51
|
Hegde RN, Parashuraman S, Iorio F, Ciciriello F, Capuani F, Carissimo A, Carrella D, Belcastro V, Subramanian A, Bounti L, Persico M, Carlile G, Galietta L, Thomas DY, Di Bernardo D, Luini A. Unravelling druggable signalling networks that control F508del-CFTR proteostasis. eLife 2015; 4. [PMID: 26701908 PMCID: PMC4749566 DOI: 10.7554/elife.10365] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Accepted: 11/26/2015] [Indexed: 01/17/2023] Open
Abstract
Cystic fibrosis (CF) is caused by mutations in CF transmembrane conductance regulator (CFTR). The most frequent mutation (F508del-CFTR) results in altered proteostasis, that is, in the misfolding and intracellular degradation of the protein. The F508del-CFTR proteostasis machinery and its homeostatic regulation are well studied, while the question whether ‘classical’ signalling pathways and phosphorylation cascades might control proteostasis remains barely explored. Here, we have unravelled signalling cascades acting selectively on the F508del-CFTR folding-trafficking defects by analysing the mechanisms of action of F508del-CFTR proteostasis regulator drugs through an approach based on transcriptional profiling followed by deconvolution of their gene signatures. Targeting multiple components of these signalling pathways resulted in potent and specific correction of F508del-CFTR proteostasis and in synergy with pharmacochaperones. These results provide new insights into the physiology of cellular proteostasis and a rational basis for developing effective pharmacological correctors of the F508del-CFTR defect. DOI:http://dx.doi.org/10.7554/eLife.10365.001 Cystic fibrosis is a genetic disease that commonly affects people of European descent. The condition is caused by mutations in the gene encoding a protein called “cystic fibrosis transmembrane conductance regulator” (or CFTR for short). CFTR forms a channel in the membrane of cells in the lungs that help transport salt across the membrane. Mutated versions of the protein are not as efficient at transporting salts, and eventually this damages the lung tissue. As the damage progresses, individuals become very vulnerable to bacterial infections that further damage the lungs and may eventually lead to death. One of the reasons CFTR mutations are harmful is that they cause the protein to fold up incorrectly and remain trapped inside the cell. Cells have quality control systems that recognize and destroy poorly folded proteins, and so only a few of the mutated CFTR proteins ever make it to the membrane to move salts. New therapies have been developed that improve folding of the protein and/or help the CFTR proteins that make it to the membrane work better. But more and better treatment options are needed. Hegde, Parashuraman et al. have now tested drugs that control how proteins fold and move to the membrane to see how they affect gene expression in cells with the most common cystic fibrosis-causing mutation. These drugs are known to improve the activity of the CFTR mutant, but do so too weakly to be of clinical interest. The experiments revealed that the expression of a few hundred genes was changed in response the drugs. Many of these genes were involved in major signalling pathways that control how CFTR is folded and trafficked within cells. Next, Hegde, Parashuraman et al. tested drugs that inhibit these signalling pathways to see if they improve salt handling in the mutated cells. The experiments demonstrated that these inhibitor drugs efficiently block the breakdown of misfolded CFTR, or boost the likelihood of CFTR making it to the membrane, helping improve salt trafficking in the cells. The inhibitors produced even better results when used in combination with a known CFTR-protecting drug. The results suggest that identifying and targeting signalling pathways involved in the folding, trafficking, and breakdown of CFTR may prove a promising way to treat cystic fibrosis. DOI:http://dx.doi.org/10.7554/eLife.10365.002
Collapse
Affiliation(s)
- Ramanath Narayana Hegde
- Institute of Protein Biochemistry, National Research Council, Naples, Italy.,Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
| | - Seetharaman Parashuraman
- Institute of Protein Biochemistry, National Research Council, Naples, Italy.,Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
| | - Francesco Iorio
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
| | - Fabiana Ciciriello
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy.,Biology and Biotechnology Department "Charles Darwin", Sapienza University, Rome, Italy.,Department of Biochemistry, McIntyre Medical Sciences Building, McGill University, Montréal, Canada
| | | | | | - Diego Carrella
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
| | | | - Advait Subramanian
- Institute of Protein Biochemistry, National Research Council, Naples, Italy
| | - Laura Bounti
- Institute of Protein Biochemistry, National Research Council, Naples, Italy
| | - Maria Persico
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy
| | - Graeme Carlile
- Department of Biochemistry, McIntyre Medical Sciences Building, McGill University, Montréal, Canada
| | - Luis Galietta
- U.O.C. Genetica Medica, Institute of Giannina Gaslini, Genova, Italy
| | - David Y Thomas
- Department of Biochemistry, McIntyre Medical Sciences Building, McGill University, Montréal, Canada
| | - Diego Di Bernardo
- Telethon Institute of Genetics and Medicine, Pozzuoli, Italy.,Department of Electrical Engineering and Information Technology, University of Naples Federico II, Naples, Italy
| | - Alberto Luini
- Institute of Protein Biochemistry, National Research Council, Naples, Italy.,Telethon Institute of Genetics and Medicine, Pozzuoli, Italy.,Istituto di Ricovero e Cura a Carattere Scientifico SDN, Naples, Italy
| |
Collapse
|
52
|
Mandrich L, Cerreta M, Manco G. An Engineered Version of Human PON2 Opens the Way to Understand the Role of Its Post-Translational Modifications in Modulating Catalytic Activity. PLoS One 2015; 10:e0144579. [PMID: 26656916 PMCID: PMC4684340 DOI: 10.1371/journal.pone.0144579] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 11/20/2015] [Indexed: 12/31/2022] Open
Abstract
The human paraoxonase 2 (PON2) has been described as a highly specific lactonase hydrolysing the quorum sensing molecule N-(3-oxododecanoyl)-L-homoserine lactone (3OC12-HSL) and having secondary esterase but not phosphotriesterase activity, in contrast with the related enzymes PON1 and PON3. It has been suggested that PON2 enzyme activity is dependent on glycosylation and its N-terminal region has been recently demonstrated to be a transmembrane domain mediating association to membranes. In the present study we describe a mutated form of PON2, lacking the above N-terminal region, which has been further stabilized by the insertion of six amino acidic substitutions. The engineered version, hence forth called rPON2, has been over-expressed in E.coli, refolded from inclusion bodies and purified, yielding an enzyme with the same characteristics as the full length enzyme. Therefore the first conclusion of this work was that the catalytic activity is independent from the N-terminus and protein glycosylation. The kinetic characterization confirmed the primary activity on 3OC12-HSL; accordingly, in vitro experiments of inhibition of the biofilm formed by Pseudomonas aeruginosa (PAO1) have demonstrated that rPON2 is more effective than PON1. In addition, we observed small but significant activity against organophosphorothiotes pesticides, m-parathion, coumaphos and malathion.The availability of fair amount of active protein allowed to pinpoint, by mass-spectrometry, ubiquitination of Lys 168 induced in rPON2 by HeLa extract and to correlate such post-translational modification to the modulation of catalytic activity. A mutational analysis of the modified residue confirmed the result.
Collapse
Affiliation(s)
- Luigi Mandrich
- Institute of Protein Biochemistry, National Research Council, Via Pietro Castellino 111, 80131 Naples, Italy
- * E-mail:
| | - Mariangela Cerreta
- Institute of Protein Biochemistry, National Research Council, Via Pietro Castellino 111, 80131 Naples, Italy
| | - Giuseppe Manco
- Institute of Protein Biochemistry, National Research Council, Via Pietro Castellino 111, 80131 Naples, Italy
| |
Collapse
|
53
|
Amaral MD, Balch WE. Hallmarks of therapeutic management of the cystic fibrosis functional landscape. J Cyst Fibros 2015; 14:687-99. [PMID: 26526359 PMCID: PMC4644672 DOI: 10.1016/j.jcf.2015.09.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Revised: 09/16/2015] [Accepted: 09/16/2015] [Indexed: 01/29/2023]
Abstract
The cystic fibrosis (CF) transmembrane conductance regulator (CFTR) protein does not operate in isolation, rather in a dynamic network of interacting components that impact its synthesis, folding, stability, intracellular location and function, referred to herein as the 'CFTR Functional Landscape (CFFL)'. For the prominent F508del mutation, many of these interactors are deeply connected to a protein fold management system, the proteostasis network (PN). However, CF encompasses an additional 2000 CFTR variants distributed along its entire coding sequence (referred to as CFTR2), and each variant contributes a differential liability to PN management of CFTR and to a protein 'social network' (SN) that directs the probability of the (patho)physiologic events that impact ion transport in each cell, tissue and patient in health and disease. Recognition of the importance of the PN and SN in driving the unique patient CFFL leading to disease highlights the importance of precision medicine in therapeutic management of disease progression. We take the view herein that it is not CFTR, rather the PN/SN, and their impact on the CFFL, that are the key physiologic forces driving onset and clinical progression of CF. We posit that a deep understanding of each patients PN/SN gained by merging genomic, proteomic (mass spectrometry (MS)), and high-content microscopy (HCM) technologies in the context of novel network learning algorithms will lead to a paradigm shift in CF clinical management. This should allow for generation of new classes of patient specific PN/SN directed therapeutics for personalized management of the CFFL in the clinic.
Collapse
Affiliation(s)
- Margarida D Amaral
- University of Lisboa, Faculty of Sciences, BioISI - Biosystems & Integrative Sciences Institute, Lisboa, Portugal.
| | - William E Balch
- Department of Chemical Physiology, Department of Cell and Molecular Biology, The Skaggs Institute of Chemical Biology, The Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
54
|
Schulz A, Tümmler B. Non-allergic asthma as a CFTR-related disorder. J Cyst Fibros 2015; 15:641-4. [PMID: 26526220 DOI: 10.1016/j.jcf.2015.10.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 09/11/2015] [Accepted: 10/19/2015] [Indexed: 01/24/2023]
Abstract
BACKGROUND CFTR dysfunction can be involved in CBAVD, pancreatitis or bronchiectasis. METHODS Subjects with cystic fibrosis-like disease, equivocal sweat chloride concentrations and no or one disease-causing CFTR mutation were investigated by intestinal current and/or nasal potential difference measurements. RESULTS A subgroup of female patients who had been diagnosed to suffer from non-allergic asthma showed intermediary chloride concentrations in sweat test, normal chloride secretory responses in the intestine and an abnormal nasal potential difference with Sermet scores in the cystic fibrosis range. CONCLUSION Non-allergic asthma is a clinical entity that may be associated with CFTR dysfunction of the respiratory epithelium.
Collapse
Affiliation(s)
- Angela Schulz
- Clinic for Paediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), German Center for Lung Research, Hannover, Germany.
| | - Burkhard Tümmler
- Clinic for Paediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany; Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), German Center for Lung Research, Hannover, Germany.
| |
Collapse
|
55
|
Farinha CM, Matos P. Repairing the basic defect in cystic fibrosis - one approach is not enough. FEBS J 2015; 283:246-64. [PMID: 26416076 DOI: 10.1111/febs.13531] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 09/21/2015] [Accepted: 09/23/2015] [Indexed: 12/16/2022]
Abstract
Cystic fibrosis has attracted much attention in recent years due to significant advances in the pharmacological targeting of the basic defect underlying this recessive disorder: the deficient functional expression of mutant cystic fibrosis transmembrane conductance regulator (CFTR) chloride channels at the apical membrane of epithelial cells. However, increasing evidence points to the reduced efficacy of single treatments, thus reinforcing the need to combine several therapeutic strategies to effectively target the multiple basic defect(s). Protein-repair therapies that use potentiators (activating membrane-located CFTR) or correctors (promoting the relocation of intracellular-retained trafficking mutants of CFTR) in frequent mutations such as F508del and G551D have been put forward and made their way to the clinic with moderate to good efficiency. However, alternative (or additional) approaches targeting the membrane stability of mutant proteins, or correcting the cellular phenotype through a direct effect upon other ion channels (affecting the overall electrolyte transport or simply promoting alternative chloride transport) or targeting less frequent mutations (splicing variants, for example), have been proposed and tested in the field of cystic fibrosis (CF). Here, we cover the different strategies that rely on novel findings concerning the CFTR interactome and signalosome through which it might be possible to further influence the cellular trafficking and post-translational modification machinery (to increase rescued CFTR abundance and membrane stability). We also highlight the new data on strategies aiming at the regulation of sodium absorption or to increase chloride transport through alternative channels. The development and implementation of these complementary approaches will pave the way to combinatorial therapeutic strategies with increased benefit to CF patients.
Collapse
Affiliation(s)
- Carlos M Farinha
- BioISI - Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Portugal
| | - Paulo Matos
- BioISI - Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisboa, Portugal.,Department of Human Genetics, National Health Institute 'Dr. Ricardo Jorge', Lisboa, Portugal
| |
Collapse
|
56
|
Abstract
Cystic fibrosis is the most common genetically determined, life-limiting disorder in populations of European ancestry. The genetic basis of cystic fibrosis is well established to be mutations in the cystic fibrosis transmembrane conductance regulator (CFTR) gene that codes for an apical membrane chloride channel principally expressed by epithelial cells. Conventional approaches to cystic fibrosis care involve a heavy daily burden of supportive treatments to combat lung infection, help clear airway secretions and maintain nutritional status. In 2012, a new era of precision medicine in cystic fibrosis therapeutics began with the licensing of a small molecule, ivacaftor, which successfully targets the underlying defect and improves CFTR function in a subgroup of patients in a genotype-specific manner. Here, we review the three main targeted approaches that have been adopted to improve CFTR function: potentiators, which recover the function of CFTR at the apical surface of epithelial cells that is disrupted in class III and IV genetic mutations; correctors, which improve intracellular processing of CFTR, increasing surface expression, in class II mutations; and production correctors or read-through agents, which promote transcription of CFTR in class I mutations. The further development of such approaches offers great promise for future therapeutic strategies in cystic fibrosis.
Collapse
|
57
|
De Stefano D, Villella VR, Esposito S, Tosco A, Sepe A, De Gregorio F, Salvadori L, Grassia R, Leone CA, De Rosa G, Maiuri MC, Pettoello-Mantovani M, Guido S, Bossi A, Zolin A, Venerando A, Pinna LA, Mehta A, Bona G, Kroemer G, Maiuri L, Raia V. Restoration of CFTR function in patients with cystic fibrosis carrying the F508del-CFTR mutation. Autophagy 2015; 10:2053-74. [PMID: 25350163 PMCID: PMC4502695 DOI: 10.4161/15548627.2014.973737] [Citation(s) in RCA: 123] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Restoration of BECN1/Beclin 1-dependent autophagy and depletion of SQSTM1/p62 by genetic manipulation or autophagy-stimulatory proteostasis regulators, such as cystamine, have positive effects on mouse models of human cystic fibrosis (CF). These measures rescue the functional expression of the most frequent pathogenic CFTR mutant, F508del, at the respiratory epithelial surface and reduce lung inflammation in CftrF508del homozygous mice. Cysteamine, the reduced form of cystamine, is an FDA-approved drug. Here, we report that oral treatment with cysteamine greatly reduces the mortality rate and improves the phenotype of newborn mice bearing the F508del-CFTR mutation. Cysteamine was also able to increase the plasma membrane expression of the F508del-CFTR protein in nasal epithelial cells from F508del homozygous CF patients, and these effects persisted for 24 h after cysteamine withdrawal. Importantly, this cysteamine effect after washout was further sustained by the sequential administration of epigallocatechin gallate (EGCG), a green tea flavonoid, both in vivo, in mice, and in vitro, in primary epithelial cells from CF patients. In a pilot clinical trial involving 10 F508del-CFTR homozygous CF patients, the combination of cysteamine and EGCG restored BECN1, reduced SQSTM1 levels and improved CFTR function from nasal epithelial cells in vivo, correlating with a decrease of chloride concentrations in sweat, as well as with a reduction of the abundance of TNF/TNF-alpha (tumor necrosis factor) and CXCL8 (chemokine [C-X-C motif] ligand 8) transcripts in nasal brushing and TNF and CXCL8 protein levels in the sputum. Altogether, these results suggest that optimal schedules of cysteamine plus EGCG might be used for the treatment of CF caused by the F508del-CFTR mutation.
Collapse
Key Words
- BECN1/Beclin 1, autophagy-related
- CF, cystic fibrosis
- CFTR
- CFTR, cystic fibrosis transmembrane conductance regulator
- CHX, cycloheximide
- CSNK2, casein kinase 2
- CXCL2, chemokine (C-X-C motif) ligand 2
- CXCL8, chemokine (C-X-C motif) ligand 8
- EGCG, epigallocatechin gallate
- FEV, forced expiratory volume
- PM, plasma membrane
- RPD, rectal potential difference
- SQSTM1, sequestosome 1
- TGM2, transglutaminase 2
- TNF, tumor necrosis factor
- autophagy
- cysteamine
- cystic fibrosis
- epigallocatechin gallate
- sweat chloride
Collapse
Affiliation(s)
- Daniela De Stefano
- a European Institute for Research in Cystic Fibrosis; Division of Genetics and Cell Biology; San Raffaele Scientific Institute ; Milan , Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
58
|
Zhang Y, O'Brien WG, Zhao Z, Lee CC. 5'-adenosine monophosphate mediated cooling treatment enhances ΔF508-Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) stability in vivo. J Biomed Sci 2015; 22:72. [PMID: 26335336 PMCID: PMC4559075 DOI: 10.1186/s12929-015-0178-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 08/20/2015] [Indexed: 12/26/2022] Open
Abstract
Background Gene mutations that produce misprocessed proteins are linked to many human disorders. Interestingly, some misprocessed proteins retained their biological function when stabilized by low temperature treatment of cultured cells in vitro. Here we investigate whether low temperature treatment in vivo can rescue misfolded proteins by applying 5’-AMP mediated whole body cooling to a Cystic Fibrosis (CF) mouse model carrying a mutant cystic fibrosis transmembrane conductance regulator (CFTR) with a deletion of the phenylalanine residue in position 508 (ΔF508-CFTR). Low temperature treatment of cultured cells was previously shown to be able to alleviate the processing defect of ΔF508-CFTR, enhancing its plasma membrane localization and its function in mediating chloride ion transport. Results Here, we report that whole body cooling enhanced the retention of ΔF508-CFTR in intestinal epithelial cells. Functional analysis based on β-adrenergic dependent salivary secretion and post-natal mortality rate revealed a moderate but significant improvement in treated compared with untreated CF mice. Conclusions Our findings demonstrate that temperature sensitive processing of mutant proteins can be responsive to low temperature treatment in vivo.
Collapse
Affiliation(s)
- Yueqiang Zhang
- Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - William G O'Brien
- Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Zhaoyang Zhao
- Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA
| | - Cheng Chi Lee
- Department of Biochemistry and Molecular Biology, University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
| |
Collapse
|
59
|
Loureiro CA, Matos AM, Dias-Alves Â, Pereira JF, Uliyakina I, Barros P, Amaral MD, Matos P. A molecular switch in the scaffold NHERF1 enables misfolded CFTR to evade the peripheral quality control checkpoint. Sci Signal 2015; 8:ra48. [PMID: 25990958 DOI: 10.1126/scisignal.aaa1580] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The peripheral protein quality control (PPQC) checkpoint removes improperly folded proteins from the plasma membrane through a mechanism involving the E3 ubiquitin ligase CHIP (carboxyl terminus of Hsc70 interacting protein). PPQC limits the efficacy of some cystic fibrosis (CF) drugs, such as VX-809, that improve trafficking to the plasma membrane of misfolded mutants of the CF transmembrane conductance regulator (CFTR), including F508del-CFTR, which retains partial functionality. We investigated the PPQC checkpoint in lung epithelial cells with F508del-CFTR that were exposed to VX-809. The conformation of the scaffold protein NHERF1 (Na(+)/H(+) exchange regulatory factor 1) determined whether the PPQC recognized "rescued" F508del-CFTR (the portion that reached the cell surface in VX-809-treated cells). Activation of the cytoskeletal regulator Rac1 promoted an interaction between the actin-binding adaptor protein ezrin and NHERF1, triggering exposure of the second PDZ domain of NHERF1, which interacted with rescued F508del-CFTR. Because binding of F508del-CFTR to the second PDZ of NHERF1 precluded the recruitment of CHIP, the coexposure of airway cells to Rac1 activator nearly tripled the efficacy of VX-809. Interference with the NHERF1-ezrin interaction prevented the increase of efficacy of VX-809 by Rac1 activation, but the actin-binding domain of ezrin was not required for the increase in efficacy. Thus, rather than mainly directing anchoring of F508del-CFTR to the actin cytoskeleton, induction of ezrin activation by Rac1 signaling triggered a conformational change in NHERF1, which was then able to bind and stabilize misfolded CFTR at the plasma membrane. These insights into the cell surface stabilization of CFTR provide new targets to improve treatment of CF.
Collapse
Affiliation(s)
- Cláudia A Loureiro
- Department of Human Genetics, National Health Institute Doutor Ricardo Jorge, Av. Padre Cruz, 1649-016 Lisboa, Portugal. Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisboa, Campo Grande-C8, 1749-016 Lisboa, Portugal
| | - Ana Margarida Matos
- Department of Human Genetics, National Health Institute Doutor Ricardo Jorge, Av. Padre Cruz, 1649-016 Lisboa, Portugal. Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisboa, Campo Grande-C8, 1749-016 Lisboa, Portugal
| | - Ângela Dias-Alves
- Department of Human Genetics, National Health Institute Doutor Ricardo Jorge, Av. Padre Cruz, 1649-016 Lisboa, Portugal. Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisboa, Campo Grande-C8, 1749-016 Lisboa, Portugal
| | - Joana F Pereira
- Department of Human Genetics, National Health Institute Doutor Ricardo Jorge, Av. Padre Cruz, 1649-016 Lisboa, Portugal. Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisboa, Campo Grande-C8, 1749-016 Lisboa, Portugal
| | - Inna Uliyakina
- Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisboa, Campo Grande-C8, 1749-016 Lisboa, Portugal
| | - Patrícia Barros
- Department of Human Genetics, National Health Institute Doutor Ricardo Jorge, Av. Padre Cruz, 1649-016 Lisboa, Portugal. Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisboa, Campo Grande-C8, 1749-016 Lisboa, Portugal
| | - Margarida D Amaral
- Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisboa, Campo Grande-C8, 1749-016 Lisboa, Portugal
| | - Paulo Matos
- Department of Human Genetics, National Health Institute Doutor Ricardo Jorge, Av. Padre Cruz, 1649-016 Lisboa, Portugal. Biosystems & Integrative Sciences Institute (BioISI), Faculty of Sciences, University of Lisboa, Campo Grande-C8, 1749-016 Lisboa, Portugal.
| |
Collapse
|
60
|
Hildebrandt E, Mulky A, Ding H, Dai Q, Aleksandrov AA, Bajrami B, Diego PA, Wu X, Ray M, Naren AP, Riordan JR, Yao X, DeLucas LJ, Urbatsch IL, Kappes JC. A stable human-cell system overexpressing cystic fibrosis transmembrane conductance regulator recombinant protein at the cell surface. Mol Biotechnol 2015; 57:391-405. [PMID: 25577540 PMCID: PMC4405497 DOI: 10.1007/s12033-014-9830-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Recent human clinical trials results demonstrated successful treatment for certain genetic forms of cystic fibrosis (CF). To extend treatment opportunities to those afflicted with other genetic forms of CF disease, structural and biophysical characterization of CF transmembrane conductance regulator (CFTR) is urgently needed. In this study, CFTR was modified with various tags, including a His10 purification tag, the SUMOstar (SUMO*) domain, an extracellular FLAG epitope, and an enhanced green fluorescent protein (EGFP), each alone or in various combinations. Expressed in HEK293 cells, recombinant CFTR proteins underwent complex glycosylation, compartmentalized with the plasma membrane, and exhibited regulated chloride-channel activity with only modest alterations in channel conductance and gating kinetics. Surface CFTR expression level was enhanced by the presence of SUMO* on the N-terminus. Quantitative mass-spectrometric analysis indicated approximately 10% of the total recombinant CFTR (SUMO*-CFTR(FLAG)-EGFP) localized to the plasma membrane. Trial purification using dodecylmaltoside for membrane protein extraction reproducibly recovered 178 ± 56 μg SUMO*-CFTR(FLAG)-EGFP per billion cells at 80% purity. Fluorescence size-exclusion chromatography indicated purified CFTR was monodisperse. These findings demonstrate a stable mammalian cell expression system capable of producing human CFTR of sufficient quality and quantity to augment future CF drug discovery efforts, including biophysical and structural studies.
Collapse
Affiliation(s)
- Ellen Hildebrandt
- Department of Cell Biology and Biochemistry, and Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX 79430
| | - Alok Mulky
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Haitao Ding
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Qun Dai
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Andrei A. Aleksandrov
- Department of Biochemistry & Biophysics, University of North Carolina, Chapel Hill, NC 27599
| | - Bekim Bajrami
- Department of Chemistry, University of Connecticut, Storrs, CT 06269
| | - Pamela Ann Diego
- Department of Chemistry, University of Connecticut, Storrs, CT 06269
| | - Xing Wu
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Marjorie Ray
- Department of Optometry, University of Alabama at Birmingham, Birmingham, AL 35294
| | | | - John R. Riordan
- Department of Biochemistry & Biophysics, University of North Carolina, Chapel Hill, NC 27599
| | - Xudong Yao
- Department of Chemistry, University of Connecticut, Storrs, CT 06269
| | - Lawrence J. DeLucas
- Department of Optometry, University of Alabama at Birmingham, Birmingham, AL 35294
| | - Ina L. Urbatsch
- Department of Cell Biology and Biochemistry, and Center for Membrane Protein Research, Texas Tech University Health Sciences Center, Lubbock, TX 79430
| | - John C. Kappes
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL 35294
- Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35294
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229
- Birmingham Veterans Affairs Medical Center, Research Service, Birmingham, AL 35233
| |
Collapse
|
61
|
Heidrich E, Carattino MD, Hughey RP, Pilewski JM, Kleyman TR, Myerburg MM. Intracellular Na+ regulates epithelial Na+ channel maturation. J Biol Chem 2015; 290:11569-77. [PMID: 25767115 DOI: 10.1074/jbc.m115.640763] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Indexed: 12/28/2022] Open
Abstract
Epithelial Na(+) channel (ENaC) function is regulated by the intracellular Na(+) concentration ([Na(+)]i) through a process known as Na(+) feedback inhibition. Although this process is known to decrease the expression of proteolytically processed active channels on the cell surface, it is unknown how [Na(+)]i alters ENaC cleavage. We show here that [Na(+)]i regulates the posttranslational processing of ENaC subunits during channel biogenesis. At times when [Na(+)]i is low, ENaC subunits develop mature N-glycans and are processed by proteases. Conversely, glycan maturation and sensitivity to proteolysis are reduced when [Na(+)]i is relatively high. Surface channels with immature N-glycans were not processed by endogenous channel activating proteases, nor were they sensitive to cleavage by exogenous trypsin. Biotin chase experiments revealed that the immature surface channels were not converted into mature cleaved channels following a reduction in [Na(+)]i. The hypothesis that [Na(+)]i regulates ENaC maturation within the biosynthetic pathways is further supported by the finding that Brefeldin A prevented the accumulation of processed surface channels following a reduction in [Na(+)]i. Therefore, increased [Na(+)]i interferes with ENaC N-glycan maturation and prevents the channel from entering a state that allows proteolytic processing.
Collapse
Affiliation(s)
- Elisa Heidrich
- From the Division of Pulmonary, Allergy, and Critical Care Medicine
| | - Marcelo D Carattino
- Renal-Electrolyte Division, and Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | - Rebecca P Hughey
- From the Division of Pulmonary, Allergy, and Critical Care Medicine, Renal-Electrolyte Division, and
| | - Joseph M Pilewski
- From the Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | - Thomas R Kleyman
- Renal-Electrolyte Division, and Department of Cell Biology, University of Pittsburgh, Pittsburgh, Pennsylvania 15213
| | - Mike M Myerburg
- From the Division of Pulmonary, Allergy, and Critical Care Medicine,
| |
Collapse
|
62
|
Abstract
Thyroid follicular epithelial cells produce thyroxine (T4) and its physiologically active derivative, 3,3',5-triiodothyronine (T3), hormones that regulate critical developmental and metabolic functions. In order for the thyroid to form hormone precursor, iodide, the defining element in thyroid hormone, must cross both blood-facing and luminal sides of the follicular epithelium. The pathway for uptake from blood is well understood, but the mechanism(s) that enable iodide to cross the luminally facing apical membrane remain obscure. This chapter considers the physiological properties of several molecularly characterized anion transport proteins, all of which potentially contribute to the overall mechanism of apical iodide efflux.
Collapse
Affiliation(s)
- Peying Fong
- Department of Anatomy and Physiology, Kansas State University College of Veterinary Medicine, Manhattan, Kansas, USA.
| |
Collapse
|
63
|
Gene expression in transformed lymphocytes reveals variation in endomembrane and HLA pathways modifying cystic fibrosis pulmonary phenotypes. Am J Hum Genet 2015; 96:318-28. [PMID: 25640674 DOI: 10.1016/j.ajhg.2014.12.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 12/23/2014] [Indexed: 11/23/2022] Open
Abstract
Variation in cystic fibrosis (CF) phenotypes, including lung disease severity, age of onset of persistent Pseudomonas aeruginosa (P. aeruginosa) lung infection, and presence of meconium ileus (MI), has been partially explained by genome-wide association studies (GWASs). It is not expected that GWASs alone are sufficiently powered to uncover all heritable traits associated with CF phenotypic diversity. Therefore, we utilized gene expression association from lymphoblastoid cells lines from 754 p.Phe508del CF-affected homozygous individuals to identify genes and pathways. LPAR6, a G protein coupled receptor, associated with lung disease severity (false discovery rate q value = 0.0006). Additional pathway analyses, utilizing a stringent permutation-based approach, identified unique signals for all three phenotypes. Pathways associated with lung disease severity were annotated in three broad categories: (1) endomembrane function, containing p.Phe508del processing genes, providing evidence of the importance of p.Phe508del processing to explain lung phenotype variation; (2) HLA class I genes, extending previous GWAS findings in the HLA region; and (3) endoplasmic reticulum stress response genes. Expression pathways associated with lung disease were concordant for some endosome and HLA pathways, with pathways identified using GWAS associations from 1,978 CF-affected individuals. Pathways associated with age of onset of persistent P. aeruginosa infection were enriched for HLA class II genes, and those associated with MI were related to oxidative phosphorylation. Formal testing demonstrated that genes showing differential expression associated with lung disease severity were enriched for heritable genetic variation and expression quantitative traits. Gene expression provided a powerful tool to identify unrecognized heritable variation, complementing ongoing GWASs in this rare disease.
Collapse
|
64
|
The safety dance: biophysics of membrane protein folding and misfolding in a cellular context. Q Rev Biophys 2014; 48:1-34. [PMID: 25420508 DOI: 10.1017/s0033583514000110] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Most biological processes require the production and degradation of proteins, a task that weighs heavily on the cell. Mutations that compromise the conformational stability of proteins place both specific and general burdens on cellular protein homeostasis (proteostasis) in ways that contribute to numerous diseases. Efforts to elucidate the chain of molecular events responsible for diseases of protein folding address one of the foremost challenges in biomedical science. However, relatively little is known about the processes by which mutations prompt the misfolding of α-helical membrane proteins, which rely on an intricate network of cellular machinery to acquire and maintain their functional structures within cellular membranes. In this review, we summarize the current understanding of the physical principles that guide membrane protein biogenesis and folding in the context of mammalian cells. Additionally, we explore how pathogenic mutations that influence biogenesis may differ from those that disrupt folding and assembly, as well as how this may relate to disease mechanisms and therapeutic intervention. These perspectives indicate an imperative for the use of information from structural, cellular, and biochemical studies of membrane proteins in the design of novel therapeutics and in personalized medicine.
Collapse
|
65
|
Wang Y, Liu J, Loizidou A, Bugeja LA, Warner R, Hawley BR, Cai Z, Toye AM, Sheppard DN, Li H. CFTR potentiators partially restore channel function to A561E-CFTR, a cystic fibrosis mutant with a similar mechanism of dysfunction as F508del-CFTR. Br J Pharmacol 2014; 171:4490-503. [PMID: 24902474 DOI: 10.1111/bph.12791] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Revised: 04/22/2014] [Accepted: 05/24/2014] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND AND PURPOSE Dysfunction of the cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channel causes the genetic disease cystic fibrosis (CF). Towards the development of transformational drug therapies for CF, we investigated the channel function and action of CFTR potentiators on A561E, a CF mutation found frequently in Portugal. Like the most common CF mutation F508del, A561E causes a temperature-sensitive folding defect that prevents CFTR delivery to the cell membrane and is associated with severe disease. EXPERIMENTAL APPROACH Using baby hamster kidney cells expressing recombinant CFTR, we investigated CFTR expression by cell surface biotinylation, and function and pharmacology with the iodide efflux and patch-clamp techniques. KEY RESULTS Low temperature incubation delivered a small proportion of A561E-CFTR protein to the cell surface. Like F508del-CFTR, low temperature-rescued A561E-CFTR exhibited a severe gating defect characterized by brief channel openings separated by prolonged channel closures. A561E-CFTR also exhibited thermoinstability, losing function more quickly than F508del-CFTR in cell-free membrane patches and intact cells. Using the iodide efflux assay, CFTR potentiators, including genistein and the clinically approved small-molecule ivacaftor, partially restored function to A561E-CFTR. Interestingly, ivacaftor restored wild-type levels of channel activity (as measured by open probability) to single A561E- and F508del-CFTR Cl(-) channels. However, it accentuated the thermoinstability of both mutants in cell-free membrane patches. CONCLUSIONS AND IMPLICATIONS Like F508del-CFTR, A561E-CFTR perturbs protein processing, thermostability and channel gating. CFTR potentiators partially restore channel function to low temperature-rescued A561E-CFTR. Transformational drug therapy for A561E-CFTR is likely to require CFTR correctors, CFTR potentiators and special attention to thermostability.
Collapse
Affiliation(s)
- Yiting Wang
- School of Physiology and Pharmacology, University of Bristol, Bristol, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
66
|
Lipatova Z, Segev N. Ypt/Rab GTPases regulate two intersections of the secretory and the endosomal/lysosomal pathways. CELLULAR LOGISTICS 2014; 4:e954870. [PMID: 25610722 DOI: 10.4161/21592780.2014.954870] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Accepted: 08/07/2014] [Indexed: 11/19/2022]
Abstract
A prevailing question in the Ypt/Rab field is whether these conserved GTPases are specific to cellular compartments. The established role for Ypt1 and its human homolog Rab1 is in endoplasmic reticulum (ER)-to-Golgi transport. More recently these regulators were implicated also in autophagy. Two different TRAPP complexes, I and III, were identified as the guanine-nucleotide-exchange factors (GEFs) of Ypt1 in ER-to-Golgi transport and autophagy, respectively. Confusingly, Ypt1 and TRAPP III were also suggested to regulate endosome-to-Golgi transport, implying that they function at multiple cellular compartments, and bringing into question the nature of Ypt/Rab specificity. Recently, we showed that the role of TRAPP III and Ypt1 in autophagy occurs at the ER and that they do not regulate endosome-to-Golgi transport. Here, we discuss the significance of this conclusion to the idea that Ypt/Rabs are specific to cellular compartments. We postulate that Ypt1 regulates 2 alternative routes emanating from the ER toward the Golgi and the lysosome/vacuole. We further propose that the secretory and endocytic/lysosomal pathways intersect in 2 junctures, and 2 Ypts, Ypt1 and Ypt31, coordinate transport in the 2 intersections: Ypt1 links ER-to-Golgi and ER-to-autophagy transport, whereas Ypt31 links Golgi-to-plasma membrane (PM) transport with PM-to-Golgi recycling through endosomes.
Collapse
Affiliation(s)
- Zhanna Lipatova
- Department of Biochemistry and Molecular Genetics; University of Illinois at Chicago ; Chicago, IL USA
| | - Nava Segev
- Department of Biochemistry and Molecular Genetics; University of Illinois at Chicago ; Chicago, IL USA
| |
Collapse
|
67
|
Boucherle B, Bertrand J, Maurin B, Renard BL, Fortuné A, Tremblier B, Becq F, Norez C, Décout JL. A new 9-alkyladenine-cyclic methylglyoxal diadduct activates wt- and F508del-cystic fibrosis transmembrane conductance regulator (CFTR) in vitro and in vivo. Eur J Med Chem 2014; 83:455-65. [PMID: 24992073 DOI: 10.1016/j.ejmech.2014.06.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2014] [Revised: 06/12/2014] [Accepted: 06/13/2014] [Indexed: 01/28/2023]
Abstract
Cystic fibrosis transmembrane conductance regulator (CFTR) is the main chloride channel present in the apical membrane of epithelial cells and the F508 deletion (F508del-CFTR) in the CF gene is the most common cystic fibrosis-causing mutation. In the search for a pharmacotherapy of cystic fibrosis caused by the F508del-CFTR, a bi-therapy could be developed associating a corrector of F508del-CFTR trafficking and an activator of the channel activity of CFTR. Here, we report on the synthesis of 9-alkyladenine derivatives analogues of our previously discovered activator of wt-CFTR and F508del-CFTR, GPact-11a, and the identification of a new activator of these channels, GPact-26a, through various flux assays on human airway epithelial CF and non-CF cell lines and in vivo measurement of rat salivary secretion. This study reveals that the possible modifications of the side chain introduced at the N9 position of the main pharmacophore are highly limited since only an allyl group can replace the propyl side chain present in GPact-11a to lead to a strong activation of wt-CFTR in CHO cells. Docking simulations of the synthesised compounds and of four described modulators performed using a 3D model of the wt-type CFTR protein suggest five possible binding sites located at the interface of the nucleotide binding domains NBD1/NBD2. However, the docking study did not allow the differentiation between active and non-active compounds.
Collapse
Affiliation(s)
- Benjamin Boucherle
- Université Grenoble Alpes, Joseph Fourier/CNRS, UMR 5063, Département de Pharmacochimie Moléculaire, 470 rue de la Chimie, F-38041 Grenoble, France
| | - Johanna Bertrand
- Université de Poitiers/CNRS, Laboratoire Signalisation et Transports Ioniques Membranaires, 1 rue Georges Bonnet, F-86022 Poitiers, France
| | - Bruno Maurin
- Université Grenoble Alpes, Joseph Fourier/CNRS, UMR 5063, Département de Pharmacochimie Moléculaire, 470 rue de la Chimie, F-38041 Grenoble, France
| | - Brice-Loïc Renard
- Université Grenoble Alpes, Joseph Fourier/CNRS, UMR 5063, Département de Pharmacochimie Moléculaire, 470 rue de la Chimie, F-38041 Grenoble, France
| | - Antoine Fortuné
- Université Grenoble Alpes, Joseph Fourier/CNRS, UMR 5063, Département de Pharmacochimie Moléculaire, 470 rue de la Chimie, F-38041 Grenoble, France
| | - Brice Tremblier
- Université de Poitiers/CNRS, Laboratoire Signalisation et Transports Ioniques Membranaires, 1 rue Georges Bonnet, F-86022 Poitiers, France
| | - Frédéric Becq
- Université de Poitiers/CNRS, Laboratoire Signalisation et Transports Ioniques Membranaires, 1 rue Georges Bonnet, F-86022 Poitiers, France
| | - Caroline Norez
- Université de Poitiers/CNRS, Laboratoire Signalisation et Transports Ioniques Membranaires, 1 rue Georges Bonnet, F-86022 Poitiers, France
| | - Jean-Luc Décout
- Université Grenoble Alpes, Joseph Fourier/CNRS, UMR 5063, Département de Pharmacochimie Moléculaire, 470 rue de la Chimie, F-38041 Grenoble, France.
| |
Collapse
|
68
|
Wang Y, Wrennall JA, Cai Z, Li H, Sheppard DN. Understanding how cystic fibrosis mutations disrupt CFTR function: from single molecules to animal models. Int J Biochem Cell Biol 2014; 52:47-57. [PMID: 24727426 DOI: 10.1016/j.biocel.2014.04.001] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 04/01/2014] [Accepted: 04/02/2014] [Indexed: 12/21/2022]
Abstract
Defective epithelial ion transport is the hallmark of the life-limiting genetic disease cystic fibrosis (CF). This abnormality is caused by mutations in the cystic fibrosis transmembrane conductance regulator (CFTR), the ATP-binding cassette transporter that functions as a ligand-gated anion channel. Since the identification of the CFTR gene, almost 2000 disease-causing mutations associated with a spectrum of clinical phenotypes have been reported, but the majority remain poorly characterised. Studies of a small number of mutations including the most common, F508del-CFTR, have identified six general mechanisms of CFTR dysfunction. Here, we review selectively progress to understand how CF mutations disrupt CFTR processing, stability and function. We explore CFTR structure and function to explain the molecular mechanisms of CFTR dysfunction and highlight new knowledge of disease pathophysiology emerging from large animal models of CF. Understanding CFTR dysfunction is crucial to the development of transformational therapies for CF patients.
Collapse
Affiliation(s)
- Yiting Wang
- School of Physiology and Pharmacology, University of Bristol, Medical Sciences Building, University Walk, Bristol BS8 1TD, UK
| | - Joe A Wrennall
- School of Physiology and Pharmacology, University of Bristol, Medical Sciences Building, University Walk, Bristol BS8 1TD, UK
| | - Zhiwei Cai
- School of Physiology and Pharmacology, University of Bristol, Medical Sciences Building, University Walk, Bristol BS8 1TD, UK
| | - Hongyu Li
- School of Physiology and Pharmacology, University of Bristol, Medical Sciences Building, University Walk, Bristol BS8 1TD, UK
| | - David N Sheppard
- School of Physiology and Pharmacology, University of Bristol, Medical Sciences Building, University Walk, Bristol BS8 1TD, UK.
| |
Collapse
|
69
|
Xu Z, Pissarra LS, Farinha CM, Liu J, Cai Z, Thibodeau PH, Amaral MD, Sheppard DN. Revertant mutants modify, but do not rescue, the gating defect of the cystic fibrosis mutant G551D-CFTR. J Physiol 2014; 592:1931-47. [PMID: 24591578 DOI: 10.1113/jphysiol.2014.271817] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Cystic fibrosis (CF) is caused by dysfunction of the epithelial anion channel cystic fibrosis transmembrane conductance regulator (CFTR). One strategy to restore function to CF mutants is to suppress defects in CFTR processing and function using revertant mutations. Here, we investigate the effects of the revertant mutations G550E and 4RK (the simultaneous disruption of four arginine-framed tripeptides (AFTs): R29K, R516K, R555K and R766K) on the CF mutant G551D, which impairs severely channel gating without altering protein processing and which affects a residue in the same α-helix as G550 and R555. Both G550E and 4RK augmented strongly CFTR-mediated iodide efflux from BHK cells expressing G551D-CFTR. To learn how revertant mutations influence G551D-CFTR function, we studied protein processing and single-channel behaviour. Neither G550E nor 4RK altered the expression and maturation of G551D-CFTR protein. By contrast, both revertants had marked effects on G551D-CFTR channel gating, increasing strongly opening frequency, while 4RK also diminished noticeably the duration of channel openings. Because G551D-CFTR channel gating is ATP independent, we investigated whether revertant mutations restore ATP dependence to G551D-CFTR. Like wild-type CFTR, the activity of 4RK-G551D-CFTR varied with ATP concentration, suggesting that 4RK confers some ATP dependence on the G551D-CFTR channel. Thus, the revertant mutations G550E and 4RK alter the gating pattern and ATP dependence of G551D-CFTR without restoring single-channel activity to wild-type levels. Based on their impact on the CF mutants F508del and G551D, we conclude that G550E and 4RK have direct effects on CFTR structure, but that their action on CFTR processing and channel function is CF mutation specific.
Collapse
Affiliation(s)
- Zhe Xu
- University of Bristol, School of Physiology and Pharmacology, Medical Sciences Building, University Walk, Bristol BS8 1TD, UK.
| | | | | | | | | | | | | | | |
Collapse
|
70
|
Bomberger JM, Coutermarsh BA, Barnaby RL, Sato JD, Chapline MC, Stanton BA. Serum and glucocorticoid-inducible kinase1 increases plasma membrane wt-CFTR in human airway epithelial cells by inhibiting its endocytic retrieval. PLoS One 2014; 9:e89599. [PMID: 24586903 PMCID: PMC3931797 DOI: 10.1371/journal.pone.0089599] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Accepted: 01/23/2014] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Chloride (Cl) secretion by the Cystic Fibrosis Transmembrane Conductance Regulator (CFTR) located in the apical membrane of respiratory epithelial cells plays a critical role in maintenance of the airway surface liquid and mucociliary clearance of pathogens. Previously, we and others have shown that the serum and glucocorticoid-inducible kinase-1 (SGK1) increases wild type CFTR (wt-CFTR) mediated Cl transport in Xenopus oocytes by increasing the amount of wt-CFTR protein in the plasma membrane. However, the effect of SGK1 on the membrane abundance of wt-CFTR in airway epithelial cells has not been examined, and the mechanism whereby SGK1 increases membrane wt-CFTR has also not been examined. Thus, the goal of this study was to elucidate the mechanism whereby SGK1 regulates the membrane abundance of wt-CFTR in human airway epithelial cells. METHODS AND RESULTS We report that elevated levels of SGK1, induced by dexamethasone, increase plasma membrane abundance of wt-CFTR. Reduction of SGK1 expression by siRNA (siSGK1) and inhibition of SGK1 activity by the SGK inhibitor GSK 650394 abrogated the ability of dexamethasone to increase plasma membrane wt-CFTR. Overexpression of a constitutively active SGK1 (SGK1-S422D) increased plasma membrane abundance of wt-CFTR. To understand the mechanism whereby SGK1 increased plasma membrane wt-CFTR, we examined the effects of siSGK1 and SGK1-S442D on the endocytic retrieval of wt-CFTR. While siSGK1 increased wt-CFTR endocytosis, SGK1-S442D inhibited CFTR endocytosis. Neither siSGK1 nor SGK1-S442D altered the recycling of endocytosed wt-CFTR back to the plasma membrane. By contrast, SGK1 increased the endocytosis of the epidermal growth factor receptor (EGFR). CONCLUSION This study demonstrates for the first time that SGK1 selectively increases wt-CFTR in the plasma membrane of human airway epithelia cells by inhibiting its endocytic retrieval from the membrane.
Collapse
Affiliation(s)
- Jennifer M. Bomberger
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Bonita A. Coutermarsh
- Department of Microbiology and Immunology and of Physiology, The Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - Roxanna L. Barnaby
- Department of Microbiology and Immunology and of Physiology, The Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
| | - J. Denry Sato
- Mt. Desert Island Biological Laboratory, Salisbury Cove, Maine, United States of America
| | - M. Christine Chapline
- Mt. Desert Island Biological Laboratory, Salisbury Cove, Maine, United States of America
| | - Bruce A. Stanton
- Department of Microbiology and Immunology and of Physiology, The Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, United States of America
- Mt. Desert Island Biological Laboratory, Salisbury Cove, Maine, United States of America
- * E-mail:
| |
Collapse
|
71
|
CFTR structure and cystic fibrosis. Int J Biochem Cell Biol 2014; 52:15-25. [PMID: 24534272 DOI: 10.1016/j.biocel.2014.02.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 02/04/2014] [Accepted: 02/06/2014] [Indexed: 12/31/2022]
Abstract
CFTR (cystic fibrosis transmembrane conductance regulator) is a member of the ATP-binding cassette family of membrane proteins. Although almost all members of this family are transporters, CFTR functions as a channel with specificity for anions, in particular chloride and bicarbonate. In this review we look at what is known about CFTR structure and function within the context of the ATP-binding cassette family. We also review current strategies aimed at obtaining the high resolution structure of the protein.
Collapse
|