two-stage classifier and one-stage classifier). The two-stage method utilized the MediaPipe face mesh to estimate the coordinates of landmarks and generate facial geometric features accordingly. Then, ten machine learning classifiers were trained based on this. The one-stage classifier was trained based on one of the latest algorithms, YOLO v5. The performance of the classifier was evaluated by the diagnosis accuracy, sensitivity, and specificity. For the two-stage model, the MediaPipe successfully detected 92.2% of images in the testing group, and the Decision Tree Classifier presented the highest accuracy (0.790). The sensitivity and specificity of this classifier were 0.432 and 0.970, respectively. As for the one-stage classifier, the accuracy, sensitivity, and specificity were 0.65, 0.51, and 0.84, respectively. The results of this study proved the possibility of automatic detection of Horner syndrome from images. This tool could work as a second advisor for neurologists by reducing subjectivity and increasing accuracy in diagnosing Horner syndrome.
Collapse
Affiliation(s)
- Jingyuan Fan
- Department of Microsurgery Orthopedic Trauma and Hand Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Bengang Qin
- Department of Microsurgery Orthopedic Trauma and Hand Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
- Guangdong Province Engineering Laboratory for Soft Tissue Biofabrication, Guangzhou 510080, China
- Guangdong Provincial Key Laboratory for Orthopedics and Traumatology, Guangzhou 510080, China
| | - Fanbin Gu
- Department of Microsurgery Orthopedic Trauma and Hand Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Zhaoyang Wang
- Department of Microsurgery Orthopedic Trauma and Hand Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
| | - Xiaolin Liu
- Department of Microsurgery Orthopedic Trauma and Hand Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
- Guangdong Province Engineering Laboratory for Soft Tissue Biofabrication, Guangzhou 510080, China
- Guangdong Provincial Key Laboratory for Orthopedics and Traumatology, Guangzhou 510080, China
| | - Qingtang Zhu
- Department of Microsurgery Orthopedic Trauma and Hand Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
- Guangdong Province Engineering Laboratory for Soft Tissue Biofabrication, Guangzhou 510080, China
- Guangdong Provincial Key Laboratory for Orthopedics and Traumatology, Guangzhou 510080, China
| | - Jiantao Yang
- Department of Microsurgery Orthopedic Trauma and Hand Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou 510080, China
- Guangdong Province Engineering Laboratory for Soft Tissue Biofabrication, Guangzhou 510080, China
- Guangdong Provincial Key Laboratory for Orthopedics and Traumatology, Guangzhou 510080, China
| |
Collapse
|
84
|
Hassan MM, AlQahtani SA, Alelaiwi A, Papa JP. Explaining COVID-19 diagnosis with Taylor decompositions. Neural Comput Appl 2022; 35:1-14. [PMID: 36415284 PMCID: PMC9672580 DOI: 10.1007/s00521-022-08021-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 10/26/2022] [Indexed: 11/19/2022]
Abstract
The COVID-19 pandemic has devastated the entire globe since its first appearance at the end of 2019. Although vaccines are now in production, the number of contaminations remains high, thus increasing the number of specialized personnel that can analyze clinical exams and points out the final diagnosis. Computed tomography and X-ray images are the primary sources for computer-aided COVID-19 diagnosis, but we still lack better interpretability of such automated decision-making mechanisms. This manuscript presents an insightful comparison of three approaches based on explainable artificial intelligence (XAI) to light up interpretability in the context of COVID-19 diagnosis using deep networks: Composite Layer-wise Propagation, Single Taylor Decomposition, and Deep Taylor Decomposition. Two deep networks have been used as the backbones to assess the explanation skills of the XAI approaches mentioned above: VGG11 and VGG16. We hope that such work can be used as a basis for further research on XAI and COVID-19 diagnosis for each approach figures its own positive and negative points.
Collapse
Affiliation(s)
- Mohammad Mehedi Hassan
- College of Computer and Information Sciences, King Saud University, Riyadh, 11543 Saudi Arabia
| | - Salman A. AlQahtani
- College of Computer and Information Sciences, King Saud University, Riyadh, 11543 Saudi Arabia
| | - Abdulhameed Alelaiwi
- College of Computer and Information Sciences, King Saud University, Riyadh, 11543 Saudi Arabia
| | - João P. Papa
- Department of Computing, São Paulo State University, Bauru, Brazil
| |
Collapse
|
85
|
Lee KW, Chin RKY. Diverse COVID-19 CT Image-to-Image Translation with Stacked Residual Dropout. Bioengineering (Basel) 2022; 9:698. [PMID: 36421099 PMCID: PMC9688018 DOI: 10.3390/bioengineering9110698] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 10/31/2022] [Accepted: 11/13/2022] [Indexed: 01/11/2024] Open
Abstract
Machine learning models are renowned for their high dependency on a large corpus of data in solving real-world problems, including the recent COVID-19 pandemic. In practice, data acquisition is an onerous process, especially in medical applications, due to lack of data availability for newly emerged diseases and privacy concerns. This study introduces a data synthesization framework (sRD-GAN) that generates synthetic COVID-19 CT images using a novel stacked-residual dropout mechanism (sRD). sRD-GAN aims to alleviate the problem of data paucity by generating synthetic lung medical images that contain precise radiographic annotations. The sRD mechanism is designed using a regularization-based strategy to facilitate perceptually significant instance-level diversity without content-style attribute disentanglement. Extensive experiments show that sRD-GAN can generate exceptional perceptual realism on COVID-19 CT images examined by an experiment radiologist, with an outstanding Fréchet Inception Distance (FID) of 58.68 and Learned Perceptual Image Patch Similarity (LPIPS) of 0.1370 on the test set. In a benchmarking experiment, sRD-GAN shows superior performance compared to GAN, CycleGAN, and one-to-one CycleGAN. The encouraging results achieved by sRD-GAN in different clinical cases, such as community-acquired pneumonia CT images and COVID-19 in X-ray images, suggest that the proposed method can be easily extended to other similar image synthetization problems.
Collapse
Affiliation(s)
| | - Renee Ka Yin Chin
- Faculty of Engineering, Universiti Malaysia Sabah, Kota Kinabalu 88400, Malaysia
| |
Collapse
|
86
|
M M, P S. COVID-19 infection prediction from CT scan images of lungs using Iterative Convolution Neural Network model. ADVANCES IN ENGINEERING SOFTWARE (BARKING, LONDON, ENGLAND : 1992) 2022; 173:103214. [PMID: 35919705 PMCID: PMC9335012 DOI: 10.1016/j.advengsoft.2022.103214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/13/2022] [Accepted: 07/23/2022] [Indexed: 06/04/2023]
Abstract
World Health Organization has defined COVID-19 as a contagious, communicable and fast spreading disease engendered by the Corona virus, SARS-CoV-2, is a respirational microorganism. Computerized Tomography (CT) scan images of the chest helps in detecting COVID 19 infection in a fast way with much reliability. In this paper, chest CT scan images of COVID and Non-COVID categories are considered to train the supervised classifier, Iterative convolution Neural Network. The training process is done with six different training data size. The trained models are iterated for the fixed size of testing data (20 images). The same set of training and testing processes are done with two different Iterative Convolutional Neural Network architectures, one with two hidden layers (CNN1) and another with three hidden layers (CNN2). The iterations are extended up to 7, but the model performance is degraded after the 6th iteration, which makes to fix the iteration level as 5 for both CNN models. Six different training sets with five iterations have led into 30 CNN models. For two different CNN architectures, which lead to 60 different models. The model designed with 100 training sets in both CNN1 and CNN2, have produced the high accuracy in COVID classification than any other models. The better classification accuracy 89% is achieved from CNN2 model with its 5th iteration.
Collapse
Affiliation(s)
- Madhavi M
- School of Computing, SRM Institute of Science and Technology, KTR Campus, Tamil Nadu, India
| | - Supraja P
- School of Computing, SRM Institute of Science and Technology, KTR Campus, Tamil Nadu, India
| |
Collapse
|
87
|
Jalali Moghaddam M, Ghavipour M. Towards smart diagnostic methods for COVID-19: Review of deep learning for medical imaging. IPEM-TRANSLATION 2022; 3:100008. [PMID: 36312890 PMCID: PMC9597575 DOI: 10.1016/j.ipemt.2022.100008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 10/20/2022] [Accepted: 10/24/2022] [Indexed: 11/08/2022]
Abstract
The infectious disease known as COVID-19 has spread dramatically all over the world since December 2019. The fast diagnosis and isolation of infected patients are key factors in slowing down the spread of this virus and better management of the pandemic. Although the CT and X-ray modalities are commonly used for the diagnosis of COVID-19, identifying COVID-19 patients from medical images is a time-consuming and error-prone task. Artificial intelligence has shown to have great potential to speed up and optimize the prognosis and diagnosis process of COVID-19. Herein, we review publications on the application of deep learning (DL) techniques for diagnostics of patients with COVID-19 using CT and X-ray chest images for a period from January 2020 to October 2021. Our review focuses solely on peer-reviewed, well-documented articles. It provides a comprehensive summary of the technical details of models developed in these articles and discusses the challenges in the smart diagnosis of COVID-19 using DL techniques. Based on these challenges, it seems that the effectiveness of the developed models in clinical use needs to be further investigated. This review provides some recommendations to help researchers develop more accurate prediction models.
Collapse
Affiliation(s)
- Marjan Jalali Moghaddam
- Department of Computer Engineering and Information Technology, Amirkabir University of Technology, Tehran, Iran
| | - Mina Ghavipour
- Department of Computer Engineering and Information Technology, Amirkabir University of Technology, Tehran, Iran
| |
Collapse
|
88
|
Zhang Y, Yang D, Lam S, Li B, Teng X, Zhang J, Zhou T, Ma Z, Ying TC(M, Cai J. Radiomics-Based Detection of COVID-19 from Chest X-ray Using Interpretable Soft Label-Driven TSK Fuzzy Classifier. Diagnostics (Basel) 2022; 12:2613. [PMID: 36359456 PMCID: PMC9689330 DOI: 10.3390/diagnostics12112613] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/16/2022] [Accepted: 10/18/2022] [Indexed: 05/22/2024] Open
Abstract
The COVID-19 pandemic has posed a significant global public health threat with an escalating number of new cases and death toll daily. The early detection of COVID-related CXR abnormality potentially allows the early isolation of suspected cases. Chest X-Ray (CXR) is a fast and highly accessible imaging modality. Recently, a number of CXR-based AI models have been developed for the automated detection of COVID-19. However, most existing models are difficult to interpret due to the use of incomprehensible deep features in their models. Confronted with this, we developed an interpretable TSK fuzzy system in this study for COVID-19 detection using radiomics features extracted from CXR images. There are two main contributions. (1) When TSK fuzzy systems are applied to classification tasks, the commonly used binary label matrix of training samples is transformed into a soft one in order to learn a more discriminant transformation matrix and hence improve classification accuracy. (2) Based on the assumption that the samples in the same class should be kept as close as possible when they are transformed into the label space, the compactness class graph is introduced to avoid overfitting caused by label matrix relaxation. Our proposed model for a multi-categorical classification task (COVID-19 vs. No-Findings vs. Pneumonia) was evaluated using 600 CXR images from publicly available datasets and compared against five state-of-the-art AI models in aspects of classification accuracy. Experimental findings showed that our model achieved classification accuracy of over 83%, which is better than the state-of-the-art models, while maintaining high interpretability.
Collapse
Affiliation(s)
- Yuanpeng Zhang
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
- Department of Medical informatics, Nantong University, Nantong 226007, China
| | - Dongrong Yang
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Saikit Lam
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Bing Li
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Xinzhi Teng
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Jiang Zhang
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Ta Zhou
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Zongrui Ma
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Tin-Cheung (Michael) Ying
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| | - Jing Cai
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China
| |
Collapse
|
89
|
Doraiswami PR, Sarveshwaran V, Swamidason ITJ, Sorna SCD. Jaya-tunicate swarm algorithm based generative adversarial network for COVID-19 prediction with chest computed tomography images. CONCURRENCY AND COMPUTATION : PRACTICE & EXPERIENCE 2022; 34:e7211. [PMID: 35945987 PMCID: PMC9353441 DOI: 10.1002/cpe.7211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 03/30/2022] [Accepted: 05/06/2022] [Indexed: 06/15/2023]
Abstract
A novel corona virus (COVID-19) has materialized as the respiratory syndrome in recent decades. Chest computed tomography scanning is the significant technology for monitoring and predicting COVID-19. To predict the patients of COVID-19 at early stage poses an open challenge in the research community. Therefore, an effective prediction mechanism named Jaya-tunicate swarm algorithm driven generative adversarial network (Jaya-TSA with GAN) is proposed in this research to find patients of COVID-19 infections. The developed Jaya-TSA is the incorporation of Jaya algorithm with tunicate swarm algorithm (TSA). However, lungs lobs are segmented using Bayesian fuzzy clustering, which effectively find the boundary regions of lung lobes. Based on the extracted features, the process of COVID-19 prediction is accomplished using GAN. The optimal solution is obtained by training GAN using proposed Jaya-TSA with respect to fitness measure. The dimensionality of features is reduced by extracting the optimal features, which enable to increase the speed of training process. Moreover, the developed Jaya-TSA based GAN attained outstanding effectiveness by considering the factors, like, specificity, accuracy, and sensitivity that captured the importance as 0.8857, 0.8727, and 0.85 by varying training data.
Collapse
Affiliation(s)
| | - Velliangiri Sarveshwaran
- Department of Computational IntelligenceSRM Institute of Science and Technology, Kattankulathur CampusChennaiIndia
| | | | | |
Collapse
|
90
|
Addo D, Zhou S, Jackson JK, Nneji GU, Monday HN, Sarpong K, Patamia RA, Ekong F, Owusu-Agyei CA. EVAE-Net: An Ensemble Variational Autoencoder Deep Learning Network for COVID-19 Classification Based on Chest X-ray Images. Diagnostics (Basel) 2022; 12:2569. [PMID: 36359413 PMCID: PMC9689048 DOI: 10.3390/diagnostics12112569] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/13/2022] [Accepted: 10/18/2022] [Indexed: 09/08/2024] Open
Abstract
The COVID-19 pandemic has had a significant impact on many lives and the economies of many countries since late December 2019. Early detection with high accuracy is essential to help break the chain of transmission. Several radiological methodologies, such as CT scan and chest X-ray, have been employed in diagnosing and monitoring COVID-19 disease. Still, these methodologies are time-consuming and require trial and error. Machine learning techniques are currently being applied by several studies to deal with COVID-19. This study exploits the latent embeddings of variational autoencoders combined with ensemble techniques to propose three effective EVAE-Net models to detect COVID-19 disease. Two encoders are trained on chest X-ray images to generate two feature maps. The feature maps are concatenated and passed to either a combined or individual reparameterization phase to generate latent embeddings by sampling from a distribution. The latent embeddings are concatenated and passed to a classification head for classification. The COVID-19 Radiography Dataset from Kaggle is the source of chest X-ray images. The performances of the three models are evaluated. The proposed model shows satisfactory performance, with the best model achieving 99.19% and 98.66% accuracy on four classes and three classes, respectively.
Collapse
Affiliation(s)
- Daniel Addo
- School of Information and Software Engineering, University of Electronic Science and Technology of China, Chengdu 610056, China
| | - Shijie Zhou
- School of Information and Software Engineering, University of Electronic Science and Technology of China, Chengdu 610056, China
| | - Jehoiada Kofi Jackson
- School of Information and Software Engineering, University of Electronic Science and Technology of China, Chengdu 610056, China
| | - Grace Ugochi Nneji
- Department of Computing, Oxford Brookes College of Chengdu University of Technology, Chengdu 610059, China
| | - Happy Nkanta Monday
- Department of Computing, Oxford Brookes College of Chengdu University of Technology, Chengdu 610059, China
| | - Kwabena Sarpong
- School of Information and Software Engineering, University of Electronic Science and Technology of China, Chengdu 610056, China
| | - Rutherford Agbeshi Patamia
- School of Information and Software Engineering, University of Electronic Science and Technology of China, Chengdu 610056, China
| | - Favour Ekong
- School of Information and Software Engineering, University of Electronic Science and Technology of China, Chengdu 610056, China
| | | |
Collapse
|
91
|
Wang Q, Ma J, Zhang L, Xie L. Diagnostic performance of corona virus disease 2019 chest computer tomography image recognition based on deep learning: Systematic review and meta-analysis. Medicine (Baltimore) 2022; 101:e31346. [PMID: 36281129 PMCID: PMC9592148 DOI: 10.1097/md.0000000000031346] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND To analyze the diagnosis performance of deep learning model used in corona virus disease 2019 (COVID-19) computer tomography(CT) chest scans. The included sample contains healthy people, confirmed COVID-19 patients and unconfirmed suspected patients with corresponding symptoms. METHODS PubMed, Web of Science, Wiley, China National Knowledge Infrastructure, WAN FANG DATA, and Cochrane Library were searched for articles. Three researchers independently screened the literature, extracted the data. Any differences will be resolved by consulting the third author to ensure that a highly reliable and useful research paper is produced. Data were extracted from the final articles, including: authors, country of study, study type, sample size, participant demographics, type and name of AI software, results (accuracy, sensitivity, specificity, ROC, and predictive values), other outcome(s) if applicable. RESULTS Among the 3891 searched results, 32 articles describing 51,392 confirmed patients and 7686 non-infected individuals met the inclusion criteria. The pooled sensitivity, the pooled specificity, positive likelihood ratio, negative likelihood ratio and the pooled diagnostic odds ratio (OR) is 0.87(95%CI [confidence interval]: 0.85, 0.89), 0.85(95%CI: 0.82, 0.87), 6.7(95%CI: 5.7, 7.8), 0.14(95%CI: 0.12, 0.16), and 49(95%CI: 38, 65). Further, the AUROC (area under the receiver operating characteristic curve) is 0.94(95%CI: 0.91, 0.96). Secondary outcomes are specific sensitivity and specificity within subgroups defined by different models. Resnet has the best diagnostic performance, which has the highest sensitivity (0.91[95%CI: 0.87, 0.94]), specificity (0.90[95%CI: 0.86, 0.93]) and AUROC (0.96[95%CI: 0.94, 0.97]), according to the AUROC, we can get the rank Resnet > Densenet > VGG > Mobilenet > Inception > Effficient > Alexnet. CONCLUSIONS Our study findings show that deep learning models have immense potential in accurately stratifying COVID-19 patients and in correctly differentiating them from patients with other types of pneumonia and normal patients. Implementation of deep learning-based tools can assist radiologists in correctly and quickly detecting COVID-19 and, consequently, in combating the COVID-19 pandemic.
Collapse
Affiliation(s)
- Qiaolan Wang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
- West China-PUMC C.C. Chen Institute of Health, Sichuan University, Chengdu, China
| | - Jingxuan Ma
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
- West China-PUMC C.C. Chen Institute of Health, Sichuan University, Chengdu, China
| | - Luoning Zhang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
- West China-PUMC C.C. Chen Institute of Health, Sichuan University, Chengdu, China
| | - Linshen Xie
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
- West China-PUMC C.C. Chen Institute of Health, Sichuan University, Chengdu, China
- *Correspondence: Linshen Xie, West China School of Public Health and West China Fourth Hospital, Sichuan University, 610041 Chengdu, China (e-mail: )
| |
Collapse
|
92
|
Contrasting EfficientNet, ViT, and gMLP for COVID-19 Detection in Ultrasound Imagery. J Pers Med 2022; 12:jpm12101707. [PMID: 36294846 PMCID: PMC9605641 DOI: 10.3390/jpm12101707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/19/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022] Open
Abstract
A timely diagnosis of coronavirus is critical in order to control the spread of the virus. To aid in this, we propose in this paper a deep learning-based approach for detecting coronavirus patients using ultrasound imagery. We propose to exploit the transfer learning of a EfficientNet model pre-trained on the ImageNet dataset for the classification of ultrasound images of suspected patients. In particular, we contrast the results of EfficentNet-B2 with the results of ViT and gMLP. Then, we show the results of the three models by learning from scratch, i.e., without transfer learning. We view the detection problem from a multiclass classification perspective by classifying images as COVID-19, pneumonia, and normal. In the experiments, we evaluated the models on a publically available ultrasound dataset. This dataset consists of 261 recordings (202 videos + 59 images) belonging to 216 distinct patients. The best results were obtained using EfficientNet-B2 with transfer learning. In particular, we obtained precision, recall, and F1 scores of 95.84%, 99.88%, and 24 97.41%, respectively, for detecting the COVID-19 class. EfficientNet-B2 with transfer learning presented an overall accuracy of 96.79%, outperforming gMLP and ViT, which achieved accuracies of 93.03% and 92.82%, respectively.
Collapse
|
93
|
Sinwar D, Dhaka VS, Tesfaye BA, Raghuwanshi G, Kumar A, Maakar SK, Agrawal S. Artificial Intelligence and Deep Learning Assisted Rapid Diagnosis of COVID-19 from Chest Radiographical Images: A Survey. CONTRAST MEDIA & MOLECULAR IMAGING 2022; 2022:1306664. [PMID: 36304775 PMCID: PMC9581633 DOI: 10.1155/2022/1306664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/06/2022] [Accepted: 09/27/2022] [Indexed: 01/26/2023]
Abstract
Artificial Intelligence (AI) has been applied successfully in many real-life domains for solving complex problems. With the invention of Machine Learning (ML) paradigms, it becomes convenient for researchers to predict the outcome based on past data. Nowadays, ML is acting as the biggest weapon against the COVID-19 pandemic by detecting symptomatic cases at an early stage and warning people about its futuristic effects. It is observed that COVID-19 has blown out globally so much in a short period because of the shortage of testing facilities and delays in test reports. To address this challenge, AI can be effectively applied to produce fast as well as cost-effective solutions. Plenty of researchers come up with AI-based solutions for preliminary diagnosis using chest CT Images, respiratory sound analysis, voice analysis of symptomatic persons with asymptomatic ones, and so forth. Some AI-based applications claim good accuracy in predicting the chances of being COVID-19-positive. Within a short period, plenty of research work is published regarding the identification of COVID-19. This paper has carefully examined and presented a comprehensive survey of more than 110 papers that came from various reputed sources, that is, Springer, IEEE, Elsevier, MDPI, arXiv, and medRxiv. Most of the papers selected for this survey presented candid work to detect and classify COVID-19, using deep-learning-based models from chest X-Rays and CT scan images. We hope that this survey covers most of the work and provides insights to the research community in proposing efficient as well as accurate solutions for fighting the pandemic.
Collapse
Affiliation(s)
- Deepak Sinwar
- Department of Computer and Communication Engineering, Manipal University Jaipur, Jaipur, India
| | - Vijaypal Singh Dhaka
- Department of Computer and Communication Engineering, Manipal University Jaipur, Jaipur, India
| | - Biniyam Alemu Tesfaye
- Department of Computer Science, College of Informatics, Bule Hora University, Bule Hora, Ethiopia
| | - Ghanshyam Raghuwanshi
- Department of Computer and Communication Engineering, Manipal University Jaipur, Jaipur, India
| | - Ashish Kumar
- Department of Mathematics and Statistics, Manipal University Jaipur, Jaipur, India
| | - Sunil Kr. Maakar
- School of Computing Science & Engineering, Galgotias University, Greater Noida, India
| | - Sanjay Agrawal
- Department of Electrical Engineering, Rajkiya Engineering College, Akbarpur, Ambedkar Nagar, India
| |
Collapse
|
94
|
Li F, Zhang X, Comellas AP, Hoffman EA, Yang T, Lin CL. Contrastive learning and subtyping of post-COVID-19 lung computed tomography images. Front Physiol 2022; 13:999263. [PMID: 36304574 PMCID: PMC9593072 DOI: 10.3389/fphys.2022.999263] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/27/2022] [Indexed: 11/30/2022] Open
Abstract
Patients who recovered from the novel coronavirus disease 2019 (COVID-19) may experience a range of long-term symptoms. Since the lung is the most common site of the infection, pulmonary sequelae may present persistently in COVID-19 survivors. To better understand the symptoms associated with impaired lung function in patients with post-COVID-19, we aimed to build a deep learning model which conducts two tasks: to differentiate post-COVID-19 from healthy subjects and to identify post-COVID-19 subtypes, based on the latent representations of lung computed tomography (CT) scans. CT scans of 140 post-COVID-19 subjects and 105 healthy controls were analyzed. A novel contrastive learning model was developed by introducing a lung volume transform to learn latent features of disease phenotypes from CT scans at inspiration and expiration of the same subjects. The model achieved 90% accuracy for the differentiation of the post-COVID-19 subjects from the healthy controls. Two clusters (C1 and C2) with distinct characteristics were identified among the post-COVID-19 subjects. C1 exhibited increased air-trapping caused by small airways disease (4.10%, p = 0.008) and diffusing capacity for carbon monoxide %predicted (DLCO %predicted, 101.95%, p < 0.001), while C2 had decreased lung volume (4.40L, p < 0.001) and increased ground glass opacity (GGO%, 15.85%, p < 0.001). The contrastive learning model is able to capture the latent features of two post-COVID-19 subtypes characterized by air-trapping due to small airways disease and airway-associated interstitial fibrotic-like patterns, respectively. The discovery of post-COVID-19 subtypes suggests the need for different managements and treatments of long-term sequelae of patients with post-COVID-19.
Collapse
Affiliation(s)
- Frank Li
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA, United States
- IIHR-Hydroscience and Engineering, University of Iowa, Iowa City, IA, United States
| | - Xuan Zhang
- IIHR-Hydroscience and Engineering, University of Iowa, Iowa City, IA, United States
- Department of Mechanical Engineering, University of Iowa, Iowa City, IA, United States
| | | | - Eric A. Hoffman
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA, United States
- Department of Radiology, University of Iowa, Iowa City, IA, United States
| | - Tianbao Yang
- Department of Computer Science, University of Iowa, Iowa City, IA, United States
| | - Ching-Long Lin
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA, United States
- IIHR-Hydroscience and Engineering, University of Iowa, Iowa City, IA, United States
- Department of Mechanical Engineering, University of Iowa, Iowa City, IA, United States
- Department of Radiology, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
95
|
Li M, Li X, Jiang Y, Zhang J, Luo H, Yin S. Explainable multi-instance and multi-task learning for COVID-19 diagnosis and lesion segmentation in CT images. Knowl Based Syst 2022; 252:109278. [PMID: 35783000 PMCID: PMC9235304 DOI: 10.1016/j.knosys.2022.109278] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 06/12/2022] [Accepted: 06/13/2022] [Indexed: 11/16/2022]
Abstract
Coronavirus Disease 2019 (COVID-19) still presents a pandemic trend globally. Detecting infected individuals and analyzing their status can provide patients with proper healthcare while protecting the normal population. Chest CT (computed tomography) is an effective tool for screening of COVID-19. It displays detailed pathology-related information. To achieve automated COVID-19 diagnosis and lung CT image segmentation, convolutional neural networks (CNNs) have become mainstream methods. However, most of the previous works consider automated diagnosis and image segmentation as two independent tasks, in which some focus on lung fields segmentation and the others focus on single-lesion segmentation. Moreover, lack of clinical explainability is a common problem for CNN-based methods. In such context, we develop a multi-task learning framework in which the diagnosis of COVID-19 and multi-lesion recognition (segmentation of CT images) are achieved simultaneously. The core of the proposed framework is an explainable multi-instance multi-task network. The network learns task-related features adaptively with learnable weights, and gives explicable diagnosis results by suggesting local CT images with lesions as additional evidence. Then, severity assessment of COVID-19 and lesion quantification are performed to analyze patient status. Extensive experimental results on real-world datasets show that the proposed framework outperforms all the compared approaches for COVID-19 diagnosis and multi-lesion segmentation.
Collapse
Affiliation(s)
- Minglei Li
- Department of Control Science and Engineering, Harbin Institute of Technology, Harbin, 150001, Heilongjiang, China
| | - Xiang Li
- Department of Control Science and Engineering, Harbin Institute of Technology, Harbin, 150001, Heilongjiang, China
| | - Yuchen Jiang
- Department of Control Science and Engineering, Harbin Institute of Technology, Harbin, 150001, Heilongjiang, China
| | - Jiusi Zhang
- Department of Control Science and Engineering, Harbin Institute of Technology, Harbin, 150001, Heilongjiang, China
| | - Hao Luo
- Department of Control Science and Engineering, Harbin Institute of Technology, Harbin, 150001, Heilongjiang, China
| | - Shen Yin
- Department of Mechanical and Industrial Engineering, Norwegian University of Science and Technology, Trondheim, 7034, Norway
| |
Collapse
|
96
|
Costa YMG, Silva SA, Teixeira LO, Pereira RM, Bertolini D, Britto AS, Oliveira LS, Cavalcanti GDC. COVID-19 Detection on Chest X-ray and CT Scan: A Review of the Top-100 Most Cited Papers. SENSORS (BASEL, SWITZERLAND) 2022; 22:7303. [PMID: 36236402 PMCID: PMC9570662 DOI: 10.3390/s22197303] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/13/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
Since the beginning of the COVID-19 pandemic, many works have been published proposing solutions to the problems that arose in this scenario. In this vein, one of the topics that attracted the most attention is the development of computer-based strategies to detect COVID-19 from thoracic medical imaging, such as chest X-ray (CXR) and computerized tomography scan (CT scan). By searching for works already published on this theme, we can easily find thousands of them. This is partly explained by the fact that the most severe worldwide pandemic emerged amid the technological advances recently achieved, and also considering the technical facilities to deal with the large amount of data produced in this context. Even though several of these works describe important advances, we cannot overlook the fact that others only use well-known methods and techniques without a more relevant and critical contribution. Hence, differentiating the works with the most relevant contributions is not a trivial task. The number of citations obtained by a paper is probably the most straightforward and intuitive way to verify its impact on the research community. Aiming to help researchers in this scenario, we present a review of the top-100 most cited papers in this field of investigation according to the Google Scholar search engine. We evaluate the distribution of the top-100 papers taking into account some important aspects, such as the type of medical imaging explored, learning settings, segmentation strategy, explainable artificial intelligence (XAI), and finally, the dataset and code availability.
Collapse
Affiliation(s)
- Yandre M. G. Costa
- Departamento de Informática, Universidade Estadual de Maringá, Maringá 87020-900, Brazil
| | - Sergio A. Silva
- Departamento de Informática, Universidade Estadual de Maringá, Maringá 87020-900, Brazil
| | - Lucas O. Teixeira
- Departamento de Informática, Universidade Estadual de Maringá, Maringá 87020-900, Brazil
| | | | - Diego Bertolini
- Departamento Acadêmico de Ciência da Computação, Universidade Tecnológica Federal do Paraná, Campo Mourão 87301-899, Brazil
| | - Alceu S. Britto
- Departmento de Ciência da Computação, Pontifícia Universidade Católica do Paraná, Curitiba 80215-901, Brazil
| | - Luiz S. Oliveira
- Departamento de Informática, Universidade Federal do Paraná, Curitiba 81531-980, Brazil
| | | |
Collapse
|
97
|
Muzoğlu N, Halefoğlu AM, Avci MO, Kaya Karaaslan M, Yarman BSB. Detection of COVID-19 and its pulmonary stage using Bayesian hyperparameter optimization and deep feature selection methods. EXPERT SYSTEMS 2022; 40:e13141. [PMID: 36245832 PMCID: PMC9537791 DOI: 10.1111/exsy.13141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 07/25/2022] [Accepted: 09/05/2022] [Indexed: 06/16/2023]
Abstract
Since the first case of COVID-19 was reported in December 2019, many studies have been carried out on artificial intelligence for the rapid diagnosis of the disease to support health services. Therefore, in this study, we present a powerful approach to detect COVID-19 and COVID-19 findings from computed tomography images using pre-trained models using two different datasets. COVID-19, influenza A (H1N1) pneumonia, bacterial pneumonia and healthy lung image classes were used in the first dataset. Consolidation, crazy-paving pattern, ground-glass opacity, ground-glass opacity and consolidation, ground-glass opacity and nodule classes were used in the second dataset. The study consists of four steps. In the first two steps, distinctive features were extracted from the final layers of the pre-trained ShuffleNet, GoogLeNet and MobileNetV2 models trained with the datasets. In the next steps, the most relevant features were selected from the models using the Sine-Cosine optimization algorithm. Then, the hyperparameters of the Support Vector Machines were optimized with the Bayesian optimization algorithm and used to reclassify the feature subset that achieved the highest accuracy in the third step. The overall accuracy obtained for the first and second datasets is 99.46% and 99.82%, respectively. Finally, the performance of the results visualized with Occlusion Sensitivity Maps was compared with Gradient-weighted class activation mapping. The approach proposed in this paper outperformed other methods in detecting COVID-19 from multiclass viral pneumonia. Moreover, detecting the stages of COVID-19 in the lungs was an innovative and successful approach.
Collapse
Affiliation(s)
- Nedim Muzoğlu
- Department of Biomedical Engineering, Faculty of EngineeringIstanbul University‐CerrahpasaIstanbulTurkey
| | - Ahmet Mesrur Halefoğlu
- Department of RadiologySisli Hamidiye Etfal Training and Research Hospital, Health Sciences UniversityIstanbulTurkey
| | - Muhammed Onur Avci
- Department of Biomedical Engineering, Faculty of EngineeringIstanbul University‐CerrahpasaIstanbulTurkey
| | - Melike Kaya Karaaslan
- Department of Biomedical SciencesFaculty of Engineering, Kocaeli UniversityKocaeliTurkey
| | - Bekir Sıddık Binboğa Yarman
- Department of Electrical‐Electronics Engineering, Faculty of EngineeringIstanbul University‐CerrahpasaIstanbulTurkey
| |
Collapse
|
98
|
Bhosale YH, Patnaik KS. Application of Deep Learning Techniques in Diagnosis of Covid-19 (Coronavirus): A Systematic Review. Neural Process Lett 2022; 55:1-53. [PMID: 36158520 PMCID: PMC9483290 DOI: 10.1007/s11063-022-11023-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2022] [Indexed: 01/09/2023]
Abstract
Covid-19 is now one of the most incredibly intense and severe illnesses of the twentieth century. Covid-19 has already endangered the lives of millions of people worldwide due to its acute pulmonary effects. Image-based diagnostic techniques like X-ray, CT, and ultrasound are commonly employed to get a quick and reliable clinical condition. Covid-19 identification out of such clinical scans is exceedingly time-consuming, labor-intensive, and susceptible to silly intervention. As a result, radiography imaging approaches using Deep Learning (DL) are consistently employed to achieve great results. Various artificial intelligence-based systems have been developed for the early prediction of coronavirus using radiography pictures. Specific DL methods such as CNN and RNN noticeably extract extremely critical characteristics, primarily in diagnostic imaging. Recent coronavirus studies have used these techniques to utilize radiography image scans significantly. The disease, as well as the present pandemic, was studied using public and private data. A total of 64 pre-trained and custom DL models concerning imaging modality as taxonomies are selected from the studied articles. The constraints relevant to DL-based techniques are the sample selection, network architecture, training with minimal annotated database, and security issues. This includes evaluating causal agents, pathophysiology, immunological reactions, and epidemiological illness. DL-based Covid-19 detection systems are the key focus of this review article. Covid-19 work is intended to be accelerated as a result of this study.
Collapse
Affiliation(s)
- Yogesh H. Bhosale
- Department of Computer Science and Engineering, Birla Institute of Technology, Mesra, Ranchi 835215 India
| | - K. Sridhar Patnaik
- Department of Computer Science and Engineering, Birla Institute of Technology, Mesra, Ranchi 835215 India
| |
Collapse
|
99
|
Salama WM, Aly MH. Framework for COVID-19 segmentation and classification based on deep learning of computed tomography lung images. JOURNAL OF ELECTRONIC SCIENCE AND TECHNOLOGY 2022. [PMCID: PMC9242681 DOI: 10.1016/j.jnlest.2022.100161] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Corona Virus Disease 2019 (COVID-19) has affected millions of people worldwide and caused more than 6.3 million deaths (World Health Organization, June 2022). Increased attempts have been made to develop deep learning methods to diagnose COVID-19 based on computed tomography (CT) lung images. It is a challenge to reproduce and obtain the CT lung data, because it is not publicly available. This paper introduces a new generalized framework to segment and classify CT images and determine whether a patient is tested positive or negative for COVID-19 based on lung CT images. In this work, many different strategies are explored for the classification task. ResNet50 and VGG16 models are applied to classify CT lung images into COVID-19 positive or negative. Also, VGG16 and ReNet50 combined with U-Net, which is one of the most used architectures in deep learning for image segmentation, are employed to segment CT lung images before the classifying process to increase system performance. Moreover, the image size dependent normalization technique (ISDNT) and Wiener filter are utilized as the preprocessing techniques to enhance images and noise suppression. Additionally, transfer learning and data augmentation techniques are performed to solve the problem of COVID-19 CT lung images deficiency, therefore the over-fitting of deep models can be avoided. The proposed frameworks which compromise of, end-to-end, VGG16, ResNet50, and U-Net with VGG16 or ResNet50, are applied on the dataset which is sourced from COVID-19 lung CT images in Kaggle. The classification results show that using the preprocessed CT lung images as the input for U-Net hybrid with ResNet50 achieve the best performance. The proposed classification model achieves 98.98% accuracy (ACC), 98.87% area under the ROC curve (AUC), 98.89% sensitivity (Se), 97.99% precision (Pr), 97.88% F1- score, and 1.8974-second computational time.
Collapse
|
100
|
Chardin D, Gille C, Pourcher T, Humbert O, Barlaud M. Learning a confidence score and the latent space of a new supervised autoencoder for diagnosis and prognosis in clinical metabolomic studies. BMC Bioinformatics 2022; 23:361. [PMID: 36050631 PMCID: PMC9434875 DOI: 10.1186/s12859-022-04900-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 07/27/2022] [Indexed: 11/15/2022] Open
Abstract
Background Presently, there is a wide variety of classification methods and deep neural network approaches in bioinformatics. Deep neural networks have proven their effectiveness for classification tasks, and have outperformed classical methods, but they suffer from a lack of interpretability. Therefore, these innovative methods are not appropriate for decision support systems in healthcare. Indeed, to allow clinicians to make informed and well thought out decisions, the algorithm should provide the main pieces of information used to compute the predicted diagnosis and/or prognosis, as well as a confidence score for this prediction. Methods Herein, we used a new supervised autoencoder (SAE) approach for classification of clinical metabolomic data. This new method has the advantage of providing a confidence score for each prediction thanks to a softmax classifier and a meaningful latent space visualization and to include a new efficient feature selection method, with a structured constraint, which allows for biologically interpretable results. Results Experimental results on three metabolomics datasets of clinical samples illustrate the effectiveness of our SAE and its confidence score. The supervised autoencoder provides an accurate localization of the patients in the latent space, and an efficient confidence score. Experiments show that the SAE outperforms classical methods (PLS-DA, Random Forests, SVM, and neural networks (NN)). Furthermore, the metabolites selected by the SAE were found to be biologically relevant. Conclusion In this paper, we describe a new efficient SAE method to support diagnostic or prognostic evaluation based on metabolomics analyses.
Collapse
Affiliation(s)
- David Chardin
- Transporters in Imaging and Radiotherapy in Oncology (TIRO), Direction de la Recherche Fondamentale (DRF), Institut des sciences du vivant Fréderic Joliot, Commissariat à l'Energie Atomique et aux énergies alternatives (CEA), Université Côte d'Azur (UCA), Nice, France.,Centre Antoine Lacassagne, Université Côte d'Azur (UCA), Nice, France
| | - Cyprien Gille
- Laboratoire d'Informatique, Signaux et Systèmes de Sophia Antipolis (I3S), Centre de Recherche Scientifique (CNRS), Université Côte d'Azur (UCA), Sophia Antipolis, France
| | - Thierry Pourcher
- Transporters in Imaging and Radiotherapy in Oncology (TIRO), Direction de la Recherche Fondamentale (DRF), Institut des sciences du vivant Fréderic Joliot, Commissariat à l'Energie Atomique et aux énergies alternatives (CEA), Université Côte d'Azur (UCA), Nice, France
| | - Olivier Humbert
- Transporters in Imaging and Radiotherapy in Oncology (TIRO), Direction de la Recherche Fondamentale (DRF), Institut des sciences du vivant Fréderic Joliot, Commissariat à l'Energie Atomique et aux énergies alternatives (CEA), Université Côte d'Azur (UCA), Nice, France.,Centre Antoine Lacassagne, Université Côte d'Azur (UCA), Nice, France
| | - Michel Barlaud
- Laboratoire d'Informatique, Signaux et Systèmes de Sophia Antipolis (I3S), Centre de Recherche Scientifique (CNRS), Université Côte d'Azur (UCA), Sophia Antipolis, France.
| |
Collapse
|