51
|
Amiot C, Ji W, Ellis EC, Anderson MG. Temporal and sociocultural effects of human colonisation on native biodiversity: filtering and rates of adaptation. OIKOS 2021. [DOI: 10.1111/oik.07615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Christophe Amiot
- Human Wildlife Interaction Research Group, Inst. of Natural and Mathematical Sciences, Massey Univ. Albany New Zealand
- UMR 6554 CNRS, LETG–Angers, Univ. d'Angers Angers France
| | - Weihong Ji
- Human Wildlife Interaction Research Group, Inst. of Natural and Mathematical Sciences, Massey Univ. Albany New Zealand
| | - Erle C. Ellis
- Dept of Geography and Environmental Systems, Univ. of Maryland Baltimore County Baltimore USA
| | - Michael G. Anderson
- Ecology, Behaviour and Conservation Group, Inst. of Natural and Mathematical Sciences, Massey Univ. Albany New Zealand
| |
Collapse
|
52
|
Rohwer Y, Marris E. Ecosystem integrity is neither real nor valuable. CONSERVATION SCIENCE AND PRACTICE 2021. [DOI: 10.1111/csp2.411] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Affiliation(s)
- Yasha Rohwer
- Department of Humanities and Social Sciences Oregon Institute of Technology Klamath Falls Oregon USA
| | | |
Collapse
|
53
|
Spengler RN, Petraglia M, Roberts P, Ashastina K, Kistler L, Mueller NG, Boivin N. Exaptation Traits for Megafaunal Mutualisms as a Factor in Plant Domestication. FRONTIERS IN PLANT SCIENCE 2021; 12:649394. [PMID: 33841476 PMCID: PMC8024633 DOI: 10.3389/fpls.2021.649394] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 02/25/2021] [Indexed: 05/26/2023]
Abstract
Megafaunal extinctions are recurring events that cause evolutionary ripples, as cascades of secondary extinctions and shifting selective pressures reshape ecosystems. Megafaunal browsers and grazers are major ecosystem engineers, they: keep woody vegetation suppressed; are nitrogen cyclers; and serve as seed dispersers. Most angiosperms possess sets of physiological traits that allow for the fixation of mutualisms with megafauna; some of these traits appear to serve as exaptation (preadaptation) features for farming. As an easily recognized example, fleshy fruits are, an exaptation to agriculture, as they evolved to recruit a non-human disperser. We hypothesize that the traits of rapid annual growth, self-compatibility, heavy investment in reproduction, high plasticity (wide reaction norms), and rapid evolvability were part of an adaptive syndrome for megafaunal seed dispersal. We review the evolutionary importance that megafauna had for crop and weed progenitors and discuss possible ramifications of their extinction on: (1) seed dispersal; (2) population dynamics; and (3) habitat loss. Humans replaced some of the ecological services that had been lost as a result of late Quaternary extinctions and drove rapid evolutionary change resulting in domestication.
Collapse
Affiliation(s)
- Robert N. Spengler
- Department of Archaeology, Max Planck Institute for the Science of Human History, Jena, Germany
| | - Michael Petraglia
- Department of Archaeology, Max Planck Institute for the Science of Human History, Jena, Germany
- Department of Anthropology, Smithsonian Institution, National Museum of Natural History, Washington, DC, United States
- School of Social Science, The University of Queensland, Brisbane, QLD, Australia
| | - Patrick Roberts
- Department of Archaeology, Max Planck Institute for the Science of Human History, Jena, Germany
| | - Kseniia Ashastina
- Department of Archaeology, Max Planck Institute for the Science of Human History, Jena, Germany
| | - Logan Kistler
- Department of Anthropology, Smithsonian Institution, National Museum of Natural History, Washington, DC, United States
| | - Natalie G. Mueller
- Department of Archaeology, Washington University in St. Louis, St. Louis, MO, United States
| | - Nicole Boivin
- Department of Archaeology, Max Planck Institute for the Science of Human History, Jena, Germany
- Department of Anthropology, Smithsonian Institution, National Museum of Natural History, Washington, DC, United States
- School of Social Science, The University of Queensland, Brisbane, QLD, Australia
- Department of Anthropology and Archaeology, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
54
|
The role of the brown bear Ursus arctos as a legitimate megafaunal seed disperser. Sci Rep 2021; 11:1282. [PMID: 33446727 PMCID: PMC7809135 DOI: 10.1038/s41598-020-80440-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 12/21/2020] [Indexed: 01/29/2023] Open
Abstract
Megafaunal frugivores can consume large amounts of fruits whose seeds may be dispersed over long distances, thus, affecting plant regeneration processes and ecosystem functioning. We investigated the role of brown bears (Ursus arctos) as legitimate megafaunal seed dispersers. We assessed the quantity component of seed dispersal by brown bears across its entire distribution based on information about both the relative frequency of occurrence and species composition of fleshy fruits in the diet of brown bears extracted from the literature. We assessed the quality component of seed dispersal based on germination experiments for 11 fleshy-fruited plant species common in temperate and boreal regions and frequently eaten by brown bears. Across its distribution, fleshy fruits, on average, represented 24% of the bear food items and 26% of the total volume consumed. Brown bears consumed seeds from at least 101 fleshy-fruited plant species belonging to 24 families and 42 genera, of which Rubus (Rosaceae) and Vaccinium (Ericaceae) were most commonly eaten. Brown bears inhabiting Mediterranean forests relied the most on fleshy fruits and consumed the largest number of species per study area. Seeds ingested by bears germinated at higher percentages than those from whole fruits, and at similar percentages than manually depulped seeds. We conclude that brown bears are legitimate seed dispersers as they consume large quantities of seeds that remain viable after gut passage. The decline of these megafaunal frugivores may compromise seed dispersal services and plant regeneration processes.
Collapse
|
55
|
Stevenson PR, Cardona L, Cárdenas S, Link A. Oilbirds disperse large seeds at longer distance than extinct megafauna. Sci Rep 2021; 11:420. [PMID: 33431959 PMCID: PMC7801487 DOI: 10.1038/s41598-020-79280-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 11/13/2020] [Indexed: 11/23/2022] Open
Abstract
The extinction of megafauna in the Neotropics is thought to have reduced the potential of large seeds to be dispersed over long distances by endozoochory (ingestion by animals), but some seed dispersal systems have not been considered. We describe the role of oilbirds (Steatornis caripensis) as seed dispersers, in terms of seed width and dispersal distance (using GPS tracking devices), and we compare with data reported for other animals. Oilbirds dispersed seeds up to 29 mm wide, with a mean dispersal distance of 10.1 km (range 0–47.6 km). Some components of seed dispersal by oilbirds are outliers compared to that of other frugivores, such as the relationship between maximum seed width and body weight (however, few other extant specialized frugivores are also outliers). Estimates of mean dispersal distance by oilbirds are the largest reported, and we confirm that some living frugivores currently fulfil roles of seed dispersers and ecosystem services previously assumed to be only performed by extinct species.
Collapse
Affiliation(s)
- Pablo R Stevenson
- Laboratorio de Ecología de Bosques Tropicales Y Primatología, Departamento de Ciencias Biológicas, Universidad de Los Andes, Carrera 1 No. 18A-10, Bogotá, Colombia.
| | - Laura Cardona
- Laboratorio de Ecología de Bosques Tropicales Y Primatología, Departamento de Ciencias Biológicas, Universidad de Los Andes, Carrera 1 No. 18A-10, Bogotá, Colombia
| | - Sasha Cárdenas
- Laboratorio de Ecología de Bosques Tropicales Y Primatología, Departamento de Ciencias Biológicas, Universidad de Los Andes, Carrera 1 No. 18A-10, Bogotá, Colombia
| | - Andrés Link
- Laboratorio de Ecología de Bosques Tropicales Y Primatología, Departamento de Ciencias Biológicas, Universidad de Los Andes, Carrera 1 No. 18A-10, Bogotá, Colombia
| |
Collapse
|
56
|
Maicher V, Delabye S, Murkwe M, Doležal J, Altman J, Kobe IN, Desmist J, Fokam EB, Pyrcz T, Tropek R. Effects of disturbances by forest elephants on diversity of trees and insects in tropical rainforests on Mount Cameroon. Sci Rep 2020; 10:21618. [PMID: 33303812 PMCID: PMC7729851 DOI: 10.1038/s41598-020-78659-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/24/2020] [Indexed: 11/20/2022] Open
Abstract
Natural disturbances are essential for tropical forests biodiversity. In the Afrotropics, megaherbivores have played a key role before their recent decline. Contrastingly to savanna elephants, forest elephants’ impact on ecosystems remains poorly studied. Few decades ago, forests on Mount Cameroon were divided by lava flows, not being crossed by a local population of forest elephants until now. We assessed communities of trees, butterflies and two guilds of moths in the disturbed and undisturbed forests split by the longest lava flow. We surveyed 32 plots, recording 2025 trees of 97 species, and 7853 insects of 437 species. The disturbed forests differed in reduced tree density, height, and high canopy cover, and in increased DBH. Forest elephants’ selective browsing and foraging also decreased tree species richness and altered their composition. The elephant disturbance increased butterfly species richness and had various effects on species richness and composition of the insect groups. These changes were likely caused by disturbance-driven alterations of habitats and species composition of trees. Moreover, the abandonment of forests by elephants led to local declines of range-restricted butterflies. The recent declines of forest elephants across the Afrotropics probably caused similar changes in forest biodiversity and should be reflected by conservation actions.
Collapse
Affiliation(s)
- Vincent Maicher
- Institute of Entomology, Biology Centre, Czech Academy of Sciences, Branisovska 31, 37005, Ceske Budejovice, Czech Republic. .,Faculty of Science, University of South Bohemia, Branisovska 1760, 37005, Ceske Budejovice, Czech Republic. .,Nicholas School of the Environment, Duke University, 9 Circuit Dr., Durham, NC, 27710, USA.
| | - Sylvain Delabye
- Institute of Entomology, Biology Centre, Czech Academy of Sciences, Branisovska 31, 37005, Ceske Budejovice, Czech Republic.,Faculty of Science, University of South Bohemia, Branisovska 1760, 37005, Ceske Budejovice, Czech Republic
| | - Mercy Murkwe
- Department of Zoology and Animal Physiology, Faculty of Science, University of Buea, P.O. Box 63, Buea, Cameroon.,Department of Ecology, Faculty of Science, Charles University, Vinicna 7, 12844, Prague, Czech Republic
| | - Jiří Doležal
- Faculty of Science, University of South Bohemia, Branisovska 1760, 37005, Ceske Budejovice, Czech Republic.,Institute of Botany, Czech Academy of Sciences, Dukelska 135, 37982, Trebon, Czech Republic
| | - Jan Altman
- Institute of Botany, Czech Academy of Sciences, Dukelska 135, 37982, Trebon, Czech Republic
| | - Ishmeal N Kobe
- Department of Ecology, Faculty of Science, Charles University, Vinicna 7, 12844, Prague, Czech Republic
| | - Julie Desmist
- Institute of Entomology, Biology Centre, Czech Academy of Sciences, Branisovska 31, 37005, Ceske Budejovice, Czech Republic.,University Paris-Saclay, 15 rue Georges Clemenceau, 91400, Orsay, France
| | - Eric B Fokam
- Department of Zoology and Animal Physiology, Faculty of Science, University of Buea, P.O. Box 63, Buea, Cameroon
| | - Tomasz Pyrcz
- Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30387, Krakow, Poland.,Nature Education Centre of the Jagiellonian University, Gronostajowa 5, 30387, Krakow, Poland
| | - Robert Tropek
- Institute of Entomology, Biology Centre, Czech Academy of Sciences, Branisovska 31, 37005, Ceske Budejovice, Czech Republic. .,Department of Ecology, Faculty of Science, Charles University, Vinicna 7, 12844, Prague, Czech Republic.
| |
Collapse
|
57
|
Sayol F, Steinbauer MJ, Blackburn TM, Antonelli A, Faurby S. Anthropogenic extinctions conceal widespread evolution of flightlessness in birds. SCIENCE ADVANCES 2020; 6:6/49/eabb6095. [PMID: 33268368 PMCID: PMC7710364 DOI: 10.1126/sciadv.abb6095] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 10/15/2020] [Indexed: 06/02/2023]
Abstract
Human-driven extinctions can affect our understanding of evolution, through the nonrandom loss of certain types of species. Here, we explore how knowledge of a major evolutionary transition-the evolution of flightlessness in birds-is biased by anthropogenic extinctions. Adding data on 581 known anthropogenic extinctions to the extant global avifauna increases the number of species by 5%, but quadruples the number of flightless species. The evolution of flightlessness in birds is a widespread phenomenon, occurring in more than half of bird orders and evolving independently at least 150 times. Thus, we estimate that this evolutionary transition occurred at a rate four times higher than it would appear based solely on extant species. Our analysis of preanthropogenic avian diversity shows how anthropogenic effects can conceal the frequency of major evolutionary transitions in life forms and highlights the fact that macroevolutionary studies with only small amounts of missing data can still be highly biased.
Collapse
Affiliation(s)
- F Sayol
- Department of Biological and Environmental Sciences, University of Gothenburg, Göteborg, Sweden.
- Gothenburg Global Biodiversity Centre, Göteborg, Sweden
- Centre for Biodiversity and Environmental Research, University College London, London, UK
| | - M J Steinbauer
- University of Bayreuth, Bayreuth Center of Ecology and Environmental Research (BayCEER) & Department of Sport Science, Bayreuth, Germany
- Department of Biological Sciences, University of Bergen, Bergen, Norway
| | - T M Blackburn
- Centre for Biodiversity and Environmental Research, University College London, London, UK
- Institute of Zoology, Zoological Society of London, London, UK
| | - A Antonelli
- Department of Biological and Environmental Sciences, University of Gothenburg, Göteborg, Sweden
- Gothenburg Global Biodiversity Centre, Göteborg, Sweden
- Royal Botanic Gardens, Kew, Richmond, UK
- Department of Plant Sciences, University of Oxford, South Parks Road, OX1 3RB Oxford, United Kingdom
| | - S Faurby
- Department of Biological and Environmental Sciences, University of Gothenburg, Göteborg, Sweden
- Gothenburg Global Biodiversity Centre, Göteborg, Sweden
| |
Collapse
|
58
|
Pillon Y, Jaffré T, Birnbaum P, Bruy D, Cluzel D, Ducousso M, Fogliani B, Ibanez T, Jourdan H, Lagarde L, Léopold A, Munzinger J, Pouteau R, Read J, Isnard S. Infertile landscapes on an old oceanic island: the biodiversity hotspot of New Caledonia. Biol J Linn Soc Lond 2020. [DOI: 10.1093/biolinnean/blaa146] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Abstract
The OCBIL theory comprises a set of hypotheses to comprehend the biota of old, climatically buffered, infertile landscapes (OCBILs). Here, we review evidence from the literature to evaluate the extent to which this theory could apply to the biodiversity hotspot of New Caledonia. We present geological, pedological and climatic evidence suggesting how the island might qualify as an OCBIL. The predictions of OCBIL theory are then reviewed in the context of New Caledonia. There is evidence for a high rate of micro-endemism, accumulation of relict lineages, a high incidence of dioecy, myrmecochory and nutritional specializations in plants. New Caledonian vegetation also exhibits several types of monodominant formations that reveal the importance of disturbances on the island. Fires and tropical storms are likely to be important factors that contribute to the dynamic of New Caledonian ecosystems. Although naturally infertile, there is archaeological evidence that humans developed specific horticultural practices in the ultramafic landscapes of New Caledonia. Further comparisons between New Caledonia and other areas of the world, such as South Africa and Southwest Australia, are desirable, to develop the OCBIL theory into a more robust and generalized, testable framework and to determine the most efficient strategies to preserve their outstanding biodiversity.
Collapse
Affiliation(s)
- Yohan Pillon
- LSTM, IRD, INRAE, CIRAD, Institut Agro, Univ Montpellier, Montpellier, France
| | - Tanguy Jaffré
- AMAP, Univ Montpellier, IRD, CIRAD, CNRS, INRAE, Montpellier, France
- AMAP, IRD, CIRAD, Herbier de la Nouvelle-Calédonie, Nouméa, New Caledonia
| | - Philippe Birnbaum
- AMAP, Univ Montpellier, IRD, CIRAD, CNRS, INRAE, Montpellier, France
- AMAP, IRD, CIRAD, Herbier de la Nouvelle-Calédonie, Nouméa, New Caledonia
- Institut Agronomique Néo-Calédonien (IAC), équipe SolVeg, Nouméa, New Caledonia
| | - David Bruy
- AMAP, Univ Montpellier, IRD, CIRAD, CNRS, INRAE, Montpellier, France
- AMAP, IRD, CIRAD, Herbier de la Nouvelle-Calédonie, Nouméa, New Caledonia
| | - Dominique Cluzel
- ISEA, Université de la Nouvelle-Calédonie, Nouméa, New Caledonia
| | - Marc Ducousso
- LSTM, IRD, INRAE, CIRAD, Institut Agro, Univ Montpellier, Montpellier, France
| | - Bruno Fogliani
- ISEA, Université de la Nouvelle-Calédonie, Nouméa, New Caledonia
| | - Thomas Ibanez
- Department of Biology, University of Hawai′i at Hilo, Hilo, HI, USA
| | - Hervé Jourdan
- IMBE, Aix Marseille Université, CNRS, IRD, Avignon Université, Nouméa, New Caledonia
| | - Louis Lagarde
- TROCA, Université de la Nouvelle-Calédonie, Nouméa, New Caledonia
| | - Audrey Léopold
- Institut Agronomique Néo-Calédonien (IAC), équipe SolVeg, Nouméa, New Caledonia
| | - Jérôme Munzinger
- AMAP, Univ Montpellier, IRD, CIRAD, CNRS, INRAE, Montpellier, France
| | - Robin Pouteau
- AMAP, Univ Montpellier, IRD, CIRAD, CNRS, INRAE, Montpellier, France
| | - Jennifer Read
- School of Biological Sciences, Monash University, Victoria, Australia
| | - Sandrine Isnard
- AMAP, Univ Montpellier, IRD, CIRAD, CNRS, INRAE, Montpellier, France
- AMAP, IRD, CIRAD, Herbier de la Nouvelle-Calédonie, Nouméa, New Caledonia
| |
Collapse
|
59
|
Anachronic Fruit Traits and Natural History Suggest Extinct Megafauna Herbivores as the Dispersers of an Endangered Tree. PLANTS 2020; 9:plants9111492. [PMID: 33167312 PMCID: PMC7694390 DOI: 10.3390/plants9111492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 10/28/2020] [Accepted: 11/03/2020] [Indexed: 11/16/2022]
Abstract
Megafaunal seed dispersal syndrome refers to a group of traits attributed to the evolution of plants in the presence of large mammals. Present-day plants that bear these traits in areas where megafauna are absent are presumed to represent anachronic dispersal systems. Gomortega keule is an endangered tree species from a monotypic family (Gomortegaceae), endemic to Chile. Its fruit traits suggest adaptation to seed dispersal by large vertebrates; however, none are present today along its area of distribution. Here, we conducted a detailed revision on the fruit morphology of G. keule to examine whether its fruit traits fit a megafaunal dispersal syndrome. Additionally, we examined the fruit processing behavior of large domestic and captive wild animals fed with G. keule fruits, and its effect on germination. G. keule fruits had traits consistent with those of a Type 1 megafaunal fruit. Compared to intact, whole stones, seed germination probabilities decreased when fruits were handled by animals, suggesting that the seed was damaged during mastication and/or ingestion. Moreover, results from our feeding trials with elephants may also imply low efficiency of extinct gomphotheres as seed dispersers of this species. Our results also suggest that although domestic animals may disperse G. keule, it is unlikely that at present they can substitute the services of its original dispersers. Further investigation on seedling survival, local livestock management and forest management practices may help reinstate sexual regeneration in G. keule. Finally, integrating observations on fruit ecology and local people’s knowledge with experimental data enriches our species-centered approach and may help to address regeneration problems in other endangered plants.
Collapse
|
60
|
Bellot S, Bayton RP, Couvreur TLP, Dodsworth S, Eiserhardt WL, Guignard MS, Pritchard HW, Roberts L, Toorop PE, Baker WJ. On the origin of giant seeds: the macroevolution of the double coconut (Lodoicea maldivica) and its relatives (Borasseae, Arecaceae). THE NEW PHYTOLOGIST 2020; 228:1134-1148. [PMID: 32544251 PMCID: PMC7590125 DOI: 10.1111/nph.16750] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 05/29/2020] [Indexed: 05/25/2023]
Abstract
Seed size shapes plant evolution and ecosystems, and may be driven by plant size and architecture, dispersers, habitat and insularity. How these factors influence the evolution of giant seeds is unclear, as are the rate of evolution and the biogeographical consequences of giant seeds. We generated DNA and seed size data for the palm tribe Borasseae (Arecaceae) and its relatives, which show a wide diversity in seed size and include the double coconut (Lodoicea maldivica), the largest seed in the world. We inferred their phylogeny, dispersal history and rates of change in seed size, and evaluated the possible influence of plant size, inflorescence branching, habitat and insularity on these changes. Large seeds were involved in 10 oceanic dispersals. Following theoretical predictions, we found that: taller plants with fewer-branched inflorescences produced larger seeds; seed size tended to evolve faster on islands (except Madagascar); and seeds of shade-loving Borasseae tended to be larger. Plant size and inflorescence branching may constrain seed size in Borasseae and their relatives. The possible roles of insularity, habitat and dispersers are difficult to disentangle. Evolutionary contingencies better explain the gigantism of the double coconut than unusually high rates of seed size increase.
Collapse
Affiliation(s)
| | - Ross P. Bayton
- Royal Botanic Gardens, KewRichmond, SurreyTW9 3AEUK
- Department of Biological SciencesUniversity of ReadingWhiteknightsPO Box 217Reading, BerkshireRG6 6AHUK
| | | | - Steven Dodsworth
- Royal Botanic Gardens, KewRichmond, SurreyTW9 3AEUK
- School of Life SciencesUniversity of BedfordshireLutonLU1 3JUUK
| | - Wolf L. Eiserhardt
- Royal Botanic Gardens, KewRichmond, SurreyTW9 3AEUK
- Department of BiologyAarhus UniversityNy Munkegade 116Aarhus C8000Denmark
| | | | - Hugh W. Pritchard
- Royal Botanic Gardens, KewWakehurst Place, Wellcome Trust Millennium BuildingArdinglyWest SussexRH17 6TNUK
| | - Lucy Roberts
- Department of ZoologyUniversity of CambridgeDowning StreetCambridgeCB2 3EJUK
| | - Peter E. Toorop
- Royal Botanic Gardens, KewWakehurst Place, Wellcome Trust Millennium BuildingArdinglyWest SussexRH17 6TNUK
| | | |
Collapse
|
61
|
Paula WS, Souza RN, Santos EG. Fruit consumption and seed dispersal of Caryocar brasilense (Caryocaraceae) by Caracara plancus (Falconidae). BRAZ J BIOL 2020; 81:1127-1128. [PMID: 33053138 DOI: 10.1590/1519-6984.234498] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 05/07/2020] [Indexed: 11/21/2022] Open
Affiliation(s)
- W S Paula
- Veredas Instituto Ambiental e Consultoria, Brasília, DF, Brasil
| | - R N Souza
- Veredas Instituto Ambiental e Consultoria, Brasília, DF, Brasil
| | - E G Santos
- Universidade de Brasília - UnB, Instituto de Ciências Biológicas, Programa de Pós-Graduação em Ecologia, Brasília, DF, Brasil
| |
Collapse
|
62
|
Lim JY, Svenning JC, Göldel B, Faurby S, Kissling WD. Frugivore-fruit size relationships between palms and mammals reveal past and future defaunation impacts. Nat Commun 2020; 11:4904. [PMID: 32994391 PMCID: PMC7524719 DOI: 10.1038/s41467-020-18530-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 08/27/2020] [Indexed: 11/12/2022] Open
Abstract
Mammalian frugivores are critical seed dispersers, but many are under threat of extinction. Futhermore, the impact of past and future defaunation on plant assemblages has yet to be quantified at the global scale. Here, we integrate palm and mammalian frugivore trait and occurrence data and reveal a global positive relationship between fruit size and frugivore body size. Global variation in fruit size is better explained by present-day frugivore assemblages than by Late Pleistocene assemblages, suggesting ecological and evolutionary reorganization after end-Pleistocene extinctions, except in the Neotropics, where some large-fruited palm species may have outlived their main seed dispersers by thousands of years. Our simulations of frugivore extinction over the next 100 years suggest that the impact of defaunation will be highest in the Old World tropics, and an up to 4% assemblage-level decrease in fruit size would be required to maintain the global body size–fruit size relationship. Overall, our results suggest that while some palm species may be able to keep pace with future defaunation through evolutionary changes in fruit size, large-fruited species may be especially vulnerable to continued defaunation. Extinctions of megafauna can have cascading effects on their ecological communities. Here, Lim et al. investigate the relationships of historical and current mammalian frugivore body size with palm fruit size, then project how further mammal extinctions are likely to affect palm communities.
Collapse
Affiliation(s)
- Jun Ying Lim
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands. .,School of Biological Sciences, Nanyang Technological University, Singapore, 637551, Singapore.
| | - Jens-Christian Svenning
- Section for Ecoinformatics and Biodiversity & Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Department of Biology, Aarhus University, Aarhus, 8000, Denmark
| | - Bastian Göldel
- Section for Ecoinformatics and Biodiversity & Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Department of Biology, Aarhus University, Aarhus, 8000, Denmark
| | - Søren Faurby
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, 40530, Sweden.,Gothenberg Global Biodiversity Centre, Gothenburg, 40530, Sweden
| | - W Daniel Kissling
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
63
|
Case SB, Tarwater CE. Functional traits of avian frugivores have shifted following species extinction and introduction in the Hawaiian Islands. Funct Ecol 2020. [DOI: 10.1111/1365-2435.13670] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Samuel B. Case
- Department of Zoology and Physiology and Program in Ecology University of Wyoming Laramie WY USA
| | - Corey E. Tarwater
- Department of Zoology and Physiology and Program in Ecology University of Wyoming Laramie WY USA
| |
Collapse
|
64
|
Ong XR, Slade EM, Lim MLM. Dung beetle‐megafauna trophic networks in Singapore’s fragmented forests. Biotropica 2020. [DOI: 10.1111/btp.12840] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Xin Rui Ong
- Department of Biological Sciences National University of Singapore Singapore City Singapore
- Asian School of the Environment Nanyang Technological University Singapore City Singapore
| | - Eleanor M. Slade
- Asian School of the Environment Nanyang Technological University Singapore City Singapore
| | - Matthew L. M. Lim
- Department of Biological Sciences National University of Singapore Singapore City Singapore
| |
Collapse
|
65
|
Gutiérrez‐Cánovas C, Moleón M, Mateo‐Tomás P, Olea PP, Sebastián‐González E, Sánchez‐Zapata JA. Large home range scavengers support higher rates of carcass removal. Funct Ecol 2020. [DOI: 10.1111/1365-2435.13619] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Cayetano Gutiérrez‐Cánovas
- Freshwater Ecology, Hydrology and Management (FEHM) Lab Departament de Biologia Evolutiva Ecologia i Ciències Ambientals Facultat de Biologia Universitat de Barcelona, Diagonal Barcelona Spain
- Centre of Molecular and Environmental Biology (CBMA) Department of Biology University of Minho Braga Portugal
- Institute of Science and Innovation for Bio‐Sustainability (IB‐S) University of Minho Braga Portugal
| | - Marcos Moleón
- Department of Zoology University of Granada Granada Spain
| | - Patricia Mateo‐Tomás
- Research Unit of Biodiversity (UO/CSIC/PA) Oviedo University Mieres Spain
- Centre for Functional Ecology Department of Life Sciences University of Coimbra Coimbra Portugal
| | - Pedro P. Olea
- Departamento de Ecología Universidad Autónoma de Madrid Madrid Spain
- Centro de Investigación en Biodiversidad y Cambio Global (CIBC‐UAM) Universidad Autónoma de Madrid Madrid Spain
| | | | | |
Collapse
|
66
|
|
67
|
Middleton OS, Scharlemann JPW, Sandom CJ. Homogenization of carnivorous mammal ensembles caused by global range reductions of large-bodied hypercarnivores during the late Quaternary. Proc Biol Sci 2020; 287:20200804. [PMID: 32576106 PMCID: PMC7329025 DOI: 10.1098/rspb.2020.0804] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 06/03/2020] [Indexed: 12/23/2022] Open
Abstract
Carnivorous mammals play crucial roles in ecosystems by influencing prey densities and behaviour, and recycling carrion. Yet, the influence of carnivores on global ecosystems has been affected by extinctions and range contractions throughout the Late Pleistocene and Holocene (approx. 130 000 years ago to the current). Large-bodied mammals were particularly affected, but how dietary strategies influenced species' susceptibility to geographical range reductions remains unknown. We investigated (i) the importance of dietary strategies in explaining range reductions of carnivorous mammals (greater than or equal to 5% vertebrate meat consumption) and (ii) differences in functional diversity of continental carnivore ensembles by comparing current, known ranges to current, expected ranges under a present-natural counterfactual scenario. The present-natural counterfactual estimates current mammal ranges had modern humans not expanded out of Africa during the Late Pleistocene and were not a main driver of extinctions and range contractions, alongside changing climates. Ranges of large-bodied hypercarnivorous mammals are currently smaller than expected, compared to smaller-bodied carnivorous mammals that consume less vertebrate meat. This resulted in consistent differences in continental functional diversity, whereby current ensembles of carnivorous mammals have undergone homogenization through structural shifts towards smaller-bodied insectivorous and herbivorous species. The magnitude of ensemble structural shifts varied among continents, with Australia experiencing the greatest difference. Weighting functional diversity by species' geographical range sizes caused a threefold greater shift in ensemble centroids than when using presence-absence alone. Conservation efforts should acknowledge current reductions in the potential geographical ranges of large-bodied hypercarnivores and aim to restore functional roles in carnivore ensembles, where possible, across continents.
Collapse
|
68
|
Predators and dispersers: Context-dependent outcomes of the interactions between rodents and a megafaunal fruit plant. Sci Rep 2020; 10:6106. [PMID: 32269241 PMCID: PMC7142068 DOI: 10.1038/s41598-020-62704-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 03/14/2020] [Indexed: 12/03/2022] Open
Abstract
Many plant species bear fruits that suggest adaptation to seed dispersal by extinct megafauna. Present-day seed dispersal of these megafaunal plants is carried out by rodents, which can act as predators or dispersers; whether this interaction is primarily positive or negative can depend on the context. Here, we parameterized a stochastic model using data from the field and experimental arenas to estimate the effect of rodents on the recruitment of Myrcianthes coquimbensis -an Atacama Desert shrub with megafaunal fruits- and examine whether environmental conditions can alter the sign and strength of these rodent-plant interactions. We show that the outcome of these interactions is context-dependent: in wet conditions seed removal by rodents negatively impacts the recruitment probability of M. coquimbensis; in contrast, in dry conditions, the interaction with rodents increases recruitment success. In all cases, the strength of the effect of rodents on the recruitment success was determined mainly by their role as dispersers, which could be positive or negative. This study demonstrates that by caching seeds, rodents can be effective dispersers of a megafaunal fruit plant, but that the sign and magnitude of their effect on recruitment changes as a function of the environmental context in which the interaction occurs.
Collapse
|
69
|
Thulin CG, Röcklinsberg H. Ethical Considerations for Wildlife Reintroductions and Rewilding. Front Vet Sci 2020; 7:163. [PMID: 32318586 PMCID: PMC7146822 DOI: 10.3389/fvets.2020.00163] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 03/05/2020] [Indexed: 12/27/2022] Open
Abstract
The recovery of many populations of large carnivores and herbivores in major parts of Europe and North America offers ecosystem services and opportunities for sustainable utilization of wildlife. Examples of services are hunting, meat, and skin, along with less invasive utilization such as ecotourism and wildlife spotting. An increasing number of studies also point out the ecosystem function, landscape engineering, and cascading effects of wildlife as values for human existence, biodiversity conservation, and ecosystem resilience. Within this framework, the concept of rewilding has emerged as a means to add to the wilderness through either supplementary release of wildlife species already present or reintroduction of species formerly present in a certain area. The latter involves translocation of species from other geographical areas, releases from captivity, feralization, retro-breeding, or de-domestication of breeds for which the wild ancestor is extinct. While all these initiatives aim to reverse some of the negative human impacts on life on earth, some pose challenges such as conflicts of interest between humans and wildlife in, for example, forestry, agriculture, traffic, or disease dynamics (e.g., zoonosis). There are also welfare aspects when managing wildlife populations with the purpose to serve humans or act as tools in landscape engineering. These welfare aspects are particularly apparent when it comes to releases of animals handled by humans, either from captivity or translocated from other geographical areas. An ethical values clash is that translocation can involve suffering of the actual individual, while also contributing to reintroduction of species and reestablishment of ecological functions. This paper describes wildlife recovery in Europe and North America and elaborates on ethical considerations raised by the use of wildlife for different purposes, in order to find ways forward that are acceptable to both the animals and humans involved. The reintroduction ethics aspects raised are finally formulated in 10 guidelines suggested for management efforts aimed at translocating wildlife or reestablishing wilderness areas.
Collapse
Affiliation(s)
- Carl-Gustaf Thulin
- Department of Anatomy, Physiology and Biochemistry, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Helena Röcklinsberg
- Department of Animal Environment and Health, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
70
|
Silicon and Plant-Animal Interactions: Towards an Evolutionary Framework. PLANTS 2020; 9:plants9040430. [PMID: 32244583 PMCID: PMC7238073 DOI: 10.3390/plants9040430] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/19/2020] [Accepted: 03/20/2020] [Indexed: 12/16/2022]
Abstract
Herbivory is fundamental in ecology, being a major driver of ecosystem structure and functioning. Plant Si and phytoliths play a significant antiherbivory role, the understanding of which and of its evolutionary context will increase our understanding of this phenomenon, its origins, and its significance for past, extant, and future ecosystems. To achieve this goal, we need a superdisciplinary evolutionary framework connecting the role of Si in plant–herbivore interactions, in global processes, and in plant and herbivore evolution. To do this properly, we should acknowledge and incorporate into our work some basic facts that are too often overlooked. First, there is great taxonomic variance both in plant Si contents, forms, and roles, but also in herbivore responses, dietary preferences, and in fossil evidence. Second, species and their traits, as well as whole ecosystems, should be seen in the context of their entire evolutionary history and may therefore reflect not only adaptations to extant selective factors but also anachronistic traits. Third, evolutionary history and evolutionary transitions are complex, resulting in true and apparent asynchronisms. Fourth, evolution and ecology are multiscalar, in which various phenomena and processes act at various scales. Taking these issues into consideration will improve our ability to develop this needed theoretical framework and will bring us closer to gaining a more complete understanding of one of the most exciting and elusive phenomena in plant biology and ecology.
Collapse
|
71
|
Spengler RN. Anthropogenic Seed Dispersal: Rethinking the Origins of Plant Domestication. TRENDS IN PLANT SCIENCE 2020; 25:340-348. [PMID: 32191870 DOI: 10.1016/j.tplants.2020.01.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 01/03/2020] [Accepted: 01/21/2020] [Indexed: 05/26/2023]
Abstract
It is well documented that ancient sickle harvesting led to tough rachises, but the other seed dispersal properties in crop progenitors are rarely discussed. The first steps toward domestication are evolutionary responses for the recruitment of humans as dispersers. Seed dispersal-based mutualism evolved from heavy human herbivory or seed predation. Plants that evolved traits to support human-mediated seed dispersal express greater fitness in increasingly anthropogenic ecosystems. The loss of dormancy, reduction in seed coat thickness, increased seed size, pericarp density, and sugar concentration all led to more-focused seed dispersal through seed saving and sowing. Some of the earliest plants to evolve domestication traits had weak seed dispersal processes in the wild, often due to the extinction of animal dispersers or short-distance mechanical dispersal.
Collapse
Affiliation(s)
- Robert N Spengler
- Max Planck Institute for the Science of Human History, Kahlaische Str. 10, 07745 Jena, Germany.
| |
Collapse
|
72
|
Downsizing of animal communities triggers stronger functional than structural decay in seed-dispersal networks. Nat Commun 2020; 11:1582. [PMID: 32221279 PMCID: PMC7101352 DOI: 10.1038/s41467-020-15438-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 03/03/2020] [Indexed: 11/09/2022] Open
Abstract
Downsizing of animal communities due to defaunation is prevalent in many ecosystems. Yet, we know little about its consequences for ecosystem functions such as seed dispersal. Here, we use eight seed-dispersal networks sampled across the Andes and simulate how downsizing of avian frugivores impacts structural network robustness and seed dispersal. We use a trait-based modeling framework to quantify the consequences of downsizing-relative to random extinctions-for the number of interactions and secondary plant extinctions (as measures of structural robustness) and for long-distance seed dispersal (as a measure of ecosystem function). We find that downsizing leads to stronger functional than structural losses. For instance, 10% size-structured loss of bird species results in almost 40% decline of long-distance seed dispersal, but in less than 10% of structural loss. Our simulations reveal that measures of the structural robustness of ecological networks underestimate the consequences of animal extinction and downsizing for ecosystem functioning.
Collapse
|
73
|
Tóth AB, Lyons SK, Barr WA, Behrensmeyer AK, Blois JL, Bobe R, Davis M, Du A, Eronen JT, Faith JT, Fraser D, Gotelli NJ, Graves GR, Jukar AM, Miller JH, Pineda-Munoz S, Soul LC, Villaseñor A, Alroy J. Reorganization of surviving mammal communities after the end-Pleistocene megafaunal extinction. Science 2020; 365:1305-1308. [PMID: 31604240 DOI: 10.1126/science.aaw1605] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 08/23/2019] [Indexed: 12/29/2022]
Abstract
Large mammals are at high risk of extinction globally. To understand the consequences of their demise for community assembly, we tracked community structure through the end-Pleistocene megafaunal extinction in North America. We decomposed the effects of biotic and abiotic factors by analyzing co-occurrence within the mutual ranges of species pairs. Although shifting climate drove an increase in niche overlap, co-occurrence decreased, signaling shifts in biotic interactions. Furthermore, the effect of abiotic factors on co-occurrence remained constant over time while the effect of biotic factors decreased. Biotic factors apparently played a key role in continental-scale community assembly before the extinctions. Specifically, large mammals likely promoted co-occurrence in the Pleistocene, and their loss contributed to the modern assembly pattern in which co-occurrence frequently falls below random expectations.
Collapse
Affiliation(s)
- Anikó B Tóth
- Department of Biological Sciences, Macquarie University, New South Wales 2109, Australia.
| | - S Kathleen Lyons
- School of Biological Sciences, University of Nebraska, Lincoln, NE 68588, USA
| | - W Andrew Barr
- Center for the Advanced Study of Human Paleobiology, Department of Anthropology, The George Washington University, Washington, DC 20052, USA
| | - Anna K Behrensmeyer
- Department of Paleobiology, Evolution of Terrestrial Ecosystems Program, National Museum of Natural History, Smithsonian Institution, Washington, DC 20013, USA
| | - Jessica L Blois
- School of Natural Sciences, University of California, Merced, CA 95343, USA
| | - René Bobe
- Departamento de Antropología, Facultad de Ciencias Sociales, Universidad de Chile, Santiago, Chile.,Interdisciplinary Center for Archaeology and Evolution of Human Behavior (ICArEHB), Universidade do Algarve, Faro, Portugal
| | - Matt Davis
- Natural History Museum of Los Angeles Country, Los Angeles, CA 90007, USA
| | - Andrew Du
- Department of Anthropology and Geography, Colorado State University, Fort Collins, CO 80523, USA
| | - Jussi T Eronen
- Ecosystems and Environment Research Programme and Helsinki Institute of Sustainability Science (HELSUS), Faculty of Biological and Environmental Sciences, 00014 University of Helsinki, Finland.,BIOS Research Unit, Meritullintori 6, 00170 Helsinki, Finland
| | - J Tyler Faith
- Natural History Museum of Utah and Department of Anthropology, University of Utah, Salt Lake City, UT 84108, USA
| | - Danielle Fraser
- Palaeobiology, Canadian Museum of Nature, Ottawa, ON K1P 6P, Canada.,Departments of Biology and Earth Sciences, Carleton University, Ottawa, ON K1S 5B6, Canada
| | | | - Gary R Graves
- Center for Macroecology, Evolution and Climate, University of Copenhagen, 2100 Copenhagen Ø, Denmark.,Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20013, USA
| | - Advait M Jukar
- Department of Paleobiology, Evolution of Terrestrial Ecosystems Program, National Museum of Natural History, Smithsonian Institution, Washington, DC 20013, USA
| | - Joshua H Miller
- Department of Geology, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Silvia Pineda-Munoz
- Department of Paleobiology, Evolution of Terrestrial Ecosystems Program, National Museum of Natural History, Smithsonian Institution, Washington, DC 20013, USA.,Spatial Ecology and Paleontology Lab (SEPL), School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, USA
| | - Laura C Soul
- Department of Paleobiology, Evolution of Terrestrial Ecosystems Program, National Museum of Natural History, Smithsonian Institution, Washington, DC 20013, USA
| | - Amelia Villaseñor
- Department of Anthropology, University of Arkansas, Fayetteville, AR 72701, USA
| | - John Alroy
- Department of Biological Sciences, Macquarie University, New South Wales 2109, Australia
| |
Collapse
|
74
|
Moleón M, Sánchez-Zapata JA, Donázar JA, Revilla E, Martín-López B, Gutiérrez-Cánovas C, Getz WM, Morales-Reyes Z, Campos-Arceiz A, Crowder LB, Galetti M, González-Suárez M, He F, Jordano P, Lewison R, Naidoo R, Owen-Smith N, Selva N, Svenning JC, Tella JL, Zarfl C, Jähnig SC, Hayward MW, Faurby S, García N, Barnosky AD, Tockner K. Rethinking megafauna. Proc Biol Sci 2020; 287:20192643. [PMID: 32126954 PMCID: PMC7126068 DOI: 10.1098/rspb.2019.2643] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 02/11/2020] [Indexed: 01/13/2023] Open
Abstract
Concern for megafauna is increasing among scientists and non-scientists. Many studies have emphasized that megafauna play prominent ecological roles and provide important ecosystem services to humanity. But, what precisely are 'megafauna'? Here, we critically assess the concept of megafauna and propose a goal-oriented framework for megafaunal research. First, we review definitions of megafauna and analyse associated terminology in the scientific literature. Second, we conduct a survey among ecologists and palaeontologists to assess the species traits used to identify and define megafauna. Our review indicates that definitions are highly dependent on the study ecosystem and research question, and primarily rely on ad hoc size-related criteria. Our survey suggests that body size is crucial, but not necessarily sufficient, for addressing the different applications of the term megafauna. Thus, after discussing the pros and cons of existing definitions, we propose an additional approach by defining two function-oriented megafaunal concepts: 'keystone megafauna' and 'functional megafauna', with its variant 'apex megafauna'. Assessing megafauna from a functional perspective could challenge the perception that there may not be a unifying definition of megafauna that can be applied to all eco-evolutionary narratives. In addition, using functional definitions of megafauna could be especially conducive to cross-disciplinary understanding and cooperation, improvement of conservation policy and practice, and strengthening of public perception. As megafaunal research advances, we encourage scientists to unambiguously define how they use the term 'megafauna' and to present the logic underpinning their definition.
Collapse
Affiliation(s)
- Marcos Moleón
- Department of Conservation Biology, Doñana Biological Station-CSIC, Seville, Spain
- Department of Zoology, University of Granada, Granada, Spain
| | | | - José A. Donázar
- Department of Conservation Biology, Doñana Biological Station-CSIC, Seville, Spain
| | - Eloy Revilla
- Department of Conservation Biology, Doñana Biological Station-CSIC, Seville, Spain
| | | | - Cayetano Gutiérrez-Cánovas
- FEHM-Lab-IRBIO, Department of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Barcelona, Spain
| | - Wayne M. Getz
- Department of ESPM, UC Berkeley, Berkeley, CA, USA
- School of Mathematical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | | | - Ahimsa Campos-Arceiz
- School of Environmental and Geographical Sciences, University of Nottingham Malaysia, Selangor, Malaysia
- Mindset Interdisciplinary Centre for Environmental Studies, University of Nottingham Malaysia, Selangor, Malaysia
| | | | - Mauro Galetti
- Departamento de Ecologia, Instituto de Biociências, Universidade Estadual Paulista, Rio Claro, SP, Brazil
- Department of Biology, University of Miami, Coral Gables, FL, USA
| | - Manuela González-Suárez
- Ecology and Evolutionary Biology Division, School of Biological Sciences, University of Reading, Reading, UK
| | - Fengzhi He
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany
- Institute of Biology, Freie Universität Berlin, Berlin, Germany
| | - Pedro Jordano
- Department of Conservation Biology, Doñana Biological Station-CSIC, Seville, Spain
| | - Rebecca Lewison
- Department of Biology, San Diego State University, San Diego, CA, USA
| | | | - Norman Owen-Smith
- School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Nuria Selva
- Institute of Nature Conservation, Polish Academy of Sciences, Kraków, Poland
| | - Jens-Christian Svenning
- Section for Ecoinformatics and Biodiversity, Department of Bioscience, Aarhus University, Aarhus C, Denmark
- Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Department of Bioscience, Aarhus C, Denmark
| | - José L. Tella
- Department of Conservation Biology, Doñana Biological Station-CSIC, Seville, Spain
| | - Christiane Zarfl
- Center for Applied Geoscience, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Sonja C. Jähnig
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany
| | - Matt W. Hayward
- College of Natural Sciences, Bangor University, Bangor, UK
- Centre for Wildlife Management, University of Pretoria, Pretoria, South Africa
- Centre for African Conservation Ecology, Nelson Mandela Metropolitan University, Port Elizabeth, South Africa
- School of Environmental and Life Sciences, University of Newcastle, Newcastle, Australia
| | - Søren Faurby
- Department of Biological and Environmental Sciences, University of Gothenburg, Göteborg, Sweden
- Gothenburg Global Biodiversity Centre, Göteborg, Sweden
| | - Nuria García
- Department of Geodynamics, Stratigraphy and Paleontology, Quaternary Ecosystems, University Complutense of Madrid, Madrid, Spain
| | | | - Klement Tockner
- Leibniz-Institute of Freshwater Ecology and Inland Fisheries (IGB), Berlin, Germany
- Institute of Biology, Freie Universität Berlin, Berlin, Germany
- Austrian Science Fund FWF, Vienna, Austria
| |
Collapse
|
75
|
Shurin JB, Aranguren-Riaño N, Duque Negro D, Echeverri Lopez D, Jones NT, Laverde-R O, Neu A, Pedroza Ramos A. Ecosystem effects of the world's largest invasive animal. Ecology 2020; 101:e02991. [PMID: 31994172 DOI: 10.1002/ecy.2991] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Accepted: 12/04/2019] [Indexed: 11/06/2022]
Abstract
The keystone roles of mega-fauna in many terrestrial ecosystems have been lost to defaunation. Large predators and herbivores often play keystone roles in their native ranges, and some have established invasive populations in new biogeographic regions. However, few empirical examples are available to guide expectations about how mega-fauna affect ecosystems in novel environmental and evolutionary contexts. We examined the impacts on aquatic ecosystems of an emerging population of hippopotamus (Hippopotamus amphibus) that has been growing in Colombia over the last 25 yr. Hippos in Africa fertilize lakes and rivers by grazing on land and excreting wastes in the water. Stable isotopes indicate that terrestrial sources contribute more carbon in Colombian lakes containing hippo populations, and daily dissolved oxygen cycles suggest that their presence stimulates ecosystem metabolism. Phytoplankton communities were more dominated by cyanobacteria in lakes with hippos, and bacteria, zooplankton, and benthic invertebrate communities were similar regardless of hippo presence. Our results suggest that hippos recapitulate their role as ecosystem engineers in Colombia, importing terrestrial organic matter and nutrients with detectable impacts on ecosystem metabolism and community structure in the early stages of invasion. Ongoing range expansion may pose a threat to water resources.
Collapse
Affiliation(s)
- Jonathan B Shurin
- Section of Ecology, Behavior and Evolution, University of California San Diego, La Jolla, California, 92093-0116, USA
| | - Nelson Aranguren-Riaño
- Unidad de Ecología en Sistemas Acuáticos-UDESA, Universidad Pedagógica y Tecnológica de Colombia, Avenida Central del Norte 39-115, Tunja, Boyacá, Colombia
| | - Daniel Duque Negro
- Unidad de Ecología en Sistemas Acuáticos-UDESA, Universidad Pedagógica y Tecnológica de Colombia, Avenida Central del Norte 39-115, Tunja, Boyacá, Colombia
| | - David Echeverri Lopez
- Corporación Autónoma Regional de las Cuencas de los Ríos Negros y Nare-CORNARE, Calle 13, No. 9-29, Municipio de la Unión, Antioquia, Colombia
| | - Natalie T Jones
- Section of Ecology, Behavior and Evolution, University of California San Diego, La Jolla, California, 92093-0116, USA.,School of Biological Sciences, The University of Queensland, St. Lucia, Queensland, 4072, Australia
| | - Oscar Laverde-R
- Departamento de Biología, Facultad de Ciencias, Pontificia Universidad Javeriana, Sede Bogotá, D.C., Colombia
| | - Alexander Neu
- Section of Ecology, Behavior and Evolution, University of California San Diego, La Jolla, California, 92093-0116, USA
| | - Adriana Pedroza Ramos
- Unidad de Ecología en Sistemas Acuáticos-UDESA, Universidad Pedagógica y Tecnológica de Colombia, Avenida Central del Norte 39-115, Tunja, Boyacá, Colombia
| |
Collapse
|
76
|
Pedersen PBM, Ejrnæs R, Sandel B, Svenning JC. Trophic Rewilding Advancement in Anthropogenically Impacted Landscapes (TRAAIL): A framework to link conventional conservation management and rewilding. AMBIO 2020; 49:231-244. [PMID: 31201614 PMCID: PMC6889113 DOI: 10.1007/s13280-019-01192-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 12/15/2018] [Accepted: 04/15/2019] [Indexed: 05/13/2023]
Abstract
A variety of rewilding initiatives are being implemented across Europe, generally characterized by a more functionalist approach to nature management compared to the classic compositional approach. To address the increasing need for a framework to support implementation of rewilding in practical management, we present TRAAIL-Trophic Rewilding Advancement in Anthropogenically Impacted Landscapes. TRAAIL has been co-produced with managers and other stakeholders and provides managers with a framework to categorize rewilding initiatives and to link conventional nature management and rewilding by guiding steps towards a higher degree of self-regulation. Applying TRAAIL to data obtained in a Danish survey of rewilding-inspired initiatives we find that out of 44 initiatives there is no "Full rewilding" initiatives, 3 "Near-full rewilding" initiatives, 23 "Partial rewilding" initiatives, 2 "minimal rewilding" initiatives and 16 "Effort-intensive conservation management" initiatives. This study shows how TRAAIL can guide and inform trophic rewilding on a local and national scale.
Collapse
Affiliation(s)
- Pil Birkefeldt Møller Pedersen
- Section for Ecoinformatics & Biodiversity, Department of Bioscience, Aarhus University, Ny Munkegade 116, 8000 Århus C, Denmark
- Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Aarhus University, Ny Munkegade 116, 8000 Århus C, Denmark
- Section for Biodiversity & Conservation, Department of Bioscience, Aarhus University, Grenåvej 14, Rønde, 8410 Århus, Denmark
| | - Rasmus Ejrnæs
- Section for Biodiversity & Conservation, Department of Bioscience, Aarhus University, Grenåvej 14, Rønde, 8410 Århus, Denmark
| | - Brody Sandel
- Section for Ecoinformatics & Biodiversity, Department of Bioscience, Aarhus University, Ny Munkegade 116, 8000 Århus C, Denmark
- Department of Biology, Santa Clara University, 500 El Camino Real, Santa Clara, CA 95053 USA
| | - Jens-Christian Svenning
- Section for Ecoinformatics & Biodiversity, Department of Bioscience, Aarhus University, Ny Munkegade 116, 8000 Århus C, Denmark
- Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Aarhus University, Ny Munkegade 116, 8000 Århus C, Denmark
| |
Collapse
|
77
|
Schweiger AH, Svenning J. Analogous losses of large animals and trees, socio‐ecological consequences, and an integrative framework for rewilding‐based megabiota restoration. PEOPLE AND NATURE 2019. [DOI: 10.1002/pan3.10066] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Affiliation(s)
- Andreas H. Schweiger
- Plant Ecology Bayreuth Center of Ecology and Environmental Research (BayCEER) University of Bayreuth Bayreuth Germany
- Center for Biodiversity Dynamics in a Changing World (BIOCHANGE) Aarhus University Aarhus Denmark
- Section for Ecoinformatics and Biodiversity Department of Bioscience Aarhus University Aarhus Denmark
| | - Jens‐Christian Svenning
- Center for Biodiversity Dynamics in a Changing World (BIOCHANGE) Aarhus University Aarhus Denmark
- Section for Ecoinformatics and Biodiversity Department of Bioscience Aarhus University Aarhus Denmark
| |
Collapse
|
78
|
Mestre A, Poulin R, Hortal J. A niche perspective on the range expansion of symbionts. Biol Rev Camb Philos Soc 2019; 95:491-516. [DOI: 10.1111/brv.12574] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 11/12/2019] [Accepted: 11/18/2019] [Indexed: 12/14/2022]
Affiliation(s)
- Alexandre Mestre
- Cavanilles Institute of Biodiversity and Evolutionary BiologyUniversity of Valencia Av. Dr. Moliner 50, 46100 Burjassot Spain
- Department of BiologyUniversity of Concordia Richard J. Renaud Science Complex, 7141 Sherbrooke W., H4B 1R6 Montreal Canada
| | - Robert Poulin
- Department of ZoologyUniversity of Otago 340 Great King Street, 9054 Dunedin New Zealand
| | - Joaquín Hortal
- Department of Biogeography and Global ChangeMuseo Nacional de Ciencias Naturales (MNCN‐CSIC) C/José Gutiérrez Abascal 2, 28006 Madrid Spain
- Departamento de EcologiaICB, Universidade Federal de Goiás (UFG), Rodovia Goiânia‐Nerópolis Km 5, Campus II, Setor Itatiaia, Goiânia GO 74001‐970 Brazil
- cE3c–Centre for EcologyEvolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, Campo Grande, Edifício C2 Piso 5, 1749‐016 Lisboa Portugal
| |
Collapse
|
79
|
Will refaunation by feral horse affect five checkerspot butterfly species (Melitaea Fabricius, 1807) coexisting at xeric grasslands of Podyji National Park, Czech Republic? J Nat Conserv 2019. [DOI: 10.1016/j.jnc.2019.125755] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
80
|
Projected impacts of climate change on functional diversity of frugivorous birds along a tropical elevational gradient. Sci Rep 2019; 9:17708. [PMID: 31776351 PMCID: PMC6881284 DOI: 10.1038/s41598-019-53409-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 10/26/2019] [Indexed: 11/09/2022] Open
Abstract
Climate change forces many species to move their ranges to higher latitudes or elevations. Resulting immigration or emigration of species might lead to functional changes, e.g., in the trait distribution and composition of ecological assemblages. Here, we combined approaches from biogeography (species distribution models; SDMs) and community ecology (functional diversity) to investigate potential effects of climate-driven range changes on frugivorous bird assemblages along a 3000 m elevational gradient in the tropical Andes. We used SDMs to model current and projected future occurrence probabilities of frugivorous bird species from the lowlands to the tree line. SDM-derived probabilities of occurrence were combined with traits relevant for seed dispersal of fleshy-fruited plants to calculate functional dispersion (FDis; a measure of functional diversity) for current and future bird assemblages. Comparisons of FDis between current and projected future assemblages showed consistent results across four dispersal scenarios, five climate models and two representative concentration pathways. Projections indicated a decrease of FDis in the lowlands, an increase of FDis at lower mid-elevations and little changes at high elevations. This suggests that functional dispersion responds differently to global warming at different elevational levels, likely modifying avian seed dispersal functions and plant regeneration in forest ecosystems along tropical mountains.
Collapse
|
81
|
Pedersen PBM, Olsen JB, Sandel B, Svenning JC. Wild Steps in a semi-wild setting? Habitat selection and behavior of European bison reintroduced to an enclosure in an anthropogenic landscape. PLoS One 2019; 14:e0198308. [PMID: 31697680 PMCID: PMC6837835 DOI: 10.1371/journal.pone.0198308] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Accepted: 10/10/2019] [Indexed: 01/05/2023] Open
Abstract
Recently, several wild or semi-wild herds of European bison have been reintroduced across Europe. It is essential for future successful bison reintroductions to know how the European bison use different habitats, which environmental parameters drive their habitat selection, and whether their habitat use and behavioural patterns in new reintroduction sites differ from habitats where European bison have been roaming freely for a long time. Here, we address these questions for a 40-ha enclosed site that has been inhabited by semi-free ranging European bison since 2012. The site, Vorup Meadows, is adjacent to the Gudenå river in Denmark and consists of human-modified riparian meadows. During 2013 we monitored the behavioural pattern and spatial use of the 11 bison present and in parallel carried out floristic analyses to assess habitat structure and food quality in the enclosure. We tested habitat use and selection against environmental parameters such as habitat characteristics, plant community traits, topography, and management area (release area vs. meadow area) using linear regression and spatial models. The bison herd had comparable diurnal activity patterns as observed in previous studies on free-roaming bison herds. Topography emerged as the main predictor of the frequency of occurrence in our spatial models, with high-lying drier areas being used more. Bison did not prefer open areas over areas with tree cover when accounting for habitat availability. However, they spent significantly more time in the release area, a former agricultural field with supplementary fodder, than expected from availability compared to the rest of the enclosure, a meadow with tree patches. We wish to increase awareness of possible long-term ethological effects of the release site and the management protocols accomplished here that might reduce the ecological impact by the bison in the target habitat, and thereby compromise or even oppose the conservation goals of the conservation efforts.
Collapse
Affiliation(s)
- Pil Birkefeldt Møller Pedersen
- Department of Bioscience, Section for Ecoinformatics & Biodiversity, Aarhus University, Aarhus, Denmark
- Department of Bioscience, Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Aarhus University, Aarhus, Denmark
- * E-mail:
| | - Joanna B. Olsen
- Department of Bioscience, Section for Ecoinformatics & Biodiversity, Aarhus University, Aarhus, Denmark
| | - Brody Sandel
- Department of Bioscience, Section for Ecoinformatics & Biodiversity, Aarhus University, Aarhus, Denmark
| | - Jens-Christian Svenning
- Department of Bioscience, Section for Ecoinformatics & Biodiversity, Aarhus University, Aarhus, Denmark
- Department of Bioscience, Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Aarhus University, Aarhus, Denmark
| |
Collapse
|
82
|
Swift JA, Bunce M, Dortch J, Douglass K, Faith JT, Fellows Yates JA, Field J, Haberle SG, Jacob E, Johnson CN, Lindsey E, Lorenzen ED, Louys J, Miller G, Mychajliw AM, Slon V, Villavicencio NA, Waters MR, Welker F, Wood R, Petraglia M, Boivin N, Roberts P. Micro Methods for Megafauna: Novel Approaches to Late Quaternary Extinctions and Their Contributions to Faunal Conservation in the Anthropocene. Bioscience 2019; 69:877-887. [PMID: 31719710 PMCID: PMC6829010 DOI: 10.1093/biosci/biz105] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Drivers of Late Quaternary megafaunal extinctions are relevant to modern conservation policy in a world of growing human population density, climate change, and faunal decline. Traditional debates tend toward global solutions, blaming either dramatic climate change or dispersals of Homo sapiens to new regions. Inherent limitations to archaeological and paleontological data sets often require reliance on scant, poorly resolved lines of evidence. However, recent developments in scientific technologies allow for more local, context-specific approaches. In the present article, we highlight how developments in five such methodologies (radiocarbon approaches, stable isotope analysis, ancient DNA, ancient proteomics, microscopy) have helped drive detailed analysis of specific megafaunal species, their particular ecological settings, and responses to new competitors or predators, climate change, and other external phenomena. The detailed case studies of faunal community composition, extinction chronologies, and demographic trends enabled by these methods examine megafaunal extinctions at scales appropriate for practical understanding of threats against particular species in their habitats today.
Collapse
Affiliation(s)
- Jillian A Swift
- Department of Archaeology, Max Planck Institute for the Science of Human History, Jena, Germany
- Anthropology Department of Bernice Pauahi Bishop Museum, Honolulu, Hawai’i
| | - Michael Bunce
- Trace and Environmental DNA Laboratory, School of Molecular and Life Sciences, Curtin University, Bentley, Western Australia, Australia
| | - Joe Dortch
- Centre for Rock Art Research and Management, University of Western Australia, Perth, Australia
| | - Kristina Douglass
- Department of Anthropology and with the Institutes for Energy and the Environment, The Pennsylvania State University, State College, Pennsylvania
| | - J Tyler Faith
- Natural History Museum of Utah and with the Department of Anthropology, University of Utah, Salt Lake City, Utah
| | - James A Fellows Yates
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History, Jena, Germany
| | - Judith Field
- School of Biological, Earth, and Environmental Science, University of New South Wales, Sydney, Australia
| | - Simon G Haberle
- College of Asia and the Pacific and the School of Culture, History, and Language, Australian National University, Canberra, Australia
- Australian Research Council Centre of Excellence, Australian Biodiversity and Heritage, Wollongong, New South Wales, Australia
| | - Eileen Jacob
- Research Laboratory for Archaeology and the History of Art, University of Oxford, Oxford, England
| | - Chris N Johnson
- Australian Research Council Centre of Excellence, Australian Biodiversity and Heritage, Wollongong, New South Wales, Australia
- School of Natural Sciences, University of Tasmania, Hobart, Australia
| | - Emily Lindsey
- La Brea Tar Pits and Museum, part of the Natural History Museum, Los Angeles County, Los Angeles, California
| | - Eline D Lorenzen
- Natural History Museum of Denmark, University of Copenhagen, Copenhagen, Denmark
| | - Julien Louys
- Australian Research Center for Human Evolution, Environmental Futures Research Institute, Griffith University, Brisbane, Queensland, Australia
| | - Gifford Miller
- INSTAAR and Department of Geological Sciences, University of Colorado, Boulder
| | - Alexis M Mychajliw
- La Brea Tar Pits and Museum, part of the Natural History Museum, Los Angeles County, Los Angeles, California
| | - Viviane Slon
- Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Natalia A Villavicencio
- Departamento de Ecología, in the Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
- Instituto de Ecología and Biodiversidad, Santiago, Chile
| | - Michael R Waters
- Center for the Study of the First Americans, the Department of Anthropology, Texas A&M University, College Station, Texas
| | - Frido Welker
- Evolutionary Genomics Section of the GLOBE Institute, University of Copenhagen, Copenhagen, Denmark, and with the Department of Human Evolution, Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany
| | - Rachel Wood
- Research School of Earth Sciences, Australian National University, Canberra, Australia
| | - Michael Petraglia
- Department of Archaeology, Max Planck Institute for the Science of Human History, Jena, Germany
| | - Nicole Boivin
- Department of Archaeology, Max Planck Institute for the Science of Human History, Jena, Germany
| | - Patrick Roberts
- Department of Archaeology, Max Planck Institute for the Science of Human History, Jena, Germany
| |
Collapse
|
83
|
McKey D. Pre-Columbian human occupation of Amazonia and its influence on current landscapes and biodiversity. AN ACAD BRAS CIENC 2019; 91:e20190087. [PMID: 31365606 DOI: 10.1590/0001-3765201920190087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Accepted: 06/17/2019] [Indexed: 05/30/2023] Open
Abstract
There is growing evidence that pre-Columbian humans had strong impacts on soils, plant and animal communities and ecosystem functioning in many parts of Amazonia, and that the legacies of these impacts still affect biodiversity and how ecosystems function today. Understanding the history of human/environment interactions in Amazonia is essential for analyzing the current state of these interactions and imagining scenarios for the future. This study gives a brief overview of these themes.
Collapse
Affiliation(s)
- Doyle McKey
- Centre d'Ecologie Fonctionnelle et Evolutive/CEFE, CNRS, University of Montpellier, University Paul Valéry Montpellier 3, EPHE, IRD, 1919 route de Mende, 34293, Montpellier, France
| |
Collapse
|
84
|
Modesto V, Castro P, Lopes-Lima M, Antunes C, Ilarri M, Sousa R. Potential impacts of the invasive species Corbicula fluminea on the survival of glochidia. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 673:157-164. [PMID: 30986675 DOI: 10.1016/j.scitotenv.2019.04.043] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 04/02/2019] [Accepted: 04/03/2019] [Indexed: 06/09/2023]
Abstract
Freshwater mussels (Bivalvia, Unionida) are one of the most imperilled faunal groups globally, being the introduction of invasive species a possible major mechanism of threat. The Asian clam Corbicula fluminea is a problematic invasive species in aquatic ecosystems and can impair the survival of parasitic larvae (glochidia) of native freshwater mussels. However, this possible mechanism of threat remains speculative and to date very few studies addressed quantitatively this issue. In order to cover this gap, we have performed a series of manipulative laboratory studies to assess how distinct densities of C. fluminea can affect the survival of glochidia after 6, 12, 24 and 48 h of exposure, using larvae of the native freshwater mussel Anodonta anatina. Our results suggest an increase in mortality of A. anatina glochidia with an increase in density of C. fluminea. Two main mechanisms may possibly explain our results: 1) the high filtration capacity of C. fluminea that can contribute to the mortality of glochidia due to the mechanical damage of their fragile shells when passing by siphons and/or digestive tract of C. fluminea and 2) the high excretion capacity of C. fluminea that can lead to mortality of glochidia due to increase in ammonia concentration. Mortality of glochidia was also time dependent with higher values registered after 48 h. This work is one of the first showing the influence of C. fluminea density on the survival of glochidia, being filtration (and consequent passage in the digestive tract) and biodeposition the main potential mechanisms explaining overall mortality. These results also suggest that sites with high densities of C. fluminea may be highly detrimental for the conservation of freshwater mussels, potentially impairing the survival of glochidia and negatively affecting the recruitment of juveniles.
Collapse
Affiliation(s)
- Vanessa Modesto
- CBMA - Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal.
| | - Paulo Castro
- CBMA - Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Manuel Lopes-Lima
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; CIBIO/InBIO - Research Center in Biodiversity and Genetic Resources, University of Porto, 4485-661 Vairão, Portugal
| | - Carlos Antunes
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal; Aquamuseu do Rio Minho, Parque de Lazer do Castelinho, 4920-290 Vila Nova de Cerveira, Portugal
| | - Martina Ilarri
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR/CIMAR), Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208 Matosinhos, Portugal
| | - Ronaldo Sousa
- CBMA - Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| |
Collapse
|
85
|
Demography of avian scavengers after Pleistocene megafaunal extinction. Sci Rep 2019; 9:9680. [PMID: 31273237 PMCID: PMC6609603 DOI: 10.1038/s41598-019-45769-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 06/07/2019] [Indexed: 11/08/2022] Open
Abstract
The late Quaternary megafauna extinctions reshaped species assemblages, yet we know little about how extant obligate scavengers responded to this abrupt ecological change. To explore whether obligate scavengers persisted by depending on contemporary community linkages or via foraging flexibility, we tested the importance of the trophic interaction between pumas (Puma concolor) and native camelids (Vicugna vicugna and Lama guanicoe) for the persistence of Andean condors (Vultur gryphus) in southern South America, and compared the demographic history of three vultures in different continents. We sequenced and compiled mtDNA to reconstruct past population dynamics. Our results suggest that Andean condors increased in population size >10 KYA, whereas vicuñas and pumas showed stable populations and guanacos a recent (<10 KYA) demographic expansion, suggesting independent trajectories between species. Further, vultures showed positive demographic trends: white-backed vultures (Gyps africanus) increased in population size, matching attenuated community changes in Africa, and California condors (Gymnogyps californianus) exhibited a steep demographic expansion ~20 KYA largely concurrent with North American megafaunal extinctions. Our results suggest that dietary plasticity of extant vulture lineages allowed them to thrive despite historical environmental changes. This dietary flexibility, however, is now detrimental as it enhances risk to toxicological compounds harbored by modern carrion resources.
Collapse
|
86
|
Spengler RN, Mueller NG. Grazing animals drove domestication of grain crops. NATURE PLANTS 2019; 5:656-662. [PMID: 31285559 DOI: 10.1038/s41477-019-0470-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Accepted: 06/04/2019] [Indexed: 05/05/2023]
Abstract
In addition to large-seeded cereals, humans around the world during the mid-Holocene started to cultivate small-seeded species of herbaceous annuals for grain, including quinoa, amaranth, buckwheat, the millets and several lost crops domesticated in North America. The wild ancestors of these crops have small seeds with indigestible defences and do not germinate readily. Today, these wild plants exist in small fragmentary stands that are not appealing targets for foragers. This combination of traits has led many to argue that they must have been a food of last resort. We propose a new explanation: the domestication of small-seeded annuals involved a switch from endozoochoric dispersal (through animal ingestion) to human dispersal. Humans encountered these plants in dense stands created by grazing megafauna, making them easy to harvest. As humans began to cultivate these plants they took on the functional role of seed dispersers, and traits associated with endozoochory were lost or reduced. The earliest traits of domestication-thinning or loss of indigestible seed protections, loss of dormancy and increased seed size-can all be explained by the loss of the ruminant dispersal process and concomitant human management of wild stands. We demonstrate, by looking at rangeland ecology and herd animal herbivory patterns, that the progenitors of all of these species evolved to be dispersed by megafaunal ruminants and that heavy herbivory leads to dense homogenous clusters of endozoochoric plants. Hence, easily harvested stands on nitrogen hot spots near water sources would have existed in regions where these plants were domesticated. Future experimental and ecological studies could enhance our understanding of the relationships between specific crops and their possible ruminant dispersers.
Collapse
Affiliation(s)
- Robert N Spengler
- Archaeology Department, Max Planck Institute for the Science of Human History, Jena, Germany.
| | - Natalie G Mueller
- Horticulture Section, School of Integrative Plant Sciences, Cornell University, Ithaca, NY, USA
- Department of Anthropology, Washington University in St. Louis, St. Louis, MO, USA
| |
Collapse
|
87
|
Emer C, Galetti M, Pizo MA, Jordano P, Verdú M. Defaunation precipitates the extinction of evolutionarily distinct interactions in the Anthropocene. SCIENCE ADVANCES 2019; 5:eaav6699. [PMID: 31223648 PMCID: PMC6584213 DOI: 10.1126/sciadv.aav6699] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 05/10/2019] [Indexed: 06/01/2023]
Abstract
Species on Earth are interconnected with each other through ecological interactions. Defaunation can erode those connections, yet we lack evolutionary predictions about the consequences of losing interactions in human-modified ecosystems. We quantified the fate of the evolutionary history of avian-seed dispersal interactions across tropical forest fragments by combining the evolutionary distinctness of the pairwise-partner species, a proxy to their unique functional features. Both large-seeded plant and large-bodied bird species showed the highest evolutionary distinctness. We estimate a loss of 3.5 to 4.7 × 104 million years of cumulative evolutionary history of interactions due to defaunation. Bird-driven local extinctions mainly erode the most evolutionarily distinct interactions. However, the persistence of less evolutionarily distinct bird species in defaunated areas exerts a phylogenetic rescue effect through seed dispersal of evolutionarily distinct plant species.
Collapse
Affiliation(s)
- Carine Emer
- Instituto de Biociências, Departamento de Ecologia, Universidade Estadual Paulista, CP 199, 13506-900 Rio Claro, SP, Brazil
| | - Mauro Galetti
- Instituto de Biociências, Departamento de Ecologia, Universidade Estadual Paulista, CP 199, 13506-900 Rio Claro, SP, Brazil
| | - Marco A. Pizo
- Instituto de Biociências, Departamento de Zoologia, Universidade Estadual Paulista, CP 199, 13506-900 Rio Claro, SP, Brazil
| | - Pedro Jordano
- Integrative Ecology Group, Estación Biológica de Doñana–Consejo Superior de Investigaciones Científicas (EBD-CSIC), Av. Américo Vespucio 26, E-41092 Sevilla, Spain
| | - Miguel Verdú
- Centro de Investigaciones sobre Desertificación (CSIC-UVEG-GV), Apdo Oficial, E-46113 Valencia, Spain
| |
Collapse
|
88
|
Spengler RN. Origins of the Apple: The Role of Megafaunal Mutualism in the Domestication of Malus and Rosaceous Trees. FRONTIERS IN PLANT SCIENCE 2019; 10:617. [PMID: 31191563 PMCID: PMC6545323 DOI: 10.3389/fpls.2019.00617] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 04/25/2019] [Indexed: 05/05/2023]
Abstract
The apple (Malus domestica [Suckow] Borkh.) is one of the most economically and culturally significant fruits in the world today, and it is grown in all temperate zones. With over a thousand landraces recognized, the modern apple provides a unique case study for understanding plant evolution under human cultivation. Recent genomic and archaeobotanical studies have illuminated parts of the process of domestication in the Rosaceae family. Interestingly, these data seem to suggest that rosaceous arboreal crops did not follow the same pathway toward domestication as other domesticated, especially annual, plants. Unlike in cereal crops, tree domestication appears to have been rapid and driven by hybridization. Apple domestication also calls into question the concept of centers of domestication and human intentionality. Studies of arboreal domestication also illustrate the importance of fully understanding the seed dispersal processes in the wild progenitors when studying crop origins. Large fruits in Rosaceae evolved as a seed-dispersal adaptation recruiting megafaunal mammals of the late Miocene. Genetic studies illustrate that the increase in fruit size and changes in morphology during evolution in the wild resulted from hybridization events and were selected for by large seed dispersers. Humans over the past three millennia have fixed larger-fruiting hybrids through grafting and cloning. Ultimately, the process of evolution under human cultivation parallels the natural evolution of larger fruits in the clade as an adaptive strategy, which resulted in mutualism with large mammalian seed dispersers (disperser recruitment).
Collapse
Affiliation(s)
- Robert Nicholas Spengler
- Paleoethnobotany Laboratories, Department of Archaeology, Max Planck Institute for the Science of Human History, Jena, Germany
| |
Collapse
|
89
|
Muñoz-Gallego R, Fedriani JM, Traveset A. Non-native Mammals Are the Main Seed Dispersers of the Ancient Mediterranean Palm Chamaerops humilis L. in the Balearic Islands: Rescuers of a Lost Seed Dispersal Service? Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00161] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
|
90
|
Onstein RE, Baker WJ, Couvreur TLP, Faurby S, Herrera-Alsina L, Svenning JC, Kissling WD. To adapt or go extinct? The fate of megafaunal palm fruits under past global change. Proc Biol Sci 2019; 285:rspb.2018.0882. [PMID: 29899077 PMCID: PMC6015859 DOI: 10.1098/rspb.2018.0882] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 05/17/2018] [Indexed: 01/03/2023] Open
Abstract
Past global change may have forced animal-dispersed plants with megafaunal fruits to adapt or go extinct, but these processes have remained unexplored at broad spatio-temporal scales. Here, we combine phylogenetic, distributional and fruit size data for more than 2500 palm (Arecaceae) species in a time-slice diversification analysis to quantify how extinction and adaptation have changed over deep time. Our results indicate that extinction rates of palms with megafaunal fruits have increased in the New World since the onset of the Quaternary (2.6 million years ago). In contrast, Old World palms show a Quaternary increase in transition rates towards evolving small fruits from megafaunal fruits. We suggest that Quaternary climate oscillations and concurrent habitat fragmentation and defaunation of megafaunal frugivores in the New World have reduced seed dispersal distances and geographical ranges of palms with megafaunal fruits, resulting in their extinction. The increasing adaptation to smaller fruits in the Old World could reflect selection for seed dispersal by ocean-crossing frugivores (e.g. medium-sized birds and bats) to colonize Indo-Pacific islands against a background of Quaternary sea-level fluctuations. Our macro-evolutionary results suggest that megafaunal fruits are increasingly being lost from tropical ecosystems, either due to extinctions or by adapting to smaller fruit sizes.
Collapse
Affiliation(s)
- Renske E Onstein
- Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, PO Box 94248, 1090 GE Amsterdam, The Netherlands
| | | | | | - Søren Faurby
- Department of Biological and Environmental Sciences, University of Gothenburg, Box 461, 405 30, Göteborg, Sweden.,Gothenburg Global Biodiversity Centre, Box 461, 405 30 Göteborg, Sweden
| | - Leonel Herrera-Alsina
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, Groningen, The Netherlands
| | - Jens-Christian Svenning
- Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Department of Bioscience, Aarhus University, Aarhus, Denmark.,Section for Ecoinformatics and Biodiversity, Department of Bioscience, Aarhus University, Aarhus, Denmark
| | - W Daniel Kissling
- Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, PO Box 94248, 1090 GE Amsterdam, The Netherlands
| |
Collapse
|
91
|
Wood JR, Wilmshurst JM. Comparing the effects of asynchronous herbivores on New Zealand montane vegetation communities. PLoS One 2019; 14:e0214959. [PMID: 30947249 PMCID: PMC6448933 DOI: 10.1371/journal.pone.0214959] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 03/22/2019] [Indexed: 12/02/2022] Open
Abstract
Large herbivores facilitate a range of important ecological processes yet globally have experienced high rates of decline and extinction over the past 50,000 years. To some extent this lost function may be replaced through the introduction of ecological surrogate taxa, either by active management or via historic introductions. However, comparing the ecological effects of herbivores that existed in the same location, but at different times, can be a challenging proposition. Here we provide an example from New Zealand that demonstrates an approach for making such comparisons. In New Zealand it has been suggested that post-19th Century mammal introductions (e.g. deer and hare) may have filled ecological niches left vacant after the 15th Century AD extinction of large avian herbivores (moa). We quantified pollen assemblages from fecal samples deposited by these two asynchronous herbivore communities to see whether they were comparable. The fecal samples were collected at the same location, and in a native-dominated vegetation community that has experience little anthropogenic disturbance and their contents reflect both the local habitat and diet preferences of the depositing herbivore. The results reveal that the current forest understory is relatively sparse and species depauperate compared to the prehistoric state, indicating that deer and moa had quite different impacts on the local vegetation community. The study provides an example of how combining coprolite and fecal analyses of prehistoric and modern herbivores may clarify the degree of ecological overlap between asynchronous herbivore communities and provide insights into the extent of ecological surrogacy provided by introduced taxa.
Collapse
Affiliation(s)
- Jamie R. Wood
- Manaaki Whenua Landcare Research, Lincoln, New Zealand
- * E-mail:
| | - Janet M. Wilmshurst
- Manaaki Whenua Landcare Research, Lincoln, New Zealand
- School of Environment, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
92
|
Raine EH, Slade EM. Dung beetle-mammal associations: methods, research trends and future directions. Proc Biol Sci 2019; 286:20182002. [PMID: 30963853 PMCID: PMC6408906 DOI: 10.1098/rspb.2018.2002] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Dung beetles are increasingly used as a study taxon—both as bioindicators of environmental change, and as a model system for exploring ecosystem functioning. The advantages of this focal taxon approach are many; dung beetles are abundant in a wide range of terrestrial ecosystems, speciose, straightforward to sample, respond to environmental gradients and can be easily manipulated to explore species-functioning relationships. However, there remain large gaps in our understanding of the relationship between dung beetles and the mammals they rely on for dung. Here we review the literature, showing that despite an increase in the study of dung beetles linked to ecosystem functioning and to habitat and land use change, there has been little research into their associations with mammals. We summarize the methods and findings from dung beetle–mammal association studies to date, revealing that although empirical field studies of dung beetles rarely include mammal data, those that do, indicate mammal species presence and composition has a large impact on dung beetle species richness and abundance. We then review the methods used to carry out diet preference and ecosystem functioning studies, finding that despite the assumption that dung beetles are generalist feeders, there are few quantitative studies that directly address this. Together this suggests that conclusions about the effects of habitat change on dung beetles are based on incomplete knowledge. We provide recommendations for future work to identify the importance of considering mammal data for dung beetle distributions, composition and their contributions to ecosystem functioning; a critical step if dung beetles are to be used as a reliable bioindicator taxon.
Collapse
Affiliation(s)
- Elizabeth H Raine
- 1 Department of Zoology, University of Oxford , South Parks Road, Oxford OX1 3PS , UK
| | - Eleanor M Slade
- 1 Department of Zoology, University of Oxford , South Parks Road, Oxford OX1 3PS , UK.,2 Lancaster Environment Centre, University of Lancaster , Lancaster LA1 AYQ , UK
| |
Collapse
|
93
|
Garrido P, Mårell A, Öckinger E, Skarin A, Jansson A, Thulin C. Experimental rewilding enhances grassland functional composition and pollinator habitat use. J Appl Ecol 2019. [DOI: 10.1111/1365-2664.13338] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Pablo Garrido
- School for Forest ManagementFaculty of Forest SciencesSwedish University of Agricultural Sciences Skinnskatteberg Sweden
- Department of Wildlife, Fish, and Environmental StudiesSwedish University of Agricultural Sciences Umeå Sweden
- Department of Anatomy, Physiology and BiochemistrySwedish University of Agricultural Sciences Uppsala Sweden
| | | | - Erik Öckinger
- Department of EcologySwedish University of Agricultural Sciences Uppsala Sweden
| | - Anna Skarin
- Department of Animal Nutrition and ManagementSwedish University of Agricultural Sciences Uppsala Sweden
| | - Anna Jansson
- Department of Anatomy, Physiology and BiochemistrySwedish University of Agricultural Sciences Uppsala Sweden
| | - Carl‐Gustaf Thulin
- Department of Wildlife, Fish, and Environmental StudiesSwedish University of Agricultural Sciences Umeå Sweden
- Department of Anatomy, Physiology and BiochemistrySwedish University of Agricultural Sciences Uppsala Sweden
| |
Collapse
|
94
|
Schweiger AH, Boulangeat I, Conradi T, Davis M, Svenning JC. The importance of ecological memory for trophic rewilding as an ecosystem restoration approach. Biol Rev Camb Philos Soc 2019; 94:1-15. [PMID: 29877019 DOI: 10.1111/brv.12432] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 05/05/2018] [Accepted: 05/14/2018] [Indexed: 01/24/2023]
Abstract
Increasing human pressure on strongly defaunated ecosystems is characteristic of the Anthropocene and calls for proactive restoration approaches that promote self-sustaining, functioning ecosystems. However, the suitability of novel restoration concepts such as trophic rewilding is still under discussion given fragmentary empirical data and limited theory development. Here, we develop a theoretical framework that integrates the concept of 'ecological memory' into trophic rewilding. The ecological memory of an ecosystem is defined as an ecosystem's accumulated abiotic and biotic material and information legacies from past dynamics. By summarising existing knowledge about the ecological effects of megafauna extinction and rewilding across a large range of spatial and temporal scales, we identify two key drivers of ecosystem responses to trophic rewilding: (i) impact potential of (re)introduced megafauna, and (ii) ecological memory characterising the focal ecosystem. The impact potential of (re)introduced megafauna species can be estimated from species properties such as lifetime per capita engineering capacity, population density, home range size and niche overlap with resident species. The importance of ecological memory characterising the focal ecosystem depends on (i) the absolute time since megafauna loss, (ii) the speed of abiotic and biotic turnover, (iii) the strength of species interactions characterising the focal ecosystem, and (iv) the compensatory capacity of surrounding source ecosystems. These properties related to the focal and surrounding ecosystems mediate material and information legacies (its ecological memory) and modulate the net ecosystem impact of (re)introduced megafauna species. We provide practical advice about how to quantify all these properties while highlighting the strong link between ecological memory and historically contingent ecosystem trajectories. With this newly established ecological memory-rewilding framework, we hope to guide future empirical studies that investigate the ecological effects of trophic rewilding and other ecosystem-restoration approaches. The proposed integrated conceptual framework should also assist managers and decision makers to anticipate the possible trajectories of ecosystem dynamics after restoration actions and to weigh plausible alternatives. This will help practitioners to develop adaptive management strategies for trophic rewilding that could facilitate sustainable management of functioning ecosystems in an increasingly human-dominated world.
Collapse
Affiliation(s)
- Andreas H Schweiger
- Section for Ecoinformatics and Biodiversity, Department of Bioscience, Aarhus University, Ny Munkegade 114, 8000, Aarhus C, Denmark.,Plant Ecology, Bayreuth Center for Ecology and Environmental Research (BayCEER), University of Bayreuth, 95440, Bayreuth, Germany.,Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Aarhus University, Ny Munkegade 114, 8000, Aarhus C, Denmark
| | - Isabelle Boulangeat
- Section for Ecoinformatics and Biodiversity, Department of Bioscience, Aarhus University, Ny Munkegade 114, 8000, Aarhus C, Denmark.,University Grenoble Alpes, Irstea, UR LESSEM, 2 rue de la Papeterie-BP 76, F-38402, St-Martin-d'Hères, France
| | - Timo Conradi
- Section for Ecoinformatics and Biodiversity, Department of Bioscience, Aarhus University, Ny Munkegade 114, 8000, Aarhus C, Denmark.,Plant Ecology, Bayreuth Center for Ecology and Environmental Research (BayCEER), University of Bayreuth, 95440, Bayreuth, Germany
| | - Matt Davis
- Section for Ecoinformatics and Biodiversity, Department of Bioscience, Aarhus University, Ny Munkegade 114, 8000, Aarhus C, Denmark.,Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Aarhus University, Ny Munkegade 114, 8000, Aarhus C, Denmark
| | - Jens-Christian Svenning
- Section for Ecoinformatics and Biodiversity, Department of Bioscience, Aarhus University, Ny Munkegade 114, 8000, Aarhus C, Denmark.,Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Aarhus University, Ny Munkegade 114, 8000, Aarhus C, Denmark
| |
Collapse
|
95
|
Gómez JM, Schupp EW, Jordano P. Synzoochory: the ecological and evolutionary relevance of a dual interaction. Biol Rev Camb Philos Soc 2018; 94:874-902. [PMID: 30467946 DOI: 10.1111/brv.12481] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 10/22/2018] [Accepted: 10/24/2018] [Indexed: 12/31/2022]
Affiliation(s)
- José María Gómez
- Departamento de Ecología Funcional y Evolutiva, Estación Experimental de Zonas Áridas (EEZA-CSIC), Ctra Sacramento s/n, La Cañada de San Urbano, E-04120 Almería, Spain
| | - Eugene W Schupp
- Department of Wildland Resources and Ecology Center, S. J. and Jesse E. Quinney College of Natural Resources, 5230 Old Main Hill, Utah State University, Logan, UT 84322-5230,, U.S.A
| | - Pedro Jordano
- Departamento de Ecología Integrativa, Integrative Ecology Group, Estación Biológica de Doñana (EBD-CSIC), Avda. Americo Vespucio S/N, E-41092 Sevilla, Spain
| |
Collapse
|
96
|
Andriuzzi WS, Wall DH. Soil biological responses to, and feedbacks on, trophic rewilding. Philos Trans R Soc Lond B Biol Sci 2018; 373:20170448. [PMID: 30348874 PMCID: PMC6231063 DOI: 10.1098/rstb.2017.0448] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/21/2018] [Indexed: 12/21/2022] Open
Abstract
Trophic rewilding-the (re)introduction of missing large herbivores and/or their predators-is increasingly proposed to restore biodiversity and biotic interactions, but its effects on soils have been largely neglected. The high diversity of soil organisms and the ecological functions they perform mean that the full impact of rewilding on ecosystems cannot be assessed considering only above-ground food webs. Here we outline current understanding on how animal species of rewilding interest affect soil structure, processes and communities, and how in turn soil biota may affect species above ground. We highlight considerable uncertainty in soil responses to and feedbacks on above-ground consumers, with potentially large implications for rewilding interactions with global change. For example, the impact of large herbivores on soil decomposers and plant-soil interactions could lead to reduced carbon sequestration, whereas herbivore interactions with keystone biota such as mycorrhizal fungi, dung beetles and bioturbators could promote native plants and ecosystem heterogeneity. Moreover, (re)inoculation of keystone soil biota could be considered as a strategy to meet some of the objectives of trophic rewilding. Overall, we call for the rewilding research community to engage more with soil ecology experts and consider above-ground-below-ground linkages as integral to assess potential benefits as well as pitfalls.This article is part of the theme issue 'Trophic rewilding: consequences for ecosystems under global change'.
Collapse
Affiliation(s)
- W S Andriuzzi
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - D H Wall
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
- School of Global Environmental Sustainability, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
97
|
Bakker ES, Svenning JC. Trophic rewilding: impact on ecosystems under global change. Philos Trans R Soc Lond B Biol Sci 2018; 373:rstb.2017.0432. [PMID: 30348876 DOI: 10.1098/rstb.2017.0432] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2018] [Indexed: 11/12/2022] Open
Affiliation(s)
- Elisabeth S Bakker
- Department of Aquatic Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Droevendaalsesteeg 10, 6708 PB Wageningen, The Netherlands
| | - Jens-Christian Svenning
- Center for Biodiversity Dynamics in a Changing World (BIOCHANGE), Aarhus University, Ny Munkegade 114, 8000 Aarhus C, Denmark.,Section for Ecoinformatics and Biodiversity, Department of Bioscience, Aarhus University, Ny Munkegade 114, 8000 Aarhus C, Denmark
| |
Collapse
|
98
|
Mammal diversity will take millions of years to recover from the current biodiversity crisis. Proc Natl Acad Sci U S A 2018; 115:11262-11267. [PMID: 30322924 DOI: 10.1073/pnas.1804906115] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The incipient sixth mass extinction that started in the Late Pleistocene has already erased over 300 mammal species and, with them, more than 2.5 billion y of unique evolutionary history. At the global scale, this lost phylogenetic diversity (PD) can only be restored with time as lineages evolve and create new evolutionary history. Given the increasing rate of extinctions however, can mammals evolve fast enough to recover their lost PD on a human time scale? We use a birth-death tree framework to show that even if extinction rates slow to preanthropogenic background levels, recovery of lost PD will likely take millions of years. These findings emphasize the severity of the potential sixth mass extinction and the need to avoid the loss of unique evolutionary history now.
Collapse
|
99
|
Bullock JM, Bonte D, Pufal G, da Silva Carvalho C, Chapman DS, García C, García D, Matthysen E, Delgado MM. Human-Mediated Dispersal and the Rewiring of Spatial Networks. Trends Ecol Evol 2018; 33:958-970. [PMID: 30314915 DOI: 10.1016/j.tree.2018.09.008] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 09/03/2018] [Accepted: 09/12/2018] [Indexed: 12/13/2022]
Abstract
Humans fundamentally affect dispersal, directly by transporting individuals and indirectly by altering landscapes and natural vectors. This human-mediated dispersal (HMD) modifies long-distance dispersal, changes dispersal paths, and overall benefits certain species or genotypes while disadvantaging others. HMD is leading to radical changes in the structure and functioning of spatial networks, which are likely to intensify as human activities increase in scope and extent. Here, we provide an overview to guide research into HMD and the resulting rewiring of spatial networks, making predictions about the ecological and evolutionary consequences and how these vary according to spatial scale and the traits of species. Future research should consider HMD holistically, assessing the range of direct and indirect processes to understand the complex impacts on eco-evolutionary dynamics.
Collapse
Affiliation(s)
| | - Dries Bonte
- Department of Biology, Ghent University, Ghent, Belgium
| | - Gesine Pufal
- Department of Nature Conservation and Landscape Ecology, University of Freiburg, Freiburg, Germany
| | | | | | - Cristina García
- Centre for Research on Biodiversity and Genetic Resources, University of Porto, Porto, Portugal; Institute of Integrative Biology, Department of Evolution, Ecology and Behaviour, University of Liverpool, Liverpool, UK
| | - Daniel García
- Department of Biology of Organisms and Systems and Biodiversity Research Unit, University of Oviedo, Oviedo, Spain
| | - Erik Matthysen
- Department of Biology, University of Antwerp, Antwerp, Belgium
| | - Maria Mar Delgado
- Department of Biology of Organisms and Systems and Biodiversity Research Unit, University of Oviedo, Oviedo, Spain
| |
Collapse
|
100
|
Diplock N, Johnston K, Mellon A, Mitchell L, Moore M, Schneider D, Taylor A, Whitney J, Zegar K, Kioko J, Kiffner C. Large mammal declines and the incipient loss of mammal-bird mutualisms in an African savanna ecosystem. PLoS One 2018; 13:e0202536. [PMID: 30153277 PMCID: PMC6112642 DOI: 10.1371/journal.pone.0202536] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2018] [Accepted: 08/03/2018] [Indexed: 11/18/2022] Open
Abstract
Over the past half-century, large mammal populations have declined substantially throughout East Africa, mainly due to habitat loss and unsustainable direct exploitation. While it has been acknowledged that the loss of large mammals can have direct and cascading effects on community composition and ecosystem characteristics, limited quantitative work has been done on how declines of large herbivore populations impacts the abundance of mutualistic symbionts. Using a space-for-time observational approach, we quantified the large mammal community alongside the densities, host preferences and behaviors of mutualistic red-billed oxpeckers (Buphagus erythrorhynchus), and yellow-billed oxpeckers (Buphagus africanus) in northern Tanzania. At the landscape scale, mammal community composition was substantially less diverse in highly human-dominated areas when compared with more protected areas, with an observed complete loss of large wild mammal species in two study areas. Mirroring this trend, oxpecker densities were lowest in the least protected areas, and highest in fully protected areas. Using resource selection functions implemented via generalized linear models at different scales, we found that oxpeckers (1) were predominantly (67% of red-billed oxpeckers; 70% of yellow-billed oxpeckers) feeding on larger (between 500kg and 1500kg) ungulate host species within the mammal community, (2) usually preferred feeding on larger individuals (adults and males) within a specific host species population, and (3) preferred hosts that were more tolerant of their presence. In particular, cattle were especially intolerant of oxpecker presence and were relatively effective in displacing oxpeckers. We found little evidence that oxpecker feeding was parasitic across all host species; wound feeding was only observed on giraffe, comprising 6% and 4% of feeding behavior in red-billed and yellow-billed oxpeckers respectively. Thus, a loss of large-bodied and oxpecker tolerant host species is a likely explanation for declines of oxpecker populations in human dominated landscapes, which may have further cascading effects.
Collapse
Affiliation(s)
- Nathan Diplock
- Center for Wildlife Management Studies, The School for Field Studies, Karatu, Tanzania
| | - Kate Johnston
- Department of Biology, Augsburg University, Minneapolis, Minnesota, United States of America
| | - Antoine Mellon
- Department of Biological Sciences, Southern Methodist University, Dallas, Texas, United States of America
| | - Laura Mitchell
- Department of Biology, University of Vermont, Burlington, Vermont, United States of America
| | - Madison Moore
- Department of Biological Foundations of Behavior, Franklin and Marshall College, Lancaster, Pennsylvania, United States of America
| | - Daniel Schneider
- Department of Environmental Science, Muhlenberg College, Allentown, Pennsylvania, United States of America
| | - Alyssa Taylor
- Department of Biology, Elizabethtown College, Elizabethtown, Pennsylvania, United States of America
| | - Jess Whitney
- Department of Environmental Conservation, University of Massachusetts, Amherst, Massachusetts, United States of America
| | - Kera Zegar
- College of the Environment, University of Washington, Seattle, Washington, United States of America
| | - John Kioko
- Center for Wildlife Management Studies, The School for Field Studies, Karatu, Tanzania
| | - Christian Kiffner
- Center for Wildlife Management Studies, The School for Field Studies, Karatu, Tanzania
- * E-mail:
| |
Collapse
|