51
|
Zhang H, Gao Z, Meng C, Li X, Shi D. Inhibitor Binding Sites in the Protein Tyrosine Phosphatase SHP-2. Mini Rev Med Chem 2021; 20:1017-1030. [PMID: 32124695 DOI: 10.2174/1389557520666200303130833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/19/2019] [Accepted: 02/03/2020] [Indexed: 11/22/2022]
Abstract
Protein tyrosine phosphatase 2 (SHP-2) has long been proposed as a cancer drug target. Several small-molecule compounds with different mechanisms of SHP-2 inhibition have been reported, but none are commercially available. Pool selectivity over protein tyrosine phosphatase 1 (SHP-1) and a lack of cellular activity have hindered the development of selective SHP-2 inhibitors. In this review, we describe the binding modes of existing inhibitors and SHP-2 binding sites, summarize the characteristics of the sites involved in selectivity, and identify the suitable groups for interaction with the binding sites.
Collapse
Affiliation(s)
- Haonan Zhang
- School of Life Sciences, Shandong University of Technology, Zibo 255049, Shandong Province, China
| | - Zhengquan Gao
- School of Life Sciences, Shandong University of Technology, Zibo 255049, Shandong Province, China
| | - Chunxiao Meng
- School of Life Sciences, Shandong University of Technology, Zibo 255049, Shandong Province, China
| | - Xiangqian Li
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100, Shandong, China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Dayong Shi
- State Key Laboratory of Microbial Technology, Shandong University, Jinan, 250100, Shandong, China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
52
|
Liotti F, Kumar N, Prevete N, Marotta M, Sorriento D, Ieranò C, Ronchi A, Marino FZ, Moretti S, Colella R, Puxeddu E, Paladino S, Kano Y, Ohh M, Scala S, Melillo RM. PD-1 blockade delays tumor growth by inhibiting an intrinsic SHP2/Ras/MAPK signalling in thyroid cancer cells. J Exp Clin Cancer Res 2021; 40:22. [PMID: 33413561 PMCID: PMC7791757 DOI: 10.1186/s13046-020-01818-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 12/15/2020] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND The programmed cell death-1 (PD-1) receptor and its ligands PD-L1 and PD-L2 are immune checkpoints that suppress anti-cancer immunity. Typically, cancer cells express the PD-Ls that bind PD-1 on immune cells, inhibiting their activity. Recently, PD-1 expression has also been found in cancer cells. Here, we analysed expression and functions of PD-1 in thyroid cancer (TC). METHODS PD-1 expression was evaluated by immunohistochemistry on human TC samples and by RT-PCR, western blot and FACS on TC cell lines. Proliferation and migration of TC cells in culture were assessed by BrdU incorporation and Boyden chamber assays. Biochemical studies were performed by western blot, immunoprecipitation, pull-down and phosphatase assays. TC cell tumorigenicity was assessed by xenotransplants in nude mice. RESULTS Human TC specimens (47%), but not normal thyroids, displayed PD-1 expression in epithelial cells, which significantly correlated with tumour stage and lymph-node metastasis. PD-1 was also constitutively expressed on TC cell lines. PD-1 overexpression/stimulation promoted TC cell proliferation and migration. Accordingly, PD-1 genetic/pharmacologic inhibition caused the opposite effects. Mechanistically, PD-1 recruited the SHP2 phosphatase to the plasma membrane and potentiated its phosphatase activity. SHP2 enhanced Ras activation by dephosphorylating its inhibitory tyrosine 32, thus triggering the MAPK cascade. SHP2, BRAF and MEK were necessary for PD-1-mediated biologic functions. PD-1 inhibition decreased, while PD-1 enforced expression facilitated, TC cell xenograft growth in mice by affecting tumour cell proliferation. CONCLUSIONS PD-1 circuit blockade in TC, besides restoring anti-cancer immunity, could also directly impair TC cell growth by inhibiting the SHP2/Ras/MAPK signalling pathway.
Collapse
Affiliation(s)
- Federica Liotti
- Institute of Experimental Endocrinology and Oncology (IEOS), CNR, Naples, Italy
| | - Narender Kumar
- Institute of Experimental Endocrinology and Oncology (IEOS), CNR, Naples, Italy
| | - Nella Prevete
- Institute of Experimental Endocrinology and Oncology (IEOS), CNR, Naples, Italy
- Department of Translational Medical Sciences, University of Naples Federico II, Naples, Italy
| | - Maria Marotta
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131, Naples, Italy
| | - Daniela Sorriento
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Naples, Italy
| | - Caterina Ieranò
- Functional Genomics, Istituto Nazionale Tumouri "Fondazione G. Pascale", IRCCS, Naples, Italy
| | - Andrea Ronchi
- Department of Mental and Physical Health and Preventive Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Federica Zito Marino
- Department of Mental and Physical Health and Preventive Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Sonia Moretti
- Department of Medicine, University of Perugia, Perugia, Italy
| | - Renato Colella
- Department of Experimental Medicine, University of Perugia, Perugia, Italy
| | - Efiso Puxeddu
- Department of Medicine, University of Perugia, Perugia, Italy
| | - Simona Paladino
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131, Naples, Italy
| | - Yoshihito Kano
- Department of Clinical Oncology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Michael Ohh
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
- Department of Biochemistry Faculty of Medicine, University of Toronto, Toronto, Canada
| | - Stefania Scala
- Functional Genomics, Istituto Nazionale Tumouri "Fondazione G. Pascale", IRCCS, Naples, Italy
| | - Rosa Marina Melillo
- Institute of Experimental Endocrinology and Oncology (IEOS), CNR, Naples, Italy.
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Via S. Pansini 5, 80131, Naples, Italy.
| |
Collapse
|
53
|
Wisanwattana W, Wongkrajang K, Cao DY, Shi XK, Zhang ZH, Zhou ZY, Li F, Mei QG, Wang C, Suksamrarn A, Zhang GL, Wang F. Inhibition of Phosphodiesterase 5 Promotes the Aromatase-Mediated Estrogen Biosynthesis in Osteoblastic Cells by Activation of cGMP/PKG/SHP2 Pathway. Front Endocrinol (Lausanne) 2021; 12:636784. [PMID: 33776932 PMCID: PMC7995890 DOI: 10.3389/fendo.2021.636784] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 02/15/2021] [Indexed: 11/23/2022] Open
Abstract
Mechanical stimulation induces bone growth and remodeling by the secondary messenger, cyclic guanosine 3', 5'-monophosphate (cGMP), in osteoblasts. However, the role of cGMP in the regulation of estrogen biosynthesis, whose deficiency is a major cause of osteoporosis, remains unclear. Here, we found that the prenylated flavonoids, 3-O-methoxymethyl-7-O-benzylicaritin (13), 7-O-benzylicaritin (14), and 4'-O-methyl-8-isopentylkaempferol (15), which were synthesized using icariin analogs, promoted estrogen biosynthesis in osteoblastic UMR106 cells, with calculated EC50 values of 1.53, 3.45, and 10.57 µM, respectively. 14 and 15 increased the expression level of the bone specific promoter I.4-driven aromatase, the only enzyme that catalyzes estrogen formation by using androgens as substrates, in osteoblastic cells. 14 inhibited phosphodiesterase 5 (PDE5), stimulated intracellular cGMP level and promoted osteoblast cell differentiation. Inhibition of cGMP dependent-protein kinase G (PKG) abolished the stimulatory effect of 14 on estrogen biosynthesis and osteoblast cell differentiation. Further, PKG activation by 14 stimulated the activity of SHP2 (Src homology 2 domain-containing tyrosine phosphatase 2), thereby activating Src and ERK (extracellular signal-regulated kinase) signaling and increasing ERK-dependent aromatase expression in osteoblasts. Our findings reveal a previously unknown role of cGMP in the regulation of estrogen biosynthesis in the bone. These results support the further development of 14 as a PKG-activating drug to mimic the anabolic effects of mechanical stimulation of bone in the treatment of osteoporosis.
Collapse
Affiliation(s)
- Wisanee Wisanwattana
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Kanjana Wongkrajang
- Department of Chemistry, Faculty of Science and Technology, Pibulsongkram Rajabhat University, Phitsanulok, Thailand
| | - Dong-yi Cao
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiao-ke Shi
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Zhong-hui Zhang
- College of Chemical Engineering, Sichuan University, Chengdu, China
| | - Zong-yuan Zhou
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Fu Li
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Qing-gang Mei
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Chun Wang
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Apichart Suksamrarn
- Department of Chemistry and Center of Excellent for Innovation in Chemistry, Faculty of Science, Ramkhamhaeng University, Bangkok, Thailand
| | - Guo-lin Zhang
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- *Correspondence: Fei Wang, ; Guo-lin Zhang,
| | - Fei Wang
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- *Correspondence: Fei Wang, ; Guo-lin Zhang,
| |
Collapse
|
54
|
Ma J, Tang W, Gu R, Hu F, Zhang L, Wu J, Xu G. SHP-2-Induced Activation of c-Myc Is Involved in PDGF-B-Regulated Cell Proliferation and Angiogenesis in RMECs. Front Physiol 2020; 11:555006. [PMID: 33329018 PMCID: PMC7719712 DOI: 10.3389/fphys.2020.555006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 11/03/2020] [Indexed: 12/02/2022] Open
Abstract
Background: Aberrant neovascularization resulting from inappropriate angiogenic signaling is closely related to many diseases, such as cancer, cardiovascular disease, and proliferative retinopathy. Although some factors involved in regulating pathogenic angiogenesis have been identified, the molecular mechanisms of proliferative retinopathy remain largely unknown. In the present study, we determined the role of platelet-derived growth factor-B (PDGF-B), one of the HIF-1-responsive gene products, in cell proliferation and angiogenesis in retinal microvascular endothelial cells (RMECs) and explored its regulatory mechanism. Methods: Cell counting kit-8 (CCK-8), bromodeoxyuridine (BrdU) incorporation, tube formation, cell migration, and Western blot assays were used in our study. Results: Our results showed that PDGF-B promoted cell proliferation and angiogenesis by increasing the activity of Src homology 2 domain-containing tyrosine phosphatase 2 (SHP-2) in RMECs, which was attenuated by the inhibition of PDGF receptor (PDGFR) or SHP-2 knockdown. Moreover, activation of c-Myc was involved in the processes of PDGF-B/SHP-2-driven cell proliferation in RMECs. The promoting effects of PDGF-B/SHP-2 on c-Myc expression were mediated by the Erk pathway. Conclusion: These results indicate that PDGF-B facilitates cell proliferation and angiogenesis, at least in part, via the SHP-2/Erk/c-Myc pathway in RMECs, implying new potential treatment candidates for retinal microangiopathy.
Collapse
Affiliation(s)
- Jun Ma
- Eye Institute, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China
| | - Wenyi Tang
- Department of Ophthalmology, Eye and ENT Hospital of Fudan University, Shanghai, China
| | - Ruiping Gu
- Department of Ophthalmology, Eye and ENT Hospital of Fudan University, Shanghai, China
| | - Fangyuan Hu
- Eye Institute, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China
| | - Lei Zhang
- Department of Radiation Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jihong Wu
- Eye Institute, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China
| | - Gezhi Xu
- Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai, China.,Department of Ophthalmology, Eye and ENT Hospital of Fudan University, Shanghai, China
| |
Collapse
|
55
|
Lores J, Prada CE, Ramírez-Montaño D, Nastasi-Catanese JA, Pachajoa H. Clinical and molecular analysis of 26 individuals with Noonan syndrome in a reference institution in Colombia. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2020; 184:1042-1051. [PMID: 33300679 DOI: 10.1002/ajmg.c.31869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 11/23/2020] [Accepted: 11/25/2020] [Indexed: 11/06/2022]
Abstract
Our aim was to characterize the phenotype and genotype of individuals with Noonan syndrome in Colombia. There are published cohorts of Noonan individuals from several countries in Latin America including Brazil, Chile, and Argentina, but none from Colombia. We described 26 individuals with NS from a single large referral center in the South West of Colombia using an established database in the genetics department and hospital records search using ICD-10 codes. All patients included in this study were evaluated by a medical geneticist and have molecular confirmation of NS diagnosis. The median age at referral was 3.5 years (range, 0-39), and at molecular diagnosis was 5 years (range, 0-40). Patients mostly originated from the southwest region of Colombia (19/26, 73%). Pathogenic variants in PTPN11 are the most common cause of NS in Colombian individuals followed by SHOC2 and SOS1 variants. The prevalence of cardiomyopathy was low in this population compared to other populations. Further research is needed with a larger sample size and including different regions of Colombia to correlate our findings. This study provides new information about time to diagnosis of NS in Colombia, genotypes, and provides important information to help develop guidelines for diagnosis and management of this disease in the region.
Collapse
Affiliation(s)
- Juliana Lores
- Department of Genetics, Fundación Valle del Lili, Cali, Colombia.,Centro de Investigaciones en Anomalías Congénitas y Enfermedades Raras (CIACER), Universidad Icesi, Cali, Colombia
| | - Carlos E Prada
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA.,Fundación Cardiovascular de Colombia, Bucaramanga, Colombia
| | - Diana Ramírez-Montaño
- Centro de Investigaciones en Anomalías Congénitas y Enfermedades Raras (CIACER), Universidad Icesi, Cali, Colombia
| | | | - Harry Pachajoa
- Department of Genetics, Fundación Valle del Lili, Cali, Colombia.,Centro de Investigaciones en Anomalías Congénitas y Enfermedades Raras (CIACER), Universidad Icesi, Cali, Colombia
| |
Collapse
|
56
|
Samanta S. Potential Impacts of Prebiotics and Probiotics in Cancer Prevention. Anticancer Agents Med Chem 2020; 22:605-628. [PMID: 33305713 DOI: 10.2174/1871520621999201210220442] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/15/2020] [Accepted: 10/26/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Cancer is a serious problem throughout the world. The pathophysiology of cancer is multifactorial and is also related to gut microbiota. Intestinal microbes are the useful resident of the healthy human. They play various aspects of human health including nutritional biotransformation, flushing of the pathogens, toxin neutralization, immune response, and onco-suppression. Disruption in the interactions among the gut microbiota, intestinal epithelium, and the host immune system are associated with gastrointestinal disorders, neurodegenerative diseases, metabolic syndrome, and cancer. Probiotic bacteria (Lactobacillus spp., Bifidobacterium spp.) have been regarded as beneficial to health and shown to play a significant role in immunomodulation and displayed preventive role against obesity, diabetes, liver disease, inflammatory bowel disease, tumor progression, and cancer. OBJECTIVE The involvement of gut microorganisms in cancer development and prevention has been recognized as a balancing factor. The events of dysbiosis emphasize metabolic disorder and carcinogenesis. The gut flora potentiates immunomodulation and minimizes the limitations of usual chemotherapy. The significant role of prebiotics and probiotics on the improvement of immunomodulation and antitumor properties has been considered. METHODS I had reviewed the literature on the multidimensional activities of prebiotics and probiotics from the NCBI website database PubMed, Springer Nature, Science Direct (Elsevier), Google Scholar database to search relevant articles. Specifically, I had focused on the role of prebiotics and probiotics in immunomodulation and cancer prevention. RESULTS Prebiotics are the nondigestible fermentable sugars that selectively influence the growth of probiotic organisms that exert immunomodulation over the cancerous growth. The oncostatic properties of bacteria are mediated through the recruitment of cytotoxic T cells, natural killer cells, and oxidative stress-induced apoptosis in the tumor microenvironment. Moreover, approaches have also been taken to use probiotics as an adjuvant in cancer therapy. CONCLUSION The present review has indicated that dysbiosis is the crucial factor in many pathological situations including cancer. Applications of prebiotics and probiotics exhibit the immune-surveillance as oncostatic effects. These events increase the possibilities of new therapeutic strategies for cancer prevention.
Collapse
Affiliation(s)
- Saptadip Samanta
- Department of Physiology, Midnapore College, Midnapore, Paschim Medinipur, 721101, West Bengal,. India
| |
Collapse
|
57
|
Matozaki T, Kotani T, Murata Y, Saito Y. Roles of Src family kinase, Ras, and mTOR signaling in intestinal epithelial homeostasis and tumorigenesis. Cancer Sci 2020; 112:16-21. [PMID: 33073467 PMCID: PMC7780047 DOI: 10.1111/cas.14702] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/12/2020] [Accepted: 10/14/2020] [Indexed: 12/15/2022] Open
Abstract
The turnover of intestinal epithelial cells (IECs) is relatively rapid (3-5 days in mouse and human), and this short existence and other aspects of the homeostasis of IECs are tightly regulated by various signaling pathways including Wnt-β-catenin signaling. Dysregulation of IEC homeostasis likely contributes to the development of intestinal inflammation and intestinal cancer. The roles of receptor protein tyrosine kinases and their downstream signaling molecules such as Src family kinases, Ras, and mTOR in homeostatic regulation of IEC turnover have recently been evaluated. These signaling pathways have been found to promote not only the proliferation of IECs but also the differentiation of progenitor cells into secretory cell types such as goblet cells. Of note, signaling by Src family kinases, Ras, and mTOR has been shown to oppose the Wnt-β-catenin signaling pathway and thereby to limit the number of Lgr5+ intestinal stem cells or of Paneth cells. Such cross-talk of signaling pathways is important not only for proper regulation of IEC homeostasis but for the development of intestinal tumors and potentially for anticancer therapy.
Collapse
Affiliation(s)
- Takashi Matozaki
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Takenori Kotani
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yoji Murata
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yasuyuki Saito
- Division of Molecular and Cellular Signaling, Department of Biochemistry and Molecular Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| |
Collapse
|
58
|
Buday L, Vas V. Novel regulation of Ras proteins by direct tyrosine phosphorylation and dephosphorylation. Cancer Metastasis Rev 2020; 39:1067-1073. [PMID: 32936431 PMCID: PMC7680326 DOI: 10.1007/s10555-020-09918-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 06/19/2020] [Indexed: 12/01/2022]
Abstract
Somatic mutations in the RAS genes are frequent in human tumors, especially in pancreatic, colorectal, and non-small-cell lung cancers. Such mutations generally decrease the ability of Ras to hydrolyze GTP, maintaining the protein in a constitutively active GTP-bound form that drives uncontrolled cell proliferation. Efforts to develop drugs that target Ras oncoproteins have been unsuccessful. Recent emerging data suggest that Ras regulation is more complex than the scientific community has believed for decades. In this review, we summarize advances in the "textbook" view of Ras activation. We also discuss a novel type of Ras regulation that involves direct phosphorylation and dephosphorylation of Ras tyrosine residues. The discovery that pharmacological inhibition of the tyrosine phosphoprotein phosphatase SHP2 maintains mutant Ras in an inactive state suggests that SHP2 could be a novel drug target for the treatment of Ras-driven human cancers.
Collapse
Affiliation(s)
- László Buday
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, 1117, Hungary.
- Department of Medical Chemistry, Semmelweis University Medical School, Budapest, 1094, Hungary.
| | - Virág Vas
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, 1117, Hungary
| |
Collapse
|
59
|
Ben C, Wu X, Takahashi-Kanemitsu A, Knight CT, Hayashi T, Hatakeyama M. Alternative splicing reverses the cell-intrinsic and cell-extrinsic pro-oncogenic potentials of YAP1. J Biol Chem 2020; 295:13965-13980. [PMID: 32763976 DOI: 10.1074/jbc.ra120.013820] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 07/30/2020] [Indexed: 12/12/2022] Open
Abstract
In addition to acting as a transcriptional co-activator, YAP1 directly mediates translocalization of the pro-oncogenic phosphatase SHP2 from the cytoplasm to nucleus. In the cytoplasm, SHP2 potentiates RAS-ERK signaling, which promotes cell proliferation and cell motility, whereas in the nucleus, it mediates gene regulation. As a result, elucidating the details of SHP2 trafficking is important for understanding its biological roles, including in cancer. YAP1 comprises multiple splicing isoforms defined in part by the presence (as in YAP1-2γ) or absence (as in YAP1-2α) of a γ-segment encoded by exon 6 that disrupts a critical leucine zipper. Although the disruptive segment is known to reduce co-activator function, it is unclear how this element impacts the physical and functional relationships between YAP1 and SHP2. To explore this question, we first demonstrated that YAP1-2γ cannot bind SHP2. Nevertheless, YAP1-2γ exhibits stronger mitogenic and motogenic activities than does YAP1-2α because the YAP1-2α-mediated delivery of SHP2 to the nucleus weakens cytoplasmic RAS-ERK signaling. However, YAP1-2γ confers less in vivo tumorigenicity than does YA1-2α by recruiting tumor-inhibitory macrophages. Mechanistically, YAP1-2γ transactivates and the YAP1-2α-SHP2 complex transrepresses the monocyte/macrophage chemoattractant CCL2 Thus, cell-intrinsic and cell-extrinsic pro-oncogenic YAP1 activities are inversely regulated by alternative splicing of exon 6. Notably, oncogenic KRAS down-regulates the SRSF3 splicing factor that prevents exon 6 skipping, thereby creating a YAP1-2α-dominant situation that supports a "cold" immune microenvironment.
Collapse
Affiliation(s)
- Chi Ben
- Division of Microbiology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Xiaojing Wu
- Division of Microbiology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | | | | | - Takeru Hayashi
- Division of Microbiology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| | - Masanori Hatakeyama
- Division of Microbiology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan
| |
Collapse
|
60
|
Zhang L, Yuan C, Peng J, Zhou L, Jiang Y, Lin Y, Yin W, Xu S, Ma J, Lu J. SHP-2-Mediated Upregulation of ZEB1 Is Important for PDGF-B-Induced Cell Proliferation and Metastatic Phenotype in Triple Negative Breast Cancer. Front Oncol 2020; 10:1230. [PMID: 32850368 PMCID: PMC7423842 DOI: 10.3389/fonc.2020.01230] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 06/16/2020] [Indexed: 01/25/2023] Open
Abstract
Background: Triple negative breast cancer (TNBC), a fatal malignant tumor, is characterized by a lack of estrogen and progesterone hormone receptors and overexpression of HER2. Due to its characteristics, there are no effective targeted therapies for TNBC. Therefore, it is critical to identify the crucial factors that participate in modulating TNBC progression and explore the underlying molecular mechanism. Methods: CCK-8, bromodeoxyuridine incorporation, western blotting, qPCR, and transwell assays were utilized to evaluate breast cancer cell proliferation, migration, and invasion. Results: Activation of platelet-derived growth factor (PDGF)-B/PDGF receptor (PDGFR) promoted the proliferation and metastatic phenotype of TNBC cells; however, these effects were attenuated by SHP-2 knockdown. Moreover, PDGF-B promoted the expression of zinc finger E-box binding homeobox 1 (ZEB1) by downregulating the expression of miR-200. Furthermore, knockdown of ZEB1 mitigated the promoting effects of PDGF-B on cell proliferation and migration. In addition, the regulatory effects of PDGF-B on miR-200 and ZEB1 were mediated through the SHP-2/Akt pathway. Conclusion: Our findings highlight the important roles of PDGF-B/PDGFR and their downstream signaling pathways in regulating cell proliferation and metastatic phenotype in TNBC. Hence, these molecules may serve as novel therapeutic targets for TNBC in the future.
Collapse
Affiliation(s)
- Lei Zhang
- Department of Breast Surgery, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
- Department of Translational Skin Cancer Research, University Hospital Essen, Essen, Germany
| | - Chenwei Yuan
- Department of Breast Surgery, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jing Peng
- Department of Breast Surgery, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Liheng Zhou
- Department of Breast Surgery, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yiwei Jiang
- Department of Breast Surgery, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Yanping Lin
- Department of Breast Surgery, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Wenjin Yin
- Department of Breast Surgery, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Shuguang Xu
- Department of Breast Surgery, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Jun Ma
- Eye Institute, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai, China
| | - Jinsong Lu
- Department of Breast Surgery, School of Medicine, Renji Hospital, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
61
|
Phosphatase-independent functions of SHP2 and its regulation by small molecule compounds. J Pharmacol Sci 2020; 144:139-146. [PMID: 32921395 DOI: 10.1016/j.jphs.2020.06.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 06/03/2020] [Accepted: 06/08/2020] [Indexed: 12/13/2022] Open
Abstract
SHP2 is a non-receptor protein tyrosine phosphatase encoded by the PTPN11 gene in human. Clinically, SHP2 has been identified as a causal factor of several diseases, such as Noonan syndrome, LEOPARD syndrome as well as myeloid malignancies. Interestingly, both loss-of-function and gain-of-function mutations occur in the PTPN11 gene. Analyses by biochemical and cell biological means as well as probing with small molecule compounds have demonstrated that SHP2 has both phosphatase-dependent and independent functions. In comparison with its phosphatase activity, the non-phosphatase-like function of SHP2 has not been well introduced or summarized. This review mainly focuses on the phosphatase-independent functions and its regulation by small molecule compounds as well as their use for disease therapy.
Collapse
|
62
|
Spalinger MR, Schwarzfischer M, Scharl M. The Role of Protein Tyrosine Phosphatases in Inflammasome Activation. Int J Mol Sci 2020; 21:E5481. [PMID: 32751912 PMCID: PMC7432435 DOI: 10.3390/ijms21155481] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 07/29/2020] [Accepted: 07/29/2020] [Indexed: 12/13/2022] Open
Abstract
Inflammasomes are multi-protein complexes that mediate the activation and secretion of the inflammatory cytokines IL-1β and IL-18. More than half a decade ago, it has been shown that the inflammasome adaptor molecule, ASC requires tyrosine phosphorylation to allow effective inflammasome assembly and sustained IL-1β/IL-18 release. This finding provided evidence that the tyrosine phosphorylation status of inflammasome components affects inflammasome assembly and that inflammasomes are subjected to regulation via kinases and phosphatases. In the subsequent years, it was reported that activation of the inflammasome receptor molecule, NLRP3, is modulated via tyrosine phosphorylation as well, and that NLRP3 de-phosphorylation at specific tyrosine residues was required for inflammasome assembly and sustained IL-1β/IL-18 release. These findings demonstrated the importance of tyrosine phosphorylation as a key modulator of inflammasome activity. Following these initial reports, additional work elucidated that the activity of several inflammasome components is dictated via their phosphorylation status. Particularly, the action of specific tyrosine kinases and phosphatases are of critical importance for the regulation of inflammasome assembly and activity. By summarizing the currently available literature on the interaction of tyrosine phosphatases with inflammasome components we here provide an overview how tyrosine phosphatases affect the activation status of inflammasomes.
Collapse
Affiliation(s)
- Marianne R. Spalinger
- Department of Gastroenterology and Hepatology, University Hospital Zurich, 8091 Zurich, Switzerland; (M.S.); (M.S.)
| | - Marlene Schwarzfischer
- Department of Gastroenterology and Hepatology, University Hospital Zurich, 8091 Zurich, Switzerland; (M.S.); (M.S.)
| | - Michael Scharl
- Department of Gastroenterology and Hepatology, University Hospital Zurich, 8091 Zurich, Switzerland; (M.S.); (M.S.)
- Zurich Center for Integrative Human Physiology, University of Zurich, 8006 Zurich, Switzerland
| |
Collapse
|
63
|
Gillette MA, Satpathy S, Cao S, Dhanasekaran SM, Vasaikar SV, Krug K, Petralia F, Li Y, Liang WW, Reva B, Krek A, Ji J, Song X, Liu W, Hong R, Yao L, Blumenberg L, Savage SR, Wendl MC, Wen B, Li K, Tang LC, MacMullan MA, Avanessian SC, Kane MH, Newton CJ, Cornwell M, Kothadia RB, Ma W, Yoo S, Mannan R, Vats P, Kumar-Sinha C, Kawaler EA, Omelchenko T, Colaprico A, Geffen Y, Maruvka YE, da Veiga Leprevost F, Wiznerowicz M, Gümüş ZH, Veluswamy RR, Hostetter G, Heiman DI, Wyczalkowski MA, Hiltke T, Mesri M, Kinsinger CR, Boja ES, Omenn GS, Chinnaiyan AM, Rodriguez H, Li QK, Jewell SD, Thiagarajan M, Getz G, Zhang B, Fenyö D, Ruggles KV, Cieslik MP, Robles AI, Clauser KR, Govindan R, Wang P, Nesvizhskii AI, Ding L, Mani DR, Carr SA. Proteogenomic Characterization Reveals Therapeutic Vulnerabilities in Lung Adenocarcinoma. Cell 2020; 182:200-225.e35. [PMID: 32649874 PMCID: PMC7373300 DOI: 10.1016/j.cell.2020.06.013] [Citation(s) in RCA: 392] [Impact Index Per Article: 98.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 03/06/2020] [Accepted: 06/03/2020] [Indexed: 12/24/2022]
Abstract
To explore the biology of lung adenocarcinoma (LUAD) and identify new therapeutic opportunities, we performed comprehensive proteogenomic characterization of 110 tumors and 101 matched normal adjacent tissues (NATs) incorporating genomics, epigenomics, deep-scale proteomics, phosphoproteomics, and acetylproteomics. Multi-omics clustering revealed four subgroups defined by key driver mutations, country, and gender. Proteomic and phosphoproteomic data illuminated biology downstream of copy number aberrations, somatic mutations, and fusions and identified therapeutic vulnerabilities associated with driver events involving KRAS, EGFR, and ALK. Immune subtyping revealed a complex landscape, reinforced the association of STK11 with immune-cold behavior, and underscored a potential immunosuppressive role of neutrophil degranulation. Smoking-associated LUADs showed correlation with other environmental exposure signatures and a field effect in NATs. Matched NATs allowed identification of differentially expressed proteins with potential diagnostic and therapeutic utility. This proteogenomics dataset represents a unique public resource for researchers and clinicians seeking to better understand and treat lung adenocarcinomas.
Collapse
Affiliation(s)
- Michael A Gillette
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA; Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, MA, 02115, USA.
| | - Shankha Satpathy
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA.
| | - Song Cao
- Department of Medicine and Genetics, Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA
| | | | - Suhas V Vasaikar
- Department of Translational Molecular Pathology, MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Karsten Krug
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA
| | - Francesca Petralia
- Department of Genetics and Genomic Sciences, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yize Li
- Department of Medicine and Genetics, Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Wen-Wei Liang
- Department of Medicine and Genetics, Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Boris Reva
- Department of Genetics and Genomic Sciences, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Azra Krek
- Department of Genetics and Genomic Sciences, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jiayi Ji
- Department of Population Health Science and Policy; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Xiaoyu Song
- Department of Population Health Science and Policy; Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Wenke Liu
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Runyu Hong
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Lijun Yao
- Department of Medicine and Genetics, Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Lili Blumenberg
- Institute for Systems Genetics and Department of Medicine, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Sara R Savage
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Michael C Wendl
- Department of Medicine and Genetics, Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Bo Wen
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Kai Li
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Lauren C Tang
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA; Department of Biological Sciences, Columbia University, New York, NY, 10027, USA
| | - Melanie A MacMullan
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA; Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, CA, 90089, USA
| | - Shayan C Avanessian
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA
| | - M Harry Kane
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA
| | | | - MacIntosh Cornwell
- Institute for Systems Genetics and Department of Medicine, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Ramani B Kothadia
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA
| | - Weiping Ma
- Department of Genetics and Genomic Sciences, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Seungyeul Yoo
- Department of Genetics and Genomic Sciences, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Rahul Mannan
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Pankaj Vats
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | | | - Emily A Kawaler
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Tatiana Omelchenko
- Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Antonio Colaprico
- Department of Public Health Sciences, University of Miami, Miller School of Medicine, Miami, FL, 33136, USA
| | - Yifat Geffen
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA
| | - Yosef E Maruvka
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA
| | | | - Maciej Wiznerowicz
- Poznan University of Medical Sciences, Poznań, 61-701, Poland; International Institute for Molecular Oncology, Poznań, 60-203, Poland
| | - Zeynep H Gümüş
- Department of Genetics and Genomic Sciences, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Rajwanth R Veluswamy
- Division of Hematology and Medical Oncology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | | | - David I Heiman
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA
| | - Matthew A Wyczalkowski
- Department of Medicine and Genetics, Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Tara Hiltke
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Mehdi Mesri
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Christopher R Kinsinger
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Emily S Boja
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Gilbert S Omenn
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Arul M Chinnaiyan
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Henry Rodriguez
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Qing Kay Li
- Sidney Kimmel Comprehensive Cancer Center, The Johns Hopkins Medical Institutions, Baltimore, MD, 21224, USA
| | - Scott D Jewell
- Van Andel Research Institute, Grand Rapids, MI, 49503, USA
| | - Mathangi Thiagarajan
- Leidos Biomedical Research Inc., Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Gad Getz
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA
| | - Bing Zhang
- Lester and Sue Smith Breast Center, Baylor College of Medicine, Houston, TX, 77030, USA
| | - David Fenyö
- Institute for Systems Genetics and Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Kelly V Ruggles
- Institute for Systems Genetics and Department of Medicine, NYU Grossman School of Medicine, New York, NY 10016, USA
| | - Marcin P Cieslik
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Ana I Robles
- Office of Cancer Clinical Proteomics Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Karl R Clauser
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA
| | - Ramaswamy Govindan
- Division of Oncology and Siteman Cancer Center, Washington University School of Medicine in St. Louis, St. Louis, MO, 63110, USA
| | - Pei Wang
- Department of Genetics and Genomic Sciences, Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Alexey I Nesvizhskii
- Department of Pathology, University of Michigan, Ann Arbor, MI, 48109, USA; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Li Ding
- Department of Medicine and Genetics, Siteman Cancer Center, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - D R Mani
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA
| | - Steven A Carr
- Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA, 02142, USA.
| |
Collapse
|
64
|
Sahu S, Chaudhury S, Saldanha D. Noonan syndrome with somnambulism: A rare case report. Ind Psychiatry J 2020; 29:339-341. [PMID: 34158723 PMCID: PMC8188914 DOI: 10.4103/ipj.ipj_84_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 12/11/2020] [Indexed: 11/25/2022] Open
Abstract
Noonan syndrome is an autosomal dominant, genetic, multisystem disorder with a prevalence of 1 in 1000-2500 live births. Characteristic features of the condition include distinctive myopathic facial features, hypertelorism, short and broad nose, webbed neck, and low set ears. About 10% of the subjects have auditory defects due to sensorineural hearing loss. The patient also has short stature, chest deformity (superior pectus carinatum and inferior pectus excavatum), widely spaced nipples, and delayed puberty. A rare psychiatric manifestation of somnambulism and somniloquy in a case of Noonan syndrome is reported.
Collapse
Affiliation(s)
- Samiksha Sahu
- Department of Psychiatry, Dr. D Y Patil Medical College, Pune, Maharashtra, India
| | - Suprakash Chaudhury
- Department of Psychiatry, Dr. D Y Patil Medical College, Pune, Maharashtra, India
| | - Daniel Saldanha
- Department of Psychiatry, Dr. D Y Patil Medical College, Pune, Maharashtra, India
| |
Collapse
|
65
|
Wang M, Lu J, Wang M, Yang CY, Wang S. Discovery of SHP2-D26 as a First, Potent, and Effective PROTAC Degrader of SHP2 Protein. J Med Chem 2020; 63:7510-7528. [DOI: 10.1021/acs.jmedchem.0c00471] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
66
|
Chen X, Zou F, Hu Z, Du G, Yu P, Wang W, Wang H, Ye L, Tian J. PCC0208023, a potent SHP2 allosteric inhibitor, imparts an antitumor effect against KRAS mutant colorectal cancer. Toxicol Appl Pharmacol 2020; 398:115019. [PMID: 32335126 DOI: 10.1016/j.taap.2020.115019] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 04/21/2020] [Indexed: 02/08/2023]
Abstract
The non-receptor tyrosine phosphatase SHP2, encoded by PTPN11, plays an indispensable role in tumors driven by oncogenic KRAS mutations, which frequently occur in colorectal cancer. Here, PCC0208023, a potent SHP2 allosteric inhibitor, was synthesized to evaluate its inhibitory effects against the SHP2 enzyme, and the KRAS mutant colorectal cancer in vitro and in vivo, and its impart on the RAS/MAPK pathway. Consistent with an allosteric mode of inhibition, PCC0208023 can non-competitively inhibit the activity of full-length SHP2 enzyme, but lacks activity against the free catalytic domain of SHP2. Furthermore, PCC0208023 inhibited the proliferation of KRAS mutation-driven human colorectal cancer cells by inhibiting the RAS/MAPK signaling pathway in vitro. Importantly, PCC0208023 displayed good anti-tumor efficacy against KRAS-driven LS180 and HCT116 xenograft models in nude mice with the decreased Ki67 and p-ERK level, and increased cleaved caspase-3 expression in tumors. Interestingly, PCC0208023 maintained high levels in LS180 tumors within 24 h after administration and was mainly distributed in both intestines and lungs. Molecular docking studies revealed a higher affinity of PCC0208023 with key residues in the SHP2 allosteric pocket than RMC-4550. PCC0208023 deserves further optimization to identify additional low-toxic and potent SHP2 allosteric inhibitors with novel scaffolds for the treatment of patients with KRAS mutation-positive colorectal cancer.
Collapse
Affiliation(s)
- Xiao Chen
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, PR China
| | - Fangxia Zou
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, PR China
| | - Zhengping Hu
- School of Public Health and Management & Institute of Toxicology, Binzhou Medical University, Yantai 264003, China
| | - Guangying Du
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, PR China
| | - Pengfei Yu
- School of Public Health and Management & Institute of Toxicology, Binzhou Medical University, Yantai 264003, China
| | - Wenyan Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, PR China
| | - Hongbo Wang
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, PR China
| | - Liang Ye
- School of Public Health and Management & Institute of Toxicology, Binzhou Medical University, Yantai 264003, China.
| | - Jingwei Tian
- School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, PR China.
| |
Collapse
|
67
|
Dos Santos-Bueno FV, Andrade FG, Sardou-Cezar I, Mendes-de-Almeida DP, Chung-Filho AA, Brisson GD, Terra-Granado E, Noronha EP, Santos Thuler LC, Pombo-de-Oliveira MS. Childhood Myeloid Neoplasms With PTPN11 Mutations in Brazil. CLINICAL LYMPHOMA MYELOMA & LEUKEMIA 2020; 20:e496-e505. [PMID: 32434682 DOI: 10.1016/j.clml.2020.04.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 04/13/2020] [Accepted: 04/14/2020] [Indexed: 11/28/2022]
Affiliation(s)
| | - Francianne Gomes Andrade
- Pediatric Hematology-Oncology Program, Research Center, Instituto Nacional de Câncer (INCA), Rio de Janeiro, Brazil
| | - Ingrid Sardou-Cezar
- Pediatric Hematology-Oncology Program, Research Center, Instituto Nacional de Câncer (INCA), Rio de Janeiro, Brazil
| | - Daniela Palheiro Mendes-de-Almeida
- Pediatric Hematology-Oncology Program, Research Center, Instituto Nacional de Câncer (INCA), Rio de Janeiro, Brazil; Division of Hematology, Instituto Nacional de Infectologia Evandro Chagas, Fundação Oswaldo Cruz (INI/Fiocruz), Rio de Janeiro, Brazil
| | - Alython Araujo Chung-Filho
- Pediatric Hematology-Oncology Program, Research Center, Instituto Nacional de Câncer (INCA), Rio de Janeiro, Brazil
| | - Gisele Dallapicola Brisson
- Pediatric Hematology-Oncology Program, Research Center, Instituto Nacional de Câncer (INCA), Rio de Janeiro, Brazil
| | - Eugênia Terra-Granado
- Pediatric Hematology-Oncology Program, Research Center, Instituto Nacional de Câncer (INCA), Rio de Janeiro, Brazil
| | - Elda Pereira Noronha
- Pediatric Hematology-Oncology Program, Research Center, Instituto Nacional de Câncer (INCA), Rio de Janeiro, Brazil
| | | | - Maria S Pombo-de-Oliveira
- Pediatric Hematology-Oncology Program, Research Center, Instituto Nacional de Câncer (INCA), Rio de Janeiro, Brazil.
| | | |
Collapse
|
68
|
Murciano-Goroff YR, Taylor BS, Hyman DM, Schram AM. Toward a More Precise Future for Oncology. Cancer Cell 2020; 37:431-442. [PMID: 32289268 PMCID: PMC7499397 DOI: 10.1016/j.ccell.2020.03.014] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/12/2020] [Accepted: 03/16/2020] [Indexed: 12/11/2022]
Abstract
Prospective molecular characterization of cancer has enabled physicians to define the genomic changes of each patient's tumor in real time and select personalized therapies based on these detailed portraits. Despite the promise of such an approach, previously unrecognized biological and therapeutic complexity is emerging. Here, we synthesize lessons learned and discuss the steps required to extend the benefits of genome-driven oncology, including proposing strategies for improved drug design, more nuanced patient selection, and optimized use of available therapies. Finally, we suggest ways that next-generation genome-driven clinical trials can evolve to accelerate our understanding of cancer biology and improve patient outcomes.
Collapse
Affiliation(s)
- Yonina R Murciano-Goroff
- Department of Medicine, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA
| | - Barry S Taylor
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Human Oncogenesis and Pathology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Weill Cornell Medical College, New York, NY 10065, USA
| | - David M Hyman
- Department of Medicine, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA; Weill Cornell Medical College, New York, NY 10065, USA; Loxo Oncology, A Wholly Owned Subsidiary of Eli Lilly, Stamford, CT, USA
| | - Alison M Schram
- Department of Medicine, Memorial Sloan Kettering Cancer Center, 1275 York Avenue, New York, NY 10065, USA; Weill Cornell Medical College, New York, NY 10065, USA.
| |
Collapse
|
69
|
Putlyaeva LV, Demin DE, Uvarova AN, Zinevich LS, Prokofjeva MM, Gazizova GR, Shagimardanova EI, Schwartz AM. PTPN11 Knockdown Prevents Changes in the Expression of Genes Controlling Cell Cycle, Chemotherapy Resistance, and Oncogene-Induced Senescence in Human Thyroid Cells Overexpressing BRAF V600E Oncogenic Protein. BIOCHEMISTRY (MOSCOW) 2020; 85:108-118. [PMID: 32079522 DOI: 10.1134/s0006297920010101] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The MAPK (RAS/BRAF/MEK/ERK) signaling pathway is a kinase cascade involved in the regulation of cell proliferation, differentiation, and survival in response to external stimuli. The V600E mutation in the BRAF gene has been detected in various tumors, resulting in a 500-fold increase in BRAF kinase activity. However, monotherapy with selective BRAF V600E inhibitors often leads to reactivation of MAPK signaling cascade and emergence of drug resistance. Therefore, new targets are being developed for the inhibition of components of the aberrantly activated cascade. It was recently discovered that resistance to BRAF V600E inhibitors may be associated with the activity of the tyrosine phosphatase SHP-2 encoded by the PTPN11 gene. In this paper, we analyzed transcriptional effects of PTPN11 gene knockdown and selective suppression of BRAF V600E in a model of thyroid follicular epithelium. We found that the siRNA-mediated knockdown of PTPN11 after vemurafenib treatment prevented an increase in the expression CCNA1 and NOTCH4 genes involved in the formation of drug resistance of tumors. On the other hand, downregulation of PTPN11 expression blocked the transcriptional activation of genes (p21, p15, p16, RB1, and IGFBP7) involved in cell cycle regulation and oncogene-induced senescence in response to BRAF V600E expression. Therefore, it can be assumed that SHP-2 participates not only in emergence of drug resistance in cancer cells, but also in oncogene-induced cell senescence.
Collapse
Affiliation(s)
- L V Putlyaeva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.,Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, 121205, Russia
| | - D E Demin
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.,Moscow Institute of Physics and Technology, Dolgoprudnyi, Moscow Region, 141701, Russia
| | - A N Uvarova
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.,Lomonosov Moscow State University, Faculty of Biology, Moscow, 119234, Russia
| | - L S Zinevich
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, 119334, Russia
| | - M M Prokofjeva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - G R Gazizova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, 420008, Russia
| | - E I Shagimardanova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, 420008, Russia
| | - A M Schwartz
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.
| |
Collapse
|
70
|
Okada Y, Zhang Y, Zhang L, Yeh LK, Wang YC, Saika S, Liu CY. Shp2-mediated MAPK pathway regulates ΔNp63 in epithelium to promote corneal innervation and homeostasis. J Transl Med 2020; 100:630-642. [PMID: 31653968 PMCID: PMC7102931 DOI: 10.1038/s41374-019-0338-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 08/19/2019] [Accepted: 08/30/2019] [Indexed: 12/16/2022] Open
Abstract
Corneal nerve fibers serving sensory, reflex, and neurotrophic functions sustain corneal homeostasis and transparency to promote normal visual function. It is not known whether corneal epithelium is also important for the corneal innervation. Herein, we generated a compound transgenic mouse strain, K14rtTA;tetO-Cre (TC);Shp2flox/flox, in which Shp2 was conditionally knocked out from K14-positive cells including corneal epithelium (Shp2K14ce-cko) upon doxycycline (dox) administration. Our data reveal that Shp2K14ce-cko caused corneal denervation. More specifically, corneal epithelium thickness and corneal sensitivity reduced dramatically in Shp2K14ce-cko mice. In addition, corneal epithelial wound healing after debridement was delayed substantially in the mutant mice. These defects manifested in Shp2K14ce-cko mice resemble the symptoms of human neurotrophic keratopathy. Our in vitro study shows that neurite outgrowth of the mouse primary trigeminal ganglion cells (TGCs) was inhibited when as cocultured with mouse corneal epithelial cells (TKE2) transfected by Shp2-, Mek1/2-, or ∆Np63-targeted siRNA but not by Akt1/2-targeted siRNA. Furthermore, ∆Np63 RNA interference downregulated Ngf expression in TKE2 cells. Cotransfection experiments reveal that Shp2 tightly monitored ΔNp63 protein levels in HEK293 and TKE2 cells. Taken together, our data suggest that the Shp2-mediated MAPK pathway regulated ΔNp63, which in turn positively regulated Ngf in epithelium to promote corneal innervation and epithelial homeostasis.
Collapse
Affiliation(s)
- Yuka Okada
- Indiana University School of Optometry, Bloomington, IN, USA.
- Department of Ophthalmology, Wakayama Medical University, School of Medicine, Wakayama, Japan.
| | - Yujin Zhang
- Indiana University School of Optometry, Bloomington, IN, USA
| | - Lingling Zhang
- Indiana University School of Optometry, Bloomington, IN, USA
| | - Lung-Kun Yeh
- Department of Ophthalmology, Chang-Gung Memorial Hospital, Linko, Taiwan
| | - Yen-Chiao Wang
- Indiana University School of Optometry, Bloomington, IN, USA
| | - Shizuya Saika
- Department of Ophthalmology, Wakayama Medical University, School of Medicine, Wakayama, Japan
| | - Chia-Yang Liu
- Indiana University School of Optometry, Bloomington, IN, USA.
| |
Collapse
|
71
|
Wu J, Li W, Zheng Z, Lu X, Zhang H, Ma Y, Wang R. Design, synthesis, biological evaluation, common feature pharmacophore model and molecular dynamics simulation studies of ethyl 4-(phenoxymethyl)-2-phenylthiazole-5-carboxylate as Src homology-2 domain containing protein tyrosine phosphatase-2 (SHP2) inhibitors. J Biomol Struct Dyn 2020; 39:1174-1188. [PMID: 32036779 DOI: 10.1080/07391102.2020.1726817] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
SHP2 is a non-receptor protein tyrosine phosphatase (PTP) encoded by the PTPN11 gene involved in cell death pathway (PD-1/PD-L1) and cell growth and differentiation pathway (MAPK). Moreover, mutations in SHP2 have been implicated in Leopard syndrome (LS), Noonan syndrome (NS), juvenile myelomonocytic leukemia (JMML) and several types of cancer and solid tumors. Thus, SHP2 inhibitors are much needed reagents for evaluation of SHP2 as a therapeutic target. A series of novel ethyl 4-(phenoxymethyl)-2-phenylthiazole-5-carboxylate derivatives were designed and synthesized, and their SHP2 inhibitory activities (IC50) were determined. Among the desired compounds, 1d shares the highest inhibitory activity (IC50 = 0.99 μM) against SHP2. Additionally, a common feature pharmacophore model was established to explain the structure activity relationship of the desired compounds. Finally, molecular dynamics simulation was carried out to explore the most likely binding mode of compound 1d with SHP2. In brief, the findings reported here may at least provide a new strategy or useful insights in discovering novel effective SHP2 inhibitors.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Jingwei Wu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Weiya Li
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Zhihui Zheng
- New Drug Research and Development Center of North China Pharmaceutical Group Corporation, National Microbial Medicine Engineering and Research Center, Hebei Industry Microbial Metabolic Engineering &Technology Research Center, Key Laboratory for New Drug, Screening Technology of Shijiazhuang City, Shijiazhuang, Hebei, China
| | - Xinhua Lu
- New Drug Research and Development Center of North China Pharmaceutical Group Corporation, National Microbial Medicine Engineering and Research Center, Hebei Industry Microbial Metabolic Engineering &Technology Research Center, Key Laboratory for New Drug, Screening Technology of Shijiazhuang City, Shijiazhuang, Hebei, China
| | - Huan Zhang
- Department of Pharmacy, Tianjin Medical University General Hospital, Tianjin, China
| | - Ying Ma
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, China
| | - Runling Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, China
| |
Collapse
|
72
|
Therapeutic potential of targeting SHP2 in human developmental disorders and cancers. Eur J Med Chem 2020; 190:112117. [PMID: 32061959 DOI: 10.1016/j.ejmech.2020.112117] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/03/2020] [Accepted: 02/03/2020] [Indexed: 02/06/2023]
Abstract
Src homology 2 (SH2)-containing protein tyrosine phosphatase 2 (SHP2), encoded by PTPN11, regulates cell proliferation, differentiation, apoptosis and survival via releasing intramolecular autoinhibition and modulating various signaling pathways, such as mitogen-activated protein kinase (MAPK) pathway. Mutations and aberrant expression of SHP2 are implicated in human developmental disorders, leukemias and several solid tumors. As an oncoprotein in some cancers, SHP2 represents a rational target for inhibitors to interfere. Nevertheless, its tumor suppressive effect has also been uncovered, indicating the context-specificity. Even so, two types of SHP2 inhibitors including targeting catalytic pocket and allosteric sites have been developed associated with resolved cocrystal complexes. Herein, we describe its structure, biological function, deregulation in human diseases and summarize recent advance in development of SHP2 inhibitors, trying to give an insight into the therapeutic potential in future.
Collapse
|
73
|
Huda S, Cao M, De Rosa A, Woodhall M, Rodriguez Cruz PM, Cossins J, Maestri M, Ricciardi R, Evoli A, Beeson D, Vincent A. SHP2 inhibitor protects AChRs from effects of myasthenia gravis MuSK antibody. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2019; 7:7/1/e645. [PMID: 31831571 PMCID: PMC6935836 DOI: 10.1212/nxi.0000000000000645] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 10/08/2019] [Indexed: 11/30/2022]
Abstract
Objective To determine whether an SRC homology 2 domain-containing phosphotyrosine phosphatase 2 (SHP2) inhibitor would increase muscle-specific kinase (MuSK) phosphorylation and override the inhibitory effect of MuSK-antibodies (Abs). Methods The effect of the SHP2 inhibitor NSC-87877 on MuSK phosphorylation and AChR clustering was tested in C2C12 myotubes with 31 MuSK-myasthenia gravis (MG) sera and purified MuSK-MG IgG4 preparations. Results In the absence of MuSK-MG Abs, NSC-87877 increased MuSK phosphorylation and the number of AChR clusters in C2C12 myotubes in vitro and in DOK7-overexpressing C2C12 myotubes that form spontaneous AChR clusters. In the presence of MuSK-MG sera, the AChR clusters were reduced, as expected, but NSC-87877 was able to protect or restore the clusters. Two purified MuSK-MG IgG4 preparations inhibited both MuSK phosphorylation and AChR cluster formation, and in both, clusters were restored with NSC-87877. Conclusions Stimulating the agrin-LRP4-MuSK-DOK7 AChR clustering pathway with NSC-87877, or other drugs, could represent a novel therapeutic approach for MuSK-MG and could potentially improve other NMJ disorders with reduced AChR numbers or disrupted NMJs.
Collapse
Affiliation(s)
- Saif Huda
- From the Department of Clinical Neurosciences (S.H., M.C., M.W., P.M.R.C., J.C., D.B., A.V.), Weatherall Institute of Molecular Medicine and Nuffield, University of Oxford, UK; Department of Clinical and Experimental Medicine (A.D.R., M.M., R.R.), Neurology Unit, Pisa; and Department of Neuroscience (A.E.), Catholic University, Rome, Italy
| | - Michelangelo Cao
- From the Department of Clinical Neurosciences (S.H., M.C., M.W., P.M.R.C., J.C., D.B., A.V.), Weatherall Institute of Molecular Medicine and Nuffield, University of Oxford, UK; Department of Clinical and Experimental Medicine (A.D.R., M.M., R.R.), Neurology Unit, Pisa; and Department of Neuroscience (A.E.), Catholic University, Rome, Italy
| | - Anna De Rosa
- From the Department of Clinical Neurosciences (S.H., M.C., M.W., P.M.R.C., J.C., D.B., A.V.), Weatherall Institute of Molecular Medicine and Nuffield, University of Oxford, UK; Department of Clinical and Experimental Medicine (A.D.R., M.M., R.R.), Neurology Unit, Pisa; and Department of Neuroscience (A.E.), Catholic University, Rome, Italy
| | - Mark Woodhall
- From the Department of Clinical Neurosciences (S.H., M.C., M.W., P.M.R.C., J.C., D.B., A.V.), Weatherall Institute of Molecular Medicine and Nuffield, University of Oxford, UK; Department of Clinical and Experimental Medicine (A.D.R., M.M., R.R.), Neurology Unit, Pisa; and Department of Neuroscience (A.E.), Catholic University, Rome, Italy
| | - Pedro M Rodriguez Cruz
- From the Department of Clinical Neurosciences (S.H., M.C., M.W., P.M.R.C., J.C., D.B., A.V.), Weatherall Institute of Molecular Medicine and Nuffield, University of Oxford, UK; Department of Clinical and Experimental Medicine (A.D.R., M.M., R.R.), Neurology Unit, Pisa; and Department of Neuroscience (A.E.), Catholic University, Rome, Italy
| | - Judith Cossins
- From the Department of Clinical Neurosciences (S.H., M.C., M.W., P.M.R.C., J.C., D.B., A.V.), Weatherall Institute of Molecular Medicine and Nuffield, University of Oxford, UK; Department of Clinical and Experimental Medicine (A.D.R., M.M., R.R.), Neurology Unit, Pisa; and Department of Neuroscience (A.E.), Catholic University, Rome, Italy
| | - Michelangelo Maestri
- From the Department of Clinical Neurosciences (S.H., M.C., M.W., P.M.R.C., J.C., D.B., A.V.), Weatherall Institute of Molecular Medicine and Nuffield, University of Oxford, UK; Department of Clinical and Experimental Medicine (A.D.R., M.M., R.R.), Neurology Unit, Pisa; and Department of Neuroscience (A.E.), Catholic University, Rome, Italy
| | - Roberta Ricciardi
- From the Department of Clinical Neurosciences (S.H., M.C., M.W., P.M.R.C., J.C., D.B., A.V.), Weatherall Institute of Molecular Medicine and Nuffield, University of Oxford, UK; Department of Clinical and Experimental Medicine (A.D.R., M.M., R.R.), Neurology Unit, Pisa; and Department of Neuroscience (A.E.), Catholic University, Rome, Italy
| | - Amelia Evoli
- From the Department of Clinical Neurosciences (S.H., M.C., M.W., P.M.R.C., J.C., D.B., A.V.), Weatherall Institute of Molecular Medicine and Nuffield, University of Oxford, UK; Department of Clinical and Experimental Medicine (A.D.R., M.M., R.R.), Neurology Unit, Pisa; and Department of Neuroscience (A.E.), Catholic University, Rome, Italy
| | - David Beeson
- From the Department of Clinical Neurosciences (S.H., M.C., M.W., P.M.R.C., J.C., D.B., A.V.), Weatherall Institute of Molecular Medicine and Nuffield, University of Oxford, UK; Department of Clinical and Experimental Medicine (A.D.R., M.M., R.R.), Neurology Unit, Pisa; and Department of Neuroscience (A.E.), Catholic University, Rome, Italy
| | - Angela Vincent
- From the Department of Clinical Neurosciences (S.H., M.C., M.W., P.M.R.C., J.C., D.B., A.V.), Weatherall Institute of Molecular Medicine and Nuffield, University of Oxford, UK; Department of Clinical and Experimental Medicine (A.D.R., M.M., R.R.), Neurology Unit, Pisa; and Department of Neuroscience (A.E.), Catholic University, Rome, Italy.
| |
Collapse
|
74
|
Yang H, Liang SQ, Schmid RA, Peng RW. New Horizons in KRAS-Mutant Lung Cancer: Dawn After Darkness. Front Oncol 2019; 9:953. [PMID: 31612108 PMCID: PMC6773824 DOI: 10.3389/fonc.2019.00953] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 09/09/2019] [Indexed: 12/12/2022] Open
Abstract
In non-small cell lung cancer (NSCLC), the most frequent oncogenic mutation in western countries is KRAS, for which, however, there remains no clinically approved targeted therapies. Recent progress on high biological heterogeneity including diverse KRAS point mutations, varying dependence on mutant KRAS, wide spectrum of other co-occurring genetic alterations, as well as distinct cellular status across the epithelial-to-mesenchymal transition (EMT), has not only deepened our understanding about the pathobiology of KRAS-mutant NSCLC but also brought about unprecedented new hopes for precision treatment of patients. In this review, we provide an update on the most recent advances in KRAS-mutant lung cancer, with a focus on mechanistic insights into tumor heterogeneity, the potential clinic implications and new therapies on horizons tailored for KRAS-mutant lung cancer.
Collapse
Affiliation(s)
- Haitang Yang
- Department of General Thoracic Surgery, Department of BioMedical Research, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Shun-Qing Liang
- Department of General Thoracic Surgery, Department of BioMedical Research, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
- University of Massachusetts Medical School, Worcester, MA, United States
| | - Ralph A. Schmid
- Department of General Thoracic Surgery, Department of BioMedical Research, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Ren-Wang Peng
- Department of General Thoracic Surgery, Department of BioMedical Research, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| |
Collapse
|
75
|
Gimple RC, Wang X. RAS: Striking at the Core of the Oncogenic Circuitry. Front Oncol 2019; 9:965. [PMID: 31681559 PMCID: PMC6798062 DOI: 10.3389/fonc.2019.00965] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Accepted: 09/11/2019] [Indexed: 12/15/2022] Open
Abstract
Cancer is a devastating disease process that touches the lives of millions worldwide. Despite advances in our understanding of the genomic architecture of cancers and the mechanisms that underlie cancer development, a great therapeutic challenge remains. Here, we revisit the birthplace of cancer biology and review how one of the first discovered oncogenes, RAS, drives cancers in new and unexpected ways. As our understanding of oncogenic signaling has evolved, it is clear that RAS signaling is not homogenous, but activates distinct downstream effectors in different cancer types and grades. RAS signaling is tightly controlled through a series of post-transcriptional mechanisms, which are frequently distorted in the context of cancer, and establish key metabolic and immunologic states that support cancer growth, migration, survival, metastasis, and plasticity. While targeting RAS has been fiercely pursued for decades, new strategies have recently emerged with the potential for therapeutic efficacy. Thus, understanding the complexities of RAS biology may translate into improved therapies for patients with RAS-driven cancers.
Collapse
Affiliation(s)
- Ryan C Gimple
- Division of Regenerative Medicine, Department of Medicine, University of California, San Diego, San Diego, CA, United States.,Department of Pathology, Case Western University, Cleveland, OH, United States
| | - Xiuxing Wang
- Key Laboratory of Antibody Technique of Ministry of Health, Nanjing Medical University, Nanjing, China
| |
Collapse
|
76
|
Doohan D, Miftahussurur M, Matsuo Y, Kido Y, Akada J, Matsuhisa T, Yee TT, Htet K, Aftab H, Vilaichone RK, Mahachai V, Ratanachu-Ek T, Tshering L, Waskito LA, Fauzia KA, Uchida T, Syam AF, Rezkitha YAA, Yamaoka Y. Characterization of a novel Helicobacter pylori East Asian-type CagA ELISA for detecting patients infected with various cagA genotypes. Med Microbiol Immunol 2019; 209:29-40. [PMID: 31549252 DOI: 10.1007/s00430-019-00634-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 09/06/2019] [Indexed: 12/17/2022]
Abstract
Currently, Western-type CagA is used in most commercial Helicobacter pylori CagA ELISA kits for CagA detection rather than East Asian-type CagA. We evaluated the ability of the East Asian-type CagA ELISA developed by our group to detect anti-CagA antibody in patients infected with different cagA genotypes of H. pylori from four different countries in South Asia and Southeast Asia. The recombinant CagA protein was expressed and later purified using GST-tag affinity chromatography. The East Asian-type CagA-immobilized ELISA was used to measure the levels of anti-CagA antibody in 750 serum samples from Bhutan, Indonesia, Myanmar, and Bangladesh. The cutoff value of the serum antibody in each country was determined via Receiver-Operating Characteristic (ROC) analysis. The cutoff values were different among the four countries studied (Bhutan, 18.16 U/mL; Indonesia, 6.01 U/mL; Myanmar, 10.57 U/mL; and Bangladesh, 6.19 U/mL). Our ELISA had better sensitivity, specificity, and accuracy of anti-CagA antibody detection in subjects predominantly infected with East Asian-type CagA H. pylori (Bhutan and Indonesia) than in those infected with Western-type CagA H. pylori predominant (Myanmar and Bangladesh). We found positive correlations between the anti-CagA antibody and antral monocyte infiltration in subjects from all four countries. There was no significant association between bacterial density and the anti-CagA antibody in the antrum or the corpus. The East Asian-type CagA ELISA had improved detection of the anti-CagA antibody in subjects infected with East Asian-type CagA H. pylori. The East Asian-type CagA ELISA should, therefore, be used in populations predominantly infected with East Asian-type CagA.
Collapse
Affiliation(s)
- Dalla Doohan
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Yufu, 879-5593, Japan.,Institute of Tropical Disease, Universitas Airlangga, Surabaya, 60115, Indonesia
| | - Muhammad Miftahussurur
- Institute of Tropical Disease, Universitas Airlangga, Surabaya, 60115, Indonesia.,Gastroentero-Hepatology Division, Department of Internal Medicine, Faculty of Medicine-Dr. Soetomo Teaching Hospital, Universitas Airlangga, Surabaya, 60131, Indonesia
| | - Yuichi Matsuo
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Yufu, 879-5593, Japan.,Department of Host-Defense Biochemistry, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan
| | - Yasutoshi Kido
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Yufu, 879-5593, Japan.,Department of Parasitology, Graduate School of Medicine, Osaka City University, Osaka, Japan
| | - Junko Akada
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Yufu, 879-5593, Japan
| | - Takeshi Matsuhisa
- Department of Gastroenterology, Tama-Nagayama University Hospital of Nippon Medical School, Tama, Japan
| | - Than Than Yee
- Department of GI and HBP Surgery, No (2), Defense Service General Hospital (1000 Bedded), Nay Pyi Taw, Myanmar
| | - Kyaw Htet
- Department of GI and HBP Surgery, No (1), Defense Service General Hospital (1000 Bedded), Mingalodon, Yangon, Myanmar
| | - Hafeza Aftab
- Department of Gastroenterology, Dhaka Medical College and Hospital, Dhaka, Bangladesh
| | - Ratha-Korn Vilaichone
- Gastroenterology Unit, Department of Medicine, Thammasat University Hospital, Pathum Thani, Thailand
| | - Varocha Mahachai
- GI and Liver Center, Bangkok Medical Center, Bangkok, 10310, Thailand
| | | | - Lotay Tshering
- Department of Surgery, Jigme Dorji Wangchuck National Referral Hospital, Thimphu, 11001, Bhutan
| | - Langgeng Agung Waskito
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Yufu, 879-5593, Japan.,Institute of Tropical Disease, Universitas Airlangga, Surabaya, 60115, Indonesia
| | - Kartika Afrida Fauzia
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Yufu, 879-5593, Japan.,Institute of Tropical Disease, Universitas Airlangga, Surabaya, 60115, Indonesia
| | - Tomohisa Uchida
- Department of Molecular Pathology, Oita University Faculty of Medicine, Yufu, 879-5593, Japan
| | - Ari Fahrial Syam
- Division of Gastroenterology, Department of Internal Medicine, Faculty of Medicine, University of Indonesia, Jakarta, Indonesia
| | - Yudith Annisa Ayu Rezkitha
- Institute of Tropical Disease, Universitas Airlangga, Surabaya, 60115, Indonesia.,Faculty of Medicine, University of Muhammadiyah Surabaya, Surabaya, 60113, Indonesia
| | - Yoshio Yamaoka
- Department of Environmental and Preventive Medicine, Oita University Faculty of Medicine, Yufu, 879-5593, Japan. .,Gastroentero-Hepatology Division, Department of Internal Medicine, Faculty of Medicine-Dr. Soetomo Teaching Hospital, Universitas Airlangga, Surabaya, 60131, Indonesia. .,Department of Gastroenterology and Hepatology, Baylor College of Medicine and Michael E. DeBakey Veterans Affairs Medical Center, Houston, TX, 77030, USA.
| |
Collapse
|
77
|
Hao HX, Wang H, Liu C, Kovats S, Velazquez R, Lu H, Pant B, Shirley M, Meyer MJ, Pu M, Lim J, Fleming M, Alexander L, Farsidjani A, LaMarche MJ, Moody S, Silver SJ, Caponigro G, Stuart DD, Abrams TJ, Hammerman PS, Williams J, Engelman JA, Goldoni S, Mohseni M. Tumor Intrinsic Efficacy by SHP2 and RTK Inhibitors in KRAS-Mutant Cancers. Mol Cancer Ther 2019; 18:2368-2380. [DOI: 10.1158/1535-7163.mct-19-0170] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 07/10/2019] [Accepted: 08/16/2019] [Indexed: 11/16/2022]
|
78
|
Hou Z, Wang Z, Liu R, Li H, Zhang Z, Su T, Yang J, Liu H. The effect of phospho-peptide on the stability of gold nanoparticles and drug delivery. J Nanobiotechnology 2019; 17:88. [PMID: 31426815 PMCID: PMC6699291 DOI: 10.1186/s12951-019-0522-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 08/10/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Gold nanoparticles (AuNPs) have been proposed for many applications in medicine and bioanalysis. For use in all these applications, maintaining the stability of AuNPs in solution by suppressing aggregation is paramount. Herein, the effects of amino acids were investigated in stabilizing AuNPs by rationally designed peptide scaffolds. RESULTS Compared to other tested amino acids, phosphotyrosine (pY) significantly stabilized AuNPs. Our results indicated that pY modified AuNPs presented a high level of stability in various solutions, and had good biocompatibility. When a pY-peptide was used in stabilizing AuNPs, the phosphate group could be removed by phosphatases, which subsequently caused the aggregation and the cargo release of AuNPs. In vitro study showed that AuNPs formed aggregation in a phosphatase concentration depending manner. The aggregation of AuNPs was well correlated with the enzymatic activity (R2 = 0.994). In many types of cancer, a significant increase in phosphatases has been observed. Herein, we demonstrated that cancer cells treated with pY modified AuNPs in conjunction with doxorubicin killed SGC-7901 cells with high efficiency, indicating that the pY peptide stabilized AuNPs could be used as carriers for targeted drug delivery. CONCLUSION In summary, pY peptides can act to stabilize AuNPs in various solutions. In addition, the aggregation of pY-AuNPs could be tuned by phosphatase. These results provide a basis for pY-AuNPs acting as potential drug carriers and anticancer efficacy.
Collapse
Affiliation(s)
- Zhanwu Hou
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Zhen Wang
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Run Liu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Hua Li
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Zhengyi Zhang
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Tian Su
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Jeffy Yang
- Schulich Medicine and Dentistry, Western University, London, Canada
| | - Huadong Liu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
| |
Collapse
|
79
|
Tani H, Kurita S, Miyamoto R, Ochiai K, Tamura K, Bonkobara M. Canine histiocytic sarcoma cell lines with SHP2 p.Glu76Gln or p.Glu76Ala mutations are sensitive to allosteric SHP2 inhibitor SHP099. Vet Comp Oncol 2019; 18:161-168. [PMID: 31339650 DOI: 10.1111/vco.12524] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 07/16/2019] [Accepted: 07/17/2019] [Indexed: 12/24/2022]
Abstract
Some canine cases of histiocytic sarcoma (HS) carry an activating mutation in the src homology two domain-containing phosphatase 2 (SHP2) encoded by PTPN11. SHP099 is an allosteric inhibitor of SHP2 that stabilizes SHP2 in a folded, auto-inhibited conformation. Here, we examined the expression and mutation status of SHP2 in five canine HS cell lines and evaluated the growth inhibitory properties of SHP099 against these cell lines. All five of the canine HS cell lines expressed SHP2, with three of the lines each harbouring a distinct mutation in PTPN11/SHP2 (p.Glu76Gln, p.Glu76Ala and p.Gly503Val). In silico analysis suggested that p.Glu76Gln and p.Glu76Ala, but not p.Gly503Val, promote shifting of the SHP2 conformation from folded to open-active state. SHP099 potently suppressed the growth of two of the mutant cell lines (harbouring SHP2 p.Glu76Gln or p.Glu76Ala) but not that of the other three cell lines. In addition, SHP099 suppressed ERK activation in the cell line harbouring the SHP2 p.Glu76Ala mutation. The SHP2 p.Glu76Gln and p.Glu76Ala mutations are considered to be activating mutations, and the signal from SHP2 p.Glu76Ala is inferred to be transduced primarily via the ERK pathway. Moreover, SHP099-sensitive HS cells, including those with SHP2 p.Glu76Gln or p.Glu76Ala mutations, may depend on these mutations for growth. Therefore, targeting cells harbouring SHP2 p.Glu76Gln and p.Glu76Ala with SHP099 may be an approach for the treatment of canine HS.
Collapse
Affiliation(s)
- Hiroyuki Tani
- Department of Veterinary Clinical Pathology, Nippon Veterinary and Life Science University, Musashino-shi, Tokyo, Japan
| | - Sena Kurita
- Department of Veterinary Clinical Pathology, Nippon Veterinary and Life Science University, Musashino-shi, Tokyo, Japan
| | - Ryo Miyamoto
- Department of Veterinary Clinical Pathology, Nippon Veterinary and Life Science University, Musashino-shi, Tokyo, Japan
| | - Kazuhiko Ochiai
- Department of Basic Science, School of Veterinary Nursing and Technology Faculty of Veterinary Science, Nippon Veterinary and Life Science University, Musashino-shi, Tokyo, Japan
| | - Kyoichi Tamura
- Department of Veterinary Clinical Pathology, Nippon Veterinary and Life Science University, Musashino-shi, Tokyo, Japan
| | - Makoto Bonkobara
- Department of Veterinary Clinical Pathology, Nippon Veterinary and Life Science University, Musashino-shi, Tokyo, Japan
| |
Collapse
|
80
|
Ruckert MT, de Andrade PV, Santos VS, Silveira VS. Protein tyrosine phosphatases: promising targets in pancreatic ductal adenocarcinoma. Cell Mol Life Sci 2019; 76:2571-2592. [PMID: 30982078 PMCID: PMC11105579 DOI: 10.1007/s00018-019-03095-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 03/25/2019] [Accepted: 04/08/2019] [Indexed: 12/21/2022]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the most common type of pancreatic cancer. It is the fourth leading cause of cancer-related death and is associated with a very poor prognosis. KRAS driver mutations occur in approximately 95% of PDAC cases and cause the activation of several signaling pathways such as mitogen-activated protein kinase (MAPK) pathways. Regulation of these signaling pathways is orchestrated by feedback loops mediated by the balance between protein tyrosine kinases (PTKs) and protein tyrosine phosphatases (PTPs), leading to activation or inhibition of its downstream targets. The human PTPome comprises 125 members, and these proteins are classified into three distinct families according to their structure. Since PTP activity description, it has become clear that they have both inhibitory and stimulatory effects on cancer-associated signaling processes and that deregulation of PTP function is closely associated with tumorigenesis. Several PTPs have displayed either tumor suppressor or oncogenic characteristics during the development and progression of PDAC. In this sense, PTPs have been presented as promising candidates for the treatment of human pancreatic cancer, and many PTP inhibitors have been developed since these proteins were first associated with cancer. Nevertheless, some challenges persist regarding the development of effective and safe methods to target these molecules and deliver these drugs. In this review, we discuss the role of PTPs in tumorigenesis as tumor suppressor and oncogenic proteins. We have focused on the differential expression of these proteins in PDAC, as well as their clinical implications and possible targeting for pharmacological inhibition in cancer therapy.
Collapse
Affiliation(s)
- Mariana Tannús Ruckert
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes 3900, Ribeirão Preto, São Paulo, Brazil
| | - Pamela Viani de Andrade
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes 3900, Ribeirão Preto, São Paulo, Brazil
| | - Verena Silva Santos
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes 3900, Ribeirão Preto, São Paulo, Brazil
| | - Vanessa Silva Silveira
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Av. Bandeirantes 3900, Ribeirão Preto, São Paulo, Brazil.
| |
Collapse
|
81
|
The Impact of PI3-kinase/RAS Pathway Cooperating Mutations in the Evolution of KMT2A-rearranged Leukemia. Hemasphere 2019; 3:e195. [PMID: 31723831 PMCID: PMC6746018 DOI: 10.1097/hs9.0000000000000195] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 02/21/2019] [Accepted: 02/22/2019] [Indexed: 12/11/2022] Open
Abstract
Leukemia is an evolutionary disease and evolves by the accrual of mutations within a clone. Those mutations that are systematically found in all the patients affected by a certain leukemia are called "drivers" as they are necessary to drive the development of leukemia. Those ones that accumulate over time but are different from patient to patient and, therefore, are not essential for leukemia development are called "passengers." The first studies highlighting a potential cooperating role of phosphatidylinositol 3-kinase (PI3K)/RAS pathway mutations in the phenotype of KMT2A-rearranged leukemia was published 20 years ago. The recent development in more sensitive sequencing technologies has contributed to clarify the contribution of these mutations to the evolution of KMT2A-rearranged leukemia and suggested that these mutations might confer clonal fitness and enhance the evolvability of KMT2A-leukemic cells. This is of particular interest since this pathway can be targeted offering potential novel therapeutic strategies to KMT2A-leukemic patients. This review summarizes the recent progress on our understanding of the role of PI3K/RAS pathway mutations in initiation, maintenance, and relapse of KMT2A-rearranged leukemia.
Collapse
|
82
|
Lu H, Liu C, Velazquez R, Wang H, Dunkl LM, Kazic-Legueux M, Haberkorn A, Billy E, Manchado E, Brachmann SM, Moody SE, Engelman JA, Hammerman PS, Caponigro G, Mohseni M, Hao HX. SHP2 Inhibition Overcomes RTK-Mediated Pathway Reactivation in KRAS-Mutant Tumors Treated with MEK Inhibitors. Mol Cancer Ther 2019; 18:1323-1334. [PMID: 31068384 DOI: 10.1158/1535-7163.mct-18-0852] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Revised: 12/08/2018] [Accepted: 05/03/2019] [Indexed: 11/16/2022]
Abstract
FGFR1 was recently shown to be activated as part of a compensatory response to prolonged treatment with the MEK inhibitor trametinib in several KRAS-mutant lung and pancreatic cancer cell lines. We hypothesize that other receptor tyrosine kinases (RTK) are also feedback-activated in this context. Herein, we profile a large panel of KRAS-mutant cancer cell lines for the contribution of RTKs to the feedback activation of phospho-MEK following MEK inhibition, using an SHP2 inhibitor (SHP099) that blocks RAS activation mediated by multiple RTKs. We find that RTK-driven feedback activation widely exists in KRAS-mutant cancer cells, to a less extent in those harboring the G13D variant, and involves several RTKs, including EGFR, FGFR, and MET. We further demonstrate that this pathway feedback activation is mediated through mutant KRAS, at least for the G12C, G12D, and G12V variants, and wild-type KRAS can also contribute significantly to the feedback activation. Finally, SHP099 and MEK inhibitors exhibit combination benefits inhibiting KRAS-mutant cancer cell proliferation in vitro and in vivo These findings provide a rationale for exploration of combining SHP2 and MAPK pathway inhibitors for treating KRAS-mutant cancers in the clinic.
Collapse
Affiliation(s)
- Hengyu Lu
- Novartis Institutes for BioMedical Research, Oncology Disease Area, Cambridge, Massachusetts
| | - Chen Liu
- Novartis Institutes for BioMedical Research, Oncology Disease Area, Cambridge, Massachusetts
| | - Roberto Velazquez
- Novartis Institutes for BioMedical Research, Oncology Disease Area, Cambridge, Massachusetts
| | - Hongyun Wang
- Novartis Institutes for BioMedical Research, Oncology Disease Area, Cambridge, Massachusetts
| | - Lukas Manuel Dunkl
- Novartis Institutes for BioMedical Research, Oncology Disease Area, Novartis Pharma AG, Basel, Switzerland
| | - Malika Kazic-Legueux
- Novartis Institutes for BioMedical Research, Oncology Disease Area, Novartis Pharma AG, Basel, Switzerland
| | - Anne Haberkorn
- Novartis Institutes for BioMedical Research, Oncology Disease Area, Novartis Pharma AG, Basel, Switzerland
| | - Eric Billy
- Novartis Institutes for BioMedical Research, Oncology Disease Area, Novartis Pharma AG, Basel, Switzerland
| | - Eusebio Manchado
- Novartis Institutes for BioMedical Research, Oncology Disease Area, Novartis Pharma AG, Basel, Switzerland
| | - Saskia M Brachmann
- Novartis Institutes for BioMedical Research, Oncology Disease Area, Novartis Pharma AG, Basel, Switzerland
| | - Susan E Moody
- Novartis Institutes for BioMedical Research, Oncology Disease Area, Cambridge, Massachusetts
| | - Jeffrey A Engelman
- Novartis Institutes for BioMedical Research, Oncology Disease Area, Cambridge, Massachusetts
| | - Peter S Hammerman
- Novartis Institutes for BioMedical Research, Oncology Disease Area, Cambridge, Massachusetts
| | - Giordano Caponigro
- Novartis Institutes for BioMedical Research, Oncology Disease Area, Cambridge, Massachusetts
| | - Morvarid Mohseni
- Novartis Institutes for BioMedical Research, Oncology Disease Area, Cambridge, Massachusetts
| | - Huai-Xiang Hao
- Novartis Institutes for BioMedical Research, Oncology Disease Area, Cambridge, Massachusetts.
| |
Collapse
|
83
|
Zhao M, Guo W, Wu Y, Yang C, Zhong L, Deng G, Zhu Y, Liu W, Gu Y, Lu Y, Kong L, Meng X, Xu Q, Sun Y. SHP2 inhibition triggers anti-tumor immunity and synergizes with PD-1 blockade. Acta Pharm Sin B 2019; 9:304-315. [PMID: 30972278 PMCID: PMC6437555 DOI: 10.1016/j.apsb.2018.08.009] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 08/18/2018] [Accepted: 08/30/2018] [Indexed: 12/21/2022] Open
Abstract
Tyrosine phosphatase SHP2 is a promising drug target in cancer immunotherapy due to its bidirectional role in both tumor growth promotion and T-cell inactivation. Its allosteric inhibitor SHP099 is known to inhibit cancer cell growth both in vitro and in vivo. However, whether SHP099-mediated SHP2 inhibition retards tumor growth in vivo via anti-tumor immunity remains elusive. To address this, a CT-26 colon cancer xenograft model was established in mice since this cell line is insensitive to SHP099. Consequently, SHP099 minimally affected CT-26 tumor growth in immuno-deficient nude mice, but significantly decreased the tumor burden in CT-26 tumor-bearing mice with intact immune system. SHP099 augmented anti-tumor immunity, as shown by the elevated proportion of CD8+IFN-γ+ T cells and the upregulation of cytotoxic T-cell related genes including Granzyme B andPerforin, which decreased the tumor load. In addition, tumor growth in mice with SHP2-deficient T-cells was markedly slowed down because of enhanced anti-tumor responses. Finally, the combination of SHP099 and anti-PD-1 antibody showed a higher therapeutic efficacy than either monotherapy in controlling tumor growth in two colon cancer xenograft models, indicating that these agents complement each other. Our study suggests that SHP2 inhibitor SHP099 is a promising candidate drug for cancer immunotherapy.
Collapse
|
84
|
Abstract
PURPOSE OF REVIEW Lung cancer remains the leading cause of cancer-related mortality worldwide. Genetic and molecular profiling of non-small cell lung cancer (NSCLC) has led to the discovery of actionable oncogenic driver alterations, which has revolutionized treatment for this disease. This review will move beyond traditional mutational drivers such as EGFR and ALK and will instead focus on emerging targets and the efficacy of new precision therapies. RECENT FINDINGS Here, we discuss both established and emerging targeted therapy approaches, as well as ongoing challenges for the treatment of NSCLC patients harboring oncogenic alterations of the following types-gene fusions (ROS1, RET, NTRK), receptor tyrosine kinases (MET amplification and exon 14 mutations and EGFR/HER2 exon 20 insertion mutations), and MAPK signaling (SHP2 and altered BRAF and NF1). The treatment of lung cancer is increasingly biomarker-driven, as patients are selected for targeted agents based on the identification of genetic alterations amenable to inhibition. Our ability to further improve patient outcomes with this precision medicine approach will require continued efforts to identify, characterize, and target lesions driving lung cancer tumorigenesis and progression.
Collapse
|
85
|
Cheng H, Schwell V, Curtis BR, Fazlieva R, Roder H, Campbell KS. Conformational Changes in the Cytoplasmic Region of KIR3DL1 upon Interaction with SHP-2. Structure 2019; 27:639-650.e2. [PMID: 30773397 DOI: 10.1016/j.str.2019.01.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 11/07/2018] [Accepted: 01/18/2019] [Indexed: 12/29/2022]
Abstract
KIR3DL1 is an inhibitory killer cell immunoglobulin-like receptor (KIR) that negatively regulates natural killer cell cytotoxicity. The KIR3DL1 cytoplasmic region (3DL1-cyto) is disordered and can be dissected into three segments: (I) H340-V351; (II) M352-D371; and (III) P372-P423. NMR studies indicate that segment II can dynamically adopt a loop-like conformation, and segments I and III can form dynamic helices that may mediate binding to membranes, particularly in the region around the N-terminal (N) immunoreceptor tyrosine-based inhibitory motif (ITIM), consistent with its role in signaling. Furthermore, individual SH2 domains of SHP-2 strongly engage with the unphosphorylated N-ITIM of 3DL1-cyto, while binding of the tandem SHP-2 SH2 domains to the bis-phosphorylated ITIMs results in more extensive conformational changes in segments I and III. The findings enhance our understanding of KIR function and how ITIMs in a target receptor operate in concert to engage the tandem SH2 domains of SHP-2.
Collapse
Affiliation(s)
- Hong Cheng
- Institute for Cancer Research, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA.
| | - Vered Schwell
- Institute for Cancer Research, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA
| | - Brett R Curtis
- Institute for Cancer Research, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA
| | - Ruzaliya Fazlieva
- Institute for Cancer Research, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA
| | - Heinrich Roder
- Institute for Cancer Research, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA
| | - Kerry S Campbell
- Institute for Cancer Research, Fox Chase Cancer Center, 333 Cottman Avenue, Philadelphia, PA 19111, USA
| |
Collapse
|
86
|
Vivarelli S, Salemi R, Candido S, Falzone L, Santagati M, Stefani S, Torino F, Banna GL, Tonini G, Libra M. Gut Microbiota and Cancer: From Pathogenesis to Therapy. Cancers (Basel) 2019; 11:cancers11010038. [PMID: 30609850 PMCID: PMC6356461 DOI: 10.3390/cancers11010038] [Citation(s) in RCA: 323] [Impact Index Per Article: 64.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 12/27/2018] [Indexed: 02/07/2023] Open
Abstract
Cancer is a multifactorial pathology and it represents the second leading cause of death worldwide. In the recent years, numerous studies highlighted the dual role of the gut microbiota in preserving host’s health. Gut resident bacteria are able to produce a number of metabolites and bioproducts necessary to protect host’s and gut’s homeostasis. Conversely, several microbiota subpopulations may expand during pathological dysbiosis and therefore produce high levels of toxins capable, in turn, to trigger both inflammation and tumorigenesis. Importantly, gut microbiota can interact with the host either modulating directly the gut epithelium or the immune system. Numerous gut populating bacteria, called probiotics, have been identified as protective against the genesis of tumors. Given their capability of preserving gut homeostasis, probiotics are currently tested to help to fight dysbiosis in cancer patients subjected to chemotherapy and radiotherapy. Most recently, three independent studies show that specific gut resident species may potentiate the positive outcome of anti-cancer immunotherapy. The highly significant studies, uncovering the tight association between gut microbiota and tumorigenesis, as well as gut microbiota and anti-cancer therapy, are here described. The role of the Lactobacillus rhamnosus GG (LGG), as the most studied probiotic model in cancer, is also reported. Overall, according to the findings here summarized, novel strategies integrating probiotics, such as LGG, with conventional anti-cancer therapies are strongly encouraged.
Collapse
Affiliation(s)
- Silvia Vivarelli
- Department of Biomedical and Biotechnological Sciences, Oncologic, Clinic and General Pathology Section, University of Catania, 95123 Catania, Italy.
| | - Rossella Salemi
- Department of Biomedical and Biotechnological Sciences, Oncologic, Clinic and General Pathology Section, University of Catania, 95123 Catania, Italy.
| | - Saverio Candido
- Department of Biomedical and Biotechnological Sciences, Oncologic, Clinic and General Pathology Section, University of Catania, 95123 Catania, Italy.
| | - Luca Falzone
- Department of Biomedical and Biotechnological Sciences, Oncologic, Clinic and General Pathology Section, University of Catania, 95123 Catania, Italy.
| | - Maria Santagati
- Department of Biomedical and Biotechnological Sciences, Section of Microbiology, University of Catania, 95123 Catania, Italy.
| | - Stefania Stefani
- Department of Biomedical and Biotechnological Sciences, Section of Microbiology, University of Catania, 95123 Catania, Italy.
| | - Francesco Torino
- Department of Systems Medicine, Medical Oncology, Tor Vergata University of Rome, 00133 Rome, Italy.
| | | | - Giuseppe Tonini
- Department of Medical Oncology, University Campus Bio-Medico of Rome, 00128 Rome, Italy.
| | - Massimo Libra
- Department of Biomedical and Biotechnological Sciences, Oncologic, Clinic and General Pathology Section, University of Catania, 95123 Catania, Italy.
- Research Center for Prevention, Diagnosis and Treatment of Cancer, University of Catania, 95123 Catania, Italy.
| |
Collapse
|
87
|
Farrokhzadeh A, Akher FB, Soliman MES. Probing the Dynamic Mechanism of Uncommon Allosteric Inhibitors Optimized to Enhance Drug Selectivity of SHP2 with Therapeutic Potential for Cancer Treatment. Appl Biochem Biotechnol 2018; 188:260-281. [DOI: 10.1007/s12010-018-2914-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Accepted: 11/05/2018] [Indexed: 01/24/2023]
|
88
|
Dorenkamp M, Müller JP, Shanmuganathan KS, Schulten H, Müller N, Löffler I, Müller UA, Wolf G, Böhmer FD, Godfrey R, Waltenberger J. Hyperglycaemia-induced methylglyoxal accumulation potentiates VEGF resistance of diabetic monocytes through the aberrant activation of tyrosine phosphatase SHP-2/SRC kinase signalling axis. Sci Rep 2018; 8:14684. [PMID: 30279491 PMCID: PMC6168515 DOI: 10.1038/s41598-018-33014-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 09/19/2018] [Indexed: 12/30/2022] Open
Abstract
Diabetes mellitus (DM) is a major cardiovascular risk factor contributing to cardiovascular complications by inducing vascular cell dysfunction. Monocyte dysfunction could contribute to impaired arteriogenesis response in DM patients. DM monocytes show blunted chemotactic responses to arteriogenic stimuli, a condition termed as vascular endothelial growth factor (VEGF) resistance. We hypothesize that methylglyoxal (MG), a glucose metabolite, induces monocyte dysfunction and aimed to elucidate the underlying molecular mechanisms. Human monocytes exposed to MG or monocytes from DM patients or mice (db/db) showed VEGF-resistance secondary to a pro-migratory phenotype. Mechanistically, DM conditions or MG exposure resulted in the upregulation of the expression of SHP-2 phosphatase. This led to the enhanced activity of SHP-2 and aided an interaction with SRC kinase. SHP-2 dephosphorylated the inhibitory phosphorylation site of SRC leading to its abnormal activation and phosphorylation of cytoskeletal protein, paxillin. We demonstrated that MG-induced molecular changes could be reversed by pharmacological inhibitors of SHP-2 and SRC and by genetic depletion of SHP-2. Finally, a SHP-2 inhibitor completely reversed the dysfunction of monocytes isolated from DM patients and db/db mice. In conclusion, we identified SHP-2 as a hitherto unknown target for improving monocyte function in diabetes. This opens novel perspectives for treating diabetic complications associated with impaired monocyte function.
Collapse
Affiliation(s)
- Marc Dorenkamp
- Experimental and Molecular Cardiology, Department of Cardiovascular Medicine, University Hospital Münster, Münster, Germany.,Cells-in-Motion Cluster of Excellence (EXC 1003-CiM), University of Münster, Münster, Germany
| | - Jörg P Müller
- Institute of Molecular Cell Biology, Centre for Molecular Biomedicine, University Hospital Jena, Jena, Germany
| | - Kallipatti Sanjith Shanmuganathan
- Experimental and Molecular Cardiology, Department of Cardiovascular Medicine, University Hospital Münster, Münster, Germany.,Cells-in-Motion Cluster of Excellence (EXC 1003-CiM), University of Münster, Münster, Germany
| | - Henny Schulten
- Experimental and Molecular Cardiology, Department of Cardiovascular Medicine, University Hospital Münster, Münster, Germany.,Department of Physiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht, The Netherlands
| | - Nicolle Müller
- Department of Internal Medicine III, University Hospital Jena, Jena, Germany
| | - Ivonne Löffler
- Department of Internal Medicine III, University Hospital Jena, Jena, Germany
| | - Ulrich A Müller
- Department of Internal Medicine III, University Hospital Jena, Jena, Germany
| | - Gunter Wolf
- Department of Internal Medicine III, University Hospital Jena, Jena, Germany
| | - Frank-D Böhmer
- Institute of Molecular Cell Biology, Centre for Molecular Biomedicine, University Hospital Jena, Jena, Germany
| | - Rinesh Godfrey
- Experimental and Molecular Cardiology, Department of Cardiovascular Medicine, University Hospital Münster, Münster, Germany. .,Department of Physiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht, The Netherlands. .,Cells-in-Motion Cluster of Excellence (EXC 1003-CiM), University of Münster, Münster, Germany.
| | - Johannes Waltenberger
- Experimental and Molecular Cardiology, Department of Cardiovascular Medicine, University Hospital Münster, Münster, Germany. .,Cells-in-Motion Cluster of Excellence (EXC 1003-CiM), University of Münster, Münster, Germany.
| |
Collapse
|
89
|
Yang D, Xiao P, Li Q, Fu X, Pan C, Lu D, Wen S, Xia W, He D, Li H, Fang H, Shen Y, Xu Z, Lin A, Wang C, Yu X, Wu J, Sun J. Allosteric modulation of the catalytic VYD loop in Slingshot by its N-terminal domain underlies both Slingshot auto-inhibition and activation. J Biol Chem 2018; 293:16226-16241. [PMID: 30154244 DOI: 10.1074/jbc.ra118.004175] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 08/21/2018] [Indexed: 12/22/2022] Open
Abstract
Slingshots are phosphatases that modulate cytoskeleton dynamics, and their activities are tightly regulated in different physiological contexts. Recently, abnormally elevated Slingshot activity has been implicated in many human diseases, such as cancer, Alzheimer's disease, and vascular diseases. Therefore, Slingshot-specific inhibitors have therapeutic potential. However, an enzymological understanding of the catalytic mechanism of Slingshots and of their activation by actin is lacking. Here, we report that the N-terminal region of human Slingshot2 auto-inhibits its phosphatase activity in a noncompetitive manner. pH-dependent phosphatase assays and leaving-group dependence studies suggested that the N-terminal domain of Slingshot2 regulates the stability of the leaving group of the product during catalysis by modulating the general acid Asp361 in the catalytic VYD loop. F-actin binding relieved this auto-inhibition and restored the function of the general acid. Limited tryptic digestion and biophysical studies identified large conformational changes in Slingshot2 after the F-actin binding. The dissociation of N-terminal structural elements, including Leu63, and the exposure of the loop between α-helix-2 and β-sheet-3 of the phosphatase domain served as the structural basis for Slingshot activation via F-actin binding in vitro and via neuregulin stimulation in cells. Moreover, we designed a FlAsH-BRET-based Slingshot2 biosensor whose readout was highly correlated with the in vivo phosphatase activities of Slingshot2. Our results reveal the auto-inhibitory mechanism and allosteric activation mechanisms of a human Slingshot phosphatase. They also contribute to the design of new strategies to study Slingshot regulation in various cellular contexts and to screen for new activators/inhibitors of Slingshot activity.
Collapse
Affiliation(s)
- Duxiao Yang
- From the Key Laboratory Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular Biology, and
| | - Peng Xiao
- From the Key Laboratory Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular Biology, and.,the School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Qing Li
- the Department of Physiology, Shandong University School of Medicine, Jinan, Shandong 250012, China
| | - Xiaolei Fu
- From the Key Laboratory Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular Biology, and
| | - Chang Pan
- From the Key Laboratory Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular Biology, and
| | - Di Lu
- From the Key Laboratory Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular Biology, and
| | - Shishuai Wen
- the School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Wanying Xia
- From the Key Laboratory Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular Biology, and
| | - Dongfang He
- From the Key Laboratory Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular Biology, and
| | - Hui Li
- the Department of Physiology, Shandong University School of Medicine, Jinan, Shandong 250012, China
| | - Hao Fang
- the School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Yuemao Shen
- the School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Zhigang Xu
- the School of Life Science, Shandong University, Jinan, Shandong 250003, China
| | - Amy Lin
- the School of Medicine, Duke University, Durham, North Carolina 27705
| | - Chuan Wang
- the Department of Pharmacology, Hebei Medical University, Shijiazhuang 050017, China
| | - Xiao Yu
- the Department of Physiology, Shandong University School of Medicine, Jinan, Shandong 250012, China
| | - Jiawei Wu
- the MOE Key Laboratory of Protein Science, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jinpeng Sun
- From the Key Laboratory Experimental Teratology of the Ministry of Education, Department of Biochemistry and Molecular Biology, and .,the Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing 100191, China, and.,the Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University, Beijing 100191, China
| |
Collapse
|
90
|
Mutant KRAS-driven cancers depend on PTPN11/SHP2 phosphatase. Nat Med 2018; 24:954-960. [DOI: 10.1038/s41591-018-0024-8] [Citation(s) in RCA: 216] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 03/20/2018] [Indexed: 02/06/2023]
|
91
|
Jeon IS. Understanding the Molecular Basis of Juvenile Myelomonocytic Leukemia and Its Application for Novel Drugs Development. CLINICAL PEDIATRIC HEMATOLOGY-ONCOLOGY 2018. [DOI: 10.15264/cpho.2018.25.1.23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- In-sang Jeon
- Department of Pediatrics, College of Medicine, Gachon University, Incheon, Korea
| |
Collapse
|
92
|
Chen C, Xue T, Fan P, Meng L, Wei J, Luo D. Cytotoxic activity of Shp2 inhibitor fumosorinone in human cancer cells. Oncol Lett 2018; 15:10055-10062. [PMID: 29928374 DOI: 10.3892/ol.2018.8593] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 01/29/2018] [Indexed: 01/01/2023] Open
Abstract
Fumosorinone (Fumos) isolated from entomogenous fungi Isaria fumosorosea exhibited selective inhibition of Src homology phosphotyrosine phosphatase 2 inhibitor (Shp2) in our previous study. The purpose of the present study was to investigate the effects of Fumos on cell cycle arrest, tumor cell migration and the in vitro antiproliferative activity of Fumos alone or in combination with the commonly used cytotoxic drugs 5-fluoracil (5-FU) and p38 inhibitor SB203580. Fumos exhibited cytotoxicity against selected human cancel lines, including HeLa, MDA-MB-231 and MDA-MB-453 cell lines. Fumos exerted selective cytotoxic effects on the human cell lines. Flow cytometric and DAPI assays showed that Fumos did not induce cell apoptosis, however it induced cell cycle arrest at the G1 phase. Fumos inhibited cell migration though reducing the phosphorylation of focal adhesion kinase (FAK) at tyrosine (Tyr)861 and marginally increasing the phosphorylation of FAK at Tyr397, however, Fumos did not affect the phosphorylation of FAK at Tyr576 or Tyr925. The present study also examined the combination effect of Fumos with other chemical agents, including 5-FU and p38 inhibitor SB203580. Fumos exhibited a marked synergistic effect with these agents, particularly with 5-FU. In conclusion, Fumos showed potential anticancer bioactivity, and the combination effect of Fumos with 5-FU or with p38 inhibitor offers a more effective anticancer strategy for carcinoma treatment.
Collapse
Affiliation(s)
- Chuan Chen
- College of Life Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of The Ministry of Education, Hebei University, Baoding, Hebei 071002, P.R. China
| | - Tongdan Xue
- College of Life Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of The Ministry of Education, Hebei University, Baoding, Hebei 071002, P.R. China
| | - Peng Fan
- College of Life Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of The Ministry of Education, Hebei University, Baoding, Hebei 071002, P.R. China
| | - Linlin Meng
- College of Life Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of The Ministry of Education, Hebei University, Baoding, Hebei 071002, P.R. China
| | - Jingjing Wei
- College of Pharmaceutical Science, Hebei University, Baoding, Hebei 071002, P.R. China
| | - Duqiang Luo
- College of Life Science, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of The Ministry of Education, Hebei University, Baoding, Hebei 071002, P.R. China.,College of Pharmaceutical Science, Hebei University, Baoding, Hebei 071002, P.R. China
| |
Collapse
|
93
|
Jamalpour M, Li X, Gustafsson K, Tyner JW, Welsh M. Disparate effects of Shb gene deficiency on disease characteristics in murine models of myeloid, B-cell, and T-cell leukemia. Tumour Biol 2018; 40:1010428318771472. [DOI: 10.1177/1010428318771472] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The Src homology-2 domain protein B is an adaptor protein operating downstream of tyrosine kinases. The Shb gene knockout has been found to accelerate p210 Breakpoint cluster region-cAbl oncogene 1 tyrosine kinase-induced leukemia. In human myeloid leukemia were tumors with high Src homology-2 domain protein B mRNA content, tumors were, however, associated with decreased latency and myeloid leukemia exhibiting immune cell characteristics. Thus, the aim of this study was to investigate the effects of Shb knockout on the development of leukemia in three additional models, that is, colony stimulating factor 3 receptor-T618I–induced neutrophilic leukemia, p190 Breakpoint cluster region-cAbl oncogene 1 tyrosine kinase-induced B-cell leukemia, and G12D-Kras-induced T-cell leukemia/thymic lymphoma. Wild-type or Shb knockout bone marrow cells expressing the oncogenes were transplanted to bone marrow–deficient recipients. Organs from moribund mice were collected and further analyzed. Shb knockout increased the development of CSF3RT618I-induced leukemia and increased the white blood cell count at the time of death. In the p190 Breakpoint cluster region-cAbl oncogene 1 tyrosine kinase B-cell model, Shb knockout reduced white blood cell counts without affecting latency, whereas in the G12D-Kras T-cell model, thymus size was increased without major effects on latency, suggesting that Shb knockout accelerates the development thymic lymphoma. Cytokine secretion plays a role in the progression of leukemia, and consequently Shb knockout bone marrows exhibited lower expression of granulocyte colony stimulating factor and interleukin 6 in the neutrophilic model and interleukin 7 and chemokine C-X-C motif ligand 12 (C-X-C motif chemokine 12) in the B-cell model. It is concluded that in experimental mouse models, the absence of the Shb gene exacerbates the disease in myeloid leukemia, whereas it alters the disease characteristics without affecting latency in B- and T-cell leukemia. The results suggest a role of Shb in modulating the disease characteristics depending on the oncogenic insult operating on hematopoietic cells. These findings help explain the outcome of human disease in relation to Src homology-2 domain protein B mRNA content.
Collapse
Affiliation(s)
- Maria Jamalpour
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Xiujuan Li
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| | - Karin Gustafsson
- Harvard Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
- Center for Regenerative Medicine and the Cancer Center, Massachusetts General Hospital, MA, USA
| | - Jeffrey W Tyner
- Cell, Developmental & Cancer Biology, Oregon Health & Science University, Portland, OR, USA
| | - Michael Welsh
- Department of Medical Cell Biology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
94
|
Kim MK, Park JY, Kang YN. Tumorigenic role of YAP in hepatocellular carcinogenesis is involved in SHP2 whose function is different in vitro and in vivo. Pathol Res Pract 2018; 214:1031-1039. [PMID: 29699904 DOI: 10.1016/j.prp.2018.04.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Revised: 04/04/2018] [Accepted: 04/17/2018] [Indexed: 01/18/2023]
Abstract
Yes-associated protein (YAP) is a nuclear effector of the cell-density sensing Hippo pathway and interacts with Src homology phosphotyrosine phosphatase 2 (SHP2), which controls cell proliferation and survival. The tumor promoting/suppressing activities of YAP and SHP2 during liver tumorigenesis remain controversial. This study aimed to investigate the tumorigenic roles of YAP and SHP2 in hepatocellular carcinogenesis. Cell density associated subcellular distributions of YAP and SHP2 in normal human hepatocytes (THLE-2) and hepatocellular carcinoma (HCC) cells (SK-Hep1, SNU-182) were investigated by Western blotting and cell block immunohistochemistry. The effects of YAP knockdown on proliferation, migration and invasion were studied using YAP-specific siRNAs. The prognostic significance of YAP and SHP2 expressions was investigated immunohistochemically using a tissue microarray (TMA) from 50 HCC cases. High-cell density decreased the nuclear expression of YAP and SHP2 in normal hepatocytes as compared with low-cell density. However, in HCC cells, nuclear YAP and SHP2 were observed regardless of cell density. Nuclear YAP influenced SHP2 expression and cell proliferation. In particular, YAP knockdown impacted nuclear levels of SHP2 protein in SK-Hep1 cells. In HCC tissues, nuclear YAP expression was elevated and cytoplasmic SHP2 expression was diminished as compared with adjacent non-tumor tissues. Notably, these expressions were found to be significantly associated with poor recurrence-free and overall survival rate in patients with HCC. Consequently, the tumor promoting role of YAP is involved in SHP2 which functions as a tumor promoter in vitro but as a tumor suppressor in vivo. YAP and SHP2 can be unfavorable prognostic markers in HCC.
Collapse
Affiliation(s)
- Min-Kyung Kim
- Department of Pathology, Dongguk University College of Medicine, Gyeongju, Republic of Korea
| | - Jee Young Park
- Department of Pathology, School of Medicine and Institute for cancer research, Keimyung University, Daegu, Republic of Korea
| | - Yu Na Kang
- Department of Pathology, School of Medicine and Institute for cancer research, Keimyung University, Daegu, Republic of Korea.
| |
Collapse
|
95
|
Huang Y, Zhang Y, Ge L, Lin Y, Kwok HF. The Roles of Protein Tyrosine Phosphatases in Hepatocellular Carcinoma. Cancers (Basel) 2018; 10:cancers10030082. [PMID: 29558404 PMCID: PMC5876657 DOI: 10.3390/cancers10030082] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 03/12/2018] [Accepted: 03/15/2018] [Indexed: 02/08/2023] Open
Abstract
The protein tyrosine phosphatase (PTP) family is involved in multiple cellular functions and plays an important role in various pathological and physiological processes. In many chronic diseases, for example cancer, PTP is a potential therapeutic target for cancer treatment. In the last two decades, dozens of PTP inhibitors which specifically target individual PTP molecules were developed as therapeutic agents. Hepatocellular carcinoma (HCC) is one of the most common malignant tumors and is the second most lethal cancer worldwide due to a lack of effective therapies. Recent studies have unveiled both oncogenic and tumor suppressive functions of PTP in HCC. Here, we review the current knowledge on the involvement of PTP in HCC and further discuss the possibility of targeting PTP in HCC.
Collapse
Affiliation(s)
- Yide Huang
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China.
- Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau, China.
| | - Yafei Zhang
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China.
| | - Lilin Ge
- Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau, China.
- Jiangsu Key Laboratory for Functional Substance of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Yao Lin
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, College of Life Sciences, Fujian Normal University, Fuzhou 350117, China.
| | - Hang Fai Kwok
- Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau, China.
| |
Collapse
|
96
|
Roskoski R. The role of small molecule platelet-derived growth factor receptor (PDGFR) inhibitors in the treatment of neoplastic disorders. Pharmacol Res 2018; 129:65-83. [DOI: 10.1016/j.phrs.2018.01.021] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 01/29/2018] [Indexed: 12/15/2022]
|
97
|
Feng J, Gong XY, Jia YJ, Liu KQ, Li Y, Dong XB, Fang QY, Ru K, Li QH, Wang HJ, Zhao XL, Jia YN, Song Y, Tian Z, Wang M, Tang KJ, Wang JX, Mi YC. [Spectrum of somatic mutations and their prognostic significance in adult patients with B cell acute lymphoblastic leukemia]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2018; 39:98-104. [PMID: 29562441 PMCID: PMC7342576 DOI: 10.3760/cma.j.issn.0253-2727.2018.02.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Indexed: 01/11/2023]
Abstract
Objective: To investigate the spectrum of gene mutations in adult patients with B-acute lymphoblastic leukemia (B-ALL), and to analyze the influences of different gene mutations on prognosis. Methods: DNA samples from 113 adult B-ALL patients who administered from June 2009 to September 2015 were collected. Target-specific next generation sequencing (NGS) approach was used to analyze the mutations of 112 genes (focused on the specific mutational hotspots) and all putative mutations were compared against multiple databases to calculate the frequency spectrum. The impact of gene mutation on the patients' overall survival (OS) and recurrence free survival (RFS) was analyzed by the putative mutations through Kaplan-Meier, and Cox regression methods. Results: Of the 113 patients, 103 (92.0%) harbored at least one mutation and 29 (25.6%) harbored more than 3 genes mutation. The five most frequently mutated genes in B-ALL are SF1, FAT1, MPL, PTPN11 and NRAS. Gene mutations are different between Ph+ B-ALL and Ph- B-ALL patients. Ph- B-ALL patients with JAK-STAT signal pathway related gene mutation, such as JAK1/JAK2 mutation showed a poor prognosis compared to the patients without mutation (OS: P=0.011, 0.001; RFS: P=0.014,<0.001). Patients with PTPN11 mutation showed better survival than those without mutation, but the difference was not statistically significant (P value > 0.05). Besides, in Ph+ B-ALL patients whose epigenetic modifications related signaling pathway genes were affected, they had a worse prognosis (OS: P=0.038; RFS: P=0.047). Conclusion: Gene mutations are common in adult ALL patients, a variety of signaling pathways are involved. The frequency and spectrum are varied in different types of B-ALL. JAK family gene mutation usually indicates poor prognosis. The co-occurrence of somatic mutations in adult B-ALL patients indicate the genetic complex and instability of adult B-ALL patients.
Collapse
Affiliation(s)
- J Feng
- State Key Laboratory of Experimental Hematology, Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300020, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
98
|
Xie J, Si X, Gu S, Wang M, Shen J, Li H, Shen J, Li D, Fang Y, Liu C, Zhu J. Allosteric Inhibitors of SHP2 with Therapeutic Potential for Cancer Treatment. J Med Chem 2017; 60:10205-10219. [DOI: 10.1021/acs.jmedchem.7b01520] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Jingjing Xie
- Interdisciplinary
Research Center on Biology and Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic
Chemistry, Chinese Academy of Sciences, 26 Qiuyue Road, Shanghai 201203, China
- University of the Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan
District, Beijing 100049, China
| | - Xiaojia Si
- Organisch-Chemisches Institut, Ruprecht-Karls-Universität Heidelberg, Im Neuenheimer
Feld 270, 69120 Heidelberg, Germany
| | - Shoulai Gu
- Interdisciplinary
Research Center on Biology and Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic
Chemistry, Chinese Academy of Sciences, 26 Qiuyue Road, Shanghai 201203, China
| | - Mingliang Wang
- Department of Natural Products Chemistry, Fudan University, 826 Zhangheng Road, Shanghai 201203, China
| | - Jian Shen
- Interdisciplinary
Research Center on Biology and Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic
Chemistry, Chinese Academy of Sciences, 26 Qiuyue Road, Shanghai 201203, China
- University of the Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan
District, Beijing 100049, China
| | - Haoyan Li
- Interdisciplinary
Research Center on Biology and Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic
Chemistry, Chinese Academy of Sciences, 26 Qiuyue Road, Shanghai 201203, China
- University of the Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan
District, Beijing 100049, China
| | - Jian Shen
- Viva Biotech Ltd. 334 Aidisheng Road, Shanghai 201203, China
| | - Dan Li
- Key Laboratory for
the Genetics of Developmental and Neuropsychiatric Disorders (Ministry
of Education), Bio-X Institutes, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yanjia Fang
- Interdisciplinary
Research Center on Biology and Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic
Chemistry, Chinese Academy of Sciences, 26 Qiuyue Road, Shanghai 201203, China
| | - Cong Liu
- Interdisciplinary
Research Center on Biology and Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic
Chemistry, Chinese Academy of Sciences, 26 Qiuyue Road, Shanghai 201203, China
| | - Jidong Zhu
- Interdisciplinary
Research Center on Biology and Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic
Chemistry, Chinese Academy of Sciences, 26 Qiuyue Road, Shanghai 201203, China
| |
Collapse
|
99
|
Igbe I, Shen XF, Jiao W, Qiang Z, Deng T, Li S, Liu WL, Liu HW, Zhang GL, Wang F. Dietary quercetin potentiates the antiproliferative effect of interferon-α in hepatocellular carcinoma cells through activation of JAK/STAT pathway signaling by inhibition of SHP2 phosphatase. Oncotarget 2017; 8:113734-113748. [PMID: 29371942 PMCID: PMC5768359 DOI: 10.18632/oncotarget.22556] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 11/03/2017] [Indexed: 01/05/2023] Open
Abstract
Type I interferons (IFN-α/β) have broad and potent immunoregulatory and antiproliferative activities, which are negatively regulated by Src homology domain 2 containing tyrosine phosphatase-2 (SHP-2). Inhibition of SHP2 by small molecules may be a new strategy to enhance the effcacy of type I IFNs. Using an in vitro screening assay for new inhibitors of SHP2 phosphatase, we found that quercetin was a potent inhibitor of SHP2. Computational modeling showed that quercetin exhibited an orientation favorable to nucleophilic attack in the phosphatase domain of SHP2. Quercetin enhanced the phosphorylation of signal transducer and activator of transcription proteins 1 (STAT1) and promoted endogenous IFN-α-regulated gene expression. Furthermore, quercetin also sensitized the antiproliferative effect of IFN-α on hepatocellular carcinoma HepG2 and Huh7 cells. The overexpression of SHP2 attenuated the effect of quercetin on IFN-α-stimulated STAT1 phosphorylation and antiproliferative effect, whereas the inhibition of SHP2 promoted the effect of quercetin on IFN-α-induced STAT1 phosphorylation and antiproliferative effect. The results suggested that quercetin potentiated the inhibitory effect of IFN-α on cancer cell proliferation through activation of JAK/STAT pathway signaling by inhibiting SHP2. Quercetin warrants further investigation as a novel therapeutic method to enhance the efficacy of IFN-α/β.
Collapse
Affiliation(s)
- Ighodaro Igbe
- Key Laboratory of Natural Medicine and Clinical Translation, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China.,Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Benin, Benin City, Nigeria
| | - Xiao-Fei Shen
- Key Laboratory of Natural Medicine and Clinical Translation, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Wei Jiao
- Key Laboratory of Natural Medicine and Clinical Translation, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Zhe Qiang
- Key Laboratory of Natural Medicine and Clinical Translation, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Teng Deng
- Key Laboratory of Natural Medicine and Clinical Translation, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Sheng Li
- Key Laboratory of Natural Medicine and Clinical Translation, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Wan-Li Liu
- MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Tsinghua University, Beijing, China
| | - Han-Wei Liu
- Ningbo Entry-Exit Inspection and Quarantine Bureau Technical Center, Ningbo, China
| | - Guo-Lin Zhang
- Key Laboratory of Natural Medicine and Clinical Translation, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Fei Wang
- Key Laboratory of Natural Medicine and Clinical Translation, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| |
Collapse
|
100
|
Liu Y, Song F, Wu S, He S, Meng M, Lv C, Yang Q, Chen S. Protein and mRNA expressions of IL-6 and its key signaling factors under orthodontic forces in mice: An in-vivo study. Am J Orthod Dentofacial Orthop 2017; 152:654-662. [PMID: 29103443 DOI: 10.1016/j.ajodo.2017.03.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 03/01/2017] [Accepted: 03/01/2017] [Indexed: 02/05/2023]
Abstract
INTRODUCTION The purpose of this study was to investigate the mechanical loading-induced changes in protein and mRNA expressions of interleukin-6 (IL-6) and its key signaling factors glycoprotein 130 (gp130), signal transducer and activator of transcription 3 (STAT3), and the Src homology phosphotyrosine phosphatase (SHP2) at the tension and compression sides of the teeth in mouse models. METHODS A total of 55 C57B/6 mice (10 weeks old) were divided into 3 groups. Orthodontic force was applied in group A (experimental group, n = 30); the tooth movement device was placed without activation in group B (sham control group, n = 15), and group C (blank control group, n = 10). Tooth movement was induced by a nickel-titanium coil spring inserted between the maxillary left incisor and the first molar with a force of approximately 4 g. The animals were killed 12 days after the interventions; protein and mRNA expressions of IL-6, gp130, STAT3, and SHP2 in the periodontal tissues were observed with immunohistochemistry and in-situ hybridization, respectively. RESULTS In contrast with the control groups, we observed enhanced expressions of IL-6, gp130, STAT3, and SHP2 protein and mRNA at the mesial and distal sides of the teeth with application of orthodontic forces in the experimental group. In contrast with the distal side, we observed enhanced expression of gp130 protein and mRNA at the mesial side in the experimental group. CONCLUSIONS We observed enhanced expression of IL-6 and its key signaling factors gp130, STAT3, and SHP2 protein and mRNA at the tension and compression sides of the teeth with application of orthodontic forces. The mechanical loading applied for orthodontic tooth movement might induce changes in protein localization and mRNA expression patterns of IL-6 and its key signaling factors gp130, STAT3, and SHP2 at the tension and compression sides of the periodontal ligaments of the teeth in mouse models. The result might demonstrate the special role of IL-6 and its key signaling factors in the alveolar bone-modeling process.
Collapse
Affiliation(s)
- Yi Liu
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Fang Song
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Shu Wu
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Shushu He
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Mingmei Meng
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Chunxiao Lv
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Qingqing Yang
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Song Chen
- State Key Laboratory of Oral Diseases, Department of Orthodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|