51
|
Wang Q, He J. Complete nitrogen removal via simultaneous nitrification and denitrification by a novel phosphate accumulating Thauera sp. strain SND5. WATER RESEARCH 2020; 185:116300. [PMID: 32823196 DOI: 10.1016/j.watres.2020.116300] [Citation(s) in RCA: 116] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 08/01/2020] [Accepted: 08/12/2020] [Indexed: 06/11/2023]
Abstract
Bacteria capable of simultaneous nitrification and denitrification (SND) and phosphate removal could eliminate the need for separate reactors to remove nutrients from wastewater and alleviate competition for carbon sources between different heterotrophs in wastewater treatment plants (WWTPs). Here we report a newly isolated Thauera sp. strain SND5, that removes nitrogen and phosphorus from wastewater via SND and denitrifying-phosphate accumulation, respectively, without accumulation of metabolic intermediates. Strain SND5 simultaneously removes ammonium, nitrite, and nitrate at an average rate of 2.85, 1.98, and 2.42 mg-N/L/h, respectively. Batch testing, detection of functional genes, nitrogenous gas detection and thermodynamic analysis suggested that nitrogen gas, with hydroxylamine produced as an intermediate, was the most likely end products of heterotrophic ammonium oxidation by strain SND5. The generated end products and intermediates suggest a novel nitrogen removal mechanism for heterotrophic ammonium oxidation in strain SND5 (NH4+→NH2OH→N2). Strain SND5 was also found to be a denitrifying phosphate-accumulating organism, capable of accumulating phosphate, producing and storing polyhydroxybutyrate (PHB) as an intracellular source of carbon while using nitrate/nitrite or oxygen as an electron acceptor during PHB catabolism. This study identifies a novel pathway by which simultaneous nitrogen and phosphorus removal occurs in WWTPs via a single microbe.
Collapse
Affiliation(s)
- Qingkun Wang
- Department of Civil and Environmental Engineering, National University of Singapore, Block E2-02-13, 1 Engineering Drive 3, 117576, Singapore
| | - Jianzhong He
- Department of Civil and Environmental Engineering, National University of Singapore, Block E2-02-13, 1 Engineering Drive 3, 117576, Singapore.
| |
Collapse
|
52
|
Abstract
Over many millennia, northern peatlands have accumulated large amounts of carbon and nitrogen, thus cooling the global climate. Over shorter timescales, peatland disturbances can trigger losses of peat and release of greenhouses gases. Despite their importance to the global climate, peatlands remain poorly mapped, and the vulnerability of permafrost peatlands to warming is uncertain. This study compiles over 7,000 field observations to present a data-driven map of northern peatlands and their carbon and nitrogen stocks. We use these maps to model the impact of permafrost thaw on peatlands and find that warming will likely shift the greenhouse gas balance of northern peatlands. At present, peatlands cool the climate, but anthropogenic warming can shift them into a net source of warming. Northern peatlands have accumulated large stocks of organic carbon (C) and nitrogen (N), but their spatial distribution and vulnerability to climate warming remain uncertain. Here, we used machine-learning techniques with extensive peat core data (n > 7,000) to create observation-based maps of northern peatland C and N stocks, and to assess their response to warming and permafrost thaw. We estimate that northern peatlands cover 3.7 ± 0.5 million km2 and store 415 ± 150 Pg C and 10 ± 7 Pg N. Nearly half of the peatland area and peat C stocks are permafrost affected. Using modeled global warming stabilization scenarios (from 1.5 to 6 °C warming), we project that the current sink of atmospheric C (0.10 ± 0.02 Pg C⋅y−1) in northern peatlands will shift to a C source as 0.8 to 1.9 million km2 of permafrost-affected peatlands thaw. The projected thaw would cause peatland greenhouse gas emissions equal to ∼1% of anthropogenic radiative forcing in this century. The main forcing is from methane emissions (0.7 to 3 Pg cumulative CH4-C) with smaller carbon dioxide forcing (1 to 2 Pg CO2-C) and minor nitrous oxide losses. We project that initial CO2-C losses reverse after ∼200 y, as warming strengthens peatland C-sinks. We project substantial, but highly uncertain, additional losses of peat into fluvial systems of 10 to 30 Pg C and 0.4 to 0.9 Pg N. The combined gaseous and fluvial peatland C loss estimated here adds 30 to 50% onto previous estimates of permafrost-thaw C losses, with southern permafrost regions being the most vulnerable.
Collapse
|
53
|
Liu S, Zheng Y, Ma R, Yu K, Han Z, Xiao S, Li Z, Wu S, Li S, Wang J, Luo Y, Zou J. Increased soil release of greenhouse gases shrinks terrestrial carbon uptake enhancement under warming. GLOBAL CHANGE BIOLOGY 2020; 26:4601-4613. [PMID: 32400947 DOI: 10.1111/gcb.15156] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 04/20/2020] [Accepted: 05/01/2020] [Indexed: 06/11/2023]
Abstract
Warming can accelerate the decomposition of soil organic matter and stimulate the release of soil greenhouse gases (GHGs), but to what extent soil release of methane (CH4 ) and nitrous oxide (N2 O) may contribute to soil C loss for driving climate change under warming remains unresolved. By synthesizing 1,845 measurements from 164 peer-reviewed publications, we show that around 1.5°C (1.16-2.01°C) of experimental warming significantly stimulates soil respiration by 12.9%, N2 O emissions by 35.2%, CH4 emissions by 23.4% from rice paddies, and by 37.5% from natural wetlands. Rising temperature increases CH4 uptake of upland soils by 13.8%. Warming-enhanced emission of soil CH4 and N2 O corresponds to an overall source strength of 1.19, 1.84, and 3.12 Pg CO2 -equivalent/year under 1°C, 1.5°C, and 2°C warming scenarios, respectively, interacting with soil C loss of 1.60 Pg CO2 /year in terms of contribution to climate change. The warming-induced rise in soil CH4 and N2 O emissions (1.84 Pg CO2 -equivalent/year) could reduce mitigation potential of terrestrial net ecosystem production by 8.3% (NEP, 22.25 Pg CO2 /year) under warming. Soil respiration and CH4 release are intensified following the mean warming threshold of 1.5°C scenario, as compared to soil CH4 uptake and N2 O release with a reduced and less positive response, respectively. Soil C loss increases to a larger extent under soil warming than under canopy air warming. Warming-raised emission of soil GHG increases with the intensity of temperature rise but decreases with the extension of experimental duration. This synthesis takes the lead to quantify the ecosystem C and N cycling in response to warming and advances our capacity to predict terrestrial feedback to climate change under projected warming scenarios.
Collapse
Affiliation(s)
- Shuwei Liu
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
- Jiangsu Key Lab and Engineering Center for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, China
| | - Yajing Zheng
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Ruoya Ma
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Kai Yu
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Zhaoqiang Han
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Shuqi Xiao
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Zhaofu Li
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Shuang Wu
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Shuqing Li
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
- Jiangsu Key Lab and Engineering Center for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, China
| | - Jinyang Wang
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
| | - Yiqi Luo
- Center for Ecosystem Science and Society, Department of Biological Sciences, Northern Arizona University, Flagstaff, AZ, USA
| | - Jianwen Zou
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, China
- Jiangsu Key Lab and Engineering Center for Solid Organic Waste Utilization, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
54
|
Zhang Y, Zhang N, Yin J, Zhao Y, Yang F, Jiang Z, Tao J, Yan X, Qiu Y, Guo H, Hu S. Simulated warming enhances the responses of microbial N transformations to reactive N input in a Tibetan alpine meadow. ENVIRONMENT INTERNATIONAL 2020; 141:105795. [PMID: 32413623 DOI: 10.1016/j.envint.2020.105795] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 05/02/2020] [Accepted: 05/02/2020] [Indexed: 06/11/2023]
Abstract
Alpine ecosystems worldwide are characterized with high soil organic carbon (C) and low mineral nitrogen (N). Climate warming has been predicted to stimulate microbial decomposition and N mineralization in these systems. However, experimental results are highly variable, and the underlying mechanisms remain unclear. We examined the effects of warming, N input, and their combination on soil N pools and N-cycling microbes in a field manipulation experiment. Special attention was directed to the ammonia-oxidizing bacteria and archaea, and their mediated N-cycling processes (transformation rates and N2O emissions) in the third plant growing season after the treatments were initiated. Nitrogen input (12 g m-2 y-1) alone significantly increased soil mineral N pools and plant N uptake, and stimulated the growth of AOB and N2O emissions in the late growing season. While warming (by 1.4 °C air temperature) alone did not have significant effects on most parameters, it amplified the effects of N input on soil N concentrations and AOB abundance, eliciting a chain reaction that increased nitrification potential (+83%), soil NO3--N (+200%), and N2O emissions (+412%) across the whole season. Also, N input reduced AOB diversity but increased the dominance of genus Nitrosospira within the AOB community, corresponding to the increased N2O emissions. These results showed that a small temperature increase in soil may significantly enhance N losses through NO3- leaching and N2O emissions when mineral N becomes available. These findings suggest that interactions among global change factors may predominantly affect ammonia-oxidizing microbes and their mediated N-cycling processes in alpine ecosystems under future climate change scenarios.
Collapse
Affiliation(s)
- Yi Zhang
- Ecosystem Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| | - Nan Zhang
- Ecosystem Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jingjing Yin
- Ecosystem Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yexin Zhao
- Ecosystem Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Fei Yang
- Ecosystem Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhongquan Jiang
- Ecosystem Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Jinjin Tao
- Ecosystem Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xuebin Yan
- Ecosystem Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Yunpeng Qiu
- Ecosystem Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Hui Guo
- Ecosystem Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Shuijin Hu
- Ecosystem Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China; Department of Entomology & Plant Pathology, North Carolina State University, Raleigh, NC 27695, USA.
| |
Collapse
|
55
|
Warming Increases Nitrous Oxide Emission from the Littoral Zone of Lake Poyang, China. SUSTAINABILITY 2020. [DOI: 10.3390/su12145674] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Littoral wetlands are globally important for sustainable development; however, they have recently been identified as critical hotspots of nitrous oxide (N2O) emissions. N2O flux from subtropical littoral wetlands remains unclear, especially under the current global warming environment. In the littoral zone of Lake Poyang, a simulated warming experiment was conducted to investigate N2O flux. Open-top chambers were used to raise temperature, and the static chamber-gas chromatograph method was used to measure N2O flux. Results showed that the littoral zone of Lake Poyang was an N2O source, with an average flux rate of 8.9 μg N2O m−2 h−1. Warming significantly increased N2O emission (13.8 μg N2O m−2 h−1 under warming treatment) by 54% compared to the control treatment. N2O flux in the spring growing season was also significantly higher than that of the autumn growing season. In addition, temperature was not significantly related to N2O flux, while soil moisture only explained about 7% of N2O variation. These results imply that N2O emission experiences positive feedback effect on the ongoing warming of the climate, and abiotic factors (e.g., soil temperature and soil moisture) were not main controls on N2O variation in this littoral wetland.
Collapse
|
56
|
In 't Zandt MH, Liebner S, Welte CU. Roles of Thermokarst Lakes in a Warming World. Trends Microbiol 2020; 28:769-779. [PMID: 32362540 DOI: 10.1016/j.tim.2020.04.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 02/10/2020] [Accepted: 04/01/2020] [Indexed: 11/27/2022]
Abstract
Permafrost covers a quarter of the northern hemisphere land surface and contains twice the amount of carbon that is currently present in the atmosphere. Future climate change is expected to reduce its near-surface cover by over 90% by the end of the 21st century, leading to thermokarst lake formation. Thermokarst lakes are point sources of carbon dioxide and methane which release long-term carbon stocks into the atmosphere, thereby initiating a positive climate feedback potentially contributing up to a 0.39°C rise of surface air temperatures by 2300. This review describes the potential role of thermokarst lakes in a warming world and the microbial mechanisms that underlie their contributions to the global greenhouse gas budget.
Collapse
Affiliation(s)
- Michiel H In 't Zandt
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, the Netherlands; Netherlands Earth System Science Center, Utrecht University, Heidelberglaan 2, 3584 CS, Utrecht, the Netherlands
| | - Susanne Liebner
- GFZ German Research Centre for Geosciences, Section 3.7 Geomicrobiology, Telegrafenberg, 14473 Potsdam, Germany; University of Potsdam, Institute of Biochemistry and Biology, 14469 Potsdam, Germany
| | - Cornelia U Welte
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, the Netherlands; Soehngen Institute of Anaerobic Microbiology, Radboud University, Heyendaalseweg 135, 6525 AJ, Nijmegen, the Netherlands.
| |
Collapse
|
57
|
Sanders T, Fiencke C, Hüpeden J, Pfeiffer EM, Spieck E. Cold Adapted Nitrosospira sp.: A Potential Crucial Contributor of Ammonia Oxidation in Cryosols of Permafrost-Affected Landscapes in Northeast Siberia. Microorganisms 2019; 7:E699. [PMID: 31847402 PMCID: PMC6955795 DOI: 10.3390/microorganisms7120699] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Revised: 12/10/2019] [Accepted: 12/12/2019] [Indexed: 01/01/2023] Open
Abstract
Permafrost-affected landscape soils are rich in organic matter and contain a high fraction of organic nitrogen, but much of this organic matter remains inaccessible due to nitrogen limitation. Microbial nitrification is a key process in the nitrogen cycle, controlling the availability of dissolved inorganic nitrogen (DIN) such as ammonium and nitrate. In this study, we investigate the microbial diversity of canonical nitrifiers and their potential nitrifying activity in the active layer of different Arctic cryosols in the Lena River Delta in North-East Siberia. These cryosols are located on Samoylov Island, which has two geomorphological landscapes with mineral soils in the modern floodplain and organic-rich soils in the low-centered polygonal tundra of the Holocene river terrace. Microcosm incubations show that the highest potential ammonia oxidation rates are found in low organic soils, and the rates depend on organic matter content and quality, vegetation cover, and water content. As shown by 16S rRNA amplicon sequencing, nitrifiers represented 0.6% to 6.2% of the total microbial community. More than 50% of the nitrifiers belonged to the genus Nitrosospira. Based on PCR amoA analysis, ammonia-oxidizing bacteria (AOB) were found in nearly all soil types, whereas ammonia-oxidizing archaea (AOA) were only detected in low-organic soils. In cultivation-based approaches, mainly Nitrosospira-like AOB were enriched and characterized as psychrotolerant, with temperature optima slightly above 20 °C. This study suggests a ubiquitous distribution of ammonia-oxidizing microorganisms (bacteria and archaea) in permafrost-affected landscapes of Siberia with cold-adapted AOB, especially of the genus Nitrosospira, as potentially crucial ammonia oxidizers in the cryosols.
Collapse
Affiliation(s)
- Tina Sanders
- Helmholtz Zentrum Geesthacht, Institut für Küstenforschung, Max-Planck-Str. 1, 21502 Geesthacht, Germany
| | - Claudia Fiencke
- Universität Hamburg, Institut für Bodenkunde, Allende-Platz 2, 20146 Hamburg, Germany; (C.F.); (E.M.P.)
- Center for Earth System Research and Sustainability, Universität Hamburg, Allende-Platz 2, 20146 Hamburg, Germany
| | - Jennifer Hüpeden
- Universität Hamburg, Mikrobiologie und Biotechnologie, Ohnhorststr. 18, 22609 Hamburg, Germany; (J.H.); (E.S.)
| | - Eva Maria Pfeiffer
- Universität Hamburg, Institut für Bodenkunde, Allende-Platz 2, 20146 Hamburg, Germany; (C.F.); (E.M.P.)
- Center for Earth System Research and Sustainability, Universität Hamburg, Allende-Platz 2, 20146 Hamburg, Germany
| | - Eva Spieck
- Universität Hamburg, Mikrobiologie und Biotechnologie, Ohnhorststr. 18, 22609 Hamburg, Germany; (J.H.); (E.S.)
| |
Collapse
|
58
|
Kasprzycka A, Lalak-Kańczugowska J, Walkiewicz A, Bulak P, Proc K, Stępień Ł. Biocatalytic conversion of methane – selected aspects. Curr Opin Chem Eng 2019. [DOI: 10.1016/j.coche.2019.07.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
59
|
Gadkari PS, McGuinness LR, Männistö MK, Kerkhof LJ, Häggblom MM. Arctic tundra soil bacterial communities active at subzero temperatures detected by stable isotope probing. FEMS Microbiol Ecol 2019; 96:5645228. [DOI: 10.1093/femsec/fiz192] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 11/26/2019] [Indexed: 12/14/2022] Open
Abstract
ABSTRACT
Arctic soils store vast amounts of carbon and are subject to intense climate change. While the effects of thaw on the composition and activities of Arctic tundra microorganisms has been examined extensively, little is known about the consequences of temperature fluctuations within the subzero range in seasonally frozen or permafrost soils. This study identified tundra soil bacteria active at subzero temperatures using stable isotope probing (SIP). Soils from Kilpisjärvi, Finland, were amended with 13C-cellobiose and incubated at 0, −4 and −16°C for up to 40 weeks. 16S rRNA gene sequence analysis of 13C-labelled DNA revealed distinct subzero-active bacterial taxa. The SIP experiments demonstrated that diverse bacteria, including members of Candidatus Saccharibacteria, Melioribacteraceae, Verrucomicrobiaceae, Burkholderiaceae, Acetobacteraceae, Armatimonadaceae and Planctomycetaceae, were capable of synthesising 13C-DNA at subzero temperatures. Differences in subzero temperature optima were observed, for example, with members of Oxalobacteraceae and Rhizobiaceae found to be more active at 0°C than at −4°C or −16°C, whereas Melioribacteriaceae were active at all subzero temperatures tested. Phylogeny of 13C-labelled 16S rRNA genes from the Melioribacteriaceae, Verrucomicrobiaceae and Candidatus Saccharibacteria suggested that these taxa formed subzero-active clusters closely related to members from other cryo-environments. This study demonstrates that subzero temperatures impact active bacterial community composition and activity, which may influence biogeochemical cycles.
Collapse
Affiliation(s)
- Preshita S Gadkari
- School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick NJ 08901, USA
| | - Lora R McGuinness
- Department of Marine and Coastal Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA
| | - Minna K Männistö
- Natural Resources Institute Finland, P.O. Box 16, FI-96301 Rovaniemi, Finland
| | - Lee J Kerkhof
- Department of Marine and Coastal Sciences, School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, 08901, USA
| | - Max M Häggblom
- School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick NJ 08901, USA
| |
Collapse
|
60
|
Liu F, Zhang Y, Liang H, Gao D. Long-term harvesting of reeds affects greenhouse gas emissions and microbial functional genes in alkaline wetlands. WATER RESEARCH 2019; 164:114936. [PMID: 31382148 DOI: 10.1016/j.watres.2019.114936] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 07/28/2019] [Accepted: 07/30/2019] [Indexed: 06/10/2023]
Abstract
Reed (Phragmites australis) is dominant vegetation in alkaline wetlands that is harvested annually due to its economic value. To reveal the effects of harvesting reeds on the emission of greenhouse gases (GHG), the annual soil physicochemical characteristics and flux of GHGs in a reed wetland without harvesting (NHRW) and with harvesting (HRW) were measured. The results showed that after the harvesting of reeds, the total organic carbon (TOC) and total nitrogen (TN) significantly decreased, and soil temperature significantly increased. The annual cumulative N2O emissions decreased from 0.73 ± 0.20 kg ha-1 to -0.57 ± 0.49 kg ha-1 with the harvesting of reeds. The annual cumulative CH4 emissions also decreased from 561.88 ± 18.61 kg ha-1 to 183.13 ± 18.77 kg ha-1 with the harvesting of reeds. However, harvesting of reeds had only a limited influence on the annual cumulative CO2 emissions. A Pearson correlation analysis revealed that the CO2 and N2O emissions were more sensitive to temperature than the CH4 emissions. Both structural equation modeling (SEM) analysis and slurry incubation confirmed that higher temperatures offset the reduction of CO2 emissions after reed harvesting. Metagenomics showed that the abundance of functional genes involved in both GHG sink and source decreased with reed harvesting. This study presents a comprehensive view of reed harvesting on GHG emissions in alkaline wetlands, yielding new insight into the microbial response and offering a novel perspective on the potential impacts of wetland management.
Collapse
Affiliation(s)
- Fengqin Liu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| | - Yupeng Zhang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China
| | - Hong Liang
- School of Environment, Harbin Institute of Technology, Harbin, China.
| | - Dawen Gao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, China; School of Environment, Harbin Institute of Technology, Harbin, China.
| |
Collapse
|
61
|
Mukhtar H, Lin YP, Lin CM, Petway JR. Assessing thermodynamic parameter sensitivity for simulating temperature responses of soil nitrification. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2019; 21:1596-1608. [PMID: 31414689 DOI: 10.1039/c9em00310j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Soil nitrification responses to temperature have major implications for the global nitrogen cycle. Temperature sensitivity of soil nitrification has been modeled using several mathematical models, yet the extent to which model-generated thermodynamic parameters are accurate and sensitive in describing temperature sensitivity is unclear. In this study, we performed global sensitivity analysis to identify the key thermodynamic parameters that are most influential when simulating the temperature response of the soil nitrification potential (NP) across two different temperature gradients (4-40 °C and 20-45 °C) which are imposed upon sixteen different soils with square root growth (SQRT) and macromolecular rate theory (MMRT) models. We found that two thermodynamic parameters stand out as moderately to highly sensitive, and are uniquely identifiable in each model, regardless of the temperature range. The minimum and maximum measured temperatures seem to have no impact on the list of sensitive parameters but do influence the parameter ranges, especially for the SQRT model. However, parameters that control the minimum temperature and curvature of the NP response curve (Tmin and ΔC‡P) were found to have little to no sensitivity to SQRT and MMRT model outputs, respectively. We show that the parameter sensitivity and range of measured temperatures influence the complementary model's ability to describe the temperature sensitivity of soil nitrification. Our proposed framework enhances the accurate interpretation of existing thermodynamic parameters that explain the temperature sensitivity of soil biochemical processes, and provides methodological recommendations for future temperature sensitivity studies.
Collapse
Affiliation(s)
- Hussnain Mukhtar
- Department of Bioenvironmental Systems Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan.
| | | | | | | |
Collapse
|
62
|
Alves RJE, Kerou M, Zappe A, Bittner R, Abby SS, Schmidt HA, Pfeifer K, Schleper C. Ammonia Oxidation by the Arctic Terrestrial Thaumarchaeote Candidatus Nitrosocosmicus arcticus Is Stimulated by Increasing Temperatures. Front Microbiol 2019; 10:1571. [PMID: 31379764 PMCID: PMC6657660 DOI: 10.3389/fmicb.2019.01571] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 06/24/2019] [Indexed: 11/13/2022] Open
Abstract
Climate change is causing arctic regions to warm disproportionally faster than those at lower latitudes, leading to alterations in carbon and nitrogen cycling, and potentially higher greenhouse gas emissions. It is thus increasingly important to better characterize the microorganisms driving arctic biogeochemical processes and their potential responses to changing conditions. Here, we describe a novel thaumarchaeon enriched from an arctic soil, Candidatus Nitrosocosmicus arcticus strain Kfb, which has been maintained for seven years in stable laboratory enrichment cultures as an aerobic ammonia oxidizer, with ammonium or urea as substrates. Genomic analyses show that this organism harbors all genes involved in ammonia oxidation and in carbon fixation via the 3-hydroxypropionate/4-hydroxybutyrate cycle, characteristic of all AOA, as well as the capability for urea utilization and potentially also for heterotrophic metabolism, similar to other AOA. Ca. N. arcticus oxidizes ammonia optimally between 20 and 28°C, well above average temperatures in its native high arctic environment (-13-4°C). Ammonia oxidation rates were nevertheless much lower than those of most cultivated mesophilic AOA (20-45°C). Intriguingly, we repeatedly observed apparent faster growth rates (based on marker gene counts) at lower temperatures (4-8°C) but without detectable nitrite production. Together with potential metabolisms predicted from its genome content, these observations indicate that Ca. N. arcticus is not a strict chemolithotrophic ammonia oxidizer and add to cumulating evidence for a greater metabolic and physiological versatility of AOA. The physiology of Ca. N. arcticus suggests that increasing temperatures might drastically affect nitrification in arctic soils by stimulating archaeal ammonia oxidation.
Collapse
Affiliation(s)
- Ricardo J Eloy Alves
- Archaea Biology and Ecogenomics Division, Department of Ecogenomics and Systems Biology, University of Vienna, Vienna, Austria
| | - Melina Kerou
- Archaea Biology and Ecogenomics Division, Department of Ecogenomics and Systems Biology, University of Vienna, Vienna, Austria
| | - Anna Zappe
- Archaea Biology and Ecogenomics Division, Department of Ecogenomics and Systems Biology, University of Vienna, Vienna, Austria.,Max F. Perutz Laboratories, Center for Integrative Bioinformatics Vienna, Medical University of Vienna, University of Vienna, Vienna, Austria
| | - Romana Bittner
- Archaea Biology and Ecogenomics Division, Department of Ecogenomics and Systems Biology, University of Vienna, Vienna, Austria
| | - Sophie S Abby
- Archaea Biology and Ecogenomics Division, Department of Ecogenomics and Systems Biology, University of Vienna, Vienna, Austria
| | - Heiko A Schmidt
- Max F. Perutz Laboratories, Center for Integrative Bioinformatics Vienna, Medical University of Vienna, University of Vienna, Vienna, Austria
| | - Kevin Pfeifer
- Archaea Biology and Ecogenomics Division, Department of Ecogenomics and Systems Biology, University of Vienna, Vienna, Austria.,Institute for Synthetic Bioarchitectures, University of Natural Resources and Life Sciences, Vienna, Austria
| | - Christa Schleper
- Archaea Biology and Ecogenomics Division, Department of Ecogenomics and Systems Biology, University of Vienna, Vienna, Austria
| |
Collapse
|
63
|
Han H, Song B, Song MJ, Yoon S. Enhanced Nitrous Oxide Production in Denitrifying Dechloromonas aromatica Strain RCB Under Salt or Alkaline Stress Conditions. Front Microbiol 2019; 10:1203. [PMID: 31275250 PMCID: PMC6593283 DOI: 10.3389/fmicb.2019.01203] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 05/13/2019] [Indexed: 11/25/2022] Open
Abstract
Salinity and pH have direct and indirect impacts on the growth and metabolic activities of microorganisms. In this study, the effects of salt and alkaline stresses on the kinetic balance between nitrous oxide (N2O) production and consumption in the denitrification pathway of Dechloromonas aromatica strain RCB were examined. N2O accumulated transiently only in insignificant amounts at low salinity (≤0.5% NaCl) and circumneutral pH (7.0 and 7.5). As compared to these control conditions, incubation at 0.7% salinity resulted in substantially longer lag phase and slower growth rate, along with the increase in the amounts of transiently accumulated N2O (15.8 ± 2.8 μmoles N2O-N/vessel). Incubation at pH 8.0 severely inhibited growth and resulted in permanent accumulation of 29.9 ± 1.3 μmoles N2O-N/vessel from reduction of 151 ± 20 μmoles NO3−/vessel. Monitoring of temporal changes in nirS1, nirS2, and nosZ transcription suggested that the nosZ/(nirS1+nirS2) ratios were indicative of whether N2O was produced or consumed at the time points where measurements were taken. The salt and alkaline stresses altered the N2O consumption kinetics of the resting D. aromatica cells with expressed nitrous oxide reductases. The N2O consumption rates of the cells subjected to the salt and alkaline stress conditions were significantly reduced from 0.84 ± 0.007 μmoles min−1 mg protein−1 of the control to 0.27 ± 0.02 μmoles min−1 mg protein−1 and 0.31 ± 0.03 μmoles min−1 mg protein−1, respectively, when the initial dissolved N2O concentration was 0.1 mM. As the rates of N2O production from NO2− reduction was not significantly affected by the stresses (0.45–0.55 μmoles min−1 mg protein−1), the N2O consumption rate was lower than the N2O production rate at the stress conditions, but not at the control condition. These results clearly indicate that the altered kinetics of expressed nitrous oxide reductase and the resultant disruption of kinetic balance between N2O production and consumption was another cause of enhanced N2O emission observed under the salt and alkaline stress conditions. These findings suggest that canonical denitrifiers may become a significant N2O source when faced with abrupt environmental changes.
Collapse
Affiliation(s)
- Heejoo Han
- Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Bongkeun Song
- Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea.,Department of Biological Sciences, Virginia Institute of Marine Science, College of William and Mary, Gloucester Point, VA, United States
| | - Min Joon Song
- Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| | - Sukhwan Yoon
- Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology, Daejeon, South Korea
| |
Collapse
|
64
|
Laine AM, Mäkiranta P, Laiho R, Mehtätalo L, Penttilä T, Korrensalo A, Minkkinen K, Fritze H, Tuittila ES. Warming impacts on boreal fen CO 2 exchange under wet and dry conditions. GLOBAL CHANGE BIOLOGY 2019; 25:1995-2008. [PMID: 30854735 DOI: 10.1111/gcb.14617] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/11/2019] [Accepted: 02/21/2019] [Indexed: 05/14/2023]
Abstract
Northern peatlands form a major soil carbon (C) stock. With climate change, peatland C mineralization is expected to increase, which in turn would accelerate climate change. A particularity of peatlands is the importance of soil aeration, which regulates peatland functioning and likely modulates the responses to warming climate. Our aim is to assess the impacts of warming on a southern boreal and a sub-arctic sedge fen carbon dioxide (CO2 ) exchange under two plausible water table regimes: wet and moderately dry. We focused this study on minerotrophic treeless sedge fens, as they are common peatland types at boreal and (sub)arctic areas, which are expected to face the highest rates of climate warming. In addition, fens are expected to respond to environmental changes faster than the nutrient poor bogs. Our study confirmed that CO2 exchange is more strongly affected by drying than warming. Experimental water level draw-down (WLD) significantly increased gross photosynthesis and ecosystem respiration. Warming alone had insignificant impacts on the CO2 exchange components, but when combined with WLD it further increased ecosystem respiration. In the southern fen, CO2 uptake decreased due to WLD, which was amplified by warming, while at northern fen it remained stable. As a conclusion, our results suggest that a very small difference in the WLD may be decisive, whether the C sink of a fen decreases, or whether the system is able to adapt within its regime and maintain its functions. Moreover, the water table has a role in determining how much the increased temperature impacts the CO2 exchange.
Collapse
Affiliation(s)
- Anna M Laine
- School of Forest Sciences, University of Eastern Finland, Joensuu, Finland
| | | | - Raija Laiho
- Natural Resources Institute Finland, Helsinki, Finland
| | - Lauri Mehtätalo
- School of Computing, University of Eastern Finland, Joensuu, Finland
| | - Timo Penttilä
- Natural Resources Institute Finland, Helsinki, Finland
| | - Aino Korrensalo
- School of Forest Sciences, University of Eastern Finland, Joensuu, Finland
| | - Kari Minkkinen
- Department of Forest Sciences, University of Helsinki, Helsinki, Finland
| | - Hannu Fritze
- Natural Resources Institute Finland, Helsinki, Finland
| | | |
Collapse
|
65
|
Voigt C, Marushchak ME, Mastepanov M, Lamprecht RE, Christensen TR, Dorodnikov M, Jackowicz-Korczyński M, Lindgren A, Lohila A, Nykänen H, Oinonen M, Oksanen T, Palonen V, Treat CC, Martikainen PJ, Biasi C. Ecosystem carbon response of an Arctic peatland to simulated permafrost thaw. GLOBAL CHANGE BIOLOGY 2019; 25:1746-1764. [PMID: 30681758 DOI: 10.1111/gcb.14574] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 01/11/2019] [Indexed: 06/09/2023]
Abstract
Permafrost peatlands are biogeochemical hot spots in the Arctic as they store vast amounts of carbon. Permafrost thaw could release part of these long-term immobile carbon stocks as the greenhouse gases (GHGs) carbon dioxide (CO2 ) and methane (CH4 ) to the atmosphere, but how much, at which time-span and as which gaseous carbon species is still highly uncertain. Here we assess the effect of permafrost thaw on GHG dynamics under different moisture and vegetation scenarios in a permafrost peatland. A novel experimental approach using intact plant-soil systems (mesocosms) allowed us to simulate permafrost thaw under near-natural conditions. We monitored GHG flux dynamics via high-resolution flow-through gas measurements, combined with detailed monitoring of soil GHG concentration dynamics, yielding insights into GHG production and consumption potential of individual soil layers. Thawing the upper 10-15 cm of permafrost under dry conditions increased CO2 emissions to the atmosphere (without vegetation: 0.74 ± 0.49 vs. 0.84 ± 0.60 g CO2 -C m-2 day-1 ; with vegetation: 1.20 ± 0.50 vs. 1.32 ± 0.60 g CO2 -C m-2 day-1 , mean ± SD, pre- and post-thaw, respectively). Radiocarbon dating (14 C) of respired CO2 , supported by an independent curve-fitting approach, showed a clear contribution (9%-27%) of old carbon to this enhanced post-thaw CO2 flux. Elevated concentrations of CO2 , CH4 , and dissolved organic carbon at depth indicated not just pulse emissions during the thawing process, but sustained decomposition and GHG production from thawed permafrost. Oxidation of CH4 in the peat column, however, prevented CH4 release to the atmosphere. Importantly, we show here that, under dry conditions, peatlands strengthen the permafrost-carbon feedback by adding to the atmospheric CO2 burden post-thaw. However, as long as the water table remains low, our results reveal a strong CH4 sink capacity in these types of Arctic ecosystems pre- and post-thaw, with the potential to compensate part of the permafrost CO2 losses over longer timescales.
Collapse
Affiliation(s)
- Carolina Voigt
- Department of Geography, University of Montréal, Montréal, Québec, Canada
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Maija E Marushchak
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
- Department of Biological and Environmental Science, University of Jyväskylä, Jyväskylä, Finland
| | - Mikhail Mastepanov
- Department of Bioscience, Arctic Research Centre, Aarhus University, Roskilde, Denmark
- Department of Physical Geography and Ecosystem Science, Lund University, Lund, Sweden
| | - Richard E Lamprecht
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Torben R Christensen
- Department of Bioscience, Arctic Research Centre, Aarhus University, Roskilde, Denmark
- Department of Physical Geography and Ecosystem Science, Lund University, Lund, Sweden
| | - Maxim Dorodnikov
- Department of Soil Science of Temperate Ecosystems, Georg-August-University, Göttingen, Germany
| | - Marcin Jackowicz-Korczyński
- Department of Bioscience, Arctic Research Centre, Aarhus University, Roskilde, Denmark
- Department of Physical Geography and Ecosystem Science, Lund University, Lund, Sweden
| | - Amelie Lindgren
- Department of Physical Geography and Ecosystem Science, Lund University, Lund, Sweden
- Department of Physical Geography, Stockholm University, Stockholm, Sweden
| | | | - Hannu Nykänen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Markku Oinonen
- Finnish Museum of Natural History, University of Helsinki, Helsinki, Finland
| | - Timo Oksanen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Vesa Palonen
- Department of Physics, University of Helsinki, Helsinki, Finland
| | - Claire C Treat
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Pertti J Martikainen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| | - Christina Biasi
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
66
|
Efficient hybrid modeling of CO2 absorption in aqueous solution of piperazine: Applications to energy and environment. Chem Eng Res Des 2019. [DOI: 10.1016/j.cherd.2019.01.019] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
67
|
Three-Source Partitioning of Methane Emissions from Paddy Soil: Linkage to Methanogenic Community Structure. Int J Mol Sci 2019; 20:ijms20071586. [PMID: 30934889 PMCID: PMC6479939 DOI: 10.3390/ijms20071586] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 03/21/2019] [Accepted: 03/25/2019] [Indexed: 11/17/2022] Open
Abstract
Identification of the carbon (C) sources of methane (CH4) and methanogenic community structures after organic fertilization may provide a better understanding of the mechanism that regulate CH4 emissions from paddy soils. Based on our previous field study, a pot experiment with isotopic 13C labelling was designed in this study. The objective was to investigate the main C sources for CH4 emissions and the key environmental factor with the application of organic fertilizer in paddies. Results indicated that 28.6%, 64.5%, 0.4%, and 6.5% of 13C was respectively distributed in CO2, the plants, soil, and CH4 at the rice tillering stage. In total, organically fertilized paddy soil emitted 3.51 kg·CH4 ha−1 vs. 2.00 kg·CH4 ha−1 for the no fertilizer treatment. Maximum CH4 fluxes from organically fertilized (0.46 mg·m−2·h−1) and non-fertilized (0.16 mg·m−2·h−1) soils occurred on day 30 (tillering stage). The total percentage of CH4 emissions derived from rice photosynthesis C was 49%, organic fertilizer C < 0.34%, and native soil C > 51%. Therefore, the increased CH4 emissions from paddy soil after organic fertilization were mainly derived from native soil and photosynthesis. The 16S rRNA sequencing showed Methanosarcina (64%) was the dominant methanogen in paddy soil. Organic fertilization increased the relative abundance of Methanosarcina, especially in rhizosphere. Additionally, Methanosarcina sp. 795 and Methanosarcina sp. 1H1 co-occurred with Methanobrevibacter sp. AbM23, Methanoculleus sp. 25XMc2, Methanosaeta sp. HA, and Methanobacterium sp. MB1. The increased CH4 fluxes and labile methanogenic community structure in organically fertilized rice soil were primarily due to the increased soil C, nitrogen, potassium, phosphate, and acetate. These results highlight the contributions of native soil- and photosynthesis-derived C in paddy soil CH4 emissions, and provide basis for more complex investigations of the pathways involved in ecosystem CH4 processes.
Collapse
|
68
|
Sulzberger B, Austin AT, Cory RM, Zepp RG, Paul ND. Solar UV radiation in a changing world: roles of cryosphere-land-water-atmosphere interfaces in global biogeochemical cycles. Photochem Photobiol Sci 2019; 18:747-774. [PMID: 30810562 PMCID: PMC7418111 DOI: 10.1039/c8pp90063a] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 12/19/2018] [Indexed: 12/29/2022]
Abstract
Global change influences biogeochemical cycles within and between environmental compartments (i.e., the cryosphere, terrestrial and aquatic ecosystems, and the atmosphere). A major effect of global change on carbon cycling is altered exposure of natural organic matter (NOM) to solar radiation, particularly solar UV radiation. In terrestrial and aquatic ecosystems, NOM is degraded by UV and visible radiation, resulting in the emission of carbon dioxide (CO2) and carbon monoxide, as well as a range of products that can be more easily degraded by microbes (photofacilitation). On land, droughts and land-use change can reduce plant cover causing an increase in exposure of plant litter to solar radiation. The altered transport of soil organic matter from terrestrial to aquatic ecosystems also can enhance exposure of NOM to solar radiation. An increase in emission of CO2 from terrestrial and aquatic ecosystems due to the effects of global warming, such as droughts and thawing of permafrost soils, fuels a positive feedback on global warming. This is also the case for greenhouse gases other than CO2, including methane and nitrous oxide, that are emitted from terrestrial and aquatic ecosystems. These trace gases also have indirect or direct impacts on stratospheric ozone concentrations. The interactive effects of UV radiation and climate change greatly alter the fate of synthetic and biological contaminants. Contaminants are degraded or inactivated by direct and indirect photochemical reactions. The balance between direct and indirect photodegradation or photoinactivation of contaminants is likely to change with future changes in stratospheric ozone, and with changes in runoff of coloured dissolved organic matter due to climate and land-use changes.
Collapse
Affiliation(s)
- B Sulzberger
- Eawag: Swiss Federal Institute of Aquatic Science and Technology, Duebendorf, Switzerland.
| | - A T Austin
- Instituto de Investigaciones Fisiológicas y Ecológicas Vinculadas a la Agricultura (IFEVA) and Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Facultad de Agronomía, Universidad de Buenos Aires en las afiliations, Buenos Aires, Argentina
| | - R M Cory
- University of Michigan, Earth & Environmental Science, Ann Arbor, Michigan, USA
| | - R G Zepp
- United States Environmental Protection Agency, Athens, Georgia, USA
| | - N D Paul
- Lancaster Environment Centre, Lancaster University, LA1 4YQ, UK
| |
Collapse
|
69
|
Laine AM, Mehtätalo L, Tolvanen A, Frolking S, Tuittila ES. Impacts of drainage, restoration and warming on boreal wetland greenhouse gas fluxes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 647:169-181. [PMID: 30077847 DOI: 10.1016/j.scitotenv.2018.07.390] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 07/25/2018] [Accepted: 07/27/2018] [Indexed: 06/08/2023]
Abstract
Northern wetlands with organic soil i.e., mires are significant carbon storages. This key ecosystem service may be threatened by anthropogenic activities and climate change, yet we still lack a consensus on how these major changes affects their carbon sink capacities. We studied how forestry drainage and restoration combined with experimental warming, impacts greenhouse gas fluxes of wetlands with peat. We measured CO2 and CH4 during two and N2O fluxes during one growing season using the chamber method. Gas fluxes were primarily controlled by water table, leaf area and temperature. Land use had a clear impact of on CO2 exchange. Forestry drainage increased respiration rates and decreased field layer net ecosystem CO2 uptake (NEE) and leaf area index (LAI), while at restoration sites the flux rates and LAI had recovered to the level of undrained sites. CH4 emissions were exceptionally low at all sites during our study years due to natural drought, but still somewhat lower at drained compared to undrained sites. Moderate warming triggered an increase in LAI across all land use types. This was accompanied by an increase in cumulative seasonal NEE. Restoration appeared to be an effective tool to return the ecosystem functions of these wetlands as we found no differences in LAI or any gas flux components (PMAX, Reco, NEE, CH4 or N2O) between restored and undrained sites. We did not find any signs that moderate warming would compromise the return of the ecosystem functions related to C sequestration.
Collapse
Affiliation(s)
- A M Laine
- Department of Forest Science, University of Helsinki, P.O. Box 27, FI-00014 Helsinki, Finland; Department of Ecology and Genetics, University of Oulu, P.O. Box 3000, FI-90014 Oulu, Finland; School of Forest Sciences, University of Eastern Finland, P.O. Box 111, FI-80101 Joensuu, Finland.
| | - L Mehtätalo
- School of Computing, University of Eastern Finland, P.O. Box 111, FI-80101 Joensuu, Finland.
| | - A Tolvanen
- Department of Ecology and Genetics, University of Oulu, P.O. Box 3000, FI-90014 Oulu, Finland; Natural Resources Institute Finland (Luke), P.O. Box 413, FI-90014 Oulu, Finland.
| | - S Frolking
- School of Forest Sciences, University of Eastern Finland, P.O. Box 111, FI-80101 Joensuu, Finland; Institute for the Study of Earth, Oceans, and Space, University of New Hampshire, 8 College Road, Durham, NH 03824-3525, USA.
| | - E-S Tuittila
- School of Forest Sciences, University of Eastern Finland, P.O. Box 111, FI-80101 Joensuu, Finland.
| |
Collapse
|
70
|
Treat CC, Marushchak ME, Voigt C, Zhang Y, Tan Z, Zhuang Q, Virtanen TA, Räsänen A, Biasi C, Hugelius G, Kaverin D, Miller PA, Stendel M, Romanovsky V, Rivkin F, Martikainen PJ, Shurpali NJ. Tundra landscape heterogeneity, not interannual variability, controls the decadal regional carbon balance in the Western Russian Arctic. GLOBAL CHANGE BIOLOGY 2018; 24:5188-5204. [PMID: 30101501 DOI: 10.1111/gcb.14421] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Revised: 07/02/2018] [Accepted: 08/06/2018] [Indexed: 06/08/2023]
Abstract
Across the Arctic, the net ecosystem carbon (C) balance of tundra ecosystems is highly uncertain due to substantial temporal variability of C fluxes and to landscape heterogeneity. We modeled both carbon dioxide (CO2 ) and methane (CH4 ) fluxes for the dominant land cover types in a ~100-km2 sub-Arctic tundra region in northeast European Russia for the period of 2006-2015 using process-based biogeochemical models. Modeled net annual CO2 fluxes ranged from -300 g C m-2 year-1 [net uptake] in a willow fen to 3 g C m-2 year-1 [net source] in dry lichen tundra. Modeled annual CH4 emissions ranged from -0.2 to 22.3 g C m-2 year-1 at a peat plateau site and a willow fen site, respectively. Interannual variability over the decade was relatively small (20%-25%) in comparison with variability among the land cover types (150%). Using high-resolution land cover classification, the region was a net sink of atmospheric CO2 across most land cover types but a net source of CH4 to the atmosphere due to high emissions from permafrost-free fens. Using a lower resolution for land cover classification resulted in a 20%-65% underestimation of regional CH4 flux relative to high-resolution classification and smaller (10%) overestimation of regional CO2 uptake due to the underestimation of wetland area by 60%. The relative fraction of uplands versus wetlands was key to determining the net regional C balance at this and other Arctic tundra sites because wetlands were hot spots for C cycling in Arctic tundra ecosystems.
Collapse
Affiliation(s)
- Claire C Treat
- Biogeochemistry Research Group, Department of Biological and Environmental Sciences, University of Eastern Finland, Kuopio, Finland
| | - Maija E Marushchak
- Biogeochemistry Research Group, Department of Biological and Environmental Sciences, University of Eastern Finland, Kuopio, Finland
| | - Carolina Voigt
- Biogeochemistry Research Group, Department of Biological and Environmental Sciences, University of Eastern Finland, Kuopio, Finland
| | - Yu Zhang
- Canada Centre for Mapping and Earth Observation, Natural Resources Canada, Ottawa, Ontario
| | - Zeli Tan
- Pacific Northwest National Laboratory, Richland, Washington
- Department of Earth, Atmospheric, and Planetary Sciences, Purdue University, West Lafayette, Indiana
| | - Qianlai Zhuang
- Department of Earth, Atmospheric, and Planetary Sciences, Purdue University, West Lafayette, Indiana
| | - Tarmo A Virtanen
- Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
| | - Aleksi Räsänen
- Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Helsinki, Finland
- Department of Geography, Norwegian University of Science and Technology, Trondheim, Norway
| | - Christina Biasi
- Biogeochemistry Research Group, Department of Biological and Environmental Sciences, University of Eastern Finland, Kuopio, Finland
| | - Gustaf Hugelius
- Department of Physical Geography, Bolin Centre of Climate Research, Stockholm University, Stockholm, Sweden
| | | | - Paul A Miller
- Department of Earth and Ecosystem Science, Geobiosphere Centre, Geocentrum II, Lund University, Lund, Sweden
| | - Martin Stendel
- Department for Arctic and Climate, Danish Meteorological Institute, Copenhagen Ø, Denmark
| | - Vladimir Romanovsky
- Geophysical Institute, University of Alaska Fairbanks, Fairbanks, Alaska
- Earth Cryosphere Institute, Tyumen Science Centre, SB RAS, Tyumen, Russia
| | - Felix Rivkin
- Department of Geocryological Mapping, GIS, Moscow, Russia
| | - Pertti J Martikainen
- Biogeochemistry Research Group, Department of Biological and Environmental Sciences, University of Eastern Finland, Kuopio, Finland
| | - Narasinha J Shurpali
- Biogeochemistry Research Group, Department of Biological and Environmental Sciences, University of Eastern Finland, Kuopio, Finland
| |
Collapse
|
71
|
de Jong AEE, In 't Zandt MH, Meisel OH, Jetten MSM, Dean JF, Rasigraf O, Welte CU. Increases in temperature and nutrient availability positively affect methane-cycling microorganisms in Arctic thermokarst lake sediments. Environ Microbiol 2018; 20:4314-4327. [PMID: 29968310 PMCID: PMC6334529 DOI: 10.1111/1462-2920.14345] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 06/27/2018] [Accepted: 06/27/2018] [Indexed: 11/30/2022]
Abstract
Arctic permafrost soils store large amounts of organic matter that is sensitive to temperature increases and subsequent microbial degradation to methane (CH4) and carbon dioxide (CO2). Here, we studied methanogenic and methanotrophic activity and community composition in thermokarst lake sediments from Utqiag˙vik (formerly Barrow), Alaska. This experiment was carried out under in situ temperature conditions (4°C) and the IPCC 2013 Arctic climate change scenario (10°C) after addition of methanogenic and methanotrophic substrates for nearly a year. Trimethylamine (TMA) amendment with warming showed highest maximum CH4production rates, being 30% higher at 10°C than at 4°C. Maximum methanotrophic rates increased by up to 57% at 10°C compared to 4°C. 16S rRNA gene sequencing indicated high relative abundance of Methanosarcinaceae in TMA amended incubations, and for methanotrophic incubations Methylococcaeae were highly enriched. Anaerobic methanotrophic activity with nitrite or nitrate as electron acceptor was not detected. This study indicates that the methane cycling microbial community can adapt to temperature increases and that their activity is highly dependent on substrate availability.
Collapse
Affiliation(s)
- Anniek E E de Jong
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.,Netherlands Earth System Science Center, Utrecht University, Heidelberglaan 2, 3584 CS Utrecht, The Netherlands
| | - Michiel H In 't Zandt
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.,Netherlands Earth System Science Center, Utrecht University, Heidelberglaan 2, 3584 CS Utrecht, The Netherlands
| | - Ove H Meisel
- Netherlands Earth System Science Center, Utrecht University, Heidelberglaan 2, 3584 CS Utrecht, The Netherlands.,Department of Earth Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - Mike S M Jetten
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.,Netherlands Earth System Science Center, Utrecht University, Heidelberglaan 2, 3584 CS Utrecht, The Netherlands.,Soehngen Institute of Anaerobic Microbiology, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Joshua F Dean
- Netherlands Earth System Science Center, Utrecht University, Heidelberglaan 2, 3584 CS Utrecht, The Netherlands.,Department of Earth Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081 HV Amsterdam, The Netherlands
| | - Olivia Rasigraf
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.,Netherlands Earth System Science Center, Utrecht University, Heidelberglaan 2, 3584 CS Utrecht, The Netherlands
| | - Cornelia U Welte
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands.,Soehngen Institute of Anaerobic Microbiology, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| |
Collapse
|
72
|
Yang G, Peng Y, Marushchak ME, Chen Y, Wang G, Li F, Zhang D, Wang J, Yu J, Liu L, Qin S, Kou D, Yang Y. Magnitude and Pathways of Increased Nitrous Oxide Emissions from Uplands Following Permafrost Thaw. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:9162-9169. [PMID: 29984572 DOI: 10.1021/acs.est.8b02271] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Permafrost thawing may release nitrous oxide (N2O) due to large N storage in cold environments. However, N2O emissions from permafrost regions have received little attention to date, particularly with respect to the underlying microbial mechanisms. We examined the magnitude of N2O fluxes following upland thermokarst formation along a 20-year thaw sequence within a thermo-erosion gully in a Tibetan swamp meadow. We also determined the importance of environmental factors and the related microbial functional gene abundance. Our results showed that permafrost thawing led to a mass release of N2O in recently collapsed sites (3 years ago), particularly in exposed soil patches, which presented post-thaw emission rates equivalent to those from agricultural and tropical soils. In addition to abiotic factors, soil microorganisms exerted significant effects on the variability in the N2O emissions along the thaw sequence and between vegetated and exposed patches. Overall, our results demonstrate that upland thermokarst formation can lead to enhanced N2O emissions, and that the global warming potential (GWP) of N2O at the thermokarst sites can reach 60% of the GWP of CH4 (vs ∼6% in control sites), highlighting the potentially strong noncarbon (C) feedback to climate warming in permafrost regions.
Collapse
Affiliation(s)
- Guibiao Yang
- State Key Laboratory of Vegetation and Environmental Change , Institute of Botany, Chinese Academy of Sciences , Beijing 100093 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Yunfeng Peng
- State Key Laboratory of Vegetation and Environmental Change , Institute of Botany, Chinese Academy of Sciences , Beijing 100093 , China
| | - Maija E Marushchak
- Department of Environmental and Biological Sciences , University of Eastern Finland , Kuopio 70211 , Finland
| | - Yongliang Chen
- State Key Laboratory of Vegetation and Environmental Change , Institute of Botany, Chinese Academy of Sciences , Beijing 100093 , China
| | - Guanqin Wang
- State Key Laboratory of Vegetation and Environmental Change , Institute of Botany, Chinese Academy of Sciences , Beijing 100093 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Fei Li
- State Key Laboratory of Vegetation and Environmental Change , Institute of Botany, Chinese Academy of Sciences , Beijing 100093 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Dianye Zhang
- State Key Laboratory of Vegetation and Environmental Change , Institute of Botany, Chinese Academy of Sciences , Beijing 100093 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Jun Wang
- State Key Laboratory of Vegetation and Environmental Change , Institute of Botany, Chinese Academy of Sciences , Beijing 100093 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Jianchun Yu
- State Key Laboratory of Vegetation and Environmental Change , Institute of Botany, Chinese Academy of Sciences , Beijing 100093 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Li Liu
- State Key Laboratory of Vegetation and Environmental Change , Institute of Botany, Chinese Academy of Sciences , Beijing 100093 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Shuqi Qin
- State Key Laboratory of Vegetation and Environmental Change , Institute of Botany, Chinese Academy of Sciences , Beijing 100093 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Dan Kou
- State Key Laboratory of Vegetation and Environmental Change , Institute of Botany, Chinese Academy of Sciences , Beijing 100093 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Yuanhe Yang
- State Key Laboratory of Vegetation and Environmental Change , Institute of Botany, Chinese Academy of Sciences , Beijing 100093 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| |
Collapse
|
73
|
Shrestha NK, Wang J. Current and future hot-spots and hot-moments of nitrous oxide emission in a cold climate river basin. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 239:648-660. [PMID: 29709836 DOI: 10.1016/j.envpol.2018.04.068] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Revised: 04/15/2018] [Accepted: 04/15/2018] [Indexed: 06/08/2023]
Abstract
An ecosystem in a cold climate river basin is vulnerable to the effects of climate change affecting permafrost thaw and glacier retreat. We currently lack sufficient data and information if and how hydrological processes such as glacier retreat, snowmelt and freezing-thawing affect sediment and nutrient runoff and transport, as well as N2O emissions in cold climate river basins. As such, we have implemented well-established, semi-empirical equations of nitrification and denitrification within the Soil and Water Assessment Tool (SWAT), which correlate the emissions with water, sediment and nutrients. We have tested this implementation to simulate emission dynamics at three sites on the Canadian prairies. We then regionalized the optimized parameters to a SWAT model of the Athabasca River Basin (ARB), Canada, calibrated and validated for streamflow, sediment and water quality. In the base period (1990-2005), agricultural areas (2662 gN/ha/yr) constituted emission hot-spots. The spring season in agricultural areas and summer season in forest areas, constituted emission hot-moments. We found that warmer conditions (+13% to +106%) would have a greater influence on emissions than wetter conditions (-19% to +13%), and that the combined effect of wetter and warmer conditions would be more offsetting than synergetic. Our results imply that the spatiotemporal variability of N2O emissions will depend strongly on soil water changes caused by permafrost thaw. Early snow freshet leads to spatial variability of soil erosion and nutrient runoff, as well as increases of emissions in winter and decreases in spring. Our simulations suggest crop residue management may reduce emissions by 34%, but with the mixed results reported in the literature and the soil and hydrology problems associated with stover removal more research is necessary. This modelling tool can be used to refine bottom-up emission estimations at river basin scale, test plausible management scenarios, and assess climate change impacts including climate feedback.
Collapse
Affiliation(s)
- Narayan Kumar Shrestha
- Athabasca River Basin Research Institute (ARBRI), Athabasca University, 1 University Drive, Athabasca, Alberta, T9S 3A3, Canada
| | - Junye Wang
- Athabasca River Basin Research Institute (ARBRI), Athabasca University, 1 University Drive, Athabasca, Alberta, T9S 3A3, Canada.
| |
Collapse
|
74
|
Christiansen CT, Lafreniére MJ, Henry GHR, Grogan P. Long-term deepened snow promotes tundra evergreen shrub growth and summertime ecosystem net CO 2 gain but reduces soil carbon and nutrient pools. GLOBAL CHANGE BIOLOGY 2018; 24:3508-3525. [PMID: 29411950 DOI: 10.1111/gcb.14084] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Accepted: 01/16/2018] [Indexed: 06/08/2023]
Abstract
Arctic climate warming will be primarily during winter, resulting in increased snowfall in many regions. Previous tundra research on the impacts of deepened snow has generally been of short duration. Here, we report relatively long-term (7-9 years) effects of experimentally deepened snow on plant community structure, net ecosystem CO2 exchange (NEE), and soil biogeochemistry in Canadian Low Arctic mesic shrub tundra. The snowfence treatment enhanced snow depth from 0.3 to ~1 m, increasing winter soil temperatures by ~3°C, but with no effect on summer soil temperature, moisture, or thaw depth. Nevertheless, shoot biomass of the evergreen shrub Rhododendron subarcticum was near-doubled by the snowfences, leading to a 52% increase in aboveground vascular plant biomass. Additionally, summertime NEE rates, measured in collars containing similar plant biomass across treatments, were consistently reduced ~30% in the snowfenced plots due to decreased ecosystem respiration rather than increased gross photosynthesis. Phosphate in the organic soil layer (0-10 cm depth) and nitrate in the mineral soil layer (15-25 cm depth) were substantially reduced within the snowfences (47-70 and 43%-73% reductions, respectively, across sampling times). Finally, the snowfences tended (p = .08) to reduce mineral soil layer C% by 40%, but with considerable within- and among plot variation due to cryoturbation across the landscape. These results indicate that enhanced snow accumulation is likely to further increase dominance of R. subarcticum in its favored locations, and reduce summertime respiration and soil biogeochemical pools. Since evergreens are relatively slow growing and of low stature, their increased dominance may constrain vegetation-related feedbacks to climate change. We found no evidence that deepened snow promoted deciduous shrub growth in mesic tundra, and conclude that the relatively strong R. subarcticum response to snow accumulation may explain the extensive spatial variability in observed circumpolar patterns of evergreen and deciduous shrub growth over the past 30 years.
Collapse
Affiliation(s)
- Casper T Christiansen
- Department of Biology, Queen's University, Kingston, ON, Canada
- Uni Research Climate, Bjerknes Centre for Climate Research, Bergen, Norway
| | | | - Gregory H R Henry
- Department of Geography, University of British Columbia, Vancouver, BC, Canada
| | - Paul Grogan
- Department of Biology, Queen's University, Kingston, ON, Canada
| |
Collapse
|
75
|
Macroinvertebrate and soil prokaryote communities in the forest–tundra ecotone of the Subarctic Yukon. Polar Biol 2018. [DOI: 10.1007/s00300-018-2330-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
76
|
Cui Q, Song C, Wang X, Shi F, Yu X, Tan W. Effects of warming on N 2O fluxes in a boreal peatland of Permafrost region, Northeast China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 616-617:427-434. [PMID: 29127796 DOI: 10.1016/j.scitotenv.2017.10.246] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 10/23/2017] [Accepted: 10/24/2017] [Indexed: 06/07/2023]
Abstract
Climate warming is expected to increasingly influence boreal peatlands and alter their greenhouse gases emissions. However, the effects of warming on N2O fluxes and the N2O budgets were ignored in boreal peatlands. Therefore, in a boreal peatland of permafrost zone in Northeast China, a simulated warming experiment was conducted to investigate the effects of warming on N2O fluxes in Betula. Fruticosa community (B. Fruticosa) and Ledum. palustre community (L. palustre) during the growing seasons from 2013 to 2015. Results showed that warming treatment increased air temperature at 1.5m aboveground and soil temperature at 5cm depth by 0.6°C and 2°C, respectively. The average seasonal N2O fluxes ranged from 6.62 to 9.34μgm-2h-1 in the warming plot and ranged from 0.41 to 4.55μgm-2h-1 in the control plots. Warming treatment increased N2O fluxes by 147% and transformed the boreal peatlands from a N2O sink to a source. The primary driving factors for N2O fluxes were soil temperature and active layer depth, whereas soil moisture showed a weak correlation with N2O fluxes. The results indicated that warming promoted N2O fluxes by increasing soil temperature and active layer depth in a boreal peatland of permafrost zone in Northeast China. Moreover, elevated N2O fluxes persisted in this region will potentially drive a noncarbon feedback to ongoing climate change.
Collapse
Affiliation(s)
- Qian Cui
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Changchun Song
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, PR China.
| | - Xianwei Wang
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, PR China
| | - Fuxi Shi
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, PR China
| | - Xueyang Yu
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Wenwen Tan
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, PR China
| |
Collapse
|
77
|
Bais F, Luca RM, Bornman JF, Williamson CE, Sulzberger B, Austin AT, Wilson SR, Andrady AL, Bernhard G, McKenzie RL, Aucamp PJ, Madronich S, Neale RE, Yazar S, Young AR, de Gruijl FR, Norval M, Takizawa Y, Barnes PW, Robson TM, Robinson SA, Ballaré CL, Flint SD, Neale PJ, Hylander S, Rose KC, Wängberg SÅ, Häder DP, Worrest RC, Zepp RG, Paul ND, Cory RM, Solomon KR, Longstreth J, Pandey KK, Redhwi HH, Torikai A, Heikkilä AM. Environmental effects of ozone depletion, UV radiation and interactions with climate change: UNEP Environmental Effects Assessment Panel, update 2017. Photochem Photobiol Sci 2018; 17:127-179. [PMID: 29404558 PMCID: PMC6155474 DOI: 10.1039/c7pp90043k] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 12/21/2017] [Indexed: 12/11/2022]
Abstract
The Environmental Effects Assessment Panel (EEAP) is one of three Panels of experts that inform the Parties to the Montreal Protocol. The EEAP focuses on the effects of UV radiation on human health, terrestrial and aquatic ecosystems, air quality, and materials, as well as on the interactive effects of UV radiation and global climate change. When considering the effects of climate change, it has become clear that processes resulting in changes in stratospheric ozone are more complex than previously held. Because of the Montreal Protocol, there are now indications of the beginnings of a recovery of stratospheric ozone, although the time required to reach levels like those before the 1960s is still uncertain, particularly as the effects of stratospheric ozone on climate change and vice versa, are not yet fully understood. Some regions will likely receive enhanced levels of UV radiation, while other areas will likely experience a reduction in UV radiation as ozone- and climate-driven changes affect the amounts of UV radiation reaching the Earth's surface. Like the other Panels, the EEAP produces detailed Quadrennial Reports every four years; the most recent was published as a series of seven papers in 2015 (Photochem. Photobiol. Sci., 2015, 14, 1-184). In the years in between, the EEAP produces less detailed and shorter Update Reports of recent and relevant scientific findings. The most recent of these was for 2016 (Photochem. Photobiol. Sci., 2017, 16, 107-145). The present 2017 Update Report assesses some of the highlights and new insights about the interactive nature of the direct and indirect effects of UV radiation, atmospheric processes, and climate change. A full 2018 Quadrennial Assessment, will be made available in 2018/2019.
Collapse
Affiliation(s)
- F. Bais
- Aristotle Univ. of Thessaloniki, Laboratory of Atmospheric Physics, Thessaloniki, Greece
| | - R. M. Luca
- National Centre for Epidemiology and Population Health, Australian National Univ., Canberra, Australia
| | - J. F. Bornman
- Curtin Univ., Curtin Business School, Perth, Australia
| | | | - B. Sulzberger
- Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland
| | - A. T. Austin
- Univ. of Buenos Aires, Faculty of Agronomy and IFEVA-CONICET, Buenos Aires, Argentina
| | - S. R. Wilson
- School of Chemistry, Centre for Atmospheric Chemistry, Univ. of Wollongong, Wollongong, Australia
| | - A. L. Andrady
- Department of Chemical and Biomolecular Engineering, North Carolina State Univ., Raleigh, NC, USA
| | - G. Bernhard
- Biospherical Instruments Inc., San Diego, CA, USA
| | | | - P. J. Aucamp
- Ptersa Environmental Consultants, Faerie Glen, South Africa
| | - S. Madronich
- National Center for Atmospheric Research, Boulder, Colorado, USA
| | - R. E. Neale
- Queensland Institute of Medical Research, Royal Brisbane Hospital, Brisbane, Australia
| | - S. Yazar
- Univ. of Western Australia, Centre for Ophthalmology and Visual Science, Lions Eye Institute, Perth, Australia
| | | | - F. R. de Gruijl
- Department of Dermatology, Leiden Univ. Medical Centre, Leiden, The Netherlands
| | - M. Norval
- Univ. of Edinburgh Medical School, UK
| | - Y. Takizawa
- Akita Univ. School of Medicine, National Institute for Minamata Disease, Nakadai, Itabashiku, Tokyo, Japan
| | - P. W. Barnes
- Department of Biological Sciences and Environment Program, Loyola Univ., New Orleans, USA
| | - T. M. Robson
- Research Programme in Organismal and Evolutionary Biology, Viikki Plant Science Centre, Univ. of Helsinki, Finland
| | - S. A. Robinson
- Centre for Sustainable Ecosystem Solutions, School of Biological Sciences, Univ. of Wollongong, Wollongong, NSW 2522, Australia
| | - C. L. Ballaré
- Univ. of Buenos Aires, Faculty of Agronomy and IFEVA-CONICET, Buenos Aires, Argentina
| | - S. D. Flint
- Dept of Forest, Rangeland and Fire Sciences, Univ. of Idaho, Moscow, ID, USA
| | - P. J. Neale
- Smithsonian Environmental Research Center, Edgewater, Maryland, USA
| | - S. Hylander
- Centre for Ecology and Evolution in Microbial model Systems, Linnaeus Univ., Kalmar, Sweden
| | - K. C. Rose
- Dept of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - S.-Å. Wängberg
- Dept Marine Sciences, Univ. of Gothenburg, Göteborg, Sweden
| | - D.-P. Häder
- Friedrich-Alexander Univ. Erlangen-Nürnberg, Dept of Biology, Möhrendorf, Germany
| | - R. C. Worrest
- CIESIN, Columbia Univ., New Hartford, Connecticut, USA
| | - R. G. Zepp
- United States Environmental Protection Agency, Athens, Georgia, USA
| | - N. D. Paul
- Lanter Environment Centre, Lanter Univ., LA1 4YQ, UK
| | - R. M. Cory
- Earth and Environmental Sciences, Univ. of Michigan, Ann Arbor, MI, USA
| | - K. R. Solomon
- Centre for Toxicology, School of Environmental Sciences, Univ. of Guelph, Guelph, ON, Canada
| | - J. Longstreth
- The Institute for Global Risk Research, Bethesda, MD, USA
| | - K. K. Pandey
- Institute of Wood Science and Technology, Bengaluru, India
| | - H. H. Redhwi
- Chemical Engineering Dept, King Fahd Univ. of Petroleum and Minerals, Dhahran, Saudi Arabia
| | - A. Torikai
- Materials Life Society of Japan, Kayabacho Chuo-ku, Tokyo, Japan
| | - A. M. Heikkilä
- Finnish Meteorological Institute R&D/Climate Research, Helsinki, Finland
| |
Collapse
|
78
|
Increased nitrous oxide emissions from Arctic peatlands after permafrost thaw. Proc Natl Acad Sci U S A 2017; 114:6238-6243. [PMID: 28559346 DOI: 10.1073/pnas.1702902114] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Permafrost in the Arctic is thawing, exposing large carbon and nitrogen stocks for decomposition. Gaseous carbon release from Arctic soils due to permafrost thawing is known to be substantial, but growing evidence suggests that Arctic soils may also be relevant sources of nitrous oxide (N2O). Here we show that N2O emissions from subarctic peatlands increase as the permafrost thaws. In our study, the highest postthaw emissions occurred from bare peat surfaces, a typical landform in permafrost peatlands, where permafrost thaw caused a fivefold increase in emissions (0.56 ± 0.11 vs. 2.81 ± 0.6 mg N2O m-2 d-1). These emission rates match those from tropical forest soils, the world's largest natural terrestrial N2O source. The presence of vegetation, known to limit N2O emissions in tundra, did decrease (by ∼90%) but did not prevent thaw-induced N2O release, whereas waterlogged conditions suppressed the emissions. We show that regions with high probability for N2O emissions cover one-fourth of the Arctic. Our results imply that the Arctic N2O budget will depend strongly on moisture changes, and that a gradual deepening of the active layer will create a strong noncarbon climate change feedback.
Collapse
|