51
|
Boron Clusters as Enhancers of RNase H Activity in the Smart Strategy of Gene Silencing by Antisense Oligonucleotides. Int J Mol Sci 2022; 23:ijms232012190. [PMID: 36293047 PMCID: PMC9603397 DOI: 10.3390/ijms232012190] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/08/2022] [Accepted: 10/09/2022] [Indexed: 11/28/2022] Open
Abstract
Boron cluster-conjugated antisense oligonucleotides (B-ASOs) have already been developed as therapeutic agents with “two faces”, namely as potential antisense inhibitors of gene expression and as boron carriers for boron neutron capture therapy (BNCT). The previously observed high antisense activity of some B-ASOs targeting the epidermal growth factor receptor (EGFR) could not be rationally assigned to the positioning of the boron cluster unit: 1,2-dicarba-closo-dodecaborane (0), [(3,3′-Iron-1,2,1′,2′-dicarbollide) (1-), FESAN], and dodecaborate (2-) in the ASO chain and its structure or charge. For further understanding of this observation, we performed systematic studies on the efficiency of RNase H against a series of B-ASOs models. The results of kinetic analysis showed that pyrimidine-enriched B-ASO oligomers activated RNase H more efficiently than non-modified ASO. The presence of a single FESAN unit at a specific position of the B-ASO increased the kinetics of enzymatic hydrolysis of complementary RNA more than 30-fold compared with unmodified duplex ASO/RNA. Moreover, the rate of RNA hydrolysis enhanced with the increase in the negative charge of the boron cluster in the B-ASO chain. In conclusion, a “smart” strategy using ASOs conjugated with boron clusters is a milestone for the development of more efficient antisense therapeutic nucleic acids as inhibitors of gene expression.
Collapse
|
52
|
Sarıkaya Uzan G, Paketçi C, Günay Ç, Edem P, Özsoy Ö, Hız Kurul S, Yiş U. The Effect of Nusinersen Therapy on Laboratory Parameters of Patients with Spinal Muscular Atrophy. Neuropediatrics 2022; 53:321-329. [PMID: 35871521 DOI: 10.1055/s-0042-1750719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
INTRODUCTION We evaluated the effect of nusinersen on clinical and laboratory parameters and presented its safety and effect on laboratory parameters. METHODS Two groups were formed from among patients with spinal muscular atrophy (SMA) followed up between September 2017 and June 2021: group 1, SMA type 1; group 2, SMA type 2 and 3. The laboratory parameters were evaluated in groups 1 and 2 between doses. Motor scale tests were performed on patients before each dose of nusinersen. RESULTS Twenty seven patients (group 1; n = 13, group 2; n = 14) were included. The mean age (±standard deviation) at the onset of symptoms was 3 ± 1.21 (range, 1.5-6) months in group 1 and 12 ± 4.27 (range, 8-24) months in group 2. No significant laboratory treatment-related abnormalities and adverse effects were observed. The cerebrospinal fluid protein levels and the frequency of conventional LP were higher in group 1. Serum creatinine (Cr) levels were higher in group 1 before the first dose and higher in group 2 before the fifth dose (p < 0.05). With treatment, the Cr levels of group 1 decreased and group 2 remained constant or increased. We observed that the Children's Hospital of Philadelphia Infant Test of Neuromuscular Disorders and Hammersmith Functional Motor Scale-Expand scores increased as our patients received treatment (p < 0.05). CONCLUSION Our results support the safety and efficacy of nusinersen. However, changes in Cr levels according to the clinical type and treatment suggested that serum Cr could be a candidate marker for treatment follow-up.
Collapse
Affiliation(s)
- Gamze Sarıkaya Uzan
- Division of Child Neurology, Department of Pediatrics, Dokuz Eylül University Faculty of Medicine, İzmir, Turkey
| | - Cem Paketçi
- Division of Child Neurology, Department of Pediatrics, Dokuz Eylül University Faculty of Medicine, İzmir, Turkey
| | - Çağatay Günay
- Division of Child Neurology, Department of Pediatrics, Dokuz Eylül University Faculty of Medicine, İzmir, Turkey
| | - Pınar Edem
- Division of Child Neurology, Department of Pediatrics, Dokuz Eylül University Faculty of Medicine, İzmir, Turkey
| | - Özlem Özsoy
- Division of Child Neurology, Department of Pediatrics, Dokuz Eylül University Faculty of Medicine, İzmir, Turkey
| | - Semra Hız Kurul
- Division of Child Neurology, Department of Pediatrics, Dokuz Eylül University Faculty of Medicine, İzmir, Turkey
| | - Uluç Yiş
- Division of Child Neurology, Department of Pediatrics, Dokuz Eylül University Faculty of Medicine, İzmir, Turkey
| |
Collapse
|
53
|
Yoo YJ, Choi KH, Kim BK, Choi SS, Kim ES. Isolation and Characterization of Engineered Nucleoside Deoxyribosyltransferase with Enhanced Activity Toward 2'-Fluoro-2'-Deoxynucleoside. J Microbiol Biotechnol 2022; 32:1041-1046. [PMID: 35791073 PMCID: PMC9628941 DOI: 10.4014/jmb.2204.04041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/08/2022] [Accepted: 06/11/2022] [Indexed: 02/04/2023]
Abstract
Nucleoside deoxyribosyltransferase (NDT) is an enzyme that replaces the purine or pyrimidine base of 2'-deoxyribonucleoside. This enzyme is generally used in the nucleotide salvage pathway in vivo and synthesizes many nucleoside analogs in vitro for various biotechnological purposes. Since NDT is known to exhibit relatively low reactivity toward nucleoside analogs such as 2'-fluoro-2'-deoxynucleoside, it is necessary to develop an enhanced NDT mutant enzyme suitable for nucleoside analogs. In this study, molecular evolution strategy via error-prone PCR was performed with ndt gene derived from Lactobacillus leichmannii as a template to obtain an engineered NDT with higher substrate specificity to 2FDU (2'-fluoro-2'-deoxyuridine). A mutant library of 214 ndt genes with different sequences was obtained and performed for the conversion of 2FDU to 2FDA (2'-fluoro-2'-deoxyadenosine). The E. coli containing a mutant NDT, named NDTL59Q, showed 1.7-fold (at 40°C) and 4.4-fold (at 50°C) higher 2FDU-to-2FDA conversions compared to the NDTWT, respectively. Subsequently, both NDTWT and NDTL59Q enzymes were over-expressed and purified using a His-tag system in E. coli. Characterization and enzyme kinetics revealed that the NDTL59Q mutant enzyme containing a single point mutation of leucine to glutamine at the 59th position exhibited superior thermal stability with enhanced substrate specificity to 2FDU.
Collapse
Affiliation(s)
- Yeon-Jin Yoo
- Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea
| | - Kang-Hyun Choi
- Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea,Division of Bioprocess Discovery, ST Pharm, Gyeonggi-do 15610, Republic of Korea
| | - Byoung-Kyun Kim
- Division of Bioprocess Discovery, ST Pharm, Gyeonggi-do 15610, Republic of Korea
| | - Si-Sun Choi
- Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea
| | - Eung-Soo Kim
- Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea,Corresponding author Phone: +82-32-860-8318 Fax: +82-32-872-4046 E-mail:
| |
Collapse
|
54
|
Cao J, Kuang D, Luo M, Wang S, Fu C. Targeting circNCLN/miR-291a-3p/TSLP signaling axis alleviates lipopolysaccharide-induced acute lung injury. Biochem Biophys Res Commun 2022; 617:60-67. [PMID: 35679712 DOI: 10.1016/j.bbrc.2022.05.095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 05/30/2022] [Indexed: 11/27/2022]
Abstract
Acute lung injury (ALI) is a life-threatening disease caused by the severe and acute response of the lungs to a variety of direct and indirect insults. Patients with ALI are currently treated mainly with respiratory support due to inadequate understanding of ALI progression. Alveolar epithelial cells produced thymic stromal lymphopoietin (TSLP) has been proved to worsen ALI by triggering airway inflammation. However, the regulation mechanism of TSLP expression remains unclear. In this study, we identified the crucial role played by circNCLN in lipopolysaccharide (LPS)-induced ALI. We demonstrated for the first time that miR-291a-3p could directly bind to the 3'UTR of TSLP and suppress TSLP expression in alveolar epithelial cells. Mechanistically, our data identified that circNCLN acts as a molecular sponge to antagonize miR-291a-3p and thereby maintaining the expression of TSLP in alveolar epithelial cells. Importantly, targeting circNCLN by its antisense oligonucleotide (ASO) markedly alleviated LPS-induced ALI. Therefore, our results suggested that circNCLN/miR-291a-3p/TSLP axis may be an important signaling in LPS-induced ALI and circNCLN inhibition may serve as a potential treatment of ALI.
Collapse
Affiliation(s)
- Jianwei Cao
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Daibin Kuang
- Department of Emergency Intensive Care Unit, Affiliated Dongguan Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan, Guangdong, China
| | - Ming Luo
- Department of Emergency Intensive Care Unit, Affiliated Dongguan Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan, Guangdong, China
| | - Shanzhong Wang
- Department of Emergency Intensive Care Unit, Affiliated Dongguan Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan, Guangdong, China
| | - Chunlai Fu
- Chronic Airways Diseases Laboratory, Department of Respiratory and Critical Care Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China; Department of Emergency Intensive Care Unit, Affiliated Dongguan Hospital, Southern Medical University (Dongguan People's Hospital), Dongguan, Guangdong, China.
| |
Collapse
|
55
|
O'Sullivan J, Muñoz-Muñoz J, Turnbull G, Sim N, Penny S, Moschos S. Beyond GalNAc! Drug delivery systems comprising complex oligosaccharides for targeted use of nucleic acid therapeutics. RSC Adv 2022; 12:20432-20446. [PMID: 35919168 PMCID: PMC9281799 DOI: 10.1039/d2ra01999j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 07/06/2022] [Indexed: 12/12/2022] Open
Abstract
Nucleic Acid Therapeutics (NATs) are establishing a leading role for the management and treatment of genetic diseases following FDA approval of nusinersen, patisiran, and givosiran in the last 5 years, the breakthrough of milasen, with more approvals undoubtedly on the way. Givosiran takes advantage of the known interaction between the hepatocyte specific asialoglycoprotein receptor (ASGPR) and N-acetyl galactosamine (GalNAc) ligands to deliver a therapeutic effect, underscoring the value of targeting moieties. In this review, we explore the history of GalNAc as a ligand, and the paradigm it has set for the delivery of NATs through precise targeting to the liver, overcoming common hindrances faced with this type of therapy. We describe various complex oligosaccharides (OSs) and ask what others could be used to target receptors for NAT delivery and the opportunities awaiting exploration of this chemical space.
Collapse
Affiliation(s)
- Joseph O'Sullivan
- Department of Applied Sciences, Northumbria University Newcastle upon Tyne UK NE1 8ST
| | - Jose Muñoz-Muñoz
- Department of Applied Sciences, Northumbria University Newcastle upon Tyne UK NE1 8ST
| | - Graeme Turnbull
- Department of Applied Sciences, Northumbria University Newcastle upon Tyne UK NE1 8ST
| | - Neil Sim
- High Force Research Ltd, Bowburn North Industrial Estate Durham UK DH6 5PF
| | - Stuart Penny
- High Force Research Ltd, Bowburn North Industrial Estate Durham UK DH6 5PF
| | - Sterghios Moschos
- Department of Applied Sciences, Northumbria University Newcastle upon Tyne UK NE1 8ST
| |
Collapse
|
56
|
Nácher-Vázquez M, Barbosa A, Armelim I, Azevedo AS, Almeida GN, Pizarro C, Azevedo NF, Almeida C, Cerqueira L. Development of a Novel Peptide Nucleic Acid Probe for the Detection of Legionella spp. in Water Samples. Microorganisms 2022; 10:1409. [PMID: 35889127 PMCID: PMC9318766 DOI: 10.3390/microorganisms10071409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 02/04/2023] Open
Abstract
Legionella are opportunistic intracellular pathogens that are found throughout the environment. The Legionella contamination of water systems represents a serious social problem that can lead to severe diseases, which can manifest as both Pontiac fever and Legionnaires' disease (LD) infections. Fluorescence in situ hybridization using nucleic acid mimic probes (NAM-FISH) is a powerful and versatile technique for bacterial detection. By optimizing a peptide nucleic acid (PNA) sequence based on fluorescently selective binding to specific bacterial rRNA sequences, we established a new PNA-FISH method that has been successfully designed for the specific detection of the genus Legionella. The LEG22 PNA probe has shown great theoretical performance, presenting 99.9% specificity and 96.9% sensitivity. We also demonstrated that the PNA-FISH approach presents a good signal-to-noise ratio when applied in artificially contaminated water samples directly on filtration membranes or after cells elution. For water samples with higher turbidity (from cooling tower water systems), there is still the need for further method optimization in order to detect cellular contents and to overcome interferents' autofluorescence, which hinders probe signal visualization. Nevertheless, this work shows that the PNA-FISH approach could be a promising alternative for the rapid (3-4 h) and accurate detection of Legionella.
Collapse
Affiliation(s)
- Montserrat Nácher-Vázquez
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; (M.N.-V.); (A.B.); (I.A.); (A.S.A.); (N.F.A.); (C.A.)
- INIAV, IP—National Institute for Agrarian and Veterinary Research, Vairão, 4485-655 Vila Do Conde, Portugal;
| | - Ana Barbosa
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; (M.N.-V.); (A.B.); (I.A.); (A.S.A.); (N.F.A.); (C.A.)
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Inês Armelim
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; (M.N.-V.); (A.B.); (I.A.); (A.S.A.); (N.F.A.); (C.A.)
| | - Andreia Sofia Azevedo
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; (M.N.-V.); (A.B.); (I.A.); (A.S.A.); (N.F.A.); (C.A.)
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
- IPATIMUP—Instituto de Patologia e Imunologia Molecular, Universidade do Porto, 4200-135 Porto, Portugal
| | - Gonçalo Nieto Almeida
- INIAV, IP—National Institute for Agrarian and Veterinary Research, Vairão, 4485-655 Vila Do Conde, Portugal;
| | - Cristina Pizarro
- INSA—National Institute of Health Doutor Ricardo Jorge, Rua Alexandre Herculano 321, 4000-055 Porto, Portugal;
| | - Nuno Filipe Azevedo
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; (M.N.-V.); (A.B.); (I.A.); (A.S.A.); (N.F.A.); (C.A.)
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Carina Almeida
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; (M.N.-V.); (A.B.); (I.A.); (A.S.A.); (N.F.A.); (C.A.)
- INIAV, IP—National Institute for Agrarian and Veterinary Research, Vairão, 4485-655 Vila Do Conde, Portugal;
- Centre of Biological Engineering (CEB), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Laura Cerqueira
- LEPABE—Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; (M.N.-V.); (A.B.); (I.A.); (A.S.A.); (N.F.A.); (C.A.)
- ALiCE—Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| |
Collapse
|
57
|
Zeller J, Bogner B, McFadyen JD, Kiefer J, Braig D, Pietersz G, Krippner G, Nero TL, Morton CJ, Shing KSCT, Parker MW, Peter K, Eisenhardt SU. Transitional changes in the structure of C-reactive protein create highly pro-inflammatory molecules: Therapeutic implications for cardiovascular diseases. Pharmacol Ther 2022; 235:108165. [PMID: 35247517 DOI: 10.1016/j.pharmthera.2022.108165] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 02/28/2022] [Accepted: 02/28/2022] [Indexed: 02/08/2023]
Abstract
C-reactive protein (CRP) is the prototypic acute-phase reactant that has long been recognized almost exclusively as a marker of inflammation and predictor of cardiovascular risk. However, accumulating evidence indicates that CRP is also a direct pathogenic pro-inflammatory mediator in atherosclerosis and cardiovascular diseases. The 'CRP system' consists of at least two protein conformations with distinct pathophysiological functions. The binding of the native, pentameric CRP (pCRP) to activated cell membranes leads to a conformational change resulting in two highly pro-inflammatory isoforms, pCRP* and monomeric CRP (mCRP). The deposition of these pro-inflammatory isoforms has been shown to aggravate the localized tissue injury in a broad range of pathological conditions including atherosclerosis and thrombosis, myocardial infarction, and stroke. Here, we review recent findings on how these structural changes contribute to the inflammatory response and discuss the transitional changes in the structure of CRP as a novel therapeutic target in cardiovascular diseases and overshooting inflammation.
Collapse
Affiliation(s)
- J Zeller
- Department of Plastic and Hand Surgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Breisgau, Germany; Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia.
| | - B Bogner
- Department of Plastic and Hand Surgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Breisgau, Germany
| | - J D McFadyen
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia; Department of Medicine, Monash University, Melbourne, Victoria, Australia
| | - J Kiefer
- Department of Plastic and Hand Surgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Breisgau, Germany
| | - D Braig
- Department of Plastic and Hand Surgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Breisgau, Germany; Division of Hand, Plastic and Aesthetic Surgery, University Hospital, LMU Munich, Munich, Germany
| | - G Pietersz
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia; Department of Cardiometabolic Health, The University of Melbourne, Parkville, Victoria, Australia
| | - G Krippner
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia
| | - T L Nero
- Department of Cardiometabolic Health, The University of Melbourne, Parkville, Victoria, Australia; Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria, Australia
| | - C J Morton
- Department of Cardiometabolic Health, The University of Melbourne, Parkville, Victoria, Australia; Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria, Australia
| | - K S Cheung Tung Shing
- Department of Cardiometabolic Health, The University of Melbourne, Parkville, Victoria, Australia; Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria, Australia
| | - M W Parker
- Department of Cardiometabolic Health, The University of Melbourne, Parkville, Victoria, Australia; Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria, Australia; ACRF Rational Drug Discovery Centre, St. Vincent's Institute of Medical Research, Fitzroy, Victoria, Australia.
| | - K Peter
- Atherothrombosis and Vascular Biology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Victoria, Australia; Department of Medicine, Monash University, Melbourne, Victoria, Australia; Department of Cardiometabolic Health, The University of Melbourne, Parkville, Victoria, Australia; Department of Immunology, Monash University, Melbourne, Victoria, Australia.
| | - S U Eisenhardt
- Department of Plastic and Hand Surgery, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Breisgau, Germany.
| |
Collapse
|
58
|
Katsuzaki Y, Tsukimura R, Chandela A, Chano T, Ueno Y. 4'-C-Aminoethoxy-Modified DNAs Exhibit Increased Nuclease Resistance, Sustained RNase H Activity, and Inhibition of KRAS Gene Expression. Chem Biodivers 2022; 19:e202200125. [PMID: 35773240 DOI: 10.1002/cbdv.202200125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 06/17/2022] [Indexed: 11/09/2022]
Abstract
The linear synthesis of 4'-C-aminoethoxy thymidine (AEoT) nucleoside phosphoramidite was accomplished using deoxythymidine as the starting material. This analog was incorporated into several oligonucleotides, the applicability of which as antisense oligonucleotides (ASOs) was then evaluated. The AEoT-modified DNA/RNA duplex exhibited improved thermal stability compared to unmodified and 4'-C-aminoethyl thymidine (4'-AET) modified heteroduplexes. The serum stability of AEoT-modified DNA was notably increased by several-folds compared to that of unmodified DNA. Furthermore, RNase H-dependent cleavage of the modified-DNA/RNA hybrids was found to be sustained. In addition, the modified antisense and unmodified oligonucleotides also displayed relatively comparable inhibition of the KRAS gene in human lung cancer cells. This study strengthens our understanding of the potential application of 4'-C-aminoethoxy-modified nucleotides as ASO therapeutics.
Collapse
Affiliation(s)
- Yuki Katsuzaki
- Department of Life Science and Chemistry, Graduate School of Natural Science and Technology, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Ryo Tsukimura
- Department of Life Science and Chemistry, Graduate School of Natural Science and Technology, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan
| | - Akash Chandela
- Faculty of Applied Biological Sciences, Gifu University, Japan
| | - Tokuhiro Chano
- Department of Medical Genetics, Shiga University of Medical, Tsukinowa-cho, Seta, Otsu, Shiga, 520-2192, Japan
| | - Yoshihito Ueno
- Department of Life Science and Chemistry, Graduate School of Natural Science and Technology, Gifu University, 1-1 Yanagido, Gifu, 501-1193, Japan.,Faculty of Applied Biological Sciences, Gifu University, Japan.,Center for Highly Advanced Integration of Nano and Life Sciences (G-CHAIN), Gifu University, Japan
| |
Collapse
|
59
|
Czechtizky W, Su W, Ripa L, Schiesser S, Höijer A, Cox RJ. Advances in the design of new types of inhaled medicines. PROGRESS IN MEDICINAL CHEMISTRY 2022; 61:93-162. [PMID: 35753716 DOI: 10.1016/bs.pmch.2022.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Inhalation of small molecule drugs has proven very efficacious for the treatment of respiratory diseases due to enhanced efficacy and a favourable therapeutic index compared with other dosing routes. It enables targeted delivery to the lung with rapid onset of therapeutic action, low systemic drug exposure, and thereby reduced systemic side effects. An increasing number of pharmaceutical companies and biotechs are investing in new modalities-for this review defined as therapeutic molecules with a molecular weight >800Da and therefore beyond usual inhaled small molecule drug-like space. However, our experience with inhaled administration of PROTACs, peptides, oligonucleotides (antisense oligonucleotides, siRNAs, miRs and antagomirs), diverse protein scaffolds, antibodies and antibody fragments is still limited. Investigating the retention and metabolism of these types of molecules in lung tissue and fluid will contribute to understanding which are best suited for inhalation. Nonetheless, the first such therapeutic molecules have already reached the clinic. This review will provide information on the physiology of healthy and diseased lungs and their capacity for drug metabolism. It will outline the stability, aggregation and immunogenicity aspects of new modalities, as well as recap on formulation and delivery aspects. It concludes by summarising clinical trial outcomes with inhaled new modalities based on information available at the end of 2021.
Collapse
Affiliation(s)
- Werngard Czechtizky
- Department of Medicinal Chemistry, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Mölndal, Sweden.
| | - Wu Su
- Department of Medicinal Chemistry, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Mölndal, Sweden
| | - Lena Ripa
- Department of Medicinal Chemistry, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Mölndal, Sweden
| | - Stefan Schiesser
- Department of Medicinal Chemistry, Research and Early Development, Respiratory & Immunology, BioPharmaceuticals R&D, AstraZeneca, Mölndal, Sweden
| | - Andreas Höijer
- Cardiovascular, Renal & Metabolism CMC Projects, Pharmaceutical Sciences, R&D, AstraZeneca, Gothenburg, Sweden
| | - Rhona J Cox
- Department of Medicinal Chemistry, Research and Early Development, Cardiovascular, Renal & Metabolism, BioPharmaceuticals R&D, AstraZeneca, Mölndal, Sweden
| |
Collapse
|
60
|
Sasso J, Ambrose BJB, Tenchov R, Datta RS, Basel MT, DeLong RK, Zhou QA. The Progress and Promise of RNA Medicine─An Arsenal of Targeted Treatments. J Med Chem 2022; 65:6975-7015. [PMID: 35533054 PMCID: PMC9115888 DOI: 10.1021/acs.jmedchem.2c00024] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Indexed: 02/08/2023]
Abstract
In the past decade, there has been a shift in research, clinical development, and commercial activity to exploit the many physiological roles of RNA for use in medicine. With the rapid success in the development of lipid-RNA nanoparticles for mRNA vaccines against COVID-19 and with several approved RNA-based drugs, RNA has catapulted to the forefront of drug research. With diverse functions beyond the role of mRNA in producing antigens or therapeutic proteins, many classes of RNA serve regulatory roles in cells and tissues. These RNAs have potential as new therapeutics, with RNA itself serving as either a drug or a target. Here, based on the CAS Content Collection, we provide a landscape view of the current state and outline trends in RNA research in medicine across time, geography, therapeutic pipelines, chemical modifications, and delivery mechanisms.
Collapse
Affiliation(s)
- Janet
M. Sasso
- CAS,
a division of the American Chemical Society 2540 Olentangy River Road, Columbus, Ohio 43202, United States
| | - Barbara J. B. Ambrose
- CAS,
a division of the American Chemical Society 2540 Olentangy River Road, Columbus, Ohio 43202, United States
| | - Rumiana Tenchov
- CAS,
a division of the American Chemical Society 2540 Olentangy River Road, Columbus, Ohio 43202, United States
| | - Ruchira S. Datta
- CAS,
a division of the American Chemical Society 2540 Olentangy River Road, Columbus, Ohio 43202, United States
| | - Matthew T. Basel
- College
of Veterinary Medicine, Kansas State University, Manhattan, Kansas 66506, United States
| | - Robert K. DeLong
- Nanotechnology
Innovation Center Kansas State, Kansas State
University, Manhattan, Kansas 66506, United States
| | - Qiongqiong Angela Zhou
- CAS,
a division of the American Chemical Society 2540 Olentangy River Road, Columbus, Ohio 43202, United States
| |
Collapse
|
61
|
Prandi FR, Lecis D, Illuminato F, Milite M, Celotto R, Lerakis S, Romeo F, Barillà F. Epigenetic Modifications and Non-Coding RNA in Diabetes-Mellitus-Induced Coronary Artery Disease: Pathophysiological Link and New Therapeutic Frontiers. Int J Mol Sci 2022; 23:4589. [PMID: 35562979 PMCID: PMC9105558 DOI: 10.3390/ijms23094589] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/18/2022] [Accepted: 04/20/2022] [Indexed: 12/21/2022] Open
Abstract
Diabetes mellitus (DM) is a glucose metabolism disorder characterized by chronic hyperglycemia resulting from a deficit of insulin production and/or action. DM affects more than 1 in 10 adults, and it is associated with an increased risk of cardiovascular morbidity and mortality. Cardiovascular disease (CVD) accounts for two thirds of the overall deaths in diabetic patients, with coronary artery disease (CAD) and ischemic cardiomyopathy as the main contributors. Hyperglycemic damage on vascular endothelial cells leading to endothelial dysfunction represents the main initiating factor in the pathogenesis of diabetic vascular complications; however, the underlying pathophysiological mechanisms are still not entirely understood. This review addresses the current knowledge on the pathophysiological links between DM and CAD with a focus on the role of epigenetic modifications, including DNA methylation, histone modifications and noncoding RNA control. Increased knowledge of epigenetic mechanisms has contributed to the development of new pharmacological treatments ("epidrugs") with epigenetic targets, although these approaches present several challenges. Specific epigenetic biomarkers may also be used to predict or detect the development and progression of diabetes complications. Further studies on diabetes and CAD epigenetics are needed in order to identify possible new therapeutic targets and advance personalized medicine with the prediction of individual drug responses and minimization of adverse effects.
Collapse
Affiliation(s)
- Francesca Romana Prandi
- Division of Cardiology, Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy; (D.L.); (F.I.); (M.M.); (R.C.); (F.B.)
- Department of Cardiology, Mount Sinai Hospital, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - Dalgisio Lecis
- Division of Cardiology, Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy; (D.L.); (F.I.); (M.M.); (R.C.); (F.B.)
| | - Federica Illuminato
- Division of Cardiology, Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy; (D.L.); (F.I.); (M.M.); (R.C.); (F.B.)
| | - Marialucia Milite
- Division of Cardiology, Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy; (D.L.); (F.I.); (M.M.); (R.C.); (F.B.)
| | - Roberto Celotto
- Division of Cardiology, Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy; (D.L.); (F.I.); (M.M.); (R.C.); (F.B.)
| | - Stamatios Lerakis
- Department of Cardiology, Mount Sinai Hospital, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - Francesco Romeo
- Department of Departmental Faculty of Medicine, Unicamillus-Saint Camillus International University of Health and Medical Sciences, 00131 Rome, Italy;
| | - Francesco Barillà
- Division of Cardiology, Department of Systems Medicine, Tor Vergata University, 00133 Rome, Italy; (D.L.); (F.I.); (M.M.); (R.C.); (F.B.)
| |
Collapse
|
62
|
Synthesis of 4'-C-(aminoethyl)thymidine and 4'-C-[(N-methyl)aminoethyl]thymidine by a new synthetic route and evaluation of the properties of the DNAs containing the nucleoside analogs. Bioorg Med Chem 2022; 60:116690. [PMID: 35259549 DOI: 10.1016/j.bmc.2022.116690] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 02/28/2022] [Accepted: 02/28/2022] [Indexed: 11/21/2022]
Abstract
A gapmer-type antisense oligonucleotide is an oligonucleotide therapeutic that targets pathogenic mRNA directly, and it is expected to be a next-generation therapeutic drug. In this study, we designed and synthesized 4'-C-[(N-methyl)aminoethyl]-thymidine (4'-MAE-T) as a novel nucleoside analog and compared its properties with those of 4'-C-aminoethyl-thymidine (4'-AE-T). Furthermore, we designed a new synthetic route for 4'-C-aminoethyl-modified nucleosides and accomplished the synthesis of 4'-AE-T via a novel pathway with high total yield. DNA containing 4'-MAE-T analogs decreased RNA affinity slightly more than unmodified DNA and DNA containing 4'-AE-T, but significantly improved nuclease resistance compared to unmodified DNA in a solution containing bovine serum. In addition, the impact of 4'-MAE-T on DNA stability was higher than that of 4'-AE-T. Also, DNA containing these analogs can activate Escherichia coli-derived RNase H. Thus, 4'-MAE-T has the potential to be used in gapmer-type antisense nucleic acids as a suitable candidate for the development of therapeutic antisense oligonucleotides.
Collapse
|
63
|
Cherubini A, Casirati E, Tomasi M, Valenti L. PNPLA3 as a therapeutic target for fatty liver disease: the evidence to date. Expert Opin Ther Targets 2021; 25:1033-1043. [PMID: 34904923 DOI: 10.1080/14728222.2021.2018418] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION An interaction between metabolic triggers and inherited predisposition underpins the development and progression of non alcoholic fatty liver disease (NAFLD) and fatty liver disease in general. Among the specific NAFLD risk variants, PNPLA3 rs738409 C>G, encoding for the p.I148M protein variant, accounts for the largest fraction of liver disease heritability and is being intensively scrutinized. It promotes intrahepatic lipid accumulation and is associated with lipotoxicity and the more severe phenotypes, including fibrosis and carcinogenesis. Therefore, PNPLA3 appears as an appealing therapeutic target to counter NAFLD progression. AREAS COVERED The scope of this review is to briefly describe the PNPLA3 gene and protein function before discussing therapeutic approaches for fatty liver aiming at this target. Literature review was carried out searching through PubMed and clinicaltrials.gov website and focusing on the most recent works and reviews. EXPERT OPINION The main therapeutic strategies under development for NAFLD have shown variable efficacy and side-effects likely due to disease heterogeneity and lack of engagement of the main pathogenic drivers of liver disease. To overcome these limitations, new strategies are becoming available for targeting PNPLA3 p.I148M, responsible for a large fraction of disease susceptibility.
Collapse
Affiliation(s)
- Alessandro Cherubini
- Precision Medicine - Department of Transfusion Medicine and Hematology, Fondazione Irccs Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Elia Casirati
- Department of Pathophysiology and Transplantation, Università Degli Studi Di Milano, Milan, Italy
| | - Melissa Tomasi
- Precision Medicine - Department of Transfusion Medicine and Hematology, Fondazione Irccs Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Luca Valenti
- Precision Medicine - Department of Transfusion Medicine and Hematology, Fondazione Irccs Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.,Department of Pathophysiology and Transplantation, Università Degli Studi Di Milano, Milan, Italy
| |
Collapse
|
64
|
Fujimoto K, Hirano A, Watanabe Y, Shimabara A, Nakamura S. The Inhibition Effect of Photo-Cross-Linking between Probes in Photo-Induced Double Duplex Invasion DNA. Chembiochem 2021; 22:3402-3405. [PMID: 34643012 DOI: 10.1002/cbic.202100430] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/11/2021] [Indexed: 11/09/2022]
Abstract
Double duplex invasion (DDI) DNA is a useful antigene method that inhibits expression of genomic DNA. We succeeded in performing photoinduced-DDI (pDDI) using ultrafast photo-cross-linking. 5-Cyanouracil (CN U) has been used in pDDI to inhibit photo-cross-linking between probes, but its importance has not been clarified. Therefore, in this study, we evaluated the effect of spacer (S) and d-spacer (dS) that exhibit photo-cross-linking ability similar to that of CN U. CN U exhibited the highest pDDI efficiency, and S, dS, and T were not very different. The photo-cross-linking inhibitory effect was better with S and dS than with thymidine (T). Conversely, the thermal stability was significantly lower with S and dS than with T. The results suggest that the pDDI efficiency is determined by the balance between the photo-cross-linking inhibitory effect and the thermal stability, which is the introduction efficiency for double-stranded DNA. Therefore, CN U, which has a photo-cross-linking inhibitory effect and a high Tm value, showed the highest inhibitory efficiency.
Collapse
Affiliation(s)
- Kenzo Fujimoto
- School of Advanced Science and Technology, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, 923-1292 Nomi, Ishikawa, Japan
| | - Ayumu Hirano
- School of Advanced Science and Technology, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, 923-1292 Nomi, Ishikawa, Japan
| | - Yasuha Watanabe
- School of Advanced Science and Technology, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, 923-1292 Nomi, Ishikawa, Japan
| | - Ami Shimabara
- School of Advanced Science and Technology, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, 923-1292 Nomi, Ishikawa, Japan
| | - Shigetaka Nakamura
- School of Advanced Science and Technology, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, 923-1292 Nomi, Ishikawa, Japan
| |
Collapse
|
65
|
Mochizuki S, Miyamoto N, Sakurai K. Oligonucleotide delivery to antigen presenting cells by using schizophyllan. Drug Metab Pharmacokinet 2021; 42:100434. [PMID: 34896749 DOI: 10.1016/j.dmpk.2021.100434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 11/21/2021] [Accepted: 11/23/2021] [Indexed: 12/15/2022]
Abstract
Schizophyllan (SPG), a member of the β-glucan family, can form novel complexes with homo-polynucleotides such as poly(dA) through hydrogen bonding between two main chain glucoses and the one nucleotide base. Dectin-1, one of the major receptors for β-glucans, is known to be expressed on antigen presenting cells (APCs) such as macrophages and dendritic cells. This suggests that the above-mentioned complexes could deliver bound functional oligonucleotides (ODNs) including antisense (AS)-ODNs, small interfering RNA, and CpG-ODNs to the APCs. Analysis using a quartz crystal microbalance revealed that a complex consisting of SPG and dA60 with a phosphorothioate backbone was recognized by recombinant Dectin-1 protein. Treatment with this complex containing an AS-ODN for tumor necrosis factor alpha protected mice against lipopolysaccharide-induced hepatitis at a very low AS-ODN dose. Moreover, immunization with CpG-ODN/SPG complex and antigenic proteins induced potent antigen specific immune responses. The present review also represents peptide delivery by conjugation with dA60 and the preparation of a nanogel using DNA-DNA hybridization. These findings indicate that the delivery of a specific ODN using β-glucans could be used for treating various diseases caused by APCs and for activating antigen specific immune responses.
Collapse
Affiliation(s)
- Shinichi Mochizuki
- Department of Chemistry and Biochemistry, The University of Kitakyushu, 1-1, Hibikino, Wakamatsu-ku, Kitakyushu, Fukuoka, 808-0135, Japan.
| | - Noriko Miyamoto
- Department of Applied Chemistry, Aichi Institute of Technology, 1247, Yachigusa, Yakusacho, Toyota, Aichi, 470-0392, Japan
| | - Kazuo Sakurai
- Department of Chemistry and Biochemistry, The University of Kitakyushu, 1-1, Hibikino, Wakamatsu-ku, Kitakyushu, Fukuoka, 808-0135, Japan
| |
Collapse
|
66
|
Wdowikowska A, Janicka M. Antisense oligonucleotide technology as a research tool in plant biology. FUNCTIONAL PLANT BIOLOGY : FPB 2021; 49:1-12. [PMID: 34794541 DOI: 10.1071/fp21194] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/20/2021] [Indexed: 06/13/2023]
Abstract
An antisense oligonucleotide (ASO) is a short single-stranded deoxyribonucleotide complementary to the sense strand of a selected nucleic acid. As a result, an ASO can modulate gene expression through several mechanisms. The technology based on ASO has already been applied in studies on gene function in mammalian cells and selective therapeutic strategies for many diseases. The conceptual simplicity and low cost of this method, and the developments in the field of plant genome sequencing observed in the last decades, have paved the way for the ASO method also in plant biology. It is applied in gene function analysis as well as the development of non-invasive plant production technology involving gene modifications without transgenesis. Therefore, the first part of this review provides a comprehensive overview of the structure, mechanism of action and delivery methods of ASOs in plants and shows the most important features essential for the proper design of individual experiments. We also discuss potential issues and difficulties that may arise during practical ASO implementation. The second part of this article contains an analysis of ASO applications in various studies in the field of plant biology. We presented for the first time that ASOs were also successfully applied in cucumber.
Collapse
Affiliation(s)
- Anna Wdowikowska
- Department of Plant Molecular Physiology, Faculty of Biological Sciences, University of Wroclaw, Kanonia 6/8, 50-328 Wroclaw, Poland
| | - Malgorzata Janicka
- Department of Plant Molecular Physiology, Faculty of Biological Sciences, University of Wroclaw, Kanonia 6/8, 50-328 Wroclaw, Poland
| |
Collapse
|
67
|
Schneider N, Sundaresan Y, Gopalakrishnan P, Beryozkin A, Hanany M, Levanon EY, Banin E, Ben-Aroya S, Sharon D. Inherited retinal diseases: Linking genes, disease-causing variants, and relevant therapeutic modalities. Prog Retin Eye Res 2021; 89:101029. [PMID: 34839010 DOI: 10.1016/j.preteyeres.2021.101029] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 11/11/2021] [Accepted: 11/16/2021] [Indexed: 12/11/2022]
Abstract
Inherited retinal diseases (IRDs) are a clinically complex and heterogenous group of visual impairment phenotypes caused by pathogenic variants in at least 277 nuclear and mitochondrial genes, affecting different retinal regions, and depleting the vision of affected individuals. Genes that cause IRDs when mutated are unique by possessing differing genotype-phenotype correlations, varying inheritance patterns, hypomorphic alleles, and modifier genes thus complicating genetic interpretation. Next-generation sequencing has greatly advanced the identification of novel IRD-related genes and pathogenic variants in the last decade. For this review, we performed an in-depth literature search which allowed for compilation of the Global Retinal Inherited Disease (GRID) dataset containing 4,798 discrete variants and 17,299 alleles published in 31 papers, showing a wide range of frequencies and complexities among the 194 genes reported in GRID, with 65% of pathogenic variants being unique to a single individual. A better understanding of IRD-related gene distribution, gene complexity, and variant types allow for improved genetic testing and therapies. Current genetic therapeutic methods are also quite diverse and rely on variant identification, and range from whole gene replacement to single nucleotide editing at the DNA or RNA levels. IRDs and their suitable therapies thus require a range of effective disease modelling in human cells, granting insight into disease mechanisms and testing of possible treatments. This review summarizes genetic and therapeutic modalities of IRDs, provides new analyses of IRD-related genes (GRID and complexity scores), and provides information to match genetic-based therapies such as gene-specific and variant-specific therapies to the appropriate individuals.
Collapse
Affiliation(s)
- Nina Schneider
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, 91120, Israel
| | - Yogapriya Sundaresan
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, 91120, Israel
| | - Prakadeeswari Gopalakrishnan
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, 91120, Israel
| | - Avigail Beryozkin
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, 91120, Israel
| | - Mor Hanany
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, 91120, Israel
| | - Erez Y Levanon
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, 5290002, Israel
| | - Eyal Banin
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, 91120, Israel
| | - Shay Ben-Aroya
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, 5290002, Israel
| | - Dror Sharon
- Department of Ophthalmology, Hadassah Medical Center, Faculty of Medicine, The Hebrew University of Jerusalem, 91120, Israel.
| |
Collapse
|
68
|
Wang T, Li J, Yang L, Wu M, Ma Q. The Role of Long Non-coding RNAs in Human Imprinting Disorders: Prospective Therapeutic Targets. Front Cell Dev Biol 2021; 9:730014. [PMID: 34760887 PMCID: PMC8573313 DOI: 10.3389/fcell.2021.730014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 09/23/2021] [Indexed: 12/26/2022] Open
Abstract
Genomic imprinting is a term used for an intergenerational epigenetic inheritance and involves a subset of genes expressed in a parent-of-origin-dependent way. Imprinted genes are expressed preferentially from either the paternally or maternally inherited allele. Long non-coding RNAs play essential roles in regulating this allele-specific expression. In several well-studied imprinting clusters, long non-coding RNAs have been found to be essential in regulating temporal- and spatial-specific establishment and maintenance of imprinting patterns. Furthermore, recent insights into the epigenetic pathological mechanisms underlying human genomic imprinting disorders suggest that allele-specific expressed imprinted long non-coding RNAs serve as an upstream regulator of the expression of other protein-coding or non-coding imprinted genes in the same cluster. Aberrantly expressed long non-coding RNAs result in bi-allelic expression or silencing of neighboring imprinted genes. Here, we review the emerging roles of long non-coding RNAs in regulating the expression of imprinted genes, especially in human imprinting disorders, and discuss three strategies targeting the central long non-coding RNA UBE3A-ATS for the purpose of developing therapies for the imprinting disorders Prader-Willi syndrome and Angelman syndrome. In summary, a better understanding of long non-coding RNA-related mechanisms is key to the development of potential therapeutic targets for human imprinting disorders.
Collapse
Affiliation(s)
- Tingxuan Wang
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Jianjian Li
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Liuyi Yang
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Manyin Wu
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Qing Ma
- Shenzhen Key Laboratory of Synthetic Genomics, Guangdong Provincial Key Laboratory of Synthetic Genomics, CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
69
|
Raguraman P, Balachandran AA, Chen S, Diermeier SD, Veedu RN. Antisense Oligonucleotide-Mediated Splice Switching: Potential Therapeutic Approach for Cancer Mitigation. Cancers (Basel) 2021; 13:5555. [PMID: 34771719 PMCID: PMC8583451 DOI: 10.3390/cancers13215555] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/27/2021] [Accepted: 11/01/2021] [Indexed: 12/13/2022] Open
Abstract
Splicing is an essential process wherein precursor messenger RNA (pre-mRNA) is reshaped into mature mRNA. In alternative splicing, exons of any pre-mRNA get rearranged to form mRNA variants and subsequently protein isoforms, which are distinct both by structure and function. On the other hand, aberrant splicing is the cause of many disorders, including cancer. In the past few decades, developments in the understanding of the underlying biological basis for cancer progression and therapeutic resistance have identified many oncogenes as well as carcinogenic splice variants of essential genes. These transcripts are involved in various cellular processes, such as apoptosis, cell signaling and proliferation. Strategies to inhibit these carcinogenic isoforms at the mRNA level are promising. Antisense oligonucleotides (AOs) have been developed to inhibit the production of alternatively spliced carcinogenic isoforms through splice modulation or mRNA degradation. AOs can also be used to induce splice switching, where the expression of an oncogenic protein can be inhibited by the induction of a premature stop codon. In general, AOs are modified chemically to increase their stability and binding affinity. One of the major concerns with AOs is efficient delivery. Strategies for the delivery of AOs are constantly being evolved to facilitate the entry of AOs into cells. In this review, the different chemical modifications employed and delivery strategies applied are discussed. In addition to that various AOs in clinical trials and their efficacy are discussed herein with a focus on six distinct studies that use AO-mediated exon skipping as a therapeutic strategy to combat cancer.
Collapse
Affiliation(s)
- Prithi Raguraman
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Murdoch, WA 6150, Australia; (P.R.); (A.A.B.); (S.C.)
- Perron Institute for Neurological and Translational Science, Nedlands, WA 6009, Australia
| | - Akilandeswari Ashwini Balachandran
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Murdoch, WA 6150, Australia; (P.R.); (A.A.B.); (S.C.)
- Perron Institute for Neurological and Translational Science, Nedlands, WA 6009, Australia
| | - Suxiang Chen
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Murdoch, WA 6150, Australia; (P.R.); (A.A.B.); (S.C.)
- Perron Institute for Neurological and Translational Science, Nedlands, WA 6009, Australia
| | - Sarah D. Diermeier
- Department of Biochemistry, University of Otago, Dunedin 9016, New Zealand;
| | - Rakesh N. Veedu
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Murdoch, WA 6150, Australia; (P.R.); (A.A.B.); (S.C.)
- Perron Institute for Neurological and Translational Science, Nedlands, WA 6009, Australia
| |
Collapse
|
70
|
Gupta A, Andresen JL, Manan RS, Langer R. Nucleic acid delivery for therapeutic applications. Adv Drug Deliv Rev 2021; 178:113834. [PMID: 34492233 DOI: 10.1016/j.addr.2021.113834] [Citation(s) in RCA: 118] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/25/2021] [Accepted: 06/11/2021] [Indexed: 02/07/2023]
Abstract
Recent medical advances have exploited the ability to address a given disease at the underlying level of transcription and translation. These treatment paradigms utilize nucleic acids - including short interfering RNA (siRNA), microRNA (miRNA), antisense oligonucleotides (ASO), and messenger RNA (mRNA) - to achieve a desired outcome ranging from gene knockdown to induced expression of a selected target protein. Towards this end, numerous strategies for encapsulation or stabilization of various nucleic acid structures have been developed in order to achieve intracellular delivery. In this review, we discuss several therapeutic applications of nucleic acids directed towards specific diseases and tissues of interest, in particular highlighting recent technologies which have reached late-stage clinical trials and received FDA approval.
Collapse
Affiliation(s)
- Akash Gupta
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA
| | - Jason L Andresen
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA; Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Rajith S Manan
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Robert Langer
- David H Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 500 Main Street, Cambridge, MA 02139, USA; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
71
|
Gill T, Wang H, Bandaru R, Lawlor M, Lu C, Nieman LT, Tao J, Zhang Y, Anderson DG, Ting DT, Chen X, Bradner JE, Ott CJ. Selective targeting of MYC mRNA by stabilized antisense oligonucleotides. Oncogene 2021; 40:6527-6539. [PMID: 34650218 PMCID: PMC8627489 DOI: 10.1038/s41388-021-02053-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 09/07/2021] [Accepted: 09/30/2021] [Indexed: 12/30/2022]
Abstract
MYC is a prolific proto-oncogene driving the malignant behaviors of numerous common cancers, yet potent and selective cell-permeable inhibitors of MYC remain elusive. In order to ultimately realize the goal of therapeutic MYC inhibition in cancer, we have initiated discovery chemistry efforts aimed at inhibiting MYC translation. Here we describe a series of conformationally stabilized synthetic antisense oligonucleotides designed to target MYC mRNA (MYCASOs). To support bioactivity, we designed and synthesized this focused library of MYCASOs incorporating locked nucleic acid (LNA) bases at the 5'- and 3'-ends, a phosphorothioate backbone, and internal DNA bases. Treatment of MYC-expressing cancer cells with MYCASOs leads to a potent decrease in MYC mRNA and protein levels. Cleaved MYC mRNA in MYCASO-treated cells is detected with a sensitive 5' Rapid Amplification of cDNA Ends (RACE) assay. MYCASO treatment of cancer cell lines leads to significant inhibition of cellular proliferation while specifically perturbing MYC-driven gene expression signatures. In a MYC-induced model of hepatocellular carcinoma, MYCASO treatment decreases MYC protein levels within tumors, decreases tumor burden, and improves overall survival. MYCASOs represent a new chemical tool for in vitro and in vivo modulation of MYC activity, and promising therapeutic agents for MYC-addicted tumors.
Collapse
Affiliation(s)
- Taylor Gill
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA
- Broad Institute of MIT & Harvard, Cambridge, MA, 02142, USA
| | - Haichuan Wang
- Department of Bioengineering and Therapeutic Sciences, University of California-San Francisco, San Francisco, CA, 94143, USA
| | - Raj Bandaru
- ENZON Pharmaceuticals, Cranford, NJ, 07016, USA
| | - Matthew Lawlor
- Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA, 02129, USA
| | - Chenyue Lu
- Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA, 02129, USA
| | - Linda T Nieman
- Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA, 02129, USA
| | - Junyan Tao
- Department of Bioengineering and Therapeutic Sciences, University of California-San Francisco, San Francisco, CA, 94143, USA
| | | | - Daniel G Anderson
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
- Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
| | - David T Ting
- Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA, 02129, USA
- Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA
| | - Xin Chen
- Department of Bioengineering and Therapeutic Sciences, University of California-San Francisco, San Francisco, CA, 94143, USA
| | - James E Bradner
- Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA.
- Novartis Institutes for BioMedical Research, Cambridge, MA, 02139, USA.
| | - Christopher J Ott
- Broad Institute of MIT & Harvard, Cambridge, MA, 02142, USA.
- Center for Cancer Research, Massachusetts General Hospital, Charlestown, MA, 02129, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
72
|
Shadid M, Badawi M, Abulrob A. Antisense oligonucleotides: absorption, distribution, metabolism, and excretion. Expert Opin Drug Metab Toxicol 2021; 17:1281-1292. [PMID: 34643122 DOI: 10.1080/17425255.2021.1992382] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION Antisense oligonucleotides (ASOs) have emerged as a promising novel drug modality that aims to address unmet medical needs. A record of six ASO drugs have been approved since 2016, and more candidates are in clinical development. ASOs are the most advanced class within the RNA-based therapeutics field. AREAS COVERED This review highlights the two major backbones that are currently used to build the most advanced ASO platforms - the phosphorodiamidate morpholino oligomers (PMOs) and the phosphorothioates (PSs). The absorption, distribution, metabolism, and excretion (ADME) properties of the PMO and PS platforms are discussed in detail. EXPERT OPINION Understanding the ADME properties of existing ASOs can foster further improvement of this cutting-edge therapy, thereby enabling researchers to safely develop ASO drugs and enhancing their ability to innovate. ABBREVIATIONS 2'-MOE, 2'-O-methoxyethyl; 2'PS, 2 modified PS; ADME, absorption, distribution, metabolism, and excretion; ASO, antisense oligonucleotide; AUC, area under the curve; BNA, bridged nucleic acid; CPP, cell-penetrating peptide; CMV, cytomegalovirus; CNS, central nervous system; CYP, cytochrome P; DDI, drug-drug interaction; DMD, Duchenne muscular dystrophy; FDA, Food and Drug Administration; GalNAc3, triantennary N-acetyl galactosamine; IT, intrathecal; IV, intravenous; LNA, locked nucleic acid; mRNA, messenger RNA; NA, not applicable; PBPK, physiologically based pharmacokinetics; PD, pharmacodynamic; PK, pharmacokinetic; PMO, phosphorodiamidate morpholino oligomer; PMOplus, PMOs with positionally specific positive molecular charges; PPMO, peptide-conjugated PMO; PS, phosphorothioate; SC, subcutaneous; siRNA, small-interfering RNA; SMA, spinal muscular atrophy.
Collapse
Affiliation(s)
- Mohammad Shadid
- Nonclinical Development, Sarepta Therapeutics, Inc, Cambridge, MA, USA
| | - Mohamed Badawi
- Clinical Pharmacology Fellow, Ohio State University, Columbus, OH, USA
| | - Abedelnasser Abulrob
- Senior Research Officer, Human Health Therapeutics Centre, Translational Bioscience, National Research Council Canada, Ottawa, Ontario, Canada.,Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
73
|
McIntosh CS, Li D, Wilton SD, Aung-Htut MT. Polyglutamine Ataxias: Our Current Molecular Understanding and What the Future Holds for Antisense Therapies. Biomedicines 2021; 9:1499. [PMID: 34829728 PMCID: PMC8615177 DOI: 10.3390/biomedicines9111499] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/13/2021] [Accepted: 10/14/2021] [Indexed: 02/07/2023] Open
Abstract
Polyglutamine (polyQ) ataxias are a heterogenous group of neurological disorders all caused by an expanded CAG trinucleotide repeat located in the coding region of each unique causative gene. To date, polyQ ataxias encompass six disorders: spinocerebellar ataxia types 1, 2, 3, 6, 7, and 17 and account for a larger group of disorders simply known as polyglutamine disorders, which also includes Huntington's disease. These diseases are typically characterised by progressive ataxia, speech and swallowing difficulties, lack of coordination and gait, and are unfortunately fatal in nature, with the exception of SCA6. All the polyQ spinocerebellar ataxias have a hallmark feature of neuronal aggregations and share many common pathogenic mechanisms, such as mitochondrial dysfunction, impaired proteasomal function, and autophagy impairment. Currently, therapeutic options are limited, with no available treatments that slow or halt disease progression. Here, we discuss the common molecular and clinical presentations of polyQ spinocerebellar ataxias. We will also discuss the promising antisense oligonucleotide therapeutics being developed as treatments for these devastating diseases. With recent advancements and therapeutic approvals of various antisense therapies, it is envisioned that some of the studies reviewed may progress into clinical trials and beyond.
Collapse
Affiliation(s)
- Craig S. McIntosh
- Molecular Therapy Laboratory, Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute Murdoch University, Discovery Way, Murdoch, WA 6150, Australia; (C.S.M.); (D.L.); (S.D.W.)
- Perron Institute for Neurological and Translational Science, Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Nedlands, WA 6009, Australia
| | - Dunhui Li
- Molecular Therapy Laboratory, Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute Murdoch University, Discovery Way, Murdoch, WA 6150, Australia; (C.S.M.); (D.L.); (S.D.W.)
- Perron Institute for Neurological and Translational Science, Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Nedlands, WA 6009, Australia
| | - Steve D. Wilton
- Molecular Therapy Laboratory, Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute Murdoch University, Discovery Way, Murdoch, WA 6150, Australia; (C.S.M.); (D.L.); (S.D.W.)
- Perron Institute for Neurological and Translational Science, Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Nedlands, WA 6009, Australia
| | - May T. Aung-Htut
- Molecular Therapy Laboratory, Centre for Molecular Medicine and Innovative Therapeutics, Health Futures Institute Murdoch University, Discovery Way, Murdoch, WA 6150, Australia; (C.S.M.); (D.L.); (S.D.W.)
- Perron Institute for Neurological and Translational Science, Centre for Neuromuscular and Neurological Disorders, The University of Western Australia, Nedlands, WA 6009, Australia
| |
Collapse
|
74
|
Mendoza FA, Jimenez SA. Serine-Threonine Kinase inhibition as antifibrotic therapy: TGF-β and ROCK inhibitors. Rheumatology (Oxford) 2021; 61:1354-1365. [PMID: 34664623 DOI: 10.1093/rheumatology/keab762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/18/2021] [Accepted: 09/23/2021] [Indexed: 11/13/2022] Open
Abstract
Serine-threonine kinases mediate the phosphorylation of intracellular protein targets, transferring a phosphorus group from an ATP molecule to the specific amino acid residues within the target proteins. Serine-threonine kinases regulate multiple key cellular functions. From this large group of kinases, transforming growth factor beta (TGF-β) through the serine-threonine activity of its receptors and Rho kinase (ROCK) play an important role in the development and maintenance of fibrosis in various human diseases, including systemic sclerosis. In recent years, multiple drugs targeting and inhibiting these kinases, have been developed, opening the possibility of becoming potential antifibrotic agents of clinical value for treating fibrotic diseases. This review analyzes the contribution of TGF- β and ROCK-mediated serine-threonine kinase molecular pathways to the development and maintenance of pathological fibrosis and the potential clinical use of their inhibition.
Collapse
Affiliation(s)
- Fabian A Mendoza
- Division of Rheumatology, Department of Medicine. Thomas Jefferson University. Philadelphia, PA, USA 19107.,Jefferson Institute of Molecular Medicine and Scleroderma Center. Thomas Jefferson University. Philadelphia, PA, USA 19107
| | - Sergio A Jimenez
- Jefferson Institute of Molecular Medicine and Scleroderma Center. Thomas Jefferson University. Philadelphia, PA, USA 19107
| |
Collapse
|
75
|
Araújo D, Mil-Homens D, Rodrigues ME, Henriques M, Jørgensen PT, Wengel J, Silva S. Antisense locked nucleic acid gapmers to control Candida albicans filamentation. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2021; 39:102469. [PMID: 34606999 DOI: 10.1016/j.nano.2021.102469] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 07/21/2021] [Accepted: 08/05/2021] [Indexed: 11/17/2022]
Abstract
Whereas locked nucleic acid (LNA) has been extensively used to control gene expression, it has never been exploited to control Candida virulence genes. Thus, the main goal of this work was to compare the efficacy of five different LNA-based antisense oligonucleotides (ASO) with respect to the ability to control EFG1 gene expression, to modulate filamentation and to reduce C. albicans virulence. In vitro, all LNA-ASOs were able to significantly reduce C. albicans filamentation and to control EFG1 gene expression. Using the in vivo Galleria mellonella model, important differences among the five LNA-ASOs were revealed in terms of C. albicans virulence reduction. The inclusion of PS-linkage and palmitoyl-2'-amino-LNA chemical modification in these five LNA gapmers proved to be the most promising combination, increasing the survival of G. mellonella by 40%. Our work confirms that LNA-ASOs are useful tools for research and therapeutic development in the candidiasis field.
Collapse
Affiliation(s)
- Daniela Araújo
- LIBRO-Laboratório de Investigação em Biofilmes Rosário Oliveira, CEB-Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Dalila Mil-Homens
- iBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Lisbon University, Lisbon, Portugal
| | - Maria Elisa Rodrigues
- LIBRO-Laboratório de Investigação em Biofilmes Rosário Oliveira, CEB-Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Mariana Henriques
- LIBRO-Laboratório de Investigação em Biofilmes Rosário Oliveira, CEB-Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Per Trolle Jørgensen
- Biomolecular Nanoscale Engineering Center, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense M, Denmark
| | - Jesper Wengel
- Biomolecular Nanoscale Engineering Center, Department of Physics, Chemistry and Pharmacy, University of Southern Denmark, Odense M, Denmark
| | - Sónia Silva
- LIBRO-Laboratório de Investigação em Biofilmes Rosário Oliveira, CEB-Centre of Biological Engineering, University of Minho, Braga, Portugal; National Institute for Agrarian and Veterinary Research, Vairão, Vila do Conde, Portugal.
| |
Collapse
|
76
|
Kim SW, Cho YI, Jung KE. Avoiding
High‐Pressure
Problem for Modified
RNA
‐attached Polystyrene Support by
Pre‐Swelling
Using Toluene in the Oligonucleotide Synthesis. B KOREAN CHEM SOC 2021. [DOI: 10.1002/bkcs.12366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Sung Won Kim
- Research Center, Oligo CDMO, ST Pharm Siheung 15086 South Korea
- Catholic University Department of Biotechnology Bucheon 14662 South Korea
| | - Yang Il Cho
- Research Center, Oligo CDMO, ST Pharm Siheung 15086 South Korea
| | - Kyeong Eun Jung
- Research Center, Oligo CDMO, ST Pharm Siheung 15086 South Korea
| |
Collapse
|
77
|
Pandya N, Bhagwat SR, Kumar A. Regulatory role of Non-canonical DNA Polymorphisms in human genome and their relevance in Cancer. Biochim Biophys Acta Rev Cancer 2021; 1876:188594. [PMID: 34303788 DOI: 10.1016/j.bbcan.2021.188594] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/19/2021] [Accepted: 07/19/2021] [Indexed: 12/17/2022]
Abstract
DNA has the ability to form polymorphic structures like canonical duplex DNA and non-canonical triplex DNA, Cruciform, Z-DNA, G-quadruplex (G4), i-motifs, and hairpin structures. The alteration in the form of DNA polymorphism in the response to environmental changes influences the gene expression. Non-canonical structures are engaged in various biological functions, including chromatin epigenetic and gene expression regulation via transcription and translation, as well as DNA repair and recombination. The presence of non-canonical structures in the regulatory region of the gene alters the gene expression and affects the cellular machinery. Formation of non-canonical structure in the regulatory site of cancer-related genes either inhibits or dysregulate the gene function and promote tumour formation. In the current article, we review the influence of non-canonical structure on the regulatory mechanisms in human genome. Moreover, we have also discussed the relevance of non-canonical structures in cancer and provided information on the drugs used for their treatment by targeting these structures.
Collapse
Affiliation(s)
- Nirali Pandya
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore 453552, India
| | - Sonali R Bhagwat
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore 453552, India
| | - Amit Kumar
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Simrol, Indore 453552, India.
| |
Collapse
|
78
|
Isom LL, Knupp KG. Dravet Syndrome: Novel Approaches for the Most Common Genetic Epilepsy. Neurotherapeutics 2021; 18:1524-1534. [PMID: 34378168 PMCID: PMC8608987 DOI: 10.1007/s13311-021-01095-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/21/2021] [Indexed: 02/04/2023] Open
Abstract
Dravet syndrome (DS) is a severe developmental and epileptic encephalopathy that is mainly associated with variants in SCN1A. While drug-resistant epilepsy is the most notable feature of this syndrome, numerous symptoms are present that have significant impact on patients' quality of life. In spite of novel, third-generation anti-seizure treatment options becoming available over the last several years, seizure freedom is often not attained and non-seizure symptoms remain. Precision medicine now offers realistic hope for seizure freedom in DS patients, with several approaches demonstrating preclinical success. Therapeutic approaches such as antisense oligonucleotides (ASO) and adeno-associated virus (AAV)-delivered gene modulation have expanded the potential treatment options for DS, with some of these approaches now transitioning to clinical trials. Several of these treatments may risk the exacerbation of gain-of-function variants and may not be reversible, therefore emphasizing the need for functional testing of new pathogenic variants. The current absence of treatments that address the overall disease, in addition to seizures, exposes the urgent need for reliable, valid measures of the entire complement of symptoms as outcome measures to truly know the impact of treatments on DS. Additionally, with so many treatment options on the horizon, there will be a need to understand how to select appropriate patients for each treatment, whether treatments are complementary or adverse to each other, and long-term risks of the treatment. Nevertheless, precision therapeutics hold tremendous potential to provide long-lasting seizure freedom and even complete cures for this devastating disease.
Collapse
Affiliation(s)
- Lori L Isom
- Department of Pharmacology, Department of Neurology, Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, MI, 48109-5632, USA.
| | - Kelly G Knupp
- Department of Pediatrics and Neurology, University of Colorado, Anschutz Medical Campus, Aurora, CO, 80045, USA.
| |
Collapse
|
79
|
Barbosa A, Araújo D, Henriques M, Silva S. The combined application of the anti-RAS1 and anti-RIM101 2'-OMethylRNA oligomers enhances Candida albicans filamentation control. Med Mycol 2021; 59:1024-1031. [PMID: 34097057 DOI: 10.1093/mmy/myab033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 05/12/2021] [Accepted: 06/02/2021] [Indexed: 01/30/2023] Open
Abstract
Whereas antisense oligomers (ASOs) have been successfully utilized to control gene expression, they have been little exploited to control Candida albicans virulence's determinants. Filamentation is an important virulence factor of C. albicans, and RAS1 and RIM101 genes are involved in its regulation. Thus, the main goal of this work was to project ASOs, based on 2'-OMethyl chemical modification, to target RAS1 and RIM101 mRNA and to validate its application either alone or in combination, to reduce Candida filamentation in different human body fluids.It was verified that both, anti-RAS1 2'OMe and anti-RIM101 2'OMe oligomers, were able to reduce the levels of RAS1 and RIM101 genes' expression and to significantly reduce C. albicans filamentation. Furthermore, the combined application of anti-RAS1 2'OMe oligomer and anti-RIM101 2'OMe oligomer enhances the control of C. albicans filamentation in artificial saliva and urine.Our work confirms that ASOs are useful tools for research and therapeutic development on the control of candidiasis. LAY ABSTRACT This work aimed to project antisense oligomers to control Candida albicans filamentation. The results revealed that the projected oligomers, anti-RAS1 2'OMe and anti-RIM101 2'OMe, were able to control RAS1 and RIM101 gene expression and to significantly reduce C. albicans filamentation.
Collapse
Affiliation(s)
- Ana Barbosa
- LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Daniela Araújo
- LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Mariana Henriques
- LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Sónia Silva
- LIBRO - Laboratório de Investigação em Biofilmes Rosário Oliveira, CEB - Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| |
Collapse
|
80
|
Alafeef M, Moitra P, Dighe K, Pan D. RNA-extraction-free nano-amplified colorimetric test for point-of-care clinical diagnosis of COVID-19. Nat Protoc 2021; 16:3141-3162. [PMID: 33931780 DOI: 10.1038/s41596-021-00546-w] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 03/30/2021] [Indexed: 02/07/2023]
Abstract
The global pandemic of coronavirus disease 2019 (COVID-19) highlights the shortcomings of the current testing paradigm for viral disease diagnostics. Here, we report a stepwise protocol for an RNA-extraction-free nano-amplified colorimetric test for rapid and naked-eye molecular diagnosis of COVID-19. The test employs a unique dual-prong approach that integrates nucleic acid (NA) amplification and plasmonic sensing for point-of-care detection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), with a sample-to-assay response time of <1 h. The RNA-extraction-free nano-amplified colorimetric test utilizes plasmonic gold nanoparticles capped with antisense oligonucleotides (ASOs) as a colorimetric reporter to detect the amplified nucleic acid from the COVID-19 causative virus, SARS-CoV-2. The ASOs are specific for the SARS-CoV-2 N-gene, and binding of the ASOs to their target sequence results in the aggregation of the plasmonic gold nanoparticles. This highly specific agglomeration step leads to a change in the plasmonic response of the nanoparticles. Furthermore, when tested using clinical samples, the accuracy, sensitivity and specificity of the test were found to be >98.4%, >96.6% and 100%, respectively, with a detection limit of 10 copies/μL. The test can easily be adapted to diagnose other viral infections with a simple modification of the ASOs and primer sequences. It also provides a low-cost, rapid approach requiring minimal instrumentation that can be used as a screening tool for the diagnosis of COVID-19 at point-of-care settings in resource-poor situations. The colorimetric readout of the test can even be monitored using a handheld optical reader to obtain a quantitative response. Therefore, we anticipate that this protocol will be widely useful for the development of biosensors for the molecular diagnostics of COVID-19 and other infectious diseases.
Collapse
Affiliation(s)
- Maha Alafeef
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Biomedical Engineering Department, Jordan University of Science and Technology, Irbid, Jordan.,Departments of Diagnostic Radiology and Nuclear Medicine and Pediatrics, Center for Blood Oxygen Transport and Hemostasis, University of Maryland Baltimore School of Medicine, Baltimore, MD, USA.,Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, Baltimore, MD, USA
| | - Parikshit Moitra
- Departments of Diagnostic Radiology and Nuclear Medicine and Pediatrics, Center for Blood Oxygen Transport and Hemostasis, University of Maryland Baltimore School of Medicine, Baltimore, MD, USA
| | - Ketan Dighe
- Departments of Diagnostic Radiology and Nuclear Medicine and Pediatrics, Center for Blood Oxygen Transport and Hemostasis, University of Maryland Baltimore School of Medicine, Baltimore, MD, USA.,Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, Baltimore, MD, USA
| | - Dipanjan Pan
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA. .,Departments of Diagnostic Radiology and Nuclear Medicine and Pediatrics, Center for Blood Oxygen Transport and Hemostasis, University of Maryland Baltimore School of Medicine, Baltimore, MD, USA. .,Department of Chemical, Biochemical and Environmental Engineering, University of Maryland Baltimore County, Baltimore, MD, USA.
| |
Collapse
|
81
|
Romero-Palomo F, Festag M, Lenz B, Schadt S, Brink A, Kipar A, Steinhuber B, Husser C, Koller E, Sewing S, Tessier Y, Dzygiel P, Fischer G, Winter M, Hetzel U, Mihatsch MJ, Braendli-Baiocco A. Safety, Tissue Distribution, and Metabolism of LNA-Containing Antisense Oligonucleotides in Rats. Toxicol Pathol 2021; 49:1174-1192. [PMID: 34060347 DOI: 10.1177/01926233211011615] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Antisense oligonucleotides (ASOs) are chemically modified nucleic acids with therapeutic potential, some of which have been approved for marketing. We performed a study in rats to investigate mechanisms of toxicity after administration of 3 tool locked nucleic acid (LNA)-containing ASOs with differing established safety profiles. Four male rats per group were dosed once, 3, or 6 times subcutaneously, with 7 days between dosing, and sacrificed 3 days after the last dose. These ASOs were either unconjugated (naked) or conjugated with N-acetylgalactosamine for hepatocyte-targeted delivery. The main readouts were in-life monitoring, clinical and anatomic pathology, exposure assessment and metabolite identification in liver and kidney by liquid chromatography coupled to tandem mass spectrometry, ASO detection in liver and kidney by immunohistochemistry, in situ hybridization, immune electron microscopy, and matrix-assisted laser desorption/ionization mass spectrometry imaging. The highly toxic compounds showed the greatest amount of metabolites and a low degree of tissue accumulation. This study reveals different patterns of cell death associated with toxicity in liver (apoptosis and necrosis) and kidney (necrosis only) and provides new ultrastructural insights on the tissue accumulation of ASOs. We observed that the immunostimulatory properties of ASOs can be either primary from sequence-dependent properties or secondary to cell necrosis.
Collapse
Affiliation(s)
- Fernando Romero-Palomo
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, 1529Roche Innovation Center Basel, Switzerland
| | - Matthias Festag
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, 1529Roche Innovation Center Basel, Switzerland
| | - Barbara Lenz
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, 1529Roche Innovation Center Basel, Switzerland
| | - Simone Schadt
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, 1529Roche Innovation Center Basel, Switzerland
| | - Andreas Brink
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, 1529Roche Innovation Center Basel, Switzerland
| | - Anja Kipar
- Laboratory for Animal Model Pathology (LAMP), Institute of Veterinary Pathology, 30843Vetsuisse Faculty, University of Zürich, Switzerland
| | - Bernd Steinhuber
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, 1529Roche Innovation Center Basel, Switzerland
| | - Christophe Husser
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, 1529Roche Innovation Center Basel, Switzerland
| | - Erich Koller
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, 1529Roche Innovation Center Basel, Switzerland
| | - Sabine Sewing
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, 1529Roche Innovation Center Basel, Switzerland
| | - Yann Tessier
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, 1529Roche Innovation Center Basel, Switzerland
| | - Pawel Dzygiel
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, 1529Roche Innovation Center Basel, Switzerland
| | - Guy Fischer
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, 1529Roche Innovation Center Basel, Switzerland
| | - Michael Winter
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, 1529Roche Innovation Center Basel, Switzerland
| | - Udo Hetzel
- Electron Microscopy Unit, Institute of Veterinary Pathology, 27217Vetsuisse Faculty, University of Zürich, Switzerland
| | - Michael J Mihatsch
- 361703Institute for Pathology, University Hospital of Basel, Switzerland
| | - Annamaria Braendli-Baiocco
- Roche Pharma Research and Early Development, Pharmaceutical Sciences, 1529Roche Innovation Center Basel, Switzerland
| |
Collapse
|
82
|
Uppuladinne MVN, Dowerah D, Sonavane UB, Ray SK, Deka RC, Joshi RR. Structural insight into locked nucleic acid based novel antisense modifications: A DFT calculations at monomer and MD simulations at oligomer level. J Mol Graph Model 2021; 107:107945. [PMID: 34102527 DOI: 10.1016/j.jmgm.2021.107945] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/04/2021] [Accepted: 05/17/2021] [Indexed: 11/25/2022]
Abstract
In the present study, five novel LNA based antisense modifications have been proposed. A conformational search was carried out using TANGO, followed by geometry optimization using MOPAC. Based on their electronic energies the most stable conformation for each modification was identified. Further, DFT based full geometry optimization on the most stable conformations at the gas phase B3LYP/6-31G(d,p) using a Gaussian03 and single point energy calculations on the optimized structures at the solvent phase B3LYP/6-311G(d,p) level of theory were done to derive their quantum chemical descriptors using the Gaussian09. A comparison of global reactivity descriptors confirmed that the LNA based modifications were the most reactive. Base-pair stability was recorded by observing the binding energies and base-pairing conformations of modified GC base pairs at the B3LYP/6-311G(d,p) level of theory. Molecular dynamics simulations have been performed at the oligomer duplex level by incorporating individual modifications on 20-mer RNA-RNA duplexes using AMBER16. Free energy calculations of duplex structures suggested that incorporation of A2 modification into the RNA-RNA duplex increased the duplex binding affinity similar to LNA. Whereas, the A3 modification showed less binding compared to LNA but improved binding compared to MOE. This computational approach using quantum chemical methods may be very useful to propose better modifications than the existing ones before performing the experiments in the area of antisense technology.
Collapse
Affiliation(s)
- Mallikarjunachari V N Uppuladinne
- HPC - Medical & Bioinformatics Applications Group, Centre for Development of Advanced Computing (C-DAC), Panchavati, Pashan, Pune, India.
| | - Dikshita Dowerah
- Department of Chemical Sciences, Tezpur University, Assam, India.
| | - Uddhavesh B Sonavane
- HPC - Medical & Bioinformatics Applications Group, Centre for Development of Advanced Computing (C-DAC), Panchavati, Pashan, Pune, India.
| | - Suvendra Kumar Ray
- Department of Molecular Biology and Biotechnology, Tezpur University, Assam, India.
| | - Ramesh C Deka
- Department of Chemical Sciences, Tezpur University, Assam, India.
| | - Rajendra R Joshi
- HPC - Medical & Bioinformatics Applications Group, Centre for Development of Advanced Computing (C-DAC), Panchavati, Pashan, Pune, India.
| |
Collapse
|
83
|
Beha MJ, Ryu JS, Kim YS, Chung HJ. Delivery of antisense oligonucleotides using multi-layer coated gold nanoparticles to methicillin-resistant S. aureus for combinatorial treatment. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 126:112167. [PMID: 34082968 DOI: 10.1016/j.msec.2021.112167] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 04/19/2021] [Accepted: 04/30/2021] [Indexed: 11/27/2022]
Abstract
The spread of multidrug-resistant (MDR) bacterial infections has become a serious global threat. We introduce multi-layer coated gold nanoparticles (MLGNPs) delivering antisense oligonucleotides (ASOs) targeting the resistance gene of methicillin-resistant Staphylococcus aureus (MRSA), as a selective antimicrobial by restoring susceptibility. MLGNPs were prepared by multi-step surface immobilization of gold nanoparticles (GNPs) with polyethylenimine (PEI) and loaded with ASO targeting the mecA gene. The MLGNPs were shown to be efficiently internalized into various types of Gram-positive bacteria, including MRSA, Staphylococcus epidermidis, and Bacillus subtilis, which was superior to single-layer coated GNPs and free PEI polymer. The delivery of MLGNPs into MRSA resulted in up to 74% silencing of the mecA gene with high selectivity, in a dose-dependent manner. The treatment of MLGNPs to MRSA in the presence of oxacillin, a beta-lactam antibiotic, showed major suppression (~71%) of bacterial growth, due to the recovery of antibacterial sensitivity. Furthermore, the treatment of MLGNPs in a complex system showed preferential uptake into bacteria over mammalian cells, demonstrating the suitable characteristics of MLGNPs for selective delivery into bacteria. The current approach can be potentially applied for targeting various types of MDR bacterial infections by specific silencing of a resistance gene, as a combinatorial therapeutic used with conventional antibiotics.
Collapse
Affiliation(s)
- Marcel Janis Beha
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Jea Sung Ryu
- Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea
| | - Yang Soo Kim
- Division of Infectious Diseases, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Republic of Korea
| | - Hyun Jung Chung
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea; Graduate School of Nanoscience and Technology, Korea Advanced Institute of Science and Technology, Daejeon, Republic of Korea.
| |
Collapse
|
84
|
Stolte B, Nonnemacher M, Kizina K, Bolz S, Totzeck A, Thimm A, Wagner B, Deuschl C, Kleinschnitz C, Hagenacker T. Nusinersen treatment in adult patients with spinal muscular atrophy: a safety analysis of laboratory parameters. J Neurol 2021; 268:4667-4679. [PMID: 33899154 PMCID: PMC8563549 DOI: 10.1007/s00415-021-10569-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 11/29/2022]
Abstract
Background Nusinersen is an intrathecally administered antisense oligonucleotide (ASO) that improves motor function in patients with spinal muscular atrophy (SMA). In addition to efficacy, the safety of a therapy is the decisive factor for the success of the treatment. For some ASOs, various organ toxicities have been described, such as thrombocytopenia, renal and liver impairment, or coagulation abnormalities. However, systematic data on laboratory parameters under treatment with nusinersen are mainly available from studies in infants and children. Therefore, our aim was to assess the safety of nusinersen therapy in adult SMA patients. Methods Laboratory data from 404 nusinersen injections performed in 50 adult patients with SMA type 2 and type 3 were retrospectively analyzed. Results The total observation period was 76.9 patient-years, and patients received up to 12 injections. Our data provides no new safety concerns. In cerebrospinal fluid (CSF), the mean white blood cell count and lactate remained stable over time. Total CSF protein increased by 2.9 mg/dL. No change in mean platelet count was observed under therapy. Only one patient showed sporadic mild thrombocytopenia. Coagulation parameters and inflammatory markers were stable. The mean creatinine level decreased by 0.09 mg/dL. Analysis of mean liver enzyme levels revealed no relevant changes during treatment. Conclusion Our data demonstrate a favorable safety profile of nusinersen therapy in adult SMA patients under longer-term “real-world” conditions. In particular, we found no evidence of clinically relevant platelet declines, coagulopathies, or renal or hepatic organ toxicities, which are common concerns with the use of ASOs. Supplementary Information The online version contains supplementary material available at 10.1007/s00415-021-10569-8.
Collapse
Affiliation(s)
- Benjamin Stolte
- Department of Neurology, University Hospital Essen, Hufelandstr. 55, 45147, Essen, Germany.,Center for Translational and Behavioral Neuroscience, University Hospital Essen, Essen, Germany
| | - Michael Nonnemacher
- Institute for Medical Informatics, Biometrics and Epidemiology, University Hospital Essen, Essen, Germany
| | - Kathrin Kizina
- Department of Neurology, University Hospital Essen, Hufelandstr. 55, 45147, Essen, Germany.,Center for Translational and Behavioral Neuroscience, University Hospital Essen, Essen, Germany
| | - Saskia Bolz
- Department of Neurology, University Hospital Essen, Hufelandstr. 55, 45147, Essen, Germany.,Center for Translational and Behavioral Neuroscience, University Hospital Essen, Essen, Germany
| | - Andreas Totzeck
- Department of Neurology, University Hospital Essen, Hufelandstr. 55, 45147, Essen, Germany.,Center for Translational and Behavioral Neuroscience, University Hospital Essen, Essen, Germany
| | - Andreas Thimm
- Department of Neurology, University Hospital Essen, Hufelandstr. 55, 45147, Essen, Germany.,Center for Translational and Behavioral Neuroscience, University Hospital Essen, Essen, Germany
| | - Bernd Wagner
- Department of Clinical Chemistry, University Hospital Essen, Essen, Germany
| | - Cornelius Deuschl
- Institute for Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Essen, Germany.,Center for Translational and Behavioral Neuroscience, University Hospital Essen, Essen, Germany
| | - Christoph Kleinschnitz
- Department of Neurology, University Hospital Essen, Hufelandstr. 55, 45147, Essen, Germany.,Center for Translational and Behavioral Neuroscience, University Hospital Essen, Essen, Germany
| | - Tim Hagenacker
- Department of Neurology, University Hospital Essen, Hufelandstr. 55, 45147, Essen, Germany. .,Center for Translational and Behavioral Neuroscience, University Hospital Essen, Essen, Germany.
| |
Collapse
|
85
|
Fuller-Carter PI, Basiri H, Harvey AR, Carvalho LS. Focused Update on AAV-Based Gene Therapy Clinical Trials for Inherited Retinal Degeneration. BioDrugs 2021; 34:763-781. [PMID: 33136237 DOI: 10.1007/s40259-020-00453-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Inherited retinal diseases (IRDs) comprise a clinically and genetically heterogeneous group of disorders that can ultimately result in photoreceptor dysfunction/death and vision loss. With over 270 genes known to be involved in IRDs, translation of treatment strategies into clinical applications has been historically difficult. However, in recent years there have been significant advances in basic research findings as well as translational studies, culminating in an increasing number of clinical trials with the ultimate goal of reducing vision loss and associated morbidities. The recent approval of Luxturna® (voretigene neparvovec-rzyl) for Leber congenital amaurosis type 2 (LCA2) prompts a review of the current clinical trials for IRDs, with a particular focus on the importance of adeno-associated virus (AAV)-based gene therapies. The present article reviews the current state of AAV use in gene therapy clinical trials for IRDs, with a brief background on AAV and the reasons behind its dominance in ocular gene therapy. It will also discuss pre-clinical progress in AAV-based therapies aimed at treating other ocular conditions that can have hereditable links, and what alternative technologies are progressing in the same therapeutic space.
Collapse
Affiliation(s)
- Paula I Fuller-Carter
- Centre for Ophthalmology and Visual Sciences (Incorporating Lions Eye Institute), The University of Western Australia, Nedlands, WA, Australia
| | - Hamed Basiri
- Centre for Ophthalmology and Visual Sciences (Incorporating Lions Eye Institute), The University of Western Australia, Nedlands, WA, Australia
| | - Alan R Harvey
- School of Human Sciences, The University of Western Australia, Crawley, WA, Australia.,Perron Institute for Neurological and Translational Science, Nedlands, WA, Australia
| | - Livia S Carvalho
- Centre for Ophthalmology and Visual Sciences (Incorporating Lions Eye Institute), The University of Western Australia, Nedlands, WA, Australia.
| |
Collapse
|
86
|
Oliveira R, Azevedo AS, Mendes L. Application of Nucleic Acid Mimics in Fluorescence In Situ Hybridization. Methods Mol Biol 2021; 2246:69-86. [PMID: 33576983 DOI: 10.1007/978-1-0716-1115-9_5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Traditionally, RNA and DNA probes are used in fluorescence in situ hybridization (FISH) methods for microbial detection and characterization of communities' structure and diversity. However, the recent introduction of nucleic acid mimics (NAMs) has improved the robustness of the FISH methods in terms of sensitivity and specificity. Several NAMs have been used, of which the most relevant are peptide nucleic acid (PNA), locked nucleic acids (LNA), 2'-O-methyl RNA (2'OMe), and phosphorothioates (PS). In this chapter, we describe a protocol using PNA and LNA/2'OMe probes for microbial detection by FISH, pointing out the differences between them. These protocols are easily adapted to different microorganisms and different probe sequences.
Collapse
Affiliation(s)
- Ricardo Oliveira
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal.,INIAV - National Institute for Agrarian and Veterinarian Research, Rua dos Lagidos, Lugar da Madalena, Vairão, Vila do Conde, Portugal
| | - Andreia S Azevedo
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Department of Chemical Engineering, Faculty of Engineering, University of Porto, Porto, Portugal.,i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal.,IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, University of Porto, Porto, Portugal.,CEB - Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Luzia Mendes
- FMDUP - Faculty of Dental Medicine, University of Porto, Porto, Portugal.
| |
Collapse
|
87
|
Chan L, Yokota T. Development and Clinical Applications of Antisense Oligonucleotide Gapmers. Methods Mol Biol 2021; 2176:21-47. [PMID: 32865780 DOI: 10.1007/978-1-0716-0771-8_2] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
DNA-like molecules called antisense oligonucleotides have opened new treatment possibilities for genetic diseases by offering a method of regulating gene expression. Antisense oligonucleotides are often used to suppress the expression of mutated genes which may interfere with essential downstream pathways. Since antisense oligonucleotides have been introduced for clinical use, different chemistries have been developed to further improve efficacy, potency, and safety. One such chemistry is a chimeric structure of a central block of deoxyribonucleotides flanked by sequences of modified nucleotides. Referred to as a gapmer, this chemistry produced promising results in the treatment of genetic diseases. Mipomersen and inotersen are examples of recent FDA-approved antisense oligonucleotide gapmers used for the treatment of familial hypercholesterolemia and hereditary transthyretin amyloidosis, respectively. In addition, volanesorsen was conditionally approved in the EU for the treatment of adult patients with familial chylomicronemia syndrome (FCS) in 2019. Many others are being tested in clinical trials or under preclinical development. This chapter will cover the development of mipomersen and inotersen in clinical trials, along with advancement in gapmer treatments for cancer, triglyceride-elevating genetic diseases, Huntington's disease, myotonic dystrophy, and prion diseases.
Collapse
Affiliation(s)
- Leanna Chan
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.,Faculty of Arts and Science, University of Toronto, Toronto, ON, Canada
| | - Toshifumi Yokota
- Department of Medical Genetics, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada. .,Faculty of Arts and Science, University of Toronto, Toronto, ON, Canada. .,The Friends of Garrett Cumming Research and Muscular Dystrophy Canada HM Toupin Neurological Science Research Chair, Edmonton, AB, Canada.
| |
Collapse
|
88
|
Xu H, Yang Y, Fan L, Deng L, Fan J, Li D, Li H, Zhao RC. Lnc13728 facilitates human mesenchymal stem cell adipogenic differentiation via positive regulation of ZBED3 and downregulation of the WNT/β-catenin pathway. Stem Cell Res Ther 2021; 12:176. [PMID: 33712067 PMCID: PMC7953623 DOI: 10.1186/s13287-021-02250-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/28/2021] [Indexed: 12/17/2022] Open
Abstract
Background Obesity has received increasing attention because of its widespread worldwide occurrence and many threats to health. Human adipose-derived mesenchymal stem cells (hADSCs) are a critical source of adipocytes. Long noncoding RNAs (lncRNAs) play pivotal roles in cell fate determination and differentiation. The objective of the present study was to identify and investigate the function and regulatory mechanism of lncRNAs on adipogenic differentiation of hADSCs. Methods We used lncRNA arrays to identify the prominent differentially expressed lncRNAs before and after hADSC adipogenic differentiation and verified their biological function through antisense oligonucleotide knockdown or lentivirus overexpression. The adipogenic differentiation of hADSCs was assessed by oil red O staining as well as the mRNA and protein levels of adipogenic marker genes through qRT-PCR and western blot. Bioinformatic tool LncPro and immunofluorescence was performed to uncover the interaction between lnc13728 and ZBED3. WNT/β-catenin signaling pathway was evaluated by western blot and immunofluorescence. Results The lncRNA arrays showed that lnc13728 expression was significantly upregulated after hADSC adipogenic differentiation and was correlated positively with the expression of the adipogenesis-related genes in human adipose tissue. Lnc13728 knockdown in hADSCs suppressed the expression of the adipogenesis-related genes at both mRNA and protein level and weakened lipid droplet production. Accordingly, lnc13728 overexpression enhanced hADSC adipogenic differentiation. Beyond that, lnc13728 co-localized with ZBED3 in the cytoplasm and regulated its expression positively. Downregulating ZBED3 had a negative effect on adipogenic differentiation, while the expression of WNT/β-catenin signaling pathway-related proteins was upregulated. Conclusions Lnc13728 promotes hADSC adipogenic differentiation possibly by positively regulating the expression of ZBED3 which plays a role in inhibiting the WNT/β-catenin pathway. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-021-02250-8.
Collapse
Affiliation(s)
- Haoying Xu
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Center of Excellence in Tissue Engineering Chinese Academy of Medical Sciences, Beijing Key Laboratory (No. BZO381), Beijing, 100005, China
| | - Yanlei Yang
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Center of Excellence in Tissue Engineering Chinese Academy of Medical Sciences, Beijing Key Laboratory (No. BZO381), Beijing, 100005, China
| | - Linyuan Fan
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Center of Excellence in Tissue Engineering Chinese Academy of Medical Sciences, Beijing Key Laboratory (No. BZO381), Beijing, 100005, China
| | - Luchan Deng
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Center of Excellence in Tissue Engineering Chinese Academy of Medical Sciences, Beijing Key Laboratory (No. BZO381), Beijing, 100005, China
| | - Junfen Fan
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Center of Excellence in Tissue Engineering Chinese Academy of Medical Sciences, Beijing Key Laboratory (No. BZO381), Beijing, 100005, China
| | - Di Li
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Center of Excellence in Tissue Engineering Chinese Academy of Medical Sciences, Beijing Key Laboratory (No. BZO381), Beijing, 100005, China
| | - Hongling Li
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Center of Excellence in Tissue Engineering Chinese Academy of Medical Sciences, Beijing Key Laboratory (No. BZO381), Beijing, 100005, China.
| | - Robert Chunhua Zhao
- Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Center of Excellence in Tissue Engineering Chinese Academy of Medical Sciences, Beijing Key Laboratory (No. BZO381), Beijing, 100005, China.
| |
Collapse
|
89
|
Nuckowski Ł, Kilanowska A, Studzińska S. Hydrophilic interaction in solid-phase extraction of antisense oligonucleotides. J Chromatogr Sci 2021; 58:383-387. [PMID: 32043121 DOI: 10.1093/chromsci/bmz114] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 09/12/2019] [Accepted: 11/13/2019] [Indexed: 11/13/2022]
Abstract
The presented studies aimed to develop a new and simple extraction method based on hydrophilic interaction for antisense oligonucleotides with different modifications. For this purpose, solid-phase extraction cartridges with unmodified silica were used. All extraction steps were performed by utilizing water, acetonitrile, acetone or their mixtures. The results obtained show that a high content (95%) of organic solvent, used during sample loading, is critical to achieve a successful extraction, while elution with pure water allows effective oligonucleotides desorption. The recovery values were greater than 90% in the case of unmodified DNA, phosphorothioate, 2'-O-(2-methoxyethyl) and 2'-O-methyl oligonucleotides. For the mixture of phosphorothioate oligonucleotide and its two synthetic metabolites, the recovery values for the standard solutions were in the range of 70-75%, while for spiked human plasma, 45-50%. The developed method is simple, may be performed in a short time and requires simple solvents like water or acetonitrile/acetone, thus showing promise as an alternative to chaotropic salt-based or ion pair-based SPE methods.
Collapse
Affiliation(s)
- Łukasz Nuckowski
- Chair of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7 Gagarin St., PL-87-100 Toruń, Poland
| | - Anna Kilanowska
- Chair of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7 Gagarin St., PL-87-100 Toruń, Poland
| | - Sylwia Studzińska
- Chair of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7 Gagarin St., PL-87-100 Toruń, Poland
| |
Collapse
|
90
|
Guo X, Stolee JA, Fillon YA, Zou L. Trace-Level Determination of Acrylonitrile Generated in the Manufacturing Process of Oligonucleotides by Static Headspace Gas Chromatography with an Electron Impact(+) Mass Detector. Org Process Res Dev 2021. [DOI: 10.1021/acs.oprd.0c00527] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Xun Guo
- Analytical Development, Biogen Inc., Cambridge, Massachusetts 02142, United States
| | - Jessica A. Stolee
- Analytical Development, Biogen Inc., Cambridge, Massachusetts 02142, United States
| | - Yannick A. Fillon
- Antisense Oligonucleotide Development, Biogen Inc., Cambridge, Massachusetts 02142, United States
| | - Lanfang Zou
- Analytical Development, Biogen Inc., Cambridge, Massachusetts 02142, United States
| |
Collapse
|
91
|
A novel rationale for targeting FXI: Insights from the hemostatic microRNA targetome for emerging anticoagulant strategies. Pharmacol Ther 2021; 218:107676. [DOI: 10.1016/j.pharmthera.2020.107676] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 09/03/2020] [Indexed: 02/07/2023]
|
92
|
De Palma FDE, Raia V, Kroemer G, Maiuri MC. The Multifaceted Roles of MicroRNAs in Cystic Fibrosis. Diagnostics (Basel) 2020; 10:E1102. [PMID: 33348555 PMCID: PMC7765910 DOI: 10.3390/diagnostics10121102] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/14/2020] [Accepted: 12/15/2020] [Indexed: 12/11/2022] Open
Abstract
Cystic fibrosis (CF) is a lifelong disorder affecting 1 in 3500 live births worldwide. It is a monogenetic autosomal recessive disease caused by loss-of-function mutations in the gene encoding the chloride channel cystic fibrosis transmembrane conductance regulator (CFTR), the impairment of which leads to ionic disequilibria in exocrine organs. This translates into a chronic multisystemic disease characterized by airway obstruction, respiratory infections, and pancreatic insufficiency as well as hepatobiliary and gastrointestinal dysfunction. Molecular characterization of the mutational heterogeneity of CFTR (affected by more than 2000 variants) improved the understanding and management of CF. However, these CFTR variants are linked to different clinical manifestations and phenotypes, and they affect response to treatments. Expanding evidence suggests that multisystemic disease affects CF pathology via impairing either CFTR or proteins regulated by CFTR. Thus, altering the expression of miRNAs in vivo could constitute an appealing strategy for developing new CF therapies. In this review, we will first describe the pathophysiology and clinical management of CF. Then, we will summarize the current knowledge on altered miRNAs in CF patients, with a focus on the miRNAs involved in the deregulation of CFTR and in the modulation of inflammation. We will highlight recent findings on the potential utility of measuring circulating miRNAs in CF as diagnostic, prognostic, and predictive biomarkers. Finally, we will provide an overview on potential miRNA-based therapeutic approaches.
Collapse
Affiliation(s)
- Fatima Domenica Elisa De Palma
- Equipe 11 Labellisée Ligue Contre le Cancer, Centre de Recherche des Cordeliers, INSERM UMRS 1138, Sorbonne Université, Université of Paris, 75006 Paris, France;
- Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, 94805 Villejuif, France
- CEINGE-Biotecnologie Avanzate, 80145 Naples, Italy
| | - Valeria Raia
- Pediatric Unit, Department of Translational Medical Sciences, Regional Cystic Fibrosis Center, Federico II University Naples, 80131 Naples, Italy;
| | - Guido Kroemer
- Equipe 11 Labellisée Ligue Contre le Cancer, Centre de Recherche des Cordeliers, INSERM UMRS 1138, Sorbonne Université, Université of Paris, 75006 Paris, France;
- Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, 94805 Villejuif, France
- Suzhou Institute for Systems Medicine, Chinese Academy of Sciences, Suzhou 215123, China
- Karolinska Institutet, Department of Women’s and Children’s Health, 17176 Stockholm, Sweden
- Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, 75015 Paris, France
- Institut Universitaire de France, 75005 Paris, France
| | - Maria Chiara Maiuri
- Equipe 11 Labellisée Ligue Contre le Cancer, Centre de Recherche des Cordeliers, INSERM UMRS 1138, Sorbonne Université, Université of Paris, 75006 Paris, France;
- Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, 94805 Villejuif, France
| |
Collapse
|
93
|
Hawner M, Ducho C. Cellular Targeting of Oligonucleotides by Conjugation with Small Molecules. Molecules 2020; 25:E5963. [PMID: 33339365 PMCID: PMC7766908 DOI: 10.3390/molecules25245963] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 12/11/2020] [Accepted: 12/11/2020] [Indexed: 12/20/2022] Open
Abstract
Drug candidates derived from oligonucleotides (ON) are receiving increased attention that is supported by the clinical approval of several ON drugs. Such therapeutic ON are designed to alter the expression levels of specific disease-related proteins, e.g., by displaying antigene, antisense, and RNA interference mechanisms. However, the high polarity of the polyanionic ON and their relatively rapid nuclease-mediated cleavage represent two major pharmacokinetic hurdles for their application in vivo. This has led to a range of non-natural modifications of ON structures that are routinely applied in the design of therapeutic ON. The polyanionic architecture of ON often hampers their penetration of target cells or tissues, and ON usually show no inherent specificity for certain cell types. These limitations can be overcome by conjugation of ON with molecular entities mediating cellular 'targeting', i.e., enhanced accumulation at and/or penetration of a specific cell type. In this context, the use of small molecules as targeting units appears particularly attractive and promising. This review provides an overview of advances in the emerging field of cellular targeting of ON via their conjugation with small-molecule targeting structures.
Collapse
Affiliation(s)
| | - Christian Ducho
- Department of Pharmacy, Pharmaceutical and Medicinal Chemistry, Saarland University, Campus C2 3, 66 123 Saarbrücken, Germany;
| |
Collapse
|
94
|
Mao S, Ying Y, Wu R, Chen AK. Recent Advances in the Molecular Beacon Technology for Live-Cell Single-Molecule Imaging. iScience 2020; 23:101801. [PMID: 33299972 PMCID: PMC7702005 DOI: 10.1016/j.isci.2020.101801] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Nucleic acids, aside from being best known as the carrier of genetic information, are versatile biomaterials for constructing nanoscopic devices for biointerfacing, owing to their unique properties such as specific base pairing and predictable structure. For live-cell analysis of native RNA transcripts, the most widely used nucleic acid-based nanodevice has been the molecular beacon (MB), a class of stem-loop-forming probes that is activated to fluoresce upon hybridization with target RNA. Here, we overview efforts that have been made in developing MB-based bioassays for sensitive intracellular analysis, particularly at the single-molecule level. We also describe challenges that are currently limiting the widespread use of MBs and provide possible solutions. With continued refinement of MBs in terms of labeling specificity and detection accuracy, accompanied by new development in imaging platforms with unprecedented sensitivity, the application of MBs is envisioned to expand in various biological research fields.
Collapse
Affiliation(s)
- Shiqi Mao
- Department of Biomedical Engineering, College of Engineering, Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing 100871, China
| | - Yachen Ying
- Department of Biomedical Engineering, College of Engineering, Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing 100871, China
| | - Ruonan Wu
- Department of Biomedical Engineering, College of Engineering, Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing 100871, China
| | - Antony K. Chen
- Department of Biomedical Engineering, College of Engineering, Peking University, No. 5 Yiheyuan Road, Haidian District, Beijing 100871, China
- Corresponding author
| |
Collapse
|
95
|
Chen S, Sbuh N, Veedu RN. Antisense Oligonucleotides as Potential Therapeutics for Type 2 Diabetes. Nucleic Acid Ther 2020; 31:39-57. [PMID: 33026966 DOI: 10.1089/nat.2020.0891] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Type 2 diabetes (T2D) is a chronic metabolic disorder characterized by persistent hyperglycemia resulting from inefficient signaling and insufficient production of insulin. Conventional management of T2D has largely relied on small molecule-based oral hypoglycemic medicines, which do not halt the progression of the disease due to limited efficacy and induce adverse effects as well. To this end, antisense oligonucleotide has attracted immense attention in developing antidiabetic agents because of their ability to downregulate the expression of disease-causing genes at the RNA and protein level. To date, seven antisense agents have been approved by the United States Food and Drug Administration for therapies of a variety of human maladies, including genetic disorders. Herein, we provide a comprehensive review of antisense molecules developed for suppressing the causative genes believed to be responsible for insulin resistance and hyperglycemia toward preventing and treating T2D.
Collapse
Affiliation(s)
- Suxiang Chen
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, Australia.,Perron Institute for Neurological and Translational Science, Perth, Australia
| | - Nabayet Sbuh
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, Australia.,Perron Institute for Neurological and Translational Science, Perth, Australia
| | - Rakesh N Veedu
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, Australia.,Perron Institute for Neurological and Translational Science, Perth, Australia
| |
Collapse
|
96
|
Samant NP, Gupta GL. Novel therapeutic strategies for Alzheimer's disease targeting brain cholesterol homeostasis. Eur J Neurosci 2020; 53:673-686. [PMID: 32852876 DOI: 10.1111/ejn.14949] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 08/16/2020] [Accepted: 08/17/2020] [Indexed: 01/04/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder and the most common cause of dementia. Aβ plaques and tauopathy are two major concerns associated with AD. Moreover, excessive Aβ accumulation can lead to other nonspecific metabolic brain abnormalities. There are various genetic, environmental, and other risk factors associated with AD. Identification of risk factors and its mechanisms by which these factors impart role in AD pathology would be helpful for the prevention of AD progression. Altered cholesterol homeostasis could be considered as a risk factor for AD progression. Brain cholesterol dysmetabolism is recognized as one of the crucial attributes for AD that affect major hallmarks of AD including neurodegeneration. To fill the gap between altered cholesterol levels in the brain and AD, the researchers started focusing on statins as re-purposing drugs for AD treatment. The various other hypothesis has been suggested due to a lack of beneficial results of statins in clinical trials, such as reduced brain cholesterol could underlie poor cognition. Unfortunately, it is still unclear, whether an increase or decrease in brain cholesterol levels responsible for Alzheimer's disease or not. Presently, scientists believed that managing the level of cholesterol in the brain may help as an alternative treatment strategy for AD. In this review, we focused on the therapeutic strategies for AD by targeting brain cholesterol levels.
Collapse
Affiliation(s)
- Nikita Patil Samant
- Shobhaben Pratapbhai Patel School of Pharmacy & Taechnology Management, SVKM'S NMIMS, Mumbai, India
| | - Girdhari Lal Gupta
- Shobhaben Pratapbhai Patel School of Pharmacy & Taechnology Management, SVKM'S NMIMS, Mumbai, India
| |
Collapse
|
97
|
Morpholino Oligomer-Induced Dystrophin Isoforms to Map the Functional Domains in the Dystrophin Protein. MOLECULAR THERAPY-NUCLEIC ACIDS 2020; 22:263-272. [PMID: 33230432 PMCID: PMC7516190 DOI: 10.1016/j.omtn.2020.08.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 08/18/2020] [Indexed: 12/21/2022]
Abstract
Dystrophin plays a crucial role in maintaining sarcolemma stability during muscle contractions, and mutations that prevent the expression of a functional protein cause Duchenne muscular dystrophy (DMD). Antisense oligonucleotide-mediated manipulation of pre-messenger RNA splicing to bypass Duchenne-causing mutations and restore functional dystrophin expression has entered the clinic for the most common DMD mutations. The rationale of "exon skipping" is based upon genotype-phenotype correlations observed in Becker muscular dystrophy, a milder allelic disorder generally characterized by in-frame deletions and internally truncated but semi-functional dystrophin isoforms. However, there is a lack of genotype-phenotype correlations downstream of DMD exon 55, as deletions in this region are rare and most single exon deletions would disrupt the reading frame. Consequently, the amenability of mutations in this region of the DMD gene to exon skipping strategies remains unknown. Here, we induced "Becker muscular dystrophy-like" in-frame dystrophin isoforms in vivo by intraperitoneal injection of peptide-conjugated phosphorodiamidate morpholino oligomers targeting selected exons. The dystrophin isoform encoded by the transcript lacking exons 56+57 appears to be more functional than that encoded by the 58+59-deleted transcript, as determined by higher dystrophin expression, stabilized β-dystroglycan, and less severe dystrophic pathology, indicating some potential for the strategy to address Duchenne-causing mutations affecting these exons.
Collapse
|
98
|
Song Z, Jia R, Tang M, Xia F, Xu H, Li Z, Huang C. Antisense oligonucleotide technology can be used to investigate a circular but not linear RNA-mediated function for its encoded gene locus. SCIENCE CHINA-LIFE SCIENCES 2020; 64:784-794. [PMID: 32815066 DOI: 10.1007/s11427-020-1743-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 05/25/2020] [Indexed: 02/06/2023]
Abstract
As a class of powerful molecular tool, antisense oligonucleotides (ASOs) are not only broadly used in protein and RNA biology, but also a highly selective therapeutic strategy for many diseases. Although the concept that ASO reagents only reduce expression of the targeted gene in a post-transcriptional manner has long been established, the effect and mechanism of ASO reagents on RNA polymerase II (Pol II) transcription are largely unknown. This raised question is particularly important for the appropriate use of ASOs and the valid interpretation of ASO-mediated experiments. In this study, our results show that linear RNA ASO attenuates transcription of nascent transcripts by inducing premature transcription termination which is combinatorially controlled by Integrator, exosome, and Rat1 in Drosophila. However, circular RNA (circRNA) ASO transfection does not affect transcription activity of the encoded gene. These data suggest that the ASO technique can be applied to study a circRNA-mediated but not linear RNA-mediated function for its encoded gene locus.
Collapse
Affiliation(s)
- Zhenxing Song
- School of Life Sciences, Chongqing University, Chongqing, 400044, China.,Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, 400044, China
| | - Ruirui Jia
- School of Life Sciences, Chongqing University, Chongqing, 400044, China.,Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, 400044, China
| | - Mingfeng Tang
- School of Life Sciences, Chongqing University, Chongqing, 400044, China.,Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, 400044, China
| | - Fei Xia
- School of Life Sciences, Chongqing University, Chongqing, 400044, China.,Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, 400044, China
| | - Haiyang Xu
- School of Life Sciences, Chongqing University, Chongqing, 400044, China.,Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, 400044, China
| | - Zhengguo Li
- School of Life Sciences, Chongqing University, Chongqing, 400044, China.,Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, 400044, China
| | - Chuan Huang
- School of Life Sciences, Chongqing University, Chongqing, 400044, China. .,Center of Plant Functional Genomics, Institute of Advanced Interdisciplinary Studies, Chongqing University, Chongqing, 400044, China.
| |
Collapse
|
99
|
Sasaki S, Izumi H, Morimoto Y, Sakurai K, Mochizuki S. Induction of potent cell growth inhibition by schizophyllan/K-ras antisense complex in combination with gemcitabine. Bioorg Med Chem 2020; 28:115668. [PMID: 32828430 DOI: 10.1016/j.bmc.2020.115668] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 07/20/2020] [Accepted: 07/24/2020] [Indexed: 02/07/2023]
Abstract
Antisense oligonucleotides (AS-ODNs) specifically hybridize with target mRNAs, resulting in interference with the splicing mechanism or the regulation of protein translation. In our previous reports, we demonstrated that β-glucan schizophyllan (SPG) can form a complex with AS-ODNs attached with oligo deoxyadenosine dA40 (AS-ODN-dA40/SPG), and that this complex can be recognized by β-glucan receptor Dectin-1 on antigen presenting cells and lung cancer cells. In many types of cancer cell, activating K-ras mutations related to malignancy are frequently observed. In this study, we first designed 78 AS-ODNs for K-ras to optimize the sequence for highly efficient gene suppression. The selected AS-ODN (K-AS07) having dA40 made a complex with SPG. The resultant complex (K-AS07-dA40/SPG) showed an effect of silencing the ras gene in the cells (PC9: human adenocarcinoma differentiated from lung tissue) expressing Dectin-1, leading to the suppression of cell growth. Furthermore, the cytotoxic effect was enhanced when used in combination with the anticancer drug gemcitabine. Gemcitabine, a derivative of cytidine, was shown to interact with dA40 in a sequence-dependent manner. This interaction did not appear to be so strong, with the gemcitabine being released from the complex after internalization into the cells. SPG and the dA40 part of K-AS07-dA40 play roles in carriers for K-AS07 and gemcitabine, respectively, resulting in a strong cytotoxic effect. This combination effect is a novel feature of the AS-ODN-dA40/SPG complexes. These results could facilitate the clinical application of these complexes for cancer treatment.
Collapse
Affiliation(s)
- Shogo Sasaki
- Department of Chemistry and Biochemistry, The University of Kitakyushu, 1-1, Hibikino, Wakamatsu-ku, Kitakyushu, Fukuoka 808-0135, Japan
| | - Hiroto Izumi
- University of Occupational and Environmental Health, 1-1 Isegaoka, Yahatanishi-ku, Kitakyushu, Fukuoka 807-8555, Japan
| | - Yasuo Morimoto
- University of Occupational and Environmental Health, 1-1 Isegaoka, Yahatanishi-ku, Kitakyushu, Fukuoka 807-8555, Japan
| | - Kazuo Sakurai
- Department of Chemistry and Biochemistry, The University of Kitakyushu, 1-1, Hibikino, Wakamatsu-ku, Kitakyushu, Fukuoka 808-0135, Japan
| | - Shinichi Mochizuki
- Department of Chemistry and Biochemistry, The University of Kitakyushu, 1-1, Hibikino, Wakamatsu-ku, Kitakyushu, Fukuoka 808-0135, Japan.
| |
Collapse
|
100
|
D'Erasmo L, Gallo A, Di Costanzo A, Bruckert E, Arca M. Evaluation of efficacy and safety of antisense inhibition of apolipoprotein C-III with volanesorsen in patients with severe hypertriglyceridemia. Expert Opin Pharmacother 2020; 21:1675-1684. [PMID: 32646313 DOI: 10.1080/14656566.2020.1787380] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Severe hypertriglyceridemia (sHTG) is a complex disorder of lipid metabolism characterized by plasma levels of triglyceride (TG) greater than 885 mg/dl (>10 mmol/L). The treatment of sHTG syndromes is challenging because conventional treatments are often ineffective in reducing TG under the threshold to prevent acute pancreatitis (AP). The inhibition of APOC3, which encodes a protein involved in triglyceride (TG)-rich lipoproteins (TGRLs) removal, has been reported to be a novel target for the treatment of sHTG. Volanesorsen is a second-generation antisense oligonucleotide inhibiting apoC-III transcription/translation that has been recently approved in Europe for Familial Chylomicronemia Syndrome (FCS) treatment. AREAS COVERED This review summarizes the evidences on the efficacy and safety of volanesorsen for the treatment of sHTG syndromes. EXPERT OPINION Volanesorsen effectively reduces TG in sHTG through a mechanism that is mainly LPL-independent, potentially decreasing the risk of AP. Some safety concerns have been raised with the use of volanesorsen, mainly represented by the occurrence of thrombocytopenia. Due to the potential severity of side effects, some caution is needed before affirming the long-term utility of this drug. Despite this, volanesorsen currently remains the only drug that has been demonstrated effective in FCS, which otherwise remains an untreatable disease.
Collapse
Affiliation(s)
- Laura D'Erasmo
- Department of Translational and Precision Medicine, Sapienza University of Rome , Rome, Italy.,Cardiovascular Prevention Unit, Department of Endocrinology and Metabolism, Pitié-Salpêtrière University Hospital , Paris, France
| | - Antonio Gallo
- Cardiovascular Prevention Unit, Department of Endocrinology and Metabolism, Pitié-Salpêtrière University Hospital , Paris, France.,Laboratoire d'imagerie Biomédicale, INSERM 1146, - CNRS 7371, Sorbonne University , Paris, France
| | - Alessia Di Costanzo
- Department of Translational and Precision Medicine, Sapienza University of Rome , Rome, Italy
| | - Eric Bruckert
- Cardiovascular Prevention Unit, Department of Endocrinology and Metabolism, Pitié-Salpêtrière University Hospital , Paris, France
| | - Marcello Arca
- Department of Translational and Precision Medicine, Sapienza University of Rome , Rome, Italy
| |
Collapse
|