51
|
Chen LK. Skeletal muscle health: a key determinant of healthy aging. Arch Gerontol Geriatr 2023; 109:105011. [PMID: 37023587 DOI: 10.1016/j.archger.2023.105011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
52
|
Hepowit NL, Blalock E, Lee S, Bretland KM, MacGurn JA, Dickson RC. Reduced sphingolipid biosynthesis modulates proteostasis networks to enhance longevity. Aging (Albany NY) 2023; 15:472-491. [PMID: 36640272 PMCID: PMC9925692 DOI: 10.18632/aging.204485] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 12/29/2022] [Indexed: 01/15/2023]
Abstract
As the elderly population increases, chronic, age-associated diseases are challenging healthcare systems around the world. Nutrient limitation is well known to slow the aging process and improve health. Regrettably, practicing nutrient restriction to improve health is unachievable for most people. Alternatively, pharmacological strategies are being pursued including myriocin which increases lifespan in budding yeast. Myriocin impairs sphingolipid synthesis, resulting in lowered amino acid pools which promote entry into a quiescent, long-lived state. Here we present transcriptomic data during the first 6 hours of drug treatment that improves our mechanistic understanding of the cellular response to myriocin and reveals a new role for ubiquitin in longevity. Previously we found that the methionine transporter Mup1 traffics to the plasma membrane normally in myriocin-treated cells but is not active and undergoes endocytic clearance. We now show that UBI4, a gene encoding stressed-induced ubiquitin, is vital for myriocin-enhanced lifespan. Furthermore, we show that Mup1 fused to a deubiquitinase domain impairs myriocin-enhanced longevity. Broader effects of myriocin treatment on ubiquitination are indicated by our finding of a significant increase in K63-linked ubiquitin polymers following myriocin treatment. Although proteostasis is broadly accepted as a pillar of aging, our finding that ubiquitination of an amino acid transporter promotes longevity in myriocin-treated cells is novel. Addressing the role of ubiquitination/deubiquitination in longevity has the potential to reveal new strategies and targets for promoting healthy aging.
Collapse
Affiliation(s)
- Nathaniel L. Hepowit
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37240, USA
| | - Eric Blalock
- Department of Pharmacology and Nutritional Science, University of Kentucky, Lexington, KY 40536, USA
| | - Sangderk Lee
- College of Pharmacy, University of Kentucky, Lexington, KY 40536, USA
| | - Kimberly M. Bretland
- Department of Pharmacology and Nutritional Science, University of Kentucky, Lexington, KY 40536, USA
| | - Jason A. MacGurn
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37240, USA
| | - Robert C. Dickson
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY 40536, USA
| |
Collapse
|
53
|
Height loss as an indicator of ageing through its association with frailty and sarcopenia: An observational cohort study. Arch Gerontol Geriatr 2022; 110:104916. [PMID: 36905804 DOI: 10.1016/j.archger.2022.104916] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/06/2022] [Accepted: 12/22/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Height loss is associated with various health-related variables such as cardiovascular disease, osteoporosis, cognitive function, and mortality. We hypothesized that height loss can be used as an indicator of aging, and we assessed whether the degree of height loss for 2 years was associated with frailty and sarcopenia. METHODS This study was based on a longitudinal cohort, the Pyeongchang Rural Area cohort. The cohort included people aged 65 years or older, ambulatory, and living at home. We divided individuals according to the ratio of height change (height change for 2 years divided by height at 2 years from baseline): HL2 (<-2%), HL1 (-2%--1%), and REF (-1%≤). We compared the frailty index, diagnosis of sarcopenia after 2 years from baseline, and the incidence of a composite outcome (mortality and institutionalization). RESULTS In total, 59 (6.9%), 116 (13.5%), and 686 (79.7%) were included in the HL2, HL1, and REF groups, respectively. Compared with the REF group, groups HL2 and HL1 had a higher frailty index, and higher risks of sarcopenia and composite outcome. When groups HL2 and HL1 were merged, the merged group had higher frailty index (standardized B, 0.06; p = 0.049), a higher risk of sarcopenia (OR, 2.30; p = 0.006), and a higher risk of composite outcome (HR, 1.78; p = 0.017) after adjusting for age and sex. CONCLUSIONS Individuals with greater height loss were frailer, more likely to be diagnosed with sarcopenia and had worse outcomes regardless of age and sex.
Collapse
|
54
|
Deryabin PI, Borodkina AV. Epigenetic clocks provide clues to the mystery of uterine ageing. Hum Reprod Update 2022; 29:259-271. [PMID: 36515535 DOI: 10.1093/humupd/dmac042] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 11/28/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Rising maternal ages and age-related fertility decline are a global challenge for modern reproductive medicine. Clinicians and researchers pay specific attention to ovarian ageing and hormonal insufficiency in this regard. However, uterine ageing is often left out of the picture, with the majority of reproductive clinicians being close to unanimous on the absence of age-related functional decline in the uterine tissues. Therefore, most existing techniques to treat an age-related decline in implantation rates are based primarily on hormonal supplementation and oocyte donation. Solving the issue of uterine ageing might lead to an adjustment to these methods. OBJECTIVE AND RATIONALE A focus on uterine ageing and the possibility of slowing it emerged with the development of the information theory of ageing, which identifies genomic instability and erosion of the epigenetic landscape as important drivers of age-related decline in the functionality of most cells and tissues. Age-related smoothing of this landscape and a decline in tissue function can be assessed by measuring the ticking of epigenetic clocks. Within this review, we explore whether the uterus experiences age-related alterations using this elegant approach. We analyse existing data on epigenetic clocks in the endometrium, highlight approaches to improve the accuracy of the clocks in this cycling tissue, speculate on the endometrial pathologies whose progression might be predicted by the altered speed of epigenetic clocks and discuss the possibilities of slowing down the ticking of these clocks. SEARCH METHODS Data for this review were identified by searches of Medline, PubMed and Google Scholar. References from relevant articles using the search terms 'ageing', 'maternal age', 'female reproduction', 'uterus', 'endometrium', 'implantation', 'decidualization', 'epigenetic clock', 'biological age', 'DNA methylation', 'fertility' and 'infertility' were selected. A total of 95 articles published in English between 1985 and 2022 were included, six of which describe the use of the epigenetic clock to evaluate uterine/endometrium ageing. OUTCOMES Application of the Horvath and DNAm PhenoAge epigenetic clocks demonstrated a poor correlation with chronological age in the endometrium. Several approaches were suggested to enhance the predictive power of epigenetic clocks for the endometrium. The first was to increase the number of samples in the training dataset, as for the Zang clock, or to use more sophisticated clock-building algorithms, as for the AltumAge clock. The second method is to adjust the clocks according to the dynamic nature of the endometrium. Using either approach revealed a strong correlation with chronological age in the endometrium, providing solid evidence for age-related functional decline in this tissue. Furthermore, age acceleration/deceleration, as estimated by epigenetic clocks, might be a promising tool to predict or to gain insights into the origin of various endometrial pathologies, including recurrent implantation failure, cancer and endometriosis. Finally, there are several strategies to slow down or even reverse epigenetic clocks that might be applied to reduce the risk of age-related uterine impairments. WIDER IMPLICATIONS The uterine factor should be considered, along with ovarian issues, to correct for the decline in female fertility with age. Epigenetic clocks can be tested to gain a deeper understanding of various endometrial disorders.
Collapse
Affiliation(s)
- Pavel I Deryabin
- Mechanisms of Cellular Senescence Group, Institute of Cytology of the Russian Academy of Sciences, Saint-Petersburg, Russia
| | - Aleksandra V Borodkina
- Mechanisms of Cellular Senescence Group, Institute of Cytology of the Russian Academy of Sciences, Saint-Petersburg, Russia
| |
Collapse
|
55
|
Murphy A, Vyavahare S, Kumar S, Lee TJ, Sharma A, Adusumilli S, Hamrick M, Isales CM, Fulzele S. Dietary interventions and molecular mechanisms for healthy musculoskeletal aging. Biogerontology 2022; 23:681-698. [PMID: 35727468 DOI: 10.1007/s10522-022-09970-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/18/2022] [Indexed: 12/13/2022]
Abstract
Over the past decade, extensive efforts have focused on understanding age-associated diseases and how to prolong a healthy lifespan. The induction of dietary protocols such as caloric restriction (CR) and protein restriction (PR) has positively affected a healthy lifespan. These intervention ideas (nutritional protocols) have been the subject of human cohort studies and clinical trials to evaluate their effectiveness in alleviating age-related diseases (such as type II diabetes, cardiovascular disease, obesity, and musculoskeletal fragility) and promoting human longevity. This study summarizes the literature on the nutritional protocols, emphasizing their impacts on bone and muscle biology. In addition, we analyzed several CR studies using Gene Expression Omnibus (GEO) database and identified common transcriptome changes to understand the signaling pathway involved in musculoskeletal tissue. We identified nine novel common genes, out of which five were upregulated (Emc3, Fam134b, Fbxo30, Pip5k1a, and Retsat), and four were downregulated (Gstm2, Per2, Fam78a, and Sel1l3) with CR in muscles. Gene Ontology enrichment analysis revealed that CR regulates several signaling pathways (e.g., circadian gene regulation and rhythm, energy reserve metabolic process, thermogenesis) involved in energy metabolism. In conclusion, this study summarizes the beneficiary role of CR and identifies novel genes and signaling pathways involved in musculoskeletal biology.
Collapse
Affiliation(s)
- Andrew Murphy
- Department of Medicine, Augusta University, Augusta, GA, 30912, USA
| | - Sagar Vyavahare
- Department of Cell Biology and Anatomy, Augusta University, Augusta, GA, USA
| | - Sandeep Kumar
- Department of Cell Biology and Anatomy, Augusta University, Augusta, GA, USA
| | - Tae Jin Lee
- Center for Biotechnology and Genomic Medicine, Augusta University, Augusta, GA, 30912, USA
| | - Ashok Sharma
- Center for Biotechnology and Genomic Medicine, Augusta University, Augusta, GA, 30912, USA
| | | | - Mark Hamrick
- Department of Cell Biology and Anatomy, Augusta University, Augusta, GA, USA.,Center for Healthy Aging, Augusta University, Augusta, GA, USA
| | - Carlos M Isales
- Department of Medicine, Augusta University, Augusta, GA, 30912, USA.,Center for Healthy Aging, Augusta University, Augusta, GA, USA
| | - Sadanand Fulzele
- Department of Medicine, Augusta University, Augusta, GA, 30912, USA. .,Department of Cell Biology and Anatomy, Augusta University, Augusta, GA, USA. .,Center for Healthy Aging, Augusta University, Augusta, GA, USA.
| |
Collapse
|
56
|
Abstract
Ageing is known to be the primary risk factor for most neurodegenerative diseases, including Alzheimer's disease, Parkinson's disease and Huntington's disease. They are currently incurable and worsen over time, which has broad implications in the context of lifespan and healthspan extension. Adding years to life and even to physical health is suboptimal or even insufficient, if cognitive ageing is not adequately improved. In this review, we will examine how interventions that have the potential to extend lifespan in animals affect the brain, and if they would be able to thwart or delay the development of cognitive dysfunction and/or neurodegeneration. These interventions range from lifestyle (caloric restriction, physical exercise and environmental enrichment) through pharmacological (nicotinamide adenine dinucleotide precursors, resveratrol, rapamycin, metformin, spermidine and senolytics) to epigenetic reprogramming. We argue that while many of these interventions have clear potential to improve cognitive health and resilience, large-scale and long-term randomised controlled trials are needed, along with studies utilising washout periods to determine the effects of supplementation cessation, particularly in aged individuals.
Collapse
|
57
|
Zheng W, Li R, Zhou Y, Shi F, Song Y, Liao Y, Zhou F, Zheng X, Lv J, Li Q. Effect of dietary protein content shift on aging in elderly rats by comprehensive quantitative score and metabolomics analysis. Front Nutr 2022; 9:1051964. [DOI: 10.3389/fnut.2022.1051964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022] Open
Abstract
In the protein nutrition strategy of middle-aged and elderly people, some believe that low protein is good for health, while others believe high protein is good for health. Facing the contradictory situation, the following hypothesis is proposed. There is a process of change from lower to higher ratio of protein nutritional requirements that are good for health in the human body after about 50 years of age, and the age at which the switch occurs is around 65 years of age. Hence, in this study, 50, 25-month-old male rats were randomly divided into five groups: Control (basal diet), LP (low-protein diet with a 30% decrease in protein content compared to the basal diet), HP (high-protein diet with a 30% increase in protein content compared to the basal diet), Model 1 (switched from LP to HP feed at week 4), and Model 2 (switched from LP to HP feed at week 7). After a total of 10 weeks intervention, the liver and serum samples were examined for aging-related indicators, and a newly comprehensive quantitative score was generated using principal component analysis (PCA). The effects of the five protein nutritional modalities were quantified in descending order: Model 1 > HP > LP > Control > Model 2. Furthermore, the differential metabolites in serum and feces were determined by orthogonal partial least squares discriminant analysis, and 15 differential metabolites, significantly associated with protein intake, were identified by Spearman’s correlation analysis (p < 0.05). Among the fecal metabolites, 10 were positively correlated and 3 were negatively correlated. In the serum, tyrosine and lactate levels were positively correlated, and acetate levels were negatively correlated. MetaboAnalyst analysis identified that the metabolic pathways influenced by protein intake were mainly related to amino acid and carbohydrate metabolism. The results of metabolomic analysis elucidate the mechanisms underlying the preceding effects to some degree. These efforts not only contribute to a unified protein nutrition strategy but also positively impact the building of a wiser approach to protein nutrition, thereby helping middle-aged and older populations achieve healthy aging.
Collapse
|
58
|
Meyer NMT, Kabisch S, Dambeck U, Honsek C, Kemper M, Gerbracht C, Arafat AM, Birkenfeld AL, Schwarz PEH, Machann J, Osterhoff MA, Weickert MO, Pfeiffer AFH. Low IGF1 and high IGFBP1 predict diabetes onset in prediabetic patients. Eur J Endocrinol 2022; 187:555-565. [PMID: 36005859 DOI: 10.1530/eje-22-0034] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 08/25/2022] [Indexed: 11/08/2022]
Abstract
OBJECTIVES Some individuals develop type 2 diabetes mellitus (T2DM) despite significant metabolic improvements through lifestyle intervention. We tested the hypotheses that insulin growth factor 1 (IGF1) and its binding proteins 1 and 2 predict the onset of T2DM in prediabetes patients and determine the capacity for metabolic regeneration. DESIGN We measured fasting serum IGF1, insulin growth factor-binding protein 1 (IGFBP1) and IGFBP2 in three randomized controlled lifestyle intervention trials, covering at least 1 year of intervention period and 1 year of additional follow-up. METHODS Within a sample of 414 high-risk prediabetes patients (58% women; 28-80 years), we analyzed fasting serum concentrations of IGF1, IGFBP1 and IGFBP2 in relation to diabetes incidence and metabolic parameters over 2 years. Three hundred and forty-five subjects finished the first year of intervention. RESULTS The interventions significantly improved body weight (BMI: -3.24%, P < 0.001), liver fat (-36.8%, P < 0.001), insulin sensitivity (IS) (homeostatic model assessment-insulin resistance: -6.3%, P < 0.001) and insulin secretion (disposition index: +35%, P < 0.001) in the cohort. Fourteen percent developed T2DM within 2 years. Mean IGFBP1 levels at baseline were lower in prediabetes compared to a healthy population. Also, prediabetes patients with obesity and nonalcoholic fatty liver disease had lower IGFBP1. Those with impaired glucose tolerance had higher IGFBP1 compared to those with only impaired fasting glucose. Baseline IGF1 was lower (122.5 vs 146.6 µg/L) and IGFBP1 was higher (3.32 vs 2.09 µg/L) in subjects who developed T2DM (n = 57), resulting in a significant prediction of diabetes incidence (hazard ratio (HR) IGF1: 0.991 µg/L, P = 0.003; HR IGFBP1: 1.061 µg/L, P = 0.002). This translates into a 20% and 9% difference in T2DM incidence for IGF1 and IGFBP1, respectively. Despite reduced weight, visceral fat and hepatic fat in response to 1 year of lifestyle intervention, those who developed T2DM had not improved insulin sensitivity, glucose tolerance or IGFBP1. CONCLUSIONS Lower IGF1 and higher IGFBP1 in prediabetes predicted the incidence of T2DM, indicating an impairment of beta-cell function, which explains the unresponsiveness to lifestyle intervention.
Collapse
Affiliation(s)
- Nina M T Meyer
- Department of Endocrinology and Metabolism (Diabetes and Nutritional Medicine), Charité Universitätsmedizin Berlin, Berlin, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Research Group Clinical Nutrition/DZD, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Stefan Kabisch
- Department of Endocrinology and Metabolism (Diabetes and Nutritional Medicine), Charité Universitätsmedizin Berlin, Berlin, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Research Group Clinical Nutrition/DZD, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Ulrike Dambeck
- Research Group Clinical Nutrition/DZD, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Caroline Honsek
- Research Group Clinical Nutrition/DZD, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Margrit Kemper
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Research Group Clinical Nutrition/DZD, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Christiana Gerbracht
- Research Group Clinical Nutrition/DZD, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Ayman M Arafat
- Department of Endocrinology and Metabolism (Diabetes and Nutritional Medicine), Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Andreas L Birkenfeld
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the Eberhard Karls University of Tübingen, Tübingen, Germany
- Department of Internal Medicine IV - Endocrinology, Diabetology, and Nephrology, University Hospital Tübingen, Tübingen, Germany
- Department of Diabetes, School of Life Course Science and Medicine, King's College London, London, UK
| | - Peter E H Schwarz
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Departments for Prevention and Care of Diabetes and Medicine III, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany
- Paul Langerhans Institute Dresden of the Helmholtz Center Munich at University Hospital and Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Jürgen Machann
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Institute of Diabetes Research and Metabolic Diseases (IDM) of the Helmholtz Center Munich at the Eberhard Karls University of Tübingen, Tübingen, Germany
- Section on Experimental Radiology, Department of Diagnostic and Interventional Radiology, University Hospital Tübingen, Tübingen, Germany
| | - Martin A Osterhoff
- Research Group Clinical Nutrition/DZD, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Martin O Weickert
- Warwickshire Institute for the Study of Diabetes, Endocrinology and Metabolism, The ARDEN NET Centre, ENETS CoE, University Hospitals Coventry and Warwickshire NHS Trust, Coventry, UK
- Centre of Applied Biological & Exercise Sciences (ABES), Faculty of Health & Life Sciences, Coventry University, Coventry, UK
- Translational & Experimental Medicine, Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry, UK
| | - Andreas F H Pfeiffer
- Department of Endocrinology and Metabolism (Diabetes and Nutritional Medicine), Charité Universitätsmedizin Berlin, Berlin, Germany
- German Center for Diabetes Research (DZD), München-Neuherberg, Germany
- Research Group Clinical Nutrition/DZD, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| |
Collapse
|
59
|
Franzago M, Pilenzi L, Di Rado S, Vitacolonna E, Stuppia L. The epigenetic aging, obesity, and lifestyle. Front Cell Dev Biol 2022; 10:985274. [PMID: 36176280 PMCID: PMC9514048 DOI: 10.3389/fcell.2022.985274] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 08/22/2022] [Indexed: 11/25/2022] Open
Abstract
The prevalence of obesity has dramatically increased worldwide over the past decades. Aging-related chronic conditions, such as type 2 diabetes and cardiovascular disease, are more prevalent in individuals with obesity, thus reducing their lifespan. Epigenetic clocks, the new metrics of biological age based on DNA methylation patterns, could be considered a reflection of the state of one's health. Several environmental exposures and lifestyle factors can induce epigenetic aging accelerations, including obesity, thus leading to an increased risk of age-related diseases. The insight into the complex link between obesity and aging might have significant implications for the promotion of health and the mitigation of future disease risk. The present narrative review takes into account the interaction between epigenetic aging and obesity, suggesting that epigenome may be an intriguing target for age-related physiological changes and that its modification could influence aging and prolong a healthy lifespan. Therefore, we have focused on DNA methylation age as a clinical biomarker, as well as on the potential reversal of epigenetic age using a personalized diet- and lifestyle-based intervention.
Collapse
Affiliation(s)
- Marica Franzago
- Department of Medicine and Aging, School of Medicine and Health Sciences, G. d’Annunzio University, Chieti, Italy
- Center for Advanced Studies and Technology, G. d’Annunzio University, Chieti, Italy
| | - Lucrezia Pilenzi
- Center for Advanced Studies and Technology, G. d’Annunzio University, Chieti, Italy
- Department of Psychological Health and Territorial Sciences, School of Medicine and Health Sciences, G. d’Annunzio University, Chieti, Italy
| | - Sara Di Rado
- Center for Advanced Studies and Technology, G. d’Annunzio University, Chieti, Italy
| | - Ester Vitacolonna
- Department of Medicine and Aging, School of Medicine and Health Sciences, G. d’Annunzio University, Chieti, Italy
- Center for Advanced Studies and Technology, G. d’Annunzio University, Chieti, Italy
| | - Liborio Stuppia
- Center for Advanced Studies and Technology, G. d’Annunzio University, Chieti, Italy
- Department of Psychological Health and Territorial Sciences, School of Medicine and Health Sciences, G. d’Annunzio University, Chieti, Italy
| |
Collapse
|
60
|
Barone M, D'Amico F, Rampelli S, Brigidi P, Turroni S. Age-related diseases, therapies and gut microbiome: A new frontier for healthy aging. Mech Ageing Dev 2022; 206:111711. [PMID: 35868543 DOI: 10.1016/j.mad.2022.111711] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 07/17/2022] [Accepted: 07/18/2022] [Indexed: 02/07/2023]
Abstract
The gut microbiome is undoubtedly a key modulator of human health, which can promote or impair homeostasis throughout life. This is even more relevant in old age, when there is a gradual loss of function in multiple organ systems, related to growth, metabolism, and immunity. Several studies have described changes in the gut microbiome across age groups up to the extreme limits of lifespan, including maladaptations that occur in the context of age-related conditions, such as frailty, neurodegenerative diseases, and cardiometabolic diseases. The gut microbiome can also interact bi-directionally with anti-age-related disease therapies, being affected and in turn influencing their efficacy. In this framework, the development of integrated microbiome-based intervention strategies, aimed at favoring a eubiotic configuration and trajectory, could therefore represent an innovative approach for the promotion of healthy aging and the achievement of longevity.
Collapse
Affiliation(s)
- Monica Barone
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy; Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy.
| | - Federica D'Amico
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy; Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy.
| | - Simone Rampelli
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy.
| | - Patrizia Brigidi
- Microbiomics Unit, Department of Medical and Surgical Sciences, University of Bologna, 40138 Bologna, Italy.
| | - Silvia Turroni
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, 40126 Bologna, Italy.
| |
Collapse
|
61
|
Martemucci G, Portincasa P, Di Ciaula A, Mariano M, Centonze V, D'Alessandro AG. Oxidative stress, aging, antioxidant supplementation and their impact on human health: An overview. Mech Ageing Dev 2022; 206:111707. [PMID: 35839856 DOI: 10.1016/j.mad.2022.111707] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 07/06/2022] [Accepted: 07/10/2022] [Indexed: 12/12/2022]
Abstract
Aging is characterized by a progressive loss of tissue and organ function due to genetic and environmental factors, nutrition, and lifestyle. Oxidative stress is one the most important mechanisms of cellular senescence and increased frailty, resulting in several age-linked, noncommunicable diseases. Contributing events include genomic instability, telomere shortening, epigenetic mechanisms, reduced proteome homeostasis, altered stem-cell function, defective intercellular communication, progressive deregulation of nutrient sensing, mitochondrial dysfunction, and metabolic unbalance. These complex events and their interplay can be modulated by dietary habits and the ageing process, acting as potential measures of primary and secondary prevention. Promising nutritional approaches include the Mediterranean diet, the intake of dietary antioxidants, and the restriction of caloric intake. A comprehensive understanding of the ageing processes should promote new biomarkers of risk or diagnosis, but also beneficial treatments oriented to increase lifespan.
Collapse
Affiliation(s)
- Giovanni Martemucci
- Department of Agricultural and Environmental Sciences, University of Bari Aldo Moro, Via G. Amendola, 165/A, 70126 Bari, Italy
| | - Piero Portincasa
- Clinica Medica "A. Murri", Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari, Italy
| | - Agostino Di Ciaula
- Clinica Medica "A. Murri", Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari, Italy.
| | - Michele Mariano
- Unità Operativa Complessa di Radiodiagnostica Universitaria, Policlinico di Bari, Piazza Giulio Cesare, 11, 70124 Bari, Italy
| | - Vincenzo Centonze
- Clinica Medica "A. Murri", Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari, Italy
| | - Angela Gabriella D'Alessandro
- Department of Agricultural and Environmental Sciences, University of Bari Aldo Moro, Via G. Amendola, 165/A, 70126 Bari, Italy
| |
Collapse
|
62
|
Impact of Non-Pharmacological Interventions on the Mechanisms of Atherosclerosis. Int J Mol Sci 2022; 23:ijms23169097. [PMID: 36012362 PMCID: PMC9409393 DOI: 10.3390/ijms23169097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/08/2022] [Accepted: 08/10/2022] [Indexed: 11/30/2022] Open
Abstract
Atherosclerosis remains the leading cause of mortality and morbidity worldwide characterized by the deposition of lipids and fibrous elements in the form of atheroma plaques in vascular areas which are hemodynamically overloaded. The global burden of atherosclerotic cardiovascular disease is steadily increasing and is considered the largest known non-infectious pandemic. The management of atherosclerotic cardiovascular disease is increasing the cost of health care worldwide, which is a concern for researchers and physicians and has caused them to strive to find effective long-term strategies to improve the efficiency of treatments by managing conventional risk factors. Primary prevention of atherosclerotic cardiovascular disease is the preferred method to reduce cardiovascular risk. Fasting, a Mediterranean diet, and caloric restriction can be considered useful clinical tools. The protective impact of physical exercise over the cardiovascular system has been studied in recent years with the intention of explaining the mechanisms involved; the increase in heat shock proteins, antioxidant enzymes and regulators of cardiac myocyte proliferation concentration seem to be the molecular and biochemical shifts that are involved. Developing new therapeutic strategies such as vagus nerve stimulation, either to prevent or slow the disease’s onset and progression, will surely have a profound effect on the lives of millions of people.
Collapse
|
63
|
Messina M, Duncan A, Messina V, Lynch H, Kiel J, Erdman JW. The health effects of soy: A reference guide for health professionals. Front Nutr 2022; 9:970364. [PMID: 36034914 PMCID: PMC9410752 DOI: 10.3389/fnut.2022.970364] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/25/2022] [Indexed: 11/22/2022] Open
Abstract
Soy is a hotly debated and widely discussed topic in the field of nutrition. However, health practitioners may be ill-equipped to counsel clients and patients about the use of soyfoods because of the enormous, and often contradictory, amount of research that has been published over the past 30 years. As interest in plant-based diets increases, there will be increased pressure for practitioners to gain a working knowledge of this area. The purpose of this review is to provide concise literature summaries (400-500 words) along with a short perspective on the current state of knowledge of a wide range of topics related to soy, from the cholesterol-lowering effects of soy protein to the impact of isoflavones on breast cancer risk. In addition to the literature summaries, general background information on soyfoods, soy protein, and isoflavones is provided. This analysis can serve as a tool for health professionals to be used when discussing soyfoods with their clients and patients.
Collapse
Affiliation(s)
- Mark Messina
- Soy Nutrition Institute Global, Washington, DC, United States
| | - Alison Duncan
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | | | - Heidi Lynch
- Kinesiology Department, Point Loma Nazarene University, San Diego, CA, United States
| | - Jessica Kiel
- Scientific and Clinical Affairs, Medifast Inc., Baltimore, MD, United States
| | - John W. Erdman
- Division of Nutritional Sciences and Beckman Institute, Department of Food Science and Human Nutrition, University of Illinois at Urbana/Champaign, Urbana, IL, United States
| |
Collapse
|
64
|
Caruso C, Ligotti ME, Accardi G, Aiello A, Candore G. An immunologist's guide to immunosenescence and its treatment. Expert Rev Clin Immunol 2022; 18:961-981. [PMID: 35876758 DOI: 10.1080/1744666x.2022.2106217] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION : The ageing process causes several changes in the immune system, although immune ageing is strongly influenced by individual immunological history, as well as genetic and environmental factors leading to inter-individual variability. AREAS COVERED : Here, we focused on the biological and clinical meaning of immunosenescence. Data on SARS-CoV-2 and Yellow Fever vaccine have demonstrated the clinical relevance of immunosenescence, while inconsistent results, obtained from longitudinal studies aimed at looking for immune risk phenotypes, have revealed that the immunosenescence process is highly context-dependent. Large projects have allowed the delineation of the drivers of immune system variance, including genetic and environmental factors, sex, smoking, and co-habitation. Therefore, it is difficult to identify the interventions that can be envisaged to maintain or improve immune function in older people. That suggests that drug treatment of immunosenescence should require personalized intervention. Regarding this, we discussed the role of changes in lifestyle as a potential therapeutic approach. EXPERT OPINION : Our review points out that age is only part of the problem of immunosenescence. Everyone ages differently because he/she is unique in genetics and experience of life and this applies even more to the immune system (immunobiography). Finally, the present review shows how appreciable results in the modification of immunosenescence biomarkers can be achieved with lifestyle modification.
Collapse
Affiliation(s)
- Calogero Caruso
- Laboratorio di Immunopatologia e Immunosenescenza, Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata, Università di Palermo, Palermo, Italy
| | - Mattia Emanuela Ligotti
- Laboratorio di Immunopatologia e Immunosenescenza, Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata, Università di Palermo, Palermo, Italy
| | - Giulia Accardi
- Laboratorio di Immunopatologia e Immunosenescenza, Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata, Università di Palermo, Palermo, Italy
| | - Anna Aiello
- Laboratorio di Immunopatologia e Immunosenescenza, Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata, Università di Palermo, Palermo, Italy
| | - Giuseppina Candore
- Laboratorio di Immunopatologia e Immunosenescenza, Dipartimento di Biomedicina, Neuroscienze e Diagnostica Avanzata, Università di Palermo, Palermo, Italy
| |
Collapse
|
65
|
Rosenfeld M, Ladiges W. Pharmaceutical interventions to slow human aging. Are we ready for cocktails? AGING PATHOBIOLOGY AND THERAPEUTICS 2022; 4:51-52. [PMID: 36082207 PMCID: PMC9450580 DOI: 10.31491/apt.2022.06.086] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Slowing human aging with pharmaceuticals is now recognized as a feasible strategy. However, the design of clinical trials is still focused on single drug approaches. The process of aging has multiple pathways, which no current drug has been shown to effectively target. Therefore, it is of interest to study combinations, or cocktails, of drugs. A recently published article reported that a drug cocktail of rapamycin, acarbose and phenylbutyrate slowed aging in middle-aged mice treated for three months. The impact of this report is discussed, with the implications for determining endpoints in humans for testing drug cocktails as well as testing other drug combinations.
Collapse
Affiliation(s)
- Manuela Rosenfeld
- Department of Comparative Medicine, School of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Warren Ladiges
- Department of Comparative Medicine, School of Medicine, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
66
|
Buttet M, Bagheri R, Ugbolue UC, Laporte C, Trousselard M, Benson A, Bouillon-Minois JB, Dutheil F. Effect of a lifestyle intervention on telomere length: A systematic review and meta-analysis. Mech Ageing Dev 2022; 206:111694. [PMID: 35760212 DOI: 10.1016/j.mad.2022.111694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 06/22/2022] [Accepted: 06/22/2022] [Indexed: 11/16/2022]
Abstract
BACKGROUND We conducted a systematic review and meta-analysis to assess the effects of lifestyle intervention on telomere length (TL). METHOD Four databases were searched for studies reporting TL in leukocytes, before and after a lifestyle intervention. We computed random-effects meta-analysis on TL within intervention and control group after versus before intervention, and on changes in TL between groups. Sensitivity analyses and Meta-regression were conducted. RESULTS We included 20 studies in the systematic review (2995 participants, mean 50.3 years old, 77% women, 2045 following an intervention and 950 controls) and 19 in the meta-analysis. TL were similar at baseline between intervention and control groups. The physical activity ± diet group had an increase in TL (Effect size 0.17, 95%CI 0.03-0.31, p = 0.020) using changes within the intervention group, whereas TL shortened in the control group (-0.32, -0.61 to -0.02, p = 0.037). TL was longer in the physical activity ± diet intervention group (0.24, 0.08-0.40, p = 0.004) compared to controls after the intervention. Sensitivity analysis gave similar results. Meta-regressions demonstrated that combining strength and endurance exercise increased TL more than endurance alone or strength alone. CONCLUSION A lifestyle intervention with physical activity ± diet can increase telomere length, independently of population characteristics or baseline TL.
Collapse
Affiliation(s)
- Marjorie Buttet
- Université Clermont Auvergne, General medicine, F-63000 Clermont-Ferrand, France
| | - Reza Bagheri
- University of Isfahan, Exercise physiology department, Isfahan, Iran
| | - Ukadike C Ugbolue
- University of the West of Scotland, Health and Life Sciences, Institute for Clinical Exercise & Health Science, University of Strathclyde, Glasgow, Scotland, UK
| | - Catherine Laporte
- Université Clermont Auvergne, EA 7280 NPsy-Sydo, General medicine, F-63000 Clermont-Ferrand, France
| | - Marion Trousselard
- French Armed Forces, Biomedical Research Institute, IRBA, Neurophysiology of Stress, Neuroscience and Operational Constraint Department, Brétigny-sur-Orge, France; APEMAC/EPSAM, EA 4360, Ile du Saulcy, 57000 Metz, France
| | - Amanda Benson
- Swinburne University of Technology, Sport Innovation Research Group, Department of Health and Biostatistics, Melbourne, VIC 3122, Australia
| | - Jean-Baptiste Bouillon-Minois
- Université Clermont Auvergne, CNRS, LaPSCo, Physiological and Psychosocial Stress, University Hospital of Clermont-Ferrand, CHU Clermont-Ferrand, Emergency medicine, F-63000 Clermont-Ferrand, France.
| | - Frédéric Dutheil
- Université Clermont Auvergne, CNRS, LaPSCo, Physiological and Psychosocial Stress, University Hospital of Clermont-Ferrand, CHU Clermont-Ferrand, Occupational and Environmental Medicine, WittyFit, F-63000 Clermont-Ferrand, France
| |
Collapse
|
67
|
A Small Molecule That Promotes Cellular Senescence Prevents Fibrogenesis and Tumorigenesis. Int J Mol Sci 2022; 23:ijms23126852. [PMID: 35743290 PMCID: PMC9224374 DOI: 10.3390/ijms23126852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/16/2022] [Accepted: 06/18/2022] [Indexed: 12/04/2022] Open
Abstract
Uncontrolled proliferative diseases, such as fibrosis or cancer, can be fatal. We previously found that a compound containing the chromone scaffold (CS), ONG41008, had potent antifibrogenic effects associated with EMT or cell-cycle control resembling tumorigenesis. We investigated the effects of ONG41008 on tumor cells and compared these effects with those in pathogenic myofibroblasts. Stimulation of A549 (lung carcinoma epithelial cells) or PANC1 (pancreatic ductal carcinoma cells) with ONG41008 resulted in robust cellular senescence, indicating that dysregulated cell proliferation is common to fibrotic cells and tumor cells. The senescence was followed by multinucleation, a manifestation of mitotic slippage. There was significant upregulation of expression and rapid nuclear translocation of p-TP53 and p16 in the treated cancer cells, which thereafter died after 72 h confirmed by 6 day live imaging. ONG41008 exhibited a comparable senogenic potential to that of dasatinib. Interestingly, ONG41008 was only able to activate caspase-3, 7 in comparison with quercetin and fisetin, also containing CS in PANC1. ONG41008 did not seem to be essentially toxic to normal human lung fibroblasts or primary prostate epithelial cells, suggesting ONG41008 can distinguish the intracellular microenvironment between normal cells and aged or diseased cells. This effect might occur as a result of the increased NAD/NADH ratio, because ONG41008 restored this important metabolic ratio in cancer cells. Taken together, this is the first study to demonstrate that a small molecule can arrest uncontrolled proliferation during fibrogenesis or tumorigenesis via both senogenic and senolytic potential. ONG41008 could be a potential drug for a broad range of fibrotic or tumorigenic diseases.
Collapse
|
68
|
Dakic T, Jevdjovic T, Vujovic P, Mladenovic A. The Less We Eat, the Longer We Live: Can Caloric Restriction Help Us Become Centenarians? Int J Mol Sci 2022; 23:ijms23126546. [PMID: 35742989 PMCID: PMC9223351 DOI: 10.3390/ijms23126546] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/07/2022] [Accepted: 06/08/2022] [Indexed: 02/04/2023] Open
Abstract
Striving for longevity is neither a recent human desire nor a novel scientific field. The first article on this topic was published in 1838, when the average human life expectancy was approximately 40 years. Although nowadays people on average live almost as twice as long, we still (and perhaps more than ever) look for new ways to extend our lifespan. During this seemingly endless journey of discovering efficient methods to prolong life, humans were enthusiastic regarding several approaches, one of which is caloric restriction (CR). Where does CR, initially considered universally beneficial for extending both lifespan and health span, stand today? Does a lifelong decrease in food consumption represent one of the secrets of centenarians’ long and healthy life? Do we still believe that if we eat less, we will live longer? This review aims to summarize the current literature on CR as a potential life-prolonging intervention in humans and discusses metabolic pathways that underlie this effect.
Collapse
Affiliation(s)
- Tamara Dakic
- Department for Comparative Physiology and Ecophysiology, Institute for Physiology and Biochemistry “Ivan Djaja”, Faculty of Biology, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia; (T.D.); (T.J.); (P.V.)
| | - Tanja Jevdjovic
- Department for Comparative Physiology and Ecophysiology, Institute for Physiology and Biochemistry “Ivan Djaja”, Faculty of Biology, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia; (T.D.); (T.J.); (P.V.)
| | - Predrag Vujovic
- Department for Comparative Physiology and Ecophysiology, Institute for Physiology and Biochemistry “Ivan Djaja”, Faculty of Biology, University of Belgrade, Studentski trg 16, 11000 Belgrade, Serbia; (T.D.); (T.J.); (P.V.)
| | - Aleksandra Mladenovic
- Department of Neurobiology, Institute for Biological Research “Sinisa Stankovic”—National Institute of Republic of Serbia, University of Belgrade, Bul.D. Stefana 142, 11000 Belgrade, Serbia
- Correspondence:
| |
Collapse
|
69
|
McIntyre RL, Liu YJ, Hu M, Morris BJ, Willcox BJ, Donlon TA, Houtkooper RH, Janssens GE. Pharmaceutical and nutraceutical activation of FOXO3 for healthy longevity. Ageing Res Rev 2022; 78:101621. [PMID: 35421606 DOI: 10.1016/j.arr.2022.101621] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/10/2022] [Accepted: 04/07/2022] [Indexed: 12/12/2022]
Abstract
Life expectancy has increased substantially over the last 150 years. Yet this means that now most people also spend a greater length of time suffering from various age-associated diseases. As such, delaying age-related functional decline and extending healthspan, the period of active older years free from disease and disability, is an overarching objective of current aging research. Geroprotectors, compounds that target pathways that causally influence aging, are increasingly recognized as a means to extend healthspan in the aging population. Meanwhile, FOXO3 has emerged as a geroprotective gene intricately involved in aging and healthspan. FOXO3 genetic variants are linked to human longevity, reduced disease risks, and even self-reported health. Therefore, identification of FOXO3-activating compounds represents one of the most direct candidate approaches to extending healthspan in aging humans. In this work, we review compounds that activate FOXO3, or influence healthspan or lifespan in a FOXO3-dependent manner. These compounds can be classified as pharmaceuticals, including PI3K/AKT inhibitors and AMPK activators, antidepressants and antipsychotics, muscle relaxants, and HDAC inhibitors, or as nutraceuticals, including primary metabolites involved in cell growth and sustenance, and secondary metabolites including extracts, polyphenols, terpenoids, and other purified natural compounds. The compounds documented here provide a basis and resource for further research and development, with the ultimate goal of promoting healthy longevity in humans.
Collapse
Affiliation(s)
- Rebecca L McIntyre
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology, Endocrinology, and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Yasmine J Liu
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology, Endocrinology, and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Man Hu
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology, Endocrinology, and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Brian J Morris
- School of Medical Sciences, University of Sydney, Sydney, NSW, Australia; Department of Research, Kuakini Medical Center, Honolulu, HI, USA; Department of Geriatric Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, USA
| | - Bradley J Willcox
- Department of Research, Kuakini Medical Center, Honolulu, HI, USA; Department of Geriatric Medicine, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, USA
| | - Timothy A Donlon
- Department of Research, Kuakini Medical Center, Honolulu, HI, USA; Department of Cell and Molecular Biology and Department of Pathology, John A. Burns School of Medicine, University of Hawaii, Honolulu, HI, USA
| | - Riekelt H Houtkooper
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology, Endocrinology, and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Georges E Janssens
- Laboratory Genetic Metabolic Diseases, Amsterdam Gastroenterology, Endocrinology, and Metabolism, Amsterdam Cardiovascular Sciences, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
70
|
Fasting and Fasting Mimicking Diets in Obesity and Cardiometabolic Disease Prevention and Treatment. Phys Med Rehabil Clin N Am 2022; 33:699-717. [DOI: 10.1016/j.pmr.2022.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
71
|
Liu JK. Antiaging agents: safe interventions to slow aging and healthy life span extension. NATURAL PRODUCTS AND BIOPROSPECTING 2022; 12:18. [PMID: 35534591 PMCID: PMC9086005 DOI: 10.1007/s13659-022-00339-y] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 03/29/2022] [Indexed: 05/02/2023]
Abstract
Human longevity has increased dramatically during the past century. More than 20% of the 9 billion population of the world will exceed the age of 60 in 2050. Since the last three decades, some interventions and many preclinical studies have been found to show slowing aging and increasing the healthy lifespan of organisms from yeast, flies, rodents to nonhuman primates. The interventions are classified into two groups: lifestyle modifications and pharmacological/genetic manipulations. Some genetic pathways have been characterized to have a specific role in controlling aging and lifespan. Thus, all genes in the pathways are potential antiaging targets. Currently, many antiaging compounds target the calorie-restriction mimetic, autophagy induction, and putative enhancement of cell regeneration, epigenetic modulation of gene activity such as inhibition of histone deacetylases and DNA methyltransferases, are under development. It appears evident that the exploration of new targets for these antiaging agents based on biogerontological research provides an incredible opportunity for the healthcare and pharmaceutical industries. The present review focus on the properties of slow aging and healthy life span extension of natural products from various biological resources, endogenous substances, drugs, and synthetic compounds, as well as the mechanisms of targets for antiaging evaluation. These bioactive compounds that could benefit healthy aging and the potential role of life span extension are discussed.
Collapse
Affiliation(s)
- Ji-Kai Liu
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, 430074, People's Republic of China.
| |
Collapse
|
72
|
Oxysterols are potential physiological regulators of ageing. Ageing Res Rev 2022; 77:101615. [PMID: 35351610 DOI: 10.1016/j.arr.2022.101615] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/18/2022] [Accepted: 03/24/2022] [Indexed: 12/24/2022]
Abstract
Delaying and even reversing ageing is a major public health challenge with a tremendous potential to postpone a plethora of diseases including cancer, metabolic syndromes and neurodegenerative disorders. A better understanding of ageing as well as the development of innovative anti-ageing strategies are therefore an increasingly important field of research. Several biological processes including inflammation, proteostasis, epigenetic, oxidative stress, stem cell exhaustion, senescence and stress adaptive response have been reported for their key role in ageing. In this review, we describe the relationships that have been established between cholesterol homeostasis, in particular at the level of oxysterols, and ageing. Initially considered as harmful pro-inflammatory and cytotoxic metabolites, oxysterols are currently emerging as an expanding family of fine regulators of various biological processes involved in ageing. Indeed, depending of their chemical structure and their concentration, oxysterols exhibit deleterious or beneficial effects on inflammation, oxidative stress and cell survival. In addition, stem cell differentiation, epigenetics, cellular senescence and proteostasis are also modulated by oxysterols. Altogether, these data support the fact that ageing is influenced by an oxysterol profile. Further studies are thus required to explore more deeply the impact of the "oxysterome" on ageing and therefore this cholesterol metabolic pathway constitutes a promising target for future anti-ageing interventions.
Collapse
|
73
|
Abstract
Frailty is a complex syndrome affecting a growing sector of the global population as medical developments have advanced human mortality rates across the world. Our current understanding of frailty is derived from studies conducted in the laboratory as well as the clinic, which have generated largely phenotypic information. Far fewer studies have uncovered biological underpinnings driving the onset and progression of frailty, but the stage is set to advance the field with preclinical and clinical assessment tools, multiomics approaches together with physiological and biochemical methodologies. In this article, we provide comprehensive coverage of topics regarding frailty assessment, preclinical models, interventions, and challenges as well as clinical frameworks and prevalence. We also identify central biological mechanisms that may be at play including mitochondrial dysfunction, epigenetic alterations, and oxidative stress that in turn, affect metabolism, stress responses, and endocrine and neuromuscular systems. We review the role of metabolic syndrome, insulin resistance and visceral obesity, focusing on glucose homeostasis, adenosine monophosphate-activated protein kinase (AMPK), mammalian target of rapamycin (mTOR), and nicotinamide adenine dinucleotide (NAD+ ) as critical players influencing the age-related loss of health. We further focus on how immunometabolic dysfunction associates with oxidative stress in promoting sarcopenia, a key contributor to slowness, weakness, and fatigue. We explore the biological mechanisms involved in stem cell exhaustion that affect regeneration and may contribute to the frailty-associated decline in resilience and adaptation to stress. Together, an overview of the interplay of aging biology with genetic, lifestyle, and environmental factors that contribute to frailty, as well as potential therapeutic targets to lower risk and slow the progression of ongoing disease is covered. © 2022 American Physiological Society. Compr Physiol 12:1-46, 2022.
Collapse
Affiliation(s)
- Laís R. Perazza
- Department of Physical Therapy and Athletic Training, Boston University, Boston, Massachusetts, USA
| | - Holly M. Brown-Borg
- Department of Biomedical Sciences, University of North Dakota, Grand Forks, North Dakota, USA
| | - LaDora V. Thompson
- Department of Physical Therapy and Athletic Training, Boston University, Boston, Massachusetts, USA
| |
Collapse
|
74
|
Kopchick JJ, Berryman DE, List EO. Chasing Methuselah: adult inducible GHRKO mice. Aging (Albany NY) 2022; 14:3331-3332. [PMID: 35417853 PMCID: PMC9085234 DOI: 10.18632/aging.204016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 03/25/2022] [Indexed: 11/25/2022]
Affiliation(s)
- John J Kopchick
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens OH, 45701, USA.,Edison Biotechnology Institute, Ohio University, Athens OH, 45701, USA
| | - Darlene E Berryman
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens OH, 45701, USA.,Edison Biotechnology Institute, Ohio University, Athens OH, 45701, USA
| | - Edward O List
- Department of Biomedical Sciences, Heritage College of Osteopathic Medicine, Ohio University, Athens OH, 45701, USA
| |
Collapse
|
75
|
Abdelgawad IY, Agostinucci K, Zordoky BN. Cardiovascular ramifications of therapy-induced endothelial cell senescence in cancer survivors. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166352. [PMID: 35041996 PMCID: PMC8844223 DOI: 10.1016/j.bbadis.2022.166352] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 12/22/2021] [Accepted: 01/07/2022] [Indexed: 12/15/2022]
Abstract
Cancer survivorship has remarkably improved over the past decades; nevertheless, cancer survivors are burdened with multiple health complications primarily caused by their cancer therapy. Therapy-induced senescence is recognized as a fundamental mechanism contributing to adverse health complications in cancer survivors. In this mini-review, we will discuss the recent literature describing the mechanisms of cancer therapy-induced senescence. We will focus on endothelial cell senescence since it has been shown to be a key player in numerous cardiovascular complications. We will also discuss novel senotherapeutic approaches that have the potential to combat therapy-induced endothelial cell senescence.
Collapse
Affiliation(s)
- Ibrahim Y Abdelgawad
- Department of Experimental and Clinical Pharmacology, University of Minnesota College of Pharmacy, Minneapolis, MN 55455, USA.
| | - Kevin Agostinucci
- Department of Experimental and Clinical Pharmacology, University of Minnesota College of Pharmacy, Minneapolis, MN 55455, USA.
| | - Beshay N Zordoky
- Department of Experimental and Clinical Pharmacology, University of Minnesota College of Pharmacy, Minneapolis, MN 55455, USA.
| |
Collapse
|
76
|
Wang R, Wu Y, Liu R, Liu M, Li Q, Ba Y, Huang H. Deciphering therapeutic options for neurodegenerative diseases: insights from SIRT1. J Mol Med (Berl) 2022; 100:537-553. [PMID: 35275221 DOI: 10.1007/s00109-022-02187-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 03/01/2022] [Accepted: 03/03/2022] [Indexed: 12/23/2022]
Abstract
Silent information regulator 1 (SIRT1) is a nicotinamide adenine dinucleotide (NAD +)-dependent protein deacetylase that exerts biological effects through nucleoplasmic transfer. Recent studies have highlighted that SIRT1 deacetylates protein substrates to exert its neuroprotective effects, including decreased oxidative stress and inflammatory, increases autophagy, increases levels of nerve growth factors (correlated with behavioral changes), and maintains neural integrity (affects neuronal development and function) in aging or neurological disorder. In this review, we highlight the molecular mechanisms underlying the protective role of SIRT1 in modulating neurodegeneration, focusing on protein homeostasis, aging-related signaling pathways, neurogenesis, and synaptic plasticity. Meanwhile, the potential of targeting SIRT1 to block the occurrence and progression of neurodegenerative diseases is also discussed. Taken together, this review provides an up-to-date evaluation of our current understanding of the neuroprotective mechanisms of SIRT1 and also be involved in the potential therapeutic opportunities of AD and related neurodegenerative diseases.
Collapse
Affiliation(s)
- Ruike Wang
- Department of Environmental Health, College of Public Health, Zhengzhou University, No.100 Kexue Avenue, Henan province, Zhengzhou, 450001, China.,Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Henan province, Zhengzhou, 450001, China
| | - Yingying Wu
- Department of Environmental Health, College of Public Health, Zhengzhou University, No.100 Kexue Avenue, Henan province, Zhengzhou, 450001, China.,Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Henan province, Zhengzhou, 450001, China
| | - Rundong Liu
- Department of Environmental Health, College of Public Health, Zhengzhou University, No.100 Kexue Avenue, Henan province, Zhengzhou, 450001, China.,Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Henan province, Zhengzhou, 450001, China
| | - Mengchen Liu
- Department of Environmental Health, College of Public Health, Zhengzhou University, No.100 Kexue Avenue, Henan province, Zhengzhou, 450001, China.,Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Henan province, Zhengzhou, 450001, China
| | - Qiong Li
- Department of Environmental Health, College of Public Health, Zhengzhou University, No.100 Kexue Avenue, Henan province, Zhengzhou, 450001, China.,Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Henan province, Zhengzhou, 450001, China
| | - Yue Ba
- Department of Environmental Health, College of Public Health, Zhengzhou University, No.100 Kexue Avenue, Henan province, Zhengzhou, 450001, China.,Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Henan province, Zhengzhou, 450001, China
| | - Hui Huang
- Department of Environmental Health, College of Public Health, Zhengzhou University, No.100 Kexue Avenue, Henan province, Zhengzhou, 450001, China. .,Environment and Health Innovation Team, College of Public Health, Zhengzhou University, Henan province, Zhengzhou, 450001, China.
| |
Collapse
|
77
|
Global, regional, and national burden of diseases and injuries for adults 70 years and older: systematic analysis for the Global Burden of Disease 2019 Study. BMJ 2022; 376:e068208. [PMID: 35273014 PMCID: PMC9316948 DOI: 10.1136/bmj-2021-068208] [Citation(s) in RCA: 88] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/26/2022] [Indexed: 12/20/2022]
Abstract
OBJECTIVES To use data from the Global Burden of Diseases, Injuries, and Risk Factors Study 2019 (GBD 2019) to estimate mortality and disability trends for the population aged ≥70 and evaluate patterns in causes of death, disability, and risk factors. DESIGN Systematic analysis. SETTING Participants were aged ≥70 from 204 countries and territories, 1990-2019. MAIN OUTCOMES MEASURES Years of life lost, years lived with disability, disability adjusted life years, life expectancy at age 70 (LE-70), healthy life expectancy at age 70 (HALE-70), proportion of years in ill health at age 70 (PYIH-70), risk factors, and data coverage index were estimated based on standardised GBD methods. RESULTS Globally the population of older adults has increased since 1990 and all cause death rates have decreased for men and women. However, mortality rates due to falls increased between 1990 and 2019. The probability of death among people aged 70-90 decreased, mainly because of reductions in non-communicable diseases. Globally disability burden was largely driven by functional decline, vision and hearing loss, and symptoms of pain. LE-70 and HALE-70 showed continuous increases since 1990 globally, with certain regional disparities. Globally higher LE-70 resulted in higher HALE-70 and slightly increased PYIH-70. Sociodemographic and healthcare access and quality indices were positively correlated with HALE-70 and LE-70. For high exposure risk factors, data coverage was moderate, while limited data were available for various dietary, environmental or occupational, and metabolic risks. CONCLUSIONS Life expectancy at age 70 has continued to rise globally, mostly because of decreases in chronic diseases. Adults aged ≥70 living in high income countries and regions with better healthcare access and quality were found to experience the highest life expectancy and healthy life expectancy. Disability burden, however, remained constant, suggesting the need to enhance public health and intervention programmes to improve wellbeing among older adults.
Collapse
|
78
|
D-galactose-induced aging in rats – The effect of metformin on bioenergetics of brain, skeletal muscle and liver. Exp Gerontol 2022; 163:111770. [DOI: 10.1016/j.exger.2022.111770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 11/18/2022]
|
79
|
Baarz BR, Rink L. Rebalancing the unbalanced aged immune system - A special focus on zinc. Ageing Res Rev 2022; 74:101541. [PMID: 34915196 DOI: 10.1016/j.arr.2021.101541] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 11/18/2021] [Accepted: 12/09/2021] [Indexed: 02/08/2023]
Abstract
Nowadays, aging is understood as a dynamic and multifaceted dysregulation process that spares almost no human organ or cell. The immune system being among the most affected, it has been shown predominantly that its integrity determines the tightrope walk between the difference of escaping or suffering from age-related diseases. Next to drug-based anti-aging strategies, micronutrient intervention may represent an emerging but less radical way to slow immune aging. While a sufficient supply of a variety of micronutrients is undeniably important, adequate intake of the trace element zinc appears to tower over others in terms of reaching old age. Inconveniently, zinc deficiency prevalence among the elderly is high, which in turn contributes to increased susceptibility to infection, decreased anti-tumor immunity as well as attenuated response to vaccination. Driven by this research, this review aims to provide a comprehensive and up-to-date overview of the various rebalancing capabilities of zinc in the unbalanced immune system of the elderly. This includes an in-depth and cell type-centered discussion on the role of zinc in immunosenescence and inflammaging. We further address upcoming translational aspects e.g. how zinc deficiency promotes the flourishing of certain pathogenic taxa of the gut microbiome and how zinc supply counteracts such alterations in a manner that may contribute to longevity. In the light of the ongoing COVID-19 pandemic, we also briefly review current knowledge on the interdependency between age, zinc status, and respiratory infections. Based on two concrete examples and considering the latest findings in the field we conclude our remarks by outlining tremendous parallels between suboptimal zinc status and accelerated aging on the one hand and an optimized zinc status and successful aging on the other hand.
Collapse
|
80
|
Duangjan C, Curran SP. Oolonghomobisflavans from Camellia sinensis increase Caenorhabditis elegans lifespan and healthspan. GeroScience 2022; 44:533-545. [PMID: 34637108 PMCID: PMC8811050 DOI: 10.1007/s11357-021-00462-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 09/14/2021] [Indexed: 12/22/2022] Open
Abstract
Tea polyphenols are widely considered as excellent antioxidant agents which can contribute to human health and longevity. However, the identification of the active biomolecules in complex tea extracts that promote health and longevity are not fully known. Here we used the nematode Caenorhabditis elegans to analyze the health benefits and longevity effects of Camellia sinensis oolong tea extracts (QFT, NFT, and CFT) and oolonghomobisflavan A and oolonghomobisflavan B, which are present in oolong tea extracts. Our results showed that oolong tea extracts and oolonghomobisflavans prolong lifespan and improved healthspan by curtailing the age-related decline in muscle activity and the accumulation of age pigment (lipofuscin). We found that the lifespan and healthspan promoting effects of oolong tea extracts and oolonghomobisflavans were positively correlated with the stress resistance via DAF-16/FOXO transcription factor. Furthermore, oolong tea extracts and oolonghomobisflavans displayed protective effects against Aβ- and polyQ-induced neuro/proteotoxicity. Overall, our study provides new evidence to support the health benefits of oolong tea and importantly identify oolonghomobisflavans as potent bioactive molecules that promote health when supplemented with a normal diet. As such, oolonghomobisflavans represent a valuable new class of compounds that promote healthy aging.
Collapse
Affiliation(s)
- Chatrawee Duangjan
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, USA
| | - Sean P Curran
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, USA.
- Molecular and Computational Biology, Dornsife College of Letters, Arts, and Science, University of Southern California, Los Angeles, USA.
| |
Collapse
|
81
|
Galow AM, Peleg S. How to Slow down the Ticking Clock: Age-Associated Epigenetic Alterations and Related Interventions to Extend Life Span. Cells 2022; 11:468. [PMID: 35159278 PMCID: PMC8915189 DOI: 10.3390/cells11030468] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 01/26/2022] [Indexed: 02/04/2023] Open
Abstract
Epigenetic alterations pose one major hallmark of organismal aging. Here, we provide an overview on recent findings describing the epigenetic changes that arise during aging and in related maladies such as neurodegeneration and cancer. Specifically, we focus on alterations of histone modifications and DNA methylation and illustrate the link with metabolic pathways. Age-related epigenetic, transcriptional and metabolic deregulations are highly interconnected, which renders dissociating cause and effect complicated. However, growing amounts of evidence support the notion that aging is not only accompanied by epigenetic alterations, but also at least in part induced by those. DNA methylation clocks emerged as a tool to objectively determine biological aging and turned out as a valuable source in search of factors positively and negatively impacting human life span. Moreover, specific epigenetic signatures can be used as biomarkers for age-associated disorders or even as targets for therapeutic approaches, as will be covered in this review. Finally, we summarize recent potential intervention strategies that target epigenetic mechanisms to extend healthy life span and provide an outlook on future developments in the field of longevity research.
Collapse
Affiliation(s)
- Anne-Marie Galow
- Institute for Genome Biology, Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
| | - Shahaf Peleg
- Research Group Epigenetics, Metabolism and Longevity, Research Institute for Farm Animal Biology (FBN), 18196 Dummerstorf, Germany
- Institute of Neuroregeneration and Neurorehabilitation of Qingdao University, Qingdao 266071, China
| |
Collapse
|
82
|
Hofer SJ, Carmona‐Gutierrez D, Mueller MI, Madeo F. The ups and downs of caloric restriction and fasting: from molecular effects to clinical application. EMBO Mol Med 2022; 14:e14418. [PMID: 34779138 PMCID: PMC8749464 DOI: 10.15252/emmm.202114418] [Citation(s) in RCA: 109] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 10/05/2021] [Accepted: 10/08/2021] [Indexed: 12/15/2022] Open
Abstract
Age-associated diseases are rising to pandemic proportions, exposing the need for efficient and low-cost methods to tackle these maladies at symptomatic, behavioral, metabolic, and physiological levels. While nutrition and health are closely intertwined, our limited understanding of how diet precisely influences disease often precludes the medical use of specific dietary interventions. Caloric restriction (CR) has approached clinical application as a powerful, yet simple, dietary modulation that extends both life- and healthspan in model organisms and ameliorates various diseases. However, due to psychological and social-behavioral limitations, CR may be challenging to implement into real life. Thus, CR-mimicking interventions have been developed, including intermittent fasting, time-restricted eating, and macronutrient modulation. Nonetheless, possible side effects of CR and alternatives thereof must be carefully considered. We summarize key concepts and differences in these dietary interventions in humans, discuss their molecular effects, and shed light on advantages and disadvantages.
Collapse
Affiliation(s)
- Sebastian J Hofer
- Institute of Molecular BiosciencesNAWI GrazUniversity of GrazGrazAustria
- BioHealth GrazGrazAustria
- BioTechMed GrazGrazAustria
| | | | - Melanie I Mueller
- Institute of Molecular BiosciencesNAWI GrazUniversity of GrazGrazAustria
| | - Frank Madeo
- Institute of Molecular BiosciencesNAWI GrazUniversity of GrazGrazAustria
- BioHealth GrazGrazAustria
- BioTechMed GrazGrazAustria
| |
Collapse
|
83
|
Leroy F, Beal T, Gregorini P, McAuliffe GA, van Vliet S. Nutritionism in a food policy context: the case of ‘animal protein’. ANIMAL PRODUCTION SCIENCE 2022. [DOI: 10.1071/an21237] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
84
|
Wu J, Liu Y, Song Y, Wang L, Ai J, Li K. Aging conundrum: A perspective for ovarian aging. Front Endocrinol (Lausanne) 2022; 13:952471. [PMID: 36060963 PMCID: PMC9437485 DOI: 10.3389/fendo.2022.952471] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 07/28/2022] [Indexed: 11/13/2022] Open
Abstract
Progressive loss of physiological integrity and accumulation of degenerative changes leading to functional impairment and increased susceptibility to diseases are the main features of aging. The ovary, the key organ that maintains female reproductive and endocrine function, enters aging earlier and faster than other organs and has attracted extensive attention from society. Ovarian aging is mainly characterized by the progressive decline in the number and quality of oocytes, the regulatory mechanisms of which have yet to be systematically elucidated. This review discusses the hallmarks of aging to further highlight the main characteristics of ovarian aging and attempt to explore its clinical symptoms and underlying mechanisms. Finally, the intervention strategies related to aging are elaborated, especially the potential role of stem cells and cryopreservation of embryos, oocytes, or ovarian tissue in the delay of ovarian aging.
Collapse
Affiliation(s)
| | | | | | - Lingjuan Wang
- *Correspondence: Kezhen Li, ; Jihui Ai, ; Lingjuan Wang,
| | - Jihui Ai
- *Correspondence: Kezhen Li, ; Jihui Ai, ; Lingjuan Wang,
| | - Kezhen Li
- *Correspondence: Kezhen Li, ; Jihui Ai, ; Lingjuan Wang,
| |
Collapse
|
85
|
Roberts JD, Vittinghoff E, Lu AT, Alonso A, Wang B, Sitlani CM, Mohammadi-Shemirani P, Fornage M, Kornej J, Brody JA, Arking DE, Lin H, Heckbert SR, Prokic I, Ghanbari M, Skanes AC, Bartz TM, Perez MV, Taylor KD, Lubitz SA, Ellinor PT, Lunetta KL, Pankow JS, Paré G, Sotoodehnia N, Benjamin EJ, Horvath S, Marcus GM. Epigenetic Age and the Risk of Incident Atrial Fibrillation. Circulation 2021; 144:1899-1911. [PMID: 34587750 PMCID: PMC8671333 DOI: 10.1161/circulationaha.121.056456] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 09/13/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND The most prominent risk factor for atrial fibrillation (AF) is chronological age; however, underlying mechanisms are unexplained. Algorithms using epigenetic modifications to the human genome effectively predict chronological age. Chronological and epigenetic predicted ages may diverge in a phenomenon referred to as epigenetic age acceleration (EAA), which may reflect accelerated biological aging. We sought to evaluate for associations between epigenetic age measures and incident AF. METHODS Measures for 4 epigenetic clocks (Horvath, Hannum, DNA methylation [DNAm] PhenoAge, and DNAm GrimAge) and an epigenetic predictor of PAI-1 (plasminogen activator inhibitor-1) levels (ie, DNAm PAI-1) were determined for study participants from 3 population-based cohort studies. Cox models evaluated for associations with incident AF and results were combined via random-effects meta-analyses. Two-sample summary-level Mendelian randomization analyses evaluated for associations between genetic instruments of the EAA measures and AF. RESULTS Among 5600 participants (mean age, 65.5 years; female, 60.1%; Black, 50.7%), there were 905 incident AF cases during a mean follow-up of 12.9 years. Unadjusted analyses revealed all 4 epigenetic clocks and the DNAm PAI-1 predictor were associated with statistically significant higher hazards of incident AF, though the magnitudes of their point estimates were smaller relative to the associations observed for chronological age. The pooled EAA estimates for each epigenetic measure, with the exception of Horvath EAA, were associated with incident AF in models adjusted for chronological age, race, sex, and smoking variables. After multivariable adjustment for additional known AF risk factors that could also potentially function as mediators, pooled EAA measures for 2 clocks remained statistically significant. Five-year increases in EAA measures for DNAm GrimAge and DNAm PhenoAge were associated with 19% (adjusted hazard ratio [HR], 1.19 [95% CI, 1.09-1.31]; P<0.01) and 15% (adjusted HR, 1.15 [95% CI, 1.05-1.25]; P<0.01) higher hazards of incident AF, respectively. Mendelian randomization analyses for the 5 EAA measures did not reveal statistically significant associations with AF. CONCLUSIONS Our study identified adjusted associations between EAA measures and incident AF, suggesting that biological aging plays an important role independent of chronological age, though a potential underlying causal relationship remains unclear. These aging processes may be modifiable and not constrained by the immutable factor of time.
Collapse
Affiliation(s)
- Jason D. Roberts
- Population Health Research Institute, McMaster University, and Hamilton Health Sciences, Hamilton, Ontario, Canada
- Section of Cardiac Electrophysiology, Division of Cardiology, Department of Medicine, Western University, London, Ontario, Canada
| | - Eric Vittinghoff
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California, USA
| | - Ake T. Lu
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Alvaro Alonso
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Biqi Wang
- National Heart, Lung, and Blood Institute’s and Boston University’s Framingham Heart Study, Framingham, Massachusetts, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, USA
| | - Colleen M. Sitlani
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Pedrum Mohammadi-Shemirani
- Department of Medical Sciences, McMaster University, Hamilton, Ontario, Canada
- Population Health Research Institute, David Braley Cardiac, Vascular and Stroke Research Institute, Hamilton, Ontario, Canada
- Thrombosis and Atherosclerosis Research Institute, David Braley Cardiac, Vascular and Stroke Research Institute, Hamilton, Ontario Canada
| | - Myriam Fornage
- Brown Foundation Institute of Molecular Medicine, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, USA
| | - Jelena Kornej
- National Heart, Lung, and Blood Institute’s and Boston University’s Framingham Heart Study, Framingham, Massachusetts, USA
- Section of Cardiovascular Medicine, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Jennifer A. Brody
- Cardiovascular Health Research Unit, Department of Medicine, University of Washington, Seattle, Washington, USA
| | - Dan E. Arking
- McKusick-Nathans Institute, Department of Genetic Medicine, Baltimore, Maryland, USA
| | - Honghuang Lin
- National Heart, Lung, and Blood Institute’s and Boston University’s Framingham Heart Study, Framingham, Massachusetts, USA
- Section of Computational Biomedicine, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Susan R. Heckbert
- Cardiovascular Health Research Unit and Department of Epidemiology, University of Washington, Seattle, Washington, USA
| | - Ivana Prokic
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Mohsen Ghanbari
- Department of Epidemiology, Erasmus University Medical Center, Rotterdam, the Netherlands
- Department of Genetics, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Allan C. Skanes
- Section of Cardiac Electrophysiology, Division of Cardiology, Department of Medicine, Western University, London, Ontario, Canada
| | - Traci M. Bartz
- Cardiovascular Health Research Unit, Departments of Biostatistics and Medicine, University of Washington, Seattle, Washington, USA
| | - Marco V. Perez
- Division of Cardiovascular Medicine, Stanford University School of Medicine, Stanford, California, USA
| | - Kent D. Taylor
- Institute for Translational Genomics, The Lundquist Institute at Harbour-UCLA Medical Center, Torrance, California, USA
| | - Steven A. Lubitz
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, Massachusetts, USA
- Cardiac Arrhythmia Service, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Patrick T. Ellinor
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, Massachusetts, USA
- Cardiac Arrhythmia Service, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Kathryn L. Lunetta
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, USA
| | - James S. Pankow
- Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minnesota, USA
| | - Guillaume Paré
- Population Health Research Institute, David Braley Cardiac, Vascular and Stroke Research Institute, Hamilton, Ontario, Canada
- Thrombosis and Atherosclerosis Research Institute, David Braley Cardiac, Vascular and Stroke Research Institute, Hamilton, Ontario Canada
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Nona Sotoodehnia
- Cardiovascular Health Research Unit, Division of Cardiology, Departments of Medicine and Epidemiology, University of Washington, Seattle, Washington, USA
| | - Emelia J. Benjamin
- National Heart, Lung, and Blood Institute’s and Boston University’s Framingham Heart Study, Framingham, Massachusetts, USA
- Section of Cardiovascular Medicine, Department of Medicine, Boston University School of Medicine, Boston, Massachusetts, USA
- Department of Epidemiology, Boston University School of Public Health, Boston, Massachusetts, USA
| | - Steve Horvath
- Department of Human Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, USA
- Department of Biostatistics, School of Public Health, University of California Los Angeles, Los Angeles, California, USA
| | - Gregory M. Marcus
- Section of Cardiac Electrophysiology, Division of Cardiology, Department of Medicine, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
86
|
Tulipano G. Integrated or Independent Actions of Metformin in Target Tissues Underlying Its Current Use and New Possible Applications in the Endocrine and Metabolic Disorder Area. Int J Mol Sci 2021; 22:13068. [PMID: 34884872 PMCID: PMC8658259 DOI: 10.3390/ijms222313068] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/18/2021] [Accepted: 11/29/2021] [Indexed: 12/14/2022] Open
Abstract
Metformin is considered the first-choice drug for type 2 diabetes treatment. Actually, pleiotropic effects of metformin have been recognized, and there is evidence that this drug may have a favorable impact on health beyond its glucose-lowering activity. In summary, despite its long history, metformin is still an attractive research opportunity in the field of endocrine and metabolic diseases, age-related diseases, and cancer. To this end, its mode of action in distinct cell types is still in dispute. The aim of this work was to review the current knowledge and recent findings on the molecular mechanisms underlying the pharmacological effects of metformin in the field of metabolic and endocrine pathologies, including some endocrine tumors. Metformin is believed to act through multiple pathways that can be interconnected or work independently. Moreover, metformin effects on target tissues may be either direct or indirect, which means secondary to the actions on other tissues and consequent alterations at systemic level. Finally, as to the direct actions of metformin at cellular level, the intracellular milieu cooperates to cause differential responses to the drug between distinct cell types, despite the primary molecular targets may be the same within cells. Cellular bioenergetics can be regarded as the primary target of metformin action. Metformin can perturb the cytosolic and mitochondrial NAD/NADH ratio and the ATP/AMP ratio within cells, thus affecting enzymatic activities and metabolic and signaling pathways which depend on redox- and energy balance. In this context, the possible link between pyruvate metabolism and metformin actions is extensively discussed.
Collapse
Affiliation(s)
- Giovanni Tulipano
- Unit of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| |
Collapse
|
87
|
Gialluisi A, Santoro A, Tirozzi A, Cerletti C, Donati MB, de Gaetano G, Franceschi C, Iacoviello L. Epidemiological and genetic overlap among biological aging clocks: New challenges in biogerontology. Ageing Res Rev 2021; 72:101502. [PMID: 34700008 DOI: 10.1016/j.arr.2021.101502] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 10/18/2021] [Accepted: 10/20/2021] [Indexed: 01/09/2023]
Abstract
Estimators of biological age (BA) - defined as the hypothetical underlying age of an organism - have attracted more and more attention in the last years, especially after the advent of new algorithms based on machine learning and genetic markers. While different aging clocks reportedly predict mortality in the general population, very little is known on their overlap. Here we review the evidence reported so far to support the existence of a partial overlap among different BA acceleration estimators, both from an epidemiological and a genetic perspective. On the epidemiological side, we review evidence supporting shared and independent influence on mortality risk of different aging clocks - including telomere length, brain, blood and epigenetic aging - and provide an overview of how an important exposure like diet may affect the different aging systems. On the genetic side, we apply linkage disequilibrium score regression analyses to support the existence of partly shared genomic overlap among these aging clocks. Through multivariate analysis of published genetic associations with these clocks, we also identified the most associated variants, genes, and pathways, which may affect common mechanisms underlying biological aging of different systems within the body. Based on our analyses, the most implicated pathways were involved in inflammation, lipid and carbohydrate metabolism, suggesting them as potential molecular targets for future anti-aging interventions. Overall, this review is meant as a contribution to the knowledge on the overlap of aging clocks, trying to clarify their shared biological basis and epidemiological implications.
Collapse
Affiliation(s)
| | - Aurelia Santoro
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy; Alma Mater Research Institute on Global Challenges and Climate Change (Alma Climate), University of Bologna, Bologna 40126, Italy
| | - Alfonsina Tirozzi
- Department of Epidemiology and Prevention, IRCCS NEUROMED, Pozzilli, Italy
| | - Chiara Cerletti
- Department of Epidemiology and Prevention, IRCCS NEUROMED, Pozzilli, Italy
| | | | | | - Claudio Franceschi
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy; Laboratory of Systems Medicine of Healthy Aging and Department of Applied Mathematics, Lobachevsky University, Nizhny Novgorod, Russia
| | - Licia Iacoviello
- Department of Epidemiology and Prevention, IRCCS NEUROMED, Pozzilli, Italy; Department of Medicine and Surgery, University of Insubria, Varese, Italy
| |
Collapse
|
88
|
Duran‐Ortiz S, List EO, Ikeno Y, Young J, Basu R, Bell S, McHugh T, Funk K, Mathes S, Qian Y, Kulkarni P, Yakar S, Berryman DE, Kopchick JJ. Growth hormone receptor gene disruption in mature-adult mice improves male insulin sensitivity and extends female lifespan. Aging Cell 2021; 20:e13506. [PMID: 34811874 PMCID: PMC8672790 DOI: 10.1111/acel.13506] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/23/2021] [Accepted: 10/18/2021] [Indexed: 12/27/2022] Open
Abstract
Studies in multiple species indicate that reducing growth hormone (GH) action enhances healthy lifespan. In fact, GH receptor knockout (GHRKO) mice hold the Methuselah prize for the world's longest-lived laboratory mouse. We previously demonstrated that GHR ablation starting at puberty (1.5 months), improved insulin sensitivity and female lifespan but results in markedly reduced body size. In this study, we investigated the effects of GHR disruption in mature-adult mice at 6 months old (6mGHRKO). These mice exhibited GH resistance (reduced IGF-1 and elevated GH serum levels), increased body adiposity, reduced lean mass, and minimal effects on body length. Importantly, 6mGHRKO males have enhanced insulin sensitivity and reduced neoplasms while females exhibited increased median and maximal lifespan. Furthermore, fasting glucose and oxidative damage was reduced in females compared to males irrespective of Ghr deletion. Overall, disrupted GH action in adult mice resulted in sexual dimorphic effects suggesting that GH reduction at older ages may have gerotherapeutic effects.
Collapse
Affiliation(s)
- Silvana Duran‐Ortiz
- Edison Biotechnology Institute Ohio University Athens Ohio USA
- Molecular and Cellular Biology program Ohio University Athens Ohio USA
- Department of Biological Sciences College of Arts and Sciences Ohio University Athens Ohio USA
| | - Edward O. List
- Edison Biotechnology Institute Ohio University Athens Ohio USA
| | - Yuji Ikeno
- Barshop Institute for Longevity and Aging Studies San Antonio Texas USA
| | - Jonathan Young
- Department of Biomedical Sciences Heritage College of Osteopathic Medicine Ohio University Athens Ohio USA
| | - Reetobrata Basu
- Edison Biotechnology Institute Ohio University Athens Ohio USA
| | - Stephen Bell
- Department of Biomedical Sciences Heritage College of Osteopathic Medicine Ohio University Athens Ohio USA
| | - Todd McHugh
- Department of Biological Sciences College of Arts and Sciences Ohio University Athens Ohio USA
| | - Kevin Funk
- Edison Biotechnology Institute Ohio University Athens Ohio USA
| | - Samuel Mathes
- Edison Biotechnology Institute Ohio University Athens Ohio USA
| | - Yanrong Qian
- Edison Biotechnology Institute Ohio University Athens Ohio USA
| | - Prateek Kulkarni
- Molecular and Cellular Biology program Ohio University Athens Ohio USA
- Department of Biological Sciences College of Arts and Sciences Ohio University Athens Ohio USA
| | - Shoshana Yakar
- Department of Molecular Pathobiology David B. Kriser Dental Center New York University College of Dentistry New York New York USA
| | - Darlene E. Berryman
- Edison Biotechnology Institute Ohio University Athens Ohio USA
- Molecular and Cellular Biology program Ohio University Athens Ohio USA
- Department of Biomedical Sciences Heritage College of Osteopathic Medicine Ohio University Athens Ohio USA
- Diabetes Institute Ohio University Athens Ohio USA
| | - John J. Kopchick
- Edison Biotechnology Institute Ohio University Athens Ohio USA
- Molecular and Cellular Biology program Ohio University Athens Ohio USA
- Department of Biomedical Sciences Heritage College of Osteopathic Medicine Ohio University Athens Ohio USA
- Diabetes Institute Ohio University Athens Ohio USA
| |
Collapse
|
89
|
Wen J, Wang Y, Yuan M, Huang Z, Zou Q, Pu Y, Zhao B, Cai Z. Role of mismatch repair in aging. Int J Biol Sci 2021; 17:3923-3935. [PMID: 34671209 PMCID: PMC8495402 DOI: 10.7150/ijbs.64953] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/07/2021] [Indexed: 01/10/2023] Open
Abstract
A common feature of aging is the accumulation of genetic damage throughout life. DNA damage can lead to genomic instability. Many diseases associated with premature aging are a result of increased accumulation of DNA damage. In order to minimize these damages, organisms have evolved a complex network of DNA repair mechanisms, including mismatch repair (MMR). In this review, we detail the effects of MMR on genomic instability and its role in aging emphasizing on the association between MMR and the other hallmarks of aging, serving to drive or amplify these mechanisms. These hallmarks include telomere attrition, epigenetic alterations, mitochondrial dysfunction, altered nutrient sensing and cell senescence. The close relationship between MMR and these markers may provide prevention and treatment strategies, to reduce the incidence of age-related diseases and promote the healthy aging of human beings.
Collapse
Affiliation(s)
- Jie Wen
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, 400013, China.,Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, 400013, China.,Department and Institute of Neurology, Guangdong Medical University, Guangdong, 524001, China.,Guangdong Key Laboratory of aging related cardio cerebral diseases, Guangdong, 524001, China
| | - Yangyang Wang
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, 400013, China.,Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, 400013, China
| | - Minghao Yuan
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, 400013, China.,Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, 400013, China
| | - Zhenting Huang
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, 400013, China.,Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, 400013, China
| | - Qian Zou
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, 400013, China.,Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, 400013, China
| | - Yinshuang Pu
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, 400013, China.,Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, 400013, China
| | - Bin Zhao
- Department and Institute of Neurology, Guangdong Medical University, Guangdong, 524001, China.,Guangdong Key Laboratory of aging related cardio cerebral diseases, Guangdong, 524001, China
| | - Zhiyou Cai
- Chongqing Key Laboratory of Neurodegenerative Diseases, Chongqing, 400013, China.,Department of Neurology, Chongqing General Hospital, University of Chinese Academy of Sciences, Chongqing, 400013, China
| |
Collapse
|
90
|
Wolf AM. Rodent diet aids and the fallacy of caloric restriction. Mech Ageing Dev 2021; 200:111584. [PMID: 34673082 DOI: 10.1016/j.mad.2021.111584] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 10/01/2021] [Accepted: 10/05/2021] [Indexed: 12/14/2022]
Abstract
Understanding the molecular mechanisms of normal aging is a prerequisite to significantly improving human health span. Caloric restriction (CR) can delay aging and has served as a yardstick to evaluate interventions extending life span. However, mice given unlimited access to food suffer severe obesity. Health gains from CR depend on control mice being sufficiently overweight and less obese mouse strains benefit far less from CR. Pharmacologic interventions that increase life span, including resveratrol, rapamycin, nicotinamide mononucleotide and metformin, also reduce body weight. In primates, CR does not delay aging unless the control group is eating enough to suffer from obesity-related disease. Human survival is optimal at a body mass index achievable without CR, and the above interventions are merely diet aids that shouldn't slow aging in healthy weight individuals. CR in humans of optimal weight can safely be declared useless, since there is overwhelming evidence that hunger, underweight and starvation reduce fitness, survival, and quality of life. Against an obese control, CR does, however, truly delay aging through a mechanism laid out in the following tumor suppression theory of aging.
Collapse
Affiliation(s)
- Alexander M Wolf
- Laboratory for Morphological and Biomolecular Imaging, Faculty of Medicine, Nippon Medical School, Japan.
| |
Collapse
|
91
|
Shao T, Verma HK, Pande B, Costanzo V, Ye W, Cai Y, Bhaskar LVKS. Physical Activity and Nutritional Influence on Immune Function: An Important Strategy to Improve Immunity and Health Status. Front Physiol 2021; 12:751374. [PMID: 34690818 PMCID: PMC8531728 DOI: 10.3389/fphys.2021.751374] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 09/13/2021] [Indexed: 12/11/2022] Open
Abstract
Physical activity (PA) and nutrition are the essential components of a healthy lifestyle, as they can influence energy balance, promote functional ability of various systems and improve immunity. Infections and their associated symptoms are the common and frequent challenges to human health that are causing severe economic and social consequences around the world. During aging, human immune system undergoes dramatic aging-related changes/dysfunctions known as immunosenescence. Clinically, immunosenescence refers to the gradual deterioration of immune system that increases exposure to infections, and reduces vaccine efficacy. Such phenomenon is linked to impaired immune responses that lead to dysfunction of multiple organs, while lack of physical activity, progressive loss of muscle mass, and concomitant decline in muscle strength facilitate immunosenescence and inflammation. In the present review, we have discussed the role of nutrition and PA, which can boost the immune system alone and synergistically. Evidence suggests that long-term PA is beneficial in improving immune system and preventing various infections. We have further discussed several nutritional strategies for improving the immune system. Unfortunately, the available evidence shows conflicting results. In terms of interaction with food intake, PA does not tend to increase energy intake during a short time course. However, overcoming nutritional deficiencies appears to be the most practical recommendation. Through the balanced nutritious diet intake one can fulfill the bodily requirement of optimal nutrition that significantly impacts the immune system. Supplementation of a single nutrient as food is generally not advisable. Rather incorporating various fruits and vegetables, whole grains, proteins and probiotics may ensure adequate nutrient intake. Therefore, multi-nutrient supplements may benefit people having deficiency in spite of sufficient diet. Along with PA, supplementation of probiotics, bovine colostrum, plant-derived products and functional foods may provide additional benefits in improving the immune system.
Collapse
Affiliation(s)
- Tianyi Shao
- College of Teacher Education, Zhejiang Normal University, Jinhua, China
| | - Henu Kumar Verma
- Department of Immunopathology, Institute of lungs Biology and Disease, Comprehensive Pneumology Center, Helmholtz Zentrum, Munich, Germany
| | - Babita Pande
- Department of Physiology, All India Institute of Medical Science, Raipur, India
| | - Vincenzo Costanzo
- Department of Experimental, Diagnostic and Specialty Medicine, University of Bologna, Bologna, Italy
| | - Weibing Ye
- College of Physical Education and Health Sciences, Zhejiang Normal University, Jinhua, China
| | - Yuyan Cai
- Department of Physical Education, Guangdong University of Technology, Guangzhou, China
| | | |
Collapse
|
92
|
Banu K, Lin Q, Basgen JM, Planoutene M, Wei C, Reghuvaran AC, Tian X, Shi H, Garzon F, Garzia A, Chun N, Cumpelik A, Santeusanio AD, Zhang W, Das B, Salem F, Li L, Ishibe S, Cantley LG, Kaufman L, Lemley KV, Ni Z, He JC, Murphy B, Menon MC. AMPK mediates regulation of glomerular volume and podocyte survival. JCI Insight 2021; 6:e150004. [PMID: 34473647 PMCID: PMC8525649 DOI: 10.1172/jci.insight.150004] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 09/01/2021] [Indexed: 12/20/2022] Open
Abstract
Herein, we report that Shroom3 knockdown, via Fyn inhibition, induced albuminuria with foot process effacement (FPE) without focal segmental glomerulosclerosis (FSGS) or podocytopenia. Interestingly, knockdown mice had reduced podocyte volumes. Human minimal change disease (MCD), where podocyte Fyn inactivation was reported, also showed lower glomerular volumes than FSGS. We hypothesized that lower glomerular volume prevented the progression to podocytopenia. To test this hypothesis, we utilized unilateral and 5/6th nephrectomy models in Shroom3-KD mice. Knockdown mice exhibited less glomerular and podocyte hypertrophy after nephrectomy. FYN-knockdown podocytes had similar reductions in podocyte volume, implying that Fyn was downstream of Shroom3. Using SHROOM3 or FYN knockdown, we confirmed reduced podocyte protein content, along with significantly increased phosphorylated AMPK, a negative regulator of anabolism. AMPK activation resulted from increased cytoplasmic redistribution of LKB1 in podocytes. Inhibition of AMPK abolished the reduction in glomerular volume and induced podocytopenia in mice with FPE, suggesting a protective role for AMPK activation. In agreement with this, treatment of glomerular injury models with AMPK activators restricted glomerular volume, podocytopenia, and progression to FSGS. Glomerular transcriptomes from MCD biopsies also showed significant enrichment of Fyn inactivation and Ampk activation versus FSGS glomeruli. In summary, we demonstrated the important role of AMPK in glomerular volume regulation and podocyte survival. Our data suggest that AMPK activation adaptively regulates glomerular volume to prevent podocytopenia in the context of podocyte injury.
Collapse
Affiliation(s)
- Khadija Banu
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Division of Nephrology, Department of Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Qisheng Lin
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - John M Basgen
- Morphometry and Stereology Laboratory, Charles R. Drew University of Medicine and Science, Los Angeles, California, USA
| | - Marina Planoutene
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Chengguo Wei
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Anand C Reghuvaran
- Division of Nephrology, Department of Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Xuefei Tian
- Division of Nephrology, Department of Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Hongmei Shi
- Division of Nephrology, Department of Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Felipe Garzon
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Aitor Garzia
- Laboratory of RNA Molecular Biology, The Rockefeller University, New York, New York, USA
| | - Nicholas Chun
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Arun Cumpelik
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Andrew D Santeusanio
- Division of Nephrology, Department of Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Weijia Zhang
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Bhaskar Das
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Fadi Salem
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Li Li
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Shuta Ishibe
- Division of Nephrology, Department of Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Lloyd G Cantley
- Division of Nephrology, Department of Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Lewis Kaufman
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Kevin V Lemley
- Department of Pediatrics, Children's Hospital Los Angeles, University of Southern California, Los Angeles, California, USA
| | - Zhaohui Ni
- Department of Nephrology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - John Cijiang He
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Barbara Murphy
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Madhav C Menon
- Division of Nephrology, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Division of Nephrology, Department of Medicine, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
93
|
|
94
|
Torrens-Mas M, Perelló-Reus C, Navas-Enamorado C, Ibargüen-González L, Sanchez-Polo A, Segura-Sampedro JJ, Masmiquel L, Barcelo C, Gonzalez-Freire M. Organoids: An Emerging Tool to Study Aging Signature across Human Tissues. Modeling Aging with Patient-Derived Organoids. Int J Mol Sci 2021; 22:10547. [PMID: 34638891 PMCID: PMC8508868 DOI: 10.3390/ijms221910547] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 09/24/2021] [Accepted: 09/25/2021] [Indexed: 12/12/2022] Open
Abstract
The biology of aging is focused on the identification of novel pathways that regulate the underlying processes of aging to develop interventions aimed at delaying the onset and progression of chronic diseases to extend lifespan. However, the research on the aging field has been conducted mainly in animal models, yeast, Caenorhabditis elegans, and cell cultures. Thus, it is unclear to what extent this knowledge is transferable to humans since they might not reflect the complexity of aging in people. An organoid culture is an in vitro 3D cell-culture technology that reproduces the physiological and cellular composition of the tissues and/or organs. This technology is being used in the cancer field to predict the response of a patient-derived tumor to a certain drug or treatment serving as patient stratification and drug-guidance approaches. Modeling aging with patient-derived organoids has a tremendous potential as a preclinical model tool to discover new biomarkers of aging, to predict adverse outcomes during aging, and to design personalized approaches for the prevention and treatment of aging-related diseases and geriatric syndromes. This could represent a novel approach to study chronological and/or biological aging, paving the way to personalized interventions targeting the biology of aging.
Collapse
Affiliation(s)
- Margalida Torrens-Mas
- Vascular and Metabolic Pathologies Group, Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain; (M.T.-M.); (C.N.-E.); (A.S.-P.); (L.M.)
- Translational Research in Aging and Longevity (TRIAL) Group, Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain
| | - Catalina Perelló-Reus
- Translational Pancreatic Cancer Oncogenesis Group, Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain; (C.P.-R.); (L.I.-G.)
| | - Cayetano Navas-Enamorado
- Vascular and Metabolic Pathologies Group, Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain; (M.T.-M.); (C.N.-E.); (A.S.-P.); (L.M.)
- Translational Research in Aging and Longevity (TRIAL) Group, Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain
| | - Lesly Ibargüen-González
- Translational Pancreatic Cancer Oncogenesis Group, Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain; (C.P.-R.); (L.I.-G.)
| | - Andres Sanchez-Polo
- Vascular and Metabolic Pathologies Group, Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain; (M.T.-M.); (C.N.-E.); (A.S.-P.); (L.M.)
- Translational Research in Aging and Longevity (TRIAL) Group, Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain
| | - Juan Jose Segura-Sampedro
- Translational Research in Aging and Longevity (TRIAL) Group, Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain
- General & Digestive Surgery Department, Hospital Universitario Son Espases, 07120 Palma de Mallorca, Spain;
- School of Medicine, University of the Balearic Islands, 07120 Palma de Mallorca, Spain
| | - Luis Masmiquel
- Vascular and Metabolic Pathologies Group, Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain; (M.T.-M.); (C.N.-E.); (A.S.-P.); (L.M.)
| | - Carles Barcelo
- Translational Pancreatic Cancer Oncogenesis Group, Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain; (C.P.-R.); (L.I.-G.)
| | - Marta Gonzalez-Freire
- Vascular and Metabolic Pathologies Group, Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain; (M.T.-M.); (C.N.-E.); (A.S.-P.); (L.M.)
- Translational Research in Aging and Longevity (TRIAL) Group, Health Research Institute of the Balearic Islands (IdISBa), 07120 Palma de Mallorca, Spain
| |
Collapse
|
95
|
Castro-Fuentes R, Castro-Hernández J, Socas-Pérez R. [Geroscience in times of global pandemic by COVID-19]. Rev Esp Geriatr Gerontol 2021; 56:323-325. [PMID: 34565647 PMCID: PMC8358080 DOI: 10.1016/j.regg.2021.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 07/28/2021] [Accepted: 08/03/2021] [Indexed: 11/19/2022]
Affiliation(s)
- Rafael Castro-Fuentes
- Departamento de Ciencias Médicas Básicas, Área de Fisiología, Universidad de La Laguna, Tenerife, España.
| | - Javier Castro-Hernández
- Departamento de Ciencias Médicas Básicas, Área de Anatomía y Embriología Humana, Universidad de La Laguna, Tenerife, España; Laboratorio de Reumatología, Complejo Hospitalario Universitario de Canarias (CHUC), Tenerife, España
| | - Rosario Socas-Pérez
- Servicio de Rehabilitación, Complejo Hospitalario Universitario de Canarias (CHUC), Tenerife, España
| |
Collapse
|
96
|
Majumdar V, Snigdha A, Manjunath NK, Nagarathna R, Mavathur R, Singh A, S R K, H R N. Study protocol for yoga-based lifestyle intervention for healthy ageing phenotype in the older adults (yHAP): a two-armed, waitlist randomised controlled trial with multiple primary outcomes. BMJ Open 2021; 11:e051209. [PMID: 34531216 PMCID: PMC8449966 DOI: 10.1136/bmjopen-2021-051209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
INTRODUCTION The conceptualisation of healthy ageing phenotype (HAP) and the availability of a tentative panel for HAP biomarkers raise the need to test the efficacy of potential interventions to promote health in older adults. This study protocol reports the methodology for a 24-week programme to explore the holistic influence of the yoga-based intervention on the (bio)markers of HAP. METHODS AND ANALYSIS The study is a two-armed, randomised waitlist controlled trial with blinded outcome assessors and multiple primary outcomes. We aim to recruit 250 subjects, aged 60-80 years from the residential communities and old age clubs in Bangalore city, India, who will undergo randomisation into intervention or control arms (1:1). The intervention will include a yoga-based programme tailored for the older adults, 1 hour per day for 6 days a week, spread for 24 weeks. Data would be collected at the baseline and post-intervention, the 24th week. The multiple primary outcomes of the study are the (bio)markers of HAP: glycated haemoglobin, low-density lipoprotein cholesterol (LDL-C), systolic blood pressure, and forced expiratory volume in 1 s for physiological and metabolic health; Digit Symbol Substitution Test, Trail Making Tests A and B for cognition; hand grip strength and gait speed for physical capability; loneliness for social well-being and WHO Quality of Life Instrument-Short Form for quality of life. The secondary outcomes include inflammatory markers, tumour necrosis factor-alpha receptor II, C reactive protein, interleukin 6 and serum Klotho levels. Analyses will be by intention-to-treat and the holistic impact of yoga on HAP will be assessed using global statistical test. ETHICS AND DISSEMINATION The study is approved by the Institutional Ethics Committee of Swami Vivekananda Yoga Anusandhana Samsthana University, Bangalore (ID: RES/IEC-SVYASA/143/2019). Written informed consent will be obtained from each participant prior to inclusion. Results will be available through research articles and conferences. TRIAL REGISTRATION NUMBER CTRI/2021/02/031373.
Collapse
Affiliation(s)
- Vijaya Majumdar
- Swami Vivekananda Yoga Anusandhana Samsthana, Bengaluru, Karnataka, India
| | - Atmakur Snigdha
- Swami Vivekananda Yoga Anusandhana Samsthana, Bengaluru, Karnataka, India
| | - N K Manjunath
- Swami Vivekananda Yoga Anusandhana Samsthana, Bengaluru, Karnataka, India
| | | | - Ramesh Mavathur
- Swami Vivekananda Yoga Anusandhana Samsthana, Bengaluru, Karnataka, India
| | - Amit Singh
- Swami Vivekananda Yoga Anusandhana Samsthana, Bengaluru, Karnataka, India
| | - Kalpana S R
- Sri Jayadeva Institute of Cardiovascular Sciences and Research, Bangalore, Karnataka, India
| | - Nagendra H R
- Swami Vivekananda Yoga Anusandhana Samsthana, Bengaluru, Karnataka, India
| |
Collapse
|
97
|
Ebeling M, Rau R, Malmström H, Ahlbom A, Modig K. The rate by which mortality increase with age is the same for those who experienced chronic disease as for the general population. Age Ageing 2021; 50:1633-1640. [PMID: 34038514 PMCID: PMC8437060 DOI: 10.1093/ageing/afab085] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Indexed: 01/09/2023] Open
Abstract
Background Mortality doubles approximately every 6–7 years during adulthood. This exponential increase in death risk with chronological age is the population-level manifestation of ageing, and often referred to as the rate-of-ageing. Objective We explore whether the onset of severe chronic disease alters the rate-of-ageing. Methods Using Swedish register data covering the entire population of the birth cohorts 1927–30, we analyse whether being diagnosed with myocardial infarction, diabetes or cancer results in a deviation of the rate-of-ageing from those of the total population. We also quantify the long-term mortality effects of these diseases, using ages with equivalent mortality levels for those with disease and the total population. Results None of the diseases revealed a sustained effect on the rate-of-ageing. After an initial switch upwards in the level of mortality, the rate-of-ageing returned to the same pace as for the total population. The time it takes for the rate to return depends on the disease. The long-term effects of diabetes and myocardial infarction amount to mortality levels that are equivalent to those aged 5–7 years older in the total population. For cancer, the level of mortality returns to that of the total population. Conclusion Our results suggest an underlying process of ageing that causes mortality to increase at a set pace, with every year older we become. This process is not affected by disease history. The persistence of the rate-of-ageing motivates a critical discussion of what role disease prevention can play in altering the progression of ageing.
Collapse
Affiliation(s)
- Marcus Ebeling
- Research Group Mathematical and Actuarial Demography, Max Planck Institute for Demographic Research, Rostock, Germany
| | - Roland Rau
- Research Group Mathematical and Actuarial Demography, Max Planck Institute for Demographic Research, Rostock, Germany
- Department of Sociology and Demography, University of Rostock, Rostock, Germany
| | - Håkan Malmström
- C6 Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
- Swedish Orphan Biovitrum AB (Sobi), Stockholm, Sweden
| | - Anders Ahlbom
- C6 Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Karin Modig
- C6 Institute of Environmental Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
98
|
Hofer SJ, Davinelli S, Bergmann M, Scapagnini G, Madeo F. Caloric Restriction Mimetics in Nutrition and Clinical Trials. Front Nutr 2021; 8:717343. [PMID: 34552954 PMCID: PMC8450594 DOI: 10.3389/fnut.2021.717343] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 08/13/2021] [Indexed: 12/29/2022] Open
Abstract
The human diet and dietary patterns are closely linked to the health status. High-calorie Western-style diets have increasingly come under scrutiny as their caloric load and composition contribute to the development of non-communicable diseases, such as diabetes, cancer, obesity, and cardiovascular disorders. On the other hand, calorie-reduced and health-promoting diets have shown promising results in maintaining health and reducing disease burden throughout aging. More recently, pharmacological Caloric Restriction Mimetics (CRMs) have gained interest of the public and scientific community as promising candidates that mimic some of the myriad of effects induced by caloric restriction. Importantly, many of the CRM candidates activate autophagy, prolong life- and healthspan in model organisms and ameliorate diverse disease symptoms without the need to cut calories. Among others, glycolytic inhibitors (e.g., D-allulose, D-glucosamine), hydroxycitric acid, NAD+ precursors, polyamines (e.g., spermidine), polyphenols (e.g., resveratrol, dimethoxychalcones, curcumin, EGCG, quercetin) and salicylic acid qualify as CRM candidates, which are naturally available via foods and beverages. However, it is yet unclear how these bioactive substances contribute to the benefits of healthy diets. In this review, we thus discuss dietary sources, availability and intake levels of dietary CRMs. Finally, since translational research on CRMs has entered the clinical stage, we provide a summary of their effects in clinical trials.
Collapse
Affiliation(s)
- Sebastian J. Hofer
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
- Field of Excellence BioHealth, University of Graz, Graz, Austria
| | - Sergio Davinelli
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, Campobasso, Italy
| | - Martina Bergmann
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
| | - Giovanni Scapagnini
- Department of Medicine and Health Sciences “V. Tiberio”, University of Molise, Campobasso, Italy
| | - Frank Madeo
- Institute of Molecular Biosciences, NAWI Graz, University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
- Field of Excellence BioHealth, University of Graz, Graz, Austria
| |
Collapse
|
99
|
Ji L, Jazwinski SM, Kim S. Frailty and Biological Age. Ann Geriatr Med Res 2021; 25:141-149. [PMID: 34399574 PMCID: PMC8497950 DOI: 10.4235/agmr.21.0080] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 08/10/2021] [Indexed: 12/15/2022] Open
Abstract
A reliable model of biological age is instrumental in the field of geriatrics and gerontology. This model should account for the heterogeneity and plasticity of aging and also accurately predict aging-related adverse outcomes. Epigenetic age models are based on DNA methylation levels at selected genomic sites and can be significant predictors of mortality and healthy/unhealthy aging. However, the biological function of DNA methylation at selected sites is yet to be determined. Frailty is a syndrome resulting from decreased physiological reserves and resilience. The frailty index is a probability-based extension of the concept of frailty. Defined as the proportion of health deficits, the frailty index quantifies the progression of unhealthy aging. The frailty index is currently the best predictor of mortality. It is associated with various biological factors and provides insight into the biological processes of aging. Investigation of the multi-omics factors associated with the frailty index will provide further insight.
Collapse
Affiliation(s)
- Lixin Ji
- Tulane University School of Medicine, New Orleans, LA, USA
| | - S Michal Jazwinski
- Tulane Center for Aging & Department of Medicine, Tulane University Health Sciences Center, New Orleans, LA, USA
| | - Sangkyu Kim
- Tulane Center for Aging & Department of Medicine, Tulane University Health Sciences Center, New Orleans, LA, USA
| |
Collapse
|
100
|
Sears B, Saha AK. Dietary Control of Inflammation and Resolution. Front Nutr 2021; 8:709435. [PMID: 34447777 PMCID: PMC8382877 DOI: 10.3389/fnut.2021.709435] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 07/13/2021] [Indexed: 12/18/2022] Open
Abstract
The healing of any injury requires a dynamic balance of initiation and resolution of inflammation. This hypothesis-generating review presents an overview of the various nutrients that can act as signaling agents to modify the metabolic responses essential for the optimal healing of injury-induced inflammation. In this hypothesis-generating review, we describe a defined nutritional program consisting of an integrated interaction of a calorie-restricted anti-inflammatory diet coupled with adequate levels of omega-3 fatty acids and sufficient levels of dietary polyphenols that can be used in clinical trials to treat conditions associated with insulin resistance. Each dietary intervention works in an orchestrated systems-based approach to reduce, resolve, and repair the tissue damage caused by any inflammation-inducing injury. The orchestration of these specific nutrients and their signaling metabolites to facilitate healing is termed the Resolution Response. The final stage of the Resolution Response is the activation of intracellular 5' adenosine monophosphate-activated protein kinase (AMPK), which is necessary to repair tissue damaged by the initial injury-induced inflammation. The dietary optimization of the Resolution Response can be personalized to the individual by using standard blood markers. Once each of those markers is in their appropriate ranges, activation of intracellular AMPK will be facilitated. Finally, we outline how the resulting activation of AMPK will affect a diverse number of other intercellular signaling systems leading to an extended healthspan.
Collapse
Affiliation(s)
- Barry Sears
- Inflammation Research Foundation, Peabody, MA, United States
| | | |
Collapse
|