51
|
Srivastava K, Albasri J, Alsuhaibani OM, Aljasem HA, Bueno MU, Antonacci T, Branch DR, Denomme GA, Flegel WA. SCAR: The high-prevalence antigen 013.008 in the Scianna blood group system. Transfusion 2021; 61:246-254. [PMID: 33098316 PMCID: PMC9067365 DOI: 10.1111/trf.16152] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 08/31/2020] [Accepted: 09/24/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND The Scianna (SC) blood group system comprises seven antigens. They reside on the erythroblast membrane-associated glycoprotein (ERMAP). The ERMAP and RHCE genes are juxtaposed to each other on chromosome 1. We report a novel SC antigen. STUDY DESIGN AND METHODS Blood samples came from a patient and his two sisters in Saudi Arabia. To investigate the antibody specificity we used the column agglutination technique and soluble recombinant ERMAP protein. The significance of anti-SCAR was evaluated by the transfusion history and a monocyte monolayer assay. We determined the genomic sequence of ERMAP and RHCE genes. RESULTS The patient's serum showed an antibody of titer 8 against a high-prevalence antigen. The soluble recombinant ERMAP protein inhibited the antibody. The propositus genotyped homozygous for an ERMAP:c.424C>G variant, for which his sisters were heterozygous. The c.424C>G variant occurred in the SC*01 allele in one haplotype with the RHCE*03 (RHCE*cE) allele. No signs of hemolysis occurred following an incompatible blood transfusion. The monocyte monolayer assay was negative. CONCLUSIONS We characterized a high-prevalence antigen, with the proposed name "SCAR," which is the eighth antigen of the Scianna blood group system (proposed designation 013.008). Individuals homozygous for ERMAP:p.(Gln142Glu) protein variant can produce anti-SCAR. Although we did not observe any sign of hemolysis at this time, the anti-SCAR prompted a change of the treatment regimen. A review of the known reports indicated that all SC alloantibodies of sufficient titer should be considered capable of causing hemolysis.
Collapse
Affiliation(s)
- Kshitij Srivastava
- Department of Transfusion Medicine, NIH Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Jasem Albasri
- Blood Bank Laboratory, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Omar M. Alsuhaibani
- Blood Bank Laboratory, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Hassan A. Aljasem
- Blood Bank Laboratory, Prince Sultan Military Medical City, Riyadh, Saudi Arabia
| | - Marina U. Bueno
- Department of Transfusion Medicine, NIH Clinical Center, National Institutes of Health, Bethesda, Maryland
| | - Tania Antonacci
- Versiti Blood Research Institute and Diagnostic Laboratories, Versiti, Milwaukee, Wisconsin
| | - Donald R. Branch
- Department of Medicine, University of Toronto, and Centre for Innovation, Canadian Blood Services, Toronto, Ontario, Canada
| | - Gregory A. Denomme
- Versiti Blood Research Institute and Diagnostic Laboratories, Versiti, Milwaukee, Wisconsin
| | - Willy A. Flegel
- Department of Transfusion Medicine, NIH Clinical Center, National Institutes of Health, Bethesda, Maryland
| |
Collapse
|
52
|
Reyes-Ruiz JM, Nakajima R, Baghallab I, Goldschmidt L, Sosna J, Mai Ho PN, Kumosani T, Felgner PL, Glabe C. An "epitomic" analysis of the specificity of conformation-dependent, anti-Aß amyloid monoclonal antibodies. J Biol Chem 2021; 296:100168. [PMID: 33298522 PMCID: PMC7949048 DOI: 10.1074/jbc.ra120.015501] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 12/03/2020] [Accepted: 12/09/2020] [Indexed: 12/21/2022] Open
Abstract
Antibodies against Aß amyloid are indispensable research tools and potential therapeutics for Alzheimer's disease. They display several unusual properties, such as specificity for aggregated forms of the peptide, the ability to distinguish polymorphic aggregate structures, and the ability to recognize generic aggregation-related epitopes formed by unrelated amyloid sequences. Understanding the mechanisms underlying these unusual properties and the structures of their corresponding epitopes is crucial for the understanding why antibodies display different therapeutic activities and for the development of more effective therapeutic agents. Here we employed a novel "epitomic" approach to map the fine structure of the epitopes of 28 monoclonal antibodies against amyloid-beta using immunoselection of random sequences from a phage display library, deep sequencing, and pattern analysis to define the critical sequence elements recognized by the antibodies. Although most of the antibodies map to major linear epitopes in the amino terminal 1 to 14 residues of Aß, the antibodies display differences in the target sequence residues that are critical for binding and in their individual preferences for nontarget residues, indicating that the antibodies bind to alternative conformations of the sequence by different mechanisms. Epitomic analysis also identifies discontinuous, nonoverlapping sequence Aß segments that may constitute the conformational epitopes that underlie the aggregation specificity of antibodies. Aggregation-specific antibodies recognize sequences that display a significantly higher predicted propensity for forming amyloid than antibodies that recognize the monomer, indicating that the ability of random sequences to aggregate into amyloid is a critical element of their binding mechanism.
Collapse
Affiliation(s)
- Jorge Mauricio Reyes-Ruiz
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, California, USA
| | - Rie Nakajima
- Department of Physiology and Biophysics, Vaccine Research and Development Center, University of California Irvine, Irvine, California, USA
| | - Ibtisam Baghallab
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Luki Goldschmidt
- Department of Biochemistry, Institute for Protein Design, University of Washington, Seattle, Washington, USA
| | - Justyna Sosna
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, California, USA
| | - Phuong Nguyen Mai Ho
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, California, USA
| | - Taha Kumosani
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Philip L Felgner
- Department of Physiology and Biophysics, Vaccine Research and Development Center, University of California Irvine, Irvine, California, USA
| | - Charles Glabe
- Department of Molecular Biology and Biochemistry, University of California Irvine, Irvine, California, USA.
| |
Collapse
|
53
|
Zinsli LV, Stierlin N, Loessner MJ, Schmelcher M. Deimmunization of protein therapeutics - Recent advances in experimental and computational epitope prediction and deletion. Comput Struct Biotechnol J 2020; 19:315-329. [PMID: 33425259 PMCID: PMC7779837 DOI: 10.1016/j.csbj.2020.12.024] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 12/11/2022] Open
Abstract
Biotherapeutics, and antimicrobial proteins in particular, are of increasing interest for human medicine. An important challenge in the development of such therapeutics is their potential immunogenicity, which can induce production of anti-drug-antibodies, resulting in altered pharmacokinetics, reduced efficacy, and potentially severe anaphylactic or hypersensitivity reactions. For this reason, the development and application of effective deimmunization methods for protein drugs is of utmost importance. Deimmunization may be achieved by unspecific shielding approaches, which include PEGylation, fusion to polypeptides (e.g., XTEN or PAS), reductive methylation, glycosylation, and polysialylation. Alternatively, the identification of epitopes for T cells or B cells and their subsequent deletion through site-directed mutagenesis represent promising deimmunization strategies and can be accomplished through either experimental or computational approaches. This review highlights the most recent advances and current challenges in the deimmunization of protein therapeutics, with a special focus on computational epitope prediction and deletion tools.
Collapse
Key Words
- ABR, Antigen-binding region
- ADA, Anti-drug antibody
- ANN, Artificial neural network
- APC, Antigen-presenting cell
- Anti-drug-antibody
- B cell epitope
- BCR, B cell receptor
- Bab, Binding antibody
- CDR, Complementarity determining region
- CRISPR, Clustered regularly interspaced short palindromic repeats
- DC, Dendritic cell
- ELP, Elastin-like polypeptide
- EPO, Erythropoietin
- ER, Endoplasmatic reticulum
- GLK, Gelatin-like protein
- HAP, Homo-amino-acid polymer
- HLA, Human leukocyte antigen
- HMM, Hidden Markov model
- IL, Interleukin
- Ig, Immunoglobulin
- Immunogenicity
- LPS, Lipopolysaccharide
- MHC, Major histocompatibility complex
- NMR, Nuclear magnetic resonance
- Nab, Neutralizing antibody
- PAMP, Pathogen-associated molecular pattern
- PAS, Polypeptide composed of proline, alanine, and/or serine
- PBMC, Peripheral blood mononuclear cell
- PD, Pharmacodynamics
- PEG, Polyethylene glycol
- PK, Pharmacokinetics
- PRR, Pattern recognition receptor
- PSA, Sialic acid polymers
- Protein therapeutic
- RNN, Recurrent artificial neural network
- SVM, Support vector machine
- T cell epitope
- TAP, Transporter associated with antigen processing
- TCR, T cell receptor
- TLR, Toll-like receptor
- XTEN, “Xtended” recombinant polypeptide
Collapse
Affiliation(s)
- Léa V. Zinsli
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Noël Stierlin
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Martin J. Loessner
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| | - Mathias Schmelcher
- Institute of Food, Nutrition and Health, ETH Zurich, Zurich, Switzerland
| |
Collapse
|
54
|
Lazutka J, Simutis K, Matulis P, Petraitytė-Burneikienė R, Kučinskaitė-Kodzė I, Simanavičius M, Tamošiunas PL. Antigenicity study of the yeast-generated human parvovirus 4 (PARV4) virus-like particles. Virus Res 2020; 292:198236. [PMID: 33242523 DOI: 10.1016/j.virusres.2020.198236] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/15/2020] [Accepted: 11/16/2020] [Indexed: 11/17/2022]
Abstract
Human parvovirus 4 (PARV4) is a novel tetraparvovirus that was isolated from intravenous drug users in 2005. Recombinant PARV4 capsid protein VP2 can form stable virus-like particles (VLPs) in yeast. These VLPs could act as antigen carriers during vaccine development. Therefore, the information about PARV4 VP2 VLP antigenic sites could advance further research in this area. In this work, human parvovirus 4 VLPs obtained from yeast were used to generate monoclonal antibodies (mAbs) in mice. Epitope mapping of the obtained mAbs showed at least three distinct antigenic sites of the VP2 protein. On top of that, molecular cloning was used to replace PARV4 VP2 antigenic sites with heterologous peptides. The chimeric PARV4 VLPs bearing polyhistidine inserts obtained from yeast were observed using electron microscopy while polyhistidine-specific antibodies detected heterologous peptides of the chimeric VP2 proteins.
Collapse
Affiliation(s)
- Justas Lazutka
- Department of Eukaryote Gene Engineering, Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio al. 7, Vilnius, Lithuania.
| | - Karolis Simutis
- Department of Eukaryote Gene Engineering, Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio al. 7, Vilnius, Lithuania
| | - Paulius Matulis
- Department of Eukaryote Gene Engineering, Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio al. 7, Vilnius, Lithuania
| | - Rasa Petraitytė-Burneikienė
- Department of Eukaryote Gene Engineering, Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio al. 7, Vilnius, Lithuania
| | - Indrė Kučinskaitė-Kodzė
- Department of Immunology and Cell Biology, Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio al.7, Vilnius, Lithuania
| | - Martynas Simanavičius
- Department of Immunology and Cell Biology, Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio al.7, Vilnius, Lithuania
| | - Paulius Lukas Tamošiunas
- Department of Eukaryote Gene Engineering, Institute of Biotechnology, Life Sciences Center, Vilnius University, Sauletekio al. 7, Vilnius, Lithuania
| |
Collapse
|
55
|
Pomés A, Mueller GA, Chruszcz M. Structural Aspects of the Allergen-Antibody Interaction. Front Immunol 2020; 11:2067. [PMID: 32983155 PMCID: PMC7492603 DOI: 10.3389/fimmu.2020.02067] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 07/29/2020] [Indexed: 12/23/2022] Open
Abstract
The development of allergic disease involves the production of IgE antibodies upon allergen exposure in a process called sensitization. IgE binds to receptors on the surface of mast cells and basophils, and subsequent allergen exposure leads to cross-linking of IgE antibodies and release of cell mediators that cause allergy symptoms. Although this process is quite well-understood, very little is known about the epitopes on the allergen recognized by IgE, despite the importance of the allergen-antibody interaction for the allergic response to occur. This review discusses efforts to analyze allergen-antibody interactions, from the original epitope mapping studies using linear peptides or recombinant allergen fragments, to more sophisticated technologies, such as X-ray crystallography and nuclear magnetic resonance. These state-of-the-art approaches, combined with site-directed mutagenesis, have led to the identification of conformational IgE epitopes. The first structures of an allergen (egg lysozyme) in complex with Fab fragments from IgG antibodies were determined in the 1980s. Since then, IgG has been used as surrogate for IgE, due to the difficulty of obtaining monoclonal IgE antibodies. Technical developments including phage display libraries have contributed to progress in epitope mapping thanks to the isolation of IgE antibody constructs from combinatorial libraries made from peripheral blood mononuclear cells of allergic donors. Most recently, single B cell antibody sequencing and human hybridomas are new breakthrough technologies for finally obtaining human IgE monoclonal antibodies, ideal for epitope mapping. The information on antigenic determinants will facilitate the design of hypoallergens for immunotherapy and the investigation of the fundamental mechanisms of the IgE response.
Collapse
Affiliation(s)
- Anna Pomés
- Indoor Biotechnologies, Inc., Charlottesville, VA, United States
| | - Geoffrey A Mueller
- National Institute of Environmental Health Sciences, Durham, NC, United States
| | - Maksymilian Chruszcz
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, United States
| |
Collapse
|
56
|
Mehaffey MR, Lee J, Jung J, Lanzillotti MB, Escobar EE, Morgenstern KR, Georgiou G, Brodbelt JS. Mapping a Conformational Epitope of Hemagglutinin A Using Native Mass Spectrometry and Ultraviolet Photodissociation. Anal Chem 2020; 92:11869-11878. [PMID: 32867493 PMCID: PMC7808878 DOI: 10.1021/acs.analchem.0c02237] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
As the importance of effective vaccines and the role of protein therapeutics in the drug industry continue to expand, alternative strategies to characterize protein complexes are needed. Mass spectrometry (MS) in conjunction with enzymatic digestion or chemical probes has been widely used for mapping binding epitopes at the molecular level. However, advances in instrumentation and application of activation methods capable of accessing higher energy dissociation pathways have recently allowed direct analysis of protein complexes. Here we demonstrate a workflow utilizing native MS and ultraviolet photodissociation (UVPD) to map the antigenic determinants of a model antibody-antigen complex involving hemagglutinin (HA), the primary immunogenic antigen of the influenza virus, and the D1 H1-17/H3-14 antibody which has been shown to confer potent protection to lethal infection in mice despite lacking neutralization activity. Comparison of sequence coverages upon UV photoactivation of HA and of the HA·antibody complex indicates the elimination of some sequence ions that originate from backbone cleavages exclusively along the putative epitope regions of HA in the presence of the antibody. Mapping the number of sequence ions covering the HA antigen versus the HA·antibody complex highlights regions with suppressed backbone cleavage and allows elucidation of unknown epitopes. Moreover, examining the observed fragment ion types generated by UVPD demonstrates a loss in diversity exclusively along the antigenic determinants upon MS/MS of the antibody-antigen complex. UVPD-MS shows promise as a method to rapidly map epitope regions along antibody-antigen complexes as novel antibodies are discovered or developed.
Collapse
Affiliation(s)
| | - Jiwon Lee
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755, United States
| | | | | | | | | | | | | |
Collapse
|
57
|
Brooks BD, Closmore A, Yang J, Holland M, Cairns T, Cohen GH, Bailey-Kellogg C. Characterizing Epitope Binding Regions of Entire Antibody Panels by Combining Experimental and Computational Analysis of Antibody: Antigen Binding Competition. Molecules 2020; 25:molecules25163659. [PMID: 32796656 PMCID: PMC7464469 DOI: 10.3390/molecules25163659] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 07/27/2020] [Accepted: 07/28/2020] [Indexed: 11/16/2022] Open
Abstract
Vaccines and immunotherapies depend on the ability of antibodies to sensitively and specifically recognize particular antigens and specific epitopes on those antigens. As such, detailed characterization of antibody-antigen binding provides important information to guide development. Due to the time and expense required, high-resolution structural characterization techniques are typically used sparingly and late in a development process. Here, we show that antibody-antigen binding can be characterized early in a process for whole panels of antibodies by combining experimental and computational analyses of competition between monoclonal antibodies for binding to an antigen. Experimental "epitope binning" of monoclonal antibodies uses high-throughput surface plasmon resonance to reveal which antibodies compete, while a new complementary computational analysis that we call "dock binning" evaluates antibody-antigen docking models to identify why and where they might compete, in terms of possible binding sites on the antigen. Experimental and computational characterization of the identified antigenic hotspots then enables the refinement of the competitors and their associated epitope binding regions on the antigen. While not performed at atomic resolution, this approach allows for the group-level identification of functionally related monoclonal antibodies (i.e., communities) and identification of their general binding regions on the antigen. By leveraging extensive epitope characterization data that can be readily generated both experimentally and computationally, researchers can gain broad insights into the basis for antibody-antigen recognition in wide-ranging vaccine and immunotherapy discovery and development programs.
Collapse
Affiliation(s)
- Benjamin D. Brooks
- Department of Biomedical Sciences, Rocky Vista University, Ivins, UT 84738, USA
- Inovan Inc., Fargo, ND 58102, USA
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (T.C.); (G.H.C.)
- Correspondence: ; Tel.: +1-435-222-1403
| | - Adam Closmore
- Department of Pharmacy, North Dakota State University, Fargo, ND 58102, USA;
| | - Juechen Yang
- Department of Biomedical Engineering, North Dakota State University, Fargo, ND 58102, USA; (J.Y.); (M.H.)
| | - Michael Holland
- Department of Biomedical Engineering, North Dakota State University, Fargo, ND 58102, USA; (J.Y.); (M.H.)
| | - Tina Cairns
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (T.C.); (G.H.C.)
| | - Gary H. Cohen
- Department of Microbiology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; (T.C.); (G.H.C.)
| | | |
Collapse
|
58
|
Choi Y, Jeong S, Choi JM, Ndong C, Griswold KE, Bailey-Kellogg C, Kim HS. Computer-guided binding mode identification and affinity improvement of an LRR protein binder without structure determination. PLoS Comput Biol 2020; 16:e1008150. [PMID: 32866140 PMCID: PMC7485979 DOI: 10.1371/journal.pcbi.1008150] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 09/11/2020] [Accepted: 07/14/2020] [Indexed: 12/24/2022] Open
Abstract
Precise binding mode identification and subsequent affinity improvement without structure determination remain a challenge in the development of therapeutic proteins. However, relevant experimental techniques are generally quite costly, and purely computational methods have been unreliable. Here, we show that integrated computational and experimental epitope localization followed by full-atom energy minimization can yield an accurate complex model structure which ultimately enables effective affinity improvement and redesign of binding specificity. As proof-of-concept, we used a leucine-rich repeat (LRR) protein binder, called a repebody (Rb), that specifically recognizes human IgG1 (hIgG1). We performed computationally-guided identification of the Rb:hIgG1 binding mode and leveraged the resulting model to reengineer the Rb so as to significantly increase its binding affinity for hIgG1 as well as redesign its specificity toward multiple IgGs from other species. Experimental structure determination verified that our Rb:hIgG1 model closely matched the co-crystal structure. Using a benchmark of other LRR protein complexes, we further demonstrated that the present approach may be broadly applicable to proteins undergoing relatively small conformational changes upon target binding.
Collapse
Affiliation(s)
- Yoonjoo Choi
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Sukyo Jeong
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Jung-Min Choi
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Christian Ndong
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, United States of America
| | - Karl E. Griswold
- Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire, United States of America
- Norris Cotton Cancer Center at Dartmouth, Lebanon, New Hampshire, United States of America
- Department of Biological Sciences, Dartmouth College, Hanover, New Hampshire, United States of America
| | - Chris Bailey-Kellogg
- Department of Computer Science, Dartmouth College, Hanover, New Hampshire, United States of America
| | - Hak-Sung Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| |
Collapse
|
59
|
Llanes A, Restrepo CM, Caballero Z, Rajeev S, Kennedy MA, Lleonart R. Betacoronavirus Genomes: How Genomic Information has been Used to Deal with Past Outbreaks and the COVID-19 Pandemic. Int J Mol Sci 2020; 21:E4546. [PMID: 32604724 PMCID: PMC7352669 DOI: 10.3390/ijms21124546] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 12/22/2022] Open
Abstract
In the 21st century, three highly pathogenic betacoronaviruses have emerged, with an alarming rate of human morbidity and case fatality. Genomic information has been widely used to understand the pathogenesis, animal origin and mode of transmission of coronaviruses in the aftermath of the 2002-2003 severe acute respiratory syndrome (SARS) and 2012 Middle East respiratory syndrome (MERS) outbreaks. Furthermore, genome sequencing and bioinformatic analysis have had an unprecedented relevance in the battle against the 2019-2020 coronavirus disease 2019 (COVID-19) pandemic, the newest and most devastating outbreak caused by a coronavirus in the history of mankind. Here, we review how genomic information has been used to tackle outbreaks caused by emerging, highly pathogenic, betacoronavirus strains, emphasizing on SARS-CoV, MERS-CoV and SARS-CoV-2. We focus on shared genomic features of the betacoronaviruses and the application of genomic information to phylogenetic analysis, molecular epidemiology and the design of diagnostic systems, potential drugs and vaccine candidates.
Collapse
Affiliation(s)
- Alejandro Llanes
- Centro de Biología Celular y Molecular de Enfermedades, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Panama City 0801, Panama; (A.L.); (C.M.R.); (Z.C.)
| | - Carlos M. Restrepo
- Centro de Biología Celular y Molecular de Enfermedades, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Panama City 0801, Panama; (A.L.); (C.M.R.); (Z.C.)
| | - Zuleima Caballero
- Centro de Biología Celular y Molecular de Enfermedades, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Panama City 0801, Panama; (A.L.); (C.M.R.); (Z.C.)
| | - Sreekumari Rajeev
- College of Veterinary Medicine, University of Florida, Gainesville, FL 32610, USA;
| | - Melissa A. Kennedy
- College of Veterinary Medicine, University of Tennessee, Knoxville, TN 37996, USA;
| | - Ricardo Lleonart
- Centro de Biología Celular y Molecular de Enfermedades, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Panama City 0801, Panama; (A.L.); (C.M.R.); (Z.C.)
| |
Collapse
|
60
|
Son S, Takatori SC, Belardi B, Podolski M, Bakalar MH, Fletcher DA. Molecular height measurement by cell surface optical profilometry (CSOP). Proc Natl Acad Sci U S A 2020; 117:14209-14219. [PMID: 32513731 PMCID: PMC7322024 DOI: 10.1073/pnas.1922626117] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
The physical dimensions of proteins and glycans on cell surfaces can critically affect cell function, for example, by preventing close contact between cells and limiting receptor accessibility. However, high-resolution measurements of molecular heights on native cell membranes have been difficult to obtain. Here we present a simple and rapid method that achieves nanometer height resolution by localizing fluorophores at the tip and base of cell surface molecules and determining their separation by radially averaging across many molecules. We use this method, which we call cell surface optical profilometry (CSOP), to quantify the height of key multidomain proteins on a model cell, as well as to capture average protein and glycan heights on native cell membranes. We show that average height of a protein is significantly smaller than its contour length, due to thermally driven bending and rotation on the membrane, and that height strongly depends on local surface and solution conditions. We find that average height increases with cell surface molecular crowding but decreases with solution crowding by solutes, both of which we confirm with molecular dynamics simulations. We also use experiments and simulations to determine the height of an epitope, based on the location of an antibody, which allows CSOP to profile various proteins and glycans on a native cell surface using antibodies and lectins. This versatile method for profiling cell surfaces has the potential to advance understanding of the molecular landscape of cells and the role of the molecular landscape in cell function.
Collapse
Affiliation(s)
- Sungmin Son
- Department of Bioengineering and Biophysics Program, University of California, Berkeley, CA 94720
| | - Sho C Takatori
- Department of Bioengineering and Biophysics Program, University of California, Berkeley, CA 94720
| | - Brian Belardi
- Department of Bioengineering and Biophysics Program, University of California, Berkeley, CA 94720
| | - Marija Podolski
- Department of Bioengineering and Biophysics Program, University of California, Berkeley, CA 94720
| | - Matthew H Bakalar
- Department of Bioengineering and Biophysics Program, University of California, Berkeley, CA 94720
| | - Daniel A Fletcher
- Department of Bioengineering and Biophysics Program, University of California, Berkeley, CA 94720;
- Division of Biological Systems and Engineering, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
- Chan Zuckerberg Biohub, San Francisco, CA 94158
| |
Collapse
|
61
|
Zhang MM, Huang RYC, Beno BR, Deyanova EG, Li J, Chen G, Gross ML. Epitope and Paratope Mapping of PD-1/Nivolumab by Mass Spectrometry-Based Hydrogen-Deuterium Exchange, Cross-linking, and Molecular Docking. Anal Chem 2020; 92:9086-9094. [PMID: 32441507 DOI: 10.1021/acs.analchem.0c01291] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Programmed cell death-1 (PD-1), an antigen co-receptor on cell surfaces, is one of the conspicuous immune checkpoints. Nivolumab, a monoclonal antibody therapeutic approved by the FDA, binds to PD-1 and efficiently blocks its pathways. In this study, an integrated approach was developed to map the epitope/paratope of PD-1/nivolumab. The approach includes hydrogen-deuterium exchange mass spectrometry (HDX-MS) followed by electron-transfer dissociation (ETD), chemical cross-linking, and molecular docking. HDX-ETD offers some binding-site characterization with amino acid resolution. Chemical cross-linking provides complementary information on one additional epitope (i.e., the BC-loop) and a potential paratope at the N-terminus of the heavy chain. Furthermore, cross-linking identifies another loop region (i.e., the C'D-loop) that undergoes a remote conformational change. The distance restraints derived from the cross-links enable building high-confidence models of PD-1/nivolumab, evaluated with respect to a resolved crystal structure. This integrated strategy is an opportunity to characterize comprehensively other antigen-antibody interactions, to enable the understanding of binding mechanisms, and to design future antibody therapeutics.
Collapse
Affiliation(s)
- Mengru Mira Zhang
- Department of Chemistry, Washington University, St. Louis, Missouri 63130, United States
| | - Richard Y-C Huang
- Pharmaceutical Candidate Optimization, Nonclinical Research and Development, Bristol Myers Squibb Company, Princeton, New Jersey 08540, United States
| | - Brett R Beno
- Molecular Structure & Design, Small Molecule Drug Discovery, Bristol Myers Squibb Company, Princeton, New Jersey 08540, United States
| | - Ekaterina G Deyanova
- Pharmaceutical Candidate Optimization, Nonclinical Research and Development, Bristol Myers Squibb Company, Princeton, New Jersey 08540, United States
| | - Jing Li
- Pharmaceutical Candidate Optimization, Nonclinical Research and Development, Bristol Myers Squibb Company, Princeton, New Jersey 08540, United States
| | - Guodong Chen
- Pharmaceutical Candidate Optimization, Nonclinical Research and Development, Bristol Myers Squibb Company, Princeton, New Jersey 08540, United States
| | - Michael L Gross
- Department of Chemistry, Washington University, St. Louis, Missouri 63130, United States
| |
Collapse
|
62
|
Limpikirati PK, Zhao B, Pan X, Eyles SJ, Vachet RW. Covalent Labeling/Mass Spectrometry of Monoclonal Antibodies with Diethylpyrocarbonate: Reaction Kinetics for Ensuring Protein Structural Integrity. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:1223-1232. [PMID: 32310649 PMCID: PMC7370534 DOI: 10.1021/jasms.0c00067] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Diethylpyrocarbonate (DEPC)-based covalent labeling together with mass spectrometry is a promising tool for the higher-order structural analysis of antibody therapeutics. Reliable information about antibody higher-order structure can be obtained, though, only when the protein's structural integrity is preserved during labeling. In this work, we have evaluated the applicability of DEPC reaction kinetics for ensuring the structural integrity of monoclonal antibodies (mAbs) during labeling. By monitoring the modification extent of selected proteolytic fragments as a function of DEPC concentration, we find that a common DEPC concentration can be used for different monoclonal antibodies in formulated samples without perturbing their higher-order structure. Under these labeling conditions, we find that the antibodies can accommodate up to four DEPC modifications without being structurally perturbed, indicating that multidomain proteins can withstand more than one label, which contrasts to previously studied single-domain proteins. This more extensive labeling provides a more sensitive measure of structure, making DEPC-based covalent labeling-mass spectrometry suitable for the higher-order structural analyses of mAbs.
Collapse
Affiliation(s)
- Patanachai K. Limpikirati
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Bo Zhao
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Xiao Pan
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Stephen J. Eyles
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| | - Richard W. Vachet
- Department of Chemistry, University of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
- Corresponding author, Phone: (413) 545-2733 (R.W.V.)
| |
Collapse
|
63
|
Abstract
In vertebrates, immunoglobulins (Igs), commonly known as antibodies, play an integral role in the armamentarium of immune defense against various pathogens. After an antigenic challenge, antibodies are secreted by differentiated B cells called plasma cells. Antibodies have two predominant roles that involve specific binding to antigens to launch an immune response, along with activation of other components of the immune system to fight pathogens. The ability of immunoglobulins to fight against innumerable and diverse pathogens lies in their intrinsic ability to discriminate between different antigens. Due to this specificity and high affinity for their antigens, antibodies have been a valuable and indispensable tool in research, diagnostics and therapy. Although seemingly a simple maneuver, the association between an antibody and its antigen, to make an antigen-antibody complex, is comprised of myriads of non-covalent interactions. Amino acid residues on the antigen binding site, the epitope, and on the antibody binding site, the paratope, intimately contribute to the energetics needed for the antigen-antibody complex stability. Structural biology methods to study antigen-antibody complexes are extremely valuable tools to visualize antigen-antibody interactions in detail; this helps to elucidate the basis of molecular recognition between an antibody and its specific antigen. The main scope of this chapter is to discuss the structure and function of different classes of antibodies and the various aspects of antigen-antibody interactions including antigen-antibody interfaces-with a special focus on paratopes, complementarity determining regions (CDRs) and other non-CDR residues important for antigen binding and recognition. Herein, we also discuss methods used to study antigen-antibody complexes, antigen recognition by antibodies, types of antigens in complexes, and how antigen-antibody complexes play a role in modern day medicine and human health. Understanding the molecular basis of antigen binding and recognition by antibodies helps to facilitate the production of better and more potent antibodies for immunotherapy, vaccines and various other applications.
Collapse
Affiliation(s)
- A Brenda Kapingidza
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA
| | - Krzysztof Kowal
- Department of Allergology and Internal Medicine, Medical University of Bialystok, Bialystok, Poland
- Department of Experimental Allergology and Immunology, Medical University of Bialystok, Bialystok, Poland
| | - Maksymilian Chruszcz
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, USA.
| |
Collapse
|
64
|
Howlett DR, Clarke IJ, Newton RP, Hart JE. Epitope mapping of an uncertain endogenous antigen implies secretogranin II peptide splicing. F1000Res 2019; 8:1732. [PMID: 32399184 PMCID: PMC7194351 DOI: 10.12688/f1000research.20633.2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/25/2019] [Indexed: 11/20/2022] Open
Abstract
Background: The search for a tissue-mass reducing reproductive hormone involved a bioassay-guided physicochemical fractionation of sheep blood plasma. This brought forth a candidate protein whose apparent mass on gels and in mass spectrometry (MS) was 7-8 kDa, implying a polypeptide of ~70 residues. Four purification runs gave Edman N-terminal sequences relating to 1MKPLTGKVKEFNNI 14. This is bioinformatically obscure and has been resistant to molecular biological investigation. The sequence was synthesized as the peptide EPL001, against which was raised a goat polyclonal antiserum, G530. Used in an antigen capture campaign, G530 pointed to the existence of a novel derivative of secretogranin II (SgII), the neuroendocrine secretory vesicle helper protein and prohormone. The proposed SgII derivative was dubbed SgII-70, yet the sequence commonality between SgII and EPL001 is essentially NNI. Methods: Immunohistochemical (IHC) labelling with G530 is reported within rat, mouse and human cerebrovasculature and in glandular elements of the mouse intestine. Epitope mapping involved IHC peptide preabsorption, allied to deductive bioinformatics and molecular modelling in silico. Results: G530 is deemed monoepitopic in regard to both its synthetic antigen (EPL001) and its putative endogenous antigen (SgII related). The epitope within EPL001 of the anti-EPL001 antibody is inferred to be the contiguous C-terminal 9KEFNNI 14. This is so because the G530 blockade data are consistent with the epitope in the mammalian endogenous antigen being part contiguous, part non-contiguous KE·F·NNI, ex hypothesi. The observed immunostaining is deduced to be due to pre-SgII-70, which has a non-C-terminal NNI, and SgII-70, which has an N-terminal MLKTGEKPV/N and a C-terminal NNI (these two motifs being in the reverse order in the SgII parent protein). Conclusion: The present data are consistent with the hypothesis that the anti-EPL001 antibody binds to an SgII-related epitope. SgII is apparently subject to peptide splicing, as has been reported for the related chromogranin A.
Collapse
Affiliation(s)
- David R. Howlett
- Wolfson Centre for Age Related Disease, Kings College London, London, SE1 1UL, UK,
| | - Iain J. Clarke
- School of Agriculture and Veterinary Science, Melbourne University, Parkville, Victoria, VIC 3010, Australia
| | - Russell P. Newton
- Biochemistry Group, Institute of Life Sciences, Medical School, Swansea University, Swansea, Wales, SA2 8PP, UK
| | - John E. Hart
- Endocrine Pharmaceuticals Ltd, Tadley, Hampshire, RG26 3TA, UK
| |
Collapse
|
65
|
Karadag M, Arslan M, Kaleli NE, Kalyoncu S. Physicochemical determinants of antibody-protein interactions. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2019; 121:85-114. [PMID: 32312427 DOI: 10.1016/bs.apcsb.2019.08.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Antibodies are specialized proteins generated by immune system for high specificity and affinity binding to target antigens. Because of their essential roles in immune system, antibodies have been successfully developed and engineered as biopharmaceuticals for treatment of various diseases. Analysis of antibody-protein interactions is always required to get detailed information on effectivity of such antibody-based therapeutics. Although physicochemical rules cannot be generalized for every antibody-protein interaction, there are some features which should be taken into account during antibody development and engineering efforts. In this chapter, physicochemical analysis of antibody paratope-protein epitope interactions will be discussed to highlight important characteristics. First, paratope and non-paratope regions of antibodies will be described and important roles of these regions on binding and biophysical features of antibodies will be discussed. Then, general features of epitope regions of protein antigens will be introduced along with several computational/experimental tools to identify them. Lastly, a rising star of antibody biopharmaceuticals, nanobodies, will be described to show importance of next-generation antibody fragment based biopharmaceuticals in drug development.
Collapse
Affiliation(s)
- Murat Karadag
- Izmir Biomedicine and Genome Center, İzmir, Turkey; Izmir Biomedicine and Genome Institute, Dokuz Eylul University, İzmir, Turkey
| | - Merve Arslan
- Izmir Biomedicine and Genome Center, İzmir, Turkey; Izmir Biomedicine and Genome Institute, Dokuz Eylul University, İzmir, Turkey
| | - Nazli Eda Kaleli
- Izmir Biomedicine and Genome Center, İzmir, Turkey; Izmir Biomedicine and Genome Institute, Dokuz Eylul University, İzmir, Turkey
| | | |
Collapse
|
66
|
Oprea TI. Exploring the dark genome: implications for precision medicine. Mamm Genome 2019; 30:192-200. [PMID: 31270560 DOI: 10.1007/s00335-019-09809-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 06/15/2019] [Indexed: 01/08/2023]
Abstract
The increase in the number of both patients and healthcare practitioners who grew up using the Internet and computers (so-called "digital natives") is likely to impact the practice of precision medicine, and requires novel platforms for data integration and mining, as well as contextualized information retrieval. The "Illuminating the Druggable Genome Knowledge Management Center" (IDG KMC) quantifies data availability from a wide range of chemical, biological, and clinical resources, and has developed platforms that can be used to navigate understudied proteins (the "dark genome"), and their potential contribution to specific pathologies. Using the "Target Importance and Novelty Explorer" (TIN-X) highlights the role of LRRC10 (a dark gene) in dilated cardiomyopathy. Combining mouse and human phenotype data leads to increased strength of evidence, which is discussed for four additional dark genes: SLX4IP and its role in glucose metabolism, the role of HSF2BP in coronary artery disease, the involvement of ELFN1 in attention-deficit hyperactivity disorder and the role of VPS13D in mouse neural tube development and its confirmed role in childhood onset movement disorders. The workflow and tools described here are aimed at guiding further experimental research, particularly within the context of precision medicine.
Collapse
Affiliation(s)
- Tudor I Oprea
- Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM, USA. .,UNM Comprehensive Cancer Center, Albuquerque, NM, USA. .,Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden. .,Faculty of Health and Medical Sciences, Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
67
|
Vordenbäumen S, Brinks R, Hoyer A, Fischer‐Betz R, Pongratz G, Lowin T, Zucht H, Budde P, Bleck E, Schulz‐Knappe P, Schneider M. Comprehensive Longitudinal Surveillance of the IgG Autoantibody Repertoire in Established Systemic Lupus Erythematosus. Arthritis Rheumatol 2019; 71:736-743. [DOI: 10.1002/art.40788] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 11/20/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Stefan Vordenbäumen
- University Hospital Düsseldorf and Heinrich‐Heine University Düsseldorf Düsseldorf Germany
| | - Ralph Brinks
- University Hospital Düsseldorf and Heinrich‐Heine University Düsseldorf Düsseldorf Germany
| | - Annika Hoyer
- Heinrich‐Heine University Düsseldorf Düsseldorf Germany
| | - Rebecca Fischer‐Betz
- University Hospital Düsseldorf and Heinrich‐Heine University Düsseldorf Düsseldorf Germany
| | - Georg Pongratz
- University Hospital Düsseldorf and Heinrich‐Heine University Düsseldorf Düsseldorf Germany
| | - Torsten Lowin
- University Hospital Düsseldorf and Heinrich‐Heine University Düsseldorf Düsseldorf Germany
| | | | | | - Ellen Bleck
- University Hospital Düsseldorf and Heinrich‐Heine University Düsseldorf Düsseldorf Germany
| | | | - Matthias Schneider
- University Hospital Düsseldorf and Heinrich‐Heine University Düsseldorf Düsseldorf Germany
| |
Collapse
|
68
|
Wollacott AM, Robinson LN, Ramakrishnan B, Tissire H, Viswanathan K, Shriver Z, Babcock GJ. Structural prediction of antibody-APRIL complexes by computational docking constrained by antigen saturation mutagenesis library data. J Mol Recognit 2019; 32:e2778. [DOI: 10.1002/jmr.2778] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 11/21/2018] [Accepted: 12/06/2018] [Indexed: 12/29/2022]
|
69
|
Zhu S, Liuni P, Ettorre L, Chen T, Szeto J, Carpick B, James DA, Wilson DJ. Hydrogen-Deuterium Exchange Epitope Mapping Reveals Distinct Neutralizing Mechanisms for Two Monoclonal Antibodies against Diphtheria Toxin. Biochemistry 2019; 58:646-656. [PMID: 30560647 DOI: 10.1021/acs.biochem.8b01123] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The diphtheria toxoid (DT) antigen is one of the major components in pediatric and booster combination vaccines and is known to raise a protective humoral immune response upon vaccination. However, a structurally resolved analysis of diphtheria toxin (DTx) epitopes with underlying molecular mechanisms of antibody neutralization has not yet been reported. Using hydrogen-deuterium exchange mass spectrometry (HDX-MS) and Biolayer Interferometry (BLI) assays, we have characterized two neutralizing anti-DTx monoclonal antibodies (mAbs), 2-25 and 2-18, by identifying the specific epitopes on the diphtheria toxin responsible for antibody binding. Our results show that both epitopes are conformational, and mechanistically distinct. Monoclonal antibody 2-25 binds selectively to the B-subunit (translocation and receptor domain) of DTx, blocking the heparin-binding EGF-like growth factor (HBEGF) binding site. In contrast, mAb 2-18 binds to the A-subunit (catalytic domain), partially covering the catalytic loop region that shuttles NAD during catalysis. The results are discussed in the context of antigen neutralization mechanisms and can ultimately help to reveal the underlying factors that contribute to Diptheria vaccine efficacy.
Collapse
Affiliation(s)
- Shaolong Zhu
- Process Support and Process Analytical Technologies, Analytical Sciences , Sanofi Pasteur Ltd. , Toronto , Ontario M2R 3T4 , Canada.,Chemistry Department , York University , Toronto , Ontario M3J 1P3 , Canada.,Center for Research in Mass Spectrometry, Department of Chemistry , York University , Toronto , Ontario M3J 1P3 , Canada
| | - Peter Liuni
- Process Support and Process Analytical Technologies, Analytical Sciences , Sanofi Pasteur Ltd. , Toronto , Ontario M2R 3T4 , Canada.,Chemistry Department , York University , Toronto , Ontario M3J 1P3 , Canada.,Center for Research in Mass Spectrometry, Department of Chemistry , York University , Toronto , Ontario M3J 1P3 , Canada
| | - Luciano Ettorre
- Immunology Platform, Analytical Sciences , Sanofi Pasteur Ltd. , Toronto , Ontario M2R 3T4 , Canada
| | - Tricia Chen
- Immunology Platform, Analytical Sciences , Sanofi Pasteur Ltd. , Toronto , Ontario M2R 3T4 , Canada
| | - Jason Szeto
- Immunology Platform, Analytical Sciences , Sanofi Pasteur Ltd. , Toronto , Ontario M2R 3T4 , Canada
| | - Bruce Carpick
- Process Support and Process Analytical Technologies, Analytical Sciences , Sanofi Pasteur Ltd. , Toronto , Ontario M2R 3T4 , Canada
| | - D Andrew James
- Process Support and Process Analytical Technologies, Analytical Sciences , Sanofi Pasteur Ltd. , Toronto , Ontario M2R 3T4 , Canada.,Chemistry Department , York University , Toronto , Ontario M3J 1P3 , Canada
| | - Derek J Wilson
- Chemistry Department , York University , Toronto , Ontario M3J 1P3 , Canada.,Center for Research in Mass Spectrometry, Department of Chemistry , York University , Toronto , Ontario M3J 1P3 , Canada
| |
Collapse
|
70
|
Osipov EM, Hendrickson OD, Tikhonova TV, Zherdev AV, Solopova ON, Sveshnikov PG, Dzantiev BB, Popov VO. Structure of the Anti-C60 Fullerene Antibody Fab Fragment: Structural Determinants of Fullerene Binding. Acta Naturae 2019; 11:58-65. [PMID: 31024749 PMCID: PMC6475864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Indexed: 11/03/2022] Open
Abstract
The structure of the anti-C60 fullerene antibody Fab fragment (FabC60) was solved by X-ray crystallography. The computer-aided docking of C60 into the antigen-binding pocket of FabC60 showed that binding of C60 to FabC60 is governed by the enthalpy and entropy; namely, by π-π stacking interactions with aromatic residues of the antigen-binding site and reduction of the solvent-accessible area of the hydrophobic surface of C60. A fragment of the mobile CDR H3 loop located on the surface of FabC60 interferes with C60 binding in the antigen-binding site, thereby resulting in low antibody affinity for C60. The structure of apo-FabC60 has been deposited with pdbid 6H3H.
Collapse
Affiliation(s)
- E. M. Osipov
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, 119071, Moscow, Russia
| | - O. D. Hendrickson
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, 119071, Moscow, Russia
| | - T. V. Tikhonova
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, 119071, Moscow, Russia
| | - A. V. Zherdev
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, 119071, Moscow, Russia
| | - O. N. Solopova
- Russian Research Center of Molecular Diagnostics and Therapy, Simpheropolsky Blvd. 8, 113149, Moscow, Russia
| | - P. G. Sveshnikov
- Russian Research Center of Molecular Diagnostics and Therapy, Simpheropolsky Blvd. 8, 113149, Moscow, Russia
| | - B. B. Dzantiev
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, 119071, Moscow, Russia
| | - V. O. Popov
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Ave. 33, 119071, Moscow, Russia
| |
Collapse
|
71
|
Yamashita T, Mizohata E, Nagatoishi S, Watanabe T, Nakakido M, Iwanari H, Mochizuki Y, Nakayama T, Kado Y, Yokota Y, Matsumura H, Kawamura T, Kodama T, Hamakubo T, Inoue T, Fujitani H, Tsumoto K. Affinity Improvement of a Cancer-Targeted Antibody through Alanine-Induced Adjustment of Antigen-Antibody Interface. Structure 2018; 27:519-527.e5. [PMID: 30595454 DOI: 10.1016/j.str.2018.11.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 08/13/2018] [Accepted: 11/01/2018] [Indexed: 12/19/2022]
Abstract
To investigate favorable single amino acid substitutions that improve antigen-antibody interactions, alanine (Ala) mutagenesis scanning of the interfacial residues of a cancer-targeted antibody, B5209B, was performed based on X-ray crystallography analysis. Two substitutions were shown to significantly enhance the binding affinity for the antigen, by up to 30-fold. One substitution improved the affinity by a gain of binding enthalpy, whereas the other substitution improved the affinity by a gain of binding entropy. Molecular dynamics simulations showed that the enthalpic improvement could be attributed to the stabilization of distant salt bridges located at the periphery of the antigen-antibody interface. The entropic improvement was due to the release of water molecules that were stably trapped in the antigen-antibody interface of the wild-type antibody. Importantly, these effects of the Ala substitutions were caused by subtle adjustments of the binding interface. These results will be helpful to design high-affinity antibodies with avoiding entropy-enthalpy compensation.
Collapse
Affiliation(s)
- Takefumi Yamashita
- Laboratory for Systems Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1, Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Eiichi Mizohata
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Satoru Nagatoishi
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Takahiro Watanabe
- Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Makoto Nakakido
- Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Hiroko Iwanari
- Department of Quantitative Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1, Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Yasuhiro Mochizuki
- Department of Quantitative Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1, Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Taisuke Nakayama
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yuji Kado
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yuki Yokota
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hiroyoshi Matsumura
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Takeshi Kawamura
- Laboratory for Systems Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1, Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Tatsuhiko Kodama
- Laboratory for Systems Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1, Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Takao Hamakubo
- Department of Quantitative Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1, Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Tsuyoshi Inoue
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | - Hideaki Fujitani
- Laboratory for Systems Biology and Medicine, Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1, Komaba, Meguro-ku, Tokyo 153-8904, Japan.
| | - Kouhei Tsumoto
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8656, Japan; Department of Medical Genome Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan; Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.
| |
Collapse
|
72
|
Chen BC, Chang JT, Huang TS, Chen JJ, Chen YS, Jan MW, Chang TH. Parechovirus A Detection by a Comprehensive Approach in a Clinical Laboratory. Viruses 2018; 10:v10120711. [PMID: 30545147 PMCID: PMC6316871 DOI: 10.3390/v10120711] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 12/10/2018] [Accepted: 12/11/2018] [Indexed: 12/15/2022] Open
Abstract
Parechovirus A (Human parechovirus, HPeV) causes symptoms ranging from severe neonatal infection to mild gastrointestinal and respiratory disease. Use of molecular approaches with RT-PCR and genotyping has improved the detection rate of HPeV. Conventional methods, such as viral culture and immunofluorescence assay, together with molecular methods facilitate comprehensive viral diagnosis. To establish the HPeV immunofluorescence assay, an antibody against HPeV capsid protein VP0 was generated by using antigenic epitope prediction data. The specificity of the anti-HPeV VP0 antibody was demonstrated on immunofluorescence assay, showing that this antibody was specific for HPeV but not enteroviruses. A total of 74 HPeV isolates, 7 non–polio-enteroviruses and 12 HPeV negative cell culture supernatant were used for evaluating the efficiency of the anti-HPeV VP0 antibody. The sensitivity of HPeV detection by the anti-HPeV VP0 antibody was consistent with 5′untranslated region (UTR) RT-PCR analysis. This study established comprehensive methods for HPeV detection that include viral culture and observation of cytopathic effect, immunofluorescence assay, RT-PCR and genotyping. The methods were incorporated into our routine clinical practice for viral diagnosis. In conclusion, this study established a protocol for enterovirus and HPeV virus identification that combines conventional and molecular methods and would be beneficial for HPeV diagnosis.
Collapse
Affiliation(s)
- Bao-Chen Chen
- Department of Microbiology, Kaohsiung Veterans General Hospital, Kaohsiung81362, Taiwan.
| | - Jenn-Tzong Chang
- Department of Pediatrics, Kaohsiung Veterans General Hospital, Kaohsiung 81362, Taiwan.
| | - Tsi-Shu Huang
- Department of Microbiology, Kaohsiung Veterans General Hospital, Kaohsiung81362, Taiwan.
| | - Jih-Jung Chen
- Faculty of Pharmacy, School of Pharmaceutical Sciences, National Yang-Ming University, Taipei 112, Taiwan.
- Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 404, Taiwan.
| | - Yao-Shen Chen
- Department of Infectious Diseases, Kaohsiung Veterans General Hospital, Kaohsiung 81362, Taiwan.
| | - Ming-Wei Jan
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung 81362, Taiwan.
| | - Tsung-Hsien Chang
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung 81362, Taiwan.
- Department of Medical Laboratory Science and Biotechnology, Chung Hwa University of Medical Technology, Tainan 717, Taiwan.
| |
Collapse
|
73
|
Identification of B cell epitopes enhanced by protein unfolding and aggregation. Mol Immunol 2018; 105:181-189. [PMID: 30550980 PMCID: PMC6344229 DOI: 10.1016/j.molimm.2018.11.020] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 10/16/2018] [Accepted: 11/30/2018] [Indexed: 12/21/2022]
Abstract
Aggregation of an exemplar therapeutic antibody fragment (scFv) enhances immunogenicity in vivo. Epitope mapping reveals immunogenicity is directed to a specific epitope in aggregate species. Molecular simulation demonstrates biophysical stress enhances epitope presentation. Protein aggregates have distinct immunological profiles to their native counterparts.
Aggregation of therapeutic proteins is a key factor in the generation of unwanted immunogenicity, and can result in reduced serum half-life, neutralization of function and adverse health effects. There is currently little information regarding how aggregates interact with B-cell receptors or cognate antibodies at the protein sequence level, or whether non-native, aggregate-induced epitopes predominate in these interactions. Using an antibody fragment (single chain antibody variable fragment; scFv) that forms aggregates readily at low temperature, anti-scFv IgG antibody responses were generated by intraperitoneal injection of BALB/c strain mice with monomer or aggregate preparations. Aggregate-specific immunosignatures were identified by oligo-peptide microarray fine epitope mapping, using overlapping 15mer peptides based on the linear sequence of scFv, printed onto glass slides. IgG antibodies from mice immunized with aggregated scFv preferentially recognized a patch of overlapping peptides. This region mapped to a β-strand located at the interface between the VH and VL domains. Molecular dynamics simulations indicated that the VL domain is less stable than the VH domain, suggesting the interface region between the two domains becomes exposed during partial unfolding of the scFv during aggregate formation. These data are consistent with the hypothesis that epitopes from partially unfolded states are revealed, or are more fully exposed, in the aggregated state, and that this can augment the IgG antibody response. This observation offers the theoretical possibility that epitopes preferentially associated with aggregates can be identified from the anti-drug antibody serum IgG response which may, in turn, lead to better methods for detection of anti-drug antibody responses, and improved design of therapeutic proteins to control immunogenicity.
Collapse
|
74
|
Fühner V, Heine PA, Helmsing S, Goy S, Heidepriem J, Loeffler FF, Dübel S, Gerhard R, Hust M. Development of Neutralizing and Non-neutralizing Antibodies Targeting Known and Novel Epitopes of TcdB of Clostridioides difficile. Front Microbiol 2018; 9:2908. [PMID: 30574127 PMCID: PMC6291526 DOI: 10.3389/fmicb.2018.02908] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 11/13/2018] [Indexed: 12/18/2022] Open
Abstract
Clostridioides difficile is the causative bacterium in 15-20% of all antibiotic associated diarrheas. The symptoms associated with C. difficile infection (CDI) are primarily induced by the two large exotoxins TcdA and TcdB. Both toxins enter target cells by receptor-mediated endocytosis. Although different toxin receptors have been identified, it is no valid therapeutic option to prevent receptor endocytosis. Therapeutics, such as neutralizing antibodies, directly targeting both toxins are in development. Interestingly, only the anti-TcdB antibody bezlotoxumab but not the anti-TcdA antibody actoxumab prevented recurrence of CDI in clinical trials. In this work, 31 human antibody fragments against TcdB were selected by antibody phage display from the human naive antibody gene libraries HAL9/10. These antibody fragments were further characterized by in vitro neutralization assays. The epitopes of the neutralizing and non-neutralizing antibody fragments were analyzed by domain mapping, TcdB fragment phage display, and peptide arrays, to identify neutralizing and non-neutralizing epitopes. A new neutralizing epitope within the glucosyltransferase domain of TcdB was identified, providing new insights into the relevance of different toxin regions in respect of neutralization and toxicity.
Collapse
Affiliation(s)
- Viola Fühner
- Department Biotechnology, Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Philip Alexander Heine
- Department Biotechnology, Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Saskia Helmsing
- Department Biotechnology, Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Sebastian Goy
- Institute for Toxicology, Hannover Medical School, Hannover, Germany
| | - Jasmin Heidepriem
- Department Synthetic Array Technologies, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Felix F. Loeffler
- Department Synthetic Array Technologies, Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
| | - Stefan Dübel
- Department Biotechnology, Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
| | - Ralf Gerhard
- Institute for Toxicology, Hannover Medical School, Hannover, Germany
| | - Michael Hust
- Department Biotechnology, Institute for Biochemistry, Biotechnology and Bioinformatics, Technische Universität Braunschweig, Braunschweig, Germany
| |
Collapse
|
75
|
Antibody Cross-Reactivity in Antivenom Research. Toxins (Basel) 2018; 10:toxins10100393. [PMID: 30261694 PMCID: PMC6215175 DOI: 10.3390/toxins10100393] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 09/21/2018] [Accepted: 09/25/2018] [Indexed: 12/04/2022] Open
Abstract
Antivenom cross-reactivity has been investigated for decades to determine which antivenoms can be used to treat snakebite envenomings from different snake species. Traditionally, the methods used for analyzing cross-reactivity have been immunodiffusion, immunoblotting, enzyme-linked immunosorbent assay (ELISA), enzymatic assays, and in vivo neutralization studies. In recent years, new methods for determination of cross-reactivity have emerged, including surface plasmon resonance, antivenomics, and high-density peptide microarray technology. Antivenomics involves a top-down assessment of the toxin-binding capacities of antivenoms, whereas high-density peptide microarray technology may be harnessed to provide in-depth knowledge on which toxin epitopes are recognized by antivenoms. This review provides an overview of both the classical and new methods used to investigate antivenom cross-reactivity, the advantages and disadvantages of each method, and examples of studies using the methods. A special focus is given to antivenomics and high-density peptide microarray technology as these high-throughput methods have recently been introduced in this field and may enable more detailed assessments of antivenom cross-reactivity.
Collapse
|
76
|
Manavalan B, Govindaraj RG, Shin TH, Kim MO, Lee G. iBCE-EL: A New Ensemble Learning Framework for Improved Linear B-Cell Epitope Prediction. Front Immunol 2018; 9:1695. [PMID: 30100904 PMCID: PMC6072840 DOI: 10.3389/fimmu.2018.01695] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 07/10/2018] [Indexed: 11/13/2022] Open
Abstract
Identification of B-cell epitopes (BCEs) is a fundamental step for epitope-based vaccine development, antibody production, and disease prevention and diagnosis. Due to the avalanche of protein sequence data discovered in postgenomic age, it is essential to develop an automated computational method to enable fast and accurate identification of novel BCEs within vast number of candidate proteins and peptides. Although several computational methods have been developed, their accuracy is unreliable. Thus, developing a reliable model with significant prediction improvements is highly desirable. In this study, we first constructed a non-redundant data set of 5,550 experimentally validated BCEs and 6,893 non-BCEs from the Immune Epitope Database. We then developed a novel ensemble learning framework for improved linear BCE predictor called iBCE-EL, a fusion of two independent predictors, namely, extremely randomized tree (ERT) and gradient boosting (GB) classifiers, which, respectively, uses a combination of physicochemical properties (PCP) and amino acid composition and a combination of dipeptide and PCP as input features. Cross-validation analysis on a benchmarking data set showed that iBCE-EL performed better than individual classifiers (ERT and GB), with a Matthews correlation coefficient (MCC) of 0.454. Furthermore, we evaluated the performance of iBCE-EL on the independent data set. Results show that iBCE-EL significantly outperformed the state-of-the-art method with an MCC of 0.463. To the best of our knowledge, iBCE-EL is the first ensemble method for linear BCEs prediction. iBCE-EL was implemented in a web-based platform, which is available at http://thegleelab.org/iBCE-EL. iBCE-EL contains two prediction modes. The first one identifying peptide sequences as BCEs or non-BCEs, while later one is aimed at providing users with the option of mining potential BCEs from protein sequences.
Collapse
Affiliation(s)
| | - Rajiv Gandhi Govindaraj
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA, United States
| | - Tae Hwan Shin
- Department of Physiology, Ajou University School of Medicine, Suwon, South Korea.,Institute of Molecular Science and Technology, Ajou University, Suwon, South Korea
| | - Myeong Ok Kim
- Division of Life Science and Applied Life Science (BK21 Plus), College of Natural Sciences, Gyeongsang National University, Jinju, South Korea
| | - Gwang Lee
- Department of Physiology, Ajou University School of Medicine, Suwon, South Korea.,Institute of Molecular Science and Technology, Ajou University, Suwon, South Korea
| |
Collapse
|
77
|
Guo Z, Wilson JR, York IA, Stevens J. Biosensor-based epitope mapping of antibodies targeting the hemagglutinin and neuraminidase of influenza A virus. J Immunol Methods 2018; 461:23-29. [PMID: 30053389 DOI: 10.1016/j.jim.2018.07.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 03/21/2018] [Accepted: 07/23/2018] [Indexed: 01/04/2023]
Abstract
Characterization of the epitopes on antigen recognized by monoclonal antibodies (mAb) is useful for the development of therapeutic antibodies, diagnostic tools, and vaccines. Epitope mapping also provides functional information for sequence-based repertoire analysis of antibody response to pathogen infection and/or vaccination. However, development of mapping strategies has lagged behind mAb discovery. We have developed a site-directed mutagenesis approach that can be used in conjunction with bio-layer interferometry (BLI) biosensors to map mAb epitopes. By generating a panel of single point mutants in the recombinant hemagglutinin (HA) and neuraminidase (NA) proteins of influenza A viruses, we have characterized the epitopes of hundreds of mAbs targeting the H1 and H3 subtypes of HA and the N9 subtype of NA.
Collapse
Affiliation(s)
- Zhu Guo
- Influenza Division, National Center for Immunization and Respiratory Disease, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Jason R Wilson
- Influenza Division, National Center for Immunization and Respiratory Disease, Centers for Disease Control and Prevention, Atlanta, GA, USA; CNI Advantage, LLC, Norman, OK, USA
| | - Ian A York
- Influenza Division, National Center for Immunization and Respiratory Disease, Centers for Disease Control and Prevention, Atlanta, GA, USA.
| | - James Stevens
- Influenza Division, National Center for Immunization and Respiratory Disease, Centers for Disease Control and Prevention, Atlanta, GA, USA
| |
Collapse
|
78
|
Limpikirati P, Liu T, Vachet RW. Covalent labeling-mass spectrometry with non-specific reagents for studying protein structure and interactions. Methods 2018; 144:79-93. [PMID: 29630925 PMCID: PMC6051898 DOI: 10.1016/j.ymeth.2018.04.002] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2018] [Revised: 04/03/2018] [Accepted: 04/04/2018] [Indexed: 12/13/2022] Open
Abstract
Using mass spectrometry (MS) to obtain information about a higher order structure of protein requires that a protein's structural properties are encoded into the mass of that protein. Covalent labeling (CL) with reagents that can irreversibly modify solvent accessible amino acid side chains is an effective way to encode structural information into the mass of a protein, as this information can be read-out in a straightforward manner using standard MS-based proteomics techniques. The differential reactivity of proteins under two or more conditions can be used to distinguish protein topologies, conformations, and/or binding sites. CL-MS methods have been effectively used for the structural analysis of proteins and protein complexes, particularly for systems that are difficult to study by other more traditional biochemical techniques. This review provides an overview of the non-specific CL approaches that have been combined with MS with a particular emphasis on the reagents that are commonly used, including hydroxyl radicals, carbenes, and diethylpyrocarbonate. We describe the reagent and protein factors that affect the reactivity of amino acid side chains. We also include details about experimental design and workflow, data analysis, recent applications, and some future prospects of CL-MS methods.
Collapse
Affiliation(s)
| | - Tianying Liu
- Department of Chemistry, University of Massachusetts Amherst, MA 01003, United States
| | - Richard W Vachet
- Department of Chemistry, University of Massachusetts Amherst, MA 01003, United States.
| |
Collapse
|
79
|
Chan BM, Badh A, Berry KA, Grauer SA, King CT. Flow Cytometry-Based Epitope Binning Using Competitive Binding Profiles for the Characterization of Monoclonal Antibodies against Cellular and Soluble Protein Targets. SLAS DISCOVERY 2018; 23:613-623. [DOI: 10.1177/2472555218774334] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A key step in the therapeutic antibody drug discovery process is early identification of diverse candidate molecules. Information comparing antibody binding epitopes can be used to classify antibodies within a large panel, guiding rational lead molecule selection. We describe a novel epitope binning method utilizing high-throughput flow cytometry (HTFC) that leverages cellular barcoding or spectrally distinct beads to multiplex samples to characterize antibodies raised against cell membrane receptor or soluble protein targets. With no requirement for sample purification or direct labeling, the method is suited for early characterization of antibody candidates. This method generates competitive binding profiles of each antibody against a defined set of known or unknown reference antibodies for binding to epitopes of an antigen. Antibodies with closely related competitive binding profiles indicate similar epitopes and are classified in the same bin. These large, high-throughput, multiplexed experiments can yield epitope bins or clusters for the entire antibody panel, from which a conceptual map of the epitope space for each antibody can be created. Combining this valuable epitope information with other data, such as functional activity, sequence, and selectivity of binding to orthologs and paralogs, enables us to advance the best epitope-diverse candidates for further development.
Collapse
Affiliation(s)
| | - Anita Badh
- Amgen Discovery Research, Burnaby, BC, Canada
| | | | | | | |
Collapse
|
80
|
IgG Antibody 3D Structures and Dynamics. Antibodies (Basel) 2018; 7:antib7020018. [PMID: 31544870 PMCID: PMC6698877 DOI: 10.3390/antib7020018] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 04/13/2018] [Accepted: 04/16/2018] [Indexed: 12/19/2022] Open
Abstract
Antibodies are vital for human health because of their ability to function as nature's drugs by protecting the body from infection. In recent decades, antibodies have been used as pharmaceutics for targeted therapy in patients with cancer, autoimmune diseases, and cardiovascular diseases. Capturing the dynamic structure of antibodies and characterizing antibody fluctuation is critical for gaining a deeper understanding of their structural characteristics and for improving drug development. Current techniques for studying three-dimensional (3D) structural heterogeneity and variability of proteins have limitations in ascertaining the dynamic structural behavior of antibodies and antibody-antigen complexes. Here, we review current techniques used to study antibody structures with a focus on the recently developed individual-particle electron tomography (IPET) technique. IPET, as a particle-by-particle methodology for 3D structural characterization, has shown advantages in studying structural variety and conformational changes of antibodies, providing direct imaging data for biomolecular engineering to improve development and clinical application of synthetic antibodies.
Collapse
|
81
|
Schubert M, Spiegel H, Schillberg S, Nölke G. Aspergillus-specific antibodies - Targets and applications. Biotechnol Adv 2018; 36:1167-1184. [PMID: 29608951 DOI: 10.1016/j.biotechadv.2018.03.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 03/21/2018] [Accepted: 03/22/2018] [Indexed: 12/16/2022]
Abstract
Aspergillus is a fungal genus comprising several hundred species, many of which can damage the health of plants, animals and humans by direct infection and/or due to the production of toxic secondary metabolites known as mycotoxins. Aspergillus-specific antibodies have been generated against polypeptides, polysaccharides and secondary metabolites found in the cell wall or secretions, and these can be used to detect and monitor infections or to quantify mycotoxin contamination in food and feed. However, most Aspergillus-specific antibodies are generated against heterogeneous antigen preparations and the specific target remains unknown. Target identification is important because this can help to characterize fungal morphology, confirm host penetration by opportunistic pathogens, detect specific disease-related biomarkers, identify new candidate targets for antifungal drug design, and qualify antibodies for diagnostic and therapeutic applications. In this review, we discuss how antibodies are raised against heterogeneous Aspergillus antigen preparations and how they can be characterized, focusing on strategies to identify their specific antigens and epitopes. We also discuss the therapeutic, diagnostic and biotechnological applications of Aspergillus-specific antibodies.
Collapse
Affiliation(s)
- Max Schubert
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstrasse 6, 52074 Aachen, Germany
| | - Holger Spiegel
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstrasse 6, 52074 Aachen, Germany
| | - Stefan Schillberg
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstrasse 6, 52074 Aachen, Germany; Justus-Liebig University Giessen, Institute for Phytopathology and Applied Zoology, Phytopathology Department, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany.
| | - Greta Nölke
- Fraunhofer Institute for Molecular Biology and Applied Ecology IME, Forckenbeckstrasse 6, 52074 Aachen, Germany
| |
Collapse
|
82
|
Opuni KFM, Al-Majdoub M, Yefremova Y, El-Kased RF, Koy C, Glocker MO. Mass spectrometric epitope mapping. MASS SPECTROMETRY REVIEWS 2018; 37:229-241. [PMID: 27403762 DOI: 10.1002/mas.21516] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 06/23/2016] [Indexed: 06/06/2023]
Abstract
Mass spectrometric epitope mapping has become a versatile method to precisely determine a soluble antigen's partial structure that directly interacts with an antibody in solution. Typical lengths of investigated antigens have increased up to several 100 amino acids while experimentally determined epitope peptides have decreased in length to on average 10-15 amino acids. Since the early 1990s more and more sophisticated methods have been developed and have forwarded a bouquet of suitable approaches for epitope mapping with immobilized, temporarily immobilized, and free-floating antibodies. While up to now monoclonal antibodies have been mostly used in epitope mapping experiments, the applicability of polyclonal antibodies has been proven. The antibody's resistance towards enzymatic proteolysis has been of key importance for the two mostly applied methods: epitope excision and epitope extraction. Sample consumption has dropped to low pmol amounts on both, the antigen and the antibody. While adequate in-solution sample handling has been most important for successful epitope mapping, mass spectrometric analysis has been found the most suitable read-out method from early on. The rapidity by which mass spectrometric epitope mapping nowadays is executed outperforms all alternative methods. Thus, it can be asserted that mass spectrometric epitope mapping has reached a state of maturity, which allows it to be used in any mass spectrometry laboratory. After 25 years of constant and steady improvements, its application to clinical samples, for example, for patient characterization and stratification, is anticipated in the near future. © 2016 Wiley Periodicals, Inc. Mass Spec Rev 37:229-241, 2018.
Collapse
Affiliation(s)
- Kwabena F M Opuni
- Proteome Center Rostock, University Medicine and Natural Science Faculty, University of Rostock, Rostock, Germany
| | - Mahmoud Al-Majdoub
- Proteome Center Rostock, University Medicine and Natural Science Faculty, University of Rostock, Rostock, Germany
| | - Yelena Yefremova
- Proteome Center Rostock, University Medicine and Natural Science Faculty, University of Rostock, Rostock, Germany
| | - Reham F El-Kased
- Microbiology and Immunology Faculty of Pharmacy, The British University in Egypt, Cairo, Egypt
| | - Cornelia Koy
- Proteome Center Rostock, University Medicine and Natural Science Faculty, University of Rostock, Rostock, Germany
| | - Michael O Glocker
- Proteome Center Rostock, University Medicine and Natural Science Faculty, University of Rostock, Rostock, Germany
| |
Collapse
|
83
|
Li X, Yuan S, Huang M, Gao J, Wu Z, Tong P, Yang A, Chen H. Identification of IgE and IgG epitopes on native Bos d 4 allergen specific to allergic children. Food Funct 2018; 7:2996-3005. [PMID: 27273451 DOI: 10.1039/c6fo00416d] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Alpha-lactalbumin (ALA) is one of the major allergens in cow's milk. However, research on its conformational epitopes has been relatively limited. In our study, specific antibodies against cow's milk ALA were purified from eight children by two-step affinity chromatography. Subsequently, mimotopes against IgG and IgE were biopanned from Ph.D.-12 and Ph.D.-C7C, respectively. Based on the mimotopes, linear epitopes were defined with the UniProt alignment tool. Conformational epitopes were computed using the Pepitope Server. Six IgE and seven IgG linear epitopes were identified. Meanwhile, five IgE and three IgG conformational epitopes were revealed with PyMOL. The results showed that common residues were identified in both IgE and IgG epitopes and some residues of the conformational epitopes were composed of linear epitopes on bovine α-lactalbumin. The results indicated that the data could be used for developing hypoallergenic dairy products on the basis of epitopes and providing a diagnostic tool for the assessment of patients who are allergic to cow's milk.
Collapse
Affiliation(s)
- Xin Li
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P.R.China and School of Food Science & Technology, Nanchang University, Nanchang 330047, P.R.China
| | - Shuilin Yuan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P.R.China and School of Food Science & Technology, Nanchang University, Nanchang 330047, P.R.China
| | - Meijia Huang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P.R.China and School of Food Science & Technology, Nanchang University, Nanchang 330047, P.R.China
| | - Jinyan Gao
- School of Food Science & Technology, Nanchang University, Nanchang 330047, P.R.China
| | - Zhihua Wu
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P.R.China and Jiangxi-OAI Joint Research Institute, Nanchang University, Nanchang 330047, P.R.China.
| | - Ping Tong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P.R.China and School of Food Science & Technology, Nanchang University, Nanchang 330047, P.R.China
| | - Anshu Yang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P.R.China and Jiangxi-OAI Joint Research Institute, Nanchang University, Nanchang 330047, P.R.China.
| | - Hongbing Chen
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, P.R.China and Jiangxi-OAI Joint Research Institute, Nanchang University, Nanchang 330047, P.R.China.
| |
Collapse
|
84
|
Affiliation(s)
- Lindsey C. Szymczak
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Hsin-Yu Kuo
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Milan Mrksich
- Institute of Chemical Biology and Nanomedicine, Hunan University, Changsha 410082, China
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
85
|
Abstract
Antibodies are protein molecules used routinely for therapeutic, diagnostic, and research purposes due to their exquisite ability to selectively recognize and bind a given antigen. The particular area of the antigen recognized by the antibody is called the epitope, and for proteinaceous antigens the epitope can be of complex nature. Information about the binding epitope of an antibody can provide important mechanistic insights and indicate for what applications an antibody might be useful. Therefore, a variety of epitope mapping techniques have been developed to localize such regions. Although the real picture is even more complex, epitopes in protein antigens are broadly grouped into linear or discontinuous epitopes depending on the positioning of the epitope residues in the antigen sequence and the requirement of structure. Specialized methods for mapping of the two different classes of epitopes, using high-throughput or high-resolution methods, have been developed. While different in their detail, all of the experimental methods rely on assessing the binding of the antibody to the antigen or a set of antigen mimics. Early approaches utilizing sets of truncated proteins, small numbers of synthesized peptides, and structural analyses of antibody-antigen complexes have been significantly refined. Current state-of-the-art methods involve combinations of mutational scanning, protein display, and high-throughput screening in conjunction with bioinformatic analyses of large datasets.
Collapse
Affiliation(s)
- Johan Nilvebrant
- KTH School of Engineering Sciences in Chemistry, Biotechnology and Health, Protein Engineering, Stockholm, Sweden.
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, ON, Canada.
| | - Johan Rockberg
- KTH School of Engineering Sciences in Chemistry, Biotechnology and Health, Protein Technology, Stockholm, Sweden.
| |
Collapse
|
86
|
Protein Structure Facilitates High-Resolution Immunological Mapping. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2017; 24:CVI.00275-17. [PMID: 29046310 DOI: 10.1128/cvi.00275-17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Select agents (SA) pose unique challenges for licensing vaccines and therapies. In the case of toxin-mediated diseases, HHS assigns guidelines for SA use, oversees vaccine and therapy development, and approves animal models and approaches to identify mechanisms for toxin neutralization. In this commentary, we discuss next-generation vaccines and therapies against ricin toxin and botulinum toxin, which are regulated SA toxins that utilize structure-based approaches for countermeasures to guide rapid response to future biothreats.
Collapse
|
87
|
High-Definition Mapping of Four Spatially Distinct Neutralizing Epitope Clusters on RiVax, a Candidate Ricin Toxin Subunit Vaccine. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2017; 24:CVI.00237-17. [PMID: 29046307 DOI: 10.1128/cvi.00237-17] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 10/12/2017] [Indexed: 12/20/2022]
Abstract
RiVax is a promising recombinant ricin toxin A subunit (RTA) vaccine antigen that has been shown to be safe and immunogenic in humans and effective at protecting rhesus macaques against lethal-dose aerosolized toxin exposure. We previously used a panel of RTA-specific monoclonal antibodies (MAbs) to demonstrate, by competition enzyme-linked immunosorbent assay (ELISA), that RiVax elicits similar serum antibody profiles in humans and macaques. However, the MAb binding sites on RiVax have yet to be defined. In this study, we employed hydrogen exchange-mass spectrometry (HX-MS) to localize the epitopes on RiVax recognized by nine toxin-neutralizing MAbs and one nonneutralizing MAb. Based on strong protection from hydrogen exchange, the nine MAbs grouped into four spatially distinct epitope clusters (namely, clusters I to IV). Cluster I MAbs protected RiVax's α-helix B (residues 94 to 107), a protruding immunodominant secondary structure element known to be a target of potent toxin-neutralizing antibodies. Cluster II consisted of two subclusters located on the "back side" (relative to the active site pocket) of RiVax. One subcluster involved α-helix A (residues 14 to 24) and α-helices F-G (residues 184 to 207); the other encompassed β-strand d (residues 62 to 69) and parts of α-helices D-E (154 to 164) and the intervening loop. Cluster III involved α-helices C and G on the front side of RiVax, while cluster IV formed a sash from the front to back of RiVax, spanning strands b, c, and d (residues 35 to 59). Having a high-resolution B cell epitope map of RiVax will enable the development and optimization of competitive serum profiling assays to examine vaccine-induced antibody responses across species.
Collapse
|
88
|
Hua CK, Gacerez AT, Sentman CL, Ackerman ME, Choi Y, Bailey-Kellogg C. Computationally-driven identification of antibody epitopes. eLife 2017; 6:29023. [PMID: 29199956 PMCID: PMC5739537 DOI: 10.7554/elife.29023] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 12/02/2017] [Indexed: 12/21/2022] Open
Abstract
Understanding where antibodies recognize antigens can help define mechanisms of action and provide insights into progression of immune responses. We investigate the extent to which information about binding specificity implicitly encoded in amino acid sequence can be leveraged to identify antibody epitopes. In computationally-driven epitope localization, possible antibody–antigen binding modes are modeled, and targeted panels of antigen variants are designed to experimentally test these hypotheses. Prospective application of this approach to two antibodies enabled epitope localization using five or fewer variants per antibody, or alternatively, a six-variant panel for both simultaneously. Retrospective analysis of a variety of antibodies and antigens demonstrated an almost 90% success rate with an average of three antigen variants, further supporting the observation that the combination of computational modeling and protein design can reveal key determinants of antibody–antigen binding and enable efficient studies of collections of antibodies identified from polyclonal samples or engineered libraries.
Collapse
Affiliation(s)
- Casey K Hua
- Thayer School of Engineering, Dartmouth College, Hanover, United States.,Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth College, Lebanon, United States
| | - Albert T Gacerez
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth College, Lebanon, United States
| | - Charles L Sentman
- Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth College, Lebanon, United States
| | - Margaret E Ackerman
- Thayer School of Engineering, Dartmouth College, Hanover, United States.,Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth College, Lebanon, United States
| | - Yoonjoo Choi
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | | |
Collapse
|
89
|
Terral G, Champion T, Debaene F, Colas O, Bourguet M, Wagner-Rousset E, Corvaia N, Beck A, Cianferani S. Epitope characterization of anti-JAM-A antibodies using orthogonal mass spectrometry and surface plasmon resonance approaches. MAbs 2017; 9:1317-1326. [PMID: 28933642 DOI: 10.1080/19420862.2017.1380762] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
Junctional adhesion molecule-A (JAM-A) is an adherens and tight junction protein expressed by endothelial and epithelial cells and associated with cancer progression. We present here the extensive characterization of immune complexes involving JAM-A antigen and three monoclonal antibodies (mAbs), including hz6F4-2, a humanized version of anti-tumoral 6F4 mAb identified by a functional and proteomic approach in our laboratory. A specific workflow that combines orthogonal approaches has been designed to determine binding stoichiometries along with JAM-A epitope mapping determination at high resolution for these three mAbs. Native mass spectrometry experiments revealed different binding stoichiometries and affinities, with two molecules of JAM-A being able to bind to hz6F4-2 and F11 Fab, while only one JAM-A was bound to J10.4. Surface plasmon resonance indirect competitive binding assays suggested epitopes located in close proximity for hz6F4-2 and F11. Finally, hydrogen-deuterium exchange mass spectrometry was used to precisely identify epitopes for all mAbs. The results obtained by orthogonal biophysical approaches showed a clear correlation between the determined epitopes and JAM-A binding characteristics, allowing the basis for molecular recognition of JAM-A by hz6F4-2 to be definitively established for the first time. Taken together, our results highlight the power of MS-based structural approaches for epitope mapping and mAb conformational characterization.
Collapse
Affiliation(s)
- Guillaume Terral
- a Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS, IPHC UMR 7178 , Strasbourg , France
| | - Thierry Champion
- b Centre d'Immunologie Pierre-Fabre (CIPF) , Saint-Julien-en-Genevois , France
| | - François Debaene
- a Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS, IPHC UMR 7178 , Strasbourg , France
| | - Olivier Colas
- b Centre d'Immunologie Pierre-Fabre (CIPF) , Saint-Julien-en-Genevois , France
| | - Maxime Bourguet
- a Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS, IPHC UMR 7178 , Strasbourg , France
| | - Elsa Wagner-Rousset
- b Centre d'Immunologie Pierre-Fabre (CIPF) , Saint-Julien-en-Genevois , France
| | - Nathalie Corvaia
- b Centre d'Immunologie Pierre-Fabre (CIPF) , Saint-Julien-en-Genevois , France
| | - Alain Beck
- b Centre d'Immunologie Pierre-Fabre (CIPF) , Saint-Julien-en-Genevois , France
| | - Sarah Cianferani
- a Laboratoire de Spectrométrie de Masse BioOrganique, Université de Strasbourg, CNRS, IPHC UMR 7178 , Strasbourg , France
| |
Collapse
|
90
|
Yefremova Y, Opuni KFM, Danquah BD, Thiesen HJ, Glocker MO. Intact Transition Epitope Mapping (ITEM). JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:1612-1622. [PMID: 28616748 DOI: 10.1007/s13361-017-1654-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 03/06/2017] [Accepted: 03/07/2017] [Indexed: 06/07/2023]
Abstract
Intact transition epitope mapping (ITEM) enables rapid and accurate determination of protein antigen-derived epitopes by either epitope extraction or epitope excision. Upon formation of the antigen peptide-containing immune complex in solution, the entire mixture is electrosprayed to translate all constituents as protonated ions into the gas phase. There, ions from antibody-peptide complexes are separated from unbound peptide ions according to their masses, charges, and shapes either by ion mobility drift or by quadrupole ion filtering. Subsequently, immune complexes are dissociated by collision induced fragmentation and the ion signals of the "complex-released peptides," which in effect are the epitope peptides, are recorded in the time-of-flight analyzer of the mass spectrometer. Mixing of an antibody solution with a solution in which antigens or antigen-derived peptides are dissolved is, together with antigen proteolysis, the only required in-solution handling step. Simplicity of sample handling and speed of analysis together with very low sample consumption makes ITEM faster and easier to perform than other experimental epitope mapping methods. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Yelena Yefremova
- Proteome Center Rostock, University Medicine Rostock, Schillingallee 69, 18057, Rostock, Germany
| | - Kwabena F M Opuni
- Proteome Center Rostock, University Medicine Rostock, Schillingallee 69, 18057, Rostock, Germany
| | - Bright D Danquah
- Proteome Center Rostock, University Medicine Rostock, Schillingallee 69, 18057, Rostock, Germany
| | - Hans-Juergen Thiesen
- Institute of Immunology, University Medicine Rostock, Schillingallee 70, 18057, Rostock, Germany
| | - Michael O Glocker
- Proteome Center Rostock, University Medicine Rostock, Schillingallee 69, 18057, Rostock, Germany.
| |
Collapse
|
91
|
Skottrup PD. Structural insights into a high affinity nanobody:antigen complex by homology modelling. J Mol Graph Model 2017; 76:305-312. [PMID: 28779687 DOI: 10.1016/j.jmgm.2017.07.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Revised: 07/07/2017] [Accepted: 07/09/2017] [Indexed: 12/30/2022]
Abstract
Porphyromonas gingivalis is a major periodontitis-causing pathogens. P. gingivalis secrete a cysteine protease termed RgpB, which is specific for Arg-Xaa bonds in substrates. Recently, a nanobody-based assay was used to demonstrate that RgpB could represent a novel diagnostic target, thereby simplifying. P. gingivalis detection. The nanobody, VHH7, had a high binding affinity and was specific for RgpB, when tested towards the highly identical RgpA. In this study a homology model of VHH7 was build. The complementarity determining regions (CDR) comprising the paratope residues responsible for RgpB binding were identified and used as input to the docking. Furthermore, residues likely involved in the RgpB epitope was identified based upon RgpB:RgpA alignment and analysis of residue surface accessibility. CDR residues and putitative RgpB epitope residues were used as input to an information-driven flexible docking approach using the HADDOCK server. Analysis of the VHH7:RgpB model demonstrated that the epitope was found in the immunoglobulin-like domain and residue pairs located at the molecular paratope:epitope interface important for complex stability was identified. Collectively, the VHH7 homology model and VHH7:RgpB docking supplies knowledge of the residues involved in the high affinity interaction. This information could prove valuable in the design of an antibody-drug conjugate for specific RgpB targeting.
Collapse
Affiliation(s)
- Peter Durand Skottrup
- Department of Clinical Biochemistry, Copenhagen University Hospital, Kettegård Alle 30, DK-2650 Hvidovre, Denmark.
| |
Collapse
|
92
|
Hung LC, Cheng IC. Versatile carboxyl-terminus of capsid protein of porcine circovirus type 2 were recognized by monoclonal antibodies with pluripotency of binding. Mol Immunol 2017; 85:100-110. [PMID: 28219820 DOI: 10.1016/j.molimm.2017.02.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 01/22/2017] [Accepted: 02/04/2017] [Indexed: 01/05/2023]
Abstract
We designed the peptide (C3) mimetic carboxyl-terminus (Cterminus) of capsid protein of porcine circovirus type 2b (PCV2b-1A/1B) inducing humoral immunity and generating hybridomas. The positive reactivity of the mAbs to PCV2 capsid protein was demonstrated by Western blot assay. Those mAbs also showed positive signals on PCV2b infected swine lymphocytes by indirect immunofluorescence staining. The mAb 1H3 bound to three minimal linear epitopes (P62, DPPLNP; P67, DPPLNPK; P73, LKDPPLKP), which was located at Cterminus of the capsid protein of PCV2b-1A/1B, PCV2b-1C, and PCV2a-2A respectively. The mAbs 3B2 bound to only one minimal linear epitopes (P59, KDPPLNP). The mAbs 6B8 bound to two minimal linear epitopes (P59 and P67). Our data demonstrate the core motif (P62) within the P59 could be recognized by mAbs (3B2 and 6B8) in the free status by liquid phase blocking immunoassay (LPBI) but not be recognized by these mAbs in the fixed form on the plate by indirect ELISA (iELISA). However, the P73 could be recognized by mAb 1H3 by iELISA but no inhibition of the interactive binding of C3 and mAb 1H3 by LPBI. This study also indicated that IgM mAbs and defective Ig mAb have broad binding, moderate specificity and low affinity. This study confirm that mAbs have pluripotency of binding. It might be a phenomenon of antibody response to Cterminus of capsid protein of PCV2b.
Collapse
Affiliation(s)
- Ling-Chu Hung
- Animal Health Research Institute, Council of Agriculture, Executive Yuan, New Taipei, Taiwan; Livestock Research Institute, Council of Agriculture, Executive Yuan, Tainan, Taiwan; School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan.
| | - Ivan-Chen Cheng
- School of Veterinary Medicine, National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
93
|
Conroy PJ, Law RH, Caradoc-Davies TT, Whisstock JC. Antibodies: From novel repertoires to defining and refining the structure of biologically important targets. Methods 2017; 116:12-22. [DOI: 10.1016/j.ymeth.2017.01.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2016] [Revised: 01/10/2017] [Accepted: 01/10/2017] [Indexed: 01/02/2023] Open
|
94
|
Abstract
Peptide antibodies, with their high specificities and affinities, are invaluable reagents for peptide and protein recognition in biological specimens. Depending on the application and the assay, in which the peptide antibody is to used, several factors influence successful antibody production, including peptide selection and antibody screening. Peptide antibodies have been used in clinical laboratory diagnostics with great success for decades, primarily because they can be produced to multiple targets, recognizing native wildtype proteins, denatured proteins, and newly generated epitopes. Especially mutation-specific peptide antibodies have become important as diagnostic tools in the detection of various cancers. In addition to their use as diagnostic tools in malignant and premalignant conditions, peptide antibodies are applied in all other areas of clinical laboratory diagnostics, including endocrinology, hematology, neurodegenerative diseases, cardiovascular diseases, infectious diseases, and amyloidoses.
Collapse
|
95
|
Chen X, Dreskin SC. Application of phage peptide display technology for the study of food allergen epitopes. Mol Nutr Food Res 2017; 61. [PMID: 27995755 DOI: 10.1002/mnfr.201600568] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Revised: 11/09/2016] [Accepted: 12/05/2016] [Indexed: 12/16/2022]
Abstract
Phage peptide display technology has been used to identify IgE-binding mimotopes (mimics of natural epitopes) that mimic conformational epitopes. This approach is effective in the characterization of those epitopes that are important for eliciting IgE-mediated allergic responses by food allergens and those that are responsible for cross-reactivity among allergenic food proteins. Application of this technology will increase our understanding of the mechanisms whereby food allergens elicit allergic reactions, will facilitate the discovery of diagnostic reagents and may lead to mimotope-based immunotherapy.
Collapse
Affiliation(s)
- Xueni Chen
- Division of Allergy and Clinical Immunology, Departments of Medicine and Immunology, University of Colorado Denver, Aurora, CO, USA
| | - Stephen C Dreskin
- Division of Allergy and Clinical Immunology, Departments of Medicine and Immunology, University of Colorado Denver, Aurora, CO, USA
| |
Collapse
|
96
|
Abstract
Antibody-protein interactions play a critical role in the humoral immune response. B-cells secrete antibodies, which bind antigens (e.g., cell surface proteins of pathogens). The specific parts of antigens that are recognized by antibodies are called B-cell epitopes. These epitopes can be linear, corresponding to a contiguous amino acid sequence fragment of an antigen, or conformational, in which residues critical for recognition may not be contiguous in the primary sequence, but are in close proximity within the folded protein 3D structure.Identification of B-cell epitopes in target antigens is one of the key steps in epitope-driven subunit vaccine design, immunodiagnostic tests, and antibody production. In silico bioinformatics techniques offer a promising and cost-effective approach for identifying potential B-cell epitopes in a target vaccine candidate. In this chapter, we show how to utilize online B-cell epitope prediction tools to identify linear B-cell epitopes from the primary amino acid sequence of proteins.
Collapse
Affiliation(s)
- Yasser El-Manzalawy
- College of Information Sciences and Technology, Pennsylvania State University, 301A Information Sciences and Technology Building, University Park, PA, 16802, USA
| | - Drena Dobbs
- Genetics, Development and Cell Biology Department, Iowa State University, Ames, IA, 50011, USA
| | - Vasant G Honavar
- College of Information Sciences and Technology, Pennsylvania State University, 301A Information Sciences and Technology Building, University Park, PA, 16802, USA.
| |
Collapse
|
97
|
Potocnakova L, Bhide M, Pulzova LB. An Introduction to B-Cell Epitope Mapping and In Silico Epitope Prediction. J Immunol Res 2016; 2016:6760830. [PMID: 28127568 PMCID: PMC5227168 DOI: 10.1155/2016/6760830] [Citation(s) in RCA: 214] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 11/21/2016] [Accepted: 12/13/2016] [Indexed: 01/09/2023] Open
Abstract
Identification of B-cell epitopes is a fundamental step for development of epitope-based vaccines, therapeutic antibodies, and diagnostic tools. Epitope-based antibodies are currently the most promising class of biopharmaceuticals. In the last decade, in-depth in silico analysis and categorization of the experimentally identified epitopes stimulated development of algorithms for epitope prediction. Recently, various in silico tools are employed in attempts to predict B-cell epitopes based on sequence and/or structural data. The main objective of epitope identification is to replace an antigen in the immunization, antibody production, and serodiagnosis. The accurate identification of B-cell epitopes still presents major challenges for immunologists. Advances in B-cell epitope mapping and computational prediction have yielded molecular insights into the process of biorecognition and formation of antigen-antibody complex, which may help to localize B-cell epitopes more precisely. In this paper, we have comprehensively reviewed state-of-the-art experimental methods for B-cell epitope identification, existing databases for epitopes, and novel in silico resources and prediction tools available online. We have also elaborated new trends in the antibody-based epitope prediction. The aim of this review is to assist researchers in identification of B-cell epitopes.
Collapse
Affiliation(s)
- Lenka Potocnakova
- Laboratory of Biomedical Microbiology and Immunology, Department of Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy in Kosice, 041 81 Kosice, Slovakia
| | - Mangesh Bhide
- Laboratory of Biomedical Microbiology and Immunology, Department of Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy in Kosice, 041 81 Kosice, Slovakia
- Institute of Neuroimmunology of Slovak Academy of Sciences, 845 10 Bratislava, Slovakia
| | - Lucia Borszekova Pulzova
- Laboratory of Biomedical Microbiology and Immunology, Department of Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy in Kosice, 041 81 Kosice, Slovakia
| |
Collapse
|
98
|
Pérez-Gamarra S, Hattara L, Batra G, Saviranta P, Lamminmäki U. Array-in-well binding assay for multiparameter screening of phage displayed antibodies. Methods 2016; 116:43-50. [PMID: 27956240 DOI: 10.1016/j.ymeth.2016.12.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 12/03/2016] [Accepted: 12/05/2016] [Indexed: 12/27/2022] Open
Abstract
Phage display is a well-established and powerful tool for the development of recombinant antibodies. In a standard phage display selection process using a high quality antibody phage library, a large number of unique antibody clones can be generated in short time. However, the pace of the antibody discovery project eventually depends on the methodologies used in the next screening phase to identify the clones with the most promising binding characteristics e.g., in terms of specificity, affinity and epitope. Here, we report an array-in-well binding assay, a miniaturized and multiplexed immunoassay that integrates the epitope mapping to the evaluation of the binding activity of phage displayed antibody fragments in a single well. The array-in-well assay design used here incorporates a set of partially overlapping 15-mer peptides covering the complete primary sequence of the target antigen, the intact antigen itself and appropriate controls printed as an array with 10×10 layout at the bottom of a well of a 96-well microtiter plate. The streptavidin-coated surface of the well facilitates the immobilization of the biotinylated analytes as well-confined spots. Phage displayed antibody fragments bound to the analyte spots are traced using anti-phage antibody labelled with horseradish peroxidase for tyramide signal amplification based highly sensitive detection. In this study, we generated scFv antibodies against HIV-1 p24 protein using a synthetic antibody phage library, evaluated the binders with array-in-well binding assay and further classified them into epitopic families based on their capacity to recognize linear epitopes. The array-in-well assay enables the integration of epitope mapping to the screening assay for early classification of antibodies with simplicity and speed of a standard ELISA procedure to advance the antibody development projects.
Collapse
Affiliation(s)
- Susan Pérez-Gamarra
- Department of Biochemistry/Biotechnology, University of Turku, Tykistökatu 6A, FI-20520 Turku, Finland
| | - Liisa Hattara
- Medical Biotechnology Centre, VTT Technical Research Centre of Finland, Espoo FI-02044 VTT, Finland
| | - Gaurav Batra
- Centre for Biodesign and Diagnostics, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad 122001, India
| | - Petri Saviranta
- Medical Biotechnology Centre, VTT Technical Research Centre of Finland, Espoo FI-02044 VTT, Finland
| | - Urpo Lamminmäki
- Department of Biochemistry/Biotechnology, University of Turku, Tykistökatu 6A, FI-20520 Turku, Finland.
| |
Collapse
|
99
|
Wu J, Mok CK, Chow VTK, Yuan YA, Tan YJ. Biochemical and structural characterization of the interface mediating interaction between the influenza A virus non-structural protein-1 and a monoclonal antibody. Sci Rep 2016; 6:33382. [PMID: 27633136 PMCID: PMC5025888 DOI: 10.1038/srep33382] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 08/25/2016] [Indexed: 01/04/2023] Open
Abstract
We have previously shown that a non-structural protein 1 (NS1)-binding monoclonal antibody, termed as 2H6, can significantly reduce influenza A virus (IAV) replication when expressed intracellularly. In this study, we further showed that 2H6 binds stronger to the NS1 of H5N1 than A/Puerto Rico/8/1934(H1N1) because of an amino acid difference at residue 48. A crystal structure of 2H6 fragment antigen-binding (Fab) has also been solved and docked onto the NS1 structure to reveal the contacts between specific residues at the interface of antibody-antigen complex. In one of the models, the predicted molecular contacts between residues in NS1 and 2H6-Fab correlate well with biochemical results. Taken together, residues N48 and T49 in H5N1 NS1 act cooperatively to maintain a strong interaction with mAb 2H6 by forming hydrogen bonds with residues found in the heavy chain of the antibody. Interestingly, the pandemic H1N1-2009 and the majority of seasonal H3N2 circulating in humans since 1968 has N48 in NS1, suggesting that mAb 2H6 could bind to most of the currently circulating seasonal influenza A virus strains. Consistent with the involvement of residue T49, which is well-conserved, in RNA binding, mAb 2H6 was also found to inhibit the interaction between NS1 and double-stranded RNA.
Collapse
Affiliation(s)
- Jianping Wu
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University Health System (NUHS), National University of Singapore, Singapore
| | - Chee-Keng Mok
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University Health System (NUHS), National University of Singapore, Singapore
| | - Vincent Tak Kwong Chow
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University Health System (NUHS), National University of Singapore, Singapore
| | - Y Adam Yuan
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore.,National University of Singapore (Suzhou) Research Institute, Suzhou Industrial Park, Jiangsu 215123, China
| | - Yee-Joo Tan
- Department of Microbiology and Immunology, Yong Loo Lin School of Medicine, National University Health System (NUHS), National University of Singapore, Singapore.,Institute of Molecular and Cell Biology, A*STAR (Agency for Science, Technology and Research), Singapore
| |
Collapse
|
100
|
Ahmad TA, Eweida AE, Sheweita SA. B-cell epitope mapping for the design of vaccines and effective diagnostics. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.trivac.2016.04.003] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|