51
|
Edvinsson JCA, Viganò A, Alekseeva A, Alieva E, Arruda R, De Luca C, D'Ettore N, Frattale I, Kurnukhina M, Macerola N, Malenkova E, Maiorova M, Novikova A, Řehulka P, Rapaccini V, Roshchina O, Vanderschueren G, Zvaune L, Andreou AP, Haanes KA. The fifth cranial nerve in headaches. J Headache Pain 2020; 21:65. [PMID: 32503421 PMCID: PMC7275328 DOI: 10.1186/s10194-020-01134-1] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 05/25/2020] [Indexed: 12/27/2022] Open
Abstract
The fifth cranial nerve is the common denominator for many headaches and facial pain pathologies currently known. Projecting from the trigeminal ganglion, in a bipolar manner, it connects to the brainstem and supplies various parts of the head and face with sensory innervation. In this review, we describe the neuroanatomical structures and pathways implicated in the sensation of the trigeminal system. Furthermore, we present the current understanding of several primary headaches, painful neuropathies and their pharmacological treatments. We hope that this overview can elucidate the complex field of headache pathologies, and their link to the trigeminal nerve, to a broader field of young scientists.
Collapse
Affiliation(s)
- J C A Edvinsson
- Department of Clinical Experimental Research, Glostrup Research Institute, Rigshospitalet Glostrup, 2600, Glostrup, Denmark. .,Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.
| | - A Viganò
- IRCCS Fondazione Don Carlo Gnocchi, Milan, Italy
| | - A Alekseeva
- Department of Neurology, First Pavlov State Medical University of St.Petersburg, St.Petersburg, Russia
| | - E Alieva
- GBUZ Regional Clinical Hospital № 2, Krasnodar, Russia
| | - R Arruda
- Department of Neuroscience, University of Sao Paulo, Ribeirao Preto, Brazil
| | - C De Luca
- Department of Clinical and Experimental Medicine, Neurology Unit, University of Pisa, 56126, Pisa, Italy.,Department of Public Medicine, Laboratory of Morphology of Neuronal Network, University of Campania-Luigi Vanvitelli, Naples, Italy
| | - N D'Ettore
- Department of Neurology, University of Rome, Tor Vergata, Rome, Italy
| | - I Frattale
- Department of Applied Clinical Sciences and Biotechnology, University of L'Aquila, 67100, L'Aquila, Italy
| | - M Kurnukhina
- Department of Neurosurgery, First Pavlov State Medical University of St.Petersburg, Lev Tolstoy Street 6-8, St.Petersburg, Russia.,The Leningrad Regional State Budgetary Institution of health care "Children's clinical hospital", St.Petersburg, Russia
| | - N Macerola
- Department of Internal Medicine, Fondazione Policlinico Universitario Agostino Gemelli IRCCS Università Cattolica del Sacro Cuore, Rome, Italy
| | - E Malenkova
- Pain Department, Petrovsky National Research Centre of Surgery, Moscow, Russia
| | - M Maiorova
- Faculty of Medicine, University of Tartu, Tartu, Estonia
| | - A Novikova
- F.F. Erisman Federal Research Center for Hygiene, Mytishchy, Russia
| | - P Řehulka
- Department of Neurology, St. Anne's University Hospital and Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - V Rapaccini
- Child Neurology and Psychiatry Unit, Systems Medicine Department, University Hospital Tor Vergata, Viale Oxford 81, 00133, Rome, Italy.,Unità Sanitaria Locale (USL) Umbria 2, Viale VIII Marzo, 05100, Terni, Italy.,Department of Neurology, Headache Center, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - O Roshchina
- Department of Neurology, First Pavlov State Medical University of St.Petersburg, St.Petersburg, Russia
| | - G Vanderschueren
- Department of Neurology, ZNA Middelheim, Lindendreef 1, 2020, Antwerp, Belgium
| | - L Zvaune
- Department of Anaesthesiology and Intensive Care, Faculty of Medicine, Riga Stradins University, Riga, Latvia.,Department of Pain Medicine, Hospital Jurmala, Jurmala, Latvia.,Headache Centre Vivendi, Riga, Latvia
| | - A P Andreou
- Headache Research, Wolfson CARD, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK.,The Headache Centre, Guy's and St Thomas, NHS Foundation Trust, London, UK
| | - K A Haanes
- Department of Clinical Experimental Research, Glostrup Research Institute, Rigshospitalet Glostrup, 2600, Glostrup, Denmark
| | | |
Collapse
|
52
|
Raut S, Singh U, Sarmah D, Datta A, Baidya F, Shah B, Bohra M, Jagtap P, Sarkar A, Kalia K, Borah A, Dave KR, Yavagal DR, Bhattacharya P. Migraine and Ischemic Stroke: Deciphering the Bidirectional Pathway. ACS Chem Neurosci 2020; 11:1525-1538. [PMID: 32348103 DOI: 10.1021/acschemneuro.0c00137] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Migraine and stroke are common, disabling neurological conditions with several theories being proposed to explain this bidirectional relationship. Migraine is considered as a benign neurological disorder, but research has revealed a connection between migraine and stroke, predominantly those having migraine with aura (MA). Among migraineurs, females with MA are more susceptible to ischemic stroke and may have a migrainous infarction. Migrainous infarction mostly occurs in the posterior circulation of young women. Although there are several theories about the potential relationship between MA and stroke, the precise pathological process of migrainous infarction is not clear. It is assumed that cortical spreading depression (CSD) might be one of the essential factors for migrainous infarction. Other factors that may contribute to migrainous infarction may be genetic, hormonal fluctuation, hypercoagulation, and right to left cardiac shunts. Antimigraine drugs, such as ergot alkaloids and triptans, are widely used in migraine care. Still, they have been found to cause severe vasoconstriction, which may result in the development of ischemia. It is reported that patients with stroke develop migraines during the recovery phase. Both experimental and clinical data suggest that cerebral microembolism can act as a potential trigger for MA. Further studies are warranted for the treatment of migraine, which may lead to a decline in migraine-related stroke. In this present article, we have outlined various potential pathways that link migraine and stroke.
Collapse
Affiliation(s)
- Swapnil Raut
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Upasna Singh
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Deepaneeta Sarmah
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Aishika Datta
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Falguni Baidya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Birva Shah
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Mariya Bohra
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Priya Jagtap
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Ankan Sarkar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Kiran Kalia
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat 382355, India
| | - Anupom Borah
- Cellular and Molecular Neurobiology Laboratory, Department of Life Science and Bioinformatics, Assam University, Silchar, Assam 788011, India
| | - Kunjan R. Dave
- Department of Neurology, University of Miami Miller School of Medicine, Miami, Florida 33136, United States
| | - Dileep R. Yavagal
- Department of Neurology and Neurosurgery, University of Miami Miller School of Medicine, Miami, Florida 33136, United States
| | - Pallab Bhattacharya
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Ahmedabad, Gandhinagar, Gujarat 382355, India
| |
Collapse
|
53
|
Abstract
Fruits come in a wide variety of colors, shapes, and flavors. This chapter will cover selected fruits that are known to be healthy and highly nutritious. These fruits were chosen due to their common usage and availability. Since it is not possible to cover all health benefits or essential nutrients and important phytochemicals of the fruit composition, this chapter will focus on the key valuable constituents and their potential health effects.
Collapse
Affiliation(s)
- Sawsan G Mohammed
- Qatar Research Leadership Program (QRLP), Qatar Foundation, Doha, Qatar.
| | - M Walid Qoronfleh
- Research & Policy Department, World Innovation Summit for Health (WISH), Qatar Foundation, Doha, Qatar.
| |
Collapse
|
54
|
Auricular Electrical Stimulation Alleviates Headache through CGRP/COX-2/TRPV1/TRPA1 Signaling Pathways in a Nitroglycerin-Induced Migraine Rat Model. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:2413919. [PMID: 31885641 PMCID: PMC6927049 DOI: 10.1155/2019/2413919] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 10/17/2019] [Accepted: 11/23/2019] [Indexed: 12/15/2022]
Abstract
The study aimed to investigate effect of auricular electrical stimulation (ES) on migraine. Migraine was induced in rats by intraperitoneal administration of nitroglycerin (NTG, 10 mg/kg) three times. Auricular ES pretreatment was performed for five consecutive days. Migraine behaviors were observed by a video recording. Auricular ES pretreatment could reverse the decrease of the total time spent on exploratory (2619.0 ± 113.0 s vs 1581.7 ± 217.6 s, p=0.0029) and locomotor behaviors (271.3 ± 21.4 s vs 114.3 ± 19.7 s, p=0.0135) and also could reverse the increase of the total time spent on resting (19.0 ± 10.6 s vs 154.3 ± 46.5 s, p=0.0398) and grooming (369.9 ± 66.8 s vs 1302.0 ± 244.5 s, p=0.0324) behaviors. Auricular ES pretreatment could increase the frequency of rearing behaviors (38.0 ± 1.8 vs 7.7 ± 3.5, p < 0.0001) and total distance traveled (1372.0 ± 157.9 cm vs 285.3 ± 85.6 cm, p < 0.0001) and also could increase the percentage of inner zone time (6.0 ± 1.6% vs 0.4 ± 0.2%, p=0.0472). The CGRP, COX-2, TRPV1, and TRPA1 immunoreactive cells in the trigeminal ganglion increased in the NTG group compared with the control group (all p < 0.0001); this increase could, however, be reduced by auricular ES pretreatment (27.8 ± 2.6 vs 63.0 ± 4.2, p < 0.0001; 21.7 ± 1.2 vs 61.8 ± 4.0, p < 0.0001; 24.3 ± 1.0 vs 36.5 ± 1.7, p=0.0003; and 20.7 ± 1.9 vs 90.8 ± 6.5, p < 0.0001, respectively). Therefore, we suggest that auricular ES pretreatment is beneficial for the treatment of migraine and this effect is partly related to CGRP/COX-2/TRPV1/TRPA1 signaling pathways.
Collapse
|
55
|
Talavera K, Startek JB, Alvarez-Collazo J, Boonen B, Alpizar YA, Sanchez A, Naert R, Nilius B. Mammalian Transient Receptor Potential TRPA1 Channels: From Structure to Disease. Physiol Rev 2019; 100:725-803. [PMID: 31670612 DOI: 10.1152/physrev.00005.2019] [Citation(s) in RCA: 218] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The transient receptor potential ankyrin (TRPA) channels are Ca2+-permeable nonselective cation channels remarkably conserved through the animal kingdom. Mammals have only one member, TRPA1, which is widely expressed in sensory neurons and in non-neuronal cells (such as epithelial cells and hair cells). TRPA1 owes its name to the presence of 14 ankyrin repeats located in the NH2 terminus of the channel, an unusual structural feature that may be relevant to its interactions with intracellular components. TRPA1 is primarily involved in the detection of an extremely wide variety of exogenous stimuli that may produce cellular damage. This includes a plethora of electrophilic compounds that interact with nucleophilic amino acid residues in the channel and many other chemically unrelated compounds whose only common feature seems to be their ability to partition in the plasma membrane. TRPA1 has been reported to be activated by cold, heat, and mechanical stimuli, and its function is modulated by multiple factors, including Ca2+, trace metals, pH, and reactive oxygen, nitrogen, and carbonyl species. TRPA1 is involved in acute and chronic pain as well as inflammation, plays key roles in the pathophysiology of nearly all organ systems, and is an attractive target for the treatment of related diseases. Here we review the current knowledge about the mammalian TRPA1 channel, linking its unique structure, widely tuned sensory properties, and complex regulation to its roles in multiple pathophysiological conditions.
Collapse
Affiliation(s)
- Karel Talavera
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Justyna B Startek
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Julio Alvarez-Collazo
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Brett Boonen
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Yeranddy A Alpizar
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Alicia Sanchez
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Robbe Naert
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| | - Bernd Nilius
- Laboratory of Ion Channel Research, Department of Cellular and Molecular Medicine, KU Leuven; VIB Center for Brain and Disease Research, Leuven, Belgium
| |
Collapse
|
56
|
Alavi MS, Shamsizadeh A, Karimi G, Roohbakhsh A. Transient receptor potential ankyrin 1 (TRPA1)-mediated toxicity: friend or foe? Toxicol Mech Methods 2019; 30:1-18. [PMID: 31409172 DOI: 10.1080/15376516.2019.1652872] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Transient receptor potential (TRP) channels have been widely studied during the last decade. New studies uncover new features and potential applications for these channels. TRPA1 has a huge distribution all over the human body and has been reported to be involved in different physiological and pathological conditions including cold, pain, and damage sensation. Considering its role, many studies have been devoted to evaluating the role of this channel in the initiation and progression of different toxicities. Accordingly, we reviewed the most recent studies and divided the role of TRPA1 in toxicology into the following sections: neurotoxicity, cardiotoxicity, dermatotoxicity, and pulmonary toxicity. Acetaminophen, heavy metals, tear gases, various chemotherapeutic agents, acrolein, wood smoke particulate materials, particulate air pollution materials, diesel exhaust particles, cigarette smoke extracts, air born irritants, sulfur mustard, and plasticizers are selected compounds and materials with toxic effects that are, at least in part, mediated by TRPA1. Considering the high safety of TRPA1 antagonists and their efficacy to resolve selected toxic or adverse drug reactions, the future of these drugs looks promising.
Collapse
Affiliation(s)
- Mohaddeseh Sadat Alavi
- Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Shamsizadeh
- Physiology-Pharmacology Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| | - Gholamreza Karimi
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ali Roohbakhsh
- Pharmaceutical Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
57
|
The metabolic face of migraine - from pathophysiology to treatment. Nat Rev Neurol 2019; 15:627-643. [PMID: 31586135 DOI: 10.1038/s41582-019-0255-4] [Citation(s) in RCA: 138] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2019] [Indexed: 12/11/2022]
Abstract
Migraine can be regarded as a conserved, adaptive response that occurs in genetically predisposed individuals with a mismatch between the brain's energy reserve and workload. Given the high prevalence of migraine, genotypes associated with the condition seem likely to have conferred an evolutionary advantage. Technological advances have enabled the examination of different aspects of cerebral metabolism in patients with migraine, and complementary animal research has highlighted possible metabolic mechanisms in migraine pathophysiology. An increasing amount of evidence - much of it clinical - suggests that migraine is a response to cerebral energy deficiency or oxidative stress levels that exceed antioxidant capacity and that the attack itself helps to restore brain energy homeostasis and reduces harmful oxidative stress levels. Greater understanding of metabolism in migraine offers novel therapeutic opportunities. In this Review, we describe the evidence for abnormalities in energy metabolism and mitochondrial function in migraine, with a focus on clinical data (including neuroimaging, biochemical, genetic and therapeutic studies), and consider the relationship of these abnormalities with the abnormal sensory processing and cerebral hyper-responsivity observed in migraine. We discuss experimental data to consider potential mechanisms by which metabolic abnormalities could generate attacks. Finally, we highlight potential treatments that target cerebral metabolism, such as nutraceuticals, ketone bodies and dietary interventions.
Collapse
|
58
|
Non-Analgesic Symptomatic or Disease-Modifying Potential of TRPA1. Med Sci (Basel) 2019; 7:medsci7100099. [PMID: 31547502 PMCID: PMC6836032 DOI: 10.3390/medsci7100099] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 09/18/2019] [Accepted: 09/19/2019] [Indexed: 02/07/2023] Open
Abstract
TRPA1, a versatile ion channel of the Transient Receptor Potential (TRP) channel family, detects a large variety of chemicals and can contribute to signal processing of other stimuli, e.g., due to its sensitivity to cytosolic calcium elevation or phosphoinositolphosphate modulation. At first, TRPA1 was found on sensory neurons, where it can act as a sensor for potential or actual tissue damage that ultimately may elicit pain or itch as warning symptoms. This review provides an update regarding the analgesic and antipruritic potential of TRPA1 modulation and the respective clinical trials. Furthermore, TRPA1 has been found in an increasing amount of other cell types. Therefore, the main focus of the review is to discuss the non-analgesic and particularly the disease-modifying potential of TRPA1. This includes diseases of the respiratory system, cancer, ischemia, allergy, diabetes, and the gastrointestinal system. The involvement of TRPA1 in the respective pathophysiological cascades is so far mainly based on pre-clinical data.
Collapse
|
59
|
Agostoni EC, Barbanti P, Calabresi P, Colombo B, Cortelli P, Frediani F, Geppetti P, Grazzi L, Leone M, Martelletti P, Pini LA, Prudenzano MP, Sarchielli P, Tedeschi G, Russo A. Current and emerging evidence-based treatment options in chronic migraine: a narrative review. J Headache Pain 2019; 20:92. [PMID: 31470791 PMCID: PMC6734211 DOI: 10.1186/s10194-019-1038-4] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Accepted: 08/01/2019] [Indexed: 12/29/2022] Open
Abstract
Background Chronic migraine is a disabling condition that is currently underdiagnosed and undertreated. In this narrative review, we discuss the future of chronic migraine management in relation to recent progress in evidence-based pharmacological treatment. Findings Patients with chronic migraine require prophylactic therapy to reduce the frequency of migraine attacks, but the only currently available evidence-based prophylactic treatment options for chronic migraine are topiramate and onabotulinumtoxinA. Improved prophylactic therapy is needed to reduce the high burden of chronic migraine in Italy. Monoclonal antibodies that target the calcitonin gene-related peptide (CGRP) pathway of migraine pathogenesis have been specifically developed for the prophylactic treatment of chronic migraine. These anti-CGRP/R monoclonal antibodies have demonstrated good efficacy and excellent tolerability in phase II and III clinical trials, and offer new hope to patients who are currently not taking any prophylactic therapy or not benefitting from their current treatment. Conclusions Treatment of chronic migraine is a dynamic and rapidly advancing area of research. New developments in this field have the potential to improve the diagnosis and provide more individualised treatments for this condition. Establishing a culture of prevention is essential for reducing the personal, social and economic burden of chronic migraine.
Collapse
Affiliation(s)
| | - Piero Barbanti
- Headache and Pain Unit, Department of Neurological, Motor and Sensorial Sciences, IRCCS San Raffaele Pisana, Rome, Italy. .,San Raffaele University, Rome, Italy.
| | - Paolo Calabresi
- Neurologic Clinic, Ospedale Santa Maria della, Perugia, Italy
| | - Bruno Colombo
- Dipartimento di Neurologia, Università Vita-Salute, Ospedale San Raffaele, Milan, Italy
| | - Pietro Cortelli
- IRCCS- Istituto di Scienze Neurologiche di Bologna, Bologna, Italy.,DIBINEM- University of Bologna, Bologna, Italy
| | - Fabio Frediani
- Headache Centre, UOC Neurologia e Stroke Unit, P.O. San Carlo Borromeo, ASST Santi Paolo e Carlo, Milan, Italy
| | - Pietrangelo Geppetti
- Department of Health Sciences, Section of Clinical Pharmacology and Headache Center, University of Florence, Florence, Italy
| | - Licia Grazzi
- Fondazione IRCCS Istituto Neurologico "C.Besta", Milan, Italy
| | - Massimo Leone
- Fondazione IRCCS Istituto Neurologico "C.Besta", Milan, Italy
| | - Paolo Martelletti
- Department of Clinical and Molecular Medicine, Sapienza University, Rome, Italy
| | - Luigi Alberto Pini
- Headache Center, Department of Biomedical, Metabolic and Neuro Science, University of Modena and Reggio Emilia, Modena, Italy
| | - Maria Pia Prudenzano
- Headache Center, Department of Basic Medical Sciences, Neurosciences and Sense Organs, University of Bari, Bari, Italy
| | - Paola Sarchielli
- Headache Center, Neurologic Clinic, Ospedale Santa Maria della Misericordia, Perugia, Italy
| | - Gioacchino Tedeschi
- Headache Center Department of Medical, Surgical, Neurological, Metabolic, and Aging Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Antonio Russo
- Headache Center Department of Medical, Surgical, Neurological, Metabolic, and Aging Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | | |
Collapse
|
60
|
Takayama Y, Derouiche S, Maruyama K, Tominaga M. Emerging Perspectives on Pain Management by Modulation of TRP Channels and ANO1. Int J Mol Sci 2019; 20:E3411. [PMID: 31336748 PMCID: PMC6678529 DOI: 10.3390/ijms20143411] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/01/2019] [Accepted: 07/09/2019] [Indexed: 12/27/2022] Open
Abstract
Receptor-type ion channels are critical for detection of noxious stimuli in primary sensory neurons. Transient receptor potential (TRP) channels mediate pain sensations and promote a variety of neuronal signals that elicit secondary neural functions (such as calcitonin gene-related peptide [CGRP] secretion), which are important for physiological functions throughout the body. In this review, we focus on the involvement of TRP channels in sensing acute pain, inflammatory pain, headache, migraine, pain due to fungal infections, and osteo-inflammation. Furthermore, action potentials mediated via interactions between TRP channels and the chloride channel, anoctamin 1 (ANO1), can also generate strong pain sensations in primary sensory neurons. Thus, we also discuss mechanisms that enhance neuronal excitation and are dependent on ANO1, and consider modulation of pain sensation from the perspective of both cation and anion dynamics.
Collapse
Affiliation(s)
- Yasunori Takayama
- Department of Physiology, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa, Tokyo 142-8555, Japan.
| | - Sandra Derouiche
- Thermal Biology group, Exploratory Research Center on Life and Living Systems, National Institutes for Natural Sciences, 5-1 Aza-higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan.
| | - Kenta Maruyama
- National Institute for Physiological Sciences, National Institutes for Natural Sciences, 5-1 Aza-higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan.
| | - Makoto Tominaga
- Thermal Biology group, Exploratory Research Center on Life and Living Systems, National Institutes for Natural Sciences, 5-1 Aza-higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan.
| |
Collapse
|
61
|
Antinociceptive activity of Copaifera officinalis Jacq. L oil and kaurenoic acid in mice. Inflammopharmacology 2019; 27:829-844. [DOI: 10.1007/s10787-019-00588-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 03/16/2019] [Indexed: 11/26/2022]
|
62
|
Abstract
Background: Migraine therapy with sumatriptan may cause adverse side effects like pain at the injection site, muscle pain, and transient aggravation of headaches. In animal experiments, sumatriptan excited or sensitized slowly conducting meningeal afferents. We hypothesized that sumatriptan may activate transduction channels of the “irritant receptor,” the transient receptor potential ankyrin type (TRPA1) expressed in nociceptive neurons. Methods: Calcium microfluorometry was performed in HEK293t cells transfected with human TRPA1 (hTRPA1) or a mutated channel (TRPA1-3C) and in dissociated trigeminal ganglion neurons. Membrane currents were recorded in the whole-cell patch clamp configuration. Results: Sumatriptan (10 and 400 µM) evoked calcium transients in hTRPA1-expressing HEK293t cells also activated by the TRPA1 agonist carvacrol (100 µM). In TRPA1-3C-expressing HEK293t cells, sumatriptan had hardly any effect. In rat trigeminal ganglion neurons, sumatriptan, carvacrol, and the transient receptor potential vanillod type 1 agonist capsaicin (1 µM) generated robust calcium signals. All sumatriptan-sensitive neurons (8% of the sample) were also activated by carvacrol (14%) and capsaicin (48%). In HEK293-hTRPA1 cells, sumatriptan (100 µM) evoked outwardly rectifying currents, which were almost completely inhibited by the TRPA1 antagonist HC-030031 (10 µM). Conclusion: Sumatriptan activates TRPA1 channels inducing calcium inflow and membrane currents. TRPA1-dependent activation of primary afferents may explain the painful side effects of sumatriptan.
Collapse
Affiliation(s)
- Alexandru Babes
- Department of Anatomy, Physiology and Biophysics, University of Bucharest, Bucharest, Romania
| | - Cristian Neacsu
- Department of Anatomy, Physiology and Biophysics, University of Bucharest, Bucharest, Romania
| | - Michael JM Fischer
- Center for Physiology and Pharmacology, Medical University of Vienna, Vienna, Austria
| | - Karl Messlinger
- Institute of Physiology and Pathophysiology, University of Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
63
|
Zhang ZM, Wu XL, Zhang GY, Ma X, He DX. Functional food development: Insights from TRP channels. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.03.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
64
|
Abstract
Migraine is a disabling neurovascular disorder with few targeted, tolerable and effective treatments. Phytomedicines, or plant-based medicinal formulations, hold great promise in the identification of novel therapeutic targets in migraine. Many patients also turn toward herbal and plant-based therapies for the treatment of their migraines as clinical and preclinical evidence of efficacy increases. Patients seek effective and tolerable treatments instead of or in addition to current conventional pharmacologic therapies. We review some phytomedicines potentially useful for migraine treatment-feverfew (Tanacetum parthenium), butterbur (Petasites hybridus), marijuana (Cannabis spp.), Saint John's Wort (Hypericum perforatum) and the Damask rose (Rosa × damascena)-with respect to their mechanisms of action and evidence for treatment of migraine. The evidence for feverfew is mixed; butterbur is effective with potential risks of hepatotoxicity related to preparation; marijuana has not been shown to be effective in migraine treatment, and data are scant; Saint John's Wort shows relevant physiological activity but is a hepatic enzyme inducer and lacks clinical studies for this purpose; the Damask rose when used in topical preparations did not show efficacy in one clinical trial. Other plant preparations have been considered for migraine treatment but most without blinded randomized, placebo-controlled trial evidence.
Collapse
Affiliation(s)
- Thilinie Rajapakse
- Division of Neurology, Department of Pediatrics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada. .,Women and Children's Research Institute, Edmonton Clinic Health Academy, University of Alberta, Edmonton, AB, Canada.
| | - William Jeptha Davenport
- Department of Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Medical Genetics, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
65
|
Benemei S, Dussor G. TRP Channels and Migraine: Recent Developments and New Therapeutic Opportunities. Pharmaceuticals (Basel) 2019; 12:E54. [PMID: 30970581 PMCID: PMC6631099 DOI: 10.3390/ph12020054] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 04/01/2019] [Accepted: 04/04/2019] [Indexed: 12/18/2022] Open
Abstract
Migraine is the second-most disabling disease worldwide, and the second most common neurological disorder. Attacks can last many hours or days, and consist of multiple symptoms including headache, nausea, vomiting, hypersensitivity to stimuli such as light and sound, and in some cases, an aura is present. Mechanisms contributing to migraine are still poorly understood. However, transient receptor potential (TRP) channels have been repeatedly linked to the disorder, including TRPV1, TRPV4, TRPM8, and TRPA1, based on their activation by pathological stimuli related to attacks, or their modulation by drugs/natural products known to be efficacious for migraine. This review will provide a brief overview of migraine, including current therapeutics and the link to calcitonin gene-related peptide (CGRP), a neuropeptide strongly implicated in migraine pathophysiology. Discussion will then focus on recent developments in preclinical and clinical studies that implicate TRP channels in migraine pathophysiology or in the efficacy of therapeutics. Given the use of onabotulinum toxin A (BoNTA) to treat chronic migraine, and its poorly understood mechanism, this review will also cover possible contributions of TRP channels to BoNTA efficacy. Discussion will conclude with remaining questions that require future work to more fully evaluate TRP channels as novel therapeutic targets for migraine.
Collapse
Affiliation(s)
- Silvia Benemei
- Headache Centre, Careggi University Hospital, Viale Pieraccini 18, 50139 Florence, Italy.
| | - Greg Dussor
- School of Behavioral and Brain Sciences, Center for Advanced Pain Studies, The University of Texas at Dallas, Richardson, TX 75080, USA.
| |
Collapse
|
66
|
Turner DP, Lebowitz AD, Chtay I, Houle TT. Headache Triggers as Surprise. Headache 2019; 59:495-508. [PMID: 30919414 DOI: 10.1111/head.13507] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2019] [Indexed: 01/01/2023]
Abstract
OBJECTIVES To examine the hypothesis that surprising experiences of headache triggers are associated with daily headache activity. BACKGROUND Little is known about the specific environmental or behavioral interactions that might trigger a headache attack in a prone individual. We propose that headache trigger exposures can be usefully characterized, not only by their mechanisms of action, but also on the degree of "surprise" they present to the individual. This hypothesis is based on elements of information theory: that unusual events and experiences carry more information than common events and experiences and that headache attacks are associated with reactions to uncommon or unexpected biopsychosocial exposures. METHODS A secondary analysis of the Headache Prediction Study, this prospective cohort study followed N = 95 individuals with episodic migraine who contributed 4195 days of diary data. Information was collected on daily levels of several common headache triggers: number of caffeinated beverages, number of alcoholic beverages, stress (Daily Stress Inventory), and mood disturbance (Profile of Mood States). The probability of observing variations in each trigger was used to estimate the "surprisal" of experiencing each trigger, and this information, measured in bits, was used to predict headache attacks. RESULTS Participants experienced a headache attack on 1613 of 4195 days (38.5%). Each of the triggers was modestly related to the probability of experiencing a future headache in a complex manner that involved interactions between current headache status, current levels of the trigger, and lagged (previous) levels of the trigger. However, when expressed as a surprisal, the associations were simplified and strengthened. For example, each of the individual trigger surprisals exhibited a meaningful association with the development of a future headache attack (expressed as a 1 SD change in surprisal), with odds ratios ranging from a low of 1.11 (95%CI: 1.00 to 1.24) for alcohol to a high of 1.30 (95%CI: 1.14 to 1.46) for stress. The individual surprisals could be summed for total trigger surprise and exhibited a reliable association with new onset headache, OR 1.35 (95%CI: 1.17 to 1.49). This score exhibited superior discrimination between headache and non-headache days from all of the individual triggers (ignoring base rate, AUC: 0.61; AUC: 0.71 with base rate). CONCLUSIONS Diverse headache triggers can be uniformly described using their probability distributions. Rare values of headache triggers, or surprising values, were found to have consistent associations with headache activity across a variety of triggers. This finding, if validated in external data using other triggers, has potential to be used to conceptualize the influence of a wide range of headache triggers.
Collapse
Affiliation(s)
- Dana P Turner
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Adriana D Lebowitz
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Ivana Chtay
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Timothy T Houle
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
67
|
Li Puma S, Landini L, Macedo SJ, Seravalli V, Marone IM, Coppi E, Patacchini R, Geppetti P, Materazzi S, Nassini R, De Logu F. TRPA1 mediates the antinociceptive properties of the constituent of Crocus sativus L., safranal. J Cell Mol Med 2019; 23:1976-1986. [PMID: 30636360 PMCID: PMC6378183 DOI: 10.1111/jcmm.14099] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 11/26/2018] [Accepted: 11/29/2018] [Indexed: 02/02/2023] Open
Abstract
Safranal, contained in Crocus sativus L., exerts anti‐inflammatory and analgesic effects. However, the underlying mechanisms for such effects are poorly understood. We explored whether safranal targets the transient receptor potential ankyrin 1 (TRPA1) channel, which in nociceptors mediates pain signals. Safranal by binding to specific cysteine/lysine residues, stimulates TRPA1, but not the TRP vanilloid 1 and 4 channels (TRPV1 and TRPV4), evoking calcium responses and currents in human cells and rat and mouse dorsal root ganglion (DRG) neurons. Genetic deletion or pharmacological blockade of TRPA1 attenuated safranal‐evoked release of calcitonin gene‐related peptide (CGRP) from rat and mouse dorsal spinal cord, and acute nociception in mice. Safranal contracted rat urinary bladder isolated strips in a TRPA1‐dependent manner, behaving as a partial agonist. After exposure to safranal the ability of allyl isothiocyanate (TRPA1 agonist), but not that of capsaicin (TRPV1 agonist) or GSK1016790A (TRPV4 agonist), to evoke currents in DRG neurons, contraction of urinary bladder strips and CGRP release from spinal cord slices in rats, and acute nociception in mice underwent desensitization. As previously shown for other herbal extracts, including petasites or parthenolide, safranal might exert analgesic properties by partial agonism and selective desensitization of the TRPA1 channel.
Collapse
Affiliation(s)
- Simone Li Puma
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy
| | - Lorenzo Landini
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy
| | - Sergio J Macedo
- Department of Pharmacology, Federal University of Santa Catarina, Florianópolis, Brazil
| | - Viola Seravalli
- Department of Health Sciences, Section of Paediatrics, Midwifery, Gynaecology and Nursing, University of Florence, Florence, Italy
| | - Ilaria M Marone
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy
| | - Elisabetta Coppi
- Department of Neuroscience, Psychology, Drug Research and Child Health, Section of Pharmacology and Toxicology, University of Florence, Florence, Italy
| | | | - Pierangelo Geppetti
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy
| | - Serena Materazzi
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy
| | - Romina Nassini
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy
| | - Francesco De Logu
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, Italy
| |
Collapse
|
68
|
Conti P, D'Ovidio C, Conti C, Gallenga CE, Lauritano D, Caraffa A, Kritas SK, Ronconi G. Progression in migraine: Role of mast cells and pro-inflammatory and anti-inflammatory cytokines. Eur J Pharmacol 2018; 844:87-94. [PMID: 30529470 DOI: 10.1016/j.ejphar.2018.12.004] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Revised: 12/04/2018] [Accepted: 12/05/2018] [Indexed: 02/08/2023]
Abstract
Migraine is a common painful neurovascular disorder usually associated with several symptoms, such as photophobia, phonophobia, nausea, vomiting and inflammation, and involves immune cells. Mast cells (MCs) are immune cells derived from hematopoietic pluripotent stem cells which migrate and mature close to epithelial, blood vessels, and nerves. In almost all vascularized tissues there are MCs that produce, contain and release biologically active products including cytokines, arachidonic acid compounds, and proteases. In addition, MCs participate in innate and adaptive immune responses. Innate responses in the central nervous system (CNS) occur during neuroinflammatory phenomena, including migraine. Antigens found in the environment have a crucial role in inflammatory response, causing a broad range of diseases including migraine. They can be recognized by several innate immune cells, such as macrophages, microglia, dendritic cells and MCs, which can be activated trough Toll-like receptor (TLR) signaling. MCs reside close to primary nociceptive neurons, associate with nerves, and are capable of triggering local inflammation. MCs are involved in the pathophysiology of various tissues and organs, especially where there is an increase of angiogenesis. Activated MCs release preformed mediators include histamine, heparin, proteases (tryptase, chimase), hydrolases, cathepsin, carboxypeptidases, and peroxidase, and they also generate pro-inflammatory cytokines/chemokines. In addition, activated macrophages, microglia and MCs in the CNS release pro-inflammatory cytokines which provoke an increase of arachidonic acid product levels and lead to migraine and other neurological manifestations including fatigue, nausea, headaches and brain fog. Innate immunity and pro-inflammatory interleukin (IL)-1 cytokine family members can be inhibited by IL-37, a relatively new member of the IL-1 family. In this article, we report that some pro-inflammatory cytokines inducing migraine may be inhibited by IL-37, a natural suppressor of inflammation, and innate and acquired immunity.
Collapse
Affiliation(s)
- Pio Conti
- Immunology Division, Postgraduate Medical School, University of Chieti-Pescara, Chieti, Italy.
| | - Cristian D'Ovidio
- Section of Legal Medicine, Department of Medicine and Aging Sciences, "G. d'Annunzio" University of Chieti-Pescara, Italy.
| | - Chiara Conti
- Department of Psychological, Health, and Territorial Sciences, University "G. d'Annunzio" of Chieti-Pescara, Chieti, Italy.
| | - Carla Enrica Gallenga
- Department of Biomedical Sciences and Specialist Surgery, Section of Ophthalmology, University of Ferrara, Italy.
| | - Dorina Lauritano
- University of Milan-Bicocca, Medicine and Surgery Department, Centre of Neuroscience of Milan, Italy.
| | | | - Spiros K Kritas
- Department of Microbiology and Infectious Diseases, Aristotle University of Thessaloniki, Macedonia, Greece.
| | - Gianpaolo Ronconi
- UOS Clinica dei Pazienti del Territorio, Policlinico Gemelli, Rome, Italy.
| |
Collapse
|
69
|
Martelletti P, Giamberardino MA. Advances in orally administered pharmacotherapy for the treatment of migraine. Expert Opin Pharmacother 2018; 20:209-218. [DOI: 10.1080/14656566.2018.1549223] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Paolo Martelletti
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, Rome, Italy
- Regional Referral Headache Center, Sant’Andrea Hospital, Rome, Italy
| | - Maria Adele Giamberardino
- Headache and Fibromyalgia Center, Geriatrics Clinic, Department of Medicine and Science of Aging and Ce.S.I.-Met, “G. D’Annunzio” University of Chieti, Chieti, Italy
| |
Collapse
|
70
|
TRPA1 Antagonists for Pain Relief. Pharmaceuticals (Basel) 2018; 11:ph11040117. [PMID: 30388732 PMCID: PMC6316422 DOI: 10.3390/ph11040117] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 10/23/2018] [Accepted: 10/23/2018] [Indexed: 01/02/2023] Open
Abstract
Here, we review the literature assessing the role of transient receptor potential ankyrin 1 (TRPA1), a calcium-permeable non-selective cation channel, in various types of pain conditions. In the nervous system, TRPA1 is expressed in a subpopulation of nociceptive primary sensory neurons, astroglia, oligodendrocytes and Schwann cells. In peripheral terminals of nociceptive primary sensory neurons, it is involved in the transduction of potentially harmful stimuli and in their central terminals it is involved in amplification of nociceptive transmission. TRPA1 is a final common pathway for a large number of chemically diverse pronociceptive agonists generated in various pathophysiological pain conditions. Thereby, pain therapy using TRPA1 antagonists can be expected to be a superior approach when compared with many other drugs targeting single nociceptive signaling pathways. In experimental animal studies, pharmacological or genetic blocking of TRPA1 has effectively attenuated mechanical and cold pain hypersensitivity in various experimental models of pathophysiological pain, with only minor side effects, if any. TRPA1 antagonists acting peripherally are likely to be optimal for attenuating primary hyperalgesia (such as inflammation-induced sensitization of peripheral nerve terminals), while centrally acting TRPA1 antagonists are expected to be optimal for attenuating pain conditions in which central amplification of transmission plays a role (such as secondary hyperalgesia and tactile allodynia caused by various types of peripheral injuries). In an experimental model of peripheral diabetic neuropathy, prolonged blocking of TRPA1 has delayed the loss of nociceptive nerve endings and their function, thereby promising to provide a disease-modifying treatment.
Collapse
|
71
|
Enhanced pharmacological efficacy of sumatriptan due to modification of its physicochemical properties by inclusion in selected cyclodextrins. Sci Rep 2018; 8:16184. [PMID: 30385844 PMCID: PMC6212534 DOI: 10.1038/s41598-018-34554-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 10/18/2018] [Indexed: 11/09/2022] Open
Abstract
The study focused on the pharmacological action of sumatriptan, in particular its antiallodynic and antihyperalgesic properties, as an effect of cyclodextrinic inclusion of sumatriptan, resulting in changes of its physicochemical qualities such as dissolution and permeability through artificial biological membranes, which had previously been examined in vitro in a gastro-intestinal model. The inclusion of sumatriptan into β-cyclodextrin and 2-hydroxylpropylo-β-cyclodextrin by kneading was confirmed with the use of spectral (fourier-transform infrared spectroscopy (FT-IR); solid state nuclear magnetic resonance spectroscopy with magic angle spinning condition, 1H and 13C MAS NMR) and thermal (differential scanning calorimetry (DSC)) methods. A precise indication of the domains of sumatriptan responsible for its interaction with cyclodextrin cavities was possible due to a theoretical approach to the analysis of experimental spectra. A high-performance liquid chromatography with a diode-array detector method (HPLC-DAD) was employed to determine changes in the concentration of sumatriptan during dissolution and permeability experiments. The inclusion of sumatriptan in complex with cyclodextrins was found to significantly modify its dissolution profiles by increasing the concentration of sumatriptan in complexed form in an acceptor solution compared to in its free form. Following complexation, sumatriptan manifested an enhanced ability to permeate through artificial biological membranes in a gastro-intestinal model for both cyclodextrins at all pH values. As a consequence of the greater permeability of sumatriptan and its increased dissolution from the complexes, an improved pharmacological response was observed when cyclodextrin complexes were applied.
Collapse
|
72
|
Demartini C, Greco R, Zanaboni AM, Francesconi O, Nativi C, Tassorelli C, Deseure K. Antagonism of Transient Receptor Potential Ankyrin Type-1 Channels as a Potential Target for the Treatment of Trigeminal Neuropathic Pain: Study in an Animal Model. Int J Mol Sci 2018; 19:ijms19113320. [PMID: 30366396 PMCID: PMC6274796 DOI: 10.3390/ijms19113320] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 10/17/2018] [Accepted: 10/23/2018] [Indexed: 12/16/2022] Open
Abstract
Transient receptor potential ankyrin type-1 (TRPA1) channels are known to actively participate in different pain conditions, including trigeminal neuropathic pain, whose clinical treatment is still unsatisfactory. The aim of this study was to evaluate the involvement of TRPA1 channels by means of the antagonist ADM_12 in trigeminal neuropathic pain, in order to identify possible therapeutic targets. A single treatment of ADM_12 in rats 4 weeks after the chronic constriction injury of the infraorbital nerve (IoN-CCI) significantly reduced the mechanical allodynia induced in the IoN-CCI rats. Additionally, ADM_12 was able to abolish the increased levels of TRPA1, calcitonin gene-related peptide (CGRP), substance P (SP), and cytokines gene expression in trigeminal ganglia, cervical spinal cord, and medulla induced in the IoN-CCI rats. By contrast, no significant differences between groups were seen as regards CGRP and SP protein expression in the pars caudalis of the spinal nucleus of the trigeminal nerve. ADM_12 also reduced TRP vanilloid type-1 (TRPV1) gene expression in the same areas after IoN-CCI. Our findings show the involvement of both TRPA1 and TRPV1 channels in trigeminal neuropathic pain, and in particular, in trigeminal mechanical allodynia. Furthermore, they provide grounds for the use of ADM_12 in the treatment of trigeminal neuropathic pain.
Collapse
Affiliation(s)
- Chiara Demartini
- Laboratory of Neurophysiology of Integrative Autonomic Systems, Headache Science Center, IRCCS Mondino Foundation, via Mondino 2, 27100 Pavia, Italy.
| | - Rosaria Greco
- Laboratory of Neurophysiology of Integrative Autonomic Systems, Headache Science Center, IRCCS Mondino Foundation, via Mondino 2, 27100 Pavia, Italy.
| | - Anna Maria Zanaboni
- Laboratory of Neurophysiology of Integrative Autonomic Systems, Headache Science Center, IRCCS Mondino Foundation, via Mondino 2, 27100 Pavia, Italy.
- Department of Brain and Behavioral Sciences, University of Pavia, via Bassi 21, 27100 Pavia, Italy.
| | - Oscar Francesconi
- Department of Chemistry 'Ugo Schiff', University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino (FI), Italy.
| | - Cristina Nativi
- Department of Chemistry 'Ugo Schiff', University of Florence, Via della Lastruccia 3-13, 50019 Sesto Fiorentino (FI), Italy.
| | - Cristina Tassorelli
- Laboratory of Neurophysiology of Integrative Autonomic Systems, Headache Science Center, IRCCS Mondino Foundation, via Mondino 2, 27100 Pavia, Italy.
- Department of Brain and Behavioral Sciences, University of Pavia, via Bassi 21, 27100 Pavia, Italy.
| | - Kristof Deseure
- Department of Medicine, Laboratory for Pain Research, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium.
| |
Collapse
|
73
|
Gültekin F, Nazıroğlu M, Savaş HB, Çiğ B. Calorie restriction protects against apoptosis, mitochondrial oxidative stress and increased calcium signaling through inhibition of TRPV1 channel in the hippocampus and dorsal root ganglion of rats. Metab Brain Dis 2018; 33:1761-1774. [PMID: 30014177 DOI: 10.1007/s11011-018-0289-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 07/10/2018] [Indexed: 12/21/2022]
Abstract
The TRPV1 channel is activated in neurons by capsaicin, oxidative stress, acidic pH and heat factors, and these factors are attenuated by the antioxidant role of calorie restriction (CR). Hence, we investigated the hypothesis that the antioxidant roles of CR and food frequency (FF) may modulate TRPV1 activity and apoptosis through inhibition of mitochondrial oxidative stress in hippocampal (HIPPON) and dorsal root ganglion neurons (DRGN). We investigated the contribution of FF and CR to neuronal injury and apoptosis through inhibition of TRPV1 in rats. We assigned rats to control, FF and FF + CR groups. A fixed amount of food ad libitum was supplemented to the control and FF groups for 20 weeks, respectively. FF + CR group were fed the same amount of food as the control group but with 20% less calories during the same period. In major results, TRPV1 currents, intracellular Ca2+ levels, apoptosis, reactive oxygen species, mitochondrial depolarization, PARP-1 expression, caspase 3 and 9 activity and expression values were found to be increased in the HIPPON and DRGN following FF treatment, and these effects were decreased following FF + CR treatment. The FF-induced decrease in cell viability of HIPPO and DRGN, and vitamin E concentration of brain, glutathione peroxidase, vitamin A, and β-carotene values of the HIPPO, DRGN, plasma, liver and kidney were increased by FF + DR treatment, although lipid peroxidation levels in the same samples were decreased. In conclusion, CR reduces FF-induced increase of oxidative stress, apoptosis and Ca2+ entry through TRPV1 in the HIPPON and DRGN. Our findings may be relevant to the etiology and treatment of obesity following CR treatment.
Collapse
Affiliation(s)
- Fatih Gültekin
- Department of Clinical Biochemistry, Faculty of Medicine, University of Health Sciences, Istanbul, Turkey
| | - Mustafa Nazıroğlu
- Neuroscience Research Center, Suleyman Demirel University, TR-32260, Isparta, Turkey.
- Department of Biophysics, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey.
| | - Hasan Basri Savaş
- Department of Clinical Biochemistry, Faculty of Medicine, Alanya Alaaddin Keykubat University, Antalya, Turkey
| | - Bilal Çiğ
- Department of Biophysics, Faculty of Medicine, Suleyman Demirel University, Isparta, Turkey
| |
Collapse
|
74
|
Benguettat O, Jneid R, Soltys J, Loudhaief R, Brun-Barale A, Osman D, Gallet A. The DH31/CGRP enteroendocrine peptide triggers intestinal contractions favoring the elimination of opportunistic bacteria. PLoS Pathog 2018; 14:e1007279. [PMID: 30180210 PMCID: PMC6138423 DOI: 10.1371/journal.ppat.1007279] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 09/14/2018] [Accepted: 08/13/2018] [Indexed: 02/06/2023] Open
Abstract
The digestive tract is the first organ affected by the ingestion of foodborne bacteria. While commensal bacteria become resident, opportunistic or virulent bacteria are eliminated from the gut by the local innate immune system. Here we characterize a new mechanism of defense, independent of the immune system, in Drosophila melanogaster. We observed strong contractions of longitudinal visceral muscle fibers for the first 2 hours following bacterial ingestion. We showed that these visceral muscle contractions are induced by immune reactive oxygen species (ROS) that accumulate in the lumen and depend on the ROS-sensing TRPA1 receptor. We then demonstrate that both ROS and TRPA1 are required in a subset of anterior enteroendocrine cells for the release of the DH31 neuropeptide which activates its receptor in the neighboring visceral muscles. The resulting contractions of the visceral muscles favors quick expulsion of the bacteria, limiting their presence in the gut. Our results unveil a precocious mechanism of defense against ingested opportunistic bacteria, whether they are Gram-positive like Bacillus thuringiensis or Gram-negative like Erwinia carotovora carotovora. Finally, we found that the human homolog of DH31, CGRP, has a conserved function in Drosophila. The intestine is the first barrier to fight non-commensal bacteria ingested along with the food. The innate immune system is the main mean mounted by the gut lining in response to ill-causing bacteria to avoid detrimental impact. Intestinal cells produce chlorine bleach and antimicrobial peptides that destroy exogenous bacteria. Here, we identified and characterized a new mechanism of gut defense that occurs rapidly after ingestion of exogenous bacteria. We found that the enteroendocrine cells perceive the presence of chlorine bleach in the lumen thanks to a sensor. This sensor promotes a calcium flux within enteroendocrine cells that allows the release of a hormone. This hormone acts locally on the visceral muscle surrounding the intestine by provoking its strong contractions (or spasms). We show that these strong but brief visceral contractions are helping to the quick expulsion of the ingested bacteria thus limiting their potential detrimental impact on the intestine. Markedly, the bleach-sensor is well known to be involved in pain. Therefore we have deciphered in this study a biological mechanism that has so far been described only empirically by medicine, potentially explaining intestinal pain and visceral spasms upon food poisoning.
Collapse
Affiliation(s)
| | - Rouba Jneid
- Université Côte d'Azur, CNRS, INRA, ISA, France
- Faculty of Sciences III and Azm Center for Research in Biotechnology and its Applications, LBA3B, EDST, Lebanese University, Tripoli, Lebanon
| | | | | | | | - Dani Osman
- Faculty of Sciences III and Azm Center for Research in Biotechnology and its Applications, LBA3B, EDST, Lebanese University, Tripoli, Lebanon
| | - Armel Gallet
- Université Côte d'Azur, CNRS, INRA, ISA, France
- * E-mail:
| |
Collapse
|
75
|
Artero-Morales M, González-Rodríguez S, Ferrer-Montiel A. TRP Channels as Potential Targets for Sex-Related Differences in Migraine Pain. Front Mol Biosci 2018; 5:73. [PMID: 30155469 PMCID: PMC6102492 DOI: 10.3389/fmolb.2018.00073] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 07/10/2018] [Indexed: 12/31/2022] Open
Abstract
Chronic pain is one of the most debilitating human diseases and represents a social and economic burden for our society. Great efforts are being made to understand the molecular and cellular mechanisms underlying the pathophysiology of pain transduction. It is particularly noteworthy that some types of chronic pain, such as migraine, display a remarkable sex dimorphism, being up to three times more prevalent in women than in men. This gender prevalence in migraine appears to be related to sex differences arising from both gonadal and genetic factors. Indeed, the functionality of the somatosensory, immune, and endothelial systems seems modulated by sex hormones, as well as by X-linked genes differentially expressed during development. Here, we review the current data on the modulation of the somatosensory system functionality by gonadal hormones. Although this is still an area that requires intense investigation, there is evidence suggesting a direct regulation of nociceptor activity by sex hormones at the transcriptional, translational, and functional levels. Data are being accumulated on the effect of sex hormones on TRP channels such as TRPV1 that make pivotal contributions to nociceptor excitability and sensitization in migraine and other chronic pain syndromes. These data suggest that modulation of TRP channels' expression and/or activity by gonadal hormones provide novel pathways for drug intervention that may be useful for targeting the sex dimorphism observed in migraine.
Collapse
Affiliation(s)
- Maite Artero-Morales
- Instituto de Biología Molecular y Celular, Universitas Miguel Hernández, Elche, Spain
| | | | | |
Collapse
|
76
|
Jiang L, Wang Y, Xu Y, Ma D, Wang M. The Transient Receptor Potential Ankyrin Type 1 Plays a Critical Role in Cortical Spreading Depression. Neuroscience 2018; 382:23-34. [PMID: 29719223 DOI: 10.1016/j.neuroscience.2018.04.025] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 04/18/2018] [Accepted: 04/18/2018] [Indexed: 12/11/2022]
Abstract
The transient receptor potential ankyrin type-1 (TRPA1) channels have been proposed as a potential target for migraine therapy. Yet the role of cortical TRPA1 channels in migraine mechanism has not been fully understood. Cortical spreading depression (CSD) is known as an underlying cause of migraine aura. The aim of this study is to investigate if cortical TRPA1 activity is required for CSD genesis and propagation. A mouse brain slice CSD model with intrinsic optical imaging was applied for TRPA1 signaling pharmacology. The results showed that the TRPA1 agonist, umbellulone, facilitated the propagation of submaximal CSD. Correspondingly, an anti-TRPA1 antibody and two selective TRPA1 antagonists, A967079 and HC-030031, prolonged the CSD latency and reduced magnitude, indicating a reduced cortical susceptibility to CSD under TRPA1 deactivation. Furthermore, the TRPA1 agonist, allyl-isothiocyanate (AITC), reversed the suppression of CSD by HC-030031, but not by A967079. Interestingly, the inhibitory action of A967079 on CSD was reversed by exogenous calcitonin-gene-related peptide (CGRP). Consistent to TRPA1 deactivation, the prolonged CSD latency was observed by an anti-CGRP antibody in the mouse brain slice, which was reversed by exogenous CGRP. We conclude that cortical TRPA1 is critical in regulating cortical susceptibility to CSD, which involves CGRP. The data strongly suggest that deactivation of TRPA1 channels and blockade of CGRP would have therapeutic benefits in preventing migraine with aura.
Collapse
Affiliation(s)
- Liwen Jiang
- Centre for Neuroscience, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China; Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
| | - Yan Wang
- Centre for Neuroscience, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
| | - Yuewei Xu
- Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
| | - Dongqing Ma
- Centre for Neuroscience, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China; Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China
| | - Minyan Wang
- Centre for Neuroscience, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China; Department of Biological Sciences, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China.
| |
Collapse
|
77
|
Sprenger T, Viana M, Tassorelli C. Current Prophylactic Medications for Migraine and Their Potential Mechanisms of Action. Neurotherapeutics 2018; 15:313-323. [PMID: 29671241 PMCID: PMC5935650 DOI: 10.1007/s13311-018-0621-8] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
A relatively high number of different medications is currently used for migraine prevention in clinical practice. Although these compounds were initially developed for other indications and differ in their mechanisms of action, some general themes can be identified from the mechanisms at play. Efficacious preventive drugs seem to either suppress excitatory nervous signaling via sodium and/or calcium receptors, facilitate GABAergic inhibition, reduce neuronal sensitization, block cortical spreading depression and/or reduce circulating levels of CGRP. We here review such mechanisms for the different compounds.
Collapse
Affiliation(s)
- Till Sprenger
- Department of Neurology, DKD Helios Klinik Wiesbaden, Aukammallee 33, 65191, Wiesbaden, Germany.
| | - M Viana
- Headache Science Centre, IRCCS Mondino Foundation, 27100, Pavia, Italy
| | - C Tassorelli
- Headache Science Centre, IRCCS Mondino Foundation, 27100, Pavia, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, 27100, Pavia, Italy
| |
Collapse
|
78
|
Moore C, Gupta R, Jordt SE, Chen Y, Liedtke WB. Regulation of Pain and Itch by TRP Channels. Neurosci Bull 2018; 34:120-142. [PMID: 29282613 PMCID: PMC5799130 DOI: 10.1007/s12264-017-0200-8] [Citation(s) in RCA: 207] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Accepted: 10/27/2017] [Indexed: 02/07/2023] Open
Abstract
Nociception is an important physiological process that detects harmful signals and results in pain perception. In this review, we discuss important experimental evidence involving some TRP ion channels as molecular sensors of chemical, thermal, and mechanical noxious stimuli to evoke the pain and itch sensations. Among them are the TRPA1 channel, members of the vanilloid subfamily (TRPV1, TRPV3, and TRPV4), and finally members of the melastatin group (TRPM2, TRPM3, and TRPM8). Given that pain and itch are pro-survival, evolutionarily-honed protective mechanisms, care has to be exercised when developing inhibitory/modulatory compounds targeting specific pain/itch-TRPs so that physiological protective mechanisms are not disabled to a degree that stimulus-mediated injury can occur. Such events have impeded the development of safe and effective TRPV1-modulating compounds and have diverted substantial resources. A beneficial outcome can be readily accomplished via simple dosing strategies, and also by incorporating medicinal chemistry design features during compound design and synthesis. Beyond clinical use, where compounds that target more than one channel might have a place and possibly have advantageous features, highly specific and high-potency compounds will be helpful in mechanistic discovery at the structure-function level.
Collapse
Affiliation(s)
- Carlene Moore
- Department of Neurology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Rupali Gupta
- Department of Neurology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Sven-Eric Jordt
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, 27710, USA
| | - Yong Chen
- Department of Neurology, Duke University Medical Center, Durham, NC, 27710, USA.
| | - Wolfgang B Liedtke
- Department of Neurology, Duke University Medical Center, Durham, NC, 27710, USA.
- Department of Anesthesiology, Duke University Medical Center, Durham, NC, 27710, USA.
| |
Collapse
|
79
|
Abstract
The success of naturalistic or therapeutic neuroregeneration likely depends on an internal milieu that facilitates the survival, proliferation, migration, and differentiation of stem cells and their assimilation into neural networks. Migraine attacks are an integrated sequence of physiological processes that may protect the brain from oxidative stress by releasing growth factors, suppressing apoptosis, stimulating neurogenesis, encouraging mitochondrial biogenesis, reducing the production of oxidants, and upregulating antioxidant defenses. Thus, the migraine attack may constitute a physiologic environment conducive to stem cells. In this paper, key components of migraine are reviewed – neurogenic inflammation with release of calcitonin gene-related peptide (CGRP) and substance P, plasma protein extravasation, platelet activation, release of serotonin by platelets and likely by the dorsal raphe nucleus, activation of endothelial nitric oxide synthase (eNOS), production of brain-derived neurotrophic factor (BDNF) and, in migraine aura, cortical spreading depression – along with their potential neurorestorative aspects. The possibility is considered of using these components to facilitate successful stem cell transplantation. Potential methods for doing so are discussed, including chemical stimulation of the TRPA1 ion channel, conjoint activation of a subset of migraine components, invasive and noninvasive deep brain stimulation of the dorsal raphe nucleus, transcranial focused ultrasound, and stimulation of the Zusanli (ST36) acupuncture point.
Collapse
Affiliation(s)
- Jonathan M Borkum
- Department of Psychology, University of Maine, Orono; Health Psych Maine, Waterville, ME, USA
| |
Collapse
|
80
|
De Logu F, Nassini R, Materazzi S, Carvalho Gonçalves M, Nosi D, Rossi Degl'Innocenti D, Marone IM, Ferreira J, Li Puma S, Benemei S, Trevisan G, Souza Monteiro de Araújo D, Patacchini R, Bunnett NW, Geppetti P. Schwann cell TRPA1 mediates neuroinflammation that sustains macrophage-dependent neuropathic pain in mice. Nat Commun 2017; 8:1887. [PMID: 29192190 PMCID: PMC5709495 DOI: 10.1038/s41467-017-01739-2] [Citation(s) in RCA: 167] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 10/12/2017] [Indexed: 11/28/2022] Open
Abstract
It is known that transient receptor potential ankyrin 1 (TRPA1) channels, expressed by nociceptors, contribute to neuropathic pain. Here we show that TRPA1 is also expressed in Schwann cells. We found that in mice with partial sciatic nerve ligation, TRPA1 silencing in nociceptors attenuated mechanical allodynia, without affecting macrophage infiltration and oxidative stress, whereas TRPA1 silencing in Schwann cells reduced both allodynia and neuroinflammation. Activation of Schwann cell TRPA1 evoked NADPH oxidase 1 (NOX1)-dependent H2O2 release, and silencing or blocking Schwann cell NOX1 attenuated nerve injury-induced macrophage infiltration, oxidative stress and allodynia. Furthermore, the NOX2-dependent oxidative burst, produced by macrophages recruited to the perineural space activated the TRPA1-NOX1 pathway in Schwann cells, but not TRPA1 in nociceptors. Schwann cell TRPA1 generates a spatially constrained gradient of oxidative stress, which maintains macrophage infiltration to the injured nerve, and sends paracrine signals to activate TRPA1 of ensheathed nociceptors to sustain mechanical allodynia.
Collapse
Affiliation(s)
- Francesco De Logu
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, 50139, Italy
| | - Romina Nassini
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, 50139, Italy
| | - Serena Materazzi
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, 50139, Italy
| | - Muryel Carvalho Gonçalves
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, 50139, Italy
| | - Daniele Nosi
- Department of Experimental and Clinical Medicine, Section of Anatomy and Histology, University of Florence, Florence, 50139, Italy
| | - Duccio Rossi Degl'Innocenti
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, 50139, Italy
| | - Ilaria M Marone
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, 50139, Italy
| | - Juliano Ferreira
- Department of Pharmacology, Federal University of Santa Catarina, Florianópolis, 88040-500, Brazil
| | - Simone Li Puma
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, 50139, Italy
| | - Silvia Benemei
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, 50139, Italy
| | - Gabriela Trevisan
- Laboratory of Neuropsychopharmacology and Neurotoxicity, Graduate Program in Pharmacology, Federal University of Santa Maria (UFSM), Santa Maria, 97105-900, Brazil
| | - Daniel Souza Monteiro de Araújo
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, 50139, Italy
- Department of Neurobiology and Program of Neurosciences, Institute of Biology, Fluminense Federal University, Niterói, 20010-060, Brazil
| | | | - Nigel W Bunnett
- Departments of Surgery and Pharmacology, Columbia University, New York, NY, 10027, USA
| | - Pierangelo Geppetti
- Department of Health Sciences, Section of Clinical Pharmacology and Oncology, University of Florence, Florence, 50139, Italy.
| |
Collapse
|
81
|
Borkum JM. The Migraine Attack as a Homeostatic, Neuroprotective Response to Brain Oxidative Stress: Preliminary Evidence for a Theory. Headache 2017; 58:118-135. [DOI: 10.1111/head.13214] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/13/2017] [Indexed: 12/14/2022]
Affiliation(s)
- Jonathan M. Borkum
- Department of Psychology; University of Maine; Orono ME USA
- Health Psych Maine; Waterville ME USA
| |
Collapse
|
82
|
Demartini C, Tassorelli C, Zanaboni AM, Tonsi G, Francesconi O, Nativi C, Greco R. The role of the transient receptor potential ankyrin type-1 (TRPA1) channel in migraine pain: evaluation in an animal model. J Headache Pain 2017; 18:94. [PMID: 28884307 PMCID: PMC5589714 DOI: 10.1186/s10194-017-0804-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Accepted: 08/29/2017] [Indexed: 11/17/2022] Open
Abstract
Background Clinical and experimental studies have pointed to the possible involvement of the transient receptor potential ankyrin type-1 (TRPA1) channels in migraine pain. In this study, we aimed to further investigate the role of these channels in an animal model of migraine using a novel TRPA1 antagonist, ADM_12, as a probe. Methods The effects of ADM_12 on nitroglycerin-induced hyperalgesia at the trigeminal level were investigated in male rats using the quantification of nocifensive behavior in the orofacial formalin test. The expression levels of the genes coding for c-Fos, TRPA1, calcitonin gene-related peptide (CGRP) and substance P (SP) in peripheral and central areas relevant for migraine pain were analyzed. CGRP and SP protein immunoreactivity was also evaluated in trigeminal nucleus caudalis (TNC). Results In rats bearing nitroglycerin-induced hyperalgesia, ADM_12 showed an anti-hyperalgesic effect in the second phase of the orofacial formalin test. This effect was associated to a significant inhibition of nitroglycerin-induced increase in c-Fos, TRPA1 and neuropeptides mRNA levels in medulla-pons area, in the cervical spinal cord and in the trigeminal ganglion. No differences between groups were seen as regards CGRP and SP protein expression in the TNC. Conclusions These findings support a critical involvement of TRPA1 channels in the pathophysiology of migraine, and show their active role in counteracting hyperalgesia at the trigeminal level.
Collapse
Affiliation(s)
- Chiara Demartini
- Laboratory of Neurophysiology of Integrative Autonomic Systems, Headache Science Center, "C. Mondino" National Neurological Institute, Pavia, Italy.,Department of Brain and Behavioral Sciences University of Pavia, Pavia, Italy
| | - Cristina Tassorelli
- Laboratory of Neurophysiology of Integrative Autonomic Systems, Headache Science Center, "C. Mondino" National Neurological Institute, Pavia, Italy.,Department of Brain and Behavioral Sciences University of Pavia, Pavia, Italy
| | - Anna Maria Zanaboni
- Laboratory of Neurophysiology of Integrative Autonomic Systems, Headache Science Center, "C. Mondino" National Neurological Institute, Pavia, Italy.,Department of Brain and Behavioral Sciences University of Pavia, Pavia, Italy
| | - Germana Tonsi
- Laboratory of Neurophysiology of Integrative Autonomic Systems, Headache Science Center, "C. Mondino" National Neurological Institute, Pavia, Italy.,Department of Brain and Behavioral Sciences University of Pavia, Pavia, Italy
| | - Oscar Francesconi
- Department of Chemistry 'Ugo Schiff', University of Florence, Florence, Italy
| | - Cristina Nativi
- Department of Chemistry 'Ugo Schiff', University of Florence, Florence, Italy.,FiorGen, University of Florence, Florence, Italy
| | - Rosaria Greco
- Laboratory of Neurophysiology of Integrative Autonomic Systems, Headache Science Center, "C. Mondino" National Neurological Institute, Pavia, Italy. .,IRCCS "National Neurological Institute C. Mondino" Foundation, Via Mondino, 2, 27100, Pavia, Italy.
| |
Collapse
|
83
|
Benemei S, De Logu F, Li Puma S, Marone IM, Coppi E, Ugolini F, Liedtke W, Pollastro F, Appendino G, Geppetti P, Materazzi S, Nassini R. The anti-migraine component of butterbur extracts, isopetasin, desensitizes peptidergic nociceptors by acting on TRPA1 cation channel. Br J Pharmacol 2017. [PMID: 28622417 DOI: 10.1111/bph.13917] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND AND PURPOSE The mechanism of the anti-migraine action of extracts of butterbur [Petasites hybridus (L.) Gaertn.] is unknown. Here, we investigated the ability of isopetasin, a major constituent of these extracts, to specifically target TRPA1 channel and to affect functional responses relevant to migraine. EXPERIMENTAL APPROACH Single-cell calcium imaging and patch-clamp recordings in human and rodent TRPA1-expressing cells, neurogenic motor responses in rodent isolated urinary bladder, release of CGRP from mouse spinal cord in vitro and facial rubbing in mice and meningeal blood flow in rats were examined. KEY RESULTS Isopetasin induced (i) calcium responses and currents in rat/mouse trigeminal ganglion (TG) neurons and in cells expressing the human TRPA1, (ii) substance P-mediated contractions of rat isolated urinary bladders and (iii) CGRP release from mouse dorsal spinal cord, responses that were selectively abolished by genetic deletion or pharmacological antagonism of TRPA1 channels. Pre-exposure to isopetasin produced marked desensitization of allyl isothiocyanate (AITC, TRPA1 channel agonist)- or capsaicin (TRPV1 channel agonist)-evoked currents in rat TG neurons, contractions of rat or mouse bladder and CGRP release from mouse central terminals of primary sensory neurons. Repeated intragastric administration of isopetasin attenuated mouse facial rubbing, evoked by local AITC or capsaicin, and dilation of rat meningeal arteries by acrolein or ethanol (TRPA1 and TRPV1 channel agonists respectively). CONCLUSION AND IMPLICATIONS Activation of TRPA1 channels by isopetasin results in excitation of neuropeptide-containing nociceptors, followed by marked heterologous neuronal desensitization. Such atten uation in pain and neurogenic inflammation may account for the anti-migraine action of butterbur.
Collapse
Affiliation(s)
- Silvia Benemei
- Department of Health Sciences, Section of Clinical Pharmacology and Headache Center, University of Florence, Florence, Italy
| | - Francesco De Logu
- Department of Health Sciences, Section of Clinical Pharmacology and Headache Center, University of Florence, Florence, Italy
| | - Simone Li Puma
- Department of Health Sciences, Section of Clinical Pharmacology and Headache Center, University of Florence, Florence, Italy
| | - Ilaria Maddalena Marone
- Department of Health Sciences, Section of Clinical Pharmacology and Headache Center, University of Florence, Florence, Italy
| | - Elisabetta Coppi
- Department of Health Sciences, Section of Clinical Pharmacology and Headache Center, University of Florence, Florence, Italy
| | - Filippo Ugolini
- Department of Health Sciences, Section of Clinical Pharmacology and Headache Center, University of Florence, Florence, Italy
| | - Wolfgang Liedtke
- Departments of Neurology, Anesthesiology and Neurobiology, Clinics for Headache, Head-Pain and Trigeminal Sensory Disorders, Duke University, Durham, NC, USA
| | - Federica Pollastro
- Department of Pharmaceutical Sciences, University of Eastern Piedmont, Novara, Italy
| | - Giovanni Appendino
- Department of Pharmaceutical Sciences, University of Eastern Piedmont, Novara, Italy
| | - Pierangelo Geppetti
- Department of Health Sciences, Section of Clinical Pharmacology and Headache Center, University of Florence, Florence, Italy
| | - Serena Materazzi
- Department of Health Sciences, Section of Clinical Pharmacology and Headache Center, University of Florence, Florence, Italy
| | - Romina Nassini
- Department of Health Sciences, Section of Clinical Pharmacology and Headache Center, University of Florence, Florence, Italy
| |
Collapse
|
84
|
Marashly ET, Bohlega SA. Riboflavin Has Neuroprotective Potential: Focus on Parkinson's Disease and Migraine. Front Neurol 2017; 8:333. [PMID: 28775706 PMCID: PMC5517396 DOI: 10.3389/fneur.2017.00333] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 06/26/2017] [Indexed: 12/12/2022] Open
Abstract
With the huge negative impact of neurological disorders on patient's life and society resources, the discovery of neuroprotective agents is critical and cost-effective. Neuroprotective agents can prevent and/or modify the course of neurological disorders. Despite being underestimated, riboflavin offers neuroprotective mechanisms. Significant pathogenesis-related mechanisms are shared by, but not restricted to, Parkinson's disease (PD) and migraine headache. Those pathogenesis-related mechanisms can be tackled through riboflavin proposed neuroprotective mechanisms. In fact, it has been found that riboflavin ameliorates oxidative stress, mitochondrial dysfunction, neuroinflammation, and glutamate excitotoxicity; all of which take part in the pathogenesis of PD, migraine headache, and other neurological disorders. In addition, riboflavin-dependent enzymes have essential roles in pyridoxine activation, tryptophan-kynurenine pathway, and homocysteine metabolism. Indeed, pyridoxal phosphate, the active form of pyridoxine, has been found to have independent neuroprotective potential. Also, the produced kynurenines influence glutamate receptors and its consequent excitotoxicity. In addition, methylenetetrahydrofolate reductase requires riboflavin to ensure normal folate cycle influencing the methylation cycle and consequently homocysteine levels which have its own negative neurovascular consequences if accumulated. In conclusion, riboflavin is a potential neuroprotective agent affecting a wide range of neurological disorders exemplified by PD, a disorder of neurodegeneration, and migraine headache, a disorder of pain. In this article, we will emphasize the role of riboflavin in neuroprotection elaborating on its proposed neuroprotective mechanisms in opposite to the pathogenesis-related mechanisms involved in two common neurological disorders, PD and migraine headache, as well as, we encourage the clinical evaluation of riboflavin in PD and migraine headache patients in the future.
Collapse
Affiliation(s)
- Eyad T. Marashly
- Department of Neurosciences, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| | - Saeed A. Bohlega
- Department of Neurosciences, King Faisal Specialist Hospital and Research Centre, Riyadh, Saudi Arabia
| |
Collapse
|
85
|
Jardín I, López JJ, Diez R, Sánchez-Collado J, Cantonero C, Albarrán L, Woodard GE, Redondo PC, Salido GM, Smani T, Rosado JA. TRPs in Pain Sensation. Front Physiol 2017. [PMID: 28649203 PMCID: PMC5465271 DOI: 10.3389/fphys.2017.00392] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
According to the International Association for the Study of Pain (IASP) pain is characterized as an "unpleasant sensory and emotional experience associated with actual or potential tissue damage". The TRP super-family, compressing up to 28 isoforms in mammals, mediates a myriad of physiological and pathophysiological processes, pain among them. TRP channel might be constituted by similar or different TRP subunits, which will result in the formation of homomeric or heteromeric channels with distinct properties and functions. In this review we will discuss about the function of TRPs in pain, focusing on TRP channles that participate in the transduction of noxious sensation, especially TRPV1 and TRPA1, their expression in nociceptors and their sensitivity to a large number of physical and chemical stimuli.
Collapse
Affiliation(s)
- Isaac Jardín
- Cell Physiology Research Group, Department of Physiology, University of ExtremaduraCáceres, Spain
| | - José J López
- Cell Physiology Research Group, Department of Physiology, University of ExtremaduraCáceres, Spain
| | - Raquel Diez
- Cell Physiology Research Group, Department of Physiology, University of ExtremaduraCáceres, Spain
| | - José Sánchez-Collado
- Cell Physiology Research Group, Department of Physiology, University of ExtremaduraCáceres, Spain
| | - Carlos Cantonero
- Cell Physiology Research Group, Department of Physiology, University of ExtremaduraCáceres, Spain
| | - Letizia Albarrán
- Cell Physiology Research Group, Department of Physiology, University of ExtremaduraCáceres, Spain
| | - Geoffrey E Woodard
- Department of Surgery, Uniformed Services University of the Health SciencesBethesda, MD, United States
| | - Pedro C Redondo
- Cell Physiology Research Group, Department of Physiology, University of ExtremaduraCáceres, Spain
| | - Ginés M Salido
- Cell Physiology Research Group, Department of Physiology, University of ExtremaduraCáceres, Spain
| | - Tarik Smani
- Department of Medical Physiology and Biophysics, Institute of Biomedicine of Sevilla, University of SevilleSevilla, Spain
| | - Juan A Rosado
- Cell Physiology Research Group, Department of Physiology, University of ExtremaduraCáceres, Spain
| |
Collapse
|
86
|
Busby LD. A Comparison of Multiple Chemical Sensitivity with Other Hypersensitivity Illnesses Suggests Evidence and a Path to Answers. ECOPSYCHOLOGY 2017. [DOI: 10.1089/eco.2017.0003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
87
|
Gouveia-Figueira S, Goldin K, Hashemian SA, Lindberg A, Persson M, Nording ML, Laurell K, Fowler CJ. Plasma levels of the endocannabinoid anandamide, related N-acylethanolamines and linoleic acid-derived oxylipins in patients with migraine. Prostaglandins Leukot Essent Fatty Acids 2017; 120:15-24. [PMID: 28515018 DOI: 10.1016/j.plefa.2017.04.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 04/11/2017] [Accepted: 04/12/2017] [Indexed: 01/01/2023]
Abstract
There is evidence that patients with migraine have deficient levels of the endogenous cannabinoid receptor ligand anandamide (AEA). It is not known, however, if this is a localised or generalised phenomenon. In the present study, levels of AEA, related N-acylethanolamines (NAEs) and linoleic acid-derived oxylipins have been measured in the blood of 26 healthy women and 38 women with migraine (26 with aura, 12 without aura) who were matched for age and body-mass index. Blood samples were taken on two occasions: the first sample near the start of the menstrual cycle (when present) and the second approximately fourteen days later. For a subset of migraine patients, two additional blood samples were taken, one during a migraine attack and one approximately 1 month later (to be at the same stage in the menstrual cycle, when present). NAEs and oxylipins were measured by liquid chromatography coupled to mass spectrometry. Twenty-nine lipids were quantified, of which 16 were found to have a high reproducibility of measurement. There were no significant differences in the levels of AEA, the related NAEs stearoylethanolamide and oleoylethanolamide or any of the nine linoleic acid-derived oxylipins measured either between migraine patients with vs. without aura, or between controls and migraine patients (after stratification to take into account whether or not the individuals had regular menstruation cycles) in either of the first two samples. Levels of linoleoylethanolamide were lower in the patients with vs. without aura on the second sample but not in the first sample, but the biological importance of this finding is unclear. Due to time-dependent increases in their concentrations ex vivo prior to centrifugation, AEA and oleoylethanolamide levels in the samples collected during migraine attacks were not analysed, but for the other fourteen lipids, there were no significant differences in plasma concentrations during migraine vs. one month later. It is concluded that migraine is not associated with a generalised (as opposed to localised) deficiency in these lipids.
Collapse
Affiliation(s)
| | - Kristina Goldin
- Department of Neurology, Östersund Hospital, SE-83183 Östersund, Sweden
| | - Sanaz A Hashemian
- Department of Pharmacology and Clinical Neuroscience, Umeå University, SE-90187 Umeå, Sweden
| | - Agneta Lindberg
- Clinical Research Center, Region Jämtland Härjedalen, Östersund Hospital, SE-83183 Östersund, Sweden
| | - Monica Persson
- Clinical Research Center, Region Jämtland Härjedalen, Östersund Hospital, SE-83183 Östersund, Sweden
| | - Malin L Nording
- Department of Chemistry, Umeå University, SE-90187 Umeå, Sweden
| | - Katarina Laurell
- Department of Neurology, Östersund Hospital, SE-83183 Östersund, Sweden; Department of Pharmacology and Clinical Neuroscience, Umeå University, SE-90187 Umeå, Sweden
| | - Christopher J Fowler
- Department of Pharmacology and Clinical Neuroscience, Umeå University, SE-90187 Umeå, Sweden.
| |
Collapse
|
88
|
Skerratt S. Recent Progress in the Discovery and Development of TRPA1 Modulators. PROGRESS IN MEDICINAL CHEMISTRY 2017; 56:81-115. [PMID: 28314413 DOI: 10.1016/bs.pmch.2016.11.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
TRPA1 is a well-validated therapeutic target in areas of high unmet medical need that include pain and respiratory disorders. The human genetic rationale for TRPA1 as a pain target is provided by a study describing a rare gain-of-function mutation in TRPA1, causing familial episodic pain syndrome. There is a growing interest in the TRPA1 field, with many pharmaceutical companies reporting the discovery of TRPA1 chemical matter; however, GRC 17536 remains to date the only TRPA1 antagonist to have completed Phase IIa studies. A key issue in the progression of TRPA1 programmes is the identification of high-quality orally bioavailable molecules. Most published TRPA1 ligands are commonly not suitable for clinical progression due to low lipophilic efficiency and/or poor absorption, distribution, metabolism, excretion and pharmaceutical properties. The recent TRPA1 cryogenic electron microscopy structure from the Cheng and Julius labs determined the structure of full-length human TRPA1 at up to 4Å resolution in the presence of TRPA1 ligands. This ground-breaking science paves the way to enable structure-based drug design within the TRPA1 field.
Collapse
Affiliation(s)
- S Skerratt
- Convergence (a Biogen Company), Cambridge, United Kingdom
| |
Collapse
|
89
|
Leishman E, Kunkler PE, Manchanda M, Sangani K, Stuart JM, Oxford GS, Hurley JH, Bradshaw HB. Environmental Toxin Acrolein Alters Levels of Endogenous Lipids, Including TRP Agonists: A Potential Mechanism for Headache Driven by TRPA1 Activation. NEUROBIOLOGY OF PAIN (CAMBRIDGE, MASS.) 2017; 1:28-36. [PMID: 29430557 PMCID: PMC5802349 DOI: 10.1016/j.ynpai.2017.03.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Revised: 03/28/2017] [Accepted: 03/29/2017] [Indexed: 06/08/2023]
Abstract
Exposure to airborne toxins can trigger headaches, but the mechanisms are not well understood. Some environmental toxins, such as acrolein, activate transient receptor potential ankyrin 1 (TRPA1), a receptor involved in pain sensation that is highly expressed in the trigeminovascular system. It has been shown in rat models that repeated exposure to acrolein induces trigeminovascular sensitization to both TRPA1 and TRP vanilloid 1 (TRPV1) agonists, a phenomenon linked to headache. In this study, we test the hypothesis that the sensitization of trigeminovascular responses in rats after acrolein exposure via inhalation is associated with changes in levels of endogenous lipids, including TRPV1 agonists, in the trigeminal ganglia, trigeminal nucleus, and cerebellum. Lipidomics analysis of 80 lipids was performed on each tissue after acute acrolein, chronic acrolein, or room air control. Both acute and chronic acrolein exposure drove widespread alterations in lipid levels. After chronic acrolein exposure, levels of all 6 N-acyl ethanolamines in the screening library, including the endogenous cannabinoid and TRPV1 agonist, N-arachidonoyl ethanolamine, were elevated in trigeminal tissue and in the cerebellum. This increase in TRPV1 ligands by acrolein exposure may indicate further downstream signaling, in that we also show here that a combination of these TRPV1 endogenous agonists increases the potency of the individual ligands in TRPV1-HEK cells. In addition to these TRPV1 agonists, 3 TRPV3 antagonists, 4 TRPV4 agonists, and 25 orphan lipids were up and down regulated after acrolein exposure. These data support the hypothesis that lipid signaling may represent a mechanism by which repeated exposure to the TRPA1 agonist and environmental toxin, acrolein, drives trigeminovascular sensitization.
Collapse
Affiliation(s)
- Emma Leishman
- Department of Psychological and Brain Sciences, Indiana University, 1101 East 10 Street, Bloomington, IN 47405, USA
| | - Phillip E. Kunkler
- Stark Neurosciences Institute, Indiana University School of Medicine, 320 West 15 Street, Indianapolis, IN 46202, USA
| | - Meera Manchanda
- Department of Psychological and Brain Sciences, Indiana University, 1101 East 10 Street, Bloomington, IN 47405, USA
| | - Kishan Sangani
- Department of Psychological and Brain Sciences, Indiana University, 1101 East 10 Street, Bloomington, IN 47405, USA
| | - Jordyn M. Stuart
- Department of Psychological and Brain Sciences, Indiana University, 1101 East 10 Street, Bloomington, IN 47405, USA
| | - Gerry S. Oxford
- Stark Neurosciences Institute, Indiana University School of Medicine, 320 West 15 Street, Indianapolis, IN 46202, USA
| | - Joyce H. Hurley
- Stark Neurosciences Institute, Indiana University School of Medicine, 320 West 15 Street, Indianapolis, IN 46202, USA
| | - Heather B. Bradshaw
- Department of Psychological and Brain Sciences, Indiana University, 1101 East 10 Street, Bloomington, IN 47405, USA
| |
Collapse
|
90
|
Denner AC, Vogler B, Messlinger K, De Col R. Role of transient receptor potential ankyrin 1 receptors in rodent models of meningeal nociception - Experiments in vitro. Eur J Pain 2016; 21:843-854. [PMID: 27977070 DOI: 10.1002/ejp.986] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2016] [Indexed: 12/19/2022]
Abstract
BACKGROUND The TRP channel ankyrin type 1 (TRPA1) is a nonselective cation channel known to be activated by environmental irritants, cold and endogenous mediators of inflammation. Activation of TRPA1 in trigeminal afferents innervating meningeal structures has recently been suggested to be involved in the generation of headaches. METHODS Two in vitro models of meningeal nociception were employed using the hemisected rodent head preparation, (1) recording of single meningeal afferents and (2) release of calcitonin gene-related peptide (CGRP) from the cranial dura mater. The role of TRPA1 was examined using the TRPA1 agonists acrolein and mustard oil (MO). BCTC, an inhibitor of TRP vanilloid type 1 receptor channels (TRPV1), and the TRPA1 inhibitor HC030031 as well as mice with genetically deleted TRPA1 and TRPV1 proteins, were used to differentiate between effects. RESULTS Acrolein did not cause discharge activity in meningeal Aδ- or C-fibres but increased the electrical activation threshold. Acrolein was also effective in releasing CGRP from the dura of TRPV1-/- but not of TRPA1-/- mice. MO increased the discharge activity of afferent fibres from rat as well as C57 wild-type and TRPA1-/- but not TRPV1-/- mice. The effect was higher in C57 compared to TRPA1-/- mice. CONCLUSION Sole TRPA1 receptor channel activation releases CGRP and increases the activation threshold of meningeal afferents but does not generate propagated activity, and so would be capable of causing local effects like vasodilatation but not pain generation. In contrast, combined TRPA1 and TRPV1 activation may be rather pronociceptive supporting headache generation. SIGNIFICANCE Sole activation of TRPA1 receptor channels increases the activation threshold but does not cause propagated action potentials in meningeal afferents. TRPA1 agonists cause CGRP release from rodent dura mater. Peripheral TRPA1 receptors may have a pronociceptive function in trigeminal nociception only in combination with TRPV1.
Collapse
Affiliation(s)
- A C Denner
- Institute of Physiology and Pathophysiology, University of Erlangen-Nürnberg, Germany
| | - B Vogler
- Institute of Physiology and Pathophysiology, University of Erlangen-Nürnberg, Germany
| | - K Messlinger
- Institute of Physiology and Pathophysiology, University of Erlangen-Nürnberg, Germany
| | - R De Col
- Institute of Physiology and Pathophysiology, University of Erlangen-Nürnberg, Germany
| |
Collapse
|
91
|
Yang H, Li S. Transient Receptor Potential Ankyrin 1 (TRPA1) Channel and Neurogenic Inflammation in Pathogenesis of Asthma. Med Sci Monit 2016; 22:2917-23. [PMID: 27539812 PMCID: PMC5003164 DOI: 10.12659/msm.896557] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Asthma is characterized by airway inflammation, airway obstruction, and airway hyperresponsiveness (AHR), and it affects 300 million people worldwide. However, our current understanding of the molecular mechanisms that underlie asthma remains limited. Recent studies have suggested that transient receptor potential ankyrin 1 (TRPA1), one of the transient receptor potential cation channels, may be involved in airway inflammation in asthma. The present review discusses the relationship between TRPA1 and neurogenic inflammation in asthma, hoping to enhance our understanding of the mechanisms of airway inflammation in asthma.
Collapse
Affiliation(s)
- Hang Yang
- Department of Physiology, Dalian Medical University, Dalian, Liaoning, China (mainland)
| | - ShuZhuang Li
- Department of Physiology, Dalian Medical University, Dalian, Liaoning, China (mainland)
| |
Collapse
|
92
|
Zhang H, Zhang H, Wei Y, Lian Y, Chen Y, Zheng Y. Treatment of chronic daily headache with comorbid anxiety and depression using botulinum toxin A: a prospective pilot study. Int J Neurosci 2016; 127:285-290. [PMID: 27439999 DOI: 10.1080/00207454.2016.1196687] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
BACKGROUND Psychiatric comorbidities, including depression and anxiety, are clinical entities associated with chronic daily headache (CDH). Botulinum toxin A (BTA) is a Food and Drug Administration approved drug for the treatment of chronic migraine, a subtype form of CDH. This study aimed to investigate the potential efficacy and safety of BTA for controlling psychiatric symptoms in CDH patients. METHODS A prospective, open-label, pilot study (n = 30; 7 males, 23 females) was performed. A single low-dose of BTA (40-120 U) was injected into the pericranial muscle at multiple sites. Participants were evaluated before and 1, 4, 8, 12, 16, 20 and 24 weeks after BTA treatment. Primary outcomes included: (1) headache severity, determined by a visual analog scale; (2) depression and anxiety severity, assessed via the Hamilton Depression and Anxiety Rating Scales (HAM-D and HAM-A, respectively); (3) headache frequency per month and (4) single headache episode duration. RESULTS Headache severity was significantly ameliorated one week after treatment. Depression and anxiety symptoms were significantly reduced one month after treatment. At month four, the headache incidence per month decreased from 28.83 ± 2.95 to 17.57 ± 11.30 d (p < 0.001), and the single headache duration decreased from 12.03 ± 9.47 to 6.63 ± 8.98 h (p < 0.001). Furthermore, the percentage of patients who required analgesics significantly decreased. BTA was well tolerated, and the adverse events were mild and transient. CONCLUSION BTA treatment alleviated the severity and frequency of CDH, with improvements in depression and anxiety. These novel findings indicate that BTA may represent an effective and safe intervention to target psychiatric comorbidities in CDH.
Collapse
Affiliation(s)
- Hongwei Zhang
- a Department of Neurology , The First Affiliated Hospital of Zhengzhou University , Zhengzhou , China.,b Department of Neurology , The General Hospital of Pingmei Group , Pingdingshan , China
| | - Haifeng Zhang
- a Department of Neurology , The First Affiliated Hospital of Zhengzhou University , Zhengzhou , China
| | - Yingjie Wei
- a Department of Neurology , The First Affiliated Hospital of Zhengzhou University , Zhengzhou , China
| | - Yajun Lian
- a Department of Neurology , The First Affiliated Hospital of Zhengzhou University , Zhengzhou , China
| | - Yuan Chen
- a Department of Neurology , The First Affiliated Hospital of Zhengzhou University , Zhengzhou , China
| | - Yake Zheng
- a Department of Neurology , The First Affiliated Hospital of Zhengzhou University , Zhengzhou , China
| |
Collapse
|
93
|
Orr SL. Diet and nutraceutical interventions for headache management: A review of the evidence. Cephalalgia 2016; 36:1112-1133. [DOI: 10.1177/0333102415590239] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Background The use of complementary and alternative medicines (CAM) is common among patients with primary headaches. In parallel, CAM research is growing. Diet interventions comprise another category of non-pharmacologic treatment for primary headache that is of increasing clinical and research interest. Methods A literature search was carried out to identify studies on the efficacy of diet and nutraceutical interviews for primary headache in the pediatric and adult populations. MEDLINE, Embase and EBM Reviews—Cochrane Central Register of Controlled Trials were searched to identify studies. Results There is a growing body of literature on the potential use of CAM and diet interventions for primary headache disorders. This review identified literature on the use of a variety of diet and nutraceutical interventions for headache. Most of the studies assessed the efficacy of these interventions for migraine, though some explored their role in tension-type headache and cluster headache. The quality of the evidence in this area is generally poor. Conclusions CAM is becoming more commonplace in the headache world. Several interventions show promise, but caution needs to be exercised in using these agents given limited safety and efficacy data. In addition, interest in exploring diet interventions in the treatment of primary headaches is emerging. Further research into the efficacy of nutraceutical and diet interventions is warranted.
Collapse
|
94
|
Marics B, Peitl B, Varga A, Pázmándi K, Bácsi A, Németh J, Szilvássy Z, Jancsó G, Dux M. Diet-induced obesity alters dural CGRP release and potentiates TRPA1-mediated trigeminovascular responses. Cephalalgia 2016; 37:581-591. [PMID: 27301459 DOI: 10.1177/0333102416654883] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Background Clinical studies suggest a link between obesity and the primary headache disorder migraine. In our study we aimed to reveal the effect of obesity on meningeal nociceptor function in rats receiving a high-fat, high-sucrose diet. Methods Transient receptor potential ankyrin 1 (TRPA1) receptor activation-induced changes in meningeal blood flow, release of calcitonin gene-related peptide (CGRP) from trigeminal afferents and TRPA1 protein expression in the trigeminal ganglia were measured in control and obese rats. Metabolic parameters of the animals were assessed by measuring glucose and insulin homeostasis as well as plasma cytokine concentrations. Results The present experiments revealed an enhanced basal and TRPA1 receptor agonist-induced CGRP release from meningeal afferents of obese insulin-resistant rats and an attenuated CGRP release to potassium chloride. Obesity was also associated with an augmented vasodilatation in meningeal arteries after dural application of the TRPA1 agonist acrolein, a reduction in TRPA1 protein expression in the trigeminal ganglia and elevations in circulating proinflammatory cytokines IL-1β and IL-6 in addition to increased fasting blood glucose and insulin concentrations. Conclusions Our results suggest trigeminal sensitisation as a mechanism for enhanced headache susceptibility in obese individuals after chemical exposure of trigeminal nociceptors.
Collapse
Affiliation(s)
- Balázs Marics
- 1 Department of Pharmacology and Pharmacotherapy, University of Debrecen, Debrecen, Hungary
| | - Barna Peitl
- 1 Department of Pharmacology and Pharmacotherapy, University of Debrecen, Debrecen, Hungary
| | - Angelika Varga
- 2 Department of Physiology, University of Debrecen, Debrecen, Hungary
| | - Kitti Pázmándi
- 3 Department of Immunology, University of Debrecen, Debrecen, Hungary
| | - Attila Bácsi
- 3 Department of Immunology, University of Debrecen, Debrecen, Hungary
| | - József Németh
- 1 Department of Pharmacology and Pharmacotherapy, University of Debrecen, Debrecen, Hungary
| | - Zoltán Szilvássy
- 1 Department of Pharmacology and Pharmacotherapy, University of Debrecen, Debrecen, Hungary
| | - Gábor Jancsó
- 4 Department of Physiology, University of Szeged, Szeged, Hungary
| | - Mária Dux
- 4 Department of Physiology, University of Szeged, Szeged, Hungary
| |
Collapse
|
95
|
De Logu F, Patacchini R, Fontana G, Geppetti P. TRP functions in the broncho-pulmonary system. Semin Immunopathol 2016; 38:321-9. [PMID: 27083925 DOI: 10.1007/s00281-016-0557-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2015] [Accepted: 02/09/2016] [Indexed: 12/23/2022]
Abstract
The current understanding of the role of transient receptor potential (TRP) channels in the airways and lung was initially based on the localization of a series of such channels in a subset of sensory nerve fibers of the respiratory tract. Soon after, TRP channel expression and function have been identified in respiratory nonneuronal cells. In these two locations, TRPs regulate physiological processes aimed at integrating different stimuli to maintain homeostasis and to react to harmful agents and tissue injury by building up inflammatory responses and repair processes. There is no doubt that TRPs localized in the sensory network contribute to airway neurogenic inflammation, and emerging evidence underlines the role of nonneuronal TRPs in orchestrating inflammation and repair in the respiratory tract. However, recent basic and clinical studies have offered clues regarding the contribution of neuronal and nonneuronal TRPs in the mechanism of asthma, chronic obstructive pulmonary disease, idiopathic pulmonary fibrosis, cough, and other respiratory diseases.
Collapse
Affiliation(s)
- Francesco De Logu
- Clinical Pharmacology Unit, Department of Health Sciences, University of Florence, Viale Pieraccini, 6, 50139, Florence, Italy
| | - Riccardo Patacchini
- Clinical Pharmacology Unit, Department of Health Sciences, University of Florence, Viale Pieraccini, 6, 50139, Florence, Italy
- Chiesi Farmaceutici S.p.A, Parma, Italy
| | - Giovanni Fontana
- Department of Experimental and Clinical Medicine, University of Florence, Florence, Italy
| | - Pierangelo Geppetti
- Clinical Pharmacology Unit, Department of Health Sciences, University of Florence, Viale Pieraccini, 6, 50139, Florence, Italy.
| |
Collapse
|
96
|
Abstract
The transient receptor potential ankyrin 1 (TRPA1) channel is an irritant sensor highly expressed on nociceptive neurons. The clinical use of TRPA1 antagonists is based on the concept that TRPA1 is active during disease states like neuropathic pain. Indeed, in Phase 2a proof-of-concept studies the TRPA1 antagonist GRC17536 has shown efficacy in patients with painful diabetic neuropathy. Moreover, animal studies suggest that the therapeutic value of TRPA1 antagonists extends beyond pain to pruritus, asthma and cough with limited safety concerns. This review provides a comprehensive overview of the patent literature (since 2007) on small-molecule inhibitors of the TRPA1 channel. Despite the clear progress, many unanswered questions remain. Future advancement to Phase 3 studies will assess the real translational potential of this research field.
Collapse
|
97
|
Zhang X, Strassman AM, Novack V, Brin MF, Burstein R. Extracranial injections of botulinum neurotoxin type A inhibit intracranial meningeal nociceptors' responses to stimulation of TRPV1 and TRPA1 channels: Are we getting closer to solving this puzzle? Cephalalgia 2016; 36:875-86. [PMID: 26984967 PMCID: PMC4959034 DOI: 10.1177/0333102416636843] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Accepted: 02/09/2016] [Indexed: 12/28/2022]
Abstract
BACKGROUND Administration of onabotulinumtoxinA (BoNT-A) to peripheral tissues outside the calvaria reduces the number of days chronic migraine patients experience headache. Because the headache phase of a migraine attack, especially those preceded by aura, is thought to involve activation of meningeal nociceptors by endogenous stimuli such as changes in intracranial pressure (i.e. mechanical) or chemical irritants that appear in the meninges as a result of a yet-to-be-discovered sequence of molecular/cellular events triggered by the aura, we sought to determine whether extracranial injections of BoNT-A alter the chemosensitivity of meningeal nociceptors to stimulation of their intracranial receptive fields. MATERIAL AND METHODS Using electrophysiological techniques, we identified 161 C- and 135 Aδ-meningeal nociceptors in rats and determined their mechanical response threshold and responsiveness to chemical stimulation of their dural receptive fields with TRPV1 and TRPA1 agonists seven days after BoNT-A administration to different extracranial sites. Two paradigms were compared: distribution of 5 U BoNT-A to the lambdoid and sagittal sutures alone, and 1.25 U to the sutures and 3.75 U to the temporalis and trapezius muscles. RESULTS Seven days after it was administered to tissues outside the calvaria, BoNT-A inhibited responses of C-type meningeal nociceptors to stimulation of their intracranial dural receptive fields with the TRPV1 agonist capsaicin and the TRPA1 agonist mustard oil. BoNT-A inhibition of responses to capsaicin was more effective when the entire dose was injected along the suture lines than when it was injected into muscles and sutures. As in our previous study, BoNT-A had no effect on non-noxious mechanosensitivity of C-fibers or on responsiveness of Aδ-fibers to mechanical and chemical stimulation. DISCUSSION This study demonstrates that extracranial administration of BoNT-A suppresses meningeal nociceptors' responses to stimulation of their intracranial dural receptive fields with capsaicin and mustard oil. The findings suggest that surface expression of TRPV1 and TRPA1 channels in dural nerve endings of meningeal nociceptors is reduced seven days after extracranial administration of BoNT-A. In the context of chronic migraine, reduced sensitivity to molecules that activate meningeal nociceptors through the TRPV1 and TRPA1 channels can be important for BoNT-A's ability to act as a prophylactic.
Collapse
Affiliation(s)
- XiChun Zhang
- Department of Anesthesia and Critical Care, Beth Israel Deaconess Medical Center, USA Harvard Medical School, USA
| | - Andrew M Strassman
- Department of Anesthesia and Critical Care, Beth Israel Deaconess Medical Center, USA Harvard Medical School, USA
| | - Victor Novack
- Department of Anesthesia and Critical Care, Beth Israel Deaconess Medical Center, USA Clinical Research Center, Soroka University Medical Center, Israel Faculty of Health Sciences, Ben-Gurion University of the Negev, Israel
| | | | - Rami Burstein
- Department of Anesthesia and Critical Care, Beth Israel Deaconess Medical Center, USA Harvard Medical School, USA
| |
Collapse
|
98
|
Gustafson SL. Bowenwork for Migraine Relief: a Case Report. Int J Ther Massage Bodywork 2016; 9:19-28. [PMID: 26977217 PMCID: PMC4771487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
INTRODUCTION Migraine is a complex neurological disorder characterized by episodic, neurogenic, cerebrovascular inflammation and hypersensitization of brain tissues and the central nervous system, causing severe pain and debility. Research literature points mostly to pharmaceutical prophylactic and symptomatic treatments, nonpharmaceutical, complementary and alternative medicine (CAM) approaches, acupuncture, massage and bodywork studies, and none has been published on Bowenwork for migraine intervention. This prospective case report describes one migraineur's response to Bowenwork (a soft-tissue bodywork technique) with cessation of migraine, neck pain, and analgesic consumption, and improved well-being and activity function. METHODS The client received 14 Bowenwork sessions over a four-month period using the self-reporting Measure Yourself Medical Outcome Profile version 2 (MYMOP2) to evaluate clinically meaningful changes. Baseline MYMOP2 data were recorded prior to the first and subsequent Bowenwork sessions to track changes in migraine and neck pain occurrences, other symptoms, medication use, functional ability and sense of well-being. Specific Bowenwork procedures were applied in each session to address various symptoms. The client did not receive other migraine treatment during this study. PARTICIPANT A 66-year-old Caucasian female with a history of debilitating migraine since childhood, and severe neck pain and jaw injuries resulting from two motor vehicle accidents (MVAs) sustained as an adult. She had previously sought medical, pharmaceutical and CAM treatments for migraine, neck pain, and right-sided thoracic outlet syndrome (TOS) symptoms, with no satisfactory relief. RESULTS The client progressively reported decreased migraine and neck pain until acquiring a respiratory infection with prolonged coughing spells causing symptoms to recur (session 11). Prior to session 12, she experienced an allergic reaction to ingesting an unknown food allergen, requiring three days of prednisone and Benadryl treatment, exacerbating neck pain, but not migraine. At session 14, her MYMOP2 data showed no migraine, neck pain or medication use, improved activity function, and sense of well-being. Symptoms in her right arm and thumb persisted to a lesser extent. CONCLUSION Bowenwork progressively offered migraine and neck pain relief for one chronic migraineur, with multiple somatic symptoms. Extenuating factors (jaw tension, TOS, respiratory infection, and allergic reaction) added complexity in monitoring progress and selecting appropriate Bowenwork procedures. Further research on Bowenwork's efficacy for migraine treatment on larger populations is needed.
Collapse
|
99
|
Parenti A, De Logu F, Geppetti P, Benemei S. What is the evidence for the role of TRP channels in inflammatory and immune cells? Br J Pharmacol 2016; 173:953-69. [PMID: 26603538 DOI: 10.1111/bph.13392] [Citation(s) in RCA: 109] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 10/25/2015] [Accepted: 11/10/2015] [Indexed: 12/11/2022] Open
Abstract
A complex network of many interacting mechanisms orchestrates immune and inflammatory responses. Among these, the cation channels of the transient receptor potential (TRP) family expressed by resident tissue cells, inflammatory and immune cells and distinct subsets of primary sensory neurons, have emerged as a novel and interrelated system to detect and respond to harmful agents. TRP channels, by means of their direct effect on the intracellular levels of cations and/or through the indirect modulation of a large series of intracellular pathways, orchestrate a range of cellular processes, such as cytokine production, cell differentiation and cytotoxicity. The contribution of TRP channels to the transition of inflammation and immune responses from a defensive early response to a chronic and pathological condition is also emerging as a possible underlying mechanism in various diseases. This review discusses the roles of TRP channels in inflammatory and immune cell function and provides an overview of the effects of inflammatory and immune TRP channels on the pathogenesis of human diseases.
Collapse
Affiliation(s)
- A Parenti
- Clinical Pharmacology and Oncology Unit, Department of Health Sciences, University of Florence, Florence, Italy
| | - F De Logu
- Clinical Pharmacology and Oncology Unit, Department of Health Sciences, University of Florence, Florence, Italy
| | - P Geppetti
- Clinical Pharmacology and Oncology Unit, Department of Health Sciences, University of Florence, Florence, Italy
| | - S Benemei
- Clinical Pharmacology and Oncology Unit, Department of Health Sciences, University of Florence, Florence, Italy
| |
Collapse
|
100
|
Geyik S, Altunısık E, Neyal AM, Taysi S. Oxidative stress and DNA damage in patients with migraine. J Headache Pain 2016; 17:10. [PMID: 26883365 PMCID: PMC4755953 DOI: 10.1186/s10194-016-0606-0] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Accepted: 02/12/2016] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Oxidative stress is implicated in the pathogenesis of migraine, but no published studies have examined both oxidative stress levels and oxidative DNA damage on the same patient group. METHODS In this study, total oxidant status (TOS); total antioxidant status (TAS); oxidative stress index (OSI); and 8-hydroxy-2'-deoxyguanosine (8-OHdG), which is an indicator of oxidative DNA damage, were measured in the plasma samples of 50 prophylactic unmediated migraineurs (11 with aura and 39 without aura) and 30 matched healthy volunteers. RESULTS No significant differences in TAS, TOS, and OSI values were observed between patients and controls. However, plasma 8-OHdG levels were found to be significantly higher in migraine patients than in the control group (p = 0.001); this increase in plasma 8-OHdG levels was more prominent in cases with migraine without aura than with aura (p = 0.001). Our results suggested an evidence of oxidative stress-related DNA damage in migraine. CONCLUSION DNA damage reflected by plasma 8-OHdG did not studied in migraine before. Therefore, further research on oxidative stress-related DNA damage and the extent of its clinical manifestations in migraine may provide additional data to our current knowledge.
Collapse
Affiliation(s)
- Sırma Geyik
- Department of Neurology, Gaziantep University, Gaziantep, Turkey. .,Department of Neurology, Faculty of Medicine, University of Gaziantep, Gaziantep, 27130, Turkey.
| | - Erman Altunısık
- Division Of Neurology, Turkish Ministry of Health Siirt State Hospital, Siirt, Turkey.
| | | | - Seyithan Taysi
- Department of Biochemistry, Gaziantep University, Gaziantep, Turkey.
| |
Collapse
|